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Abstract

Renewable heat sources are intermittent in nature, which is why they are characterized by an

abundant but limited instantaneous availability. Peak time shaving and shifting by thermal

energy storage are thus considered as a key to the transition of the heating and cooling sector

from fossil-based to zero-carbon. To balance the temporal variations in the availability and

demand, Aquifer Thermal Energy Storage (ATES) is characterized by high storage capacities

and low storage costs and is, therefore, drawing growing attention. However, only very

little is known about global application and distribution of ATES. Consequently, barriers and

driving forces for a global technology adoption are still not comprehensively understood.

In order to provide a clear picture of ATES technology, the first study reviews the historical

development and current application status worldwide. Based on a holistic literature review,

different concepts and designs developed over time are summarized and discussed. With a

50-year history of research and development (R&D), there are currently more than 2,800

ATES systems in operation worldwide. 99% are low temperature systems (LT-ATES) with

storage temperatures of <25 °C. Most of these systems (85%) are located in the Netherlands,

and a further 10% are found in Sweden, Denmark, and Belgium. The great discrepancy in

global ATES development is attributed to several market barriers that impede market pene-

tration. Such barriers are mainly of socio-economic and legislative nature.

With respect to the identified market barriers, study 2 aims at facilitating global technology

adoption by evaluating the technical performance of LT-ATES in the Netherlands. Based on

the monitoring data of 73 Dutch LT-ATES systems, operational characteristics are identified

and the optimization potential is discussed. With abstraction temperatures of 10 °C in sum-

mer and 15 °C in winter, the temperature difference (∆T) between abstraction and injection

is by 3-4 K lower compared to the optimal design value. This can be mainly explained by

insufficient charging of the ATES by the heating and cooling system. In addition, the moni-

tored ATES store only 50% of the capacities originally licensed by the authorities. To allow

LT-ATES to be sustainably applied on a global scale, the interaction between subsurface and

building has to be optimized by a holistic design and monitoring of the entire energy system.
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In contrast to LT-ATES, the storage of temperatures higher than 40-50 °C (HT) faces multi-

disciplinary risks. However, no attempt was made to identify and assess all potential risks of

geothermal and in particular HT-ATES projects. Hence, in the third study, risks of HT-ATES

projects are identified based on the experiences made in the past and analyzed by experts

from the field of geothermal energy. An online survey among 38 international experts re-

vealed that technical risks are expected to be less critical than, in particular, legal, social and

organizational risks. This is confirmed by the lessons learned from past HT-ATES projects,

where high heat recovery values were achieved, and technical feasibility was demonstrated.

Critical issues were, however, primarily attributed to a loss of the heat source and fluctu-

ating or decreasing heating demands. When considering a lifetime of more than 30 years,

it is crucial to develop holistic energy concepts that account for changing boundary condi-

tions both for heat sources and heat sinks. A project-specific risk management is, therefore,

indispensable and should be addressed in future HT-ATES projects.

Within the scope of this thesis, a clear picture of ATES technology was developed, showing

that ATES technology has a high potential to tackle significant energy markets. Further

research is, however, required to facilitate market penetration of both the LT- and HT-ATES

technology. For LT-ATES, future studies should strive to optimize operational efficiency by

(1) enhancing the subsurface-building interaction and by (2) facilitating urban underground

planning by creating synergies between common subsurface users, particularly in areas with

high population densities. For HT-ATES, more research is required to increase operational

robustness. Research should, therefore, not only focus on subsurface design, but also on

the development of holistic energy concepts. This should also include the identification of

potential heat sources and sinks and should, in addition, consider of long-term political,

technical and legislative changes during an expected ATES lifetime of 30 years.
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Kurzfassung

Aufgrund des jahreszeitlichen Versatzes zwischen Wärmeangebot und -nachfrage herrscht

im Bereich der gemäßigten Klimazone weniger ein Energie- als ein Speicherproblem. Die

saisonale Speicherung von Wärme und Kälte in Grundwasserkörpern, auch genannt Aquifer-

speicherung (ATES), zeichnet sich im Vergleich zu anderen Speichertechnologien durch

geringe Speicherkosten und hohe Speicherkapazitäten aus. Deshalb ist die Technologie in

den vergangenen Jahren verstärkt in den Fokus gerückt. Allerdings gibt es nur sehr wenige

Informationen über die weltweite Verbreitung sowie die Art der Nutzung von ATES. Folglich

ist der Einfluss unterschiedlicher Marktbarrieren auf eine weltweite Kommerzialisierung der

Technologie noch weitgehend unbekannt.

Ziel der ersten Studie ist es deshalb, einen Überblick über die historische Entwicklung

sowie die weltweite ATES Nutzung zu geben. Auf Grundlage einer umfassenden Literatur-

recherche werden unterschiedliche Konzepte und Nutzungsformen zusammengefasst und

diskutiert. Mit einer 50-jährigen Entwicklungsgeschichte befinden sich derzeit weltweit

mehr als 2.800 ATES Systeme im Einsatz. Über 99% aller ATES sind Niedrigtemper-

aturspeicher (LT-ATES) mit einer Speichertemperatur von < 25°C. 85% aller Aquiferspe-

icher befinden sich in den Niederlanden, weitere 10% in Schweden, Belgien und Däne-

mark. Diese Unterschiede in der globalen Aquiferspeicherentwicklung lassen sich weniger

durch Untergrund-spezifische Faktoren, als vielmehr durch sozioökonomische und legisla-

tive Marktbarrieren erklären.

In Studie 2 wird basierend auf den Monitoringdaten von 73 niederländischen Anlagen die

technischen Leistungsdaten und energetische Effizienz von LT-ATES untersucht sowie Op-

timierungsmöglichkeiten diskutiert. Mit einer durchschnittlichen Entnahmetemperatur von

10 °C im Sommer und rund 15 °C im Winter ist die Differenz zwischen Entnahme- und Ein-

speisetemperatur (∆T ) mit 3-4 K deutlich geringer als ursprünglich geplant. Dies ist weniger

auf Speicherverluste im Untergrund, als auf eine ineffiziente Beladung des Speichers durch

die gebäudeseitige Heizungs- und Klimatisierungsanlage zurückzuführen. Zudem wird im

Durschnitt nur 50% des Untergrundes genutzt, der jeweils von der Genehmigungsbehörde für

die geothermische Nutzung freigegeben wurde. Eine exakte Analyse des erwarteten Energie-
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verbrauchs sowie ein effizientes Zusammenspiel zwischen ATES und Gebäude sind deshalb

entscheidend um eine nachhaltige Nutzung von LT-ATES weltweit zu gewährleisten.

Im Gegensatz zu LT-ATES birgt die Speicherung von Temperaturen über 40-50 °C (HT-

ATES) deutliche höhere Risiken. In Studie 3 werden deshalb potentielle Risken von HT-

ATES Projekten basierend auf den Erfahrungen vergangener Projekte identifiziert und von

Geothermieexperten analysiert. Eine online Umfrage unter 38 internationalen Experten

hat gezeigt, das technische Risiken weniger kritisch eingeschätzt werden als insbeson-

dere rechtliche, soziale oder organisatorische Risiken. Dies bestätigen die Erfahrungen aus

vergangenen HT-ATES Projekten, wo hohe Wiedergewinnungsraten erzielt, und die tech-

nische Machbarkeit erfolgreich demonstriert werden konnte. Schwerwiegende Probleme

waren dagegen häufig auf schwankende oder sinkende Energiebedarfe oder einen Verlust

der Wärmequelle zurückzuführen. Bei einer zu erwarteten Laufzeit von über 30 Jahren,

ist es deshalb entscheidend, ganzheitliche Energiekonzepte zu entwickeln, die sowohl sich

verändernde Randbedingungen im Bereich der Wärmequelle, als auch Wärmesenke berück-

sichtigen. Ein projekt-spezifisches Risikomanagement ist deshalb essenziell und sollte auch

in der Forschung stärker Berücksichtigung finden.

Im Rahmen dieser Arbeit konnte gezeigt werden, dass die Aquiferspeicherung ein hohes

Potenzial hat, bedeutende Energiemärkte zu erschließen. Sowohl im Bereich LT-ATES als

auch HT-ATES bedarf es allerdings weitere Forschung, um eine flächendeckende Kom-

merzialisierung voranzutreiben: Im Niedrigtemperaturbereich sollten zukünftige Studien

darauf abzielen, die Betriebseffizienz weiter zu optimieren. Dies betrifft (1) die Interak-

tion zwischen Untergrund und Gebäude sowie (2) ein urbanes Untergrundmanagement, wo

durch die Schaffung von Synergien benachbarter Untergrundnutzer der verfügbare Raum

noch nachhaltiger genutzt werden soll. Für HT-ATES sind weitere Forschungsarbeiten er-

forderlich um die betriebliche Stabilität zu erhöhen. Die Forschung sollte sich daher nicht nur

auf die Gestaltung des Untergrundes konzentrieren, sondern auch auf die Entwicklung von

ganzheitlichen Energiekonzepten. Dies sollte auch die Identifizierung potentieller Wärme-

quellen und -senken sowie die Berücksichtigung langfristiger politischer, technischer und

gesetzlicher Änderungen während einer ATES-Lebensdauer von 30 Jahren umfassen.

iv



Table of contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 General motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Worldwide application of Aquifer Thermal Energy Storage - a review . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Historical and technical development of ATES worldwide . . . . . . . . . . 11

2.2.1 A retrospective: from idea to market penetration . . . . . . . . . . 11
2.2.2 Technical development and application statistics . . . . . . . . . . 15

2.3 Worldwide ATES spatial distribution . . . . . . . . . . . . . . . . . . . . . 19
2.4 Market barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Market barriers in the emerging market phase . . . . . . . . . . . . 22
2.4.2 Market barriers in the growth phase . . . . . . . . . . . . . . . . . 24
2.4.3 Market barriers in the maturity phase . . . . . . . . . . . . . . . . 25

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Performance analysis of Aquifer Thermal Energy Storage (ATES) . . . 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Recovery ratio and storage temperatures . . . . . . . . . . . . . . . 33
3.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Pumped energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Thermal imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Injection and abstraction temperatures . . . . . . . . . . . . . . . . 40
3.3.4 Effect of thermal imbalance on ∆T . . . . . . . . . . . . . . . . . . 41
3.3.5 Comparison of licensed (design) and measured parameters . . . . . 43

3.4 Optimization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Optimization of operational performance . . . . . . . . . . . . . . 43
3.4.2 Optimization strategies for common subsurface use . . . . . . . . . 46

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



Table of contents

4 Risk assessment of High Temperature Aquifer Thermal Energy Stor-
age (HT-ATES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 High Temperature Aquifer Thermal Energy Storage . . . . . . . . . 53
4.2.2 Definition of risk management . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.4 Risk analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 HT-ATES activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Risk identification . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Risk analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.3 Evaluation of risk analysis . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Declaration of Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vi



Chapter 1
1 Introduction

1.1 General motivation

According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), hu-

man induced warming reached between 0.8 and 1.2 °C above pre-industrial levels in 2017.

Impacts on natural and human systems from global warming are already apparent and ambi-

tious mitigation actions are indispensable to limit global warming to 1.5 °C [1]. Reductions

in net CO2 emissions can be achieved through different portfolios of mitigation measures.

The replacement of fossil-based technologies by renewable energy sources is imperative to

reach the ambitious goals. The share of renewable energies in meeting global energy con-

sumption is expected to increase by one-fifth to reach 12.4% in 2023 [2]. Even though more

than half of the final energy consumption is attributed to the thermal energy sector, the share

of renewables is stagnating at around 10% [2]. From 2013 to 2017, the growth rate of re-

newables in the power sector was five times higher compared to the thermal sector. This is

not only attributed to an increasing global heating and cooling energy demand, but also to

the fact that political decisions are primarily directed at the power sector [2].

According to Stryi-Hipp [3], the political focus on the power sector can be explained his-

torically: while governments of industrial countries always had to secure power supply by

the installation and control of the power infrastructure, thermal energy for cooking, space

heating or industrial processes has traditionally produced individually. Society is, therefore,

facing a paradigm shift in the design of future sustainable energy strategies. From an en-

ergetic point of view, the main bottleneck of a widespread use of renewable heating and

cooling (RHC) technologies is, however, more attributed to seasonal temperature variations,

as demand for heating or cooling does not coincide with RHC supply in most developed

economies [4]. This is made evident by the excess heat emissions of Europe’s industry

and electricity production which (theoretically) covers the heating demand of all European

buildings [5]. Seasonal thermal energy storage (TES) is, therefore, essential to cut peak time

supply by transforming transient available energy into long-term accessible energy. Accord-

ing to Arce et al. [6], TES is capable of decreasing the EU energy consumption by 7.8%.
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Different types of TES solutions were developed over time, which can be subdivided based

on their storage material into sensitive, thermochemical and latent techniques. However, as

chemical and latent TES are not competitive yet [7], sensible storage solutions are mostly

applied [8, 9]. Sensible TES can be further subdivided into Underground Thermal Energy

Storage (UTES) and closed artificial storage tanks. The latter are independent of (hydro) ge-

ological conditions [9] and thus the preferred choice for high temperature storage (>70 °C)

of renewable and non-renewable heat sources. Closed artificial storage tanks are, however,

highly space intensive. The storage volume of 245 Olympic swimming pools would, for in-

stance, be required to store the thermal energy supplied by the world largest ATES system at

Technical University of Eindhoven (TU/e). A widespread heating supply by artificial storage

tanks is, therefore, highly limited by a lack of space in areas where thermal energy demand

is highest. By contrast, heat and cold storage in groundwater also referred to as Aquifer

Thermal Energy Storage (ATES) offers a high storage capacity and is not limited by a lack

of surface space. Contrary to artificial storage tanks, ATES technology is highly dependent

on the existence of suitable aquifers. However, as the development of most industrial nations

was favoured by the access to drinking water and a moderate climate, the potential for global

ATES application can be considered to be high. Schaetzle and Brett [10], for instance, es-

timated that aquifers suitable for ATES are located below the surface of around 60% of the

US land area. In addition, Bloemendal et al. [11] analyzed that around 65% of the world

population lives in an area with a medium or high suitability for ATES.

1.2 Basic principle

A detailed literature overview on ATES application is given in Chapter 2. In its basic form,

an ATES system consists of two groundwater wells (called a doublet) and operates in a

seasonal mode. With research and development (R&D) activities of more than 50 years, dif-

ferent concept designs are applied in practice, which can be distinguished based on different

characteristics such as the well design or the storage depth. Most significant, however, is the

classification of ATES into low temperature (LT) and high temperature (HT) systems. LT-

ATES is characterized by a maximum injection temperature of 25 °C and is typically used

for heating and cooling. The basic operational principle is illustrated in Fig. 1.1. In summer,

cold groundwater stored in winter is extracted from the cold well to cool the building. In

2



1.2 Basic principle

Figure 1.1: Basic principle of LT-ATES. The left hand site illustrates winter operation, the right hand site shows
summer operation.

most cases, the temperature level is sufficient for direct cooling without the application of

a heat pump. However, heat pumps can also be utilized for active cooling. The waste heat

of the cooling process is re-injected into the warm well and stored in the aquifer for winter

heating. The pump direction is reversed with the beginning of the heating season, and the

stored heat is extracted for heating purpose. The recovery temperature, which ranges be-

tween 15 and 20 °C, has to be increased by heat pumps to meet the required temperature

level of the heating system. LT-ATES systems are considered in most cases for buildings

or industrial applications with a high, balanced heating and cooling demand. External heat

or cold sources, such as free cooler or solar panels are considered in case of an unbalanced

heating and cooling demand or supply. LT-ATES is only applicable for buildings for the

new/refurbished building stock.

By contrast, HT-ATES systems are defined by storage temperatures above 40-50 °C [12–

14]. As the maximum injection temperature is limited to 15-25 °C in most countries [15–

17], HT-ATES systems are usually characterized by a greater storage depth compared to

LT-ATES systems. While LT-ATES systems store the excess heat and cold of the heating

and cooling process, heat sources and sinks of HT-ATES are independent from each other.

Potential heat sources can be renewable energies (solar, geothermal, biomass, power to heat)

or waste heat from industrial applications (Fig. 1.2). With recovery temperatures of up to

100 °C, HT-ATES systems are also suitable for feeding high temperature heating systems.

3
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a)

b)

c)

d)e)

f)

g)

h)

Figure 1.2: Basic principle of HT-ATES. In summer, the aquifer is charged with surplus heat from (non-)
renewable energy sources, such as geothermal (a), biomass (b), power-to-heat (c), industrial waste heat (d) or
solar thermal energy (e). The stored heat is recovered in winter to supply district heating (DH) systems (f),
large building complexes (g) or industrial applications such as greenhouses (h).

1.3 Objectives

Even though there is a history of R&D of more than 50 years [18, 19], ATES can still be

considered to be a fairly unknown technology. At the same time, only limited information is

available on the number of ATES systems in operation worldwide and how ATES is applied

in practice (Chapter 2). Sound statistics on the current application status are, however, impor-

tant to compare the market penetration in different countries, in order to identify and analyze

various boundary conditions that influence the development of the underlying technology. In

addition, lessons learned from the past and present ATES projects are crucial for the techni-

cal optimization processes in order to overcome relevant market barriers. The objective of

this thesis is, to contribute to a better understanding of ATES technology by reviewing the

past, analyzing the present and identifying risks and barriers for future application.

• A first goal is, therefore, to provide a comprehensive overview over the past and

present ATES application worldwide to get a clear idea of different concepts and de-

signs developed over time. It is aimed to compile statistics on the global numbers of

ATES and to identify socio-economic barriers for market penetration.

4
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• Only little knowledge is available on the operational characteristics of LT-ATES. In

order to fill this knowledge gap, a further goal is to provide a deep understanding of

the Dutch operation principle for countries where the technology is still not applied.

• The last part of this work focuses on HT-ATES, which has hardly been applied to the

present day. In order to promote technology development, this study will identify and

analyze risks of HT-ATES.

5



1 Introduction

1.4 Structure of the thesis

The presented cumulative thesis consists of three individual studies enclosed in Chapters 2 -

4. The synthesis in Chapter 5 establishes a connection between the results and findings of the

presented studies. All studies were submitted to peer-reviewed (ISI-listed) journals, whereas

two of them have already been published and one is currently under review.

Chapter 2 contains the first study “Worldwide application of Aquifer Thermal Energy Stor-

age - A review“, which was published in Renewable and Sustainable Energy Reviews and

analyzes the global status of ATES, reviewing historical ATES development and current op-

erational statistics. Based on a comprehensive literature review, different concept designs are

summarized, and country statistics compiled. Considering the spatial distribution of ATES

systems worldwide, market barriers for technology adoption are identified and discussed.

Chapter 3 presents the second study entitled “Performance Analysis of Aquifer Thermal

Energy Storage (ATES)“, published in Renewable Energy. Based on the results of Chapter

2, this study provides insights into the operating principle of LT-ATES in the Netherlands. To

this end, monitoring data of 73 Dutch LT-ATES systems from 2016 to 2018 are analyzed. The

monitoring data comprise the volume of pumped groundwater, the abstracted thermal energy

and the injection and abstraction temperature for heating and cooling. Based on a holistic

data analysis, ATES performance and optimization strategies are discussed to improve the

sustainable use of the available subsurface space, considering the current licensing practice

in the Netherlands.

Chapter 4 contains the third study “Risk analysis of High Temperature Aquifer Thermal

Energy Storage (HT-ATES)“. It is currently under review at Renewable and Sustainable

Energy Reviews. In a first step, risks of HT-ATES are identified, building on the lessons

learned from abandoned and running sites. All identified risks are analyzed based on an

online survey among experts from the field of ATES and geothermal energy. Each risk

item is rated by the severity, occurrence probability and uncertainty. The online survey is

complemented by expert interviews evaluating the risks of planned HT-ATES projects in the

city of Hamburg. Considering the results of the risk analysis, risk mitigation strategies are

discussed to enhance the reliability of HT-ATES systems.

6



1.4 Structure of the thesis

Finally, Chapter 5 evaluates the findings of the three studies and highlights the important as-

pects to understand the successful operation of ATES worldwide. Pending research questions

and proposals based on this thesis are compiled.

7



Chapter 2
Worldwide application of Aquifer Thermal Energy
Storage - a review

Reproduced from: Fleuchaus P, Godschalk B, Stober I, Blum P (2018) Worldwide applica-

tion of Aquifer Thermal Energy Storage - A review. RSER, 94:861-876, doi:10.1016/j.rser.-

2018.06.057

Abstract

To meet the global climate change mitigation targets, more attention has to be paid to the

decarbonization of the heating and cooling sector. Aquifer Thermal Energy Storage (ATES)

is considered to bridge the gap between periods of highest energy demand and highest en-

ergy supply. The objective of this study, therefore, is to review the global application status

of ATES underpinned by operational statistics from existing projects. ATES is particularly

suited to provide heating and cooling for large-scale applications such as public and com-

mercial buildings, district heating, or industrial purposes. Compared to conventional tech-

nologies, ATES systems achieve energy savings between 40% and 70% and CO2 savings of

up to several thousand tons per year. Capital costs decline with increasing installed capacity,

averaging 0.2 million e for small systems and two million e for large applications. The

typical payback time is 2-10 years. Worldwide, there are currently more than 2,800 ATES

systems in operation, abstracting more than 2.5 TWh of heating and cooling per year. 99%

are low temperature systems (LT-ATES) with storage temperatures of < 25 ◦C. 85% of all

systems are located in the Netherlands, and a further 10% are found in Sweden, Denmark and

Belgium. However, there is an increasing interest in ATES technology in several countries

such as Great Britain, Germany, Japan, Turkey and China. The great discrepancy in global

ATES development is attributed to several market barriers that impede market penetration.

Such barriers are of socio-economic and legislative nature.
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2.1 Introduction

2.1 Introduction

The global community has to face a paradigm shift towards a sustainable energy supply to

keep the increase in the global average temperature to within 2 ◦C above pre-industrial lev-

els. While the share of renewables in the power generation sector increases continuously,

less attention is paid to the decarbonization of the heating and cooling sector. In 2015,

heating and cooling accounted for half of the total world final energy consumption, with

three-quarters produced from fossil fuels. The share of modern renewable technologies is

currently estimated at only 8% [20]. At the same time, global energy consumption for heat-

ing and cooling is expected to further increase with rising prosperity, population growth and

climate change. According to IPCC (Intergovernmental Panel on Climate Change), power

consumption for air conditioning alone is expected to rise 33-fold by 2100 [21]. To achieve

the climate change mitigation targets, increasing attention has to be paid to the decarboniza-

tion of the thermal energy sector. The key challenge of increasing the share of renewables

in the heating and cooling sector is attributed to the seasonal offset between thermal energy

demand and supply. To tackle this seasonal mismatch, the idea of Thermal Energy Stor-

age (TES) has attracted increasing attention [22]. The selection of an appropriate storage

method depends on several factors such as storage capacity, storage duration and supply and

demand temperature [23, 24]. Underground Thermal Energy Storage (UTES) is a sensible

TES method, characterized by high storage efficiencies [25, 26] and high storage capacities

and is, therefore, the preferred choice for long-term TES. The most popular sensible sea-

sonal UTES techniques are illustrated in Fig. 2.1. UTES can be further subdivided into

open-loop or closed-loop systems. In open-loop systems, also referred to as Aquifer Ther-

mal Energy Storage (ATES), sensible heat and cold is temporarily stored in the subsurface

through injection and withdrawal of groundwater [27–29]. Closed-loop systems are more or

less independent of the permeability of the subsurface and are called Borehole Thermal En-

ergy Storage (BTES). In Tank Thermal Energy Storage (TTES), Pit Thermal Energy Storage

(PTES) and Cavern Thermal Energy Storage (CTES), heat and cold is stored in thermally

stratified storage tanks, dug pits filled with gravel and water, or naturally occurring cavities,

respectively. Table 2.1 compares these UTES techniques regarding technical and subsurface-

related aspects. Among different seasonal UTES concepts, ATES is characterized by the

highest storage capacities and is, therefore, most suitable for large-scale applications [30].

However, ATES application requires the presence of an aquifer and suitable hydrogeological

9
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ATES mono-wellATES doublet BTES

TTES PTES CTES

Figure 2.1: Seasonal sensible UTES techniques. BTES, Borehole thermal energy storage; TTES, Tank thermal
energy storage; PTES, Pit thermal energy storage; CTES, Cavern thermal energy storage.

Table 2.1: Comparison of seasonal Underground thermal energy storage (UTES) concepts (+++ high; ++ mod-
erate; + low).

PTES / TTES ATES BTES

Storage medium Water; water/gravel Groundwater/sediments Groundwater/sediments

Subsurface requirements + +++ ++

Required
pre-investigation

+ +++ ++

Maximum storage
capacity [kwh/m3]

+++ ++ +

Storage volumes + +++ ++
Space requirement +++ + +
Investment costs +++ + ++
Maintenance + +++ +
Environmental
interaction

+ +++ ++

10
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conditions such as a low groundwater flow, high permeabilities and geochemical conditions

that prevent clogging and corrosion of wells. Compared to standard open-loop geothermal

systems, ATES systems require a more complex pre-investigation and are typically more

sensitive to groundwater flow and aquifer heterogeneities. The seasonal storage of heat and

cold, however, enables a more efficient operation.

The objective of this work is to review the historical development and the current global ap-

plication status of ATES. Based on the reviewed literature, system designs, trends and ideas

developed over time are summarized with special attention on operational parameters of suc-

cessfully implemented ATES systems. Since the literature lacks statistics on the number of

implemented ATES systems, the review of previous work is complemented by an analysis

of the current ATES application status. Based on these country-by-country statistics, market

barriers for entering a commercialization level are finally identified and discussed in order to

stimulate future ATES research and projects.

2.2 Historical and technical development of ATES worldwide

2.2.1 A retrospective: from idea to market penetration

The idea of storing heat and cold in aquifers can be traced back to the mid-1960s [18, 19,

31–36]. To reduce subsidence as a consequence of long-term groundwater over-pumping, ar-

tificial recharge (AR) was successfully proposed in Shanghai in the early 1960s [37]. Soon,

investigations indicated that the injected surface water preserved its temperature over several

months. Subsequently, Shanghai’s textile industry became aware of the great potential of AR

for industrial cooling, and several factories started to actively store winter cold for summer

cooling [36, 38–40]. Given the high demand for industrial cooling, the number of ATES

applications increased gradually in the following years. Fig. 2.2 illustrates early ATES ap-

plications for industrial cooling in Shanghai. By 1984, more than 400 wells were used for

both injection and extraction, storing a total of 1100 TJ of cooling energy in Shanghai annu-

ally [35]. Utilization of ATES peaked in the early 1980s, with more than 20 cities promoting

ATES in China [32, 33]. However, these projects were not sustainable. Clogging of wells or

heat exchangers due to hydrochemical properties of the aquifer fluid and inappropriate well

configuration forced many ATES systems to stop operating [41]. With the beginning of the

11



Chapter 2
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Figure 2.2: Early ATES sites in Shanghai used for industrial cooling (modified based on [18]).

oil crisis in the mid-1970s, the research into and development of energy storage were intensi-

fied, and the idea of storing thermal energy in aquifers started in North America and Europe

[14, 42]. Fig. 2.3 visualizes ATES development over time, highlighting important research

projects as well as experimental and commercial ATES milestones. Pioneering work was

done by Kazmann [43], Rabbimov et al. [44], Meyer and Todd [45] and Sauty et al. [46, 47],

who carried out early theoretical and also field studies. Based on this theoretical framework,

several field experiments were designed and conducted (Table 2.2). The first ATES exper-

iment was performed by the University of Neuchâtel (Switzerland) in 1974 [34, 48, 49],

followed by a three-stage experimental project at Auburn University (US) in 1976 [50–54].

Further countries such as France, Japan, Germany, or Canada started participating in ATES

research with their own experimental field sites. While Shanghai’s industry applied ATES

predominantly for industrial cooling, early research in ATES also focused on the storage of

higher temperatures (> 40 ◦C).

As practical experience with the storage of high temperatures was rare, many early ATES

sites faced considerable difficulties. The most frequent problems were related to:

12
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Figure 2.3: Chronology and milestones of global ATES development with the technical readiness level (TRL)
according to DOE [55].

• Scaling and clogging of wells and heat exchangers [52, 59, 74, 79, 105, 107–114];

• Corrosion of wells [14, 65, 74, 78, 82, 83, 88, 100, 109, 115];

• Buoyancy flow or thermal breakthrough [14, 50, 59, 60, 116–119];

• Unbalance between stored heat and cold [14, 120];

• Swelling of clay minerals [74, 105, 111].

In 1978, the International Energy Agency (IEA) established the implementing agreement on

Energy Conservation through Energy Storage (ECES) [121–124]. The target of ECES was

to support research into and development of energy storage systems [125]. Periodic “Stock“

conferences were established to share experiences with TES, starting in Versailles in 1981

[126]. Within this framework, great efforts were made to develop measures to prevent scal-

ing and clogging [50, 74, 83, 103, 106, 114, 127–131], to overcome thermohydraulic-related

problems such as thermal breakthrough, buoyancy flow, or unbalance between the stored
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Table 2.2: Overview of early ATES test sites.

Country Locations Year Temperature TRL (Acc. to
[55]) References

USA Auburn University 1976 HT 2 [38, 52–54, 56–60]
ST. Paul 1982 HT 3 [58, 61–65]
Tuscaloosa, Alabama 1982 LT 3 [10, 66–72]
Stony Brook 1982 LT/HT 3 [73, 74]
Melville 1985 LT 3 [75, 76]
Texas A&M University 1978 LT 3 [38]

Switzerland Colombier 1974 HT 1 [34, 48, 49, 77]
Lusanne-Dorigny 1982 HT 2 [78]

France Aulnay-Sous-bois 1983 LT 3 [79]
Plaisir 1987 HT 3 [80–83]
Trappes - HT 3 [74, 84]
Bonnaud 1976 LT 3 [46, 47, 77, 84–89]
Campuget 1977 LT 3 [34, 74, 88, 90]
Montreuil - LT 4 [74]

Canada Scarborough 1985 HT 6 [91–96]
Carleton University 1990 LT 7 [95, 97]

Japan Yamagata Yonezawa 1977 LT 3 [38, 77, 98, 99]
Hokkaido Sapporo 1982 HT 3 [36, 38, 79]

Sweden Lomma 1991 LT 6 [14, 100, 101]
Germany University of Stuttgart 1985 LT/HT 1 [102]

Krefeld 1974 LT/HT 1 [103, 104]
Netherlands Groningen - - 4 [79]

Bunnik 1985 LT 6 [83]
Utrecht 1991 HT 6 [105, 106]

Denmark Horsholm 1982 HT 5 [74]
* LT > 40 ◦C; HT < 40 ◦C

heat and cold [46, 50, 51, 89, 119, 132–150] and also to evaluate potential impacts of ATES

on the environment [103, 115, 151–155]. The research showed that most problems can be

avoided by careful pre-investigation and an appropriate operational design [74]. Neverthe-

less, since fewer problems were encountered in the years that followed, the interest moved

from high temperature (HT) ATES (> 40 ◦C) to low temperature (LT) ATES (< 40 ◦C) in the

following years [156, 157]. After engineering feasibility had been demonstrated in various

projects, LT-ATES was successfully established in the energy markets of the Netherlands

and Sweden [14, 101, 158]. While early research mainly concentrated on solving technical,

geochemical and engineering problems, the scientific focus in the year that followed shifted

towards an optimization of ATES performance. Table 2.3 presents an overview of various

studies, analyzing the impact of hydrogeological and thermodynamic parameters on the stor-

age efficiency. This ongoing research and optimization process is reflected in an increasing

ATES attractiveness. Market incentive programs [72, 101] and the open-mindedness of the

(Dutch) authorities to support ATES [101, 158] led to a growing number of projects, particu-
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Table 2.3: Analytical and numerical studies analyzing storage efficiency and heat transfer processes of ATES
(adapted from [159]). (+ considered; - not considered).

Ref. LT HT Ground-
water
flow

Buoyancy
flow

Dis-
persion

Thermal
inter-
ference

Aquifer
hetero-
geneity

Building
integration

[140, 160–163] + - + - + - - -
[50, 133, 136, 164–168] - + - + - - - -
[161, 169–171] + - - - + - + -
[27, 172–175] + - - - - + + -
[132, 149] + + + + - - - -
[176–178] + - - + + - + -
[179–186] + - - - - + - -
[187, 188] + - + - - + - -
[189] - + - - + - - -
[190] - + - + + + - -
[191] + + + - - - - +
[192] + - - - - - - +
[193] - + - - - - - +
[159, 194, 195] + - - - - - - +
[196–204] - + - - - - - -
[89, 205] - + + - + - - -

larly in the Netherlands. This growth, however, is attributed to LT-ATES systems only. After

early test sites and pilot projects faced significant problems [206], investors and planners lost

confidence in HT-ATES systems [207]. To our knowledge, there are only five HT-ATES in

operation worldwide, which means that 99% of all systems are represented by LT- ATES

systems.

2.2.2 Technical development and application statistics

Each ATES project has to meet site-specific requirements, which are of geological, climatic,

regulatory or building-specific nature. Consequently, a wide range of operational and tech-

nical specifications have been developed in the last decades. Such developments were sum-

marized and discussed by several authors: in the early 1980s, Schaetzle et al. [208] first

published a pioneering in-depth summary of ATES designs and applications with focus on

technical and economic aspects. When ATES was successfully penetrating the energy mar-

ket in Sweden and the Netherlands, Andersson [209] and Bakema et al. [12] reported on

their experiences with ATES, concentrating more on application statistics and economic and

environmental benefits. Furthermore, Lee [28, 210], Nordell et al. [157] and Snijders and

Drijver [211] presented a holistic description of operational principles, field investigations,

aquifer characteristics, wellfield designs and maintenance. Based on this previous work, the

following sections summarize the technical developments of ATES, underpinned by practical
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examples. The key requirement for ATES is the availability of an aquifer. The vast majority

of ATES systems use unconsolidated aquifers as storage media. Deeper systems typically

utilize sandstone or highly fractured rock [212]. The suitability of the subsurface depends

on several hydrogeological characteristics such as aquifer thickness, hydraulic conductivity,

or groundwater flow velocity. More detailed information on geological and hydrogeologi-

cal requirements were described e.g, by Schaetzle et al. [208], Snijders and Drijver [211],

Lee [181], or Sanner and Knoblich [213]. Fig. 2.4 characterizes ATES system designs in

terms of operational, underground-related and technical aspects. The literature distinguishes

between mono-directional and bi-directional systems [173, 210]. This differentiation, how-

ever, is quite misleading, since mono-directional systems simply use the prevailing ground-

water temperature by continuously pumping and reinjecting groundwater in one direction,

like in geothermal doublets. Hence, only bi-directional systems can be referred to as ATES,

as groundwater flow can be reversed to actively store cold and/or heat, respectively [29].

There are two different well designs (Fig. 2.1): multi-well systems use one or more well

doublets to store thermal energy horizontally. In mono-well systems, heat and cold are sep-

arated vertically [214–216]. Mono-well systems show lower capital costs, since only one

borehole has to be drilled. Thus, mono-well systems are mainly considered for HT-ATES

systems with high drilling depths, or small-scale systems with low injection and production

rates. The disadvantage of mono-well systems is the high susceptibility to thermal inter-

ference, hence thick aquifers are required. Depending on regional climatic conditions and

specific building requirements, ATES is applied to direct cooling, direct or indirect heating

and hybrid systems [28, 42, 209]. Indirect systems are required if the outlet temperature of

the ATES does not meet the inlet temperature demand of the heating system. To charge an

ATES with thermal energy, different kinds of heat and cold sources are considered, such as

waste heat from cogeneration, renewable energies or dry cooler (Fig. 2.4). However, the

standard case is to re-use the seasonal heat and cold of the building. To illustrate the wide

range of specifications, Table 2.4 summarizes the technical and economic parameters of 25

worldwide ATES systems. The capacity of an ATES system ranges between 0.1 and 0.3 MW

for small-scale and between five and 30 MW for large-scale systems. While the well number

and the pumping rate are approximately proportional to the heating and cooling capacity,

several projects indicate a decline in specific capital costs (e/kW) with increasing system

size. This is because larger systems can be designed more efficiently than smaller ones [42,
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209, 235]. Direct cooling systems achieve storage efficiencies of up to 90%, indirect systems

reach 40-85% [26, 174, 184, 194, 199, 212]. Typical payback times compared to conven-

tional systems range from two to ten years [75, 101, 209, 230, 253–257]. ATES for cooling

show lower payback times, since the stored cold can be used directly without a heat pump

[14, 235]. The lifetime of an ATES system is estimated at 25 years by Hartog et al. [258]

and at 30-50 years by Bloemendal et al. [216]. The investigation of 74 ATES systems in the

Netherlands has revealed an average CO2 saving of 0.46 kg per m3 of pumped groundwa-

ter [259, 260]. This corresponds to an estimated annual reduction in CO2 emissions of 150

t/a for a small-scale system and of up to 1500 t/a for a large-scale system. By comparison,

the average CO2 savings for a ground-source heat pump (GSHP) unit ranges between 1.8

and 4.0 t/a, depending on the replaced heating system and used electricity mix [261]. The

largest ATES worldwide at the campus of the University of Technology in Eindhoven (NL)

saves more than 13,000 t of CO2 per year [236]. This is equivalent to the average annual

CO2 footprint of 800 American or 1300 German citizens. In the Netherlands, about 70%

of all ATES systems supply energy for public and commercial buildings (e.g. offices, shop-

ping malls, hospitals, hotels). The remaining 30% are installed in industrial or residential

buildings [157, 262]. Similar proportions are reported from Sweden [255] and Denmark

[263]. Recently, ATES has been increasingly considered to reduce the high energy costs of

greenhouses and data centers [162, 207, 263–267].

2.3 Worldwide ATES spatial distribution

The establishment of renewables in the energy market is often impeded by several market

barriers (Section 2.4). Even though the economic and technical viabilities have been suc-

cessfully demonstrated, only a small proportion of the potential of ATES technology has

been tapped yet. Statistics on the global application of ATES are indispensable for identify-

ing such country-specific market barriers. Despite this great significance, the literature lacks

such statistics. So far, only Lee [28] discussed the status of ATES in all relevant countries.

However, the figures compiled are neither up-to-date nor complete. Beyond that, several

authors summarized their experiences with ATES in several country updates [13, 33, 42,

95, 156, 222, 226, 253, 268–277]. These country updates are analyzed to provide a global

overview of ATES applications. In cases where data from the literature were not sufficient,
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further inquiries for additional information were sent to ATES experts. The latter was done

for ATES systems in China, Denmark, Sweden, Turkey and the US. To our knowledge, more

than 2,800 ATES projects have been successfully implemented worldwide. The total amount

of heat and cold produced by all ATES systems is estimated at more than 2.5 TWh per year,

which equals the average thermal energy consumption of 150,000 households in Central

Europe. However, this success story is contributed by only a few countries: around 85%

of all systems are installed in the Netherlands (2,500); a further 10% are found in Sweden

(220), Belgium (30) and Denmark (55). Fig. 2.5 illustrates the global application statistics

and global spatial distribution of ATES. The comparison of Figs. 2.3 and 2.5 indicates that
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Figure 2.5: Global spatial distribution of ATES.

countries that were active in research in the 1970s and 1980s have now lost their interest in

ATES. This is especially the case for Switzerland (0), France (0), the US (2) and Canada

(4). Regardless of the great discrepancy in ATES application worldwide, the number of

ATES systems is expected to increase further. Significant growth rates are reported from the

Netherlands, Sweden, Denmark and Belgium [268, 278]. Furthermore, progressively more
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2.3 Worldwide ATES spatial distribution

countries show an interest in ATES technology. After the first ATES system was realized in

Great Britain in 2006 [279], almost a dozen projects were implemented in the course of the

last decade. As many large UK cities have subsurface conditions suitable for ATES, further

projects are expected [280]. In Germany, ATES was considered first in the early 1980s as a

consequence of the oil crisis and in order to provide an alternative to expensive cooling meth-

ods for nuclear power plants [104]. Currently, there are, however, only four operating ATES

systems for heating and/or cooling purposes. Consolidated findings were gained from these

projects [192, 200, 201, 223, 224, 226, 237, 238, 281–290]. In Germany, there has been an

increasing interest in storage technologies again recently. Hence, four ATES projects are in

the planning or construction phases:

• An ATES for the new campus building of the Leuphana University in Lüneburg [290–

292];

• The collaborative project called “GeoSpeicher.bw“ aims for the implementation of

three ATES systems in the federal state of Baden-Württemberg;

• The BMW Group, supported by TU Munich, designs a HT-ATES for storing tempera-

tures of up to 130 ◦C with an injection rate of 280 m3/h in a Jurassic limestone aquifer

at a depth of about 500 m [293, 294];

• The city of Hamburg strives to store waste heat from an incineration and a sewage

plant with the long-term aim to supply heating for 8,000 households. Feasibility of

the project was successfully demonstrated by a pilot ATES with one well doublet. The

pilot plant is expected to be up-scaled in the near future.

In China, ATES is experiencing the beginning of a revival. After early projects had to be

shut down due to technical problems, six ATES systems have been successfully implemented

since 2013. ATES provides heat and cold for a poultry farm, for two public buildings and

three greenhouses [41]. In Japan, two demonstration plants were successfully realized, and

further projects are expected [295]. Although there are currently no further plans for ATES

in Turkey [296], an ATES for the cooling of a supermarket and several feasibility studies

have proven the economic and technical feasibility of ATES in Mediterranean regions [233,

265, 297, 298]. A team of experts from universities, authorities, and the industry is trying to

evaluate potential barriers to the penetration of the Turkish energy market [296].
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2.4 Market barriers

The country-by-country statistics presented in the previous section raise the question for the

reasons for the great discrepancies in ATES development worldwide. In the most industrial

countries, expect for in Sweden or the Netherlands, ATES has not been in the focus yet.

This reveals a trend that does not reflect the high suitability for ATES [11] and is opposite

to the great demand for sustainable heating and cooling in these countries. Thus, the devel-

opment of ATES application is not only influenced by subsurface and climate conditions,

but also by several market barriers, which are of socio-economic, regulatory, technical and

political natures (Sections 2.4.1 - 2.4.3) [299]. However, the kind of market barrier influ-

encing technology development is subject to a dynamic process. Hence, the country-specific

market development has to be considered when identifying potential market barriers on a

global level. Van Mourik [158] first analyzed market barriers for ATES development. He

concentrated on cooling systems in the Netherlands. Within the framework of the project

“e-use“, Bloemendal et al. [300] conducted a questionnaire in order to assess market barriers

for ATES in the Netherlands, Belgium, Germany, Italy and Spain. More generally, Dincer

and Rosen [30] analyzed hurdles to be overcome for TES systems, and Monti et al. [301]

studied obstacles to geothermal projects. Based on these previous works, Fig. 2.6 illustrates

market barriers for ATES commercialization as a function of the market development level.

The following section analyzes potential barriers (1) from the perspective of an emerging

market phase, (2) from the perspective of a growth phase and (3) from the perspective of a

maturity phase.

2.4.1 Market barriers in the emerging market phase

More than 2,800 ATES systems have been successfully implemented worldwide. According

to Andersson and Sellberg [14], there are no unsolved technical problems if the storage tem-

perature is restricted to less than 40 ◦C. Although feasibility was demonstrated and benefits

are significant, ATES, in most countries, has not yet penetrated the energy market. Thus, un-

til entering the stage of commercialization, the dominating hurdle is less a matter of technical

feasibility than a lack of awareness of the technology [96, 300]. However, this is not the case

for HT-ATES, where serious technical problems, such as scaling or corrosion of wells, have

to be solved first. In most countries, politicians, stakeholders and HVAC (heating, ventilation

and air conditioning) installers often do not consider ATES and, therefore, this technology
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is not part of the new energy design. The most promising way to promote a new technology

in the population is the successful realization of demonstration projects [151, 302]. Such

projects not only draw public attention but also prove technical and often economic feasi-

bility. The term “demonstration project“, however, implies that it is not sufficient to just

take care of the technical installations. It is also essential to propagate the environmental

and economic benefits of the technology. The Reichstag building in Berlin with over three

million visitors per year serves as a good example: an ATES has been providing heating and

cooling for more than 15 years. Even though the energy system of the Reichstag has been the

first of its kind in Germany, there is no information panel providing background data about

the technology. Probably only a small proportion of the visitors and members of parliament

(MP) realizes, how the German parliament is actually heated and cooled. As awareness of

the technology increases, any renewable initially is facing prejudices and mistrust [303].

Hence, it is of utmost importance that the success of the first projects installed in a country

is guaranteed. However, this means that contractors have to invest in the project to guarantee

its success and clients have to accept difficulties in the start-up phase [304]. Another great

hurdle for early ATES projects is the high initial investment compared to conventional sys-

tems. High capital costs, especially for the drillings, make ATES appear unattractive at first

glance. While financial evaluations are rare in the field of ATES research, decision-makers

are often not aware of the typical low payback times of such systems [305]. Another issue
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is the question of who is taking the exploration and investment risks. Test drillings are often

indispensable in order to explore the essential subsurface suitability for ATES (i.e., technical

feasibility). However, there is no guarantee for the success of a test drilling, which means

some uncertainty and poses a specific risk to the client.

2.4.2 Market barriers in the growth phase

Entering the commercialization stage, the type of potential barrier shifts from socio-economic

to more regulatory issues. Since experiences gained with ATES are rare in most countries,

numerous legal questions have to be addressed, discussed and finalized in regulations or even

laws [306]. This applies especially to the permitted injection temperature, the minimum dis-

tance to other geothermal applications, the maximum drilling depth and the distance to con-

taminated sites. Environmental risks of shallow geothermal energy can be subdivided into

hydrogeological, thermal, chemical and microbiological impacts [307]. Potential impacts

of ATES on groundwater quality were investigated by several field monitoring campaigns

[258]. For temperature levels of below 30 ◦C, groundwater quality is predominantly af-

fected by mixing of stratified groundwater and less by temperature effects [258]. However,

according to Bonte [307], an early identification of interferences and synergies between dif-

ferent subsurface activities can avoid negative interference of ATES with other subsurface

functions. At present, there are significant differences in the legal framework both at interna-

tional [15, 16, 308] and even national levels [15, 308]. Experience gained in the Netherlands

have illustrated that courage of the authorities to create a proper legislative framework is

indispensable for enabling technology growth in a country [274]. Authorities have to strike

the right balance between the protection of groundwater and an acceptable limitation of a

promising technology. In Sweden, for instance, the permit procedure averages 12 months

[270]. After introduction of a new legislative framework in the Netherlands in 2014, the

permit procedure was shortened from 12 to two months for normal,- low-risk projects. Only

in the case of high-risk projects (complex hydrogeological settings), it may take up to six

months. Hence, top priority should be placed on a standardized, transparent and coherent

legal framework. To support authorities in establishing appropriate, scientific-based guide-

lines, negative effects of ATES on groundwater quality or neighboring underground users

have to be assessed. In recent years, much research was undertaken to identify negative ef-

fects on groundwater quality [307–316], changes in groundwater chemistry [258, 317–329]
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and potential impacts on microbiology [321, 330–334]. In order to facilitate a scientific-

based permit procedure, the knowledge gained has to be bundled and expressed in the form

of specific guidelines for authorities, planners and industry. First steps in this direction

were recently made in the Netherlands with the collaborative research program “Meer met

Bodemenergie“ (“more with subsurface energy“). Within this framework, all relevant actors

were involved in determining the long-term influence of geothermal energy on the subsur-

face. The main recommendations to the authorities were to limit the maximum injection

temperature to 25 ◦C and to intensify underground management [300]. In this context, there

has been also a growing interest in the combination of enhanced groundwater remediation

and ATES [319, 335–346]. Another obstacle in the early commercialization phase is the lack

of knowledge among national and local consultancies. This was observed with pilot projects

in the Netherlands at the end of the 1980s [158]. Large consultancies often do not want to

harm their reputation by an unknown new technology and small consultancies often do not

have the capabilities to manage large and new projects [158]. As rich experiences have been

gained with ATES in several countries, initiation of a cross-national knowledge transfer is

important to guarantee the success of early projects [158, 304].

2.4.3 Market barriers in the maturity phase

With a successful establishment in the energy market and a steadily increasing number of

implemented systems, a scarcity of subsurface space can also be a limiting factor. In many

Dutch cities, the increasing demand for ATES exceeds subsurface space. Permits for new

shallow geothermal energy systems are currently given on a “first-come-first-pump“ basis

[216]. Hence, there is an increasing demand for a cross-sectoral subsurface management

[27, 300, 308, 347–351]. Growing concerns about this issue are, however, not only limited

to the Netherlands. In Germany, 12% of the underground excludes the use of geothermal

technologies [300]. This area does not include potential horizons for Carbon Capture and

Storage (CCS) technology, nuclear waste repositories and over 15,000 contaminated sites.

Additionally, in Germany, there are already more than 350,000 GSHP systems in operation

[352]. These figures illustrate that underground space is already highly limited even without

ATES activity. To be able to facilitate a sustainable permit procedure, other countries could

and should learn from the lessons learned in the Netherlands and apply an underground man-

agement system from the early beginning. Early ATES pilot projects usually focus on new
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buildings, where the energy system can be adjusted to ATES-specific requirements. Never-

theless, there is also a great demand for a sustainable heating and cooling for the old building

stock. In the very early days of ATES application in the Netherlands, nearly 90% of ATES

projects had to be cancelled due to an insufficient building integration [159]. The main prob-

lem of integrating ATES in an old building is to replace the existing HVAC installations,

which would drastically exceed the budget of an ATES project. In residential areas, ATES

often has to compete with oil or gas boilers. As the old system has been proving its func-

tionality for decades, it is difficult to convince homeowners of investing in a new heating

and cooling system. Another hurdle is the size of residential buildings: due to the smaller

system capacity, financial savings are significantly lower compared to those through ATES

for large buildings. To enhance the ability of ATES to compete with other storage techniques

in the residential sector, it will be crucial to match the high energy supply of ATES to the low

energy demand of the small building stock. The combination of district heating or cooling

with ATES, however, is a promising solution [193, 270, 353] but requires a regional or urban

energy management.

2.5 Conclusion

With more than 2,800 systems in operation worldwide, ATES technology has proven its abil-

ity to efficiently tackle the seasonal mismatch between periods of highest energy supply and

highest energy demand. Nevertheless, this success story is almost entirely limited to a few

north-western European countries. Despite the high potential in most developed economies,

ATES still has difficulties in capturing significant positions in relevant energy markets. To

benefit from the growing interest in TES technologies, political and institutional actors are

obliged to create a suitable framework for ATES development, which includes an appropri-

ate legislative basis and well-placed financial subsidies. Based on the reviewed literature,

the following research gaps have to be carefully addressed by future research and public

activities:

Economic evaluation

The literature is comprehensively reviewed in this work, but profound economic consider-

ations are quite rare in the field of ATES. Even though several authors have summarized
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payback times and capital costs from several projects, only Ghaebi et al. [354] have carried

out a comprehensive economic analysis. This is remarkable, as many authors have identified

the lack of awareness of financial benefits as a key barrier to market penetration. Future stud-

ies should, therefore, collect and analyze financial parameters of existing projects in order to

evaluate the economic competitiveness of ATES compared to both conventional energy sys-

tems and other TES solutions. The identification of parameters, which affect the economic

performance of an ATES, would not only be a first step towards a financial optimization of

ATES plants, but also a tremendous support for stakeholders and decision makers to estimate

capital costs and financial payback times.

Further research into HT-ATES

The total amount of solar radiation reaching the roof of a typical building is more than its

annual heating demand. The storage of solar thermal energy (STE) is becoming increasingly

important [199]. Different storage solutions are considered for STE storage in practice [355,

356]. ATES has attracted very little attention in this field, as storage temperatures of STE can

be up to 95 ◦C [357]. In order to build up confidence in HT-ATES, more attention has to be

paid to crucial hydrogeochemical-related problems such as corrosion or scaling of wells and

heat exchangers. The vast majority of modeling studies focuses on heat transfer processes

in the subsurface. However, experiences from existing projects identified the connection of

subsurface and energy system to be the main bottleneck. The dynamic change in heating

and cooling demand of a building is often neglected, which is reflected by a mismatch be-

tween simulation results and reality [358]. Additionally, HVAC designs are often based upon

conservative assumptions, resulting in oversized ATES systems. The development of smart

energy concepts and design models would, therefore, support optimizing the dimensioning

of ATES systems.

Potential studies

Several authors have analyzed the potential of ATES on a local [359], regional [360–362],

or global scale [11, 363, 364]. However, these studies only allow a first estimation of ATES

potential, since important factors were not considered. Even though Bloemendal et al. [11]

indicated that ATES suitability is high in almost all developed economies, there is an urgent

need for quantification of the ATES potential [365]. As potential maps serve as a useful

tool to stimulate the decision-making process of new energy concepts, future investigations
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should also take local characteristics into account. This especially relates to geographical,

regulatory, hydrogeological and climatic factors.

• Geological & hydrogeological parameters (potential storage horizons, groundwater

flow, aquifer thickness, groundwater temperature, fluid chemistry, oxygen concentra-

tion);

• Geographical parameters (thermal energy sources, thermal energy demand, existing

infrastructure, potential conflicts with other subsurface users);

• Regulatory parameters (groundwater protection areas, maximum drilling depth, maxi-

mum distance to geothermal systems);

• Climatic parameters (temperature, solar radiation, heating and cooling degree days).

Almost 3,000 ATES systems are in operation worldwide demonstrating the large potential of

ATES to significantly reduce GHG emissions of the thermal energy sector. Several market

barriers still impede ATES market entrance in most economies. Nevertheless, decarboniza-

tion of the heating and cooling sector is indispensable to achieve COP21 targets. Thus, fur-

ther research and development (R&D) activities are required to promote ATES development

beyond north-western Europe.
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Performance analysis of Aquifer Thermal Energy
Storage (ATES)

Reproduced from: Fleuchaus P, Schüppler S, Godschalk B, Bakema G, Blum P (2020) Per-

formance Analysis of Aquifer Thermal Energy Storage (ATES). Renew Energy, 146:1536-

1548, doi:10.1016/j.renene.2019.07.030

Abstract

The objective of the current study is to assess the technical performance of Aquifer Ther-

mal Energy Storage (ATES) based on the monitoring data from 73 Dutch ATES systems.

With a total abstraction of 30.4 GWh heat and 31.8 GWh cold per year, the average annual

amount of supplied thermal energy was measured as 932.8 MWh. The data analysis revealed

only small thermal imbalances and small temperature losses during the storage period. The

abstraction temperatures are around 10 and 15 ◦C during summer and winter, respectively.

However, the temperature difference between the abstraction and injection wells is 3 to 4

K smaller compared to the optimal design value. This indicates insufficient interaction be-

tween the energy system and the subsurface by an inadequate charging of the aquifer. In

addition, the amount of stored and abstracted thermal energy is approximately 50% lower

than the capacities licensed by the authorities. This results in an unsustainable utilization of

the subsurface. Even though ATES technology proved its enormous potential to significantly

reduce CO2 emissions, the operation still can be optimized. This applies in particular to an

adequate planning and maintenance of the building energy system and a more efficient use

of the available subsurface space.
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3.1 Introduction

As most industrial nations are located in the moderate climate zone with winter and sum-

mer, the decarbonization of the thermal energy sector is less a matter of energy scarcity and

more an issue of seasonal storage. Water, and in particular groundwater is considered to be

a promising storage medium due to its high heat capacity and low thermal conductivity. Due

to its widespread availability, the seasonal storage of heat and cold in shallow groundwater

(< 400 m), also referred to as low temperature Aquifer Thermal Energy Storage (LT-ATES),

is gaining increasing popularity [222, 253, 268, 366]. However, with more than 2,800 sys-

tems in operation worldwide, to date ATES are most widely used in the Netherlands [366].

In contrast, countries such as Germany or France mainly use groundwater for heating and

cooling by groundwater heat pump (GWHP) systems. While there is growing attention for

LT-ATES in many countries [367, 368], there is also a great interest in the lessons learned

from the Netherlands. Thus, a performance analysis of running systems is not only important

to optimize ATES application in the Netherlands, but also to facilitate global development of

ATES technology.

The performance of an ATES can be evaluated based on various performance criteria such

as recovery rate, sustainability and economic efficiency. Each of these criteria are influenced

by certain boundary conditions such as subsurface, building or design related parameters.

A comprehensive literature review on LT-ATES revealed that 55 (28%) of 199 publications

analyzed the performance based on certain boundary conditions. Fig. 3.1 illustrates the

frequency of the analyzed performance criteria as a function of each boundary condition. So

far, the studies mainly focused on the influence of geological and design related parameters

on the recovery rate (storage efficiency) and abstraction temperature. In contrast, building

related aspects such as optimal integration of the ATES into the heating and cooling system

were only rarely addressed. Additionally, most of the reviewed performance evaluations are

only based on theoretical assumptions. Studies analyzing real monitoring data are however,

only sparsely found.

On behalf of the Dutch Ministry of Economic Affairs, IF Technology analyzed the monitor-

ing data of 125 Dutch LT-ATES systems. The results were published in a Dutch report by

Willemsen [383]. The monitoring data comprise of the measured temperatures as well as

the volume of pumped groundwater. The monitoring data revealed small thermal imbalances
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Figure 3.1: Frequency of research activity addressing the performance of LT-ATES as a function of various
boundary conditions. Considered studies: Bakema et al. [12], Sommer [27], Morofsky [35], Xiao-Bo and Jie
[39], Midkiff et al. [69, 70], Xue et al. [144], Bozkaya et al. [159], Yapparova et al. [164], Bridger and Allen
[169], Bridger and Allen [170], Visser et al. [171], Sommer et al. [172], Ganguly et al. [176], Bourbiaux [177],
Bakr et al. [179], Ganguly et al. [180], Lee [181], Gao et al. [182], Sommer et al. [184], Kim et al. [187], Lee
[188], Ghaebi et al. [191], Kranz and Frick [192], Drenkelfort et al. [195], Li et al. [196], Kranz and Bartels
[201], AlZahrani and Dincer [204], Lee [210], Bloemendal et al. [216], Birhanu et al. [220], Vanhoudt et al.
[230], Behi et al. [234], Koenders and Zwart [259], Anibas et al. [278], Jaxa-Rozen et al. [299], Bloemendal
and Hartog [348], Bloemendal et al. [350, 351], Ghaebi et al. [354], Abuasbeh and Acuña [369], Bloemendal
and Hartog [370], Bloemendal and Olsthoorn [371], Bozkaya and Zeiler [372], Bozkaya et al. [373], Hendriks
and Velvis [374], Hermans et al. [375], Jaxa-Rozen et al. [376], Jiuchen et al. [377], Lesparre et al. [378],
Rostampour et al. [379, 380], Schepper et al. [381], Schüppler et al. [382], and Willemsen [383].

between 15 and 25% as well as ∆T values of below 5 K. However, neither conclusions on

the performance nor possible optimization strategies were discussed. Sommer et al. [172]

analyzed the monitoring data of the ATES at Utrecht University from 2005 to 2012. The heat

transport was monitored by distributed temperature sensing (DTS) with six fiber optic cables

and showed that there is no thermal interference between warm and cold well but preferen-

tial flow due to aquifer heterogeneity. Abuasbeh and Acuña [369] conducted a monitoring
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campaign for an ATES system supplying heat and cold for two office buildings located in

Solna, Sweden. Preliminary results of the first year of monitoring revealed low storage effi-

ciencies of 33% explained by thermal losses due to groundwater flow and a strong thermal

imbalance. Hendriks and Velvis [374] compared the operational performance of ATES and

Borehole Thermal Energy Storage (BTES) systems in the Netherlands. They concluded that

although the monitoring results showed high economic and financial savings, the total ef-

ficiency of the energy system depends not only on the performance of the ATES but also

on the required building supply and return temperatures. They recommended to not only

focus on functional performance and permit compliance but also on energetic performance.

Additionally, Kranz and Frick [192], who analyzed the performance of the cold storage of

the German Parliament Building in Berlin, identified the regeneration temperature of the

ATES and the temperature level of the cooling network as key parameters. Hoes et al. [229]

evaluated the techno-economic performance of three Belgian ATES systems and showed an

average energy savings of at least 60%. They recommended to keep the ATES installation

as simple as possible but to have them in an optimal shape. Vanhoudt et al. [230] conducted

an economic analysis of the operating ATES system of the Klina hospital in Brasschaat, Bel-

gium, based on operating data. The ATES system showed a good performance reaching a

simple payback time of about eight years.

While Willemsen [383] only focused on subsurface aspects, the literature lacks on informa-

tion on the performance of LT-ATES based on long-term monitoring data. These data are

not only crucial to specify the input parameter for theoretical simulations, but also to provide

valuable information for system optimization in the Netherlands and countries, where ATES

is not yet frequently used. The objective of this study is therefore to analyze the monitoring

data of 73 Dutch LT-ATES systems measured in a period from 2016 to 2018. Based on a

holistic data analysis, valuable conclusions are drawn both on the performance of the ATES

and also on the quality of the building-subsurface interaction. Optimization strategies are

discussed to further enhance the technical performance of ATES and also to improve the

sustainable use of the available subsurface space, considering the current licensing practice

in the Netherlands.
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3.2 Material and methods

3.2.1 Recovery ratio and storage temperatures

The term “cold energy“ does not exist from a thermodynamic point of view. However, in

order to enhance the comprehensibility, the term “cold “ is used throughout this thesis to

express the amount of stored or abstracted thermal energy used for cooling. The recovery

efficiency (ηE) of an ATES system is a measure for the thermal losses during the storage pe-

riod and is influenced by hydrogeological, design-specific and anthropogenic factors. Based

on Sommer et al. [174], ηE can be calculated with Eq. 1,

ηE (t0→ t) =

∫ t
t0 QAbs (TAbs−TAmb)dt∫ t
t0 QIn j (TIn j−TAmb)dt

(3.1)

with TAmb the ambient groundwater temperature and Q the injected or abstracted groundwater

volume during time step t. In contrast, the recovery ratio (ηR) provides information on the

amount of injected thermal energy, recovered after the storage period and is calculated by

the difference between abstraction and injection temperature, measured before and after the

heat exchanger [370].

ηR (t0→ t) =
EAbs

EIn j
=

∫ t
t0 ∆TAbs QAbs dt∫ t
t0 ∆TIn j QIn j dt

(3.2)

The natural groundwater temperature in the Netherlands can be estimated to be around 10

and 12 ◦C [384]. However, the natural groundwater temperature can be influenced by an-

thropogenic activity especially in urban environments. Several studies reported of elevated

groundwater temperatures of more than 5 K in cities due to the subsurface urban heat island

effect (SUHI) [385]. Assuming a natural groundwater temperature of around 11 ◦C, the cal-

culation of ηE can lead to misleading efficiency values. Since the dataset lacks information

on site specific ambient groundwater temperatures, the performance is only evaluated based

on ηR in this study.
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In addition, the thermal imbalance of an ATES is defined by the amount of injected heat

and cold and should be in balance over a heating and cooling season [386]. The thermal

imbalance is determined in this study following Eq. 3 [172].

Imbalance =
EIn j(cold)−EIn j(warm)

EIn j(cold)+EIn j(warm)
(3.3)

The performance of an ATES system can also be analyzed based on the recovery tempera-

tures. The measured temperatures are not only a criterion to evaluate the performance of the

subsurface part, but also for the technical interaction between building and ATES. The in-

jection and abstraction temperatures, measured before and after passing the heat exchanger,

can be analyzed based on three ∆T values, depending on the time and location of the mea-

surement. The calculation of each ∆T is illustrated in Fig. 3.2. Given the pumping rate Q,

ΔT =   T  -   T   Out Abs Inj ΔT =   T  -   T   Rec Inj Abs
 ΔT =  T  -   T   Tot Inj/Abs Inj/Abs

TT T T

Figure 3.2: Depending on the season (winter or summer) and location (abstraction or injection well), the mea-
sured temperature differences ∆T of an ATES system can be subdivided into three different values: the differ-
ence between abstraction and injection temperature ∆TOut , the temperature loss during storage period ∆TRec,
and the difference between warm and cold well ∆TTot . The time and location of measurement for each type of
∆T is marked by the winter and summer symbol.

∆TOut is a measure of the transferred energy from the subsurface to the building given by

∆TOut = TAbs−TIn j (3.4)

∆TOut should be as large as possible to allow proper charging temperatures and a high energy

transfer from the subsurface system to the building. ∆TRec is a measure of the temperature

change during the storage period, which is attributed to an imbalanced charging and dis-

34



3.2 Material and methods

charging behavior and also to temperature losses to the surroundings. ∆TRec is calculated by

the temperature difference between the stored and recovered groundwater, expressed by

∆TRec = TIn j(storage)−TAbs(recovery) (3.5)

∆TRec should be as small as possible to guarantee appropriate temperature levels. ∆TTot is

the difference between ∆TOut and ∆TRec and is often referred to as the temperature difference

between warm and cold wells in the literature.

∆TTot = TAbs/In j−TAbs/In j (3.6)

To optimize ATES efficiency, ∆TTot should be as high as possible to enable an optimal en-

ergy transfer from the subsurface to the building and also to avoid thermal losses to the

surroundings.

3.2.2 Data

Monitoring data

The Dutch General Administrative Order on Ground Energy obliges the owner of an ATES

to monitor the operational parameter and report them annually to the local authorities. The

authorities control if the monitored data are within the authorized limits. The present data

comprise of the monitoring data of 73 Dutch LT-ATES systems from 2016 to 2018 covering

the following parameters:

• Volume of pumped groundwater [m3];

• Abstracted thermal energy for heating and cooling [MWh];

• Abstraction temperature heating and cooling [◦C];

• Injection temperature heating and cooling [◦C];

• Minimum and maximum injection temperature for heating and cooling [◦C].

In this study, the monitoring data were gathered by an energy management software (EMS)

called Lift. The latter is a web-based EMS developed in particular for shallow geothermal
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systems [374]. The injection and abstraction temperatures are measured on both sides of the

heat exchanger and averaged to monthly values. According to Sommer [27], heat losses be-

tween the wells and the heat exchanger are negligible. The monitoring data are compared in

this study with design and license values, which are required by the authorities in the permit

procedure. The licensing values comprise of the minimum and maximum allowed injection

temperatures as well as the amount of abstracted groundwater. The design values comprise

the injection and abstraction temperatures as well as the abstracted and injected thermal en-

ergies. In contrast to the licensed values, the design values serve more as orientation for the

authorities and do not necessarily have to be met.

Location and climatic conditions

Fig. 3.3 illustrates the location, the capacity and the type of building of the analyzed ATES

systems. The capacity ranges between less than 0.5 GWh for small and more than 1.5 GWh

Figure 3.3: Location, heating and cooling capacity as well as type of building of the analyzed ATES systems.
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for large systems. 42% of the analyzed systems are commercial buildings such as offices

or hotels. Public buildings such as schools, museums and governmental buildings as well

as hospitals make up 21% and 20%, respectively. The remaining 16% are multi-functional

or residential buildings. The heating and cooling demand of a building is highly affected

by the number of heating and cooling degree days (HDD and CDD). Hence, it is important

to consider the climate boundary conditions of the monitoring period. Fig. 3.4 shows the

average monthly temperature of the Central Netherlands and the temperature anomaly com-

pared to the mean temperatures from 1985 to 2015. The years of 2016, 2017, and 2018 are

within the warmest years ever measured. The summer of 2016 and in particular the second

half of 2018 were characterized by high average and also peak temperatures. The winter of

2016/2017 was slightly colder, the end of winter 2017/2018 significantly colder compared to

the average temperatures.

< -2 °C -2   -1 °C -1 - 0 °C 0 °C 0 - 1 °C 1 - 2 °C > 2 °C

Temperature anomalies

Figure 3.4: The solid line of the boxes illustrate the mean temperatures of the years 2016, 2017, and 2018. The
black line shows the average monthly temperature values from 1980 to 2018. The colors of the boxes represent
the monthly temperature anomalies compared to the historic temperature values (Data: Koninklijk Nederlands
Meteorologisch Instituut).

3.3 Data analysis

3.3.1 Pumped energy

In Fig. 3.5 each dot illustrates the amount of abstracted thermal energy of each ATES system

per month from 2016 to 2018. The solid line shows the average abstracted energy for heating

(red) and cooling (blue) of all systems. With a total amount of abstracted heat and cold of

30.4 GWh and 31.8 GWh per year, the average pumped energy per system for heating and

cooling was measured as 455.8 MWh (± 484.9) and 477.0 MWh (± 575.4), respectively.
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The high standard deviation (±) indicates a large range in terms of the system size of the

analyzed ATES. With about 2,500 ATES systems in operation, the abstracted thermal energy

can therefore be estimated to more than two TWh in the Netherlands per year. However,

ATES contributes only to two % of the thermal energy demand (127 TWh) of the built

environment in the Netherlands [387]. In comparison, 20% of the buildings in Sweden were

heated by geothermal heat pumps in 2015 [388]. With an average annual volume of 153,000
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Figure 3.5: Average pumped thermal energy per month of 73 studied Dutch ATES systems. The average
pumped energy for cooling and heating is indicated by the solid line.

(± 146) m3 of pumped groundwater, the total volume of all ATES systems in the Netherlands

can be estimated to 384 million m3 per year. Bonte et al. [308] estimated the amount of

pumped groundwater to be 350 million m3 per year based on licensing data. In comparison,

the amount of abstracted groundwater for drinking water supply in 2016 was estimated to

be 692 million m3 [389]. The industry and the agriculture is attributed to about 9 and 15%,

respectively [390]. Therefore, about 27% of the abstracted groundwater is used for ATES

application in the Netherlands. While the groundwater extraction in the Netherlands steadily

decreases [389], the share of ATES is expected to further increase. However, it is important

to note that the same volume of abstracted groundwater is injected back into the aquifer by

the ATES system after passing the heat exchanger.
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3.3.2 Thermal imbalance

The Dutch General Administrative Order on Ground Energy requires a balanced amount of

injected heat and cold into the subsurface [322, 386]. These regularities were established

in order to minimize a thermal contamination of the subsurface [27, 316] and also to guar-

antee an optimal technical performance [373, 391, 392]. Since climatic fluctuations highly

influence the heating and cooling demand of a building, a thermal balanced system is not

required for each year. However, each province of the Netherlands has its own specifica-

tions. While Friesland, for instance, allows a deviation of 25% in a period of five years, the

Province of Flevoland requires that the thermal balance has to be met at least every second

year [393]. Fig. 3.6 shows the annual amount of injected heat and cold for each system.

Red colors indicate a high heat injection resulting from a high cooling demand. The thermal
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Figure 3.6: Each scatter represents the injected thermal energy per ATES system in the period from 2016
to 2018. Blue colors indicate a higher cold injection (heating dominated systems), red colors a higher heat
injection (cooling dominated system).

imbalance was calculated based on Eq. 3. The closer a scatter is to +/- one the higher the

thermal imbalance. In the period from 2016 to 2018, the amount of injected thermal energy

of the 73 ATES in total was almost in balance (imbalance of -2.3%). This shows that the

net groundwater temperature in the Netherlands is minimally affected by ATES activity. The

slightly higher amount of injected heat can be explained by the hot summer in 2018 (Fig.

3.4), with extremely high cooling loads. Even though a balanced energy ratio is required, the
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monitoring data indicate that most systems show a slight thermal imbalance. This was also

shown by Willemsen [383], who calculated an average thermal imbalance of 22%. Smaller

thermal imbalances can be explained by changing heating and cooling demand patterns due

to climatic fluctuations and are unavoidable. However, strong thermal imbalances result in

most cases from an insufficient monitoring and energy management. In a well designed and

managed heating and cooling system, the EMS is able to automatically detect unbalanced

injection patterns and counterbalance this mismatch by the activation of external heat or cold

sources. Heat pumps, cooling towers, solar panels, free coolers, air handling units or air

ventilation are considered to balance heating or cooling dominated systems [372].

3.3.3 Injection and abstraction temperatures

Fig. 3.7 shows the injection and abstraction temperature for heating (top) and cooling (bot-

tom) season. The temperature was measured before and after the heat exchanger once per

hour. It is important to note that the hourly measured data were averaged to monthly values.

Hence, peak abstraction and injection temperatures are not illustrated in Fig. 3.7. The aver-

age abstraction temperature decreases from 15 to 14 ◦C during winter and increases from 9.5

to 10.5 ◦C during summer. Compared to the natural groundwater temperature in the Nether-

lands, which typically range between 10 and 12 ◦C [384], the storage effect results in 2 to

3 K warmer (winter) or colder (summer) production temperature. However, for about 15%

of the analyzed systems, the abstraction temperatures are close to the natural groundwater

temperature showing that these ATES systems operate more like standard GWHP systems

using natural groundwater temperature instead of actively storing energy. However, it is im-

portant to note that some of the monitored injection and abstraction temperatures are likely

influenced by anthropogenic activity especially in urban environments (Section 3.1). The

monitoring of ATES should therefore also include the measurement of temperature profiles

of the ambient groundwater temperature. Even though hourly peak-time values can go up

to 20 K, the average ∆TOut for heating and cooling was measured as 5.2 (± 1.8) and 5.4 (±
1.8) K, respectively. In comparison, Willemsen [383] reported of lower ∆T values of 4.6

K (heating) and 4.0 K (cooling), although it is not clearly defined whether he is referring

to ∆TOut or ∆TTot values. Additionally, several studies reported of higher (heating) or lower

(cooling) abstraction temperatures in theoretical simulations [163, 191, 195]. However, these

temperature levels are only rarely observed. In practice, the average temperature differences
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Figure 3.7: Average monthly abstraction (left) and injection (right) temperatures for heating (red) and cooling
season (blue). The bold line represents the average temperature of all analyzed systems.

measured before and after the heat exchanger are on average 3 K less than initially designed.

Considering the fact that early ATES systems in the Netherlands only achieved a ∆TOut be-

tween 1 and 2 K, there is a continuous improvement of operational efficiencies. Nevertheless,

authorities still argue to further optimize injection and abstraction temperatures. Since lower

∆TOut are compensated by higher pumping rates, an optimization here would not only re-

sult in a reduced electricity demand for pumping, but also in lower specific storage volumes

(kWh/m3) and hence, a more sustainable utilization of the subsurface.

3.3.4 Effect of thermal imbalance on ∆T

As described in Section 3.2.1, the performance of an ATES system can be analyzed based

on the recovery ratio (ηR), which is a measurement of the amount of injected heat or cold re-

covered during the storage period. Fig. 3.8 shows the relation between ηR, ∆TRec and ∆TOut .

∆TRec defines the temperature drop during the storage period and slightly increases about 1

K with increasing ηR. This can be explained as groundwater of the thermal unaffected zone
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Figure 3.8: Relationship between the ratio of stored and abstracted thermal energy (ηR) and the measured
temperature losses during the storage periods (∆TRec) for four different storage-recovery cycles (a-d). The
difference between injection and abstraction temperature (∆TOut ) is expressed by the color range.

(natural groundwater temperature) is pumped at the end of the storage period in case of high

ηR values. However, low R2 values of around 0.1 indicate that ∆TRec is not only affected by

ηR but also by low storage efficiencies (ηE) attributed to convection, conduction or thermal

interference. The storage efficiency was not assessed in this study due to missing monitoring

data on the ambient groundwater temperature (Section 3.1). The average ∆TRec of all ana-

lyzed system was measured as 1.3 K (± 1.2). Apart from several outliers, there is only a

small range in the measured temperature losses. This can be explained by constant subsur-

face conditions in the Netherlands with a low groundwater flow and high permeability. At

the same time, Fig. 3.8 shows no correlation between ηR and ∆TOut . ∆TOut gives information

on the efficiency of which the aquifer is charged with the heating and cooling system. Even

though there are some ATES achieving ∆TOut of more than 8 K, the average value for heating

and cooling is approximately 5 K (Section 3.3.3). Thus, in order to optimize ATES efficiency
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in the Netherlands, it is not only important to enhance subsurface storage efficiency, but to

ensure a smooth integration of the ATES into the energy system.

3.3.5 Comparison of licensed (design) and measured parameters

The Dutch legal regulations require a licensing procedure, where the dimensions of the

planned ATES have to be defined based on specific design values. These indications are

crucial to guarantee that neither the subsurface nor other subsurface users are negatively af-

fected. The owner of the license is responsible to meet the requirements of the permit. Fig.

3.9 compares the design and licensed values with the monitoring data analyzed in this study.

Even though most system are within the issued permits, there is a strong deviation from the

permitted values. Considering the abstracted thermal energy, the analyzed systems achieve

on average only half of the licensed capacities. Fig. 3.9 indicates that large systems are

more inclined to meet the licensed values than smaller systems, which is especially the case

for the abstracted thermal energy (left graph) and the ∆TOut values (right graph). Consid-

ering climatic fluctuations, changes in demand patterns or structural extensions, the exact

required thermal energy can be only estimated using sophisticated building energy models.

This, however, is only hardly observed in practice. While the lower ∆TOut values are mainly

a matter of technical issues and defined by the building system, the discrepancies between

measured and permitted groundwater and energy volume are therefore more a matter of safe-

guarding against demand fluctuations [376]. The result is an insufficient exploitation of the

subsurface, particularly in urban areas. To guarantee a sustainable utilization of the sub-

surface, both owners and authorities should strive to minimize unused subsurface space. In

some Dutch provinces, the authorities began to negotiate with permit holders to reduce the

licensed capacity in case it is not fully used.

3.4 Optimization strategies

3.4.1 Optimization of operational performance

The key challenge for the planning, installation, and operation of LT-ATES is to ensure both

a cost-effective and sustainable exploitation of the subsurface [358]. The Seasonal Perfor-

mance Factor (SPF) of a shallow geothermal system is influenced by several factors, summa-

rized, categorized, and illustrated in Fig 3.10. As discussed in Section 1 (Fig. 3.1), research
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Figure 3.9: Comparison of licensed (L) and monitored (M) values for supplied energy (E), pumped groundwater
volume (V), and the difference between abstraction and injection temperature (∆TOut ). The dotted vertical line
represents the value, where the monitored ATES meets the licensed capacity or temperature. The ATES are
sorted ascending by the system capacity.
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in the field of LT-ATES mainly focused on the storage efficiency of the ATES, influenced by

(hydro)geological, technical or social boundary conditions. However, the monitoring data

revealed a good storage performance indicated by low temperature losses in the storage pe-

riod (∆TRec). Even though strongly imbalanced systems should be impeded, the temperature

losses are on average below 1.5 K. At the same time, low ∆TOut values indicate an insufficient

charging of the aquifer by the heating and cooling system. Many ATES systems only reach

∆TOut values below 4 K, resulting in inadequate abstraction temperatures close to the natu-

ral groundwater temperature. On the other hand, ∆TOut values higher than 8 K demonstrate

that an efficient interaction between ATES and building (Fig. 3.10) is technically feasible.

Even though a proper building integration seems to have the highest impact on the entire

ATES Surface - subsurface
interaction

Heating and cooling
system

- Temperature levels (heating & cooling)

- Design, planning, and installation

- Efficiency of components (heat pump,
   heat-exchanger, buffer tank)

- Monitoring and maintenance

 

- Heat transfer processes

- Thermal interference

- Hydrogeology

- Geology

- Well design and layout

- Trade-off between pumping rate and
   heat pump inlet temperature

- Charging temperature of the ATES

- Thermal imbalance

- Heat-exchanger

- Monitoring and maintenance - Monitoring and maintenance 

Figure 3.10: Components influencing the SPF of the overall heating and cooling system.

system performance [192, 200, 201, 394], this issue is only rarely addressed in the literature

(Fig. 3.1). According to van Wijck [394], 70% of all Dutch buildings supplied with heat

and cold by ATES run inefficiently. Fig. 3.9 indicates an increase of ∆TOut with increasing

system size. For large buildings, it is common to invest in an energy management taking care

of a comprehensive monitoring and maintenance. Owners of small buildings, however, often

do not invest in optimization strategies and only take care of a smooth operation. In order to

guarantee a sustainable and economic operation of ATES technology, both scientific-based

planning as well as a continuous monitoring of the operational performance is crucial. In

the planning phase, the ATES system has to be designed based on the building requirements

45



Chapter 3

focusing on the base load supply. However, since sophisticated building energy models such

as EnergyPlus, Modelica or TRNSYS are applied only sparsely in practice, the heating and

cooling loads are often overestimated to safeguard against demand fluctuations. This results

in higher investment costs for the energy system and over-claimed subsurface space in urban

areas (Section 3.4.2).

The analysis of the monitoring data in the present study revealed low ∆TOut values, insuffi-

cient injection temperatures, and thermal imbalanced systems. This indicates an inefficient

integration of the ATES into the HVAC system [192]. To optimize this integration, the

design and dimensioning particularly of large buildings, should be based on thermal simu-

lations coupled with building energy models. However, research activity in ATES mainly

focused on the optimization of the storage efficiency (Section 3.1). According to Bozkaya et

al. [159], only a few studies [191, 192, 195] simulated LT-ATES performance in combination

with building loads. Co-simulation approaches, however, are indispensable to harmonize the

interaction between ATES and HVAC system by responding to social, technical, climatic,

and subsurface conditions. A first step into this direction was done by Bozkaya et al. [373],

who coupled TRNSYS with Comsol considering varying building loads. This study clearly

demonstrated the benefit of a co-simulation approach by quantifying the impact of an imbal-

anced thermal injection on the system performance. In addition, to guarantee high energy

savings, the performance of the entire energy system should be monitored in the beginning at

least twice a year and then annually. The maintenance should not only focus on the ground-

water wells but also on the replacement of outdated components of the heating and cooling

system. The entire system should be adjusted to changing requirements, demand patterns or

infrastructure.

3.4.2 Optimization strategies for common subsurface use

Thinking in terms of a holistic optimization strategy, it is not only important to enhance

the techno-economic performance of each individual ATES system, but also to optimize the

available subsurface space [216, 351, 376]. Considering the fact that the volume of pumped

groundwater is indirectly proportional to ∆TOut , an optimization does not only reduce pump-

ing costs, but also significantly reduces the thermal footprint. Moreover, according to Section

3.3.5, the amount of stored thermal energy is only less than half the amount, which was ini-

tially designed. The result is an insufficient exploitation of the subsurface, especially in urban
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areas [350]. Although, a certain buffer is reasonable to cover building demand fluctuations,

these over-estimations have to be reduced. It is also crucial to avoid strong thermal interfer-

ence between allocated ATES systems. However, Rostampour et al. [380] demonstrated in

a case study for the city of Utrecht that a dynamic management of thermal interactions can

significantly increase the efficiency of ATES application on an urban scale. Compared to

the common practice, a smart information exchange between ATES systems in combination

with a denser layout policy for ATES wells resulted in 21% total GHG savings. In order to

allow a denser utilization of ATES in urban environments, they recommend to revise spatial

planning policies of the subsurface, which is hardly considered worldwide. In addition, for

certain building types such as data centers or greenhouses, a balanced energy ratio is not

feasible. A smart alternative to external energy sources such as free coolers is to create syn-

ergies between allocated subsurface users. This, for example, is currently happening at the

Science Park of Amsterdam, where a heating dominated building structure is supplied by

an ATES. This imbalance is used to counter a cooling dominated load profile of an adjacent

data center and vice versa. This is one of the most efficient ATES system in the Netherlands

[394] and demonstrates the great demand for a comprehensive and sustainable subsurface

management.

The first step in this direction was achieved by the project “Development of master plans

for geothermal energy“ [349]. Options, strategies, and barriers were analyzed to develop a

holistic energy concept on urban scale. A promising idea is to establish subsurface zones of

only heating or cooling in order to tackle problems addressed in this study such as thermal

imbalance or over-sizing. Positive thermal interference between allocated ATES systems

could even enhance operational efficiency by reducing the negative effect of groundwater

flow. This, however, requires to collect and process data on existing and potentially affected

subsurface users. While good progress is made in the Netherlands [215, 307, 349], other

countries such as Germany still lack a comprehensive data acquisition and processing strat-

egy. Monitoring data of existing and design values of planned geothermal systems have to

be integrated into analytical or ideally numerical groundwater models on the city scale [395,

396]. As most cities lack such models, it is a matter of policy, who is in charge of investing

the required man-power and financial means [385]. This issue has to be solved locally or

nationally.
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3.5 Conclusion

The monitoring data of 73 Dutch ATES provided significant insights into the operational

performance of LT-ATES in the Netherlands. Low ∆TOut values as well as strong discrep-

ancies between the design/licensed and the monitored values indicated that the operation of

ATES systems still can be optimized. Both HVAC planners and authorities should therefore

carefully consider and optimize the interaction between building and subsurface (Section

3.4.1) as well as a more efficient and sustainable use of the available subsurface space (Sec-

tion 3.4.2). While this study only focused on the injected and abstracted thermal energy,

groundwater volume and temperature, future studies should strive to extend the proposed

monitoring analysis by considering the following recommendations:

• Extension of the dataset by a longer monitoring period of at least five years and a

higher number of monitored systems;

• Including the ambient groundwater temperature at each ATES site in order to estimate

the storage efficiency and to estimate the influence of different subsurface users on

ATES activity;

• Spatial analysis evaluating the impact of geological, hydrogeological, technical and

geographical factors on the operational performance;

• Linking the subsurface and HVAC monitoring in order to quantify the impact of the

ATES efficiency on the SPF of the heating and cooling system.

Some of the monitored ATES systems in this study showed abstraction temperatures close

to the natural groundwater temperature (Section 3.3.3). From an energetic point of view,

these ATES are operating similarly to standard GWHP systems. However, in the case of

a well performing heating and cooling system, ATES technology bares several advantages

compared to the direct use of groundwater. This is in particular the case for the summer

season, where constant lower abstraction temperatures can significantly increase the effi-

ciency of the cooling system [373]. While about 90% of all LT-ATES systems are operated

in the Netherlands, the share of LT-ATES on the global number of open shallow geothermal

systems is still fairly low [211]. Thus, in order to promote ATES technology worldwide,

it is crucial to analyze also the economic and technical advantage of LT-ATES compared
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to GWHP systems. In this context, it would also be interesting to address the influence of

subsurface urban heat islands (SUHI) on the techno-economic performance of both ATES

and GWHP systems, which could be demonstrated by Rivera et al. [397] for vertical ground

source heat pump (GSHP) systems. According to Bayer et al. [385], the potential of SUHI

was only analyzed in terms of determining the potential of covering the heating and cooling

demand on an urban scale. However, it would also be important to address the impact of

SUHI on the energetic performance of individual ATES or GWHP systems.
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Risk assessment of High Temperature Aquifer
Thermal Energy Storage (HT-ATES)

Reproduced from: Fleuchaus P, Schüppler S, Bloemendal M, Guglielmetti L, Opel O, Blum

P: Risk analysis of High Temperature Aquifer Thermal Energy Storage (HT-ATES). RSER

[under review]

Abstract

The storage of heat in aquifers, also referred to as Aquifer Thermal Energy Storage (ATES),

offers a high potential to bridge the seasonal gap between periods of highest thermal energy

demand and supply. With storage temperatures higher than 50 °C, High Temperature (HT)

ATES is capable of enhancing the integration of (non-) renewable heat sources into complex

energy systems. While the complexity of ATES technology is positively correlated to the re-

quired storage temperature, HT-ATES faces multidisciplinary challenges and risks impeding

a rapid market uptake worldwide. Therefore, the aim of this study is to provide an overview

and analysis of these risks of HT-ATES to facilitate global technology adoption. Risk are

identified considering experiences of past HT-ATES projects and analyzed by ATES and

geothermal energy experts. An online survey among 38 international experts revealed that

technical risks are expected to be less critical than legal, social and organizational risks. This

is confirmed by the lessons learned from past HT-ATES projects, where high heat recovery

values were achieved, and technical feasibility was demonstrated. Although HT-ATES is

less flexible than competing technologies such as pits or buffer tanks, the main problems

encountered are attributed to a loss of the heat source and fluctuating or decreasing heating

demands. Considering that a HT-ATES system has a lifetime of more than 30 years, it is cru-

cial to develop energy concepts which take into account the conditions both for heat sources

and heat sinks. Finally, a site-specific risk analysis for HT-ATES in the city of Hamburg

revealed that some risks strongly depend on local boundary conditions. A project-specific
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risk management is therefore indispensable and should be addressed in future research and

project developments.
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4.1 Introduction

Most governments have undertaken to reduce greenhouse gas emissions to prevent the worst

effects of global warming. While the majority of efforts are focusing on electricity produc-

tion, the share of renewable energies in the heating and cooling sector is stagnating at around

10% [2]. Considering that around 50% of the global energy consumption is attributed to the

thermal energy sector [20], climate change mitigation strategies must be reconsidered and

should also include renewable heating and cooling (RHC) solutions. The challenge of inte-

grating renewable technologies into the thermal energy sector is that demand for heating or

cooling does not coincide with RHC supply in most cases. Underground thermal energy stor-

age (UTES) is considered as promising technology to bridge this seasonal demand-supply

gap [8]. However, artificial storage tanks are highly space-intensive and hence, hardly suit-

able to store significant amounts of energy in an urban environment. By contrast, the storage

of temperatures below 25 °C in shallow aquifers (LT-ATES) is characterized by high storage

capacities, but not compatible with other renewable technologies (solar, biomass, geother-

mal) or industrial heat waste [366]. High Temperature Aquifer Thermal Energy Storage

(HT-ATES) (> 50 °C), in contrast, has the potential to cost-efficiently store large energy

volumes at high temperatures.

There is a 50-year historical development of HT-ATES. First research experiments were ini-

tiated by the Storage program of the International Energy Agency (IEA) to tackle increasing

fuel prices after the big oil crises in North America and Europe in the early 1970s [36].

However, with decreasing oil and gas prices in the following decades, alternative heating

technologies such as HT-ATES became less attractive and research and development (R&D)

activity in the field of geothermal energy focused on power generation. Consequently, even

though promising results were achieved at several demonstration projects, HT-ATES still

has not tapped significant energy markets [366]. While renewable heating and cooling was

neglected by significant climate change mitigation strategies in the past, many scientist now

appeal for a prioritization of the decarbonization of the thermal energy sector [2, 20]. Conse-

quently, HT-ATES is moving back into the scientific focus and several projects were recently

initiated, particularly in Central Europe (Section 1).

In order to establish HT-ATES as a key technology in the energy transition, future demon-

stration plants should strive to proof technical reliability to build up trust among investors,
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politicians and the population. However, compared to other renewable technologies, the stor-

age of heat in the subsurface is associated with multidisciplinary and complex risks. Thus,

a comprehensive risk management should be an integral part of any project to develop site-

specific risk mitigation strategies. Despite its importance, risk management in HT-ATES

has not been addressed by past research activities, yet. Risk related research was focusing

on direct geothermal utilization, addressing only specific risks such as induced seismicity

[398–401], exploration risks [402, 403] or well integrity [404–406]. This was also stated

by Lohne et al. [407], who reviewed 54 studies in the course of the project “EU Horizon

2020 GeoWell“. They concluded that most studies focus on geological and financial risks,

whereas environmental, social or legal risks as well as risk-management strategies are hardly

ever considered. Even though risk assessment is often applied in practice [408], current liter-

ature still lacks research focusing on holistic risk assessment approaches. So far, no attempt

was made to identify and assess all potential risks of geothermal and in particular HT-ATES

projects.

The objective of this study is, therefore, to foster technology adoption by obtaining a deeper

understanding of risks in HT-ATES and establishing a risk assessment framework for risk

management and mitigation for future projects. To meet these objectives, risks of HT-ATES

are identified based on a review of the past and current HT-ATES activities. The identified

risks are qualitatively analyzed by means of an online survey among experts in geothermal

energy. This generic analysis is complemented by a project-specific risk analysis of a HT-

ATES project in the city of Hamburg to analyze the impact of local and site-specific risks.

The outcome of this study will not only serve as a first basis for a project-specific, holistic

risk mitigation strategy, but also create an awareness for the importance of risk management

in HT-ATES.

4.2 Methods

4.2.1 High Temperature Aquifer Thermal Energy Storage

The basic principle of ATES was described by numerous studies [29, 208, 384] and is il-

lustrated in Fig, 4.1. ATES systems consist of at least one groundwater well-doublet. In

summer, groundwater is abstracted from the “cold“ well, charged with surplus heat from
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renewable or non-renewable sources and injected into the “warm“ well. The pump direction

is reversed in winter to recover the injected heat from the warm well. Over time, various

a)

b)

c)

d)e)

f)

g)

h)

Figure 4.1: Basic principle of HT-ATES. In summer, the aquifer is charged with surplus heat from (non-)
renewable energy sources such as geothermal (a), biomass (b), power-to-heat (c), industrial heat waste (d)
or solar (e). The stored heat is recovered in winter to feed district heating (DH) systems (f), large building
complexes (g) or industrial applications such as greenhouses (h).

concepts and designs have developed. These concepts are differentiated based on several

characteristics, such as the storage depth, the storage temperature, the system design (mono-

or multi-well) or the energy source and consumer [366]. Since this study is focusing on

HT-ATES, we consider only ATES with a storage temperature above a certain temperature

threshold. However, different threshold values between LT and HT ATES are defined in the

literature. Drijver [338], Drijver et al. [207] and Kallesøe and Vangkilde-Pedersen [409]

distinguish between LT (< 30 °C), mid-temperature (MT) (30-60 °C) and HT (> 60 °C)

ATES. In contrast, other authors define HT-ATES with a storage temperature above 50 °C

[12–14, 83, 193]. This discrepancy can be explained as follows: from a legal point of view,

the temperature levels are stipulated by the maximum allowed injection (TMax) temperature,

which is defined by national or regional legal guidelines. For most European countries, TMax

varies between 18 and 25 °C [15, 16]. Additionally, higher storage temperatures do not only

trigger geochemical reactions and affect groundwater characteristics (density, viscosity), but

also highly affect the choice of materials or components. For instance, water treatment to

prevent scaling, clogging or corrosion is usually not required at temperatures below 50 °C
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[409]. The same threshold applies to the changes in density, triggering buoyancy flow at

>50 °C. Finally, the threshold can also be established considering the requirements of the

demand. However, the required temperature of the heating system strongly depends on the

DH grid, the energy standards of buildings as well as the requirement of the heat pump. In

this study, the definition established in Annex 12 of the Energy Conservation through Energy

Storage (ECES) of the IEA is followed, where the minimum storage loading temperature is

set to 50 °C.

4.2.2 Definition of risk management

Risk is defined by ISO-31000-2018 as an effect of uncertainty on objectives and is often

expressed in terms of a combination of the consequences of an event and the associated like-

lihood of occurrence [410]. The central pillar of the risk management process is the risk

assessment comprising of risk identification, analysis and evaluation (Fig. 4.2). Risk iden-
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Figure 4.2: ISO standard risk management process (modified after [410]).

tification includes finding, recognizing and describing potential risks ensuring that all risks

and lessons learned from past projects are considered in the risk management process [411].

All sources of risk associated with the project objectives should be identified and organized

according to a Risk Breakdown Structure (RBS). Based on the risk identification, risk anal-

ysis strives to develop an understanding of the risk and serves a basis for the risk evaluation.
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Risk is analyzed by determining effects and their occurrence probability and other attributes

of the risk [410]. However, the extent and level of detail of the analysis is dependent on

the scope as well as on the amount of available information, data and resources [410]. Risk

analysis can be qualitative or quantitative. Qualitative analyses are descriptive and based on

expertise or assumptions of single risk issues. In contrast, quantitative methods are based on

numerical data and present a global picture of the risk exposure for the project. In practice,

detailed, quantitative risk analyses are often limited to those risks that are expected to have a

high input on the project success. According to ISO 31000 [410], risk evaluation compares

the level of risks resulting from the risk analysis. Risk evaluation facilitates the follow-

ing risk treatment process by an evaluation, categorization and prioritization of all analyzed

risks. Based on this comparison, the requirement for treatment can be considered.

4.2.3 Workflow

The workflow of this study is illustrated in Fig. 4.3 and is subdivided into four steps:

• Step 1. Review: Brief description of technological development reviewing past,

present and future research and commercial projects;

• Step 2. Risk identification: Following from and elaborating on the identified de-

velopments in step 1, risks are identified which are categorized in a Risk Breakdown

Structure (RBS). The identified causes of risks are classified based on the kind of effect

[412] and the stage of occurrence (planning, construction, operation);

• Step 3. Risk analysis: The identified risks are analyzed in an online survey among

experts from the field of ATES and geothermal energy. Each risk item is evaluated

based on its severity, occurrence probability and uncertainty (Section 4.2.4). This

general approach is complemented by a site-specific risk analysis for two HT-ATES

projects in the city of Hamburg. Based on an expert interview, the results of the online

survey are evaluated. It is discussed, which risk items are highly influenced by local

boundary conditions and have to be site-specifically addressed in future risk analyses.

• Step 4. Synthesis: Based on the lessons learned from the past, it is assessed whether

the developed framework will be able to identify and mitigate the problems which

were encountered at past HT-ATES systems. The lessons learned are opposed to both
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Figure 4.3: Workflow of the present study.

the general and site-specific risk analysis and barriers for technology development are

discussed.

The general approach of the risk analysis (Step 3) is described in more detail in the following

section.

4.2.4 Risk analysis

The reliability of a risk analysis is depending on data availability and the experience of the

risk assessor. However, most risk analysis approaches are characterized by several short-

comings when applied to the context of multi-disciplinary, complex, and relatively unknown

situations [413]. HT-ATES is a complex technology, in which only little experiences were

gained in the past. At the same time, risks are highly project specific and quantitative ap-

proaches are not applicable. Thus, potential risks of HT-ATES are qualitatively analyzed in

this study. In order to cover the manifold, multidisciplinary experiences gained at numerous
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ATES or geothermal projects in the past, the qualitative risk analysis is conducted by an on-

line survey among experts. All invited experts are asked to rate the occurrence probability

(OP), severity (SV ) and uncertainty (UC) of all identified sources of risk following a five point

Likert scale (Table 4.5) [414, 415].

Table 4.5: Five point Likert scale for the evaluation of the occurrence probability (OP), severity (SV ) and
uncertainty (UC) [414, 415].

Occurrence probability (OP) Severity (SV ) Uncertainty (UC)

1
Very low frequency: It may oc-
cur only in very exceptional cir-
cumstances.

Insignificant: No impact on sys-
tem operation or revenue.

Very low uncertainty: The risk
is well predictable.

2 Low frequency: It is unlikely to
occur in most circumstances.

Minor: Little disruption or low
increase in costs.

Low uncertainty: Low un-
certainty by a careful pre-
investigation.

3 Moderate Frequency: It may oc-
cur sometimes.

Moderate: Moderate impact,
some manageable disruptions or
increasing in costs.

Moderate uncertainty: Moder-
ate uncertainty despite a careful
pre-investigation.

4 High Frequency: It may occur in
most circumstances.

Major: High impact, system
significantly compromised.

High uncertainty: Risk occur-
rence and severity is hard to pre-
dict.

5
Very High Frequency: It is al-
most certain and expected to occur
in most circumstances.

Severe: Major impact, complete
failure of system.

Very high uncertainty: The oc-
currence probability and severity
is very hard to predict.

While each expert obtained his/her experiences with HT-ATES or geothermal projects in

his/her country, the results are expected to reflect the multi-perspective views within the

community on risks in HT-ATES. Hence, all identified risks are also site-specifically ana-

lyzed for a shallow (350 m) and a deep (1,000 m) HT-ATES project in the city of Hamburg.

Considering the different character of both projects, it is evaluated whether different risk

ratings for both projects reflect a high disagreement for the same risk in the online survey.

This site-specific analysis allows conclusions on the influence of local boundary conditions

on risks in HT-ATES.

4.3 HT-ATES activities

There is a 50-year history of R&D activities in HT-ATES. A detailed description on early ac-

tivities was summarized in Fleuchaus et al. [366]. Fig. 4.4 illustrates past, current and future
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projects. Technical and geological details are complemented in Table 4.6. Currently, there
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Figure 4.4: Spatial distribution of abandoned, planned and running HT-ATES projects worldwide.

is only one HT-ATES (Rostock) in operation worldwide. Any other HT-ATES plant had to

be abandoned due to different reasons. More information on the operational experiences,

reasons for abandonment and lessons learned can be found in Chapter 4.4.3. The following

section focuses on the ongoing HT-ATES activities and provides information on each project

site.
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Table 4.6: Technical and geological characterization of past, present and future HT-ATES projects.

# Location Year Scope Heat source Injection
Temp. [◦C]

Storage depth
[m] Geology

1 Colombier, CH 1974 E - 70 Shallow Sand and gravel

2 Mobile, US 1976 E Industrial 55 39-61 Sand and clay

3 ST. Paul, US 1982 E Industrial 117 182-244 Sandstone

4 Lausanne, CH 1982 E Industrial 40-80 7-24 Silt and sand

5 Sapporo, JP 1883 E Solar 40-60 95 Sand and clay

6 Hørsholm, DK 1885 A* Industrial 100 10-25 Sand

7 Plaisir, FR 1987 A* Industrial 180 500 Sand and clay

8 Utrecht, NL 1991 A* Cogeneration 90 192-290 Sand

9 Zwammerdam, NL 1998 A* Cogeneration 90 135-150 Sand

10 Berlin, DE 1999 A* Cogeneration 70 320 Sandstone

11 Rostock, DE 1999 A* Solar 50 13-27 Sand and gravel

12 Neubrandenburg, DE 2005 A* Cogeneration 80 1,250 Sandstone

13 Dingolfingen, DE 2016 E Cogeneration 120 500-700 Molasse

14 Wittstock (test-site), DE 2016 E Artificial - Shallow Sediments

15 Lüneburg, DE - A Cogeneration 90 450 Sand

17 Hamburg, DE - A Industrial 90 300 Sand

18 Middenmeer, NL - A Geothermal 90 300-400 -

19 Geneva, CH - A Industrial 90 500-1,000 Limestone

20 Bern, CH - A Power plant 120 500 Molasse

21 DeepStor, DE - A Geothermal 110 1,000 Tertiary

* E = Experimental, A= Applied, A*= Applied (realized)

TestUM (test-site Wittstock) (DE)

In the project TestUM-Aquifer, a test site is established to investigate multi-phase and heat

transport processes in shallow aquifers. The aim is to develop methods to detect, predict

and control geophysical, hydrogeochemical, microbial and hydraulic interactions and effects

caused by the storage of heat in groundwater. The project strives to support the thermal

energy storage in an urban environment by facilitating the establishment of scientific based

guidelines for groundwater protection.
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Beyond Batteries Lab (US)

Two collaborative projects led by the Idaho National Laboratory (INL) received funding by

the Department of Energy (DOE) to develop concepts to moderate electrical grid’s peaks and

valleys by storing thermal energy in aquifers. The two projects are part of the Grid Modern-

ization Initiative (GMI) of the DOE, which explores approaches to utilize geothermal energy

in order to improve grid reliability, resilience and security. One project strives to develop

models to store surplus heat (steam) of thermoelectric power plants in the subsurface [416].

A second project investigates the storage of concentrated solar heat in the subsurface. The

recovered HT solar heat could then be used to enhance the load-following characteristics of

a geothermal power plant. Both projects address not only technical feasibility of subsurface

heat storage, but also the power plant designs as well as the economic efficiency.

Lüneburg (DE)

The Bockelsberg District in Lüneburg is supplied with heat from bio-methane-fired CHP-

units. The planned HT-ATES storage is used to minimize heat from natural-gas fired peak-

load vessels to achieve about 95% CHP heat. The heating systems of the University Campus

as part of the Bockelsberg district and the heat supply of the new central building are designed

to make use of low energy heat, thus annual heat recovery factors of >75% are achieved, al-

though, only a potential of 3-3.5 GWh/a of a theoretical potential of the aquifer storage of

>10 GWh/a is used. The ATES is part of a climate neutrality concept of the Leuphana Uni-

versity [292]. Despite intensive research and pre-investigations emphasizing the technical

and economical feasibility of the planned system, the support for actual implementation is

currently low due to unclear risk perception by decision makers involved and several local

political and economic circumstances. However, the ATES is still regarded as a promising

option for future development of the bio-methane-CHP based energy system in the city of

Lüneburg.

Hamburg (DE)

In 2013, the citizens of Hamburg decided in a referendum to re-communalize the energy sup-

ply of the city. The re-acquisition of the DH network from the energy company “Vattenfall

Wärme GmbH“ was completed in 2019 [417]. At the same time, the city of Hamburg de-

cided to replace two coal-fired plants (67% of supplied heat) until 2030 by less CO2-intensive

heat sources such as industrial waste heat, power-to-heat or wastewater-heat-recovery. To in-

61



Chapter 4

crease the flexibility of the new heating system, it is also planned to integrate both short- and

long-term heat storages. HT-ATES is considered as key technology and different storage con-

cepts, heat sources and storage horizons are currently under investigation. Potential target

formations are the “Upper Braunkohlesande“ (UBKS) at a depth of 200-300 m and a 1,000

m deep Sandstone formation [418]. Due to its high salt content, the UBKS is not utilizable

for drinking water supply and is separated by a confining layer from the upper groundwater

body. In 2017, a test well was drilled on the Elbe island Dradenau to perform a storage test

cycle. With a recovery rate of around 90%, technical feasibility of heat storage in the UBKS

was successfully demonstrated [418]. Different storage locations and an efficient integration

into the heating network are currently under investigation [419]. A second storage formation

(sandstone) is considered in a depth of around 1,000 m [420]. Again, different heat sources

and sinks as well as storage locations are currently under evaluation. In this context, the

project IW 3 received funding from the program “living lab“ of the Federal Ministry of Eco-

nomic Affairs and Energy (BMWI). The project builds up on the pre-investigations of the

company “GTW Geothermie Wilhelmsburg GmbH“, which strives to realize a deep geother-

mal system in a depth of 3,000-4,000 m. IW 3 aims at establishing a decentralized, fossil-free

heat supply for the district Wilhelmsburg. In this concept, a HT-ATES is planned to enhance

the efficiency of different heat sources such as geothermal energy or industrial waste heat

[421].

DeepStor (Karlsruhe) (DE)

The new KIT project DeepStor strives to store excess heat of a planned geothermal power

plant at temperatures of about 110 °C. With temperatures up to 170 °C in a depth of 3 km,

the largest known thermal anomaly in Germany is located at the KIT Campus North Kohl

[422]. By utilizing the existing campus infrastructure (heating network), the KIT Campus

North offers promising preconditions for the extraction, seasonal storage and distribution

of geothermal energy Kohl et al. [423]. The extracted heat from deep geothermal energy

is considered to supply the base load and the excess heat for seasonal storage. The high

temperature storage is planned in a storage depth of around 1 km (tertiary basin) in earlier

oil reservoirs.

HeatStore

HeatStore is one of nine projects under the GEOTHERMICA - ERA NET Cofund aiming
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to facilitate the integration of underground thermal energy storage (UTES) in the heating

and cooling sector. Different types of UTES are investigated and tested at six demonstration

sites in several European countries. Among these pilot projects, three HT-ATES test sites

are planned in Middenmeer (NL), Geneva (CH) and Bern (CH) [409, 424]. The aim and

characteristics of each HT-ATES site is described below:

Middenmeer (NL)

In the Dutch town Middenmeer, six geothermal wells with a depth of 2,000 m each are used

for geothermal heat supply for greenhouses. In order to increase the heating capacity, surplus

heat of the geothermal system is supposed to be stored in a depth of 300-400 m with a storage

temperature of 90 °C [425]. R&D activity is focusing on gaining in-depth knowledge on CO2

water treatment, optimized material selection and potential benefits of an insulation of the

ATES wells [409].

Geneva (CH)

The Geneva HT-ATES site is linked to the “Geothermie 2020“ strategy of the Canton of

Geneva and aims at assessing the feasibility of seasonal storage of 35 GWh/a surplus heat

from the Cheneviers waste incinerator [426, 427]. Several target aquifers exist at different

depths and are currently being explored and characterized by two exploration wells (GEo-01

and GEo-02) in the Lower Cretaceous and the Upper Jurassic (Malm) carbonate units. As

the target aquifers are characterized by an unknown geology, current activity is focusing on

the identification of the optimal and reliable storage formation. These challenges are tack-

led by establishing a workflow that includes a flexible reservoir modeling approach com-

bining static reservoir models, thermo-hydraulic (TH), thermo-hydraulic-chemical (THC)

and thermo-hydraulic-mechanical (THM) models [428]. In the framework of the HeatStore

project funded by the EU GEOTHERMICA funding program, the outcomes of such ap-

proach will be combined to energy systems scenarios. These scenarios will be transposed

to detailed risk assessment and business models in order to assess the technical, environ-

mental and financial feasibility and support local authorities for improvement of the legal

framework.

Bern (CH)

The “Forsthaus Heat Storage“ project is planned by Geo-Energie Suisse AG (GES) on behalf

of the local utility company Energie Wasser Bern (ewb). It is supported by the Swiss Federal
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Office of Energy and is part of the Swiss contribution to the European GEOTHERMICA

project. The project site is located in the northern part of the city of Bern (Switzerland) next

to ewb’s power production site “Energiezentrale Forsthaus“. The purpose of this project is

to store waste heat from power production (7-10 MWth) with a storage temperature of up to

120 °C. The project design anticipates a main well at the center of the system and peripheral

auxiliary wells. The main well is used to inject and produce the energy in the form of hot

water. The auxiliary wells are used to regulate the flow at the boundary, maintain the desired

aquifer reservoir pressure and connect to the surface system.

4.4 Risk assessment

4.4.1 Risk identification

Renewable energy projects are considered as successful as they meet time, budget and perfor-

mance goals. However, the success of the project might be jeopardized by different sources

of risk. Table 4.7 shows the outcome of the risk identification process described in Section

4.2.3. While all identified risks can negatively affect the merit of the project, some might

also cause a time delay or harm the environment. In addition, some risks have to be consid-

ered throughout the entire project, others just during the phase of planning, construction or

operation. In order to facilitate the risk analysis by the online survey, some minor sources of

risks were aggregated into more general risks. The risk item “well integrity“, for instance,

could be further subdivided into “material degradation“, “collapse/buckling of casing“ or

“breakdown“. Additionally, it is important to consider that there is mutual interaction be-

tween individual risk items. The risk of “public perception“ could be, for instance, highly

influenced by the occurrence of the risk induced “seismicity“. Table 4.7 serves as the basis

for the risk analysis in Section 4.4.2.

4.4.2 Risk analysis

Generic risk analysis (online survey)

50% of 78 invited experts participated in the online survey, of which 45% were from in-

dustry, 37% were from science and 18% came from authorities or energy agencies. The re-

spondents originate from: Germany (23), Netherlands (8), Denmark (2), Sweden (2), United
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Table 4.7: Identified risks of HT-ATES categorized based on the source of risk with information on the time of
occurrence as well as the type of consequence (classification based on Ioannou et al. [412]).

Cause of risk Effect on

Cate-
gory Sub-category Risk item Stage*

P-C-O
CAPEX/
OPEX Time Environ-

ment

Fi
na

nc
ia

l

Financing

Liquidity/creditability ○ ○ + ○ è +

Loss of investor ○ ○ + ○ ○ +

Interest rate ○ ○ + ○ ○ +

Insurances ○ ○ ○ ○ ○ +

Market

Decreasing heating demand + + ○ ○ + +

Competing technologies è + ○ ○ + +

Contracting ○ è ○ ○ è +

Costs

Electricity price + + ○ ○ + +

Material costs ○ ○ + ○ è +

Labor costs + è ○ ○ è è

Te
ch

ni
ca

l

Site-
investigation

Exploration risk ○ ○ + ○ ○ è

Improper test-drilling ○ ○ + ○ ○ ○

Construction
(technical)

Improper drilling ○ ○ + ○ ○ ○

Poor building integration è ○ ○ ○ ○ è

Insufficient components è ○ ○ ○ ○ è

Barring (existing) infrastructure ○ ○ + ○ ○ è

Ground(water) pollution ○ ○ ○ è è ○

Construction
(geological)

Induced seismicity è ○ è ○ ○ è

Subsidences & swellable formations è ○ è ○ ○ è

Operation
(technical)

(HVAC/DH) + + ○ ○ ○ è

Well integrity ○ ○ è ○ ○ +

Loss of heat source ○ ○ è ○ ○ +

Groundwater pollution + + ○ è + ○

Heat losses + è ○ ○ + +

Geochemical and
geological risks

Clogging & scaling + è ○ ○ è è

Corrosion (wells, pipes, EHX) + è ○ ○ è è

(Changing) quality of formation water ○ ○ è ○ ○ +

Induced seismicity (M <3) ○ ○ è ○ ○ +

Induced seismicity (M >3) ○ ○ è ○ ○ +

Subsidences & swellable formations ○ ○ è ○ ○ +

Organizational
Time management ○ è ○ ○ è +

Cooperation of all involved parties ○ è è ○ ○ +

Political

Varying subsidy programs ○ è ○ ○ è +

Taxation regime ○ è ○ ○ + +

Decision-making structure ○ è è ○ ○ +

Legal

Changing legal framework ○ ○ ○ ○ ○ ○

Complex/uncertain permit procedure ○ ○ è ○ ○ +

Safety/monitoring requirements ○ ○ è ○ ○ +

Social
Public perception ○ ○ ○ ○ ○ +

Grid connection ○ + + ○ ○ +

* P = Planning, C= Construction, O= Operation, ○ = Applies, è = Partly applies, + = Not applies
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States (2), Norway (1) and Iceland (1). The outcome of the survey, grouped by the severity,

occurrence probability and the uncertainty is illustrated in Fig. 4.7 in the Appendix. The

severity and occurrence probability together determine the risk level. The respondents judg-

ment are provided in Fig. 4.5, in which the uncertainty is expressed by colors from green to

red. The median of all risk items ranges between 5 (“Induced seismicity“) and 15.5 (“Com-

Financial

Uncertainty
Low High

Technical

Political

Social

Legal

Organi-
zational

Low Risk Medium Risk High Risk

Figure 4.5: Expert risk ratings calculated by the product of the occurrence probability and severity. The uncer-
tainty is illustrated by colors from green to red.
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plex/uncertain permit procedure“). Thus, all risk items can be classified as low or medium

risks. Apart from the risk items “Exploration risk“ and “Clogging & scaling“, technical risks

are expected to be less critical than political, social, legal and organizational risks. This is

remarkable as past studies in the field of HT-ATES mainly concentrated on technical risks

with a special focus on heat transfer processes and optimization of storage efficiency [359,

366]. However, this ongoing research seems to be bearing fruit as the risk of “Heat losses“

received a comparable low risk rating and is estimated to be well predictable in the planning

phase. Low risk values were also given to “Interest rate“ (6), “Material/Labor costs“ (6),

“Changes in quality of formation water“ (6) and “Induced seismicity“ (5). In contrast, the

experts see the risks of a “Complex legal procedure“ (15.5) and “Public perception“ (15)

as most critical. Considering the standard deviations, experts were unanimous for the risk

items “Loss of heat source“, “Heat losses“ and “Induced seismicity“. Low agreements were

observed for the risks “Insurances“, “Exploration risk“ and “Public perception“. Different

opinions could be explained by different background expertise, but also by the fact that the

risk level of certain risk items is more influenced by local boundary conditions and therefore,

difficult to estimate in general. The latter is addressed by a complementary risk analysis for

the city of Hamburg in the following section, where the outcome of the online survey is op-

posed to the estimated risks for three planned HT-ATES projects. Finally, in Section 4.4.3,

the expert opinions are evaluated considering problems encountered at and lessons learned

from already realized HT-ATES sites.

Site-specific risk analysis

The site-specific risk analysis for the HT-ATES projects in Hamburg is following a low-

medium-high risk scale and is based on an expert interview with the project coordinator

Kai-Justin Radmann [418]. A distinction is made between the risk estimation for a shallow

(200-300 m) and a deep (1,000 m) target formation (Section 4.3). Considering different

technical and legal boundary conditions, causal relationships between expert disagreements

in the previous section and differing risk estimations for the Hamburg projects are analyzed.

The site-specific risk ratings are illustrated in Table 4.8.

As described in Section 4.3, an injection-recovery-test was completed and technical feasi-

bility of heat storage was successfully demonstrated in the the shallow sandstone formation

called UBKS. No technical problems were encountered and more than 90% of the injected
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heat was recovered. Hence, most technical risks such as “Exploration risk“ or “Heat losses“

can be expected as low. Nevertheless, suitable water-treatment measures will be important to

prevent scaling and clogging considering the high storage temperatures and complex chem-

istry of the salty aquifer. According to Radmann and Hansen [418], the most crucial risks for

the shallow HT-ATES are, however, of financial and legal nature. Financial issues are mainly

attributed to the temperature level (inlet and outlet) of the DH grid. Extra costs are expected

to match the recovery temperatures of the ATES (∼70 °C) with the inlet temperature of the

DH (∼90 °C). In addition, it is important to lower the injection temperature of the cold well

to allow a high storage capacity and to prevent thermal interferences. Pre-investigations in-

dicate that a cascade of four heat pumps would be required to reach injection temperatures

below 40 °C. This results in higher capital costs and increases the risk of increasing elec-

tricity and maintenance costs. From a legal point of view, high risks are associated with the

plan of the city of Hamburg to reserve the salty aquifers of the UBKS as a backup reservoir

for drinking water supply. Complex permit requirements both for installation and monitor-

ing are therefore, rather likely. In contrast, the second target formation is characterized by

a higher storage temperature (90 °C) and a deeper storage depth (∼1,000 m). Similar to

the more shallow HT-ATES concepts, the risks of “Competing technologies“, “Clogging &

Scaling“ and a complex “Decision-making structure“ are expected as high. Since less expe-

riences were gained with the target sandstone formation, the exploration risk is also expected

to be high, particularly when considering a lack of insurance for HT-ATES in Germany. In

contrast to the shallower projects, legislative risks are low. This is also the case for the elec-

tricity costs, as the abstraction and injection temperature meet the temperature level of the

DH network.

The site-specific analysis for Hamburg indicates that some risks highly depend on the local

boundary conditions and are challenging to estimate in general. In Hamburg, this is partic-

ularly the case for the legal and exploration risks, which explains the strong disagreements

among the experts in the previous section. While the site specific risk analysis mainly reflects

the outcome of the online survey, this is not the case for the risk of “Competing technolo-

gies“ and “Public perception“. Due to insufficient charging and discharging temperatures of

the shallow HT-ATES and a high inflexibility, there is a high risk of it being replaced by a

different technology. In addition, the risk of “Public perception“ is expected as low for the

Hamburg projects, even though it received the second highest risk rating by the experts. This
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can be explained by a strong support by the population, which decided in a referendum to

replace the existing coal-fired heating supply by less CO2 intensive technologies (Section

4.3).

4.4.3 Evaluation of risk analysis

The following section links the outcome of Section 4.4.2 (online survey) and Section 4.4.2

(expert interviews) with the lessons learned from the past. It is evaluated, if the outcome of

the online survey and the expected risks for HT-ATES projects in Hamburg coincide with

the problems encountered at past HT-ATES sites, which are illustrated in Table 4.8. Please

consider that some of the identified risks were not particularly relevant for early (experimen-

tal) sites, which were not implemented in a real-case scenario. Hence, HT-ATES projects

in the 1970 and 1980s were mainly facing technical problems, mostly related to carbonate

clogging, corrosion or particle clogging (Table 4.8). However, new water treatment methods

were developed and new storage concepts designed. At the beginning of the 1990s, HT-ATES

achieved a new stage in the commercialization process as two HT-ATES sites were running

for several years in the Netherlands. Building on the research efforts from the 1970s and

1980s, less geochemical problems were encountered. Even though significant well-clogging

was still observed at Utrecht University, most critical was a low recovery of the stored waste

heat from a co-generation plant. The major cause for the low recovery efficiency was not

the malfunctioning of the system, but a mismatch with the heating needs of the connected

buildings. Technical problems due to a failure of the pressure valve and poor knowledge of

the system finally lead to a permanent shut down of the system [218]. In Zwammerdam,

no significant geochemical problems were found and the energy storage worked as expected

beforehand [338]. However, the return temperature of the DH grid was higher than expected,

causing only a little unloading of the store [218]. Finally, the HT-ATES was closed down

due to financial reasons: the energy savings by the ATES could not compensate for the extra

costs for electricity production by the CHP. Thus, the electricity production of the unit was

decreased, leading to too little heat excesses to make the HT-ATES economically feasible

[429]. Hence, by applying HT-ATES in real heating environments with the beginning of the

1990s, relevant risks were shifting from mainly subsurface related issues towards risks also

concerning the heat source and sink (“Decreasing heating demand“, “Competing technolo-

gies“, “Poor building integration“, “Loss of heat source“ or “Hydraulic interaction“).
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This could be also observed for the most recent HT-ATES sites located in the German cities

Berlin, Rostock and Neubrandenburg (Fig. 4.4). In Berlin, heating and cooling for

the Parliament buildings is supplied by LT- and HT-ATES systems. The thermal energy for

heating and cooling is stored in two separated aquifers at a depth of 60 m (cooling) and 320 m

(heating). Detailed information was published by Kabus and Seibt [283], Kabus et al. [281]

and Sanner et al. [223]. While the shallow storage is still in operation, the HT-ATES was

shut down in the beginning of 2018 [430]. During more than 15 years of operation, there

was a leakage in the horizontal piping and groundwater pumps had to be replaced every

five years [430]. However, none of these problems critically impaired the operation and a

high storage efficiency was technically possible. Nevertheless, high recovery values were

only sparsely reached in practice as the HT-ATES was oversized due to an overestimated

heating demand by imprecise building simulations [431]. Additionally, the amount of surplus

heat during summertime was strongly fluctuating, as most of the CHP heat was used for

absorption cooling during summer. Even new CHP-units did not compensate for the largely

underestimated cooling demands of the connected buildings. As a consequence, the storage

was mostly fed with low temperature heat from absorption chillers, thus not reaching design

temperatures [430]. Similar to the experiences made in Utrecht, this varying demand-supply

mismatch lead to an inefficient operation and the final shut-down. Nevertheless, it is planned

to put the HT-ATES back in operation to supply a planned adjacent new building [431]. In the

city of Neubrandenburg, an abandoned geothermal system was reactivated to store surplus

heat of a Combined Cycle Gas Turbine (CCGT) in a depth of 1200 m. The recovered heat

was used to supply a small DH network, which was initially fed by the abandoned geothermal

system [237]. The HT storage was in operation for more than ten years. Technical problems

were mainly observed at the cold well, where injection temperatures of 30 °C favored the

growth of sulfate reducing bacteria. Geochemical reactions were monitored, analyzed and

published in several studies [284, 328, 432, 433]. Even though corroded well pumps had to

be replaced periodically (Fig 4.6), this did not significantly affect the operation of the ATES

[434]. Again, the efficiency of the storage was less a matter of subsurface suitability, however

more a matter of the charging-discharging behavior as function of a fluctuating heating and

cooling demands [434]. The system was shut down in the beginning of 2019 after the public

utility of Neubrandenburg decided for a change in strategy by switching from long-term to

short-term thermal energy storage. During summertime, excess heat of the CCGT will be
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Table 4.8: Problems encountered at past and present HT-ATES sites (left) and expected risks for the HT-ATES
projects in Hamburg analyzed by Radmann and Hansen [418].

Experiences from abandoned and running projects Expected risk

Source of risk
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Liquidity/creditability ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○ ○ ○

Loss of investor ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○ ○ ○

Interest rate ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○ ○ ○

Insurances ◦ ◦ ◦ ◦ ◦ ◦ - - ◦ ◦ ◦ ○ ○

Decreasing heating demand ◦ ◦ ◦ ◦ ◦ ◦ ○ - ○ ○ ○ ○ ○

Competing technologies ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○ ○ ○

Contracting ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○ ○ ○

Electricity price ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○ ○ ○

Material costs ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○ ○ ○

Labor costs ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○ ○ ○

Exploration risk ○ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○ ○ ○

Improper test-drilling ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ◦ ○ ○

Improper drilling ◦ ○ ○ ◦ ◦ ◦ ○ ○ ○ ○ ◦ ○ ○

Poor building integration ◦ ◦ ◦ ◦ ◦ ◦ ○ - ○ ○ ◦ ○ ○

Insufficient components ◦ ◦ ◦ ◦ ○ ◦ ○ ○ ○ ○ ○ ○ ○

Barring infrastructure ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○

Hydraulic interaction ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○

Well integrity - - - - - - ○ ○ ○ ○ ○ ○ ○

Loss of heat source ◦ ◦ ◦ ◦ ○ ◦ ○ ○ ○ ○ ○ ○ ○

Groundwater pollution - - - - - - ○ ○ ○ ○ ○ ○ ○

Heat losses ○ ○ ○ ○ ○ - ○ ○ ○ ○ ○ ○ ○

Clogging & scaling - ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Corrosion - - ○ ○ ○ - ○ ○ ○ ○ ○ ○ ○

(Changing) quality of form. water - - - ○ - ○ - - ○ ○ ○ ○ ○

Induced seismicity ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Induced seismicity (M >3) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Subsidences & swellable formations ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Varying subsidy programs ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○

Taxation regime ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○

Decision-making structure ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ○ ○ ○

Public perception ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Grid connection ◦ ◦ ◦ ◦ ◦ ◦ ○ ○ ◦ ◦ ○ ○ ○

Changing legal framework ◦ ◦ ◦ ◦ ◦ ◦ - - ○ ○ ○ ○ ○

Complex permit procedure ◦ ◦ ○ - - - - ○ ○ ○ ○ ○ ○

Safety/monitoring requirements - - ○ - - - - ○ ○ ○ ○ ○ ○

Time management - ◦ ◦ ◦ ◦ ◦ - - ○ ○ ○ ○ ○

Cooperation of all involved parties ◦ ◦ ◦ ◦ ◦ ◦ - - ○ ○ ○ ○ ○

* - = No information, ◦ = Not relevant, ○ = Not encountered (low), ○ encountered (medium), ○ = Crucial (high)
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stored from Monday till Friday in an artificial storage tank [434]. The steal tank is 36 m

high and has a storage volume of 22,000 m3 (Fig. 4.6). The stored heat is used for hot water

Figure 4.6: Left: Corroded well pump of the cold well of the HT-ATES in Neubrandenburg. Right: Artificial
storage tank to balance short-term supply-demand mismatch.

supply of the city of Neubrandenburg during the weekend in the summertime. Thus, no

residual heat is available for the HT-ATES. Nevertheless, it is planned to (re)use the existing

wells for a (direct) geothermal system [434].

The only currently running HT-ATES system is located in Rostock. With a charging tem-

perature of 50 °C, this system is at the lower temperature threshold between HT- and LT-

ATES and should be considered as hybrid system. A special permit was issued owing to the

demonstration character and the high salt concentrations in the aquifer. Due to the low in-

jection temperature, no technical problems were encountered. The ATES system supplies a

building-complex and is fed with solar heat from the roof [225]. Thus, the risk of a changing

72



4.4 Risk assessment

heating demand and the loss of heat source can be considered as insignificant. In addition,

with a storage depth of around 20 m, exploration risk and drilling costs were very low. Simi-

lar experiences were made in the Netherlands, where several ATES systems are in operation

with a storage temperature between 40 and 45 °C [435]. At the ecological research insti-

tute NIOO in Wageningen, 40 °C (solar) is stored in a depth of 295 m. While cooling is

provided from a second, more shallower aquifer, no heat pump is required for heating. Con-

sidering the heat pump-free and low-risk operation, there is a huge potential for systems with

a storage temperature of 40 to 60 °C to supply the new/refurbished building stock without

significant alterations to the electricity grid. With a maximum allowed injection tempera-

ture of 20-25 °C in shallow aquifers (< 400 m), this kind of system, however, would not

receive a permit in most European countries [15, 16]. Considering that urban aquifers are

already highly influenced by anthropogenic activities [385], this legislation practice should

be critically reflected and adjusted, where appropriate. Laboratory investigations indicate

a mobilization of several trace elements and heavy metals (particularly arsenic), but also a

return to initial hydrochemical conditions after completion of ATES operation [315, 436].

Further in-situ experiments, as currently performed in the TestUM project (Section 4.3), and

investigations on the impact on the microbiology are crucial. Building on profound sci-

entific findings, knowledge-based, site-specific maximum injection temperatures should be

established as function of the existing water quality and local (hydro)geological boundary

conditions.

Considering the lessons learned from abandoned HT-ATES sites in the Netherlands and Ger-

many, the risks “Decreasing heating demand“, “Loss of heat source“ and “Competing tech-

nologies“ were underestimated by the planners and experts in Section 4.4.2. This emphasizes

the requirement for a reorientation of the scientific focus towards studies not only focusing

on subsurface design, but also on the optimal interactions between heat source, sink and

storage. Being designed to operate up to 30 years [359], HT-ATES are less flexible than

competing technologies and highly sensitive to changes in the thermal energy demand (heat

sink) and supply (heat source). At the same time, building planners often fail to predict the

heating demand, even in the short-term. In the long-term, changing boundary conditions

such as refurbishment strategies or increasing ambient temperature make it challenging to

match demand and supply over the entire lifespan. Finally, there is also a mismatch between

Table 4.8 and the survey results with respect to legal risks. This, however, can be explained
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as special permits were issued to early pilot projects. Neither the HT-ATES in Berlin, nor

the HT-ATES in Rostock would obtain a license under the current legislation policy. All HT-

ATES projects, and particularly those affecting aquifers suitable for drinking water supply,

are facing an unknown and uncertain permit procedure, which reflects the expert opinions. In

order to allow a future-proof commercialization, easier, quicker and less challenging permit

procedures have to be developed in Europe and worldwide.

4.5 Conclusion

Due to a constant technology development, the storage of heat in aquifers has gained some

levels in technology readiness level (6-9). Successful demonstration plants and promising

projects in the planning phase, particularly in European countries, are nourishing justified

hopes for a breakthrough of the technology. The following key conclusions from this study

help to realize more robust HT-ATES projects in practice. This study also revealed some

recommendations to be considered in future R&D activities.

• This study revealed that risk assessment in geothermal energy should not only include

technical and financial but also social, political and legal risks. As many risks are

influenced by local boundary conditions (Section 4.4.2 and 4.4.3), the development

of project-specific risk management strategies is highly recommended. Building on

this first qualitative approach, future studies should strive to establish quantitative risk

assessment in HT-ATES projects. Even though risk assessment is often applied to

geothermal projects, very little is known about the advantages of different methods.

Hence, different quantitative methods such as Monte Carlo (MC) or Bayesian Statistics

should be compared and evaluated for real-case scenarios.

• The case studies and survey carried out in this research revealed that the most impor-

tant technical risks are related to scaling and clogging of the wells and the projected

energy supply and demand. Even though further efforts are required to prevent scaling

and clogging particularly in high carbonated aquifers, early technical problems were

controlled at recent HT-ATES sites. However, most HT-ATES systems had to be shut

down due to an overestimated heating demand or the loss of the heat source (Utrecht,

Zwammerdam, Neubrandenburg, Berlin). To foster profitable and sustainable opera-
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tion of HT-ATES, future research should therefore not only focus on subsurface design,

but also on the development of holistic energy concepts. This should also include the

identification of potential heat sources and sinks as well as the consideration of long-

term political, technical and legislative changes during an ATES lifetime of at least 30

years.

• Uncertainty about risks can be reduced by sharing data and experience. Despite the

successful realization of HT-ATES system across Europe, no information is available

on the economic performance. While Schüppler et al. [382] and Ghaebi et al. [354]

performed a theoretical financial analysis for LT-ATES systems, future demonstration

projects should strive to provide more insights into both capital (CAPEX) and oper-

ational (OPEX) costs of HT-ATES. A holistic monitoring covering all energy flows,

energy costs and maintenance is indispensable to convince future investors to bet on

HT-ATES. In addition to Wesselink et al. [359], further efforts should be made to per-

form site- and market-specific analyses to evaluate economic feasibility of HT-ATES

considering not only different supply alternatives but also different heat sources and

sinks. Both, feasibility as well as real-case analyses should cover not only costs but

also CO2 emissions.

• Experiences from Rostock and the Netherlands indicate that storage temperatures of

40 to 60 °C in shallow urban aquifers bear a high potential for the supply of heating

systems in well insulated buildings. The ATES proved not only to be technically ro-

bust but also facilitates establishment of an autarkic energy system. At the same time,

the systems can be coupled with renewable heat sources and do not necessarily require

the support of heat pumps. This technical potential however, is strongly limited by the

current legislation. Hence, in order to establish a science based legal procedure, the

impact of HT-ATES on groundwater quality has to be further investigated. In addition

to the TestUM project (Section 4.3), research should not only focus on the geochem-

istry but also changes in groundwater ecology. Considering the fact that urban aquifers

are already highly influenced by urban activities [385, 437, 438], the distinction be-

tween natural (unaffected) and thermal or chemical contaminated aquifers are essential

for a sustainable solution.
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Different geothermal application types were being developed over time, ranging from closed

to open loop, from direct to storage and from LT to HT systems. While all forms are charac-

terized by shortcomings, none is able to cover the entire heating and cooling demand world-

wide. HT-ATES is capable of increasing the flexibility of most renewable technologies and

therefore, able to foster the integration of geothermal energy into the energy market. Further

R&D activities are required to guarantee successful demonstration plants in the next decade

to enhance trust in the technology and risk management must play an integral role.
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Appendix

Fig 4.7 illustrates the outcome of the survey, grouped by the severity, occurrence probability

and the uncertainty. In general the respondents associate low risks also with low uncertain-

Figure 4.7: Relative frequencies of the risk item ratings grouped by the severity, occurrence probability and
uncertainty.

ties, indicating that the respondents implicitly seem take uncertainty into account on their

judgment on probability. The severity of most risk items was rated by most experts as “Mod-

erate“ (3) or “Major“ (4). The technical risks “Loss of heat source“, “Induced seismicity

(>3)“ and “Subsidences and swellable formations“ were rated as “Severe“ (5). In contrast,
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the occurrence probability was estimated to be “Very low“ (1) to “Moderate“ (3) for most

risk items. This is particularly the case for technical risks, as social, political, legal and or-

ganizational issues are estimated to occur more often. A similar pattern can be observed for

the uncertainty.
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Synthesis

5.1 Conclusion

Due to a constant further development of concepts and designs, a wide spectrum of geother-

mal application types is available today, ranging from high to low temperature, from open-

to closed-loop or from storage to non-storage solutions. In order to tap the full potential of

geothermal heating and cooling, it is crucial to adapt the choice of the geothermal concept

to the local boundary conditions, considering the strengths and weaknesses of each technol-

ogy. Therefore, profound knowledge is mandatory for all application types. With ATES, it

is possible to combine different geothermal applications, and integrate other renewable and

non-renewable heat and cold sources. This allows it to take urban energy concepts to the next

level. Nevertheless, ATES has been widely neglected by energy planners worldwide. This

is due to the fact that both, LT- and HT-ATES development is impaired by certain market

barriers, which are mainly attributed to a lack of knowledge concerning the technical and

financial performance, potential risks and an unfamiliarity with the technology in general.

This knowledge gap is addressed by this thesis. As a conclusion of Chapter 2-4, the follow-

ing remarks address the market potential of ATES, considering competing technologies.

Fig. 5.1 illustrates the advantages and disadvantages of shallow geothermal application

types. It is well known that open-loop systems (LT-ATES and GWHP systems) operate more

efficiently than closed loop (BTES and BHE) systems due to a higher heat extraction rate.

However, LT-ATES and GWHP systems strongly depend on subsurface conditions, such as

the existence of productive aquifers. Additionally, closed loop systems have a higher oper-

ational robustness. Consequently, closed loop systems are often the preferred choice, even

tough subsurface conditions allow ATES or GWHP utilization. The result is an inefficient

exploitation of the geothermal potential [439]. The difference between LT-ATES and GWHP

systems, by contrast, has not yet been addressed. While ATES technology is hardly known

worldwide, all open loop systems are called ATES in the Netherlands (Herman Velvis). Tech-

nically, both concepts can be clearly defined depending on whether or not the pump direction
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is seasonally shifted. Considering the monitoring data from the Netherlands (Section 2.5), a

distinction can also be made from an energetic point of view: the average abstraction tem-

perature of LT-ATES is by around three °C higher (winter) or lower (summer), considering

the natural groundwater temperature. Even though the increased temperature level during

Groundwater heat pump
system (GWHP)

Low temperature Borehole Thermal
Energy Storage (BTES)

Low temperature ATES

Ground source heat pump (GSHP)
with borehole heat exchanger (BHE)

Legend

Significant

Moderate

Minor

Lower abstraction efficiency

No integration of renwable energies

Low subsurface requirements 

High operational robustness

Lower upfront invest 

Lower abstraction temp.  for cooling

Higher abstraction temp. for heating

Lower subsurface requirements

No H&C-balance required

Lower efficiency

Lower storage capacity

Longer ROI

Low subsurface requirements

Operational robustness

Lower upfront investment

No synergy effects 

Advantage compared to LT-ATES

Disadvantage compared to LT-ATES

Longer ROI

Figure 5.1: Advantages and disadvantages of LT-ATES compared to shallow geothermal application types
(modified based on Bayer et al. [385]).

wintertime increases the COP of the heat pump, the resulting energy savings can be con-

sidered to be low. More significant, however, is a lower abstraction temperature in summer

owing to the active storage of winter cold. The air-conditioning system of particularly old

buildings requires inlet temperatures of between six and nine °C. By harnessing the stored
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winter cold, electricity-intensive heat pumps can be replaced by free-cooling in summer.

Global warming, increasing percentages of glazing and growing demands for comfort cool-

ing will open a huge market for groundwater cooling. Considering increasing groundwater

temperatures particularly below city centers [437, 438, 440, 441], the seasonal storage of

thermal energy for summer cooling will gain importance over the next decades. From an

environmental point of view, LT-ATES also contributes to a more sustainable utilization of

the geothermal potential particularly in urban environments. Higher ∆ T values between in-

jection and abstraction allow lower pumping rates and hence reduce the thermally affected

zone of each system. Finally, LT-ATES also reduces the thermal impact on the subsurface by

the active storage of winter cold. To conclude, LT-ATES can significantly contribute to the

decarbonization of the heating and cooling sector, but has to be operated in the appropriate

environment. Considering the outcome of Chapter 2.5, it is crucial to focus future R&D ac-

tivities not only on subsurface issues, but also to facilitate an optimal building integration of

ATES systems. It is widely observed in practice that poorly designed HVAC systems make a

profound subsurface design insignificant. While it is expected that around 70% of Dutch LT-

ATES systems are characterized by an insufficient building integration [394], this problem is

not only limited to LT-ATES and the Netherlands, but to any shallow geothermal application

worldwide.

With storage temperatures of up to 120 °C and deeper storage horizons, HT-ATES projects

are more challenging and therefore not only influenced by socio-economic market barriers,

but also multiple risks. Chapter 3.5 revealed that the most important technical risks of HT-

ATES are related to scaling and clogging of the wells and the projected energy supply and

demand. Thus, HT-ATES requires not only comprehensive planning and design, but also

intensive monitoring and maintenance. In comparison, HT-BTES, and in particular artificial

storage tanks, do not (or less so) depend on certain subsurface conditions and are character-

ized by a high operational robustness (Fig. 5.2). For stakeholders, planners and investors,

for whom energy safety is an important factor, this is a decisive decision criterion.

This could be recently seen in Neubrandenburg, where a seasonal HT-ATES was replaced

by a short-term artificial storage tank (Section 4.4.3). In addition, artificial storage tanks are

very flexible and can be easily integrated into complex, multiple-technology heating con-

cepts (Section 2.2). HT-ATES is nevertheless facing a huge market potential due to its high
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storage capacity, while storage tanks and BTES are not sufficient to store large amounts of

surplus heat seasonally. The advantages of deep geothermal systems are potentially higher

High temperature Borehole Thermal
Energy Storage (BTES)

High temperature ATES

Legend

Significant

Moderate

Minor

Large space requirement 

Lower storage volumes

High specific investment costs  

No subsurface requirements 

High operational robustness

High flexibility 

Deeper drillings required

Depending on geothermal potential

Lower efficiency

Lower storage capacity

Longer ROI

Low subsurface requirements

Operational robustness

Lower upfront investment

No summer operation   

Advantage compared to HT-ATES

Disadvantage compared to HT-ATES

Deep Geothermal

70-180 °C

Artifical Thermal Energy Storage

70-180 °C

Higher abstraction temperatures

Independent of external heat sources

Figure 5.2: Advantages and disadvantages of HT-ATES compared to high temperature heating technologies
(modified based on Bayer et al. [385]).

abstraction temperatures and a constant and permanent available heat source. Direct geother-

mal utilization is, however, only applicable in areas with a high geothermal potential and

requires deeper drillings than HT-ATES systems. In areas with a lower geothermal poten-

tial, the storage of heat at more shallow depth can significantly decrease exploration risks and

drilling costs. To conclude, HT-ATES has significant advantages compared to all competitive

technologies summarized in Fig. 5.2 and is facing a huge market potential worldwide. As

the technological feasibility has already been successfully demonstrated at several demon-
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stration plants, it is now crucial to build up trust among investors and stakeholders. Further

efforts are, therefore, required to increase operational robustness, particularly considering

geochemical issues. The widespread application of deep geothermal systems for heating

purposes has already been successfully demonstrated, for instance in the city of Munich.

The experiences show that multiple risks can be mitigated by a sound energy concept. For

HT-ATES, long-term energy concepts have to consider not only the future development of

the thermal energy demand, but also a constantly available heat source. This has been a main

issue with recent projects and has to be overcome in the future.

5.2 Perspective

Considering the findings of Chapter 2-4, further research efforts are required to establish a

basis for a global application of ATES. Different needs for research were identified and are

described in the following section, which are categorized by research topics addressing the

efficiency of LT-ATES, the potential of ATES as well as legal- and risk-related aspects:

Efficiency of LT-ATES

• Optimization of building integration: Chapter 3 indicates a significant potential

to increase operational efficiency of LT-ATES by optimizing the integration into the

HVAC system. Similar experiences are also reported from the LT-ATES systems at

the “Bonner Bogen“ in West Germany [442], the ATES at the Parliament Building in

Berlin [200, 431] or GSHP installations in Great Britain [443]. Based on the monitor-

ing data of six German GSHP systems, Bockelmann and Fisch [444] showed that even

with detailed, careful planning, malfunctions often occur during operation. While reli-

ability of supply is the essential premise of all energy planners, additional investments

in monitoring equipment, data analysis or employees to control operational perfor-

mance are often not made. This is also the case at the Campus North of the Karlsruhe

Institute of Technology (KIT), where about 15 GWh of cooling is supplied by decen-

tralized compression chillers. No information is, however, available on the installed

cooling capacity, power consumption by the chillers or the cooling demand of the

buildings. This results in an inefficient and cost intensive cooling system and impedes

the replacement by renewable technologies [445]. Particularly for large buildings,
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the following aspects in planning and operating LT-ATES systems are highly recom-

mended:

– precise analysis of heating and cooling demand based on building simulations;

– careful and detailed design of the HVAC and ATES system;

– keep the systems as simple as possible;

– comprehensive monitoring of all building energy flows and electricity demands;

– comprehensive underground management (injection/abstraction temperature, ground-

water chemistry, pumped volume);

– development of building-specific control strategies;

– calculation of SPF factor;

– training of energy planners in the operation of ATES.

• Urban energy concepts: 2,800 ATES systems supply currently only 2% of the Dutch

thermal energy demand of the built environment (Section 3.3). Considering not only

geothermal but all kinds of existing underground infrastructure such as sewer systems,

subways or basements, there is, however, already a lack of subsurface space in areas

with high population densities. To allow significant growth rates of LT-ATES world-

wide, urban energy concepts are indispensable to guarantee a sustainable utilization of

the available resource. One way is to optimize the injection temperatures or to pre-

vent over-claimed subsurface space by precise building simulations (Chapter 2.5). In

addition, the establishment of an underground management is highly recommended to

tackle efficiency losses by both thermal interference and a high groundwater flow, and

to create synergies between allocated heat (cold) sources and sinks. However, an effec-

tive underground management requires an extensive data base of existing geothermal

and non-geothermal subsurface users, which has to be integrated into a groundwater

model. The latter has to be continuously updated. It is, however, a matter of policy,

who is in charge of investing the required man-power and financial means [385].

Potential of ATES
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• Subsurface potential: The ATES potential can be analyzed on an urban, regional

or national or global scale, considering hydro(geological), geographical, regulatory

and climatic conditions. So far, the ATES potential has only been globally assessed,

whereas important factors have not been considered. Potential maps are, however,

not only useful to estimate whether or not ATES technology is feasible, but also to

convince stakeholders of investing in the technology by further pre-investigations. In

addition to hydrogeological and climatic factors, future studies should also strive to

include geographical and regulatory aspects.

• Economic and environmental potential: A review of 50 years of ATES research

provides only little information on financial or environmental benefits. Facts and fig-

ures such as payback times or storage costs (e/kWh) are the most important criteria

for stakeholders whether or not to invest in ATES technology. For LT-ATES, previ-

ous studies by Schüppler et al. [382], Ghaebi et al. [354] and Vanhoudt et al. [230]

revealed low payback times compared to fossil-based technologies. While LT-ATES

has to compete with other renewable technologies on the future energy market, com-

parisons to technologies such as absorption chillers, biomass heating or air-source heat

pumps would be crucial. Considering HT-ATES, no information on economic or en-

vironmental savings has been published. In addition, future studies should not only

cover payback times, but also the entire life cycle costs (LCC) and environmental im-

pact (LCA).

• Heat and cold sources and sinks: There is only a market for ATES in areas with

a heating and/or cooling demand. In addition, the ATES potential can significantly

increase by an access to freely available thermal energy sources. Despite their impor-

tance, both factors were not considered by past studies analyzing the ATES potential.

This is due to the fact that both thermal energy demand and supply are extremely dif-

ficult to quantify and accurate data only barely exist [445]. The application of such

data, however, goes beyond the planning of ATES systems and is extremely relevant

for many issues addressing the decarbonization of the thermal energy sector. This

is, for instance, the case for the planning of new district heating and cooling grids

or refurbishment strategies. The development and application of new methods for a

widespread quantification of the thermal energy demand is highly recommended by
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utilizing remote sensing techniques and building simulation models. While cooling

demand has not been analyzed on an urban scale, a first idea would be the develop-

ment of an image recognition algorithm, which localizes the demand for cooling based

on compression chillers detected from satellite images [446].

Risks and Legacy

• Risk assessment: Risk assessment is crucial for large energy projects. It is essen-

tial for project managers to develop risk mitigation strategies to achieve the project

goals, and for potential investors to act more confidently on future business decisions.

HT-ATES projects are not only characterized by high upfront investments but also by

multiple risks as described in Chapter 3.5. Nevertheless, risk of HT-ATES has not

been addressed in research and is hardly applied in practice. Considering the outcome

of Chapter 3.5, future studies should strive to develop risk assessment methods that

can be applied in practice. Using quantitative approaches such as Monte Carlo sim-

ulation or Bayesian Statistics, it is recommended to perform a risk assessment for a

case study, such as the planned HT-ATES in the city of Hamburg. All kinds of risks

should be considered and not only technical risks as in past geothermal risk analyses.

The results should be examined and verified to develop a blueprint for future projects.

• Legal aspects: The outcome of the online survey revealed that a complex permit pro-

cedure is estimated to be the most crucial risk in HT-ATES. To accelerate and simplify

this process, authorities, scientists, energy suppliers, legal experts and drilling com-

panies are encouraged to simplify the permit procedure by defining minimal require-

ments, while duly accounting for all interests. It is also recommended to reconsider the

differentiation between deep and shallow as well as HT and LT systems considering

site-specific injection temperatures (Section 2.5). Therefore, more research is required

to fully understand the impact of different injection temperatures on geochemistry,

however also changes in groundwater ecology.

Extensive subsidy programs and the ever louder calls for sustainable solutions particularly

by the young population build up an unprecedented economic environment for the ATES

technology. After more than 50 years of R&D, ATES is still facing significant market barriers

that impede the global adoption of the technology. Considering the outcome of this thesis,
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it is crucial to set the focus of R&D not entirely on technical (subsurface related) issues,

but also address aspects dealing with economics, public relations, risks or multidisciplinary

urban energy concepts.
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