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Abstract. Voting rules aggregate multiple individual preferences in or-
der to make collective decisions. Commonly, these mechanisms are ex-
pected to respect a multitude of different fairness and reliability proper-
ties, e.g., to ensure that each voter’s ballot accounts for the same propor-
tion of the elected alternatives, or that a voter cannot change the election
outcome in her favor by insincerely filling out her ballot. However, no
voting rule is fair in all respects, and trade-off attempts between such
properties often bring out inconsistencies, which makes the construction
of arguably practical and fair voting rules non-trivial and error-prone.

In this paper, we present a formal and systematic approach for the flexi-
ble and verified construction of voting rules from composable core mod-
ules to respect such properties by construction. Formal composition rules
guarantee resulting properties from properties of the individual compo-
nents, which are of generic nature to be reused for various voting rules.
We provide a prototypical logic-based implementation with proofs for
a selected set of structures and composition rules within the theorem
prover Isabelle/HOL. The approach can be readily extended in order
to support many voting rules from the literature by extending the set
of basic modules and composition rules. We exemplarily construct the
well-known voting rule sequential majority comparison (SMC) from sim-
ple generic modules, and automatically produce a formal proof that SMC
satisfies the fairness property monotonicity. Monotonicity is a well-known
social-choice property that is easily violated by voting rules in practice.

Keywords: Social choice - Higher-order logic - Modular verification.

1 Introduction

In an election, voters cast ballots to express their individual preferences about
eligible alternatives. From these individual preferences, a collective decision, i.e.,
a set of winning alternatives, is determined using a voting rule. Throughout the
literature and in practice, there are many different voting rules each of which
exhibit different behaviors and properties. Depending on the specific applications
and regulations, voting rules are devised for a variety of different design goals
towards carefully selected behaviors and properties. Imagine, for instance, one
situation where a village wants to elect a local council, or another one where a
group of friends wants to choose a destination to go on vacation based on each
of the friend’s preferences. In the former case, the village might prefer to be
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represented by a larger council rather than having only few representatives who
are elected by a majority, but are strongly disliked by everybody else. For the
latter, it is clearly undesirable to choose multiple destinations, but rather settle
for one so that the group can spend the vacation together.

Indeed, there is no general rule which caters for every requirement, and any
voting rule shows paradoxical behavior for some voting situation [1]. There-
fore, an approach to analyze voting rules for their behavior by clear-cut formal
properties, the so-called axiomatic method, has emerged. The axiomatic method
advocates the use of rules that provide rigorous guarantees (which we call prop-
erties), and compares them based on guarantees that they do, or do not, satisfy.
These properties capture very different requirements of fairness or reliability,
e.g., principles that each vote is counted equally, that the electees proportion-
ally reflect the voters’ preferences, or that they are preferred by a majority of the
voters. Devising voting rules towards such properties is generally cumbersome as
their trade-off is inherently difficult and error-prone. Attempting to prove prop-
erties for specific voting rules often exhibits design errors, but is cumbersome
as well [4]. As of yet, there exists no general formal approach to systematically
devise voting rules towards formal properties without being either error-prone
or extremely cumbersome.

Contribution. In this paper, we present a formal systematic approach for the
flexible and verified construction of voting rules from compact composable mod-
ules with guaranteed formal properties. Indeed, when taking an abstract view,
many voting rules share similar structures, e.g., aggregating the individual votes
by calculating the sum or some other aggregator function. Based on this ob-
servation, our approach enables flexible, intuitive and verified construction of
interesting voting rules from a small number of compositional structures. These
structures exhibit precise and general interfaces such that their scope may easily
be extended with further modules. We devise a general component type as well
as special types, e.g., for aggregation functions, and compositional structures,
e.g., for sequential, parallel and loop composition. The resulting properties, e.g.,
common social choice properties from the literature, are guaranteed from com-
posing modules with given individual properties by rigorous composition rules.

We demonstrate the logic-based application with proofs for a selected set of
composition structures and rules, and composable modules within the theorem
prover Isabelle/HOL [13|. Thereby, the approach is amenable both for external
scrutiny as compositions are rigorously and compactly defined, and for an in-
tegration in larger automatic voting rule design or verification frameworks. As
case study, we define composition rules for the common social choice property
monotonicity, and demonstrate a formal correct-by-construction verification of
the rule sequential majority comparison (SMC). The construction produces a
proof that SMC fulfills the monotonicity property using a set of basic modules.

Outline. The rest of this paper is structured as follows: Section [2| introduces
formal concepts and definitions from social choice theory for our construction
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approach. We present the core framework in Section [3] and demonstrate the
verified construction framework within Isabelle/HOL in Section [4] In Section
we apply our approach to the case study of constructing the monotone voting
rule sequential majority comparison, and give an overview of related work to our
approach in Section[6} We finally conclude and discuss future work in Section [7]

2 Concepts and Definitions from Social Choice Theory

We consider a fixed finite set A of eligible alternatives and a finite (possibly
ordered) set . of voters (with cardinality k). In an election, each voter i casts a
ballot 7; € L(A), which is a linear orderﬂ ranking the alternatives A according
to ¢’s preference. We collect all votes in a profile, i.e., a sequence 7~ = (1, ..., Zk)
of k ballots. Given the set £(A) of linear orders on A, £(A)* defines the set
of all profiles on A of length k, i.e., for all voters. Hence, we have L(A)* =
Usen+ £(A)¥, the set of all finite, nonempty profiles on A, i.e., the input domain
for a voting rule. Voting rules (see Definition (1)) elect a nonempty subset C(.A)
of the alternatives as (possibly tied) winners, given C(X) denotes the set of all
nonempty subsets of a set X.

Definition 1 (Voting Rule). Given a finite set of alternatives A, a voting
rule f maps each possible profile =€ L(A)T to a nonempty set of winning alter-
natives in C(A):

f:L(A)T —C(A).

In practice and in literature, a multitude of voting rules are in use. A com-
mon example is the function that returns all alternatives that are ranked at
first position by a plurality of the voters, hence called plurality voting. Another
common kind of voting rules assigns values for every ballot to each alternative
according to her position occupied on the ballot, and elects the alternatives with
the maximal score, i.e., the sum of all such values for her. Such rules are called
scoring rules, e.g., the Borda rule, where the value of an alternative on a ballot
is the number of alternatives ranked below her on that ballot.

Social Choice Properties. Within social choice theory, the axiomatic method
has established a number of general fairness and reliability properties called
(aziomatic) social choice properties. They formally capture intuitively desirable
or in other ways useful properties to compare, evaluate, or characterize voting
rules. Such properties are applicable in a general way as they are defined on
abstract voting rules only with respect to profiles and returned sets of winning
alternatives. For the sake of simplicity, the examples illustrated in this paper only
address properties of universal nature, i.e., they require that all mappings of a
given voting rule belong to some set of admissible ways, as formally described
by the property of interest, for associating sets of winners to profiles. Besides
properties which functionally limit the possible sets of winning alternatives for

1 A linear order is a transitive, complete, and antisymmetric relation.
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any one given profile, properties may also relationally limit combinations (of
finite arity) of mappings, e.g., certain (hypothetical) changes of a profile may
only lead to certain changes of the winning alternatives. Relational properties
capture a voter’s considerations such as how certain ways of (not) filling out her
ballot may or may not affect the chances of winning for some alternatives.

Within this paper, we use Condorcet consistency and monotonicity as run-
ning examples. The functional property Condorcet consistency (see Definition
requires that if there is an alternative w that is the Condorcet winner (see Defini-
tion , the rule elects w as unique winner. A Condorcet winner is an alternative
that wins every pairwise majority comparison against all other alternatives, i.e.,
for any other alternative, there is a majority of voters who rank the Condorcet
winner higher than that alternative.

Definition 2 (Condorcet Winner). For a set of alternatives A and a profile
= € L(A)T, an alternative w € A is a Condorcet winner iff the following holds:

Vae A\{w}:|{ie X am;w} <|{ie X 1w a}|
Note that, if a Condorcet winner exists, it is unique by the above definition.

Definition 3 (Condorcet Consistency). For a set of alternatives A, a vot-
ing rule f is Condorcet consistent iff for every profile == € L(A)T and (if exist-
ing) the respective Condorcet winner w € A, the following holds:

w is Condorcet winner forz = f(x) = {w}.

Note here that for profiles for which no Condorcet winner exists, the prop-
erty imposes no requirements on the election outcome. The relational property
monotonicity expresses that if a voter were to change her vote in favor of some
other alternative, the outcome could never change to the disadvantage of that
alternative. Monotone voting rules are resistant to some forms of strategic ma-
nipulation where a voter could make their preferred alternative the (unique)
winner by misrepresenting her actual preferences and assigning a higher rank to
another alternative on her ballot. A voting rule is monotone (see Definition
iff for any two profiles -, and =’ which are identical except for one alternative
a that is ranked higher in 7=’ (while preserving all remaining pairwise-relative
rankings), the election of a for 7~ always implies her election for =’. We define
this “ranking higher” as lifting an alternative (see Definition .

Definition 4 (Lifting). For a set of alternatives A and two profiles 7,7 €

L(A)*, =" is obtained from - by lifting an alternative a € A iff there exists a
ballot i € [1,k] such that 7=;#7) and for each such i the following holds:

~T
i. There exists some alternative x € A such that x 7; a and a 7} z, and
it. we have y o; z < y 7} z for all other alternatives y,z € A\ {a}.

We may thus define the monotonicity property as follows.
Definition 5 (Monotonicity). For a set of alternatives A and an alternative
a € A, a voting rule f is monotone iff for all profiles =, € L(A)T where =/

~) ~

is obtained from lifting a in 7, the following implication holds:

ac f(Z)=ac f(Z)
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3 Composable Modules and Compositional Structures

The verified construction approach consists of two structural and two semantic
concepts, namely (i) component types that specify structural interfaces wherein
components can be implemented, and (ii) compositional structures that spec-
ify structural contracts which combine components to create new components
that are again composable. Moreover, semantic aspects for constructing con-
crete voting rules are addressed by (iii) composition rules that define semantic
rules which compositions can contractually depend on, i.e., if components fulfill
a rule’s requirements, the composition guarantees the rule’s semantics, as well
as (iv) composable modules that define concrete semantics of either directly im-
plemented or constructed modules from which other modules can be composed
using the composition rules. In the following, we give details on component types
and compositional structures for composing voting rules based on the ideas in [9].

3.1 Electoral Modules

The structural foundation of our approach are electoral modules, a generalization
of voting rules as in Definition [I] We define electoral modules (see Definition [6)
so that they act as the principal component type (cf. within our framework.
In contrast to a voting rule, an electoral module does not need to make final
decisions for all the alternatives, i.e., partitiorﬂ them (only) into winning and
losing alternatives, but can instead defer the decision for some or all of them to
other modules. Hence, electoral modules partition the received (possibly empty)
set of alternatives A C A into elected, rejected and deferred alternatives. In par-
ticular, any of those sets, e.g., the set of winning (elected) alternatives, may also
be left empty, as long as they collectively still hold all the received alternatives.
Just like a voting rule, an electoral module also receives a profile which holds
the voters’ preferences, which, unlike a voting rule, consider only the (sub-)set of
alternatives that the module receives. We take this into account by the following
definition of our input domain Dﬁod:

Dinoa = {(A,2) | AC A Z € L(A)*)

Déad contains all subsets of A paired with matching profiles. We can hence
define electoral modules as follows:

Definition 6 (Electoral Module). For eligible alternatives A and a (sub-)set
A C A, we define an electoral module as a function m with

m: Déod — P(A)3.

The function m maps a set of alternatives with a matching profile to the set-
triple (e,r,d) of sets of elected (e), rejected (r), and deferred (d) alternatives
such that
(A, =) € DAy = (m(A, =) = (e, r,d) partitions A).
2 We say that a sequence of sets si,..., S, partitions a set S if and only if S equals
the union [ J, €[1,n) Si OVer all sets s; for ¢ € [1,n] and all their pairwise intersections
are empty, i.e., Vi # j € [1,n] : s; Ns; = 0.
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In the following, we denote the set of electoral modules by M4, as well
as me(A4,7), m-(A, ), and my(A, ) for the elected, rejected and deferred
alternatives, respectively, of an electoral module m for (A, 7).

Moreover, we can easily translate voting rules to electoral modules by return-
ing a triple of empty sets in case the module receives an empty set. Otherwise,
we return an empty deferred set, an elected set with exactly the winning alter-
natives, and a rejected set with the complement of the winning alternatives (we
remove the alternatives which are not contained in the received set of alterna-
tives). Note that, as a consequence, social choice properties can also be easily
translated in order to conform to electoral modules.

3.2 Sequential Composition

Sequential composition (see Definition [7)) is a compositional structure (cf. |(ii))
for composing two electoral modules m,n into a new electoral module (m >n)
such that the second module n only decides on alternatives which m defers and
cannot reduce the set of alternatives already elected or rejected by m. In this
composition, n receives only m’s deferred alternatives mgy(A4, ) and a profile
Zl(ma(A,-)) Which only addresses alternatives contained in m4(A, 7).

Definition 7 (Sequential Composition). For any set of alternatives A and
a (sub-)set A C A, electoral modules m,n € M4 and input (A,7) € DA
define the sequential composition function (>) : Mi‘ — My as

mod~’

(m>n)(A, ) = (me(A, 2) Une(ma(A, 2), Zi(ma(a.)))s
My (A, 2) Unge(ma(As 2)s Zioma(am))s
(md(A ré)7N|(7nd(A ))

3.3 Revision Composition

Mostly for convenience, we define a revision composition (see Definition [8) for
situations in which we want to revise the alternatives already elected by a prior
module, e.g., for enabling sequential composition with a tie-breaking module. For
an electoral module m, the revision composition removes m’s elected alternatives
and attaches them to the previous deferred alternatives, while the rejected alter-
natives are kept unchanged. Whereas this composition can also be achieved by
parallel composition, this dedicated structure turns out to be beneficial in our
implementation due to its frequent uses.

Definition 8 (Revision Composition). For any set of alternatives A and
a (sub-)set A C A, electoral module m € My, and input (A7) € DA ., we
define the revision composition (}) : Mg — M4 as

mod~’

(m)(A,2) == (0, mr(4,2), me(A,Z) Uma(4,2)).
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3.4 Parallel Composition

The parallel composition (see Deﬁnition lets two electoral modules make two
independent decisions for the given set of alternatives. Their two decisions are
then aggregated by an aggregator (see Deﬁnition@, which is another component
type that combines two set-triples of elected, rejected and deferred alternatives
(as well as the set of alternatives) into a single such triple (we define the input
domain D;%g accordingly).
Definition 9 (Aggregator). For a set of alternatives A, a (sub-)set A C A
and input (A, p1,p2) € D;‘%g, an aggregator is a function
agg : Dzﬁgg — P(A)? such that agg(A, p1,p2) partitions A.
A useful instance of such an aggregator is the max-aggregator aggmax:

Definition 10 (Max-Aggregator). Given two set-triples (e1,r1,d1), (e, r2,ds)
of elected (e), rejected (r) and deferred (d) alternatives, aggmax picks, for each
alternative a and the sets containing a, the superior one of the two sets (assum-
ing the order e > d > r).

aggmax((e1,71,d1), (e2,72,d2)) =
(egUea, (r1Ure) \ (e1 UeaUdy Uds), (d1 Uds) \ (e1 Ues))

Based on the notion of aggregators, we can now define the parallel com-
position as a function mapping two electoral modules m,n and an aggregator
agg € G4 (the set of all aggregators) to a new electoral module (m [|qg¢ 1):

Definition 11 (Parallel Composition). For a set of alternatives A and a
(sub-)set A C A, electoral modules m,n, and an aggregator agg we define the
parallel composition (||) : (Ma X Ga X M) = My as

(m ||agg n)(Aaz) = agg(A7 m(Aai% n(Aa/i))

3.5 Loop Composition

Based on sequential composition (Section for electoral modules, we define
the more general loop composition for sequential compositions of dynamic length.
A loop composition (m ;) repeatedly composes an electoral module m sequen-
tially with itself until either a fixed point is reached or a termination condition
t is satisfied. Within our framework, termination conditions, technically another
component type, are boolean predicates on set-triples such that they are suitable
for electoral modules. The full definition can be found within the Isabelle/HOL
theories provided with this paper.
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3.6 A Simple Example

As a simple example, we illustrate the construction of a voting rule using struc-
tures from above. Consider the well-known Baldwin’s rule, which is a voting
rule based on sequential elimination [2]. The rule repeatedly eliminates the al-
ternative with the lowest Borda score (see Section [2]) until only one alternative
remains.

As basic modules (cf. [(iv)]), we use (a) a module that computes the Borda
scores, rejects the alternative with the lowest such score, and defers the rest, as
well as (b) a module that attaches all deferred alternatives to the elected set.

Moreover, we choose a termination condition such that the loop of interest
stops when the set of (deferred) alternatives has reached size one.

Therefore, Baldwin’s rule can be obtained by

1. composing @ by a loop structure with above mentioned termination condi-
tion, and
2. sequentially composing the loop composition with @

Moreover, loop composition can be directly used for many voting rules of a
category called tournament solutions. Tournament solutions typically consist of
multiple rounds, in each comparing a pair of alternatives based on their profile
rankings, and the winner of a comparison advances to the next round.

4 Verified Modular Construction Framework

In the following, we describe how we model the concepts defined in Section
within a modular proof framework for the verified construction of voting rules.

4.1 Isabelle and Higher-Order Logic (HOL)

We implemented and proved our logical concepts within the interactive theorem
prover Isabelle/HOL [13]|. The Isabelle/HOL system provides a generic infras-
tructure for implementing deductive systems in higher-order logics and enabling
to write tactics for human-readable and machine-checked proofs to show that the
deductive conclusions are indeed correct. We decided to use Isabelle/HOL, be-
cause higher-order logic (HOL) allows to define very expressive, rigorous and gen-
eral theorems. By this means, a theorem is —once proven correct within Isabelle—
re-checked and confirmed by Isabelle/HOL within a few seconds every time the
theorem is loaded. Proofs within Isabelle/HOL are based on the employed the-
ories at the core of the Isabelle system. We made use of the possibility to define
very general theorems to be reused for the construction of various voting rules
and sorts of composition. Moreover, the framework allows for easy application
and extension potentially within a larger framework for the automatic discovery
and construction of voting rules, provided that the voting rule of interest can
be composed from the given compositional rules and composable modules using
the given composition structures and component types.
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The definitions and theorems within our framework are mostly self-contained,
i.e., for the most part they only rely on basic set theory as well as the theories of
finite lists, relations, and order relations for defining the profiles and linear orders
used within our notion of profiles and modules as seen in Listing [I} Therein,
we introduce a handy type abbreviation (Line [1) for profiles which are lists of
relations and therefrom define profiles on alternatives (Lines [3| to [4)) based on
the theory of order relations, and moreover finite profiles (Lines [5| to @ which
we use in a number of structures and concepts. Moreover, type abbreviations
for results of electoral modules (Line , i.e., set-triples, are introduced, and
electoral modules (Line as defined in Section [3| We capture the partitioning
with the two functions to express disjointness of the three sets in an electoral
module result (Lines [20/to[21)) and that their union yields the set of alternatives
of the input (Lines 0 Finally, at the end of Listing|l} we can essentially
define electoral modules on finite profiles and partitionings of the alternatives
(Lines to . We did not require any additional theories besides the ones
provided off-the-shelf with the Isabelle system.

1 type_synonym 'a Profile = "('a rel) list"

2

3 definition profile_on :: "'a set = 'a Profile = bool" where

4 "profile_on A p=(V b € (set p). linear_order_on A b)"

5 abbreviation finite_profile :: "'a set = 'a Profile = bool" where
¢ "finite_profile A p = finite A A profile_on A p"

7

8 type_synonym 'a Result = "'a set * 'a set * 'a set"

9

10 type_synonym 'a Electoral_module = "'a set = 'a Profile = 'a Result"
11

12 fun disjoint :: "'a Result = bool" where "disjoint (e, r, d) =

13 (enzr=4{H) A
14 (end={H A
15 (rnad e

17 fun unify_to :: "'a set ='a Result = bool"
18 where "unify _to A (e, r, d) < (e Ur Ud = A"

20 definition partition_of :: "'a set = 'a Result = bool" where

21 "partition_of A result = disjoint result A unify_to A result"
22

23 definition electoral_module :: " 'a Electoral_module = bool"

24 where "electoral_module m =
25 VA p. finite_profile A p — partition_of A (m A p)"

Listing 1. Central Isabelle/HOL definitions for electoral modules.

As of yet, our verified construction framework comprises concepts and proofs
for 18 composition rules with ten reusable auxiliary properties and eight prop-
erties which translate directly to common social choice properties from the lit-
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erature. Thereof, we implemented the auxiliary properties and the monotonicity
property with respective proofs within the Isabelle/HOL framework.

4.2 Verified Construction based on Composition Rules

From devising composition rules and properties as described in the beginning
of this section together with the component types and structures as described
in Section 3] our framework now only requires a small set of basic components in
order to construct interesting voting rules for the desired social choice properties
which have been defined as properties and included in the rules for composing
electoral modules. The power of our approach lies both in the generality of the
composition rules and compositional structures such that various voting rules
may be constructed for various properties, and in the reduction of complexity
such that compositions for complex social choice properties can be defined by
predominantly local composition rules in a step-by-step manner.

In general, the verified construction using composition rules works as follows:
When we want to obtain a voting rule with a set of properties p from some
basic components ¢ and d which satisfy sets of properties p. and py respectively,
we might make use of a compositional structure X which guarantees that a
composed module m.Xmg satisfies the properties p. Hence, we can get a desired
voting rule by instantiating m. and mg by ¢ and d respectively, which gives us the
induced voting rule f.x4. Note that, when we specify a set of target properties
p, any voting rule induced by our framework (if a suitable one can be induced)
from a set of basic components and compositional structures, necessarily comes
with an Isabelle proof which establishes the validity of p for the induced voting
rule. By design, these proofs are short and can in most cases be automatically
inferred. Hence, given the soundness of the Isabelle/HOL theorem prover, we
obtain a formal proof that the resulting voting rule indeed satisfies the required
properties without the need to re-check the obtained rule.

Example. One such example using structures from Section [3| and properties
defined in this section is that p consists of the property Condorcet consistency,
X is the sequential composition, p. also consists of Condorcet consistency, and
pq is empty. Thus, we have no requirements for properties of any component
d, since sequential composition cannot revoke any alternatives that are already
elected. If a Condorcet winner exists, this alternative is already elected by the
first module, and if not, Condorcet consistency trivially holds. On its own, this
composition rule might not be very sensible, but may be used in combination
with other rules to preserve Condorcet consistency of composed voting rules. A
voting rule from the literature which is constructed in such a manner is Black’s
rule. Black’s rule is a sequential composition of (a component which induces)
the Condorcet rule and (a component which induces) the Borda rule.
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5 Case Study

As a case study for demonstrating the applicability of our approach to existing
voting rules and the merits of composition, we constructed the voting rule se-
quential majority comparison (SMC) from the literature (e.g., from Brandt et
al. [5]), thereby producing a compositional proof that the rule is monotone.

Sequential Majority Comparison (SMC). The voting rule of sequential ma-
jority comparison, also known as sequential pairwise majority, is simple enough
for understanding, but still complex enough such that it demonstrates interest-
ing properties such as monotonicity. Essentially, SMC fixes some (potentially
arbitrary) order on all alternatives and then consecutively performs pairwise
majority elections. We start by doing pairwise comparisons of the first and the
second alternative, then compare the winner of this pairwise comparison to the
third alternative, whose winner is then compared to the fourth alternative, and
so on. SMC belongs to a category of voting rules called tournament solutions,
for which we outline a possible construction pattern in the following.

Verified Construction of Tournament Solution. As indicated in Section 3]
loop composition appears sensible for tournament solutions, as a list of alterna-
tives is processed by multiple rounds, whereof in each, the previously chosen
alternative is compared to the next alternative on the list regarding their rank-
ings in the profile, and the winner of a comparison advances to the next round.

To compare alternatives, we use any electoral module m which elects one
alternative and rejects the rest (for example via plurality voting). To limit com-
parisons to two alternatives, we use the electoral module pass?, which defers
the two alternatives ranked highest in some fixed order > and rejects the rest.
Similarly, drop2> rejects these two alternatives and defers the rest.

We can now describe a single comparison in our tournament as

¢ = (pass% >m) [laggy.. dropd

The first part of the parallel composition elects the winner of the current com-
parison and rejects all other alternatives. The second part defers all alternatives
which are not currently being compared and therefore stay in the tournament.

The termination condition £|4/—¢ is satisfied iff the set of deferred alternatives
passed to it is empty. Then we describe a single round of our tournament as

r= (Cot\d\:o)\l/

Now, for the case of sequential majority comparison (SMC), we proceed as
follows.

Verified Construction of SMIC. Every single comparison elects a single alter-
native to advance to the next round and rejects the other. As long as alternatives
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are left, the next ¢ compares the next two alternatives. If there ever is only a
single alternative left, it advances to the next round automatically. At the end
of the round, we need to revise to defer all winners to the next round instead of
electing them.

Let melect be the electoral module which elects all alternatives passed to it
and #4—; the termination condition that is satisfied when exactly one alternative
is deferred. We can now define the whole tournament as

t= (Tot‘d‘zl) D> Melect -

t repeats single rounds as long as there is more than one alternative left and
then elects the single survivor.

Implementing the Construction of SMC in Isabelle/HOL. After having
described a general pattern for the verified construction of tournament solutions
and sequential majority comparison, we give only structural information on the
implemented construction proofs for SMC as the details are rather lengthy, but
instead refer the reader to the Isabelle/HOL proofs.

We can construct SMC by combining six different basic components by using
all of our composition structures, i.e., the sequential, parallel, loop, and revision
structure, and thereby produce a proof that SMC is a monotone voting rule.

1 definition SMC :: "'a rel = 'a Electoral_module" where

2 "SMC x = let a = Max_aggregator; t = Defer_eq_condition 1 in

3 ((((Pass_module 2 x) > ((Plurality_module)) > (Pass_module 1 x))) ||o
4 (Drop_module 2 x)) (9:) > Elect_module"

¢ theorem SMC_sound:

7 assumes order: "linear_order x"

8 shows "electoral_module (SMC x)"

9

[
o

theorem SMC_monotone:

=
-

assumes order: "linear_order x"
shows "monotone (SMC x)"

-
)

Listing 2. The modular construction of SMC in Isabelle/HOL.

The high-level modular construction can be seen in Listing [2] where SMC
stands for sequential majority comparison composed of a number of simple com-
ponents. Each component, the largest of which is an electoral module inducing
plurality voting (see Section [2), consists of not more than three lines in higher-
order logic and we provided proofs within our Isabelle/HOL framework for easy
reuse and modification for similar voting rules.

Moreover, Listing [2] shows the simplicity of the abstract proof obligations
both that SMC is again an electoral module and satisfies the monotonicity prop-
erty. Both tasks are proven fully modularly and are hence a direct result of SMC’s
composition, and is apt for an automated integration within a potential future
logic-based synthesis tool. We omit the proofs at this point, but they are available



Verified Construction of Fair Voting Rules 13

for downloa(ﬂ and can be inspected and re-played for inspection and automat-
ically checked using Isabelle/HOL. The full proof comprises 26 compositions
using a set of six basic components within the theorem prover Isabelle/HOL.

6 Related Work

We base the core component type in our verified construction framework on the
electoral modules from the unified description of electoral systems in [7]. Therein,
Grilli di Cortona et al. devise a complex component structure for describing
hierarchical electoral systems with a focus on proportional voting rules including
notions for electoral districts and concepts of proportionality. Note, however,
that the component type within this work is already quite different from the
structures in [7]. In the current state, essentially, both concepts only share the
concept of reducing and partitioning the set of alternatives.

General informal advice on voting rule design is given by Taagepera [15].
Moreover, a first approach for composing voting rules in a limited setting is
given by Narodytska et al. |12] that is readily expressible by our structures.
Other work designs voting rules less modularly for statistically guaranteeing
social choice properties by machine learning |17]. Prior modular approaches also
target verification [10,/16] or declarative combinations of voting rules [6], but
ignore the social choice or fairness properties targeted by our work.

We have defined our compositional approach within Isabelle/HOL [13], a
theorem prover for higher-order logic. Isabelle/HOL provides interactive theorem
proving for rigorous systems design. Further work on computer-aided verification
of social choice properties for voting rules using HOL4 has been done by Dawson
et al. [8]. More light-weight approaches with some loss of generality, but the
merit of generating counterexamples for failing properties has been devised by
Beckert et al. [3] and Kirsten and Cailloux [11]. Therein, techniques for relational
verification of more involved social choice properties have been applied. Another
interesting approach has been followed by Pattinson and Schiirmann [14], where
voting rules are directly encoded into HOL rules within tactical theorem provers.

7 Conclusion

Within this work, we introduced an approach to systematically construct voting
rules from compact composable modules to satisfy formal social choice proper-
ties. We devised composition rules for a selection of common social choice prop-
erties, such as monotonicity or Condorcet consistency, as well as for reusable
auxiliary properties. By design, these composition rules give formal guarantees,
in the form of an Isabelle proof based on the properties satisfied by the compo-
nent properties, that a constructed voting rule fulfills the social choice property
of interest as long as its components satisfy specific properties, which we have
proved within Isabelle/HOL for the scope of our case study.

3 lhttps:/ /github.com/VeriVote/verified VotingRuleConstruction /
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Currently, the construction capabilities of our framework are not fully auto-
matic, as in order to construct a voting rule with a specific property, the concrete
assembly structure (in the form of a chain of composition structures and core
modules) needs to be given. However, this can already be easily turned into a
(simple) synthesis tool by a simple Prolog program. This program holds (only)
a collection of which core components satisfy (as proven in Isabelle/HOL within
the framework presented in this paper) which individual properties, together
with the composition rules, i.e., how the composition of components requires
and establishes formal properties). As a result, this program comes up with (al-
beit simple) proposals for concrete compositions in order to obtain a voting rule
which (provenly) satisfies the requested properties, with the proofs provided by
our framework within Isabelle/HOL.

Our approach is applicable to the construction of a wide range of voting rules
which use sequential or parallel modular structures, notably voting rules with
tie-breakers, elimination procedures, or tournament structures. This includes
well-known rules such as instant-runoff voting, Nanson’s method, or sequential
majority comparison (SMC). We constructed SMC from simple components,
which we presume to be reusable for the construction of further rules, and au-
tomatically by construction produced a proof that SMC satisfies monotonicity
from basic formal proofs for the structures, compositions and components which
we compositionally constructed. This case study and all required definitions were
implemented and verified with the theorem prover Isabelle/HOL. Finally, our ap-
proach can be safely extended with additional modules, compositional structures,
and rules, for integration into voting rule design or verification frameworks.

Outlook. So far, composition is realized mostly by transferring sets of deferred
alternatives between modules. We also intend to inspect the more involved mod-
ular structures already incorporated in some more complicated voting rules, in
order to achieve a more flexible notion of composition. This, however, also in-
volves making more detailed assumptions on how exactly information is passed
between modules, which might come with a loss of generality. This however,
seems to be necessary for voting rules such as Single-Transferable Vote (STV),
which are not composable for sensible social choice properties with our strong
notion of locality in composition rules.

Moreover, it would be interesting to make use of the code generation function-
ality of Isabelle/HOL in order to, besides the abstract specifications of the com-
ponents and composition structures, produce actual executable program code
for the constructed voting rules. Furthermore, we envision an automatic synthe-
sis tool built on top of the provided framework such that construction can be
provided fully automatically. This could be done by, e.g., a Prolog program as
described above, together with SMT or Horn solvers to manage larger and more
complex compositions.
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