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Abstract 

Antibody-drug conjugates (ADCs) have been designed as a combination of 

monoclonal antibody (mAb) therapy and chemotherapy. From this fact, they 

draw their potential of uniting the advantages of both strategies in one 

molecule. mAbs have the ability to specifically bind their target antigen, thus 

focusing the effect on the target site of action. Due to their size and other 

biochemical properties, they have a good circulation half-life in the body, which 

is an important pharmacokinetic property. While mAbs are applied in various 

therapeutic fields, they form a highly important part of modern oncology. Here, 

mAbs are used to target antigens that are highly expressed on cancer cells, 

exhibiting different modes of action to fight the cancer. In order to increase 

their capacity of killing cancer cells, small cytotoxic molecules, as applied in 

chemotherapy, can be covalently attached to the mAbs, forming ADCs. Due to 

the decreased systemic exposure, drug molecules with higher cytotoxicity can 

be used. Motivated by this potential and the market approval of the first 

successful products in 2011 and 2013, ADCs gained a lot of attention. By the 

end of 2019, there were already six products on the market and over 60 

candidates in clinical trials. Substantial progress has been made in areas like 

the development of new cytotoxic drugs, linker chemistries, and conjugation 

strategies. Despite these successes, the development of new ADCs remains 

challenging. Unfavorable pharmacokinetic profiles caused by the hydrophobic 

nature of the drugs and heterogeneity in the degree and site of conjugation are 

factors which are being improved for current ADCs. Solutions include, for 

example, site-specific conjugation strategies. Still, the number of parameters 

for optimization is high for these complex hybrid molecules. Issues range from 

antibody, drug, and linker over attachment chemistry to the optimal drug-to-

antibody ratio (DAR). In order to unlock the full potential of ADCs, efficient, 

knowledge-based process development is necessary.  

Also looking at the current landscape of biopharmaceutical development, it is 

evident that there is high pressure on process developers to efficiently deliver 

robust processes while gathering enhanced knowledge on process and product. 

One reason is the diversification of the product pipeline caused by emerging 

new modalities like ADCs and other antibody formats or cell and gene therapy. 

It increases development efforts and hinders the use of platform approaches. 

In addition, time to market gets more crucial with rising development costs 

and growing global competition, for example by producers of so-called 

biosimilars. Finally, it is promoted by regulatory agencies like the U.S. Food 

and Drug Administration or the European Medicines Agency that the concept 

of quality by design (QbD) is implemented in pharmaceutical development. Its 
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goal is for processes to be designed in a way that the desired product 

performance is robustly achieved in a controlled fashion. It requires increased 

process understanding and the thorough characterization of the relationship 

between critical process parameters and critical quality attributes of the 

product. 

The goal of this thesis is to advance the process development of ADCs in the 

direction of more efficient, systematic, and knowledge-based approaches. As a 

strategy for the realization of this objective, the establishment of high-

throughput, analytical, and digital tools for ADC processes was investigated. 

High-throughput tools, especially in combination with design of experiments 

(DoE), can lead to a strong increase in efficiency regarding time as well as 

material consumption. In order to prevent an analytical bottle neck, high-

throughput compatible analytics are crucial. Also analytical techniques for the 

on-line monitoring of processes have great benefit. They are the basis for 

implementing process analytical technology (PAT) tools, which give the 

opportunity for real-time monitoring and control of product quality attributes. 

Digital tools, such as methods for the mechanistic modeling and simulation of 

processes, offer many advantages for process development. Apart from 

granting a deeper understanding of the process fundamentals, mechanistic 

models can be efficient tools for process optimization and characterization of 

the design space.  

The methods for ADC process development applied or developed in this work 

did not rely on the highly toxic drugs used in ADCs. Instead, nontoxic surrogate 

drug molecules, similar in relevant properties like size and hydrophobicity as 

commonly used cytotoxic drugs in ADCs, were employed. The applied 

combination of cysteine-engineered mAb and maleimide conjugation chemistry 

is a strategy for site-specific conjugation with high relevance for ADC 

development. 

In the first part of this thesis, a high-throughput process development platform 

for  site-specific conjugation processes was developed1. The multi-step process 

of making ADCs from cysteine-engineered mAbs was successfully transferred 

to a robotic liquid handling station. This included a high-throughput buffer 

exchange step using cation-exchange batch adsorption and the subsequent 

automated protein quantification with process feedback. As high-throughput 

compatible analytics, a reversed-phase ultra-high performance liquid 

chromatography (RP-UHPLC) method without sample preparation was 

developed, focusing on a short runtime for high efficiency. The final platform 

was used in a conjugation DoE, showing the capacity of the method for efficient 

process characterization. Finally, the comparability of the high-throughput 

results with experiments in a larger scale was demonstrated. 
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The second part describes the establishment of an on-line monitoring approach 

for ADC conjugation reactions using UV/Vis spectroscopy2. First, a spectral 

change caused by the conjugation of the maleimide-functionalized surrogate 

drug to the thiol group of the engineered cysteines was detected. Spectra were 

recorded during the reaction in two setups with different detectors. 

Subsequently, the spectral change was correlated to off-line concentration data 

measured by RP-UHPLC using partial least-squares (PLS) regression. The 

calibrated PLS models enabled the prediction of the amount of conjugated drug 

directly from UV/Vis spectra. Both external validation data sets as well as 

cross-validation were used for model validation. The successful prediction of 

the reaction progress was shown with two different surrogate drugs in both 

setups. 

After covering high-throughput tools, analytics, and process monitoring in the 

first and second parts, the third part focuses on applying mechanistic 

understanding towards conjugation process development. In this section, a 

kinetic reaction model for the conjugation of ADCs was established and the 

application of the mechanistic model to process development was investigated3. 

Before model calibration, six model structures were set up based on different 

assumptions regarding the binding to the two available cysteines. All six 

models were fit to a calibration data set and the best model was selected using 

cross-validation. The results suggest that the attachment of a first drug to the 

mAb influences the attachment to the second binding site. An external data set 

including data outside the calibration range was used for the successful 

validation of the model. The validated model was then applied to an in silico 

screening and optimization of the conjugation process, enabling the selection 

of conditions with efficient drug use and high yield of the target component. 

Additional process understanding was generated by showing a positive effect 

of different salts on the reaction rate. Finally, a combination of the kinetic 

model with the monitoring approach of the second part was investigated. 

While the previous parts are primarily concerned with the conjugation reaction 

itself, the fourth part deals with the subsequent purification of the ADCs. A 

mechanistic model was established for the separation of ADC species with 

different DAR using hydrophobic interaction chromatography (HIC)4. This 

separation allows to set the target DAR also post-conjugation. For modeling 

the transport of solutes through the column and the adsorption equilibrium, 

the transport-dispersive model and a suitable adsorption isotherm were 

applied. First of all, a detailed characterization of the chromatography system 

and column was conducted, which served the calculation of a number of model 

parameters. The rest of the model parameters were determined by parameter 

estimation using numerical simulations. For the calibration, nine experiments 
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with different linear and step gradients were run with varying load 

compositions. Peak positions as well as peak shapes were accurately described 

by the model for all components. Applying the final model to process 

optimization gave step gradients with improved yield, DAR, and concentration 

in the pool. The successful prediction of yield and DAR in the pool of the 

optimized gradients was validated with external data. In a first in silico study, 

model-based process control was used to react to variations in the preceding 

unit operation, ensuring a robust achievement of a critical quality attribute, 

the target DAR. A second in silico study shows that a linkage of the HIC model 

with the kinetic reaction model developed in the third part of this thesis can be 

profitably applied to process development. This ‘digital twin’ widens the system 

boundaries over two adjacent unit operations, which could enable the 

establishment of a flexible design space over more than one process step. 

In conclusion, the present thesis helps to shape the ADC process development 

of the future, able to cope with the challenges of a transforming 

biopharmaceutical industry. The whole process from the preparation of the 

conjugation sites over the conjugation reaction through to the purification of 

the conjugates was covered. Efficient characterization of the design space was 

demonstrated by incorporating tools like high-throughput experimentation 

combined with DoE, and mechanistic modeling techniques. The 

implementation of QbD relies on the establishment of suitable tools for 

acquiring enhanced process knowledge and for process monitoring and control. 

To this end, a PAT method for conjugation monitoring based on multivariate 

data analysis, and mechanistic models for conjugation and purification were 

developed. The presented studies showcase the realization of new ideas for 

exploiting the potential of digital tools for the specific challenges of ADC 

process development. 
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Zusammenfassung 

Antikörper-Wirkstoff-Konjugate (antibody-drug conjugates; ADCs) wurden als 

Kombination aus der Therapie durch monoklonale Antikörper (monoclonal 

antibodies; mAbs) und der Chemotherapie entwickelt. Darauf basiert ihr 

Potential die Vorteile beider Strategien in einem Molekül zu vereinen. mAbs 

besitzen die Eigenschaft an ihr Zielantigen spezifisch zu binden, wodurch ihr 

Effekt auf den vorgesehenen Wirkort konzentriert werden kann. Aufgrund 

ihrer Größe und anderer biochemischer Merkmale weisen sie gute 

pharmakokinetische Eigenschaften auf, wie beispielweise eine hohe 

Verweilzeit im Körper. Während mAbs in verschiedenen therapeutischen 

Feldern eingesetzt werden, kommt ihnen in der modernen Onkologie eine 

besondere Bedeutung zu. Dort werden mAbs eingesetzt, die spezifisch für 

bestimmte Antigene sind, die auf Krebszellen stark exprimiert werden, 

wodurch sie verschiedene Wirkungsmechanismen entfalten können, um den 

Krebs zu bekämpfen. Ihre Fähigkeit Krebszellen zu töten kann gesteigert 

werden, indem kleine zytotoxische Moleküle, wie sie in der Chemotherapie 

eingesetzt werden, kovalent an die Antikörper gebunden werden. Bei dieser 

sogenannten Proteinkonjugationsreaktion entstehen ADCs. Dank der 

geringeren systemischen Exposition können hier Wirkstoffe mit höherer 

Zytotoxizität eingesetzt werden als in der Chemotherapie. Angeregt durch ihr 

großes Potential für die Krebstherapie und durch die Marktzulassung der 

ersten erfolgreichen Produkte 2011 und 2013, wuchs die Aufmerksamkeit für 

ADCs. Ende 2019 waren sechs Produkte zugelassen und über 60 Kandidaten 

befanden sich in klinischen Studien. Wesentliche Fortschritte wurden in 

Bereichen wie der Entwicklung neuer zytotoxischer Wirkstoffe, Linker-Chemie 

und Konjugationsstrategien gemacht. Trotz dieser Erfolge bleibt die 

Entwicklung neuer ADCs äußerst anspruchsvoll. Ungünstige pharmako-

kinetische Profile, verursacht durch die hydrophobe Natur der zytotoxischen 

Wirkstoffe, und Heterogenität bezüglich des Grads und des Ortes der 

Konjugation sind Faktoren, die bei aktuellen ADCs verbessert werden. Zu den 

möglichen Lösungswegen gehören z.B. bindestellenspezifische Konjugations-

strategien. Dennoch bleibt die Zahl der zu optimierenden Parameter bei diesen 

komplexen Hybridmolekülen groß. Von Antikörper, Wirkstoff und Linker über 

Konjugationschemie bis zum Wirkstoff-Antikörper-Verhältnis (drug-to-

antibody ratio; DAR) müssen optimale Parameter gefunden werden. Um das 

volle Potential von ADCs auszuschöpfen, ist eine effiziente, wissensbasierte 

Prozessentwicklung nötig.  

Darüber hinaus wird bei der Betrachtung der aktuellen Landschaft der 

biopharmazeutischen Entwicklung offenkundig, dass ein großer Druck auf 
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Prozessentwicklern lastet, auf effiziente Art und Weise robuste Prozesse 

abzuliefern und gleichzeitig erweitertes Prozess- und Produktwissen zu 

generieren. Ein Grund dafür ist die Diversifizierung der Produkt-Pipeline, die 

durch neue Modalitäten wie ADCs, andere Antikörper-Formate oder Zell- und 

Gentherapie entsteht. Dadurch erhöht sich der Entwicklungsaufwand und 

eine Anwendung von Plattform-Prozessen wird erschwert. Zusätzlich wird die 

Markteinführungszeit mit steigenden Entwicklungskosten und wachsendem 

globalen Wettbewerb, z.B. durch Hersteller sogenannter Biosimilars, immer 

kritischer. Schließlich forcieren die Regulationsbehörden wie die US-

amerikanische Food and Drug Administration oder die European Medicines 

Agency die Implementierung des Konzepts Quality by design (QbD) in der 

pharmazeutischen Entwicklung. Das Ziel dieses Konzepts ist eine Art der 

Prozessentwicklung, durch die gewünschte Produkteigenschaften schon durch 

die Beschaffenheit der Prozesse zuverlässig und kontrolliert erreicht werden. 

Dies erfordert ein verbessertes Prozessverständnis und eine umfangreiche 

Charakterisierung der Beziehung zwischen kritischen Prozessparametern und 

kritischen Produktattributen. 

Das Ziel dieser Doktorarbeit ist es, die Prozessentwicklung für ADCs in die 

Richtung effizienter, systematischer und wissensbasierter Ansätze 

weiterzudenken und solche Ansätze zu entwickeln. Für die Realisierung dieses 

Ziels, wurde die Etablierung von Hochdurchsatzanwendungen, analytischen 

Methoden und digitalen Werkzeugen untersucht. Hochdurchsatz-

anwendungen, insbesondere in Kombination mit statistischer Versuchs-

planung (design of experiments; DoE), können zu großen Effizienzsteigerungen 

in Bezug auf Zeit- und Materialaufwand führen. Hochdurchsatzfähige 

Analytikmethoden sind zwingend notwendig, um einen Engpass bei der 

Analytik zu verhindern. Auch analytische Techniken zur Prozessüberwachung 

bringen erhebliche Vorteile mit sich. Sie sind die Basis für die 

Implementierung von prozessanalytischen Technologien (process analytical 

technology; PAT), die wiederum die Möglichkeit zur Echtzeitüberwachung und 

Kontrolle von Produktqualitätsattributen eröffnen. Nicht zuletzt bieten 

digitale Werkzeuge, wie Methoden der mechanistischen Modellierung und 

Simulation von Prozessen große Vorteile für die Prozessentwicklung. Zum 

einen ermöglichen sie ein tieferes Verständnis der Prozessgrundlagen, zum 

anderen können sie sehr effizient für die Prozessoptimierung und die 

Charakterisierung des Parameterraumes (design space) eingesetzt werden.  

Die Methoden zur ADC-Prozessentwicklung, die in dieser Arbeit angewendet 

oder entwickelt wurden, basieren nicht auf den äußerst toxischen Wirkstoffen, 

die für ADCs typisch sind. Stattdessen wurden nicht-toxische Surrogat-

Moleküle verwendet. Diese wurden so ausgewählt, dass relevante 

Eigenschaften wie Größe und Hydrophobizität in der gleichen Größenordnung 
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lagen wie bei häufig eingesetzten zytotoxischen Wirkstoffen. Des Weiteren 

wurde für die Konjugation die Kombination aus einem mAb mit zwei 

rekombinant eingebrachten Cysteinen und der Maleimid-Chemie gewählt, 

eine Strategie der bindestellenspezifischen Konjugation mit hoher Relevanz 

für die ADC-Entwicklung. 

Im ersten Teil der Arbeit wurde eine hochdurchsatzfähige 

Prozessentwicklungsplattform für bindestellenspezifische Konjugations-

prozesse entwickelt1. Der mehrstufige Prozess aus den Cystein-mAbs ADCs 

herzustellen, wurde erfolgreich in vollem Umfang auf eine automatisierte 

Liquid Handling-Station transferiert. Dies schloss einen Hochdurchsatz-

Pufferaustausch mit ein, der über einen Kationtauscher-

Batchadsorptionsschritt realisiert wurde. Außerdem wurde darauffolgend eine 

automatisierte Proteinquantifizierung mit Prozess-Rückkopplung integriert. 

Für die hochdurchsatzfähige Analytik wurde analytische 

Umkehrphasenchromatographie (RPC) eingesetzt. Zur Effizienzsteigerung 

wurde eine Methode ohne Probenvorbereitung und mit kurzer Laufzeit 

entwickelt. Mit der finalen Plattform wurde ein Konjugations-DoE 

durchgeführt, um die Eignung der Methode zur effizienten 

Prozesscharakterisierung zu demonstrieren. Abschließend wurde die 

Vergleichbarkeit der Hochdurchsatz-Ergebnisse mit manuell, in einem 

größeren Maßstab durchgeführten Experimenten gezeigt. 

Der zweite Teil der Arbeit beschreibt die Etablierung einer On-line-

Überwachungsmethode für ADC-Konjugationsreaktionen unter Verwendung 

von UV/Vis-Spektroskopie2. Zunächst wurde eine Änderung im Spektrum 

festgestellt, welche durch die Maleimid-Konjugation des Surrogat-Wirkstoffes 

an die Thiol-Gruppen der rekombinanten Cysteine verursacht wird. Dafür 

wurden in zwei verschiedenen Setups mit zwei unterschiedlichen Detektoren 

Spektren während der Reaktion aufgenommen. Die Änderung im Spektrum 

wurde daraufhin mit off-line bestimmten Konzentrationsdaten aus der RPC 

korreliert. Verwendet wurde dafür die Partial least squares (PLS) Regression. 

Die kalibrierten PLS-Modelle ermöglichten die Vorhersage der Menge an 

konjugiertem Wirkstoff direkt aus UV/Vis-Spektren. Sowohl externe Daten, als 

auch eine Cross-Validierung, wurden für die Validierung des Modells 

eingesetzt. Die korrekte Vorhersage des Reaktionsfortschritts wurde mit zwei 

verschiedenen Surrogat-Wirkstoffen in beiden Setups erfolgreich gezeigt. 

Nachdem Hochdurchsatz-Methoden, Analytik und Prozessüberwachung im 

ersten und zweiten Teil bearbeitet wurden, befasst sich der dritte Teil mit der 

Anwendung von mechanistischem Prozessverständnis auf die Entwicklung von 

Konjugationsprozessen. In diesem Teil der Arbeit wurde ein kinetisches 

Reaktionsmodell für die Konjugation von ADCs entwickelt und die Anwendung 
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des mechanistischen Modells für die Prozessentwicklung untersucht3. Vor der 

Modellkalibrierung wurden sechs Modellstrukturen entworfen, basierend auf 

verschiedenen Annahmen bezüglich der Bindung an die zwei verfügbaren 

Cysteine. Alle sechs Modelle wurden an ein Kalibrierdatenset gefittet und das 

beste Modell wurde mittels Cross-Validierung ausgewählt. Das Ergebnis legt 

nahe, dass die Bindung des ersten Wirkstoffmoleküls an den Antikörper die 

Bindung an die zweite Bindestelle beeinflusst. Ein externer Datensatz, 

einschließlich Daten außerhalb des Kalibrierraumes, wurde für die 

erfolgreiche Validierung des gewählten Modells verwendet. Das validierte 

Modell wurde dann für in silico Screening und Optimierung des 

Konjugationsprozesses eingesetzt. Dies ermöglichte die Bestimmung von 

Bedingungen mit minimalem Wirkstoffverbrauch und hoher Ausbeute der 

zweifach konjugierten Zielkomponente. Zusätzliches Prozessverständnis 

wurde dadurch generiert, dass ein positiver Effekt auf die Reaktionsrate durch 

Zusatz verschiedener Salze zum Puffer gezeigt wurde. Zuletzt wurde noch die 

Kombination des kinetischen Modells mit der Prozessüberwachungsmethode 

aus dem zweiten Teil untersucht. 

Während in den bisher beschriebenen Teilen primär die Konjugationsreaktion 

selbst behandelt wird, beschäftigt sich der vierte Teil mit der darauffolgenden 

Aufreinigung der ADCs. Ein mechanistisches Modell der präparativen 

Trennung von ADC-Varianten mit unterschiedlichem DAR mittels 

hydrophober Interaktionschromatographie (HIC) wurde etabliert4. Diese 

Trennung gestattet es noch nach der Konjugation das gewünschte DAR 

einzustellen. Um den Transport von gelösten Stoffen durch die Säule und das 

Adsorptionsgleichgewicht zu modellieren, wurde das sogenannte Transport-

dispersive model und eine geeignete Adsorptionsisotherme verwendet. 

Zunächst erfolgte eine eingehende Charakterisierung des Chromatographie-

systems und der Säule, welche der Berechnung mehrerer Modellparameter 

diente. Die übrigen Modellparameter wurden durch Parameterschätzung 

mithilfe numerischer Simulationen bestimmt. Für die Modellkalibrierung 

wurden neun Experimente mit linearen und Stufengradienten, sowie 

unterschiedlichen Beladungszusammensetzungen durchgeführt. Die 

Peakpositionen wie auch die Peakformen wurden für alle Komponenten 

präzise durch das Modell beschrieben. Prozessoptimierung mithilfe des finalen 

Modells ergab Stufengradienten mit verbesserter Ausbeute, verbessertem 

DAR und höherer Konzentration in den gesammelten Produktfraktionen. Die 

erfolgreiche Vorhersage der Ausbeute und des DAR in den Produktfraktionen 

der optimierten Gradienten wurde mit externen Daten validiert. In einer 

ersten in silico Studie wurde Modell-basierte Prozesskontrolle eingesetzt, um 

auf Variationen in vorhergehenden Prozessschritten zu reagieren, wodurch das 

zuverlässige Erreichen des gewünschten DAR gewährleistet werden kann. 
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Eine zweite in silico Studie zeigt, dass eine Verbindung des HIC-Modells mit 

dem kinetischen Reaktionsmodell, welches im dritten Teil entwickelt wurde, 

für die Prozessentwicklung äußerst vorteilhaft eingesetzt werden kann. Dieser 

„digitale Zwilling“ erweitert die Systemgrenzen über zwei aufeinander 

folgende Prozessschritte, was die Etablierung eines flexiblen Design space über 

mehr als einen Prozessschritt ermöglichen könnte. 

Im Ergebnis ist die vorliegende Dissertation ein wertvoller Beitrag dazu, eine 

ADC-Prozessentwicklung der Zukunft zu gestalten, welche in der Lage ist, die 

Herausforderungen einer sich transformierenden biopharmazeutischen 

Industrie zu bewältigen. Der gesamte Prozess von der Vorbereitung der 

Bindestellen über die Konjugationsreaktion bis hin zur Aufreinigung der 

Konjugate wurde bearbeitet. Eine effiziente Charakterisierung des 

Parameterraums (Design space) wurde demonstriert, indem einerseits 

Hochdurchsatz-Prozesse kombiniert mit DoE, andererseits Techniken der 

mechanistischen Modellierung eingesetzt wurden. Die Implementierung von 

QbD setzt die Etablierung von geeigneten Werkzeugen voraus, um erweitertes 

Prozesswissen zu generieren und um Prozesse überwachen und kontrollieren 

zu können. Mit diesem Ziel wurden sowohl eine PAT-Methode zur 

Überwachung von Konjugationsreaktionen, basierend auf multivariater 

Datenanalyse, als auch mechanistische Modelle für Konjugation und 

Aufreinigung entwickelt. Die vorgestellten Studien präsentieren die 

Realisierung neuer Ideen, das Potential digitaler Instrumente für die 

spezifischen Herausforderungen der ADC-Prozessentwicklung auszuschöpfen. 
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1 Introduction 

Availability of essential healthcare, like access to medical services or 

vaccination of children, is one of the fundamental conditions for a healthy life, 

next to other important factors like clean water, access to sanitation and 

sufficient nutrition5. Preventive as well as therapeutic medicines form one of 

the core elements of modern healthcare. While the majority of available 

products are still so-called small-molecule drugs (chemically synthesized 

compounds below a molecular weight of 1000 Da), the importance of 

biopharmaceutical drugs is increasing rapidly. In 2018, there were 316 

biopharmaceutical products on the market with 155 approved between 2014 

and 20186. These ‘biologics’ are biological molecules derived from 

pharmaceutical biotechnology. The advances in the field are fueled by an ever 

growing scientific and technological knowledge base in biochemistry, genetics, 

microbiology, molecular biology, engineering, and computer technology, 

complementing achievements in medicinal chemistry and pharmaceutics7. 

Next to therapeutic proteins and vaccines, the scope of biopharmaceuticals is 

expanding towards new formats like cell- and gene-therapy to answer unmet 

medical needs. The majority of approved products, however, are recombinant 

proteins, with monoclonal antibodies (mAbs) dominating the new approvals 

(53% between 2015 and July 2018)6,8. Besides immunoglobulin G molecules 

(IgG), there are four other different formats of approved antibody drugs: 

antibody-drug conjugates (ADCs), radioimmunoconjugates, bispecific 

antibodies, and antibody-fragments9. This increasing diversity of the drug 

development pipeline is one of the challenges posed to scientists developing 

biopharmaceutical production processes, because it complicates the use of 

platform processes. These are very common in IgG production.  

ADCs are complex hybrid-molecules comprising mAbs and small cytotoxic 

molecules that are covalently attached via a linker. On the one hand, this 

hybrid character holds great potential for cancer therapy, because both 

specificity of mAbs and efficacy of cytotoxic drugs can be combined. On the 

other hand, process development for ADCs involves specific challenges arising 

from the fusion of these two molecule classes. This means that specific solutions 

have to be investigated in order to efficiently develop suitable processes for the 

production of ADCs.  

Generally, the production of recombinant protein drugs can be divided into 
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several steps. In the upstream processing, the drug substance is produced by 

fermentation, normally using either a mammalian cell line, Escherichia coli or 

yeast6. Also steps preceding the fermentation like cell line development and 

cell culture and the cell separation following the fermentation are part of 

upstream processing. Next, the drug substance is isolated during downstream 

processing, which can be divided into capture, purification, and polishing. In 

the case of ADCs, additional steps like the conjugation of the cytotoxic drug to 

the mAb and further purification steps have to be included. Finally, the drug 

product is prepared by formulating the active pharmaceutical ingredient (API) 

together with different excipients supporting long-term stability and 

administration to the human body. The whole process comprises many 

different unit operations like filtration and chromatography steps, which are 

designed during process development. During each molecules’ way through 

toxicology studies, preclinical studies, and clinical studies towards market 

approval, the production processes must be further and further refined. This is 

done until a robust and reliable process is able to produce a safe product in a 

consistent quality. To ensure efficacy and patient safety, regulatory agencies 

like the U.S. Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) have to approve each product before commercial 

launch, including the production processes with design space, specifications, 

and manufacturing controls.  

For the last decade, regulators have promoted the implementation of a concept 

called quality by design (QbD) for pharmaceutical development, which implies 

a more informed, systematic approach for process development10. The 

underlying idea is that quality should be built into products by design rather 

than trying to test quality into products. This is done by gaining a more 

profound understanding of product performance over a range of material 

attributes, manufacturing processes, and process parameters, yielding an 

expanded design space and at the same time creating opportunities for more 

flexible regulatory approaches. For acquiring this enhanced knowledge, 

possible strategies are, for example, multivariate experiments, process 

analytical technology (PAT), and relating mechanistic understanding to 

product quality10. For complying with these requirements and to support an 

efficient process development in the setting of diversifying pipelines and 

immense pressure to minimize time to market, different tools involving a more 

digitized process development can be applied. While high-throughput 

approaches in combination with design of experiments (DoE) are already 

widely spread for some applications11–14, PAT tools in conjunction with 

multivariate data analysis and process development based on mechanistic 

modeling of processes are on their way there15,16.  
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In this chapter, some of these methods are introduced in combination with the 

unit operations that they have been applied to in this thesis. Furthermore, the 

concept of antibody-drug conjugates and their specific development challenges 

are described. 

1.1 Antibody-drug conjugates 

1.1.1 Concept 

The idea of creating targeted therapeutics for human diseases is older than a 

century and was originally brought forward by Paul Ehrlich in his vision of 

creating ‘magic bullets’ to attack pathogens but spare healthy tissues17. 

Ehrlich, who is considered the founder of chemotherapy, postulated the 

existence of different receptors with varying binding groups, based on 

experiments with different chemical dyes17,18. The differential affinities of 

these compounds for specific biological structures lead to the concept of drugs 

going directly to their designated targets17,19. The first effort to treat cancer 

with a chemical substance was undertaken by Goodman, Gilman and Linskog 

in the 1940s, who used a nitrogen mustard anticancer agent on a lymphoma 

patient20,21. Since then, chemotherapy has come a long way and new therapies 

like monoclonal antibodies have been developed. mAbs, in contrast to 

polyclonal antibodies, are produced by cells derived from a single B-lymphocyte 

and are directed against a single epitope. Originally, murine antibodies were 

used, but for reduced immunogenicity, chimeric, humanized, and even human 

mAbs have been developed22,23. mAbs bind their corresponding antigen with 

high specificity. Due to the fact that some receptors exist on the surface of 

tumor cells, which are not or less expressed on the surface of healthy cells, 

mAbs can be used to target cancer cells17,24–26. By specifically binding to these 

receptors, antibodies can exert different kinds of effects leading to recession of 

the tumor. The modes of action can be either direct or immune-mediated. 

Examples for direct action are through receptor blockade or agonist activity, 

induction of apoptosis, or delivery of a drug to the target cell. Immune-

mediated modes of action range from antibody-dependent cellular cytotoxicity 

(ADCC) over complement-dependent cytotoxicity (CDC) to regulation of T-cell 

function. Finally, antibodies can have specific effects on tumor vasculature and 

stroma24. Drugs targeted to their site of action in cancer cells using mAbs are 

usually cytotoxic small-molecules, which are covalently linked to the 

antibodies, forming antibody-drug conjugates. They constitute a combination 

of mAbs and chemotherapy, yielding the potential for high specificity as well 

as high cytotoxicity. As a consequence, a lot of research and development efforts 

are focused on developing new ADCs. Among the 33 antibody drugs that were 
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in late-stage clinical development for cancer therapy by the end of 2018, eight 

were ADCs and many more are in earlier stages of the clinic27. Currently, there 

are seven marketed ADCs, which are described further in Table 1.1. The mode 

of action of ADCs is based on binding to the target cell and releasing the toxin 

upon internalization, thus inducing apoptosis. However, there are also ADCs 

being investigated using non-internalizing receptors28,29. Apart from the 

cytotoxic effect of the toxin, some mAbs can contribute to the cell killing 

capacity of the ADC by the modes of action described above, e.g. ADCC.  

Table 1.1: There are currently seven antibody-drug conjugates on the market. The name 

in brackets is the trade name. 

Name Companies Antibody Indication 

Brentuximab 

vedotin (Adcetris) 

Seattle Genetics, 

Takeda 

Chimeric 

IgG1 

Hodgkin lymphoma, 

systemic anaplastic 

large cell lymphoma 

Ado-trastuzumab 

emtansine 

(Kadcyla) 

Genentech / 

Roche 

Humanized 

IgG1 
Breast cancer 

Inotuzumab 

ozogamicin 

(Besponsa) 

Pfizer, UCB 
Humanized 

IgG4 

Acute lymphoblastic 

leukemia 

Gemtuzumab 

ozogamicin 

(Mylotarg) 

Pfizer, Wyeth, 

Takeda, UCB, 

etc. 

Humanized 

IgG4 

Acute myeloid 

leukemia 

Polatuzumab 

vedotin (Polivy) 

Hoffmann-La 

Roche 

Humanized 

IgG1 

Diffuse large B-cell 

lymphoma 

Trastuzumab 

deruxtecan 

(Enhertu) 

Daiichi Sankyo / 

AstraZeneca 

Humanized 

IgG1 
Breast cancer 

Enfortumab 

vedotin (Padcev) 

Astellas / 

Seattle Genetics 

Human 

IgG1 
Urothelial cancer 

 

1.1.2 ADC structure – the three components 

ADCs consist of three components, a monoclonal antibody, a drug molecule, 

and a linker molecule, which has, among other functions, the purpose of 

covalently attaching the drug to the antibody. In the following, these three 

parts are covered in more detail. 
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1.1.2.1 Monoclonal antibody 

As described above, the mAb is supposed to bring its payload to the site of 

action, the target cancer cell. For this to be achieved, a high binding affinity for 

the target antigen is necessary. Due to their size (no renal clearance of large 

biomolecules) and other factors, like FcRn-mediated recycling, antibodies 

exhibit long circulation times in the body (about 18-21 days for IgG1, IgG2, and 

IgG4), which enhances the chances of reaching their target30. Another 

prerequisite for being applied as a therapeutic is low immunogenicity, which is 

promoted by using chimeric, humanized, or human IgG. For illustration, the 

generic mAb structure is shown in Figure 1.1. A chimeric antibody has the 

antigen-binding variable domains of a mouse mAb and a human constant 

region. For humanized antibodies the complementarity-determining regions 

(CDRs) are taken from a mouse mAb. Depending on the humanization 

technology, additional residues are transferred from the parent mouse mAb22. 

Another important factor for the mAb is antigen selection. The antibody’s 

target antigen should be highly expressed on the surface of target cells, to 

ensure a sufficient dose of the drug for the cytotoxic effect is delivered. In most 

cases, an antigen with a suitable internalization mechanism is selected for the 

drug to reach its intracellular target31. The target of the ADC trastuzumab 

emtansine for example is the HER2 antigen (also ERBB2, HER2/neu or 

CD340). HER2 stands for human epidermal growth factor receptor and is 

amplified in human breast cancer cell lines26. In addition to the cytotoxic effect 

of the drug, trastuzumab is able to inhibit HER2 signaling and shedding and 

also causes ADCC9. 
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Figure 1.1: Generic structure of Immunoglobulin G. 

1.1.2.2 Small-molecule drug 

The goal is to use highly potent cytotoxic drugs with physicochemical properties 

that permit the attachment of several molecules without causing mAb 

aggregation or unfavorable pharmacokinetics31,32. Typical molecular weights of 

the molecules used range from 500 g/mol to 1300 g/mol. About 60% of ADCs in 

clinical trials use antimitotic microtubule-disrupting agents33. One reason is 

their lack of cytotoxicity towards less proliferative normal cells, which may lead 

to a better tolerability profile of ADCs employing these payloads. This is a 

valuable property, because target antigens are normally not totally tumor-

specific and the administered ADC is mostly eliminated from the body by 

catabolism via the mononuclear phagocyte system34. The important molecule 

classes of tubulin polymerization inhibitors are auristatins and maytansinoids, 

but also tubulysin is used in a few cases. Despite their widespread use, the 

success rate is not very high, most probably due to the use of the same 

mechanism for different target antigens and cancer types35. Increasingly, other 
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types of molecules like DNA-interacting agents are being investigated. 

Examples are DNA-crosslinking compounds based on pyrrolobenzodiazepine 

dimers or calicheamicins, showing promising antitumor activity in clinical 

trials34,36. It remains a challenge establishing small-molecule drugs fulfilling 

the special requirements for application in ADCs like picomolar IC50 (half 

maximal inhibitory concentration) and suitable properties regarding solubility 

and stability33,35. 

1.1.2.3 Linker 

The linkers’ essential task is to keep the drug attached to the mAb as long as 

necessary for it to reach its site of action and then releasing it effectively. This 

means it has to be stable towards premature release during circulation. 

Additionally, the cytotoxic drug is in many cases hydrophobic and the linker is 

used to solubilize it in aqueous conditions. A linker-drug moiety is normally 

prepared before being conjugated to the antibody31. The used linkers can be 

categorized into cleavable and non-cleavable linkers. Cleavable linkers contain 

a site that is susceptible to enzymatic or chemical disintegration upon reaching 

the target cell, while non-cleavable linkers may remain attached to the drug 

and rely on the degradation of the antibody’s peptide backbone to set free the 

drug-linker moiety. With cleavable linkers, the drug is separated from the 

linker by peptidases, reducing agents, or the low-pH environment of the 

lysosomes. Since it can have a huge impact on pharmacokinetics and efficacy, 

the choice of linker has to be matched to the payload and the target and each 

ADC will possibly require its own optimization35,37. Prevalent among ADCs in 

clinical trials are the cleavable valine-citrulline dipeptide-linker and the non-

cleavable thioether linkage35,38. Other cleavable linkers used in a number of 

ADCs are acid-labile hydrazone linkers and disulfide linkers, which facilitate 

reductive cleavage of the toxin. 

A summary of the most important ADC component properties is given in 

Figure 1.2. 
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Figure 1.2: Overview of some of the important requirements for the three ADC 

components mAb, linker, and payload (cytotoxic drug). Figure adapted from Bakhtiar39 

and Gébleux and Casi40. 

1.1.3 Conjugation process 

Protein conjugation means the attachment of other (non-polypeptide) chemical 

groups to a protein, in the case of ADCs via a covalent bond. Different amino 

acids contain various functional groups like primary amines, carboxylates, 

sulfhydryl, or phenolate groups, which provide reactive sites within proteins. 

In addition, mAbs possess an N-glycosylation site in the Fc region offering the 

possibility of glycoconjugation. Traditionally, lysine amines or cysteine 

sulfhydryl groups are employed for making ADCs, as can also be seen from the 

commercial ADCs (see Table 1.1). Trastuzumab emtansine (Kadcyla) for 

example is produced by attaching an amino-specific N-hydroxysuccinimide 

(NHS) ester to lysine amines forming an amide bond. Brentuximab vedotin 

(Adcetris) on the other hand is based on the attachment of the payload to 

interchain cysteines via a thiol-specific maleimide-linker. This requires a prior 

reduction of the interchain disulfides yielding reactive thiol groups, which can 

be achieved by addition of a reducing agent like tris(2-carboxyethyl)phosphine 

(TCEP). A drawback of these techniques is their limited site-specificity. The 

mAb of trastuzumab contains 88 lysines and 4 N-terminal amines of which 70 

were identified having drug molecules attached to them, although the average 

drug-to-antibody ratio (DAR) is 3.5 41. In the case of brentuximab and the 

conjugation to interchain disulfides, there are 8 possible sites. For ADCs 

produced with these stochastic conjugation approaches, this leads to a highly 

heterogeneous mixture of conjugates with different amounts of drugs attached 

to different sites. These molecules potentially have varying pharmacokinetic 

mAb Linker Payload

- Selectivity and affinity

- Low immunogenicity

- Stability

- Long circulation time

- Target: abundant cancer 

antigen

- Stable in circulation

- Stable in product storage

- Releasing active payload

- Optimized for target

and payload

- Potency

- Stability

- Low immunogenicity

- Amenable to conjugation

- Good pharmacokinetics
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and therapeutic properties. For reducing heterogeneity, numerous strategies 

for site-specific conjugation have been developed and are being applied to the 

new generation of ADCs42. Techniques range from the incorporation of non-

natural amino acids over enzyme-directed conjugations to the functional re-

bridging of native disulfides42,43. In this introduction, only the conjugation to 

engineered cysteines will be covered due to its relevance to this work. It was 

introduced by Junutula et al., who recombinantly inserted one cysteine on each 

heavy-chain of a mAb affording conjugates with predominantly two drugs per 

antibody44. These showed comparable efficacy but a lower toxicity compared to 

conventionally produced ADCs, leading to an improved therapeutic index (1). 

As for the conjugation to interchain disulfides, a prior reduction step is needed 

to uncap the engineered cysteines, which are blocked by glutathione or 

cysteine44. In order to reform the interchain disulfides, which are also affected 

by the reduction, a partial re-oxidation using dehydro-ascorbic acid (DHA) can 

be performed. Then, the linker-drug is added and the conjugation occurs. 

Selecting a conjugation chemistry and developing the conjugation reaction are 

essential parts of ADC development since important properties like DAR and 

conjugation sites are defined that directly influence pharmacokinetics, efficacy, 

and safety of the final product. Sun et al. studied this influence for 

maytansinoid ADCs with different DARs and showed that DARs between 2 and 

6 lead to a better therapeutic index than conjugates with high DARs of 9-10 45. 

They interpret their data towards a use of DAR 3-4 for maytansinoid ADCs, 

but suggest the investigation of higher and lower DAR depending on target 

antigen biology. Regarding the conjugation site, it was shown that there is an 

effect on in vivo stability, pharmacokinetics, and therapeutic activity and 

approaches were developed for selecting suitable binding sites46–49. The 

objectives of selecting appropriate conjugation chemistries and conjugation 

sites, and of achieving the optimal DAR contribute to the complexity of ADCs 

and their process development. It adds to the general challenges of developing 

a biopharmaceutical, because the starting material for the conjugation reaction 

is the purified mAb. After being isolated from the harvested cell culture fluid 

in a number of unit operations, the mAbs used in ADCs are the product of a 

complete biopharmaceutical production process. 

1.2 Strategies for process development of biologics 

While a new molecule makes its way from candidate selection through clinical 

studies towards the market, different stages of process development are taking 

                                            
(1) Toxic effect versus efficacy; e.g. toxic dose in 50% of subjects divided by efficacious dose in 

50% of subjects 
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place. The later the stage, the more material is needed and the higher are the 

requirements for yield and productivity. Time constraints are ubiquitous, 

because time to market is crucial and a diversifying biopharmaceutical product 

pipeline brings new challenges. At the same time, robust processes have to 

guarantee product quality and safety. In the following, current strategies to 

overcome these challenges are described. 

1.2.1 Quality by design 

The International conference on harmonization of technical requirements for 

registration of pharmaceuticals for human use (ICH) provides a guideline for 

pharmaceutical development, which, since 2008, contains a part describing the 

principles of quality by design (QbD)10. In this part, important concepts and 

tools for pharmaceutical development from the parent Q8 guideline are further 

elaborated. Quality by design essentially means a more systematic approach to 

development, which can imply, for example, “the incorporation of prior 

knowledge, results from studies using design of experiments (DoE), use of 

quality risk management, and use of knowledge management (see ICH Q10) 

throughout the lifecycle of the product”10. A great incentive of applying such 

concepts is that an increased understanding of the product and the process can 

facilitate science- and risk-based regulatory approaches, which can increase 

regulatory flexibility. In the following, the most important elements of 

pharmaceutical development, according to the ICH guideline, will be described. 

First of all, a quality target product profile (QTPP) has to be established, 

covering aspects like intended clinical use, route of administration, dosage 

form, and appropriate drug product quality criteria (e.g. sterility, purity, 

stability). From the QTPP and from prior knowledge, potential critical quality 

attributes (CQAs) of the drug product can be derived. These potential CQAs 

guide process development and can be adjusted with increasing product 

knowledge and process understanding. A prioritization of CQAs can be done 

using quality risk management. Part of quality risk management is risk 

assessment, where process parameters and material attributes are linked to 

CQAs. Since the list of potential parameters can be long, key parameters have 

to be identified and then further studied to reach a high degree of process 

understanding. DoE and mechanistic models are important tools that can be 

applied in this procedure. The so-called design space is then used to 

characterize the connection between process inputs and CQAs. It can be 

represented in the form of ranges of process inputs or by more complex 

mathematical relationships. Also, it can be described for single unit operations, 

or, in order to achieve increased operational flexibility, for multiple operations. 

To guarantee consistent product quality, a control strategy is necessary, 

including in-process controls and controls of input materials, intermediates, 
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container closure system, and drug products. Of particular importance is the 

control of critical process parameters (CPP), which have an influence on critical 

quality attributes. Process analytical technologies are a key tool for enhanced 

process control approaches and will be discussed separately in Section 1.3. The 

enhanced process understanding and control generated by the application of 

these methods could support a trend from end-product testing towards in-

process or real-time release testing, which means that CQAs are measured and 

controlled already during the process. Finally, it is advisable to implement 

product lifecycle management to assess means of improving product quality 

during the lifecycle of the product. 

Implementation of these principles in the biopharmaceutical field and the 

corresponding need for enhanced process understanding and control is 

prompting research in areas like model-based process development (statistical 

and mechanistic) and the development of PAT tools16,41,50–59. These topics will 

be covered in the subsequent sections. 

1.2.2 High-throughput process development and design of experiments 

The high numbers of drug candidates and conditions that have to be tested and 

the narrow time frames especially in manufacturability assessment and early 

stage development call for efficient ways of data generation60,61. Here, one 

suitable tool is high-throughput experimentation, which is characterized by a 

large amount of automated, parallel experiments in very small scale. These are 

facilitated by using robotic liquid handling stations, which are usually 

equipped with arms for automated pipetting and for the handling of 

microplates. Often, they have integrated capabilities for mixing, centrifugation 

and analytics, which enable fully automated experimentation. In downstream 

process development, high-throughput tools are for example used for the 

screening of chromatographic separations, either in 96-well batch experiments 

or also with mini columns that are compatible with automation62–65. Important 

parameters like pH, salt, and protein concentration can be screened for 

different resins and different salts in an efficient manner compared to 

potentially dozens of chromatographic column runs62. Also in upstream process 

development, high-throughput tools can be applied, for example in micro-scale 

cultivations for the optimization of cultivation conditions66. For formulation 

development, information on the phase behavior of biopharmaceuticals is 

essential. It is strongly influenced by different factors like pH, salt type and 

salt concentration, which can also be screened using high-throughput 

methods67,68.  Recently, high-throughput ADC conjugation approaches started 

gaining attention since screening of multiple linker-payload combinations on 

different conjugation sites at different conditions represents a practical 
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application69,70. When using these types of techniques, of course it has to be 

shown, that the small-scale results are representative for the process scale 

data. 

Despite the use of high-throughput experimentation, it is still advisable to 

reduce the amount of data that is necessary for process development by 

experimental design. DoE means the “process of planning, designing and 

analyzing the experiment so that valid and objective conclusions can be drawn 

effectively and efficiently”71. Essentially, the dependence of relevant process 

outputs on inputs like process parameters is to be investigated for a specified 

range of inputs. DoE defines the number and type of experiments that are 

conducted to cover this range efficiently. Using statistical models, the 

relationship between inputs and outputs can then be described inside the 

design space. One element of DoE is randomization of experiments, in order to 

reduce experimental bias71. Another is replication, which is the repetition of an 

experiment or a part of it to obtain an estimate of the experimental error. 

Finally, it can make sense to group the experiments into blocks of experiments 

that share a certain property like a batch of raw materials or different 

operators. This is a way to eliminate variability between blocks from the 

experimental error.  

1.2.3 Model-based process development 

As touched upon in the previous parts of this section, it can be advantageous 

to use models in the support of process development. In all phases of the 

implementation of QbD, for example, different types of models can be 

employed54. By embodying a representation of the underlying process, they can 

help reducing experimental effort, increase process understanding, and 

facilitate process optimization leading to a better process and product16,54. 

There are different ways to describe a process with a model, depending on the 

available data and the degree of process understanding. Empirical or statistical 

models derived from DoE data as mentioned in the previous section are also 

called ‘black box’ models, since only a mathematical relationship between 

process input and output is computed. Here, a comparably low degree of process 

understanding is necessary, which can be helpful for very complex processes54. 

On the other side, there are mechanistic models, by analogy called ‘white box’ 

models, trying to capture the physicochemical properties of the system. This 

approach requires more process understanding. Equations describing the 

underlying processes have to be set up and suitable model parameters 

determined. Due to their mechanistic nature, they have the advantage that a 

good model is valid outside its calibration range. Finally, there are also ‘grey 

box’ models with both mechanistic and empirical features. In fact, mechanistic 
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models always have some empirical aspects and empirical models always have 

a mechanistic part54. 

An example for ‘grey box’ models are models based on quantitative structure-

activity relationships (QSAR). These models use structure-based molecular 

descriptors, which are correlated to parameters of interest like 

chromatographic behavior or precipitation propensity72,73. Empirical models 

are for example used for the development of PAT tools, like correlating the 

signals of process analyzers with product data (see Section 1.3)50,53,74. Typical 

applications for mechanistic models can be computational fluid dynamics 

(CFD) models for bioreactor selection or modeling the chromatographic 

behavior of proteins (see Section 1.4)59,75,76.  

1.3 Process analytical technology 

In its 2004 guidance for industry the FDA defined PAT as a “system for 

designing, analyzing, and controlling manufacturing through timely 

measurements (i.e., during processing) of critical quality and performance 

attributes of raw and in-process materials and processes with the goal of 

ensuring final product quality”77. The U.S. regulatory agency promotes the 

implementation of PAT tools with the purpose of supporting a trend towards 

enhanced process understanding and control in development, manufacturing, 

and quality assurance. The motivation is that this could move the strategy from 

batch processing with laboratory testing in the direction of exploiting more 

advanced, innovative approaches for product and process development and 

analysis. Well understood, monitored and controlled processes and products 

are in line with the QbD framework and might be able to mitigate quality risks 

and regulatory concerns and at the same time improve efficiency for example 

by facilitating continuous processing and real-time release77. 

Besides process analyzers and process control tools, also multivariate tools for 

design, data acquisition and analysis are necessary for the implementation of 

PAT. In the following, the principles of the multivariate methods applied in 

this work are described. 

1.3.1 Principle component analysis 

The principle component analysis (PCA) forms the basis for partial least 

squares regression (PLS, Section 1.3.2) and is thus briefly touched upon in this 

section. Its goal is to reduce many variables describing a set of objects to a 

couple of so-called latent variables or principal components (PCs) that are 

easier to interpret without losing important information. This often serves to 
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identify groups within the objects and can yield insight on which properties 

affect the classification78. For determining a PCs of the data matrix X, which 

consists of n observations and m variables (for example n samples with their 

corresponding UV absorption spectra of m wavelengths), one way is to calculate 

the directions or axes of greatest variance in the data. The a PCs, which are 

linear combinations of the original variables, then represent a new coordinate 

system that is able to describe the data more effectively. Every observation is 

projected on every axis in the new coordinate system, yielding the scores matrix 

T (n x a) with a score values for each observation. The scores are thus the new 

coordinates of the observations. The loadings matrix P (a x m) contains m 

loadings for each of the a PCs, constituting the ‘directions’ from the old 

coordinate system to the new. The loadings state how much each PC is 

influenced by each of the m old variables. Since a data reduction is performed 

by reducing the number of variables, there is also a residual matrix E. The PCA 

is consequently characterized by the following equation: 

𝑋 = 𝑇𝑃T + 𝐸 (1.1) 

Before conducting the PCA, it is often necessary to standardize the variables 

because otherwise variables with high absolute values would dominate the 

results. For that, the variables can be centered by subtracting their average 

and scaled by dividing by their standard deviation. When working with spectra, 

this step is in many cases omitted to not overemphasize regions with a low 

signal and by that increase noise78. Its capability for data and noise reduction, 

outlier detection and classification make it a typical method for exploratory 

data analysis79. 

1.3.2 Partial least squares regression 

A regression problem is characterized by the goal of modeling one or more 

dependent variables or responses based on a set of predictor variables. 

Regression models are often used to predict target variables Y that are 

otherwise more difficult to determine by relating them to more easily accessible 

variables X. A very common example is relating analyte concentration to 

absorbance. Partial least squares (PLS) regression in its basic form is a linear 

multivariate regression method, which is capable of handling a large number 

of noisy, collinear X-variables, and also several dependent variables Y (in 

contrast to multiple linear regression)80. A schematic description of the 

principle of PLS regression is displayed in Figure 1.3. Essentially, in PLS 

regression, two PCAs are performed, one on the X-data and one on the Y-data, 

and the two PCAs influence each other78. Depending on the presence of one or 

multiple Y-variables, either the y-vector or the vector u1 with the greatest 

Euclidean norm out of the columns of Y is used as first estimate for the scores 
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vector t1 of the first PC of the PCA on the X-data (subscript 1 refers to the first 

PC). With this scores vector, a weighted loadings vector w1 is determined by 

minimizing the residual E in the following equation: 

𝑋1 = 𝑢1𝑤1
𝑇 + 𝐸 (1.2) 

After then determining the actual scores t1 and loadings p1 of the first PC of 

the X-data, the information is transferred to the y-data by using t1 to calculate 

the loadings q1 of the Y-data. For several Y-variables, this process has to be 

performed iteratively until t1 converges towards u1, which is updated in every 

iteration based on q1. After calculating the first PC, its information has to be 

deducted from X and Y and the procedure is repeated for the next PC. After 

determining all PCs, the regression coefficients can be calculated from the 

scores and loadings matrices. These form the linear multivariate regression 

model, which can then be used to predict the response variables for new X-data. 

PLS regression is one of the most common multivariate data analysis (MVDA)  

tools used in PAT53. One important application is the use of spectroscopy in 

PAT, because the recorded spectra can result in a great number of predictor 

variables (e.g. wavelengths). Brestrich et al., for example, used it for the 

selective in-line quantification of co-eluting proteins in chromatography81. 

 

Figure 1.3: Principle of PLS regression. A PCA is performed for predictor data X as 

well as response data Y. These two PCAs influence each other, resulting in a regression 

model for the response. T and PT are the scores and loadings matrix for X, respectively, 

while WT are the weighted loadings for X. U functions as the scores and QT as the 

loadings matrix of Y. Figure adapted from Kessler78.  
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1.4 Mechanistic modeling of liquid chromatography for large 

biomolecules 

1.4.1 Process chromatography for biologics 

Chromatography is by definition a thermal separation process applied to 

separating homogeneous, molecularly disperse mixtures. These mixtures 

constitute a fluid phase, in the case described in this section a liquid. 

Separation is achieved by introducing a second phase, which exhibits a 

differential interaction with different molecules of the first phase. This means 

the transfer of mass and energy between the phases, caused by a deviation from 

thermodynamic equilibrium82.  By then separating the phases, a separation of 

the molecules from the mixture can be obtained. The second phase can be solid 

or liquid, here only chromatography with a solid stationary phase is described. 

It is called stationary, because it is fixed, in contrast to the first phase, which 

is called mobile phase. In liquid chromatography (LC), the stationary phase is 

usually packed into a cylinder, the system being called a chromatography 

column. While the mobile phase is pumped through the column, the molecules 

to be separated are retained by the solid phase by reversible, physical 

adsorption processes. For process chromatography of biologics, the adsorbent 

usually consists of a porous medium of packed beads or also membranes. Here, 

only columns with porous bead packing will be regarded. Components of the 

mobile phase with a higher affinity to the stationary phase have a higher mean 

adsorption time and thus a lower migration speed through the column. This 

can be exploited by collecting different fractions at the column end containing 

the separated components. The process is usually monitored at the column end, 

for example with UV absorption and conductivity detectors. In so-called 

chromatograms, the detector signal is displayed and analyzed regarding 

parameters like retention time of the components and resolution of the 

separation. Furthermore, they can be used for quantification of the processed 

components, given a suitable absorption profile. 

In biopharmaceutical downstream processing, liquid chromatography is a very 

common unit operation. Most purification processes contain between one and 

three chromatography steps. Compared to small molecules, the processing of 

biologics entails a number of different requirements. For example, biopolymers 

like proteins are substantially bigger and thus have around 100 times smaller 

diffusion coefficients, which impacts mass transfer characteristics83. Their 

tertiary structure, vital for their intended function, can be negatively 

influenced by solution conditions or physical effects like shear stress or 

temperature. Consequently, preparative chromatography for biomolecules is 

conducted with aqueous buffers avoiding extreme conditions (pH, salt, 
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temperature etc.). Moreover, separation can in most cases only be achieved by 

running linear or step gradients of varying solution properties, because of 

highly different retention times82. A typical bind-and-elute process is composed 

of at least an equilibration, load, wash, and elution step. In the first step, the 

column is equilibrated to conditions that facilitate optimal binding of the 

target, before the product solution is loaded. A wash step can for example serve 

to remove weakly bound contaminants. In the elution, the solution conditions 

are changed in order to ensure the complete removal of the product from the 

column, which can then be collected at the column outlet, ideally separated 

from impurities. In flow-through mode, the impurities are bound instead of the 

product. 

Three important techniques for the purification of biologics based on different 

kinds of interactions between adsorbent and solutes are affinity (AC), ion 

exchange (IEX), and hydrophobic interaction chromatography (HIC). In AC, 

the adsorption is based on specific interactions between ligand and target. The 

Protein A ligand used in mAb purification, for example, is a protein isolated 

from Staphylococcus aureus, which specifically binds to the Fc region of the 

antibodies. IEX exploits different charges between products and contaminants. 

The charges strongly depend on the eluent pH and the isoelectric point of the 

components. Retention is modified by varying the salt concentration of the 

eluent, a high salt content effecting weaker binding.  

HIC is of interest in the ADC field due to the hydrophobic nature of the drugs 

that are used and is thus described in greater detail. For this type of 

chromatography, hydrophobic ligands like phenyl or alkyl groups are used. 

Like the name suggests, adsorption is caused by hydrophobic interactions 

between hydrophobic patches of the protein and these hydrophobic ligands. 

Kosmotropic salts, in contrast to chaotropic salts, promote hydrophobic 

interactions by the way they interact with water molecules, influencing the 

chemical potential of the protein in solution84,85. Due to this effect, a high 

concentration of rather kosmotropic salts is generally used for equilibration 

buffers in HIC. Elution is then induced by lowering the salt content. HIC is a 

common step for mAb polishing, but it is also applied to the separation of 

antibody-drug conjugates with different levels of conjugation (preparatively as 

well as analytics)70,86–88. 

When developing a chromatography step for a biopharmaceutical product, it is 

crucial to optimize the process for yield, purity, and productivity, while keeping 

in mind high adsorber costs and strict timelines. The parameter space is large 

and thus process development time-consuming and costly. This is why high-

throughput tools, DoE, and increasingly also mechanistic models are applied 

to efficiently design robust and high-quality processes12,14,15,63,65,89–92. The next 
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section gives an introduction to the mechanistic modeling of column 

chromatography. 

1.4.2 Mechanistic chromatography modeling 

The function of a mechanistic model for a chromatography process is to describe 

mathematically what is happening inside the column, from fluid dynamics over 

mass transfer to adsorption. A calibrated model can then be used in different 

ways, for example to generate process understanding, for process optimization, 

or even root-cause investigations89,90,93,94. 

For a time and space dependent process, dynamic and microscopic balances 

have to be used94. Common models for chromatographic columns are usually 

based on one-dimensional mass balances as shown in Figure 1.4. This is based 

on assuming a homogeneous bed of equal and spherical particles, constant fluid 

density and viscosity, negligible radial distributions, and no convection inside 

the particles94. Furthermore, an isothermal process and inert eluents are 

assumed. With a set of different, connected models, it is possible to describe the 

adsorption equilibrium between fluid and solid phase, the components’ 

resistance to mass transfer, and the fluid dynamics inside the column. 

Depending on their complexity, chromatography models may include different 

numbers of the effects displayed in Figure 1.4 in addition to convective 

transport. 
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Figure 1.4: Processes in chromatographic columns, which can be modeled by setting 

up differential mass balances. Not included in the figure is surface diffusion, which 

can also contribute to mass transfer inside the pores. Figure adapted from Seidel-

Morgenstern et al.94. 

For calibrating the models, a number of parameters and properties of the 

system have to be determined. Some are usually provided by manufacturers, 

some are accessible experimentally, and some need to be estimated 

numerically. Basic parameters like volumes and porosities can be determined 

by injections of non-interacting tracers94. The column volume Vc is split into 

the interstitial volume Vint (mobile phase) and the volume of the stationary 

phase Vads, which consists of the solid part Vsol and the pore volume Vpore. In 

Equation 1.3, 1.4, and 1.5 the porosities calculated from these volumes are 

displayed. εint is the interstitial porosity, εp the porosity of the stationary phase, 

and εtot the total column porosity. 

𝜀int =
𝑉int
𝑉c

 (1.3) 

 

𝜀p =
𝑉pore

𝑉ads
 (1.4) 

 

𝜀tot =
𝑉int + 𝑉pore

𝑉c
= 𝜀int + (1 − 𝜀int)𝜀p (1.5) 

 

dx

Convection

Dispersion 1

2

3

1 - Film diffusion

2 - Pore diffusion

3 - Adsorption



1.4 Mechanistic modeling of liquid chromatography for large biomolecules 

20 

 

The interstitial porosity is used to determine the interstitial velocity of the 

mobile phase uint in Equation 1.6. �̇� is the volumetric flow rate and dc the inner 

diameter of the column. 

𝑢int =
�̇�

𝜀int ∙ 𝜋 ∙
𝑑c2

4

 (1.6) 

In this work, the transport-dispersive model (TDM), a lumped-rate model, was 

used. It comprises an axial dispersion term Dax, covering the influence of 

hydrodynamic effects on band broadening (e.g. quality of the packing). Inside 

the beads, concentration distribution is not taken into account. Instead, the 

TDM includes a lumped coefficient, the effective film transfer coefficient, keff, 

which combines external and internal mass transfer resistances (film diffusion, 

pore diffusion, and surface diffusion). A balance for the mobile phase (Equation 

1.7) and a balance for the stationary phase (Equation 1.8) are necessary to 

describe the system. Equation 1.7 gives the change of the concentration ci(x,t) 

of component i in the mobile phase. The first term, describing the convective 

transport, is affected by the interstitial velocity uint. In the middle is the mass 

transfer term, containing keff,i, which is also influenced by εint, the particle 

radius rp, and the difference between ci and the pore concentration cp,i. The last 

term is the axial dispersion term. 

𝜕𝑐𝑖
𝜕𝑡

= −𝑢int ∙
𝜕𝑐𝑖
𝜕𝑥

−
1 − 𝜀int
𝜀int

∙ (𝑘eff,𝑖 ∙
3

𝑟p
∙ (𝑐𝑖 − 𝑐p,𝑖)) + 𝐷ax ∙

𝜕2𝑐𝑖

𝜕𝑥²
 (1.7) 

 

𝜀p ∙
𝜕𝑐p,𝑖

𝜕𝑡
+ (1 − 𝜀p)

𝜕𝑞𝑖
𝜕𝑡

= 𝑘eff,𝑖 ∙
3

𝑟p
∙ (𝑐𝑖 − 𝑐p,𝑖) (1.8) 

The balance for the particle phase (Equation 1.8) is strongly dependent on the 

particle porosity εp and it relates the pore concentration cp,i to the concentration 

adsorbed to the solid phase qi and the concentration in the mobile phase ci. The 

concentration loaded to the adsorber is a function of the pore concentration. In 

the case of the transport-dispersive model, no adsorption kinetics are 

considered and the equilibrium is given by an isotherm equation. Apart from 

common isotherms like Langmuir, various isotherms have been published for 

different types of adsorbers75,95–97. Depending on the isotherm, they take into 

account factors like salt content, concentration dependent parameters, and 

shielding of binding sites by bound proteins.   
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2 Thesis outline 

2.1 Research proposal 

Antibody-drug conjugates for cancer treatment are one of the recent, promising 

modalities taking to the growing biopharmaceutical market. Together with 

other new formats, they contribute to a diversifying product pipeline. While 

this diversification results in new solutions for so far unmet medical needs, it 

also poses challenges to biopharmaceutical process development by impairing 

the use of platform approaches. At the same time, the pressure to minimize 

time to market is intensified by immense development costs and growing 

competition. Another great challenge for process development is the 

implementation of the ‘quality-by-design’ concept, called for by regulatory 

agencies. It requires enhanced process and product understanding and control 

in order to move away from mostly heuristic approaches in process 

development.  

Being composed of monoclonal antibodies and cytotoxic small molecule drugs, 

ADCs are hybrid molecules with inherent development challenges regarding, 

for example, product heterogeneity and pharmacokinetics. These specific 

characteristics have to be handled, while at the same time meeting the general 

challenges of biopharmaceutical process development given above. This 

requires the application of new tools facilitating an efficient, systematic, and 

knowledge-based process development. The focus of this thesis is the 

establishment of high-throughput, analytical, and digital methods for the 

purpose of advancing process development of ADCs in this direction. 

A key area of ADC research is the development of site-specific conjugation 

strategies with the goal of increasing homogeneity and reducing drug 

deconjugation of next generation ADCs. The different approaches for site-

specific conjugation often require multiple reaction steps that comprise many 

parameters to be screened and optimized. Examples are different conjugation 

chemistries, types and concentrations of reactants, reaction times, and solution 

conditions like the pH and buffer. For an efficient characterization of the design 

space, high-throughput tools combined with DoE approaches are highly suited. 

However, especially when intermediate buffer exchange steps and protein 

quantification are needed, it is not straightforward to perform such complex 

processes in a fully automated fashion. In a first study, the challenge of 
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transferring a multi-step conjugation process for site-specific conjugation of 

antibodies to a robotic liquid handling station is faced. The high-throughput 

platform needs to include an intermediate high-throughput buffer exchange 

and automated determination of the protein concentration with process 

feedback. Another challenge is the development of high-throughput compatible 

analytics for assessing the result of the reaction. Once developed, the 

applicability of the platform will be investigated in a parameter screening 

based on DoE and the comparability to a different scale will be evaluated. 

Naturally, it is not only of interest to determine parameters like the protein 

concentration after process steps are completed. In order to implement process 

control strategies, new ways of monitoring critical process parameters (CPPs) 

and critical quality attributes (CQAs) have to be included in process 

development. An important CQA of ADCs is the drug-to-antibody ratio (DAR), 

which strongly influences efficacy and safety of the product. It is generally 

determined by analytical chromatography after stopping the reaction, which is 

not very feasible for an application as part of a PAT tool for reaction 

monitoring. This requires a method for assessing the progress of ADC 

conjugation reactions on-line, which will be the focus of the second study2. The 

goal will be the establishment of a fast analytical method for determining the 

degree of conjugation without the need for any sample handling. UV/Vis 

absorption spectroscopy is widely used in biopharmaceutical manufacturing 

and will be investigated as a fast, quantitative, and noninvasive technique. To 

this end, it will be examined, if the conjugation reaction of a small surrogate 

drug molecule to an antibody causes a spectral change. This change could then 

possibly be correlated to the amount of conjugated drug in the solution and 

thus the reaction progress. Multivariate data analysis will be applied to 

establish this correlation. One important part of the study will be underlining 

the validity of the approach by using different surrogate drug molecules and 

different experimental setups with different detectors. The final method may 

help reduce an analytical bottleneck in ADC process development and allow for 

real-time process monitoring, a prerequisite for the implementation of PAT 

approaches. 

Another essential part in transforming conjugation process development 

towards more QbD-focused approaches is addressing it from a mechanistic 

angle. A kinetic model of the conjugation reaction, a central step in making 

ADCs, would facilitate the prediction of the product composition at any point 

of the reaction, enabling in silico parameter screening and optimization, 

possibly outside the calibration range. At the same time it could yield 

information on the underlying mechanism and thus benefit process and 

product understanding. Since no such models exist for ADC conjugations, the 
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third study will have the goal of creating a kinetic reaction model for a site-

specific conjugation to a mAb3. For achieving an accurate model of the 

underlying process, different model structures will be set up and tested. The 

relevance for ADC process development will be demonstrated by optimizing the 

modeled process towards low consumption of drug and a short reaction time. 

Efficient drug use is crucial due to its high cost and toxicity. The need for better 

process understanding will be further addressed by investigating the influence 

of different salts on reaction kinetics. Finally, a combination of the kinetic 

model with the reaction monitoring approach developed in the second study is 

intended, which could expand its capabilities for on-line process assessment. 

As elaborated above, the DAR is critical for the quality of the final ADC 

product. Initially, the DAR is set by the conjugation, which will be addressed 

in the other studies outlined in this proposal. It is also possible, however, to 

adjust the DAR post conjugation. To do so, it might be necessary to remove 

unconjugated mAb or components with unfavorable degrees of conjugation. For 

achieving this separation, hydrophobic interaction chromatography is the most 

suitable method due to additional hydrophobicity introduced by the conjugated 

drugs. For a critical quality attribute like the DAR, it is important to 

understand the relationship between process and product performance and to 

ensure the robust achievement of a specified range. Fulfilling these 

requirements usually involves extensive experimental effort. In order to reduce 

the lab work and possibly widen the design space and increase robustness, 

mechanistic models can be applied. After establishing a model for the 

conjugation reaction, it will thus be the goal of a forth study to develop a 

mechanistic HIC model for the separation of different ADC components. First, 

an adsorber exhibiting sufficient separation of the components will be 

identified, before a suitable column model and a model for the adsorption 

equilibrium are selected. In case of successful model calibration, it will be 

important to validate the capability of the model to calculate optimized HIC 

conditions for different load compositions. The accurate prediction of process 

outcomes like yield and DAR in the HIC pool needs to be validated. Finally, a 

combination with a mechanistic model for the conjugation reaction could be 

beneficial since both steps influence the final DAR. 
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2.2 Outline and author statement 

In Chapter 4, first authorship was shared (contributed equally) among my 

colleague Matthias Rüdt and me. This was undertaken to elevate the quality 

of our common publication. A detailed listing of author contributions signed by 

the respective authors is given in the Appendix of the examination copy. In 

general, work connected to antibody conjugation reactions as put forward in 

Abstract and Research proposal has been performed by myself. Fundamentals 

for techniques concerning PAT used throughout the study, have been laid by 

the thesis of Rüdt, M. (2018) ‘Spectroscopy as process analytical technology for 

preparative protein purification’. 

 

 Chapter 3: Multi-step high-throughput conjugation platform for 

 the development of antibody-drug conjugates 

S. Andris, M. Wendeler, X. Wang, J. Hubbuch 

Journal of Biotechnology (2018), Volume 278, Pages 48–55 

In Chapter 3, an automated high-throughput platform for antibody conjugation 

reactions was developed on a robotic liquid handling station. Site-specific 

approaches for the generation of antibody-drug conjugates often require 

multiple steps including an intermediate buffer-exchange. The proposed 

method contains all typical steps for the site-specific conjugation to engineered 

cysteine residues and facilitates a buffer-exchange using a batch cation-

exchange step. A subsequent automated protein quantification with process 

feedback provides the means for accurate adjustment of reagent concentrations 

in the following steps. For showcasing the application of the platform towards 

efficient process characterization, a high-throughput conjugation DoE was 

conducted. Finally, the high-throughput platform showed comparable results 

in a comparability-study with a mL-scale manual conjugation approach. 
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 Chapter 4: Monitoring of antibody-drug conjugation reactions

 with UV/Vis spectroscopy 

S. Andris*, M. Rüdt*, J. Rogalla, M. Wendeler, J. Hubbuch  

(*contributed equally) 

Journal of Biotechnology (2018), Volume 288, Pages 15-22 

In this article, the real-time monitoring of an antibody-drug conjugation 

reaction using UV/Vis absorption measurements and PLS regression is 

demonstrated. Conjugation experiments with two maleimide-functionalized 

surrogate drugs were conducted in a microplate setup as well as in 20 mL scale. 

A change in the UV/Vis absorption spectra was recorded with a Tecan 

microplate reader and a diode array detector (DAD), respectively. This change 

was correlated to the course of the reaction i.e. the amount of conjugated drug. 

To this end, PLS regression models were generated for the different drug 

molecules and the different setups and subsequently validated using cross-

validation. The microplate models were additionally validated with an external 

test data set. 

 

 Chapter 5: Kinetic reaction modeling for antibody-drug

 conjugate process development 

S. Andris, J. Seidel, J. Hubbuch 

Journal of Biotechnology (2019), Volume 306, Pages 71-80 

Chapter 5 investigates the mechanistic modeling of the reaction kinetics of 

antibody-drug conjugations and its application to process development. Six 

model structures with different assumptions regarding the mechanism were 

set up in the form of ordinary differential equations (ODEs). For model 

calibration, selection, and validation, 21 experiments with varying starting 

concentrations of the reactants were conducted and kinetics were recorded. 

After model calibration with 12 experiments, the best model was selected using 

cross-validation. The best model was additionally validated with an external 

test data set containing 9 experiments. To further enhance process 

understanding, the influence of different salts on the reaction rate was studied. 

Next, the application of the model to in silico process screening and 

optimization was demonstrated. Finally, the combination of the kinetic model 

with the reaction monitoring tool established in Chapter 4 was investigated. 
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 Chapter 6: Modeling of hydrophobic interaction 

 chromatography for the separation of antibody-drug conjugates 

 and its application towards quality by design 

S. Andris, J. Hubbuch 

Journal of Biotechnology (2020), Volume 317, Pages 48-58 

In Chapter 6 the application of mechanistic modeling to the preparative 

separation of ADC components using HIC was investigated. After thoroughly 

characterizing the system and the column, linear and step gradient runs with 

different load compositions were conducted for model calibration. The model 

parameters of the transport-dispersive model and a suitable adsorption 

isotherm were either determined experimentally or through parameter 

estimation. Using the model, optimized step gradient conditions were 

calculated and the successful prediction of peak profiles, yield and DAR was 

validated. Next, an in silico case study was conducted demonstrating the 

capabilities of the model to increase robustness in achieving the target DAR by 

reacting to variations in the conjugation. In the last part, the HIC model was 

combined with the kinetic reaction model established in Chapter 5, in order to 

study the interplay between conjugation and HIC purification in reaching the 

target DAR. 
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Abstract 

Antibody drug conjugates (ADCs) form a rapidly growing class of 

biopharmaceuticals which attracts a lot of attention throughout the industry 

due to its high potential for cancer therapy. They combine the specificity of a 

monoclonal antibody (mAb) and the cell-killing capacity of highly cytotoxic 

small molecule drugs. Site-specific conjugation approaches involve a multi-step 

process for covalent linkage of antibody and drug via a linker. Despite the 

range of parameters that have to be investigated, high-throughput methods 

are scarcely used so far in ADC development. 

In this work an automated high-throughput platform for a site-specific multi-

step conjugation process on a liquid handling station is presented by use of a 

model conjugation system. A high-throughput solid-phase buffer exchange was 

successfully incorporated for reagent removal by utilization of a batch cation-

exchange step. To ensure accurate screening of conjugation parameters, an 

intermediate UV/Vis-based concentration determination was established 

including feedback to the process. For conjugate characterization, a high-

throughput compatible reversed-phase chromatography method with a 

runtime of 7 min and no sample preparation was developed. Two case studies 
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illustrate the efficient use for mapping the operating space of a conjugation 

process. Due to the degree of automation and parallelization, the platform is 

capable of significantly reducing process development efforts and material 

demands and shorten development timelines for antibody-drug conjugates. 

3.1 Introduction 

Antibody-drug conjugates (ADCs) constitute a class of therapeutic molecules 

inspiring high hopes for patients as well as pharmaceutical companies on the 

basis of their potential for cancer treatment. Around 60 ADCs in clinical trials 

in the beginning of 2017 indicate the amount of resources that is currently and 

has previously been invested in their development98. Until 2017, the only two 

ADCs on the market were Seattle Genetics’s brentuximab vedotin (Adcetris) 

and Genentech and Immunogen’s trastuzumab emtansine (Kadcyla), approved 

in 2011 and 2013, respectively. In August 2017, inotuzumab ozogamicin 

(Besponsa) by Pfizer was approved for relapsed or refractory B-cell precursor 

acute lymphoblastic leukemia. The highly complex compounds consist of three 

components: a monoclonal antibody (mAb), a cytotoxic drug and a linker 

between the two. The intention is to combine the specificity of the mAb and the 

cell-killing capacity of the small molecule drug in one compound, potentially 

widening the therapeutic window compared to the individual cytotoxic drug.  

Induced by the currently limited success of conjugation procedures where 

random lysines or hinge cysteines are targeted, a generation of more 

homogeneous ADCs with site-specific conjugation strategies is currently in 

development. These strategies enable control of drug-to-antibody ratio (DAR) 

and conjugation site, both of which heavily influence efficacy, stability and 

pharmacokinetics46,49,88,99,100. Site-specific conjugation to engineered cysteines 

instead of hinge cysteines has been shown to improve the therapeutic index44. 

To pave the way for this third generation of ADCs more than 40 site-specific 

drug conjugate technologies have been developed, often in combination with 

novel conjugation chemistries98. Many of these technologies require multi-step 

conjugation processes, in which a range of parameters can be varied. For the 

case of engineered cysteine mAbs, this usually involves a reduction step to 

uncap engineered cysteines and a partial re-oxidation step to reform interchain 

cysteines. Additionally, the residual reduction agent has to be removed before 

oxidation and conjugation. This adds further development challenges to the 

existing ones being the selection of the best target antigens and cytotoxic drugs 

and the development of a linker system and a suitable conjugation chemistry. 

Parameters like protein, reagent and drug concentrations have to be screened 

as well as process conditions like temperature, reaction time and mixing.  

As an appropriate measure to speed up the development process, high-
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throughput tools seem to be the logical choice. Yet they are only scarcely used 

in ADC process development, judged by the amount of literature that is 

available on the topic. In other biotechnological fields like the development of 

chromatographic separations for downstream processes, high-throughput 

screenings are widely used in academia and industry63,66,101–103. One of the 

reasons is that for many multi-step conjugation processes an intermediate 

buffer exchange or reagent removal step is necessary44,87,99,104,105, which is more 

complicated to realize in a high-throughput way than simple pipetting and 

mixing steps. The other issue can be, that in order to achieve defined process 

conditions, concentration determination is necessary between steps, which is 

also challenging to perform in an automated, high-throughput fashion.  

Vink et al. transferred a dialysis step, which is widely used for buffer exchange, 

to high-throughput scale in their 96 well crystallization block106. The challenge 

with this approach is that the dialysis time lies in the range of several days, 

which makes it less applicable to high-throughput conjugations. Source 30RPC 

reversed-phase media was successfully used for buffer exchange in a platform 

for high-throughput characterization of mAbs, but this strategy is suitable only 

for analytical applications as elution was done with 50% acetonitrile and 0.1% 

TFA at 50 °C 107.  

With regard to antibody drug conjugation, three approaches for high-

throughput platforms were found in the literature. The first one by 

Zimmerman et al. combines the cell free expression of azide amino acid 

containing antibodies with their purification and conjugation108. The 

purification was done using IMAC Phytips (Phynexus Inc, San Jose, USA) 

which require His-tagged proteins. The buffer exchange after conjugation was 

performed with special gel filtration plates. Since the conjugation was a single-

step process, no protein quantification was integrated. Catcott et al. proposed 

a microscale platform for a single-step conjugation process where 30 kDa filter 

plates are used for reagent removal by repeated centrifugation and buffer 

addition, resulting in a diafiltration type buffer exchange69. They demonstrated 

the applicability to ADC lead selection. A solid-phase site-specific conjugation 

methodology was developed by Puthenveetil et al. consisting of a multi-step 

conjugation to engineered cysteines where each step is conducted with the 

antibody bound to Protein A/L beads70. This facilitates the removal of reagents 

or the exchange of buffers by washing the beads with the desired buffer but 

raises the question of the comparability to solution-phase conjugations.  

What becomes apparent is the absence of an automated high-throughput 

platform for a multi-step solution-phase conjugation process with broad 

applicability to site-specific conjugations. This work proposes, at the example 

of the multi-step conjugation to engineered cysteine antibodies, the transfer of 

the complete sequence of steps needed for this reaction to a robotic liquid 

handling station. The 96-well high-throughput process includes an automated 
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intermediate buffer exchange, using a cation-exchange resin, with subsequent 

protein quantification. Instead of cytotoxic payloads, non-toxic fluorophores are 

used as surrogate drugs. The suitability of the approach to screen conjugation 

reaction conditions is demonstrated and the comparability to reactions in 

milliliter scale is investigated. 

3.2 Materials and Methods 

3.2.1 Chemicals 

For reduction of disulfides tris(2-carboxyethyl)phosphine hydrochloride 

(TCEP, Sigma-Aldrich, St. Louis, USA) was used. (L)-dehydroascorbic acid 

(DHA, Sigma Aldrich) was used for re-oxidation of interchain disulfides. As 

substitute for a cytotoxic drug 7-Diethylamino-3-(4'-Maleimidylphenyl)-4-

Methylcoumarin (CPM, Sigma-Aldrich) was selected. Dimethyl sulfoxide 

(DMSO, Sigma Aldrich) was necessary to dissolve DHA and CPM. N-acetyl 

cysteine (NAC, Sigma Aldrich) was applied as quenching reagent. For buffer 

preparation NaH2PO4 x 2 H2O and K2HPO4 were obtained from VWR 

International GmbH (Darmstadt, Germany) and NaCl and KCl from Merck 

KGaA (Darmstadt, Germany). All buffers were titrated to the desired pH with 

4 M NaOH (Merck KGaA) and filtered through a 0.2 µm cellulose acetate 

membrane filter (Sartorius AG, Göttingen, Germany). 

3.2.2 Model system and conjugation process 

Purified IgG1 mAb with two engineered cysteines as conjugation sites was 

provided at a concentration of 12.4 mg/mL in PBS (+5 mM EDTA, pH 7.2) by 

MedImmune, LLC. CPM was used as a non-toxic maleimide-functionalized 

surrogate drug and conjugated to the antibody’s engineered cysteines via its 

maleimide linker. The reaction scheme is shown in Figure 3.1. The initial step 

in the conjugation process was a mild reduction with TCEP to uncap 

engineered cysteine residues. To re-establish interchain disulfides, reduction 

was followed by partial re-oxidation. The conjugation reaction was stopped by 

addition of excess NAC. Detailed process and reagents are described in the 

following section. 
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Figure 3.1: Reaction scheme for the conjugation reaction. The maleimide functionality 

of the CPM molecule reacts with the thiol group of the two engineered cysteine residues 

of the antibody, forming a stable thioether bond. 

3.2.3 Multi-step high-throughput conjugation 

An overview of the process is shown in Figure 3.2. Automated liquid and 

microplate handling was done on a Freedom EVO 200 platform (Tecan Group 

Ltd., Männedorf, Switzerland) with an integrated Infinite 200 PRO multimode 

plate reader (Tecan Group Ltd.). The platform was controlled via the Freedom 

EVOware software (Tecan Group Ltd.). All steps were performed at a 

temperature of 22 °C. For all incubation steps, the microplate was covered by 

a lid to minimize evaporation.  

The purified antibody was transferred to a 96 well U-bottom polypropylene 

(PP) microplate (#650201, greiner bio-one GmbH, Frickenhausen, Germany) 

and diluted to the desired concentrations with 50 mM sodium phosphate buffer 

at pH 7.2 (“equilibration buffer”), resulting in a volume of 245 µL per well. For 

global reduction of disulfides 40 molar equivalents of TCEP in equilibration 

buffer were added. The plate was incubated for 2 h 15 min on the integrated 

orbital shaker (Te-ShakeTM; Tecan Group Ltd) at 700 rpm. During the 

reduction, a 96 well 0.2 µm GHP filter plate (#8082, AcroPrepTM Advance; Pall 

Corporation, New York, USA) was manually prefilled with a strong cation-

exchange resin (POROSTM XS; #4404338, Life technologies, Foster City, USA). 

Each well was filled with 65 µL of 56% slurry in 18% ethanol. The filter plate 

was placed inside the liquid handling station for further processing. First, the 

storage solution of the resin was removed using the integrated Te-VacSTM 

vacuum filtration system (Tecan Group Ltd.). Next, the resin was equilibrated 

three times with 200 µL of equilibration buffer. To prevent the resin from 

drying out, the equilibration was programmed to be finished shortly before the 

end of the reduction step. The equilibrated resin was used to remove TCEP 

after the reduction, conducting a solid phase buffer exchange. 225 µL of 

reduced mAb solution were transferred to the filter plate to be loaded onto the 

resin. After 15 min of orbital shaking at 1000 rpm, the load solution was 

removed and the resin with bound mAb was washed once with 150 µL of 

equilibration buffer. The first elution step was done by adding 112.5 µL of 50 
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mM sodium phosphate buffer with 500 mM NaCl (“elution buffer”) and 

incubating for 10 min while shaking at 1000 rpm. The eluate 1 was removed 

by vacuum filtration and collected in a 96 well F-bottom PP microplate 

(#655201, greiner bio-one), before conducting the second elution in the same 

way. Eluate 1 and 2 were mixed at 1000 rpm for 80 s. With 25 µL of the 

resulting 225 µL of eluate a concentration determination was conducted (see 

next paragraph) and the pipetting volumes were updated accordingly by 

Matlab (Mathworks, Natick, USA). Then, the re-oxidation of interchain 

disulfides was started by addition of 20 molar equivalents of DHA dissolved in 

DMSO. The plate was incubated for 1-4 h with mild mixing (700 rpm). For the 

conjugation reaction, the surrogate drug CPM was dissolved in DMSO and 

added to the re-oxidized antibody in molar excess depending on the application. 

After 45 min, a molar excess of 12 equiv of NAC over CPM dissolved in 

ultrapure water was added to quench the reaction. 

 

Figure 3.2: High-throughput platform for conjugation process development on 

automated liquid handling station. The concentration c stands for the mAb 

concentration after the buffer exchange step, which is determined to calculate reagent 

concentrations for the following steps. 

3.2.4 Protein quantification 

This step is part of the Freedom EVOware script which was created for the 

whole process. After the buffer exchange step, the resulting protein 

concentration in the eluate has to be determined. For this purpose, a 25 µL 

sample is taken from each well and diluted with 175 µL of elution buffer in a 

96 well UV-Star microplate (#655801, greiner bio-one). With the integrated 

plate reader, absorption at 280 nm is measured and the resulting excel file is 

automatically accessed by Matlab. With a previously determined calibration 
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factor the protein concentration is calculated and entered into the source excel 

file, from which EVOware receives the pipetting volumes. This way, the mAb 

concentration is updated during the process to achieve accurate molar ratios 

for oxidation and conjugation. 

3.2.5 Optimization and characterization of CEX buffer exchange step 

In the experiments conducted to optimize slurry volume and determine yield 

and reproducibility, the buffer exchange procedure was generally as described 

in the high-throughput conjugation section. To be able to determine the yield 

of the steps, load, wash and elution were collected in UV-Star microplates and 

the concentrations were determined with the Tecan plate reader. For 

concentrations over 2 mg/mL, samples were diluted with elution buffer for the 

measurement. The slurry volume study was run with a starting mAb 

concentration of 10 mg/mL, which equals a loading of 53-73 g per liter of resin 

for the investigated slurry volumes of 55-75 µL. To reduce material 

consumption, the reproducibility study was run at 2 mg/mL. 

3.2.6 Analytics 

To assess the result of the conjugation, reversed-phase ultra-high performance 

liquid chromatography (RP-UHPLC) was applied. A Dionex Ultimate 3000 

system was used, equipped with pump unit, RS autosampler, RS column 

compartment and diode array detector (Dionex Softron GmbH, Germering, 

Germany). No sample preparation like reduction was required for this method 

as the native mAbs were analyzed. An Acquity UPLC Protein BEH C4 column 

(#186004495, Waters Corporation, Milford, USA; 300 Å, 1.7 µm, 2.1 mm x 50 

mm) was used with a flow rate of 0.45 mL/min at a temperature of 80 °C. 

Solvent A consisted of 0.1% trifluoroacetic acid (TFA) in ultrapure water, 

solvent B was 0.1% TFA in acetonitrile. Equilibration and injection were done 

at 26% B. After 0.2 min, % B was raised to 30%. Then, a 4.8 min gradient from 

30% to 38% B was run for separation of the conjugated samples. Including the 

following strip at 95% B and 1.2 min of re-equilibration the entire method had 

a runtime of 7 min. UV signals at 280 nm and at the corresponding absorption 

maximum of the used surrogate drug were recorded (384 nm for CPM). 

Concentrations of ADC species were calculated using a calibration curve for 

mAb concentrations and the ratio of CPM absorption at 280 nm and 384 nm.  

To determine monomer content, a TSK Gel SuperSW mAb HTP 4.6x150 mm 

column (#22855, Tosoh Bioscience, Griesheim, Germany) was used with 

isocratic flow of SEC-buffer (200 mM K2HPO4, 250 mM KCl, pH 7) for a 

runtime of 8 min (0.3 mL/min). 
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3.2.7 High-throughput conjugation DoE 

A central composite face-centered design with 3 center points was created with 

the statistics software MODDE 10.1 (Sartorius Stedim Data Analytics AB) to 

test the high-throughput approach with the mAb and CPM model system. mAb 

concentration and CPM excess were varied as factors in the DoE. mAb 

concentration range was set between 2 and 6 mg/mL and CPM excess between 

2 and 10 equiv. All runs were performed at once according to the high-

throughput conjugation procedure described above, except reduction was run 

for 3 h and oxidation for 4 h. Samples were analyzed using RP-UHPLC. 

3.2.8 Comparability study 

To showcase the potential of the high-throughput platform and at the same 

time show comparability with a standard mL-scale procedure, the reaction 

kinetics of the model conjugation system were investigated once using the 

described high-throughput approach and once in mL-scale. For the mL-scale, 

conjugation reactions were conducted manually in 2 mL centrifuge tubes 

(Eppendorf AG, Hamburg, Germany), reduction and oxidation in 50 mL 

centrifuge tubes (VWR). The same conditions, reagents and incubation times 

were used as for the high-throughput conjugation. During all incubation steps, 

light mixing was applied with Thermo Mixer MKR 13 (HLC BioTech, 

Bovenden, Germany). After reduction, a buffer exchange was performed by 

dialysis to remove residual TCEP. For this, Slide-A-Lyzer dialysis cassettes 

(#66807, Thermo Fisher Scientific) with a 10,000 Da molecular weight cut off 

(MWCO) were used in 2.0 L of equilibration buffer at 4 °C (overnight). For 

concentration determination after buffer exchange, a NanoDrop 2000c 

spectrometer (Thermo Fisher Scientific) was used. The model system consisted 

of the engineered antibody and CPM which was used as a surrogate drug and 

conjugated to the antibody’s engineered cysteines.  

2 and 4 mg/mL of antibody were selected as starting concentrations and 

duplicates were run for both concentrations. To assess the kinetics, the reaction 

was quenched at different time points up to 20 min. For the HTC, a separate 

well was assigned to each time point and quenched accordingly. In mL-scale, 

100 µL samples were drawn from the tubes at each time point and added to a 

prepared quenching plate containing NAC. All samples were analyzed by RP-

UHPLC, the ones from the HTC also with size-exclusion chromatography 

(SEC). 



3 Multi-step high-throughput conjugation platform 

35 

 

3.3 Results and Discussion 

3.3.1 Implementation of high-throughput conjugation process on liquid handling 

station 

The model process utilized for this work consisted of the site-specific 

attachment of a maleimide-functionalized fluorophore (surrogate drug) to two 

engineered cysteine residues in a mAb. This process involves multiple steps: 

reduction with TCEP to remove capping groups from the engineered cysteines; 

removal of reducing agent via buffer exchange; re-oxidation of interchain 

disulfide bonds with DHA; conjugation with the maleimide-functionalized 

surrogate drug; quenching of residual free drug by addition of NAC. To obtain 

a fully automated, high-throughput, microscale conjugation process, every part 

of the multi-step conjugation process had to be transferred to the liquid 

handling station, with the most challenging being the high-throughput buffer 

exchange. Weight-based liquid classes were generated for pipetted solutions to 

assure high accuracy in pipetting (data not shown). To reduce loss when 

transferring samples, U-bottom microplates were used. This way, all but 

< 20 µL of a sample can be transferred from one plate to another. 

Several methods were assessed regarding the high-throughput TCEP removal, 

the first one being the commercially available Immobilized TCEP Disulfide 

Reducing Gel (Thermo Scientific). The rationale was to conduct the reaction in 

a filter plate and afterwards remove the reduced mAb solution via vacuum 

filtration. This concept was abandoned due to insufficient reduction and 

unspecific adsorption of the mAb to the agarose beads, which could not be 

improved sufficiently by addition of low amounts of salt. Next, a size-exclusion 

type approach was studied. Zeba Spin Desalting Plates (40 kDa MWCO, 

ThermoFisher Scientific) were used to exchange the buffer and remove TCEP. 

Here, the main drawback was the low maximal sample volume of 100 µL which 

decreases flexibility or increases complexity for the application in the high-

throughput conjugation process. Also the use of ultrafiltration plates (Acroprep 

Advance Omega 30 kDa, Pall) with repeated centrifugation and buffer addition 

was discarded due to low reproducibility. The issues with all of these methods 

could be eliminated by developing a buffer exchange step based on cation 

exchange (CEX). To facilitate this high-throughput CEX-step, a high capacity 

CEX-resin was pipetted into a 0.2 µm filter plate. As described in the methods 

section, the reduced mAb was loaded onto the CEX-beads at low salt content 

and pH 7.2, washed with equilibration buffer to ensure effective TCEP removal 

and then eluted with high salt buffer also at pH 7.2 (500 mM NaCl). The 

possibility to keep the pH constant is a great advantage compared to using a 

Protein A resin like Puthenveetil et al. in their solid-phase conjugation 
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process70, as no neutralization is necessary. The other issue with Protein A 

could be that certain linkages like acid-labile cleavable hydrazone linkers 

might be sensitive to low pH exposure during elution. The advantage of the 

solid-phase conjugation approach is that removal of residual free drug can be 

done by repeatedly washing the solid support before elution without further 

steps. In the present approach this feature could possibly be included by adding 

another CEX buffer exchange step after conjugation. 

The CEX step was initially optimized regarding protein yield, which is 

predominantly depending on binding characteristics and the volume of resin 

slurry used per well. Slurry volume was optimized with the goal of finding the 

optimum between insufficient binding capacity and large carryover volume. An 

excess of slurry results in a higher carryover volume after elution, because part 

of the liquid stays in the pores and the interstitial volume due to capillary 

forces. Different amounts of slurry between 55 µL and 75 µL were tested and 

the yield of the buffer exchange step was determined. As can be seen in 

Figure 3.3, left panel, the loss during the load step decreased from 10.5% to 

4.9%, when the slurry volume was increased from 55 µL to 75 µL. However, the 

yield after elution did not increase accordingly, which is shown in the right 

panel of Figure 3.3. For lower amounts of resin, the yield is lower due to 

insufficient binding capacity. It reaches a maximum between 65 µL and 70 µL, 

before it starts falling again at 75 µL. This can be attributed to the effect of the 

higher carryover volume, which starts to outweigh the effect of binding 

capacity. The mAb concentration in this study was 10 mg/mL and the achieved 

yield was above 85%. In order to decrease complexity, the slurry volume was 

set constant at 65 µL for the final platform, although yields vary for different 

protein concentrations. This is practical for a screening method, where 

maximum yield is not the primary objective. To further lower the protein loss, 

two elution steps with half the volume were included in the process instead of 

one. In accordance with Coffman et al.62, 60% of the resin bed volume was 

assumed as liquid carryover volume. With this assumption, a resin bed volume 

of 36.4 µL and a filter plate hold up of 12 µL, the calculated yield can be 

improved by about 8% for two elutions with 112.5 µL compared to one elution 

with 225 µL. The maximum theoretical yield in this scenario would be 94.7%. 

The actual impact was tested with a mAb solution at 4 mg/mL and the yield 

was improved by 8.5% for two elutions compared to one elution. 

It is important to show that the buffer exchange step is reproducible for the 

different wells of the microplate. If not, it would lead to varying starting 

conditions when the subsequent oxidation and conjugation steps are 

investigated. Different factors can influence the reproducibility of the 

approach. Among these are for example the usage of different pipetting tips of 
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the liquid handling arm for different rows of the plate, inhomogeneity of the 

vacuum filtration unit or the filter plate itself or inaccurate pipetting of the 

slurry volume. For this reason, a reproducibility study was performed for the 

CEX buffer exchange step with 18 wells at equal conditions in different parts 

of the plate. The relative standard deviation of the mAb-concentration after 

buffer exchange was at 1.6% for the different wells. This means that the 

developed step is a robust way for a high-throughput buffer exchange 

performed automatically by a liquid handling station without the need for 

expensive commercial solutions or pH neutralization. Compared to dialysis, 

which is often used for reagent removal or buffer exchange for smaller 

volumes70,109,110 time savings are significant. 

After TCEP removal, the next steps are re-oxidation and conjugation. For both 

steps, reagents are added at a fixed molar ratio to antibody. This means that 

before continuing the process, the protein concentration has to be determined 

in order to calculate the correct amounts of DHA and surrogate drug to add. 

For this purpose, an absorption-based protein quantification step was 

successfully incorporated into the EVOware script, using Matlab to calculate 

the new concentration and update the pipetting volumes in the excel source file 

loaded by EVOware (see Methods section). In a single-step process like the 

conjugation platform developed by Catcott et al.69, this in-process control is less 

essential. For a multi-step process like site-specific cysteine conjugation 

however, it contributes to guarantee defined process conditions for parameter 

screenings during oxidation and conjugation. 

 

Figure 3.3: Results of slurry volume study for TCEP removal step at 10 mg/mL of 

antibody. Left: Protein loss during load for different resin slurry volumes. Right: 

Protein yield of total buffer exchange step for different resin slurry volumes. 
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3.3.2 Analytics 

A high-throughput method is not functional without high-throughput 

compatible analytics. To analyze the result of an antibody conjugation reaction, 

conjugate species with different drug loading have to be separated and 

detected. For this reason, a chromatographic separation assay was developed 

with the focus on low method runtime. With the RP-UHPLC assay, sufficient 

separation between unconjugated mAb, mono-conjugated mAb und di-

conjugated mAb was achieved with a total runtime of 7 min and no lengthy 

sample preparation. An example chromatogram from the comparability study 

is shown in Figure 3.4. The starting concentration was 2 mg/mL and the 

conjugation was stopped after 45 s to have enough un- and mono-conjugated 

mAb in the samples. The residual free drug is well separated from the 

conjugate species. Between mAb and mono-conjugated mAb, resolution was 

1.38, between mono- and di-conjugated mAb resolution was 1.56 (calculated 

according to EP-Norm). Taking into account that in this case a small molecule 

surrogate drug of about 400 Da is attached to a 150 kDa antibody and that 

method runtime was of primary concern, separation was satisfactory. Due to 

higher hydrophobicity of the real payloads used for ADCs, separation will be 

improved. From the resulting peak areas, concentrations of the different 

species and DAR can be calculated. Compared to methods in literature 

separating ADC conjugate species with runtimes up to 50 min, this method 

should be well suited to characterize ADCs in HTS applications70,111,112. A quick 

size-exclusion based method would have the advantage that monomer content 

and DAR can be determined at the same time69, but the amounts of different 

conjugate species, which play a defining role for pharmacokinetics and 

efficacy111, cannot be assessed. 

 

Figure 3.4: Reversed-phase chromatogram of the analytical separation of 

unconjugated, mono-conjugated, di-conjugated antibodies and residual free CPM. This 

example was taken from the comparability study. The starting concentration was 

2 mg/mL and the conjugation was stopped after 45 s. 
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3.3.3 High-throughput conjugation DoE 

In order to test the established platform and to show that a model conjugation 

process can be characterized efficiently, a DoE for the conjugation step was run. 

mAb starting concentration and excess surrogate drug were varied as factors. 

A multiple linear regression model (MLR) was calibrated for three responses 

being the relative amounts of un-, mono- and di-conjugated mAb. R² values 

were all at 0.96 or above and Q² by cross-validation was 0.92, 0.96 and 0.93, 

respectively. The experimental data and the response surfaces of the MLR-

models are shown in Figure 3.5. The dominating factor was CPM excess, with 

the tendency of more CPM resulting in more conjugation. For the mAb 

concentration, an influence towards lower conjugation could be determined, 

but model coefficients were around the significance barrier (95% confidence 

interval). In the samples with 2 equiv of CPM, over 30% of unconjugated mAb 

was left, while almost no residual CPM was detected. This means the amount 

of CPM was insufficient for complete conjugation, although 2 equiv should be 

enough to attach 2 CPM molecules per antibody. The reason is probably 

unspecific adsorption of CPM molecules to the walls of the PP reaction vessels 

due to their hydrophobicity.  

Efficient characterization of the conjugation step using the high-throughput 

platform was demonstrated. The excess of CPM needed for efficient conjugation 

can be drawn from the model. This information can help to limit the use of the 

cytotoxic drugs to a minimum. To obtain a more clear and reliable picture of 

the factor effects, the design space should be extended and covered with more 

samples. This underlines the suitability of high-throughput tools for 

conjugation process development, as ‘numbering up’ of experimental conditions 

is possible with low use of resources. 

 

Figure 3.5: MLR-Results for conjugation DoE of engineered cysteine mAb with 

surrogate drug CPM. Dots: Experimental data of DoE. Mesh: Response surface of MLR-

models. mAb+0: Yield fraction of un-conjugated antibody. mAb+1: mono-conjugated 

antibody. mAb+2: di-conjugated antibody. 
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3.3.4 Comparability with mL-scale reaction 

To illustrate the potential and the comparability of the high-throughput 

conjugation (HTC) with conjugations in conventional centrifuge tubes, a 

comparability study for the conjugation step was conducted with both set-ups 

at two different protein concentrations in duplicates. For the HTC, TCEP 

removal was achieved via the CEX buffer exchange step. One reaction was run 

for each time point and stopped at the corresponding time with NAC. For the 

mL-scale reactions, TCEP removal was done via dialysis overnight. At each 

time point, samples were taken from the reaction mixture and quenched by 

adding them to a microplate containing NAC stock solution. Apart from the 

reaction vessel, this was the main difference between both approaches. The 

results of the conjugation were determined by RP-UHPLC and are shown in 

Figure 3.6. In general, the reaction is slower for the mL-scale, where the steady 

state is reached later for both concentrations. This difference can likely be 

attributed to different mixing parameters. The reaction is taking place very 

rapidly, so that small differences in quenching efficiency have a strong 

influence on the curve. The immediate mixing with the NAC stock solution is 

more efficient for the mL-scale approach due to the fact that the microplate 

shaker used in the HTC system was programmed to stop very briefly for the 

quenching step.  

The conjugation reactions were faster for the higher protein concentration. In 

Figure 3.6A (2 mg/mL) steady state is not completely reached within the 

20 min that were monitored. In Figure 3.6B (4 mg/mL), steady state is almost 

reached after 6 min. This trend can also be seen for the HTC, although it is less 

pronounced due to the higher reaction rate. However, the final outcome of the 

reaction is the same for all four experiments: 90 (±2)% of di-conjugated mAb 

and 5 (±2)% for mono- and unconjugated mAb. This results in an average DAR 

of 1.84 and 1.86 for HTC and mL-scale, respectively. Also, monomer content for 

the HTC was at about 99% as seen for the mL-scale conjugations (data not 

shown). These are the essential physicochemical properties for the 

comparability of the high-throughput conjugation to larger scale approaches. 

It shows successfully that the high-throughput platform results can be 

compared to mL-scale reactions. Further scale-up studies are needed to 

validate the approach with large scale data. With respect to the buffer 

exchange step it can be stated that the amount of salt used for elution (500 mM 

NaCl) does not disturb the following reaction steps.  

Regarding the efficiency of data generation, there are several advantages for 

the automated HTC compared to the manual approach. First of all, the total 

duration of the process is reduced substantially by elimination of the slow 

dialysis step, which is usually done overnight. After preparation, the liquid 

handling station performs all process steps independently without any user 
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input. This means the operator can focus on other tasks until transferring the 

microplate to a UHPLC for analysis. Finally, there is the obvious advantage of 

any high-throughput screening approach, which is that the number of screened 

conditions can be increased without significant increase in workload and 

material demand. For the present study only 32 wells were used in order to 

save material for further studies. 

 

Figure 3.6: Comparability study with 2 and 4 mg/mL starting antibody concentration. 

Comparison of reactions in mL-scale process (A, B) and 200 µL-scale automated high-

throughput process (C, D). The amount of each conjugate species (unconjugated, mono-

conjugated, di-conjugated) is depicted as a function of reaction time. 

3.4 Conclusion 

A fully automated high-throughput platform for solution-phase site-specific 

conjugation of small molecules to antibodies was successfully established. Due 

to the high-throughput buffer exchange step and the intermediate 

concentration determination, it is applicable to multi-step processes that, in 

many cases, require a removal of reagents between reaction steps. The 

proposed method for buffer exchange using CEX can be performed with high 
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yields around physiological pH for IgG1 conjugations and no neutralization is 

necessary after elution as for Protein A. Automated protein quantification with 

process feedback facilitates addition of reagents in subsequent steps in correct 

molar ratios. To complete the platform a high-throughput compatible 

analytical RP-UHPLC method was developed, suitable for determination of 

DAR and concentration of conjugate species which are relevant parameters for 

ADC efficacy and pharmacokinetics. In two case studies for site-specific 

engineered cysteine conjugation using the non-toxic fluorophore CPM as a 

surrogate drug, the potential of the approach to efficiently characterize 

conjugation reactions was demonstrated. It was shown that the amount of salt 

needed for elution does not affect conjugation efficiency compared to a mL-scale 

reaction with dialysis buffer exchange. The final outcome of the conjugation 

reaction was not influenced by the smaller scale or different mixing 

characteristics. A more detailed study on scaling-up conjugation reactions from 

microscale to lab- or pilot-scale would be worthwhile to be able to transfer 

detailed process parameters after mapping the design space. Obviously a direct 

transfer of reaction conditions determined with surrogate drugs to real-drug 

conjugations is not practical without prior validation, but process parameters 

like mixing and pipetting settings should be mostly independent from the 

payload. This means the platform can be applied to ADC process development 

without significant further development effort. Especially because all steps 

before conjugation were developed only with the antibody and the relevant 

reagents. This way, the platform could play an important role in establishing 

high-throughput tools in antibody-drug conjugation development and thus 

more efficiently address the challenges posed by the complexity of site-specific 

conjugation procedures. A crucial thrust for the development of next-

generation ADCs could be achieved by framing certain design guidelines 

derived from the extensive screening of different target antigens, drug-linker 

moieties, conjugation sites, reaction conditions and other parameters 

significant for next-generation ADCs. 
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Abstract 

The conjugation reaction of monoclonal antibodies (mAbs) with small-molecule 

drugs is a central step during production of antibody-drug conjugates (ADCs). 

The ability to monitor this step in real time can be advantageous for process 

understanding and control. Here, we propose a method based on UV/Vis 

spectroscopy in conjunction with partial least squares (PLS) regression for non-

invasive monitoring of conjugation reactions. In experiments, the method was 

applied to conjugation reactions with two surrogate drugs in microplate format 

as well as at 20 mL scale. All calibrated PLS models performed well in cross-

validation (𝑄2 > 0.975 for all models). In microplate format, the PLS models 

were furthermore successfully validated with an independent prediction set 

(𝑅pred
2 = 0.9770 resp. 0.8940). In summary, the proposed method provides a 

quick and easily implementable tool for reaction monitoring of ADC 

conjugation reactions and may in the future support the implementation of 

process analytical technologies (PAT). 
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4.1 Introduction 

ADCs are among the most promising new formats in the biopharmaceutical 

industry98. More than 60 candidates are currently evaluated in clinical trials. 

ADCs gain their potential from combining the high selectivity of monoclonal 

antibodies (mAbs) with the high cytotoxicity of small-molecule drugs. Next to 

specificity and cytotoxicity, ADCs also inherit other attributes of both species, 

such as the absorption bands of both protein and drug and an often increased 

hydrophobicity compared to unmodified mAbs due to the non-polar character 

of the drugs113–115. 

One of the most central steps during ADC production is the conjugation 

reaction which links the drug to the mAb via a linker. The conjugation reaction 

may either be site-specific or unspecific, with next-generation ADCs mainly 

focusing on site-specific conjugation reactions with well-defined drug-to-

antibody ratios (DARs)31,116,117. The conjugation yield and DAR are generally 

measured off-line by analytical hydrophobic interaction chromatography (HIC) 

or reversed-phase chromatography (RPC), often in combination with mass 

spectrometry118. This is, however, time-demanding and needs manual sample 

handling. If only the DAR needs to be measured without the concentration of 

each conjugate species, a simple method relying on UV/Vis absorption 

measurements can be applied118. It requires the drug to have an absorption 

band different from the one of the protein (≈ 280 nm). Using the absorption at 

both maxima and the respective extinction coefficients, the concentrations of 

protein and drug can be mathematically determined without further analytical 

methods. The technique has been used for conjugations with different drugs 

like the maytansinoid DM1 and dipeptide-linked auristatins (e.g. 

vcMMAE)111,119, but is limited to purified conjugates, as residual free drug and 

other possibly UV-active contaminants have to be removed. As a consequence, 

this approach as well as analytical chromatography are not very well suited for 

fast and prompt characterization of ADC conjugation reactions. Therefore, only 

complex analytical solutions are found so far for the monitoring of these 

reactions. Size-exclusion chromatography (SEC) with a post-column reaction 

was proposed for DAR determination of cysteine-conjugated ADCs51. Tang et 

al. present an approach for rapid DAR measurement by fast deglycosylation 

and LC-MS detection120. 

It would be highly beneficial to establish a fast analytical method for 

monitoring the progress of conjugation reactions without any sample 

processing. Ideally, such a method would also provide the means for application 

as a process analytical technology in accordance with the PAT initiative by the 

Food and Drug Administration (FDA). For this, the applied method needs to be 
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fast, without manual sample handling, and robust121. To monitor the process, 

the method should be sensitive to the progress of protein conjugation reactions. 

UV/Vis absorption spectroscopy is a rapid, noninvasive, and quantitative 

method which is widely established in biopharmaceutical manufacturing. It 

has previously been applied to process monitoring of proteins and small 

molecules53,81,122–124. Hansen et al. showed the potential of UV/Vis spectroscopy 

to distinguish between different proteins based on their content of aromatic 

amino acids and their solvatization124. The method was later transferred to 

chromatographic separations by Brestrich et al.81. There are some examples of 

UV/Vis spectroscopy in reaction monitoring applications. Quinn et al. followed 

a small-molecule reaction in lab scale using fiber-optic UV/Vis spectroscopy125. 

Gurden et al. employed a model based on UV/Vis absorption data to detect and 

diagnose process variations in a non-protein biochemical conversion reaction 
126. 

Drugs used in ADCs frequently feature delocalized electron systems thus 

providing absorption bands in the UV/Vis range 118 besides the ones of the 

aromatic amino acids of the mAbs. Spectral shifts of UV/Vis absorption may 

not only be caused by a structural change in the UV/Vis active compounds, they 

can also occur as a result of changes in the local environment of the 

chromophores127,128, e.g. a change in solvent composition. If the conjugation 

reaction thus causes a change in the environment of the aromatic amino acids 

or the drug, it will cause spectral shifts which in turn may help to monitor this 

type of reaction. 

This work investigates a new and easily applicable method for on-line 

conjugation reaction monitoring. Monitoring was accomplished by a 

combination of UV/Vis spectroscopy and partial least squares (PLS) modeling. 

Spectra were recorded and analyzed during conjugation reactions in two 

different scales with different UV/Vis detectors. Based on the results, a method 

was established for small-scale screening in 96-well plates which provides an 

estimate of the amount of drug conjugated to the antibody by PLS regression. 

Two different surrogate drugs, 7-diethylamino-3-(4'-maleimidylphenyl)-4-

methylcoumarin (CPM) and N-(1-pyrenyl)maleimide (NPM), were applied in 

both setups. Additional variability was introduced by changing the 

concentrations of the reactants. The method was then adapted to a lab-scale 

conjugation reaction with an on-line diode array detector (DAD) to show 

applicability as a PAT tool. 
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4.2 Materials and Methods 

4.2.1 Chemicals 

For disulfide reduction, tris(2-carboxyethyl)phosphine hydrochloride (TCEP, 

Sigma-Aldrich, #C4706) was used. (L)-dehydroascorbic acid (DHA, Sigma 

Aldrich, #261556) was used as oxidation agent for re-oxidation of interchain 

disulfides. As nontoxic substitutes for cytotoxic drugs, 7-diethylamino-3-(4'-

maleimidylphenyl)-4-methylcoumarin and N-(1-pyrenyl)maleimide (both 

Sigma-Aldrich, #C1484 and #P7908) were selected. Their structural formulae 

are shown in Figure 4.1. Dimethyl sulfoxide (DMSO, Sigma Aldrich) was used 

to dissolve DHA, CPM and NPM. N-acetyl cysteine (NAC, Sigma Aldrich, 

#A7250) was applied to quench residual free drug. For buffer preparation, Na-

H2PO4 x 2 H2O was obtained from VWR International GmbH. The buffers were 

titrated to the desired pH with 4 M NaOH (Merck KGaA) and filtered through 

a 0.2 µm cellulose acetate membrane filter (Sartorius AG, Göttingen, 

Germany). 

 

Figure 4.1: The structures of conjugated NPM (A) and conjugated CPM (B) are shown. 

R denotes the protein. 

4.2.2 Model system and conjugation process 

Purified IgG1 mAb with two engineered cysteines as conjugation sites was 

provided at a concentration of 12.4 mg/mL in PBS (+5 mM EDTA, pH 7.2) by 

MedImmune, LLC. CPM and NPM were used as non-toxic maleimide-

functionalized surrogate drugs and conjugated to the antibody’s two 

engineered cysteines via their maleimide linker. For the conjugation 

experiments, aliquots of the engineered mAb stock solution were thawed and 

diluted to the desired concentration (2 mg/mL) with 50 mM sodium phosphate 

buffer (pH 7.2). The resulting mAb concentrations were determined with a 
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Nano Drop 2000c spectrometer (ThermoFisher Scientific, Waltham, USA).  

The following mAb preparation steps (reduction and re-oxidation) were 

conducted in 50 mL centrifugation tubes (VWR International GmbH). A 

reduction step was performed to uncap engineered cysteine residues. For this 

purpose, a 40-fold molar excess of TCEP (over mAb concentration) was added 

to the mAb solution. After 3 h of incubation at room temperature, the reduced 

mAb solution was transferred into a dialysis cassette with a 10 kDa molecular 

weight cut-off to remove TCEP. The dialysis was performed in a volume of 1.7 L 

of 50 mM sodium phosphate buffer at 5 °C over night (approx. 19 h). The mAb 

concentration after dialysis was determined with the Nano Drop spectrometer.

  

For re-oxidation of the interchain disulfide bonds, 20-fold molar excess of DHA 

(3 mM stock solution in DMSO) was added. The mixture was incubated at room 

temperature for 4 h. Through addition of the DHA solution, DMSO content was 

increased to around 8.5%. To remove potential precipitate before spectroscopic 

conjugation monitoring, the mAb solution was filtered through a 0.2 µm 

polyethersulfone syringe filter (VWR International GmbH). The final mAb 

concentration for the conjugation experiments was set via dilution with 50 mM 

sodium phosphate buffer containing 10% of DMSO. Conjugation experiments 

were executed with mAb concentrations in the range of 1.0 mg/mL 

to 2.0 mg/mL.  

The conjugation reaction in the different experimental setups was started by 

addition of the surrogate drug (NPM or CPM) to the re-oxidized mAb solution. 

The molar ratio (drug to mAb) was set to 2 for the NPM conjugations and to 3 

for CPM. The concentration of the surrogate drug stock solutions was varied 

(2 - 6 mM) depending on the mAb concentration to result in a final DMSO 

content of approximately 10%. This content of DMSO was maintained to ensure 

solubility of the hydrophobic surrogate drugs in the water-based solution. The 

conjugation reaction was quenched by addition of a 12-fold molar excess of NAC 

(over the applied amount of surrogate drug) to ensure the immediate 

termination of the conjugation reaction. 

4.2.3 High-throughput on-line monitoring experiments in microplate format 

The high-throughput conjugation experiments were conducted in 96-well UV-

transparent microplates (UV-STAR®, Greiner bio-one GmbH, Frickenhausen, 

Germany). The reaction was monitored by the acquisition of UV/Vis absorption 

spectra of the reaction mixture in the range from 250 nm to 450 nm with an 

Infinite M200 microplate spectrometer (Tecan Group Ltd., Männedorf, 

Switzerland). To allow for the correlation of UV/Vis absorption data with the 

progress of the conjugation reaction, spectra had to be recorded while different 

time points of the reaction were sampled. The used experimental setup is 
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depicted in Figure 4.2. The UV-microplate was divided into monitoring wells 

designated for UV/Vis absorption measurements and quenching wells 

designated for off-line analytics. In the latter, the reaction was quenched at 

different time points to generate samples for off-line analysis. The six 

monitoring wells contained 200 µl of liquid and were further separated into two 

blank wells and four reaction wells. One blank well contained buffer solution, 

the other one re-oxidized mAb. The remaining monitoring wells were used for 

reaction monitoring in duplicates under two different conditions. There were 

16 quenching wells for each of the two screened conditions, containing 100 µL 

of the corresponding reaction mixture. In this study, the mAb concentration 

was varied in the range of 1.0 mg/mL to 2.0 mg/mL while all other process 

conditions were kept constant for all experiments. This resulted in 6 calibration 

and 2 prediction runs for NPM and 5 calibration and 2 prediction runs for CPM.

  

The conjugation reaction was started by adding the surrogate drug to the re-

oxidized mAb solution in a 50 mL centrifugation tube. After short mixing, 

aliquots were transferred immediately to the microplate. The reaction in the 

first quenching well was instantly stopped by addition of NAC solution before 

placing the microplate into the reader and starting the on-line monitoring 

procedure. The UV/Vis spectra acquisition was controlled by the software 

Magellan (Tecan Group Ltd.) according to the following process: Prior to each 

measurement, the plate was shaken for 15 s (orbital shaking, 1.5 mm 

amplitude, 335.8 rpm). For the first 22 min or 25 min, single spectra were 

recorded and after each measurement, one well was quenched. At later time 

points more spectra were acquired between each quenching step, resulting in 

quenching time intervals of 4 min to up to 10 min. The spectral range for the 

conjugation reaction with NPM was defined at 250 nm to 390 nm and for CPM 

at 250 nm to 450 nm (step size: 4 nm, 5 reads) to cover the characteristic 

absorption maxima of the surrogate drugs. The conjugation reaction was 

monitored over a run time of 50 min. Afterwards, the microplate was 

centrifuged (1789 g, 7 °C) to remove potential precipitate prior to off-line 

analysis. The supernatants were measured by reversed-phase ultra-high 

performance liquid chromatography (RP-UHPLC). 
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Figure 4.2: Experimental setup used for high-throughput on-line monitoring in 

microplate format. UV/Vis spectra were recorded during the conjugation reaction 

using the integrated Tecan plate reader. Reactions in the quenching wells were stopped 

at different time points and analyzed by RP-UHPLC. On-line and off-line data was 

used for the generation of PLS regression models. 

4.2.4 20 mL lab-scale on-line monitoring experiments 

Preparation of the mAb was conducted as described above in the conjugation 

process section. The re-oxidized mAb solution at a concentration of 2 mg/mL 

was used for the experiments. Here, the acquisition of UV/Vis spectra was 

performed with an Ultimate 3000 DAD (Dionex Softron GmbH, Germering, 

Germany) with a semi-preparative flow cell (volume 0.7 µL, 0.4 mm path 

length) at a spectral resolution of 1 nm. The experimental setup consisted of a 

50 mL beaker glass as reaction vessel, a peristaltic pump (Minipuls 3, Gilson, 

Villiers de Bel, France) with marprene pump tubing, and the DAD. All 

elements were connected via PEEK tubing (0.5 mm diameter). By attaching 

the beaker glass to a thermal shaker (HLC BioTech, Bovenden, Germany), the 

solution was continuously mixed at 200 rpm and the temperature was kept 

constant around 23 °C. The reaction mixture was circulated from the reservoir 

via the peristaltic pump through the DAD flow cell and back into the reservoir. 

In- and outlet were placed below the liquid surface. The flow rate was 

approximately 3 mL/min which equaled the maximum speed of the peristaltic 

pump (48 rpm). 

Prior to monitoring the reaction, the DAD was equilibrated with sodium 

phosphate buffer for 2 h and with re-oxidized mAb solution for 15 min. 

Autozero of the DAD signal was performed either with re-oxidized mAb (NPM 
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experiments) or with sodium phosphate buffer (CPM experiments). After DAD 

‘warm-up’, the reactions were started by addition of the surrogate drugs in the 

molar ratio of 2 for NPM and 3 for CPM. Three runs were performed for each 

surrogate drug.  

The conjugation reactions were monitored over 30 min while UV/Vis spectra 

were acquired by the DAD every 0.2 s. To reduce noise, the spectra were then 

averaged over 10 s. The recorded spectral range was 250 nm to 390 nm for 

NPM experiments and 250 nm to 450 nm for CPM experiments.  

Over the runtime of 30 min, 21 samples were taken and transferred to a 96-

well microplate for off-line analysis. The wells were previously loaded with 

NAC stock solution to facilitate immediate quenching of the reaction upon 

sampling. After termination of the experiment, the microplate was centrifuged 

(1789 g, 7 °C). The supernatant was analyzed by RP-UHPLC. 

4.2.5 Reversed-phase chromatography 

To assess conjugation results, RP-UHPLC was applied as described 

previously1. An Ultimate 3000 system was used, equipped with pump unit, RS 

autosampler, RS column compartment and diode array detector (Dionex 

Softron GmbH). Reduction or different sample preparation was not required. 

An Acquity UPLC Protein BEH C4 column (Waters Corporation, Milford, USA; 

300 Å, 1.7 µm, 2.1 mm x 50 mm) was run at a flow rate of 0.45 mL/min. The 

column oven was heated to 80 °C. Solvent A consisted of 0.1% trifluoroacetic 

acid (TFA) in ultrapure water, solvent B was 0.1% TFA in acetonitrile. After 

equilibration and injection at 26% B, content of B was raised to 30%. Next, a 

4.8 min gradient from 30% B to 38% B was used for separation of the conjugate 

species. Including strip at 95% B and re-equilibration, the runtime was 7 min. 

UV signals at 280 nm and at the corresponding absorption maximum of the 

used surrogate drug were recorded (384 nm for CPM and 338 nm for NPM). 

The resulting chromatograms yielded peak areas of unconjugated, mono-

conjugated and di-conjugated mAb, as well as of the remaining free drug. Using 

the areas at 280 nm and 384 nm or 338 nm, concentrations of the different 

conjugate species could be calculated with a previously determined calibration 

curve for the mAb peak area. From these concentrations, the amount of 

conjugated drug was calculated to be used as response for PLS modeling. 

4.2.6 Data analysis 

All data analysis was performed in Matlab R2016a (The MathWorks). For lab-

scale experiments, the spectral band shifts were additionally analyzed by 

interpolation similar to methods proposed in the literature129. First, the spectra 

were smoothed with a 5th order Savitzky-Golay filter with a 9-point window. 



4 Monitoring of antibody-drug conjugation reactions 

51 

 

Subsequently, the 1 nm resolved spectral data was interpolated with a cubic 

spline to a final resolution of 0.01 nm. The wavelength of the maximal 

absorbance 𝜆max was obtained from the interpolated data. 

In the case of microplate experiments, the experiments were split into 

calibration runs (performed at mAb concentrations of 1.0 mg/mL, 1.5 mg/mL 

and 2.0 mg/mL; NPM 86 samples, CPM 75 samples) and prediction runs 

(performed at mAb concentrations of 1.28 mg/mL and 1.7 mg/mL; NPM 28 and 

CPM 30 samples). The prediction runs were excluded from model calibration 

and only used for evaluating the model prediction and calculating root mean 

square errors of prediction (RMSEP) values. No prediction runs were 

performed in case of the lab-scale experiments. 

For model calibration, the spectroscopic data was first preprocessed and 

subsequently fitted with a PLS-1 model by the SIMPLS algorithm130. 

Parameters for preprocessing and model fitting were selected based on an 

optimization as proposed previously by Großhans et al.50. Preprocessing 

consisted of multiple steps. First, a baseline was subtracted from each 

spectrum to reduce possible effects of baseline drifts. For NPM and CPM, 

390 nm, respectively 450 nm, were selected as reference wavelength. 

Subsequently, a Savitzky-Golay filter with a second-order polynomial was 

applied to the spectra, and, optionally, the first or second derivative was taken 
131. Finally, and only for the lab-scale experiments, the spectra were normalized 

by a 1-norm to further decrease instrumental drifts.  

For all models, cross-validation was performed by successively excluding each 

batch, calibrating a PLS model based on the remaining runs, and calculating a 

residual sum of squares for the excluded batch. All residual sums of squares of 

the different submodels were summed yielding the Predictive Residual Sum of 

Squares (PRESS). The PRESS was scaled according to Wold et al. by the 

number of samples and latent variables used in the PLS model80. Based on the 

scaled PRESS, an optimization was performed using the built-in genetic 

algorithm of Matlab for integers132. The genetic algorithm optimized the 

window width of the Savitzky-Golay filter, the order of derivative, as well as 

the number of latent variables for the PLS-1 model. The root-mean-square 

error of cross-validation (RMSECV) was calculated from the PRESS by dividing 

through the total number of samples. The 𝑄2 values were calculated by dividing 

the PRESS through the summed squares of the response corrected to the mean 
80. The coefficient of determination for the prediction 𝑅pred

2  was calculated in 

the same way for the prediction set. 
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4.3 Results 

4.3.1 Analysis of UV/Vis absorption spectra 

In Figure 4.3, the measured spectra of two of the six lab-scale calibration runs 

are shown (spectra of all experiments, both microplate and lab scale, are shown 

in the supplementary data). The different spectra are colored according to the 

reaction progress (blue to red). The autozero for NPM was performed while 

already flushing the DAD with mAb and, thus, the protein band does not show 

in the spectra. For comparison, pure component spectra of mAb, NPM and CPM 

are supplied in the supplementary material. In both experiments, a baseline 

drift is visible at all wavelengths. 

NPM features a structured absorption band between 300 nm and 360 nm; CPM 

a broad band between 330 nm and 450 nm. During NPM conjugation reaction 

(Figure 4.3 top), a small bathochromic (red) shift (up to 2 nm) of all NPM bands 

upon conjugation can be observed. Looking at the bottom graph in Figure 4.3, 

a bathochromic shift is also observed for CPM. The maximum around 390 nm 

is shifted by more than 2 nm. On the right side of Figure 4.3, the location of the 

band maxima over time is compared to conjugated drug concentrations from 

off-line analytics. The two curves show a high degree of correlation for both 

NPM and CPM (Pearson correlation coefficient > 0.97). This is also true for the 

remaining lab-scale runs, except for the CPM run 1 which reached a correlation 

coefficient of 0.92. 
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Figure 4.3: The raw spectra of two lab-scale experiments for NPM (top) and CPM 

(bottom) are shown. The spectra are colored according to the reaction progress from 

blue to red. The location of the band maxima of the first (0 min) and the last spectrum 

(30 min) are marked by vertical lines. On the right side, the time evolution of the band 

maxima location is compared to the amount of conjugated drug measured by off-line 

analytics. 
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4.3.2 PLS model calibration and validation for microplate experiments 

For the microplate experiments, the data was split into a calibration set and 

an independent prediction set. Multiple parameters were set during model 

calibration (Savitzky-Golay window width, derivative, number of latent 

variables). As a systematic approach, a numerical optimization was chosen 

with the scaled PRESS from cross-validation as an objective. Figure 4.4 shows 

the calibrated model for the NPM and CPM experiments. For all experiments, 

the measured concentration of conjugated drug first increases quickly and 

approximates a limit after 10 min to 20 min. For all calibration experiments, 

the PLS prediction follows the concentrations from off-line analytics. Table 4.1 

summarizes the optimized parameters. For NPM and CPM, RMSECV values 

of 0.60 µmol/L (𝑄2 = 0.9856) and 0.56 µmol/L (𝑄2 = 0.9875), respectively, were 

reached. 

 

Figure 4.4: PLS model calibration for the microplate experiments is shown for NPM 

(Figure 4A) and CPM (Figure 4B). The nominal mAb concentrations of the different 

experiments are 1 mg/mL (red and blue), 1.5 mg/mL (yellow and violet), and 2 mg/mL 

(green and cyan). 

The calibrated PLS models were then validated by applying them to a 

prediction set (Figure 4.5). The shape of the conjugated drug concentration is 

similar to the calibration set and captured by the PLS prediction in all 

experiments. In the case of CPM, the PLS prediction is offset for both 

experiments to higher concentrations. RMSEPs of 0.57 µmol/L (𝑅pred
2 = 0.9770) 

and 0.90 µmol/L (𝑅pred
2 = 0.8940) were reached for NPM and CPM, respectively. 
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Figure 4.5: PLS model prediction for the microplate experiments is shown for NPM (A) 

and CPM (B). The nominal mAb concentrations of the different experiments are 

1.3 mg/mL (blue), and red 1.7 mg/mL (red). 

4.3.3 PLS model calibration for lab-scale experiments 

PLS model calibration for lab-scale experiments was optimized in the same 

way as the calibration for experiments in microplates (Table 4.1). Due to 

material limitations, no experiments were designated for a prediction set. 

Instead, the PLS models were assessed only by cross-validation. For NPM, an 

RMSECV of 0.56 µmol/L (𝑄2 = 0.9792) was reached. For CPM, the RMSECV 

was 0.57 µmol/L (𝑄2 = 0.9755). For ADCs, the degree of conjugation is 

commonly expressed as DAR. By normalizing the conjugated drug 

concentration by the initial mAb concentration, the DAR was derived and used 

for plotting (Figure 4.6). 
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Table 4.1: Summary of optimized parameters for the spectral preprocessing and PLS 

model as well as the performance of each model in cross-validation and on independent 

prediction sets. 

 Microplate Lab scale 

 NPM CPM NPM CPM 

No. of calibration samples 86 75 60 58 

No. of cross-validation 

groups 
6 5 3 3 

No. of prediction samples 

with off-line analytics 
28 30 0 0 

No. of prediction samples 

without off-line analytics 
118 84 476 512 

No. of latent variables 6 5 4 2 

Window for Savitzky-Golay 17 13 35 71 

Derivative 1 0 1 1 

𝑄2 0.9856 0.9875 0.9792 0.9755 

RMSECV (µmol/L) 0.60 0.56 0.56 0.57 

𝑅pred
2  0.9770 0.8940 - - 

RMSEP (µmol/L) 0.57 0.90 - - 
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Figure 4.6: PLS model calibration for the lab-scale experiments is shown for NPM (A, 

B, C) and CPM (D, E, F). Each model was calibrated on 3 replicates shown in the 

different subplots. The DAR was used for plotting as it is frequently used to specify the 

conjugation degree of ADCs. For calculating the DAR, a constant protein concentration 

was assumed over the course of the reaction. 

4.4 Discussion 

To correlate the progress of conjugation reactions with changes in the UV/Vis 

absorption spectra, reactions were performed in microplate format as well as 

in a lab-scale setup while measuring absorption spectra. First, the spectra were 

interpreted qualitatively to justify the assumption that the conjugation 

reaction affects the absorption spectra of the protein/drug mixture. 

Subsequently, the obtained datasets were used to calibrate four PLS models 

predicting the concentration of conjugated drug for CPM or NPM in the two 

different setups. 

During the conjugation reaction, UV/Vis absorption spectra are expected to 

change for multiple reasons. While reacting, the drug moves from an aqueous 

to the proteinaceous environment. Due to solvatochromism, the absorption 

bands of the drug thus may shift128. Second, the proximity of the drug to 
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aromatic amino acids can change the local hydrophobicity which in turn 

impacts the absorption spectra of aromatic amino acids 129,133,134. Finally, 

maleimide has been reported to generate a relatively weak absorption band 

around 273 nm135. During the conjugation reaction, the double bond in 

maleimide is reduced and the band at 273 nm is expected to disappear. For the 

used surrogate drugs (NPM and CPM, cf. Figure 4.1), the maleimide linker is 

coupled to the chromophores of pyrene and phenylcoumarin. Thus, they may 

not have the same absorption bands as free maleimide, and the conjugation 

reaction may also influence the chromophore intramolecularly.  

Based on the spectral changes clearly correlated to the reaction progress 

observed in Figure 4.3, it was concluded, that the conjugation reactions of both 

NPM and CPM indeed affect the respective absorption spectra. For further 

verification, experiments with previously quenched NPM and CPM were 

conducted, and spectra were recorded over 15 min. Here, no spectral shift was 

detected, since no reaction was taking place. The resulting spectra are shown 

in the supplementary material. As a consequence of the spectral change caused 

by the conjugation reaction, predicting the reaction progress from the spectra 

should be possible. Further data analysis focused on establishing quantitative 

PLS models for each setup and drug. 

For each model, parameters for Savitzky-Golay smoothing and derivative as 

well as the number of latent variables were optimized. We decided to rely on a 

numerical optimization with an integer-based genetic algorithm to implement 

a systematic selection of model parameters. For the optimization, the scaled 

PRESS served as an objective function. In more detail, cross-validation was 

performed by iteratively excluding a complete run from PLS model calibration. 

The reasoning was to make cross-validation representative of the prediction of 

future runs and thereby maximize the predictive power of the PLS model. This 

batch-wise approach was rather conservative, excluding 1/6 (MWP 

experiments with NPM) up to 1/3 (lab-scale experiments) of the calibration 

data for cross-validation. The so calibrated models were able to predict most of 

the variations in the measured concentrations based on the spectral data (𝑄2 >

0.9750). 

For the microplate setup, it is worth noting that the calibration data spans a 

range from 1 mg/mL to 2 mg/mL of mAb with the corresponding surrogate drug 

concentrations. As the external validation shows, the model is able to predict 

the reaction course for different concentrations in the calibration space. 

Interestingly, the RMSEP for NPM lies below the corresponding RMSECV. For 

CPM, the RMSEP is noticeably higher than the RMSECV. This seems to be 

related to a slight offset in the PLS prediction (Figure 4.5B). Nevertheless, the 

results show that it is possible to quantitatively monitor conjugation reactions 
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of NPM and CPM to an IgG1 antibody in the microplate format by UV/Vis 

spectroscopy. The results furthermore show that the chosen way of model 

optimization did not cause a strong overfit. 

Lab-scale experiments led to RMSECV and 𝑄2 values similar to those found in 

the microplate experiments. The smooth prediction of the PLS models indicates 

that the error of the model is mainly related to systematic errors and not to the 

measurement noise. For reactions with varying protein concentration, it would 

be possible to estimate the concentration by a PLS model. The DAD 

experiments successfully show the ease of implementation of the approach in 

a lab-scale format. As the DAD measurements are very fast, the approach 

facilitates real-time monitoring, which may be beneficial for kinetic studies or 

process monitoring and control. 

4.5 Conclusion 

In summary, we established a novel spectroscopic PAT approach for monitoring 

ADC conjugation reactions. In two experimental setups, with two different 

detectors, the conjugation process of surrogate drugs to a mAb was monitored 

by UV/Vis absorption spectroscopy and PLS regression. The results show that 

UV/Vis spectroscopy allows to monitor conjugation reactions in microplates as 

well as in lab scale. The method may thus simplify process development by 

reducing the analytical bottle neck. This may be especially interesting in 

combination with High-throughput Process Development (HTPD) on liquid 

handling stations for ADCs1,69. In lab scale, the method allows for real-time 

process monitoring. Due to the flexibility and ease of implementation, the 

method may be further developed to a PAT approach for conjugation 

monitoring at commercial scale. 

Future steps should focus on testing the method with cytotoxic drugs. While 

common drugs contain chromophores, the solvatochromic behavior of those 

drugs is unknown. Furthermore, the position of the engineered cysteines may 

have a strong impact on the solvent exposure of the drug and, thus, the change 

in hydrophobicity in the environment of the drug upon conjugation. Other 

techniques more sensitive to solvatochromism (e.g. fluorescence spectroscopy) 

or the changing of covalent bonds (e.g. vibrational spectroscopy) could be 

evaluated. Due to the simplicity of UV/Vis absorption spectroscopy, it is still a 

reasonable first choice for future studies. 
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Abstract 

By combining the specificity of monoclonal antibodies (mAbs) and the efficacy 

of cytotoxic drugs in one molecule, antibody-drug conjugates (ADCs) form a 

promising class of anti-cancer therapeutics. This is emphasized by around 65 

molecules in clinical trials and four marketed products. The conjugation 

reaction of mAbs with small-molecule drugs is a central step during production 

of ADCs. A detailed kinetic model for the conjugation reaction grants enhanced 

process understanding and can be profitably applied to process optimization. 

One example is the identification of the optimal amount of drug excess, which 

should be minimized due to its high toxicity and high cost. 

In this work, we set up six different kinetic model structures for the conjugation 

of a cysteine-engineered mAb with a maleimide-functionalized surrogate drug. 

All models consisted of a set of differential equations. The models were fit to an 

experimental data set, and the best model was selected based on cross-

validation. The selected model was successfully validated with an external 

validation dataset (R² of prediction: 0.978). Based on the modeling results, 

process understanding was improved. The model shows that the binding of the 

second drug to the mAb is influenced by the attachment of the first drug 

molecule. Additionally, an increase in reaction rate was observed for the 

addition of different salts to the reaction. In a next step, the model was applied 

to an in silico screening and optimization which illustrates its potential for 
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making ADC process development more efficient. Finally, the combination of 

the kinetic model with a PAT tool for reaction monitoring was demonstrated. 

In summary, the proposed modeling approach provides a powerful tool for the 

investigation of ADC conjugation reactions and establishes a valuable in silico 

decision support for process development. 

5.1 Introduction 

With four marketed products and around 65 molecules in clinical trials, 

antibody-drug conjugates (ADCs) are among the most important formats for 

the future of cancer treatment136. They combine the targeting specificity of 

monoclonal antibodies (mAbs) with the potent cytotoxicity of chemotherapy. 

The approval of gemtuzumab ozogamicin in 2001 (withdrawn in 2010, re-

introduced to US market in 2017), brentuximab vedotin in 2011 and ado-

trastuzumab emtansine in 2013 has set off substantial research and 

development efforts in that field, and a variety of new technologies are 

emerging and are making their way to the clinic. 

Regarding the design of enhanced ADCs, areas of focus include new linker 

chemistries, site-selective conjugation strategies, the selection of adequate 

binding sites, and the development of new payloads alongside new ways of 

analyzing and purifying ADCs117,137–140. The manufacturing of ADCs poses 

several unique challenges, most notably the requirement to control product 

homogeneity and drug-to-antibody stoichiometry. Even with the new 

generation of site-directed conjugation approaches, the conjugation processes 

are unlikely to result in a single species. It is imperative to understand sources 

of ADC heterogeneity, as it can significantly impact safety and efficacy of the 

product. Process development of ADCs has many variables, and no platform 

process is available. Furthermore, the implementation of quality by design 

(QbD) for pharmaceutical development is encouraged by regulatory agencies, 

promoting a more informed, systematic approach to process development10. 

Apart from these challenges, process development for biologics in general has 

to handle a diversifying product pipeline. For facilitating efficient process 

development in this framework, an adaptable process development platform 

with a broad range of applicability would be highly beneficial. In this setting, 

further digitization of process development is a key factor. On the one hand, 

the knowledge of process experts and lab experiments, including high-

throughput tools for efficient data generation, will keep forming the basis. On 

the other hand, it is becoming increasingly important to support the decision 

making with in silico tools. One group are structure-based approaches like 

molecular dynamics and quantitative structure-activity relationships (QSAR). 
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The second group is formed by statistical models and design of experiments 

(DoE). The third group and focus of this research are mechanistic process 

models, which can support process development in a number of ways. Here, the 

challenge is to develop high-quality models and to apply them in a beneficial 

way. 

For facilitating efficient process development of ADCs, high-throughput tools 

are currently applied to screen a lot of conditions with little use of time and 

material. Ohri et al. applied a high-throughput method to scan different 

conjugation sites on trastuzumab47. To facilitate high-throughput screenings of 

conjugation process parameters, different platforms were developed to conduct 

the process in microplates1,69,70. DoE can be used to further improve efficiency 

by reducing the number of necessary experiments. In a next step, empirical 

models can be deduced, e.g. to give correlations between process parameters 

and critical quality attributes (CQAs). An example of a statistical model 

applicable to ADC process development shows a correlation between drug-to-

antibody ratio (DAR) and drug load distribution on trastuzumab emtansine 41. 

The reasoning is that measuring and controlling DAR could be indirectly used 

to control drug load distribution. Gikanga et al. supported their investigation 

of product quality attributes of ADCs by a molecular dynamics simulation, 

showcasing the application of a structure-based in silico tool for ADC process 

development141. There are also several examples of the use of process analytical 

technology (PAT) tools in combination with ADC processes2,51,120. They 

generally revolve around monitoring the DAR of the reaction.  

In the ADC field, opposed to other fields like preparative chromatography, 

examples of the use of mechanistic modeling techniques for process 

development and understanding are limited89,90,92,142. A central step in making 

ADCs is the conjugation reaction, where the drugs are covalently attached to 

the antibody via a linker. Hu et al. used computational fluid dynamics (CFD) 

as a tool to evaluate multiple reactor designs and evaluate the use of a 

disposable reactor for the conjugation reaction76. 

Another interesting possibility to mechanistically model the conjugation 

reaction would be to develop a kinetic model, enabling the prediction of 

concentrations of different conjugate components at different times of the 

reaction. At least inside the calibration range, such a model could also be used 

to optimize input parameters like starting concentrations to achieve the target 

drug load distribution in the most efficient way. To the best of our knowledge, 

no such model has been developed for ADC conjugation reactions. For 

PEGylation of lysozyme, a kinetic model was proposed with the goal of 

optimizing the process towards maximal production of the mono-PEGylated 

form58. Factors varied were the ratio of PEG to protein and the pH. Moosmann 
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et al. also simulated PEGylation reactions of lysozyme and a scFv using 

numerically solved differential equations143. In addition to the rate laws for the 

PEGylation reaction, they introduced an additional term for the inactivation of 

mPEG-aldehyde in order to achieve a better fit of their data. Using the 

modeling results, they were able to gain process understanding and optimize 

the PEGylation process. These examples showcase the ability of kinetic 

reaction models to be applied to development and optimization of 

bioconjugation reactions in addition to yielding profound knowledge about the 

system at hand. With these characteristics, a kinetic modeling approach can be 

applied as an in silico decision support for the development of bioconjugation 

processes and advance the implementation of QbD. Given the costly and highly 

toxic reagents used for ADC production, there is additional motivation to 

minimize their use through process optimization. Improved process 

understanding could also benefit the selection of suitable binding sites and 

conjugation chemistries and spark ideas for better processes. 

In this work, we use a kinetic reaction model to describe the site-specific 

attachment of maleimide-functionalized surrogate drugs to two thiol groups in 

a mAb. Six different model structures were proposed and fit to an experimental 

data set with varying protein and drug concentrations. The best model was 

selected using cross-validation (CV) and then validated with an external test 

data set containing data in- and outside the calibration range. Next, the 

resulting rate constants and the impact of different salts on the rate constants 

were examined to enhance process understanding. An in silico screening and 

process optimization was performed, applying the validated model. Finally, a 

combination of the model with a previously developed PAT tool was 

investigated. 

5.2 Materials and Methods 

5.2.1 Chemicals 

The reduction of disulfides was done with tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP, Merck KGaA, #C4706). (L)-dehydroascorbic acid (DHA, 

Merck KGaA, #261556) was used to re-oxidize the antibodies’ interchain 

disulfides. Cytotoxic drugs used in ADCs were substituted by the nontoxic 

surrogate N-(1-pyrenyl)maleimide (NPM, Merck KGaA, #P7908). The 

structural formula is shown in Figure 5.1. Due to low water solubility, dimethyl 

sulfoxide (DMSO, Merck KGaA, #472301) was used to dissolve NPM. For 

stopping the reaction, remaining free drug was quenched with N-acetyl 

cysteine (NAC, Merck KGaA, #A7250). Standard buffers were made with Na-

H2PO4 x 2 H2O from VWR International GmbH. The buffers were titrated to 
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the desired pH with 4 M NaOH (Merck KGaA) and filtered through a 0.2 µm 

cellulose acetate membrane filter (Sartorius AG, Göttingen, Germany). For 

buffers with additional salts, ammonium sulfate (AS, #A1032) and guanidine 

hydrochloride (GuHCl, #A4014) were purchased from AppliChem GmbH and 

sodium chloride (NaCl) from Merck KGaA.  

For analytics, acetonitrile from Carl Roth GmbH + Co. KG (#8825) was used, 

and trifluoroacetic acid (TFA) was supplied by Thermo Scientific (#28904). 

 

Figure 5.1: The structure of conjugated NPM is shown. R denotes the protein. 

5.2.2 Model system, conjugation process and sampling of kinetic data 

A stock solution of purified IgG1 mAb in PBS (+5 mM EDTA, pH 7.2) with two 

engineered cysteines as conjugation sites was generously provided by 

AstraZeneca. The two additional cysteines were inserted into the heavy chains 

in constant regions of the antibody. NPM served as non-toxic maleimide-

functionalized surrogate drug and was conjugated to the antibody’s two 

engineered cysteines. Aliquots of the engineered mAb stock solution were 

thawed and diluted with 50 mM sodium phosphate buffer (pH 7.2) for each 

conjugation experiment. The mAb concentration was determined with a Nano 

Drop 2000c spectrometer (Thermo Scientific, Waltham, USA).  

For activation of the reaction site on the antibody, a reduction and partial re-

oxidation were conducted in 2 mL Safe-Lock tubes (Eppendorf AG, 

#0030120094). The reduction step is performed to uncap engineered cysteine 

residues. The mAb concentration was set to 6.2 g/L and a 40-fold molar excess 

of TCEP (over the mAb concentration) was added before incubating for 3 h at 

room temperature and a 350 rpm orbital shaking rate (Thermo Mixer C, 

Eppendorf AG, Hamburg). The reduced mAb solution was then transferred into 

a dialysis cassette with a 10 kDa molecular weight cut-off (Thermo Scientific, 

#87730) to remove TCEP. The dialysis was performed in a volume of 0.95 L of 

50 mM sodium phosphate buffer pH 7.2 at 5 °C. The dialysis buffer was 

replaced after 4 h, the total duration was around 19 h. The mAb concentration 
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after dialysis was determined using the Nano Drop spectrometer.  

To reform interchain disulfide bonds, a partial re-oxidation with a 20-fold 

molar excess of DHA (8 mM stock solution in sodium phosphate buffer pH 7.2) 

was conducted for 4 h at room temperature. The mAb concentration was then 

adjusted with 50 mM sodium phosphate buffer containing 10% of DMSO.   

The conjugation reaction was started by addition of the surrogate drug (NPM 

in DMSO) to the re-oxidized mAb solution. Through addition of the surrogate 

drug solution, the DMSO content was set to 10% and the mAb concentration to 

the desired value between 1 g/L and 2.5 g/L. The concentration of the stock 

solution was varied accordingly. The molar ratio (drug to mAb) was set between 

2 and 4 for all conjugations (called NPM ratio from here on). The reaction was 

stopped by providing a 12-fold molar excess of NAC (over the applied amount 

of surrogate drug) to ensure the immediate termination of the conjugation 

reaction. For recording the reaction kinetics, 100 µL samples of the reaction 

were taken at different time points and mixed with a prepared volume of 

20 mM NAC stock solution in sodium phosphate buffer pH 7.2. 

All runs conducted with NPM for model calibration and validation are 

summarized in Table 5.1. The runs at 1.75 g/L and 2.5 g/L were used for 

validation, the rest for calibration. 

Table 5.1: Conjugation experiments conducted with NPM for model calibration and 

validation. The experiments at 1.75 g/L and 2.5 g/L were used for model validation. 

mAb 

concentration 

[g/L] 

1 1.5 1.75 2 2.5 

NPM:mAb 

2:1 
1x 2x 2x 1x 1x 

NPM:mAb 

3:1 
1x 2x 2x 1x 1x 

NPM:mAb 

4:1 
1x 2x 2x 1x 1x 

 

For investigating the effect of different salts on the rate constants, several runs 

were conducted where ammonium sulfate, sodium chloride or guanidine 

hydrochloride were added to the regular buffer. The concentrations 0.2 M, 

0.6 M and 1 M were tested for each salt. mAb concentration was set to 1.5 g/L 

and the NPM ratio was 3 for all salt runs. 
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5.2.3 Reversed-phase analytical chromatography 

The conjugation results were assessed using reversed-phase ultra-high 

performance liquid chromatography (RP-UHPLC) as described previously1. 

This assay was optimized to measure the conjugation states of the intact ADC. 

No sample preparation was required. The same device and type of column 

(Acquity UPLC Protein BEH C4, Waters Corporation, 300 Å, 1.7 µm, 2.1 mm x 

50 mm) were used. UV signals at 280 nm and at the absorption maximum of 

NPM (338 nm) were recorded. The peak areas of unconjugated, mono-

conjugated and di-conjugated mAb were determined. From the areas at 280 nm 

and 338 nm, concentrations of these conjugate species could be calculated with 

a previously determined calibration curve for the mAb peak area. 

5.3 Model construction and development 

The first step in creating a process model is developing a model structure. The 

model parameters can then be determined by fitting the model to experimental 

data. In this work, six different model structures were proposed and the best 

one was determined in the model selection. The models were based on the 

following reaction pathway: 

𝑚𝐴𝑏 +𝑁𝑃𝑀 → 𝑚𝐴𝑏𝑁𝑃𝑀1 (5.1) 

𝑚𝐴𝑏𝑁𝑃𝑀1 + 𝑁𝑃𝑀 → 𝑚𝐴𝑏𝑁𝑃𝑀2 (5.2) 

mAb is the unconjugated monoclonal antibody, NPM the surrogate drug, 

mAbNPM1 is the mono-conjugated mAb and mAbNPM2 is the bi-conjugated 

form. No higher-order conjugates were detected in previous RP-UHPLC 

measurements. The rate of these second-order reactions depends on their rate 

constants and the concentrations of the reactants. The two conjugation sites 

are located in mirroring positions in the constant region of the heavy chains of 

the mAb. Model 1 assumes that both binding sites share the same relevant 

properties and thus have the same rate constant k. Model 2 also assumes no 

influence of the binding sites on the reaction rate, but uses k1 for the first 

attachment and k2 for the second attachment of a drug to the antibody. Model 3 

assumes that the binding sites have inherently different characteristics 

influencing the reaction rate and thus uses 𝑘1′ for the attachment to binding 

site 1 and 𝑘2′ for the attachment to binding site 2. Due to drug inactivation and 

depletion, for example by wall adsorption, the concentration of drug available 

for reaction can decrease independently of the conjugation reaction. For 

incorporating this into the model structures, models 4 to 6 were created by 

adding a lumped drug sink term with rate constant k3 to models 1 to 3. A 

schematic explanation of this model construction is shown in Figure 5.2. 
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Figure 5.2: Schematic explanation of assumed model structures. Model 1 assumes two 

equal binding sites on the mAb and one rate constant k. Model 2 includes a second rate 

constant for the second attachment of drug, which implies an impact of the first binding 

on the environment of the second binding site (light blue color). Model 3 assumes two 

different binding sites with two different rate constants (different colors). Models 4 to 6 

are deduced from models 1 to 3 by adding a lumped drug sink term with rate constant 

k3. 

Finally, it had to be incorporated into the models, that not all mAbs possess 

two active binding sites. In the starting material, there are mAbs with two, one 

or zero binding sites available for maleimide conjugation. This can be explained 

by an incomplete reduction of the engineered cysteines. The resulting 

components were included in the rate laws, which were formulated as a set of 

ordinary differential equations (ODEs). As an example, the rate laws of model 5 

are listed in the following (Equations 5.3-5.9). Rate laws of the other models 

can be found in the supplementary material. 𝐶mAb2c, 𝐶mAb1c and 𝐶mAb0c are the 

concentrations of mAbs with two, one or zero binding sites available. 𝐶NPM is 

the NPM concentration. 𝐶mAb1cNPM stands for the concentration of mAbs with 

one NPM attached and one free binding site, while 𝐶mAb0cNPM has one NPM 

attached and zero free binding sites. Accordingly, 𝐶mAb0c(NPM)2 means the 

concentration of mAb with two attached NPM and no free binding site. 

𝑑𝐶mAb2c

𝑑𝑡
 = −𝑘1 ∙ 𝐶mAb2c ∙ 𝐶NPM (5.3) 

𝑑𝐶mAb1c

𝑑𝑡
 = −𝑘1 ∙ 𝐶mAb1c ∙ 𝐶NPM (5.4) 

𝑑𝐶mAb0c

𝑑𝑡
 = 0 (5.5) 

NPMSHHS

Model 1
𝑘

SHHS

Model 3
𝑘1′, 𝑘2′

SHSSHHS

Model 2
𝑘1, 𝑘2

Model 4:
𝑘, 𝑘 

Model 5:
𝑘1, 𝑘2, 𝑘 

Model 6:
𝑘1′, 𝑘2′, 𝑘 

Include lumped drug sink term with k3
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𝑑𝐶mAb1cNPM

𝑑𝑡
 =  𝑘1 ∙ 𝐶mAb2c ∙ 𝐶NPM − 𝑘2 ∙ 𝐶mAb1cNPM ∙ 𝐶NPM (5.6) 

𝑑𝐶mAb0cNPM

𝑑𝑡
= 𝑘1 ∙ 𝐶mAb1c ∙ 𝐶NPM (5.7) 

𝑑𝐶mAb0c(NPM)2

𝑑𝑡
=  𝑘2 ∙ 𝐶mAb1cNPM ∙ 𝐶NPM (5.8) 

𝑑𝐶NPM
𝑑𝑡

= −𝑘1 ∙ 𝐶mAb2c ∙ 𝐶NPM−𝑘1 ∙ 𝐶mAb1c ∙ 𝐶NPM − 𝑘2 ∙ 𝐶mAb1cNPM ∙ 𝐶NPM

− 𝑘 ∙ 𝐶NPM 
(5.9) 

5.3.1 Component starting concentrations 

While mAb and NPM starting concentrations were set with the reaction 

conditions, the ratio of mAb with two, one or zero active binding sites had to be 

estimated from the calibration data. These values could be deduced from the 

ratio of di-, mono-, and unconjugated mAb in the experiments, where the 

reaction reaches a steady state, since here all the available binding sites are 

conjugated. This applies to the runs with NPM ratios of 3 and 4, hence the 

average values from all calibration runs with these criteria were taken to 

calculate the component starting concentrations. 

5.3.2 Model fitting, selection and validation 

All data analysis was performed in Matlab R2017b (The MathWorks). The 

experimental data was split into a calibration and a validation set. The data at 

1 g/L, 1.5 g/L, and 2 g/L were used for model calibration and those at 1.75 g/L 

and 2.5 g/L were used for model validation. This equals 12 runs for calibration 

and 9 runs for validation. All formulae used for model evaluation can be found 

in the supplementary material. 

5.3.2.1 Model fitting (parameter optimization) 

Each model consisted of a set of ODEs containing between 1 and 3 rate 

constants. These rate constants represent the model parameters which were 

optimized using the nonlinear least squares solver lsqnonlin in Matlab with 

the default algorithm trust-region-reflective. Inside the optimization, the ODEs 

were numerically solved using the ode45 solver. The difference between the 

kinetic models and the experimental data was minimized and an optimal 

parameter set was determined for each of the six models. As start values for 

the parameter optimization, k = k1 = k2 = k1’ = k2’ = 1 (mM∙s)-1 and k3 = 0.01 s-1  

were selected. In the next step, the best model in the set was selected. 
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5.3.2.2 Model selection 

Model selection was done by cross-validation and comparison of Q² and 

RMSECV values. The calibration data was split into CV groups. Each CV group 

was left out of model calibration once and predicted by the resulting model. 

Cumulative Q² and RMSECV values were calculated to rank model quality. 

Different amounts of CV groups (2-12) were tested for a more robust model 

selection. 

5.3.2.3 Model validation 

For the best model, parameter uncertainty was assessed by calculating 95% 

confidence intervals using the Matlab function nlparci. Then, the model was 

validated by predicting the conjugations in the validation data set at 1.75 g/L 

and 2.5 g/L. R² of prediction and RMSEP were calculated. 

5.3.3 Model application 

5.3.3.1 Investigation of salt effects on rate constants 

To investigate the influence of different salts on the rate constants, the selected 

model structure was also fit to the data of the experiments with salts added to 

the buffer. The resulting rate constants were compared to the ones of the final 

calibrated model. 

5.3.3.2 In silico screening and optimization 

The selected model was used to perform in silico optimizations of the 

conjugation process at different conditions. mAb concentrations between 1 g/L 

and 2.5 g/L with a step size of 0.0015 g/L and NPM ratios of 2 to 4 with a step 

size of 0.01 were screened. The process was optimized at each combination of 

mAb and NPM concentration for a short reaction time and maximal amount of 

the bi-conjugated mAb. During the optimization, the reaction time was varied, 

while both the reaction time and the amount of bi-conjugated mAb were part 

of the objective function. This allows that both parameters are weighted 

appropriately. Hence, the model was evaluated for each point until an optimal 

reaction time was found that best satisfied the objectives. Here, the amount of 

bi-conjugated mAb was weighted stronger to get as close to the highest degree 

of conjugation as possible with the shortest possible reaction time. 

5.3.3.3 Combination of models to support process monitoring 

To illustrate the possibility of a combination of a kinetic reaction model with a 

PAT tool, the selected model structure was combined with a reaction 

monitoring tool described by us previously2. It records UV/Vis spectra during 

the reaction and calculates the amount of conjugated drug via a PLS model. 



5 Kinetic reaction modeling 

71 

 

Data generation and processing was handled as described in the publication. 

Spectra and off-line data from three runs of a 20-mL scale conjugation reaction 

at 2 g/L with a NPM ratio of 2 were used. The data was divided into two 

calibration runs and one validation run. With the calibration data, the PLS 

model for reaction monitoring as well as the kinetic model were fit. Then, the 

kinetic model was used to predict the concentration of conjugated drug over the 

reaction time, which was then used to assess if the concentration monitored by 

the PLS model is in the specified range. 

5.4 Results 

5.4.1 Model selection 

After setting up different model designs, the goal was to evaluate which model 

best fits the underlying mechanism of the investigated reaction. Table 5.2 gives 

RMSECV and Q² values of the cross-validation, which was conducted to select 

the best model. The amount of CV groups was varied in order to achieve a more 

robust model selection. For all different amounts of CV groups, model 5 

consistently gave the best results. With 4 CV groups, RMSECV equals 

0.0007 mM and Q² is 0.963. Model 5 contains k1 and k2 for the first and the 

second attachment of a drug molecule and k3 for drug depletion. The models 

with drug sink term (models 4, 5, 6) are always better than the respective 

models without sink term (models 1, 2, 3), with one exception (models 3 and 6 

with 2 CV groups). The models where two inherently different binding sites are 

assumed (models 3 and 6) consistently result in the worst RMSECV and Q² 

values. The described trends and the selected best model are the same for all 

different amounts of CV groups, but absolute values differ. 
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Table 5.2: Results of model selection by cross-validation based on calibration data set. 

Different amounts of CV groups were tested to provide for a more robust model selection. 

RMSECV (in mM) and Q² were calculated for all models. 

Model 

# 

2 CV groups 3 CV groups 4 CV groups 

RMSECV Q² RMSECV Q² RMSECV Q² 

1 0.0012 0.8861 0.0015 0.8271 0.0010 0.9296 

2 0.0010 0.9171 0.0013 0.8652 0.0008 0.9559 

3 0.0017 0.7851 0.0020 0.6891 0.0014 0.8446 

4 0.0012 0.8908 0.0012 0.8868 0.0009 0.9340 

5 0.0010 0.9237 0.0008 0.9490 0.0007 0.9630 

6 0.0017 0.7845 0.0020 0.7130 0.0014 0.8456 

 

Model 

# 

6 CV groups 12 CV groups 

RMSECV Q² RMSECV Q² 

1 0.0013 0.8701 0.0012 0.8971 

2 0.0011 0.9016 0.0010 0.9262 

3 0.0018 0.7505 0.0017 0.7871 

4 0.0011 0.9085 0.0010 0.9239 

5 0.0007 0.9591 0.0007 0.9681 

6 0.0018 0.763 0.0017 0.7947 

 

5.4.2 Calibration and parameter uncertainty 

After model selection, model 5 was fit to the complete calibration data set 

consisting of 12 experiments, and the rate constants were calculated. They are 

shown in Figure 5.3 with their respective parameter uncertainties. The rate 

constant for the first attachment to the mAb is k1 = 0.797 (mM∙s)-1, for the 

second attachment k2 = 1.476 (mM∙s)-1. The rate constant of the drug sink term 

is k3 = 0.00155 s-1. The 95% confidence intervals correspond to 3%, 5%, and 10% 

of the parameter value for k1, k2, and k3, respectively. Regarding the 

availability of binding sites, 92.02% of the mAb starting concentration was 

used for the mAb with two available binding sites, 7.1% for one available 

binding site, and 0.89% for no active binding site. 
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Figure 5.3: Rate constants of model 5 with 95% confidence intervals. k1 gives the rate 

for the first attachment of NPM to mAb, k2 for the second attachment. k3 is the rate 

constant for the lumped drug depletion. 

The model calibration for model 5 yielded an R² of 0.970 over the calibration 

data set of 12 runs. In Figure 5.4, one experiment at 1.5 g/L and NPM ratio of 

3 is shown as an example. Model and experimental concentrations of un-, 

mono-, and di-conjugated mAb over 30 min reaction time are shown. Un-

conjugated mAb is decreasing, mono-conjugated mAb is increasing during the 

first 45 s before it starts decreasing, and bi-conjugated mAb is continuously 

increasing. All concentrations are approaching a threshold corresponding to 

the starting values for mAb with zero, one and two active binding sites. The 

other experiments including the model fit can be found in the supplementary 

material. 

 

Figure 5.4: Example of conjugation run from the calibration set at 1.5 g/L and NPM 

ratio of 3. The markers are experimental data, the straight lines the fit for model 5. The 

blue square markers are the un-conjugated mAb, the red triangles the mono-conjugated 

mAb, and the yellow diamonds the bi-conjugated mAb. 
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5.4.3 Validation of selected models 

An external validation data set consisting of 9 experiments at 1.75 g/L and 

2.5 g/L (outside the calibration range of 1-2 g/L) was used to validate model 5. 

Using the starting concentrations for mAb and NPM, the course of the 

conjugation reaction was predicted by the model and compared to the 

experimental data. R² of prediction was at 0.978 and RMSEP at 0.00070 mM, 

which is in the same range as for the cross-validation with 4 CV groups. The 

results of the experiments and model 5 prediction are shown in Figure 5.5 for 

all 9 validation runs. Model predictions are closely following experimental data 

for all concentrations which is reflected in the R² of prediction. The 

conjugations at an NPM ratio of 2 do not reach an as high degree of conjugation 

as is obtained with a ratio of 3 or 4. Higher concentrations of mAb and NPM 

lead to a faster conjugation. 
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Figure 5.5: Results of model 5 prediction for the 9 validation experiments. The markers 

are experimental data and the respective model predictions are shown by straight lines. 

The blue square markers are the un-conjugated mAb, the red triangles the mono-

conjugated mAb, and the yellow diamonds the bi-conjugated mAb. R² of prediction was 

at 0.978 and RMSEP at 0.00070 mM. The data at 2.5 g/L is outside the calibration 

range of the model (1-2 g/L). 

5.4.4 Investigation of salt effects on rate constants 

For investigating the influence of hydrophobicity and ionic strength on the rate 

of the conjugation reaction, varying concentrations of ammonium sulfate (AS), 

sodium chloride (NaCl), and guanidine hydrochloride (GuHCl) were added to 

the buffer. Model 5 was then newly fit to each of the salt runs and new rate 

constants were calculated for each salt and concentration. The results are 

shown in Figure 5.6. In general, the addition of salt leads to an increase in the 

reaction rate of the conjugation (k1 and k2). The effect of AS is stronger than 

the effect of NaCl and GuHCl. A higher concentration of the same salt, leads to 
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a faster conjugation, except in the case of 1 M AS, where the effect is lower than 

at 600 mM. At 1 M AS, the fit (R² = 0.924) was also worse than for the other 

runs (R² > 0.963) and the degree of conjugation was lower at the end of the 

reaction. With GuHCl, only k1 is increasing with rising salt concentration. k2 is 

about 35% higher than for the original model 5, but does not change between 

the different salt concentrations. Also regarding the drug sink term, the 

addition of salt leads to a higher rate constant. k3 is about 10 times higher for 

1 M AS and also 200 mM and 600 mM AS have a stronger effect than the other 

salts. For NaCl, k3 is increased between 36% and 66% and for GuHCl between 

10% and 25% with wide parameter confidence intervals. 

 

Figure 5.6: Effect of ammonium sulfate (AS), sodium chloride (NaCl), and guanidine 

hydrochloride (GuHCl) on model 5 rate constants. 200 mM, 600 mM, and 1 M of salt 

were tested. 95% confidence intervals are shown for the parameters. k1 and k2 values 

are shown in the top graph, k3 values in the bottom graph. 

0

1

2

3

4

5

6

R
at

e 
co

n
st

an
t 

 [
1

/(
m

M
*s

)] k1 k2

0.000

0.005

0.010

0.015

0.020

0.025

R
at

e 
co

n
st

an
t 

[1
/s

]

k3



5 Kinetic reaction modeling 

77 

 

5.4.5 Application of the kinetic model for process optimization 

For applying the kinetic model as an in silico decision support in selecting the 

best process conditions, we conducted – as potential case study –  an in silico 

screening and optimized the process for a short reaction time and a DAR close 

to 2. As described in detail in paragraph 5.3.3.2, different mAb concentrations 

and NPM ratios were screened. At each of over 200,000 points, the reaction 

time was optimized according to the objective function, maximizing bi-

conjugated antibody and minimizing reaction time. The resulting color maps 

are shown in Figure 5.7. In the left graph, the optimal reaction times are 

shown. The higher the mAb concentration and the NPM excess, the lower the 

optimal reaction time, with the exception of an NPM excess between about 2.5 

and 2. Here, a lower NPM excess requires a lower reaction time. In the right 

graph, the fraction of bi-conjugated mAb which is achieved at the optimal 

reaction time is visualized. Higher mAb concentrations and higher NPM ratios 

yield higher bi-conjugated fractions. The shaded area in both graphs represents 

a bi-conjugated fraction of over 91.5%. The lowest possible NPM ratio to reach 

this fraction depends on the mAb concentration and lies between about 2.65 

and 3.85. Higher mAb concentrations need a lower drug excess. 

 

Figure 5.7: Results of in silico screening and optimization. Color maps show optimal 

reaction times (left) for screened mAb and NPM concentrations and the resulting 

fraction of bi-conjugated component (right). The shaded area in both graphs indicates 

a bi-conjugated fraction of greater than 91.5%. 

5.4.6 Application of the kinetic model to support process monitoring 

The established kinetic modeling approach was also applied to extend the 

capabilities of a previously developed PAT tool for conjugation reactions2. The 

tool consists of a calibrated PLS model which is able to calculate the reaction 

progress (amount of conjugated drug) directly from UV/Vis spectra recorded 

during the conjugation reaction. Here, we calibrated the PLS model, as well as 

the kinetic model with two conjugation runs at a 20 mL scale and 2 g/L of mAb 
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with a NPM ratio of 2. The concentration of conjugated drug over the reaction 

time was then predicted for a third run with both models. In Figure 5.8, this 

workflow is illustrated and the predictions are plotted together with the offline 

data of run 3. Both predictions are in agreement with the offline data and can 

be used for online process assessment by comparing PLS monitoring based on 

spectra with kinetic model prediction (based on starting concentrations). 

 

Figure 5.8: On the left, the workflow for supporting the UV/Vis-based reaction 

monitoring approach with the kinetic reaction model is illustrated. On the right, model 

predictions and offline data for the amount of conjugated drug over reaction time for 

run 3 are shown. The models were calibrated with the data of run 1 and 2. The blue 

line shows the course predicted by the kinetic model based on the starting 

concentrations. PLS model prediction based on UV/Vis spectra is represented by the 

red line. The yellow circles give the offline concentrations measured by RP-UHPLC. 

5.5 Discussion 

5.5.1 Model structure and model selection 

For setting up a mechanistic model, some basic assumptions have to be made. 

First of all, we assumed the nucleophilic attachment of drug to mAb to be of 

the first order for both reactants, yielding a second-order reaction. This 

assumption should be valid since no reactant is present in great excess, which 

would result in a pseudo-first-order reaction. Based on previous analytical 

results, we assumed the absence of any higher-order components like tri- and 

n-conjugated antibodies. Experiments with no or a short re-oxidation showed, 

that the analytical RP method is able to detect higher-order components, if they 

are present (results not shown). Since the NPM molecules are reacting with 

two binding sites on one mAb, the question arises, if there are differences 

between the binding sites and if the first attachment influences the second. In 

order to answer these questions, three different model structures (models 1-3) 

were developed with their own set of rate laws and different rate constants 
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(Figure 5.2). Additionally, these models were extended by incorporating a 

lumped drug sink term, yielding models 4-6. The principal reason for a decrease 

in NPM content independently of the conjugation probably lies in its unspecific 

adsorption to the walls of the tubes. Since this was not studied in detail and 

there are other possible causes like a chemical inactivation, a lumped drug sink 

term was used. In the cross-validation, the models with drug sink term perform 

far better than their counterparts without the sink term, which seems to be a 

good extension of the model. Also in experiments containing no protein, a 

depletion of NPM over time was measured by a decrease in UV signal 

(supplementary material), which underlines the plausibility of including this 

term. This is supported by a low parameter uncertainty of k3 (Figure 5.3). 

RMSEP and Q² results of all models in the CV point towards model 5 as the 

best model in the set and show that the basic model structure of model 2 and 

model 5 describes closest the underlying mechanism. Model 5 performed best 

for all amounts of CV groups and model 2 and model 4 share the second place. 

Since the binding sites are in the same place on identical heavy chains, no effect 

caused by different binding sites (model 3 and model 6) was expected. Still, this 

structure was included to investigate a possible influence of 3D structure. The 

poor performance of both of these models in the CV indicates that the binding 

sites can be treated as equal. An influence of the first binding on the second, 

on the other hand (model 2 and model 5), is backed by the results. A possible 

cause could be the hydrophobicity introduced by the first NPM molecule 

making the second attachment more feasible. The increased hydrophobicity 

can also be seen in the RP-UHPLC analytics, where the unconjugated mAb 

elutes first, before mono-conjugated and last bi-conjugated mAb (method 

introduced in a previous publication1). Dai et al. postulated hydrophobic 

interactions to be the driving force for reactivity and selectivity of their 

hydrophobic π-clamp binding site and showed a salt dependency following the 

Hofmeister series144. Since the cysteine binding sites for the NPM molecules 

are in the same position on the two heavy chains, an influence of the first 

binding on the second is possible. A possible fourth model basic structure 

combining model 2 and 3 in a structure where the binding sites are different 

and influence each other was discarded for two reasons: first, the poor 

performance of the models with different binding sites; second, to not 

unnecessarily increase the complexity of the models as model 5 already 

achieved excellent results.  

The structure of the data and order of the runs can have an influence on CV 

results. When the arrangement of the runs for CV group assignment was 

changed, model 5 was still clearly the best model. 
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5.5.2 Model calibration and validation 

All steps after model selection were done with model 5, while the other models 

were discarded. Parameters were estimated using the calibration set consisting 

of 12 experiments achieving a good model fit, shown by the alignment of model 

and experimental data in Figure 5.4 and the high R². The parameter 

uncertainty given by 95% confidence intervals (Figure 5.3) underlines the 

meaningfulness of the parameters included in the model structure. The model 

quality was then confirmed by the external validation, where 9 different 

experiments were used (R² of prediction of 0.978). All graphs in Figure 5.5 show 

a good alignment of model and experimental data. The incomplete conjugation 

for the runs with a NPM ratio of 2 is well represented by the model. Due to the 

NPM depletion, the reactive drug is used up before the maximum level of 

conjugation is reached. Here, the importance of including the drug sink term is 

highlighted once more. Also the behavior of the mono-conjugated component, 

which is first increasing and then going down, is captured well by the model. It 

is highly dependent on the ratio of k1 and k2. For most of the validation 

experiments, the bi-conjugated component is slightly underestimated by the 

model towards the end of the reaction. This is probably caused by the analytics 

because for the last samples, the measured concentration exceeded the 

adjusted concentration by around 4%. Taking into account that the starting 

concentrations are adjusted using UV/Vis measurements and the 

concentrations during the reaction are calculated from RP-UHPLC 

chromatograms, the deviation is acceptable. Overall, the calibration and 

validation of model 5 show excellent results and the model structure with the 

assumptions made seems to reflect the underlying principles very well.  

One more thing that calls the attention is that k2 is higher than k1, so the 

second attachment is faster than the first. Since the binding sites structurally 

appear to be equal, the question is why this is the case. Here, the most probable 

cause might be the increased hydrophobicity that is introduced by the 

attachment of the first hydrophobic NPM molecule, which was discussed in the 

last paragraph. Lê-Quôc et al. found an increased reaction rate for N-

substituted maleimides with increasing hydrophobicity145. They attributed this 

to a hydrophobic microenvironment of the binding site. Thus, an increased 

hydrophobicity of the microenvironment could be able to enhance the rate of 

the reaction in the case of the second NPM attachment. This said, the effect 

captured by the rate constant k2 could also be caused by an increased local 

concentration of NPM in the binding region, caused by the increased 

hydrophobicity. By analyzing the influence of different salts on the rate 

constants, we intended to further investigate this effect and its inherent 

potential for improving the reaction. 
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5.5.3 Salt effects on the rate constants 

It is known that the addition of kosmotropic salts promotes hydrophobic 

interactions, which for example is commonly used in hydrophobic interaction 

chromatography (HIC). AS and, to a lower extent, NaCl have this effect. In the 

conjugation experiments with added AS, the rate constants were strongly 

increased compared to corresponding runs without salt. For addition of 

600 mM and 1 M of NaCl, rate constants were also higher, but the effect was a 

lot weaker than for AS. This again hints towards a strong impact of 

hydrophobicity on the reactivity of this conjugation reaction. At the same time, 

however, the addition of GuHCl, a chaotropic agent, also results in higher rate 

constants, even more so than NaCl, which suggests the involvement of other 

effects. For GuHCl, opposed to the other salts, only k1 changes with salt 

concentration, while k2, despite being higher than in the original model, stays 

at one level. On the one hand, the reaction rate can also be influenced by the 

ionic strength of the solution, which could be one factor. It was shown that 

already low concentrations of potassium chloride (< 50 mM) can enhance the 

reactivity of thiols in membrane proteins with a maleimide-functionalized 

fluorophore146. The effect increased with salt concentration, but stayed the 

same above 100 mM. On the other hand, there is the potential of GuHCl 

influencing protein conformation which could also have an impact. To get a 

clearer understanding of the underlying effects, a dedicated study will be 

necessary, but we can conclude that a hydrophobic effect probably is involved 

in the reactivity of the binding sites and that this knowledge can be employed 

for increasing the reaction rate by salt addition. 

The strong effect of AS concentration on k3 is an indicator of drug depletion 

being mainly caused by wall adsorption which is also hydrophobically driven. 

For 1 M of AS, the high k3 value led to incomplete conjugation because all of 

the NPM was depleted. Regarding the influence of the other salts on k3, it can 

be stated that they cause a very low increase compared to AS, but parameter 

uncertainty is high. 

5.5.4 Model application 

The selected model was applied to in silico screening, process optimization and 

as part of a soft sensor combining model description with PAT application.  

In the screening, over 200,000 points were evaluated and the process was 

optimized for each one. The result in Figure 5.7 gives a range of conditions, in 

which the fraction of target component is over a specified threshold. Within 

this range, we can then select suitable conditions, where the needed drug 

excess is minimal. This is an important parameter, because excess free drug 

has to be removed afterwards. The optimal reaction time for the selected 
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condition is known from the left graph in Figure 5.7. The objective function of 

the optimization can be tuned according to the process development goals. 

Although the calibration range was between 1 g/L and 2 g/L, the screening 

range was set between 1 g/L and 2.5 g/L, because the validation showed that 

the model can extrapolate to 2.5 g/L. The decrease in optimal reaction time 

between a NPM ratio of about 2.5 and 2 shows that in this range, the drug is 

used up before conjugation is completed. These results show, that the kinetic 

model, applied effectively, contains detailed information on the conjugation 

process which can be leveraged in process development. It thus constitutes an 

efficient tool for in silico decision support. 

For process monitoring, the tested combination of PAT tool and kinetic model 

is more accurate and flexible than just comparing the monitoring data to 

previous runs. What is also shown by the results is that we were able to fit the 

model also to data from a different setup in a different scale, which supports 

the selected model structure. 

If root cause analysis is intended, the kinetic model should be expanded, e.g. 

towards more factors like pH, temperature and salt concentration. 

5.6 Conclusion 

In the present work, we developed a kinetic modeling approach and 

demonstrated how it can be applied as in silico decision support for the 

development of bioconjugation processes. The investigated reaction was the 

covalent attachment of hydrophobic maleimide-functionalized surrogate drugs 

to two engineered cysteines in a mAb. Six different model structures were 

proposed and the best one was selected by cross-validation, yielding additional 

insight into the underlying mechanism. The model provided evidence that the 

second binding is affected by the attachment of the first molecule, which was 

attributed to an increase in hydrophobicity in the environment of the binding 

site. The selected model was validated with an external validation set with high 

R² of prediction. Furthermore, an increased reaction rate was observed for the 

addition of different salts to the reaction. The application of the model to in 

silico screening and optimization showed its potential for enhancing efficiency 

in process development by evaluating over 200,000 conditions and calculating 

optimal reaction times. This enables the user to choose a condition where the 

target product yield is met with minimal use of drug excess and in the shortest 

reaction time possible. Finally, we presented an approach to combine the 

kinetic model with a previously developed PAT tool2. By extending the kinetic 

model, this approach could be used for online process assessment or root-cause 

analysis.  
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In summary, the proposed kinetic modeling approach has the potential to be 

used as a very versatile tool in the development of bioconjugation reactions. By 

shaping a further digitization of process development, tools like these are 

elementary for a more efficient process development. 
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Appendix B: Supplementary data 

The supplementary data associated with this chapter contain the following 

information: 

- Graphs of model 5 calibration experiments with model fit 

- Rate laws for the other models 

- Graph of NPM depletion over time independent of conjugation 

- Formulae for model evaluation 
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Abstract 

Antibody-drug conjugates (ADCs) are hybrid molecules based on monoclonal 

antibodies (mAbs) with covalently attached cytotoxic small-molecule drugs. 

Due to their potential for targeted cancer therapy, they form part of the 

diversifying pipeline of various biopharmaceutical companies, in addition to 

currently seven commercial ADCs. With other new modalities, ADCs 

contribute to the increasing complexity of biopharmaceutical development in 

times of growing costs and competition. Another challenge is the 

implementation of quality by design (QbD), which receives a lot of attention. In 

order to answer these challenges, mechanistic models are gaining interest as 

tools for enhanced process understanding and efficient process development.  

The drug-to-antibody ratio (DAR) is a critical quality attribute (CQA) of ADCs. 

After the conjugation reaction, the DAR can still be adjusted by including a 

hydrophobic interaction chromatography (HIC) step. In this work, we 

developed a mechanistic model for the preparative separation of cysteine-

engineered mAbs with different degrees of conjugation with a non-toxic 

surrogate drug. The model was successfully validated for varying load 

compositions with linear and optimized step gradient runs, applying conditions 

differing from the calibration runs. In two in silico studies, we then present 
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scenarios for how the model can be applied profitably to ensure a more robust 

achievement of the target DAR and for the efficient characterization of the 

design space. For this, we also used the model in a linkage study with a kinetic 

reaction model developed by us previously. The combination of the two models 

effectively widens system boundaries over two adjacent process steps.  

We believe this work has great potential to help advance the incorporation of 

digital tools based on mechanistic models in ADC process development by 

illustrating their capabilities for efficient process development and increased 

robustness. Mechanistic models can support the implementation of QbD and 

eventually might be the basis for digital process twins able to represent 

multiple unit operations. 

6.1 Introduction 

Among antibody therapeutics in late-stage clinical studies by the end of 

November 2018, there were more molecules for cancer indications than for all 

non-cancer indications combined27. About one quarter of the 33 molecules for 

cancer indications were antibody-drug conjugates (ADCs), forming an 

important class of novel anti-cancer agents. Combining monoclonal antibodies 

(mAbs) and cytotoxic small-molecule drugs in one molecule, ADCs have the 

capacity for high selectivity and efficacy. The recent approval of trastuzumab 

deruxtecan by Daiichi Sankyo / AstraZeneca in December 2019 results in seven 

ADCs currently on the market.  

With increasing complexity of therapeutic targets, new modalities like ADCs 

are diversifying the pipelines of pharmaceutical businesses, leading to 

increasing complexity and costs of pharmaceutical development147. At the same 

time, regulators are proposing the implementation of the quality-by-design 

(QbD) paradigm, which implies an enhanced knowledge regarding the 

relationship of product performance and process inputs in a wider range10. 

Among other things, this understanding facilitates an extended design space. 

This is beneficial, since, in contrast to conditions outside the design space, 

variations inside are not considered a process change. For implementing QbD 

as well as for coping with increased complexity and costs, the incorporation of 

digital tools like process modeling and simulation into process development 

may be essential. The use of mathematical models offers ways to improve 

process understanding and more efficiently characterize the process and the 

design space54.   

One critical quality attribute (CQA) of an ADC is its drug-to-antibody ratio 

(DAR), because it influences key factors like pharmacokinetics, efficacy, and 

tolerability of the product45,111. High-DAR species (DAR 9-10) exhibit a 

different behavior compared to components with less drug molecules attached 
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(DAR 2-6). Next to the average DAR, also the drug load distribution is relevant. 

The DAR is initially defined in the conjugation reaction, where the drug 

molecules are covalently attached to the mAb via a linker. In current literature, 

there are a few examples of kinetic models for protein conjugation reactions, 

predominantly PEGylation58,143,148. In our recent publication on conjugation 

reaction modeling, we developed a mechanistic model for the engineered 

cysteine-conjugation of two surrogate drugs to a mAb3. Apart from generating 

mechanistic insights, we applied the model for screening and optimizing the 

conjugation conditions towards achieving the target DAR in the most efficient 

way. This said, depending on the conjugation strategy, the reaction results in 

a rather broad or narrow distribution of components with different drug 

loadings. Only if a site-specific conjugation strategy like the conjugation to 

engineered cysteines is used, one has increased control over drug-loading and 

conjugation site31,117. In any case, it can be necessary to adjust the DAR and 

drug load distribution post conjugation, for example to remove unconjugated 

mAb, components with very high drug loading, or for troubleshooting purposes. 

Thus, a robust combination of conjugation and subsequent purification is 

necessary to achieve the target DAR. By establishing mechanistic models for 

both processes, linking and applying them towards increased process 

understanding, efficient process optimization, and process robustness, the 

implementation of QbD for ADC development could be advanced substantially. 

Since the small-molecule drugs, introduced into a comparably large protein, 

are generally very hydrophobic, the increased hydrophobicity can be exploited 

for separation of the components with different degrees of conjugation. 

Naturally, the most suitable method is hydrophobic interaction 

chromatography (HIC)86–88. It can be used to separate proteins under non-

denaturing conditions depending on their interaction with hydrophobic ligands 

on the stationary phase. The retention of proteins in HIC is usually modulated 

by varying the ionic strength of the buffer. However, the influence of salt 

composition on protein retention is rather complex, and other factors like pH 

and temperature have an effect149. Due to the high level of hydrophobicity in 

ADCs, it can be necessary to include an organic solvent like isopropanol (IPA) 

in the running buffer.  

The model-based characterization of the retention of proteins in HIC has been 

studied for many years75,150–155. While these models have extensively been used 

for facilitating a deeper understanding of the underlying mechanisms, there 

are fewer examples in the literature showcasing their beneficial application in 

process development. A mechanistic HIC model has, for example, been applied 

to optimizing the separation of an IgG from BSA as well as analyzing the 

robustness of the optimized process154. Borrmann et al. described how to 

develop a model for an antibody purification step enabling the prediction of 

process performance at different scales with varying operating conditions156. 
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Close et al. developed a model for the HIC purification of a dimeric therapeutic 

protein with varying product form distribution91. Their intention was to use 

the model in further studies to explore the effect of the varying load on product 

quality. Finally, a mechanistic HIC model has been developed in order to lower 

the experimental effort in optimizing a mAb purification step93. Another 

example of a (non-HIC) chromatography model being used for handling 

variations in the feed composition has been presented for an ion-exchange step 

separating charge variants of a mAb157.  

For the preparative separation of different ADC species with HIC, no 

mechanistic model has been developed so far. As stated above, such a model 

could be effectively applied to process development and optimization and could 

support the implementation of QbD in ADC development by yielding process 

knowledge and facilitating a more robust realization of critical quality 

attributes like the DAR.  

In this work, we use the transport-dispersive model (TDM) and the HIC 

adsorption isotherm developed by Mollerup et al.75 to model the separation of 

mAbs conjugated with either zero, one, or two molecules of a non-toxic 

surrogate drug. The model is validated with linear gradient elution as well as 

optimized step gradient runs applying varying load compositions. Once 

validated, two in silico studies are conducted demonstrating the capabilities of 

the model in supporting the implementation of QbD in ADC development. The 

first study shows the application of the model to model-based process control, 

increasing robustness in achieving the target DAR. In the second study, a 

linkage study with a previously developed kinetic reaction model is presented. 

We believe that the model developed and the described applications represent 

an important step towards the intensified use of digital tools like mechanistic 

models for ADC process development, a trend that might eventually result in 

the creation of ‘digital twins’ for production processes. 

6.2 Theory 

6.2.1 Transport-dispersive model and boundary conditions 

The TDM is a lumped-rate model describing convection, dispersion, and mass 

transfer inside a chromatography column94. It is based on mass balances that 

are one-dimensional in space, which means that the concentration of a solute i 

in the void volume ci and bead pore volume cp,i are solely a function of the 

position along the column axis x and the time t. The system is described by a 

balance for the mobile phase (Equation 6.1) and a balance for the stationary 

phase (Equation 6.2): 
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𝜕𝑐𝑖
𝜕𝑡

= −𝑢int ∙
𝜕𝑐𝑖
𝜕𝑥

−
1 − 𝜀int
𝜀int

∙ (𝑘eff,𝑖 ∙
3

𝑟p
∙ (𝑐𝑖 − 𝑐p,𝑖)) + 𝐷ax ∙

𝜕2𝑐𝑖

𝜕𝑥²
 (6.1) 

𝜀p ∙
𝜕𝑐p,𝑖

𝜕𝑡
+ (1 − 𝜀p)

𝜕𝑞𝑖
𝜕𝑡

= 𝑘eff,𝑖 ∙
3

𝑟p
∙ (𝑐𝑖 − 𝑐p,𝑖) (6.2) 

The convective transport of the solutes is effected by the interstitial velocity of 

the solvent uint. Rather than considering the concentration distribution inside 

the pores, the TDM employs a lumped coefficient, the effective film transfer 

coefficient keff. It lumps together film diffusion, pore diffusion, and surface 

diffusion. Besides keff, the mass transfer term depends on the interstitial 

porosity εint, the radius of the porous particles rp, and the difference between 

the concentration in the void volume ci and the pore concentration cp,i. In the 

last term of Equation 6.1, the impact of hydrodynamic effects on band 

broadening, for example caused by packing nonidealities, is described using the 

axial dispersion coefficient Dax. The balance for the stationary phase 

(Equation 6.2) relates the mass transfer term to the change in pore 

concentration cp,i and concentration adsorbed to the solid phase qi, depending 

also on the particle porosity εp. The system of differential equations was solved 

using the software ChromX. ChromX uses Danckwerts’ boundary conditions 

for column inlet and outlet, given by Equation 6.3 and Equation 6.4, where cin,i 

means the applied inlet concentration158: 

𝑐𝑖(𝑡, 𝑥 = 0) = 𝑐in,𝑖(𝑡) +
𝐷ax
𝑢int

∙
𝜕𝑐𝑖(𝑡, 𝑥 = 0)

𝜕𝑥
 (6.3) 

𝜕𝑐𝑖(𝑡, 𝑥 = 𝐿)

𝜕𝑥
= 0 (6.4) 

The TDM does not account for adsorption kinetics, assuming an equilibrium 

between concentration in the pores and adsorbed concentration. 

6.2.2 Isotherm model 

For a description of the adsorption equilibrium, we used the HIC isotherm 

developed by Mollerup et al.75. Equation 6.5 shows the kinetic formulation of 

the isotherm as implemented in ChromX: 

𝑘kin,𝑖 ∙
𝜕𝑞𝑖
𝜕𝑡

= 𝑘eq,𝑖 ∙ (1 −∑
𝑞𝑗

𝑞max,𝑗

𝑁

𝑗=1

)

𝑛𝑖

∙ exp(𝑘s,𝑖 ∙ 𝑐p,salt + 𝑘p,𝑖 ∙ 𝑐p,𝑖) ∙ 𝑐p,𝑖 − 𝑞𝑖 (6.5) 

where N represents the number of proteins, kkin,i denotes the kinetic constant, 

and keq,i is the equilibrium constant. The saturation capacity qmax,j of the 

adsorber for component j depends on the ligand density, steric shielding, and 

the stoichiometric parameter nj (number of ligands bound per protein). Finally, 
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cp,salt stands for the salt concentration in the pores, and ks,i and kp,i are 

parameters describing the effect of salt concentration and protein 

concentration, respectively, on the activity coefficient. 

Within the linear adsorption range (q << qmax), Equation 6.5 can be simplified 

to: 

𝑘kin,𝑖 ∙
𝜕𝑞𝑖
𝜕𝑡

= 𝑘eq,𝑖 ∙ exp(𝑘s,𝑖 ∙ 𝑐p,salt) ∙ 𝑐p,𝑖 − 𝑞𝑖 (6.6) 

For these dilute conditions, the dependence of the activity coefficient on the 

protein concentration is negligible159. 

6.3 Materials and Methods 

6.3.1 Chemicals, buffers, and proteins 

Purified IgG1 mAb stock solution in PBS (+5 mM EDTA, pH 7.2) was kindly 

provided by AstraZeneca. The antibodies’ disulfides were reduced with tris(2-

carboxyethyl)phosphine hydrochloride (TCEP, Merck KGaA, #C4706). (L)-

dehydroascorbic acid (DHA, Merck KGaA, #261556) was used for partial re-

oxidation. The nontoxic compound 7-diethylamino-3-(4′-maleimidylphenyl)-4-

methylcoumarin (CPM, Merck KGaA, #C1484) was employed as a substitute 

for small-molecule drugs used in ADCs. For dissolving CPM and DHA, 

dimethyl sulfoxide (DMSO, Merck KGaA, #472301) was used. The reaction was 

stopped by adding N-acetyl cysteine (NAC, Merck KGaA, #A7250) to bind free 

CPM. 

NaH2PO4 x 2 H2O from VWR International GmbH was used for all buffers. 

Titration to the desired pH was done using 4 M NaOH (Merck KGaA). After 

preparation, all buffers were filtered through a 0.2 µm cellulose acetate 

membrane filter (Sartorius AG, Göttingen, Germany). During the conjugation 

process, a 50 mM sodium phosphate buffer at pH 7.2 was used for dilution and 

buffer exchange. For the HIC runs, the high-salt equilibration buffer contained 

1 M of ammonium sulfate (AS, AppliChem GmbH, #A1032) and 50 mM of 

sodium phosphate. The low-salt elution buffer only contained 50 mM of sodium 

phosphate. Both, equilibration and elution buffer, were at pH 7 and both 

contained 5% (v/v) of IPA (Merck KGaA, #101040), which was added after pH 

adjustment. Acetonitrile from Carl Roth GmbH + Co. KG (#8825) and 

trifluoroacetic acid (TFA) from Thermo Scientific (#28904) were used for 

reversed-phase ultra-high performance liquid chromatography (RP-UHPLC). 

For tracer experiments, dextran (Dextran from Leuconostoc spp., ~2,000 kDa, 
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Sigma, #95771) and acetone (Acetone for LC, Merck KGaA, #1.00020) were 

used. 

6.3.2 Conjugation process 

The mAb contained two engineered cysteines as binding sites for the 

conjugation. Instead of cytotoxic small-molecule drugs, the non-toxic, 

maleimide-functionalized surrogate drug CPM was used.  

Prior to the conjugation reaction, the binding sites on the antibody were 

prepared, performing a reduction and partial re-oxidation step in 50 mL 

centrifuge tubes (Corning, #352070).  

At the beginning, the mAb stock solution was diluted with 50 mM sodium 

phosphate buffer at pH 7.2 to the desired concentration. A Nano Drop 2000c 

spectrometer (Thermo Scientific, Waltham, USA) was used for concentration 

measurements. For the reduction, the mAb concentration was set to 6.2 g/L 

and TCEP was added in a 40-fold molar excess over the mAb concentration. 

After incubating for 3 h at room temperature and at a 350 rpm orbital shaking 

rate (Thermo Mixer C, Eppendorf AG, Hamburg, Germany), the reduced mAb 

was dialyzed into 50 mM sodium phosphate buffer pH 7.2. Dialysis was done 

at 5 °C with a 10 kDa molecular weight cut-off cassette (Thermo Scientific, 

#87731-87733) to remove the reducing agent.  

Interchain disulfide bonds were reformed by a partial re-oxidation with a 20-

fold molar excess of DHA (8 mM stock solution in DMSO), which was conducted 

for 4 h at room temperature and 350 rpm orbital shaking.  

The conjugation was started by addition of CPM dissolved in DMSO at a molar 

ratio of 3:1 (CPM : mAb). During the reaction, the DMSO content was set to 

10% and the mAb concentration was 5.1 g/L. Finally, a 12-fold molar excess of 

NAC (over CPM) was added to bind residual free drug and stop the conjugation 

reaction. To create different DARs for the HIC runs, the reactions were stopped 

at different times. Like this, six loads with DARs of 0.76, 0.78, 1.26, 1.49, 1.63, 

and 1.84 were generated and stored at -80 °C. 

6.3.3 System and column characterization 

All chromatography experiments were performed with an Ettan liquid 

chromatography (LC) system consisting of pump unit P-905, dynamic single 

chamber mixer M-925 (90 µL mixer volume), UV-Vis monitor UV-900, and 

conductivity monitor pH/C-900 (all GE Healthcare, Uppsala, Sweden). A 

Repligen OPUS Minichrom column with a column volume (CV) of 2.5 mL (ID 

8 mm, L 50 mm), pre-packed with TSKgel Phenyl-5PW (20 µm), was used 

(Repligen GmbH, Ravensburg, Germany).  

The system and column parameters were determined by injections of 
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noninteracting tracers94. As non-pore-penetrating tracer, dextran (~2,000 kDa) 

was used in a 10 g/L solution in running buffer. As pore-penetrating tracer, a 

1% solution of acetone in running buffer was used. The tracer experiments were 

done by injecting 100 µL samples of tracer through a sample loop, with and 

without column connected to the system. Each experiment was performed in 

triplicates for both high- and low-salt buffer and the results were averaged. 

After their determination, these system and column parameters were used to 

calculate other model parameters like porosities and volumes. The axial 

dispersion coefficient (Dax) was estimated from the concentration profile of the 

non-penetrating tracer dextran using the software ChromX (Version 1.3.12.1, 

GoSilico GmbH, Karlsruhe, Germany). 

6.3.4 HIC experiments 

Prior to each run, the load was buffer-exchanged into the equilibration buffer 

using PD-10 desalting columns with Sephadex G-25 resin in the spin protocol 

(GE Healthcare, #17085101). This step also served to remove free CPM 

molecules.  

The system was first equilibrated with high-salt buffer (ionic strength (IS) of 

3.106 M), before 0.5 mL of sample were loaded through a sample loop. All loads 

were concentrated between 4 g/L and 5 g/L of protein with varying 

compositions of ADC components (see Table 6.1). After a wash of 2.3 CV with 

equilibration buffer, the elution was started. For the linear as well as the step 

gradient runs, IS was immediately decreased in a first step (IS between 1.6 M 

and 2.504 M). From the level of the first step, IS was then decreased to 0.095 M, 

either in a linear gradient or another step. The linear gradient length was 

varied between 15 and 25 CV. The step length of the second step was varied 

between 6 and 12 CV. All bind-and-elute runs are summed up in Table 6.1. 
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Table 6.1: Summary of HIC gradient runs conducted for model calibration and 

validation. 

Run 

# 

Load 

# 

Load 

DAR  

Gradient length 

[CV] 

Ionic strength at 

gradient start /  

after 1st step 

[M] 

Model calibration 

1 1 0.76 20 2.504 

2 1 0.76 15 2.504 

3 2 1.48 20 2.504 

4 3 1.49 15 2.504 

5 3 1.49 25 2.504 

6 4 1.84 20 2.504 

7 4 1.84 25 2.504 

8 5 0.78 6 (Step) 1.785 

9 5 0.78 10 (Step) 1.600 

Model validation 

10 6 1.63 12 (Step) 2.054 

11 7 1.26 9 (Step) 1.942 

12 7 1.26 17.5 2.353 

 

6.3.5 Reversed-phase analytical chromatography 

The load material as well as all fractions were analyzed using RP-UHPLC as 

described previously1. The assay was applied for quantification of the 

conjugation states of the intact mAb without sample preparation. 

6.3.6 HIC model calibration 

For modeling the transport of solutes through the column, the transport-

dispersive model was used. All experiments described in Section 6.3.4 are 

expected to be in the linear range of the isotherm. Consequently, Equation 6.6 

was used for modeling the adsorption. The protein parameters, namely keff, kkin, 

keq, and ks, were determined by minimizing the sum of squared residuals 

between experimental data and model prediction using ChromX. Adaptive 

simulated annealing (ASA)160 and Ceres Solver161 were used as global and local 

optimizers, respectively. For finite-element spatial discretization, linear finite 

elements with ‘Streamline-Upwind / Petrov-Galerkin-stabilization’ (SUPG) 

were selected. As time-stepping scheme for the simulation, the so-called 
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fractional-step scheme was chosen162. Thirty axial cells and time steps of 1 s 

were used. 

6.3.7 Process optimization and HIC model validation 

After achieving a satisfying fit, the model was validated with one linear 

gradient run and two step gradient runs with conditions differing from the 

calibration runs in load composition, gradient length, and gradient starting 

concentration (see Table 6.1). The conditions of the step gradients were 

determined by using the calibrated model to optimize the process towards high 

purity and yield of the bi-conjugated component, a short process time, and a 

low pooling volume (meaning a high concentration in the pool). The 

optimization was done for the step gradients only, varying the ionic strength of 

the first step, the length of the second step, and the pooling criterion. In order 

to have strongly varying conditions for a thorough validation, we changed the 

penalty for a long process time between the optimization for run 9 and run 10 

(two different loads). 

6.3.8 In silico study for model-based process control 

In order to demonstrate the potential of a validated HIC model for a more 

robust achievement of the target DAR, an in silico study was conducted. A 

theoretical load resulting from the conjugation process was generated (DAR = 

1.88) and the HIC process was optimized for this load, yielding a final target 

DAR in the HIC pool. The outcome of this procedure was assumed to be the 

standard process. Due to a process variation in the conjugation, the output and 

thus the load for the HIC step can vary. In order to mimic this case, the load 

was varied to a lower DAR value of 1.5. In case the subsequent HIC process is 

sensitive to these variations in the load, the previously developed ‘stiff’ HIC 

process might lead to a situation where the target DAR is missed. In order to 

prevent this, the HIC model was used to adjust the HIC process (allowing a 

more flexible parameter setting, determined by the targeted outcome) towards 

achieving the final target DAR in the HIC pool. Thus, reaching the target DAR 

was weighted more heavily in the objective of the optimization. 

6.3.9 Model-based linkage study of HIC purification and conjugation 

Finally, we combined the validated HIC model with a previously established 

kinetic reaction model3. A schematic overview is shown in Figure 6.1. The 

kinetic model was initially developed for the conjugation of a maleimide-

functionalized surrogate drug to two engineered cysteines in a mAb, the same 

reaction as applied in this work for the generation of the HIC load material. 



6.3 Materials and Methods 

94 

 

The input to the kinetic model are the starting concentrations of mAb and drug 

and the reaction time and the output is the concentration of each conjugate 

species, defining the DAR of the product. These output concentrations of the 

conjugation model acted as the input needed for the HIC model in order to 

apply an optimized step gradient process and calculate the yield and final DAR 

in the HIC pool. To showcase the potential of such a model combination or 

‘digital twin’, an in silico screening and optimization for the conjugation 

reaction was conducted (varying mAb and drug input concentrations, as 

described in our previous publication), feeding the output directly into the HIC 

model. The HIC model was then used to optimize the HIC step gradient process 

for the different loads coming from the conjugation and for directly calculating 

the total yield (protein output of HIC in pool / protein input of conjugation) and 

final DAR in the HIC pool. In summary, the two models were used to calculate 

the total yield and the final output of the HIC process from the input 

parameters of the conjugation process. For simplicity, the duration of the HIC 

process was not varied in the optimization and the length of the second step 

was set constant at 30 mL. Instead, only the ionic strength of the first step and 

the pooling criterion were optimized. 

 

Figure 6.1: Schematic overview of the in silico linkage study between kinetic model for 

the conjugation and HIC model for the purification of ADCs. 𝑐mab,in and 𝑐Drug,in are the 

input concentrations of mAb and drug for the conjugation. 𝑐mAb , 𝑐mAb+1 and 𝑐mAb+2 are 

the concentrations of un-, mono-, and di-conjugated mAb resulting from the 

conjugation, which form the input for the HIC model.  𝑌𝑖𝑒𝑙𝑑total means the ratio of 

protein in the HIC pool to protein going into the conjugation. 𝐷𝐴𝑅final is the DAR after 

the HIC step. 
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6.4 Results and Discussion 

6.4.1 Model calibration 

All parameters characterizing the system and column used herein are 

summarized in Table 6.1. The other model parameters of the TDM and the used 

adsorption isotherm (Equations 6.1, 6.2, 6.6) were determined by fitting the 

model to nine calibration experiments. Chromatograms showing the model fit 

together with the experimental data are presented in Figure 6.2. The 

unconjugated mAb is always the first component to elute, followed by the mono-

conjugated and di-conjugated component. Retention times are well described 

by the model for all components in all runs. For the linear gradients, also peak 

shape and height are in good agreement. One exception is the tailing, especially 

of the bi-conjugated component, which is not as well described by the model. It 

has been reported repeatedly, that the interaction with the hydrophobic surface 

of the adsorber in HIC can lead to a partial unfolding of proteins 163–165. The 

unfolded fraction of the protein is retained more strongly, which could lead to 

the tailing observed in Figure 6.2. Since this effect is not covered in the applied 

model, it would explain the deviation regarding the tailing. While we think that 

this is the most probable explanation, it is also possible that aggregates of the 

components are eluting in the end of the peak. Every attached CPM molecule 

adds hydrophobicity to the mAb, which can also be seen by the order of elution, 

so the bi-conjugated component is the most prone to aggregation. It might be 

possible to describe this effect by including a forth component for the 

aggregates, but the amount of aggregates would have to be quantified for all 

fractions with separate analytics. For the case of reversible on-column 

aggregation, this would not be possible. In the step runs, the isocratic part after 

the first step is also well described by the model, but the peak of the bi-

conjugated component in the second step is wider and lower in the simulation. 

Nevertheless, the agreement of peak positions and peak shapes between 

experimental data and simulation was good, as visualized using parity plots. 

In Figure 6.3A, the retention volume VR of the peak maximum is compared, 

giving a reference for the peak position. All markers are close to the parity line, 

which implies that the peak positions are well modeled for all components. This 

translates to an R² of 0.98 for the position of the peak maximum. By assessing 

the width at half of the peak height, a characterization of the peak shape is 

possible, because width as well as height of the peak are taken into account. 

Figure 6.3B shows that the simulated peaks have a tendency to be wider and/or 

lower than the ones in the experimental chromatograms, despite the generally 

good agreement between the shapes. The average difference is 0.86 mL, which 

is about 15% of the average width at half the peak height. This yields an R² of 

0.83. In total, after parameter estimation, the model is able to describe the 
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experimental data very well, covering different linear gradient lengths, 

different load compositions as well as step gradients with varying step heights 

and lengths. We expect this approach to work in the same way using real 

cytotoxic drug molecules instead of surrogate drugs. The requirement is that 

sufficient recovery can be achieved and that the concentrations in the fractions 

can be quantified. Of course, the model development and calibration become 

more extensive, the more components with different DARs are present, which 

highly depends on the conjugation strategy. 

 

Table 6.2: Parameters characterizing system and column. 

Parameter Symbol Value Unit Determination 

Column length L 50 mm Manufacturer 

Column diameter d 8 mm Manufacturer 

Bead radius rp 0.01 mm Manufacturer 

System dead 

volume 
Vd 0.215 mL Acetone tracer, no column 

Retention volume 

acetone 
VRAc 2.370 mL 

Acetone tracer, with 

column 

Retention volume 

dextran 
VRDex 1.158 mL 

Dextran tracer, with 

column 

Superficial 

velocity 
u 0.414 mm/s Controlled 

Column volume Vc 2.500 mL Manufacturer 

Fluid volume Vf 2.155 mL 𝑉f = 𝑉RAc − 𝑉d 

Interstitial 

volume 
Vint 0.943 mL 𝑉int = 𝑉RDex − 𝑉d 

Total column 

porosity 
εtot 0.862 - 𝜀tot = 𝑉f/𝑉c 

Interstitial 

porosity 
εint 0.377 - 𝜀int = 𝑉int/𝑉c 

Particle porosity εp 0.778 - 𝜀p = (𝑉f − 𝑉int)/(𝑉c − 𝑉int) 

Interstitial 

velocity 
uint 1.099 mm/s 𝑢int = u/𝜀int 

Axial dispersion Dax 0.133 mm²/s Estimated from tracer 

 

The results obtained from model calibration are based on the assumption that 

q<<qmax, indicating a very low competition for binding sites. Furthermore, the 

effect of non-ideal protein behavior in the pores caused by protein-protein 
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interactions represented by the interaction parameter for protein kp was 

neglected. All together, these assumptions result in a model only valid in the 

linear part of the adsorption isotherm. The adsorption behavior of the three 

components modeled is, in this case, only described by the equilibrium constant 

keq,i and the kinetic rate constant kkin,i as well as the concentration of salt, its 

influence on protein activity being represented by ks,i. In addition to these three 

parameters, the effective film diffusion coefficient keff,i was estimated. A 

determination using empirical correlations was discarded due to the high salt 

concentration and the presence of IPA in the buffers, both increasing the 

viscosity of the solution166 and thus influencing its mass transfer properties. 

The resulting parameters estimated for the un-conjugated, mono-conjugated, 

and bi-conjugated mAb are listed in Table 6.3. When compared to literature 

values for mAbs, the effective film diffusion coefficient keff,i is in a plausible 

range92,167. An accurate comparison is difficult, however, as mass transfer 

inside the pores depends on many factors like pore size, pore tortuosity, and 

other conditions168. Furthermore, reports suggest that pore diffusion, as well 

as surface diffusion, play a strong part in the transport of proteins in HIC 

resins155. Since the components have approximately the same size, it is natural 

that their keff,i are in the same range. All three estimated isotherm parameters 

were expected to increase with increasing hydrophobicity of the components, 

which is the case as shown in Table 6.3. ks,i covers the stronger effect of salt on 

more hydrophobic molecules, leading to a later elution of the higher conjugated 

species. The adsorption equilibrium keq,i is also higher, meaning a higher 

affinity to the adsorber surface for more hydrophobic, more conjugated 

molecules. Apart from later elution, a higher keq,i also impacts the peak shape. 

For the kinetic rate kkin,i, the values range from 4.9 x 10-8 s to 39.62 s. Higher 

values lead to a slower change in adsorbed concentration, which causes the 

peaks to broaden. In this way, the wider peaks of the conjugated species can be 

described. 

Organic solvents like the IPA present in the buffers also have an impact on the 

binding to the HIC adsorber. Since the concentration was 5% in all buffers at 

all times, this effect was not modeled separately. It is incorporated as a factor 

into the other model parameters and will not be further discussed. 
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Table 6.3: Estimated model parameters for the three modeled components 

unconjugated mAb (mAb), mono-conjugated mAb (mAb+1), and bi-conjugated mAb 

(mAb+2). 

Parameter mAb mAb+1 mAb+2 

keff,i [mm/s] 0.0013 0.0010 0.0015 

kkin,i [s] 4.9 x 10-8 3.47 39.62 

keq,i [-] 0.079 0.092 0.131 

ks,i [M-1] 3.114 3.256 3.521 

 

 

 

Figure 6.2: Overview of HIC gradient experiments used for parameter estimation. 

Absorption of the three mAb components at 280 nm (unconjugated in red, mono-

conjugated in green, and bi-conjugated in blue) and ionic strength of the buffer (black) 

are plotted over the retention volume. The simulation is shown by the straight lines, the 

fraction data by the dashed lines. Load composition, gradient length, and step height 

were varied between the runs. The conditions of each run can be found in Table 6.1. 
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Figure 6.3: A: Parity plot for the retention volume (VR) of the peak maximum of 

experimental data and simulation in the calibration. B: Parity plot for the width at 

half peak height of experimental data and simulation in the calibration. Values on the 

line are equal in experiment and simulation. The red squares stand for the 

unconjugated mAb, the green triangles for the mono-conjugated mAb, and the blue 

diamonds for the bi-conjugated mAb. 

6.4.2 Process optimization and model validation 

After calibration of the chromatography model with 9 HIC experiments, the 

model was externally validated with three different experiments shown in 

Figure 6.4. The validation experiments consisted of one linear gradient run, 

where a different gradient length and a different gradient starting 

concentration were used, and two step gradient runs, where conditions 

optimized by the model were used (see Table 6.1). For the two step runs, two 

different load compositions were applied and the process was optimized based 

on the input, as described in more detail in Section 6.3.7. Prior to discussing 

the validation, the results of this process optimization for the steps are 

examined. The optimization resulted in different salt concentrations for the 

first step and different step lengths of the second step. Also pooling boundaries 

were optimized. With these optimized conditions, high experimental yields and 

a DAR close to the target DAR of 2 were achieved as can be seen in Table 6.4. 

The bi-conjugate yield is 98% for Run 10 and 96% for Run 11 compared to 93%, 

which was achieved in the long linear gradient in Run 5 (25 CV). While for the 

present optimization, yield and purity of the target bi-conjugated component 

were weighted equally, the objective function can be adjusted according to the 

preferences. Run 10 and Run 11 resulted in a DAR of 1.89 and 1.86 in the pool, 

the linear gradient of Run 5 gave a DAR of 1.89. While this is higher than in 

the optimized Run 11, it has to be taken into account that the load for Run 11 

(DAR = 1.26) had a lower DAR than the one for Run 5 (DAR = 1.49), which 
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makes it more difficult to reach a high DAR in the HIC pool. Moreover, the 

concentration in the optimized step pools is 2.6 times higher than in Run 5 with 

a similar loaded mass, and the processing time is shorter. 

Table 6.4: Predicted and experimental yield and DAR of optimized step runs (Run 10 

and 11). 

Run 10 Predicted Experimental Deviation [%] 

Yield 0.97 0.98 0.6 

DAR 1.96 1.89 3.4 

Run 11 Predicted Experimental Deviation [%] 

Yield 0.94 0.96 2.1 

DAR 1.93 1.86 4.0 

 

The data obtained from fractionation and the respective model prediction for 

the three validation runs are depicted in Figure 6.4. Model and experimental 

data are in good agreement for all three runs. Especially the elution during the 

linear gradient is very well described regarding both peak position as well as 

peak shape. As for the calibration runs, the bi-conjugated component deviates 

regarding the tailing. The probable cause was discussed in the previous section. 

The simulation of the step runs successfully describes the isocratic elution 

before the IS drop of the second step for all components, but it slightly 

underestimates the rest of unconjugated and mono-conjugated component that 

is eluting in the target product peak of the second step. For integrating the 

product peak, the pooling boundaries optimized by the model were used. It is 

highly important to the application of the model that the amount of the target 

bi-conjugated component in the pool is very well predicted, which is reflected 

by the good agreement of predicted and experimental yields (see Table 6.4; 

about 1.5% deviation). Due to the residual un- and mono-conjugated species in 

the product peak, the DAR in the HIC pool is overestimated by about 3.7%. In 

general, these results show the successful validation of the calibrated HIC 

model. Additionally, it could be demonstrated that the proposed HIC model is 

able to determine optimal conditions for a step gradient run for varying load 

compositions of conjugated components. This underlines the applicability of a 

mechanistic chromatography model for ADC process development and 

optimization. In the next two sections, this ability of the model to use 

concentrations of conjugated components as an input and identify optimized 

HIC parameters as an output is applied in two in silico studies to showcase its 

application in process control and model linkage. 
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Figure 6.4: HIC gradient experiments used for model validation. The conditions for the 

step gradients in Run 10 and Run 11 were optimized using the calibrated model. For 

calculation of yield and DAR, the same optimized pooling boundaries were used for 

simulation and experimental data. Absorption of the three mAb components at 280 nm 

(unconjugated in red, mono-conjugated in green, and bi-conjugated in blue) and ionic 

strength of the buffer (black) are plotted over the retention volume. The simulation is 

shown by the straight lines, the fraction data by the dashed lines. The conditions of 

each run can be found in Table 6.1. 

6.4.3 Robust DAR by model-based process control 

In the introduction, the importance of the DAR as a CQA for ADCs was 

underlined. It is crucial to reach the specified value in a robust manner. While 

the DAR can, of course, depend on many factors, two processes are particularly 

important for reaching the target degree of conjugation, namely the 

conjugation reaction and the purification post-conjugation. This in silico study 

was designed to demonstrate the applicability of the HIC model in this context 

of reaching a target degree of conjugation in a controlled manner. A flow chart 

with the setup and the results of the study is displayed in Figure 6.5. The top 

sequence of steps represents the standard process, where a conjugation 

reaction at 5 g/L with a resulting DAR of 1.88 was assumed. Processing this 

load composition by using the standard HIC step (optimized for this load), gives 
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a DAR of 1.97 in the HIC pool with a yield of 98.1%.  

A deviation from the specified process for the conjugation can potentially lead 

to a different output, in this case study a DAR of 1.5. This constitutes a varied 

load for the standard HIC process. Due to the inability of the stiff original HIC 

process to react on variation in the load, the final DAR in the pool dropped to 

1.85. The process performance is apparently sensitive to different load 

compositions. For mitigating the impact of the deviation in the conjugation 

output, the HIC model was used for model-based process control. In the 

previous section, it was shown that the developed model can be used for process 

optimization and to predict yield and DAR for varying load compositions. In 

this study, we thus optimized the HIC process towards achieving the same 

DAR of 1.97 as in the standard process. As a consequence, the yield dropped 

from 98.1% to 91.2%, which is an acceptable price compared to losing the whole 

batch. In Table 6.5, the original and the adjusted HIC conditions are listed. 

Especially the volume of the second step was adjusted, from 30 mL to 44.46 mL 

in the adapted process. These results demonstrate how a mechanistic process 

model can help compensate variations in previous process steps in order to 

reach product specifications by model-based process control. This underlines 

the potential of mechanistic models for ADC development. 

 

Figure 6.5: This flow chart shows how a mechanistic chromatography model can be 

applied for more robustly achieving the specified degree of conjugation in the pool. By 

adjusting the process using the model, one can react to a variation in a previous process 

step, here the conjugation reaction. 
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Table 6.5: HIC process parameters adjusted by model in reaction to variation in 

conjugation output. 

Parameter HIC standard HIC adjusted 

cstep [M] 2.078 2.093 
Vstep [mL] 30.00 44.46 
Pool start [mL] 37.54 52.00 
Pool end [mL] 43.90 57.30 

 

6.4.4 Model-based linkage study of conjugation reaction and HIC purification 

In the last part of this work, we performed an in silico linkage by combining 

the validated HIC model with a previously established kinetic reaction model 

for the conjugation3. The goal was to investigate the potential of the linked 

models to act as ‘digital twin’ and thus to exploit the possibility to establish a 

flexible design space over two adjacent unit operations. In Figure 6.6, the 

results of this linkage study are presented. The overall objective was reaching 

a DAR of 2 with high yield.  

As described in Section 6.3.9, the input to the kinetic model consisted of the 

mAb concentration and the ratio of CPM to mAb concentration. Graph A in 

Figure 6.6 shows the DAR, which is achieved with different starting 

concentrations, when optimizing the conjugation for a DAR of 2 and a short 

reaction time (with the DAR being the primary objective). The DAR is 

calculated from the individual component concentrations. At each data point, 

this output was then used as input for the HIC model, in order to optimize the 

HIC settings on the basis of the different load compositions. Graphs B and C 

in Figure 6.6 give the optimal ionic strength of the first step and the volume at 

the end of the pool, respectively. The lower the incoming DAR from the 

conjugation, the more the salt concentration has to be lowered in the first step 

and the lower is the pool volume. For simplicity, the volume of the second step 

was not varied in the optimization. For each screened condition, the final yield 

was calculated as amount of protein in the HIC pool divided by amount of mAb 

going into the conjugation reaction. Yield and DAR in the HIC pool are shown 

in graphs D and E of Figure 6.6. It can be seen that good DAR values between 

1.94 and 1.97 can be achieved with the optimized HIC steps, working with 

incoming DARs as low as 1.46. This is facilitated by the model by adjusting the 

HIC process according to the load composition. As is to be expected, the yield 

drops lower, the lower the DAR is after conjugation. For the condition with the 

lowest degree of conjugation, the yield is 64% compared to 93% for the condition 

with the highest DAR.  
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This case study shows how two mechanistic models can be used in combination 

to screen inputs of the conjugation reaction and directly assess the output of 

the subsequent purification step in silico. Prior to a running process, such 

combination can help to investigate questions like how low the drug excess can 

be set in the conjugation while still achieving the target DAR with a good yield 

after purification. Furthermore, it is not only possible to optimize the second 

process step for the best set of parameters in the first process step, but for a 

range of parameter sets. Finally, the combination of adjacent process models 

widens system boundaries over more than one individual process step and thus 

the established ‘digital twin’ might lead to an overall flexible design space. 
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Figure 6.6: Results of linkage study of kinetic reaction model and HIC model for 

engineered-cysteine conjugation and subsequent HIC purification. A: DAR after 

conjugation for different input concentrations of mAb and CPM. B: Optimal ionic 

strength of the first step in HIC depending on output from the conjugation reaction. 

Each screened condition in the conjugation is a new load composition for HIC. C: 

Optimal pooling end volume in HIC depending on output from the conjugation 

reaction. D: Final yield after HIC. E: DAR after HIC. Yield and DAR after HIC are 

determined by the two models directly from the input concentrations of the conjugation. 

Component 
concentrations (DAR) 
predicted by 
conjugation reaction 
model are input for 
HIC model

HIC model calculates optimal yields and 
DAR for different load compositions

HIC model optimizes process for different loads

CB
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6.5 Conclusion 

A mechanistic HIC model for the preparative separation of ADC species with 

different degrees of conjugation was successfully developed and its benefit for 

ADC development was demonstrated in two in silico case studies. The model 

was validated with one linear and two step gradient experiments, in which 

gradient starting concentration, gradient length, and load composition were 

changed. With the in silico-optimized step runs, a higher yield and similar 

purity of the target bi-conjugated component in a shorter processing time and 

with a higher concentration in the pool was achieved compared to a gradient 

run with similar load. Yield and DAR of these runs were predicted by the model 

with relative errors between 1% and 4%. After validating the ability of the 

model to find optimal HIC process conditions for different load compositions, 

an in silico study was conducted to show how this can be applied to ensure a 

robust achievement of the target DAR, a critical quality attribute of ADCs. By 

adjusting the HIC purification according to the model, it was possible to react 

to a variation in the conjugation reaction, which had affected the DAR of the 

load. Next to  model-based process control, the HIC model was used in an in 

silico linkage study, combining it with a kinetic reaction model developed by us 

previously3. The combination illustrates the application of mechanistic models 

for efficient characterization of a wider design space. Both case studies 

elucidate, how mechanistic modeling could pave the way from stiff processes 

unable to react to variations in previous steps towards more flexible processing 

approaches.  

Going further, the chromatographic model should be extended to higher load 

concentrations by including experiments beyond the linear range of the 

isotherm. However, the model developed in this work serves its purpose of 

demonstrating how model description can be used in the implementation of 

QbD for ADC development and how the incorporation of modeling and 

simulation tools can support a more efficient characterization of process and 

design space in times of increasing complexity and costs.  

We believe that the concepts presented in this work could help fertilize the 

ground for a further implementation of QbD in biopharmaceutical development 

and eventually for the emergence of digital process twins mirroring whole 

chains of unit operations. 
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7 Conclusion and Outlook 

This thesis contributes to finding answers to some of the current challenges in 

biopharmaceutical development, and in ADC development in particular. One 

objective was establishing tools for highly efficient process development in 

order to cope with increasing complexity and costs. Furthermore, it was 

intended to promote the implementation of QbD for conjugation processes by 

providing enhanced process understanding, techniques for process monitoring, 

and efficient ways to characterize the design space. To this end, the potential 

of different high-throughput, analytical, and digital tools for ADC process 

development was evaluated (Chapters 3-6). Several such methods were 

developed for the process of site-specifically attaching two maleimide-

functionalized surrogate drugs to a cysteine-engineered mAb. After validating 

the methods, it was demonstrated how they can be applied to dealing with the 

mentioned challenges and different ADC-related problems like achieving the 

target DAR. 

The first part of this work (Chapter 3) was dedicated to establishing a high-

throughput process development platform for site-specific ADC conjugations 

comprising the whole conjugation process as well as high-throughput 

compatible analytics. All process steps including a buffer exchange and the 

subsequent protein quantification were successfully transferred to a robotic 

liquid handling station. A high-throughput compatible RP-UHPLC method 

with a runtime of 7 min was developed to assess conjugation results efficiently. 

Combining high-throughput screening with DoE, the platform was applied to 

conjugation experiments and the results were presented using response 

surface modeling. Finally, the comparability to a manual setup was shown. The 

developed platform facilitates efficient parameter screening for site-specific 

conjugation strategies, which often require multiple reaction steps leading to a 

wide range of parameters. The degree of automation and parallelization that 

high-throughput platforms offer could be essential for finding optimal 

parameters for the next generation of ADCs. 

In the second part of the thesis (Chapter 4), a UV/Vis-based on-line monitoring 

method for ADC conjugation reactions utilizing multivariate data analysis was 

created. First, a spectral change caused by the conjugation of the surrogate 

drug to the mAb was successfully identified. It can most probably be ascribed 
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to solvatochromism. By using PLS regression, the change in the UV/Vis signal 

was then correlated to the amount of conjugated drug in the solution as 

determined by RP-UHPLC. The calibrated PLS model allowed to follow the 

reaction progress solely by measuring UV/Vis absorption, a fast and 

noninvasive technique. The approach was successfully validated by using 

either cross-validation or external data for two different surrogate drugs and 

two setups with different detectors. This on-line monitoring tool could be 

applied to assessing the DAR of ADCs during the conjugation reaction, possibly 

reducing an analytical bottleneck. Additionally, the monitoring of this critical 

quality attribute is the first step in implementing a PAT-based control strategy 

as promoted by QbD. 

The DAR is also pivotal in the third part of this PhD thesis (Chapter 5), where 

a kinetic reaction model for site-specific ADC conjugations was developed, 

which is able to predict the DAR at each point of the reaction from the starting 

concentrations. Six model structures, each a set of ODEs, were proposed and 

the best model was selected by cross-validation. This model suggests that the 

binding to the second of two equal binding sites is influenced by the first 

attachment in the way that it has an increased reaction rate. The effect was 

attributed to the hydrophobicity introduced by the first attached drug. 

Additionally, it was shown that the addition of different salts, especially 

ammonium sulfate, can have a strong, positive effect on the reaction rate. The 

selected model was subsequently validated by predicting an external data set, 

including data outside the calibration range. In order to determine starting 

concentrations yielding the target DAR in the shortest reaction time possible, 

the investigated process was optimized performing an in silico screening and 

optimization. It also enables the selection of conditions where optimal results 

are achieved with minimal drug excess, an important criterion due to high 

toxicity and cost of the drug molecules. Finally, an idea for the extension of the 

monitoring approach developed in Chapter 4 was presented, combining it with 

the kinetic reaction model. This combination can help identify process 

deviations on-line. The demonstrated capabilities make the established kinetic 

modeling approach a valuable tool for ADC conjugation development benefiting 

efficiency and process understanding. 

In the final study (Chapter 6), a mechanistic chromatography model for the 

preparative separation of ADC components was developed and its application 

to efficient process development and model-based process control was 

demonstrated. The HIC purification of the surrogate ADCs was described using 

a model for the transport of solutes through the column (TDM) and for the 

adsorption equilibrium. Calibration and validation showed good agreement of 

model and experimental data for linear and step gradient runs. The model was 
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able to find optimized step gradient conditions for loads with different 

compositions of ADC components and to successfully predict DAR and yield of 

the optimized runs. In a first in silico case study, this ability of the HIC model 

was used for the controlled achievement of the target DAR, reacting to process 

variations in the conjugation. An in silico linkage study for conjugation and 

HIC purification applying both the HIC model as well as the kinetic reaction 

model from Chapter 5 demonstrated the potential of mechanistic models for 

efficient process characterization. The linked models form a ‘digital process 

twin’ which might enable a flexible design space over the two adjacent unit 

operations. The presented study illustrates how a mechanistic HIC model could 

benefit ADC process development by facilitating efficient characterization of 

the design space and model-based process control. Both are important elements 

in the implementation of QbD. 

Overall, the tools and ideas developed in this thesis constitute a valuable 

contribution to shaping the process development for the next generation of 

ADCs. The increased efficiency needed to cope with rising complexity and costs 

could be delivered by high-throughput experimentation and mechanistic 

modeling approaches. Enhanced process understanding and control enabled by 

PAT and mechanistic modeling procedures will help forwarding QbD-focused 

process development. By applying techniques like mechanistic modeling to 

ADC-specific problems like DAR control or low drug usage, the potential of 

these techniques for ADC processing was demonstrated. Combinations of two 

mechanistic models or different tools like PAT and a mechanistic model give 

an idea of the opportunities which these digital tools might offer in the future, 

possibly paving the way to real digital process twins. 
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Abbreviations 

AC Affinity chromatography 

ADC Antibody-drug conjugates 

ADCC Antibody-dependent cellular cytotoxicity 

API Active pharmaceutical ingredient 

ASA Adaptive simulated annealing 

CDC Complement-dependent cytotoxicity 

CDR Complementarity-determining regions 

CEX Cation exchange 

CFD Computational fluid dynamics 

CPM 7-Diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin 

CPP Critical process parameter 

CQA Critical quality attribute 

CV Cross-validation 

DAD Diode array detector 

DAR Drug-to-antibody ratio 

DBC Dynamic binding capacity 

DHA (L)-Dehydroascorbic acid 

DMSO Dimethyl sulfoxide 

DoE Design of experiments 

EMA European Medicines Agency 

FDA Food and Drug Administration (USA) 

GuHCl Guanidine hydrochloride 

HCCF Harvested cell culture fluid 

HIC Hydrophobic interaction chromatography 

HTC High-throughput conjugation 

HTS High-throughput screening 

IC50 Half maximal inhibitory concentration 

ICH 

International conference on harmonization of technical 

requirements for registration of pharmaceuticals for human 

use 

IEX Ion exchange chromatography 

IgG Immunoglobulin G 

IPA Isopropanol 
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IS Ionic strength 

LC Liquid chromatography 

mAb Monoclonal antibody 

MLR Multiple linear regression 

MVDA Multivariate data analysis 

MWCO Molecular weight cut-off 

NAC N-Acetyl-cysteine 

NHS N-hydroxysuccinimide 

NPM N-(1-Pyrenyl)maleimide 

NPM ratio Molar ratio of NPM over mAb at start of reaction 

ODE Ordinary differential equation 

PAT Process analytical technology 

PBS Phosphate-buffered saline 

PC Principal component 

PCA Principal component analysis 

PLS Partial least squares 

PP Polypropylene 

PRESS Predictive residual sum of squares 

QbD Quality by design 

QSAR Quantitative structure-activity relationships 

QTPP Quality target product profile 

RMSECV Root mean square error of cross-validation 

RMSEP Root mean square error of prediction 

RP-UHPLC 
Reversed-phase ultra-high performance liquid 

chromatography 

RPC Reversed-phase chromatography 

SEC Size-exclusion chromatography 

TCEP Tris(2-carboxyethyl)phosphine hydrochloride 

TDM Transport-dispersive model 

TFA Trifluoroacetic acid 

UHPLC Ultra-high performance liquid chromatography 
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Symbols 

a Number of principal components in T 

c Chapter 3: Protein concentration 

ci  Molar concentration of component i in the mobile phase 

cin,i Applied inlet concentration 

𝐶mAb0c Molar concentration of mAb with zero free thiols 

𝐶mAb0cNPM Molar concentration of mAb with zero free thiols and one 

NPM attached 

𝐶mAb0cNPMa
 Molar concentration of mAb with zero free thiols and one 

NPM attached to binding site a 

𝐶mAb0cNPMb
 Molar concentration of mAb with zero free thiols and one 

NPM attached to binding site b 

𝐶mAb0c(NPM)ab
 Molar concentration of mAb with zero free thiols and one 

NPM attached to binding site a and b 

𝐶mAb0c(NPM)2 Molar oncentration of mAb with zero free thiols and two NPM 

attached 

𝐶mAb1c Molar concentration of mAb with one free thiol 

𝐶mAb1cNPM Molar concentration of mAb with one free thiol and one NPM 

attached 

𝐶mAb2c Molar concentration of mAb with two free thiols 

𝐶mAba Molar concentration of mAb with one free thiol at binding 

site a 

𝐶mAbab
 Molar concentration of mAb with one free thiol at binding site 

a and one free thiol at binding site b 

𝐶mAbaNPMb
 Molar concentration of mAb with one free thiol at binding 

site a and one NPM attached at binding site b 

𝐶mAbb
 Molar concentration of mAb with one free thiol at binding 

site b 

𝐶mAbbNPMa
 Molar concentration of mAb with one free thiol at binding 

site b and one NPM attached at binding site a 

𝐶NPM Molar concentration of NPM 

cp,i Molar concentration of component i in the pores 

cp,salt Molar salt concentration in the pores 

cstep Ionic strength of first step 

c(mAb) Molar concentration of mAb 

d Inner column diameter 
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Dax Axial dispersion coefficient 

dc Inner column diameter 

E Residual matrix in PCA or PLS 

IC50 Half maximal inhibitory concentration 

k Rate constant of NPM attachment in model 1 and 4 

k1 Rate constant of first NPM attachment in model 2 and 5 

k2 Rate constant of second NPM attachment in model 2 and 5 

k1’ Rate constant of NPM attachment to first binding site in 

model 3 and 6 

k2’ Rate constant of NPM attachment to second binding site in 

model 3 and 6 

k3 Rate constant of NPM depletion in kinetic models 

keff,i Effective mass transfer coefficient of component i 

keq,i Equilibrium constant in adsorption isotherm 

kkin,i Kinetic constant in adsorption isotherm 

kp,i Parameter describing the effect of protein concentration on 

activity coefficient of component i 

ks,i Parameter describing effect of salt concentration on activity 

coefficient of component i 

L Column length 

m Number of variables in X 

mAb Unconjugated monoclonal antibody 

mAb+0 mAb with zero surrogate drugs attached 

mAb+1 mAb with one surrogate drugs attached 

mAb+2 mAb with two surrogate drugs attached 

mAbNPM1 Monoclonal antibody with one NPM attached 

mAbNPM2 Monoclonal antibody with two NPM attached 

N Number of components 

n Number of observations in X 

nj Number of ligands bounds per protein j 

NPM N-(1-Pyrenyl)maleimide 

P Loadings matrix of X-data in PCA 

pi ith vector in P 

Q Loadings matrix of Y-data in PLS 

Q2 Coefficient of determination of cross-validation 

qi Section 1.3: ith vector in Q  
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qi Section 1.4 and Chapter 6: Molar protein concentration 

adsorbed to solid phase 

qmax,j Saturation capacity of adsorber for component j 

R² Coefficient of determination 

𝑅pred
2  R² of prediction 

rp Particle / bead radius 

RMSECV Root mean square error of cross-validation 

RMSEP Root mean square error of prediction 

T Scores matrix of X in PCA or PLS 

t Time 

ti ith vector in T 

U Scores matrix of Y in PLS 

u Superficial velocity 

ui Vector with greatest Euclidean norm out of the columns of Y 

uint Interstitial velocity of mobile phase 

�̇� Volumetric flow rate 

Vads Volume of the stationary phase 

Vc Column volume 

Vd System dead volume 

Vf Fluid volume 

Vint Interstitial volume 

Vpore Pore volume 

VR Retention volume 

VRAc Retention volume of acetone 

VRDex Retention volume of dextran 

Vsol Volume of stationary phase 

Vstep Volume of second step (before decrease in IS) 

W Weighted loadings matrix in PLS 

wi ith vector in W 

X Data matrix for PCA or PLS 

x Position along the column length 

Y Matrix containing target variables in PLS 

yi ith vector of Y 

εint Interstitial porosity 

εp Porosity of the stationary phase 
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εtot Total column porosity 

𝜆max Wavelength of maximal absorbance 
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Appendix A Supplementary data for Chapter 4 
 

 

Suppl. Figure 1: Raw spectra of all calibration samples. The spectra are colored 

according to the reaction progress from blue to red. The microplate experiments are 

depicted in the top row, while the bottom row shows the spectra recorded in the lab-

scale setup. Since the lab-scale experiments were performed at the same nominal 

mAb concentration, the different runs are artificially offset by 50 mAU. The left 

column shows experiments with NPM, the right column shows experiments with 

CPM. 
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Suppl. Figure 2: Raw spectra of a mixture of 5T4 mAb and quenched drug recorded 

over the course of 15 min. The spectra are colored according to reaction time from blue 

to red. mAb, drug and NAC concentrations are the same as in the lab-scale experiments. 

The surrogate drugs were quenched prior to addition to the mAb solution in order to 

prevent the conjugation reaction. DMSO content is 10% as in the other experiments. 

The evolution of the band maxima of the drugs over time is shown on the right side. No 

shift in band maxima is observed. 
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Suppl. Figure 3: Pure component UV/Vis absorbance spectrum of 5T4 mAb measured 

in Tecan plate reader M200 Pro at a concentration of 2 mg/mL (in 50 mM sodium 

phosphate buffer). 

 

 

Suppl. Figure 4: Pure component UV/Vis absorbance spectrum of NPM in phosphate 

buffer containing 10% of DMSO measured in Tecan plate reader M200 Pro. 
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Suppl. Figure 5: Pure component UV/Vis absorbance spectrum of CPM in phosphate 

buffer containing 10% of DMSO measured in Tecan plate reader M200 Pro. 
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Appendix B Supplementary data for Chapter 5 

 

Suppl. Figure 6: Results of model 5 calibration for the 12 calibration experiments. 

Markers are experimental data and the respective model predictions are shown by 

straight lines. Blue square markers are the un-conjugated mAb, red triangles the mono-

conjugated mAb and yellow diamonds the bi-conjugated mAb. R² was at 0.970. 
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Rate laws for model 4: 

𝑑𝐶mAb2c

𝑑𝑡
 = −𝑘1 ∙ 𝐶mAb2c ∙ 𝐶NPM 

(A1) 

𝑑𝐶mAb1c

𝑑𝑡
 = −𝑘1 ∙ 𝐶mAb1c ∙ 𝐶NPM 

(A2) 

𝑑𝐶mAb0c

𝑑𝑡
 = 0 

(A3) 

𝑑𝐶mAb1cNPM

𝑑𝑡
 =  𝑘1 ∙ 𝐶mAb2c ∙ 𝐶NPM − 𝑘1 ∙ 𝐶mAb1cNPM ∙ 𝐶NPM 

(A4) 

𝑑𝐶mAb0cNPM

𝑑𝑡
= 𝑘1 ∙ 𝐶mAb1c ∙ 𝐶NPM 

(A5) 

𝑑𝐶mAb0c(NPM)2

𝑑𝑡
=  𝑘1 ∙ 𝐶mAb1cNPM ∙ 𝐶NPM 

(A6) 

𝑑𝐶NPM
𝑑𝑡

= −𝑘1 ∙ 𝐶mAb2c ∙ 𝐶NPM−𝑘1 ∙ 𝐶mAb1c ∙ 𝐶NPM − 𝑘1 ∙ 𝐶mAb1cNPM ∙ 𝐶NPM

− 𝑘 ∙ 𝐶NPM 

(A7) 

 

The rate laws for model 1 are the same without the NPM sink term in equation 

A7 (−𝑘 ∙ 𝐶NPM). 
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Rate laws for model 6: 

𝑑𝐶mAbab

𝑑𝑡
 = −𝑘1′ ∙ 𝐶mAbab

∙ 𝐶NPM −  𝑘2′ ∙ 𝐶mAbab
∙ 𝐶NPM 

(A8) 

𝑑𝐶mAba

𝑑𝑡
 = −𝑘1′ ∙ 𝐶mAba ∙ 𝐶NPM 

(A9) 

𝑑𝐶mAbb

𝑑𝑡
 = −𝑘2′ ∙ 𝐶mAbb

∙ 𝐶NPM (A10) 

𝑑𝐶mAb0c

𝑑𝑡
 = 0 

(A11) 

𝑑𝐶mAbaNPMb

𝑑𝑡
 =  − 𝑘1′ ∙ 𝐶mAbaNPMb

∙ 𝐶NPM + 𝑘2′ ∙ 𝐶mAbab
∙ 𝐶NPM 

(A12) 

𝑑𝐶mAbbNPMa

𝑑𝑡
 =  𝑘1′ ∙ 𝐶mAbab

∙ 𝐶NPM − 𝑘2′ ∙ 𝐶mAbbNPMa
∙ 𝐶NPM 

(A13) 

𝑑𝐶mAb0cNPMa

𝑑𝑡
= 𝑘1′ ∙ 𝐶mAba ∙ 𝐶NPM 

(A14) 

𝑑𝐶mAb0cNPMb

𝑑𝑡
= 𝑘2′ ∙ 𝐶mAbb

∙ 𝐶NPM 
(A15) 

𝑑𝐶mAb0c(NPM)ab

𝑑𝑡
=  𝑘1′ ∙ 𝐶𝑚𝐴𝑏𝑎𝑁𝑃𝑀𝑏

∙ 𝐶NPM +  𝑘2′ ∙ 𝐶mAbbNPMa
∙ 𝐶NPM 

(A16) 

𝑑𝐶NPM
𝑑𝑡

= −𝑘1′ ∙ 𝐶mAbab
∙ 𝐶NPM −  𝑘2′ ∙ 𝐶mAbab

∙ 𝐶NPM − 𝑘1′

∙ 𝐶mAba ∙ 𝐶NPM − 𝑘2′ ∙ 𝐶mAbb
∙ 𝐶NPM − 𝑘1′ ∙ 𝐶mAbaNPMb

∙ 𝐶NPM − 𝑘2′ ∙ 𝐶mAbbNPMa
∙ 𝐶NPM − 𝑘 ∙ 𝐶NPM 

(A17) 

 

The rate laws for model 3 are the same without the NPM sink term in equation 

A17 (−𝑘 ∙ 𝐶NPM). 
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Rate laws for model 2: 

𝑑𝐶mAb2c

𝑑𝑡
 = −𝑘1 ∙ 𝐶mAb2c ∙ 𝐶NPM (A18) 

𝑑𝐶mAb1c

𝑑𝑡
 = −𝑘1 ∙ 𝐶mAb1c ∙ 𝐶NPM (A19) 

𝑑𝐶mAb0c

𝑑𝑡
 = 0 (A20) 

𝑑𝐶mAb1cNPM

𝑑𝑡
 =  𝑘1 ∙ 𝐶mAb2c ∙ 𝐶NPM − 𝑘2 ∙ 𝐶mAb1cNPM ∙ 𝐶NPM (A21) 

𝑑𝐶mAb0cNPM

𝑑𝑡
= 𝑘1 ∙ 𝐶mAb1c ∙ 𝐶NPM (A22) 

𝑑𝐶mAb0c(NPM)2

𝑑𝑡
=  𝑘2 ∙ 𝐶mAb1cNPM ∙ 𝐶NPM (A23) 

𝑑𝐶NPM
𝑑𝑡

= −𝑘1 ∙ 𝐶mAb2c ∙ 𝐶NPM−𝑘1 ∙ 𝐶mAb1c ∙ 𝐶NPM − 𝑘2 ∙ 𝐶mAb1cNPM ∙ 𝐶NPM (A24) 

 

 

 

Suppl. Figure 7: Absorption at 280 nm over time measured in Tecan plate reader for a 

0.04 mM NPM solution in 50 mM sodium phosphate buffer containing 10% DMSO. 

The solution was held in a shaken 2 mL Eppendorf Safelock Tube and 200 µL samples 

were taken every 5 min and measured in a Greiner UV-star microplate. 
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𝑅2 = 1 − 
∑ (𝑦𝑖 − �̂�𝑖)²
𝑛
𝑖

∑ (𝑦𝑖 − �̅�𝑖)²
𝑛
𝑖

 
(A25) 

𝑆𝑆𝐸 =  ∑(𝑦𝑖 − �̂�𝑖)²

𝑛

𝑖

 (A26) 

𝑅𝑀𝑆𝐸𝑃 =  √
𝑆𝑆𝐸

𝑛
 (A27) 

𝑆𝑆𝐸tot = ∑𝑆𝑆𝐸𝑗

𝑛

𝑗

 
(A28) 

𝑅𝑀𝑆𝐸𝐶𝑉 = √
𝑆𝑆𝐸tot
𝑛

 (A29) 

𝑄² = 1 − 
𝑆𝑆𝐸tot

∑ (𝑦𝑖 − �̅�𝑖)²
𝑛
𝑖

 (A30) 
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