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Abstract
We study the problem of graph partitioning for evolving road networks. While the road network
of the world is mostly stable, small updates happen on a relatively frequent basis, as can been
observed with the OpenStreetMap project (http://www.openstreetmap.org). For various reasons,
professional applications demand the graph partition to stay roughly the same over time, and that
changes are limited to areas where graph updates occur. In this work, we define the problem, present
algorithms to satisfy the stability needs, and evaluate our techniques on continental-sized road
networks. Besides the stability gains, we show that, when the changes are low and local, running
our novel techniques is an order of magnitude faster than running graph partitioning from scratch.
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1 Introduction

Graph partitioning is a core subroutine of many applications such as distributed computing,
VLSI design, or shortest path computation. Although being NP-hard in general, many very
efficient algorithms perform really well for realistic input problems (see [5] for an overview).
In particular, the road network of the world can be partitioned with high quality in a
multi-threaded fashion on a single machine in a few hours [8, 26]. However, one problem
when applying these techniques to production systems is that the partition is not stable,
i.e., small changes to the input may result in very different solutions (see Figure 1). This is
a problem for various reasons. Firstly, road networks update surprisingly frequent, as can
be seen by OpenStreetMap data, but these changes are often only minor, and restricted
to local areas. Secondly, computing via paths [1] with customizable route planning [7] or
customizable contraction hierarchies [10] exploit boundary nodes of partitions, which then
may show very different results between two inputs in areas where no update has been
applied. Finally, rerunning the full partitioning for every update seems like a waste of CPU
hours, unnecessarily increasing data build times.

Our Contribution. We study the problem of making graph partitioning stable. The key
idea is to obtain a partition for a slightly changed graph but analyzing both the previous
graph and its partition. We identify regions that have changes and then try to repair the
partition by rerunning graph partitioning subroutines on much smaller subgraphs. As a
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26:2 Fast and Stable Repartitioning of Road Networks

Figure 1 Two graph partitions with 4 cells each for the OpenStreetMap data of North America
from August 2018 (left) and September 2018 (right). Both partitions have been obtained from
the same algorithm with the same parameters and the same seeds. While the eastern part of the
continent keeps roughly the same cut, the western part is cut very differently. However, within that
month, only 0.5% of the vertices have churned (removed or added).

result, for an evolving road network like the OpenStreetMap data, we can keep the partition
relatively stable, and are able to compute the updated partition an order of magnitude faster
compared to running a graph partitioning algorithm from scratch.

Related Work. Motivated by several important applications, the graph partitioning problem
has received considerable attention recently; see e.g. [5] for an overview. To partition road
networks, early work [14, 2, 3] used general-purpose partitioners like Scotch [20], METIS [16],
or Party [18]. However, one can compute partitions of significantly better quality when using
special-purpose partitioners tailored to road networks.

The first such partitioning algorithm is PUNCH [8]. It introduces and exploits the concept
of natural cuts, which are natural or man-made obstacles, such as rivers, mountains, and
highways. At its heart is the filtering phase, which finds natural cuts by local maximum-flow
computations and contracts all edges not contained in any natural cut. The assembly phase
heuristically combines the resulting fragments to build a partition. Buffoon [24] incorporates
the filtering phase of PUNCH into the general-purpose partitioning algorithm KaHIP [25].

An alternative approach to the filtering phase of PUNCH is Inertial Flow [26], which
recursively bisects the network until the fragments are sufficiently small. To bisect the
network, it exploits the geometric embedding of the network.

Like Inertial Flow, the FlowCutter algorithm [12] recursively bisects the network. For
each bisection, it computes a Pareto set of nondominating cuts with respect to the cut size
and balance, and picks a cut among those with a good tradeoff between cut size and balance.
The recent InertialFlowCutter algorithm [11] is a variant of FlowCutter that uses geometric
information, based on ideas from Inertial Flow. It is about 6 times faster than FlowCutter
while preserving (or even slightly improving) the partition quality.

There has also been previous work on the graph repartitioning problem, although not
in the context of road networks, but scientific computing applications. Various problems
in solid and structural mechanics [37] and fluid dynamics [38] can be described by partial
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differential equations (PDEs). Such PDEs can be solved by the finite-difference or finite-
element method [36], which discretize the domain of the PDE by a mesh. The function
value at each discretization point (i.e., vertex in the mesh) is approximately computed from
the values at its neighboring vertices. Using an iterative scheme, new approximate values
are determined by the values at the neighboring vertices from the previous iteration. Since
finite-element meshes can become very large, they are partitioned into well-separated cells
and distributed over multiple processing elements [5].

During the solution process, the mesh is refined in regions where large errors exist and
coarsened in well-behaved regions. To maintain load balance, the mesh is periodically
repartitioned. Besides the cut size (which correlates with the communication volume), the
similarity between the old and new partition (which correlates with the migration volume) is
an important optimization criterion for this application [5].

One approach are scratch-remap repartitioners [21, 32, 19, 29]. These first partition
the new mesh using a state-of-the-art partitioner and then compute a migration-minimal
mapping between the old and new partition. Since the new partition is produced from
scratch, its cut size is small. However, the migration volume is often very high, since this
criterion is considered only in the second phase.

Another approach are diffusion-based repartitioners [35, 27, 29]. These are inspired by
the physical process of diffusion, i.e., vertices move from a cell of higher to one of lower
vertex concentration. While this results in a good migration volume, the cut is often large.

The unified repartitioning algorithm [28] optimizes both criteria directly by combining
the above-mentioned approaches. Following the multilevel graph partitioning approach, it
iteratively contracts the new mesh using a variant of the heavy-edge matching algorithm [16],
which matches two vertices only if they are in the same cell in the old partition. Next, the
contracted mesh is partitioned twice using a scratch-remap and diffusion-based algorithm,
respectively, and the partition with the better tradeoff between cut size and migration volume
is picked. Finally, the mesh is iteratively uncontracted, using an improvement heuristic in
each iteration to optimize the partition locally.

A rather simple approach [13, 33] is to introduce a zero-weight vertex for each cell in the
old partition, which is not allowed to change its cell. This vertex is connected to each other
vertex v in its cell by an edge whose weight represents the migration cost for v.

The problem we address is similar to the mesh repartitioning problem in that we optimize
both the cut size and similarity. Note, however, that the old and new mesh are nested in
the sense that new vertices result from splitting or merging vertices in the old mesh. Hence,
there is a natural assignment of all vertices in the new mesh to cells in the old partition [34].
In fact, most work [21, 32, 27, 19, 29] considers a mesh with fixed topology, where adaptive
mesh refinements are handled as vertex weight increases. In contrast, we allow vertices to
be freely inserted into and removed from the network. For example, a newly constructed
bridge that connects two previously disconnected cells has no natural assignment to any cell.
Moreover, in the mesh repartitioning problem, the number of cells is fixed (since it is equal
to the number of processing elements), while we allow the number of cells to change.

2 Preliminaries

We consider undirected graphs G = (V,E) where each vertex v ∈ V has a positive size s(v)
and each edge {u, v} ∈ E has a positive weight w(u, v). Our focus is on road networks, where
vertices represent intersections and edges represent road segments. Partitioning algorithms
often use edge contractions. To contract an edge {u, v}, we replace its endpoints by a single
vertex w of size s(w) = s(u) + s(v) and relink all edges incident on u or v to w. Multiple
parallel edges are combined (adding up their weights) and self-loops are removed.
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A partition of V is a set P = {C1, . . . , Ck} of cells Ci ⊆ V with the property that
each vertex is contained in exactly one cell. A multilevel partition of V is a sequence P =
〈P 1, . . . , PL〉 of partitions P l, where l denotes the level of the partition. For ease of notation,
we set P 0 = {{v} : v ∈ V } and PL+1 = {V }. Since we use nested multilevel partitions, for
each cell Cl

i , there is a cell Cl′

j with Cl
i ⊆ Cl′

j on all levels above; Cl
i is called a subcell of

each Cl′

j . We denote by cl(v) the cell that contains v on level l. A boundary or cut edge on
level l is an edge {u, v} with cl(u) 6= cl(v). Its endpoints are boundary vertices on level l. We
denote by Bl the set of boundary vertices on level l.

2.1 Problem Statement
We are given two graphs G = (V,E) and Ḡ = (V̄ , Ē), where V̄ is obtained from V by inserting
some vertices V + with V + ∩ V = ∅ and removing some vertices V − ⊆ V . Analogously,
Ē is obtained from E by inserting some edges E+ with E+ ∩ E = ∅ and removing some
edges E− ⊆ E. Hence, V̄ = (V \V −)∪V + and Ē = (E \E−)∪E+. We call G the old graph
and Ḡ the new graph. In addition, we are given an L-level partition P of G with maximum
cell sizes U1, . . . , UL. The problem we consider is computing an L-level partition P̄ of Ḡ
such that for each level l, 1 ≤ l ≤ L, the size of each cell is bounded by U l, the cut size is
minimized, and the similarity between P l and P̄ l is maximized.

It remains to formalize our notion of similarity. For real-world route planning systems
following the partition-based overlay approach [30, 31, 15, 7], it is often desirable to keep the
overlay topology fairly stable, as discussed in Section 1. Therefore, we define the similarity
between two partitions P l and P̄ l as the fraction of boundary vertices that are boundary
vertices of both P l and P̄ l, i.e., Sl = |Bl ∩ B̄l|/|Bl ∪ B̄l|.

2.2 PUNCH
PUNCH [8] is a partitioning algorithm tailored to road networks. It has been applied [7, 6]
to various partition-based shortest-path techniques, including CRP [7], Arc Flags [14, 17],
and CHASE [3]. Given a graph G and a maximum cell size U , PUNCH splits the graph
into cells of maximum size U while minimizing the cut size. It works in two phases. At its
heart is the filtering phase, which finds natural cuts (natural or man-made obstacles, such as
rivers, mountains, and railway tracks) and contracts all edges not contained in any natural
cut. The assembly phase heuristically combines the resulting fragments to build a partition.

Filtering Phase. The natural-cut heuristic is executed in iterations. In each iteration, it
picks a center c at random and builds a breath-first search (BFS) [23] tree T rooted at c
until the total size of the vertices visited during the BFS reaches αU , where α is a parameter
in (0, 1]. The neighbors v /∈ T of the vertices in T form the ring of c. Moreover, the vertices
visited by the BFS before the total size reached αU/f form the core of c, where f > 1 is a
second parameter. Then, the natural-cut heuristic temporarily contracts the core and the
ring into a single source and sink vertex, respectively, determines a maximum flow between
the source and the sink, finds a corresponding minimum cut, and marks all edges in this cut.
The procedure stops when each vertex has been contained in at least one core.

To increase the number of marked edges, the iterative procedure is repeated C times.
Afterwards, the natural-cut heuristic contracts all unmarked edges. The vertices in the
resulting graph are called fragments. Note that each fragment represents a subgraph of G
that was never cut and that each two adjacent fragments are separated by a natural cut.
Typical parameter values for the filtering phase are α = 1, f = 10, and C = 2.
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Assembly Phase. PUNCH runs a greedy algorithm to compute an initial partition of G
from the fragment graph. It repeatedly contracts two adjacent vertices in the fragment
graph until no contraction is possible without violating the upper bound U . The two vertices
to be contracted next are picked based on a randomized score function [8]. Intuitively,
the algorithm prefers small vertices that are tightly connected. The output of the greedy
algorithm is a contracted graph H, where each vertex represents a cell in the partition of G.

The initial partition is then improved by an iterative local search. In each iteration, it
picks two adjacent cells R,S at random from H. Let HRS be the subgraph of H induced
by R, S, and their neighbors in H and let G′RS be obtained from HRS by unpacking R and
S into their constituent fragments (the neighbors remain contracted). Then, the greedy
algorithm is run on G′RS , outputting a contracted graph H ′RS . If H ′RS represents a better
partition (i.e, one with a smaller cut size) than HRS , we replace HRS by H ′RS in the current
solution H. The local search stops when each pair of adjacent cells in H has been considered
ϕ times in succession without improving the current solution.

Since both the greedy algorithm and the local search are randomized, PUNCH uses a
multistart heuristic, which runs the greedy algorithm followed by the local search multiple
times on the fragment graph. After M candidate solutions have been generated, the best
solution seen so far is returned. Alternatively, the candidate solutions generated by the
multistart heuristic can be combined using an evolutionary algorithm [8]. Typical parameter
values for the assembly phase are ϕ = 16 and M = 9.

2.3 Inertial Flow
Inertial Flow [26] is a partitioner tailored to road networks that exploits their geometric
embedding. It has been applied [9, 4] to the partition-based shortest-path algorithms CRP [7]
and CCH [10]. Its core algorithm bisects a graph G = (V,E) with an embedding σ : V → R2

into two balanced parts as follows:
(1) Pick a line ` with direction d ∈ R2.
(2) Project each point σ(v), v ∈ V , orthogonally onto `.
(3) Sort the vertices by their occurrence on `.
(4) Determine a maximum flow between the first bb|V |c vertices and the last bb|V |c vertices.
(5) Find a corresponding minimum cut.
A typical parameter value is b = 0.25.

To find a partition of G with maximum cell size U , Inertial Flow recursively bisects G
until the resulting parts have a size of at most U . For each bisection, Inertial Flow runs
the core algorithm multiple times with parameter d set to (0, 1), (1, 0), (1, 1), and (−1, 1),
respectively, and picks the smallest cut among those.

Inertial Flow computes partitions of reasonable quality. To improve the quality, Inertial
Flow can be used to produce a partition with at most U/f vertices per cell, where f > 1 is a
parameter. Contracting the edges within each cell yields a fragment graph. The fragments
can then be combined as in the assembly phase of PUNCH. A typical parameter is f = 32.

3 Our Approach

This section discusses our approach to repartition road networks. Instead of partitioning
the new graph from scratch, we start from the given partition, incorporate the vertices V +,
and repair and reoptimize the partition. We assume there are stable identifiers associated
with the vertices in both graphs that allow us to map vertices in the old and new graph to
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each other. Both OpenStreetMap and the proprietary data we are aware of provide such
identifiers in the form of 64-bit integers. In case there are no stable identifiers available, we
can heuristically map the vertices using, for example, their coordinates.

Our approach starts by mapping the partition P of the old graph G to the new graph Ḡ.
More precisely, each vertex v ∈ V ∩ V̄ inherits its cell identifiers from P, i.e., we set
c̄l(v) = cl(v) for all levels l. The vertices V + are not assigned to a cell on any level. After a
quick preprocessing step (Section 3.1), we consider each cell C̄l

i in the partition in descending
level order, starting with the single cell on level L+ 1, which contains the entire new graph.
Each cell C̄l

i , which induces the subgraph Ḡ
[
C̄l

i

]
of Ḡ, is processed in two phases. The first

phase assigns each vertex v ∈ V + to an existing cell on level l − 1 (Section 3.2). The second
phase repairs and reoptimizes the partition (Section 3.3).

We handle cells on the same level in parallel if multiple CPU cores are available. Moreover,
if there is no change within a cell, we skip its subcells on all levels below.

3.1 Detecting Tiny Components
For several reasons (including data errors), there can be distinct components consisting of
only a few vertices in the old graph that are connected to their neighborhood in the new
graph. For example, consider a newly constructed road. In the old graph, it could still
be under construction and not connected to the main network, and therefore a distinct
component of its own. A partition could assign this component and its neighborhood to
different cells, since there are no cut edges between them. However, connecting the new road
to the main network leads to cut edges that are often unsuitably chosen. Hence, before the
first cell assignment phase, we reset all cell identifiers for each vertex that belongs to a tiny
component in the old but not in the new graph. We want such vertices to inherit the cell
identifiers of their neighborhood rather than keeping their old identifiers. Formally, a tiny
component is a connected component with a size that is below a given threshold.

3.2 Cell Assignment
Executing the first phase on cell C̄l

i assigns each vertex v ∈ V +∩C̄l
i to a level-(l−1) cell based

on the cells of its neighbors. This phase resembles the label propagation algorithm [22] for
clustering (evolving) networks. Each vertex is assigned to the cell to which the majority of its
neighbors belong, with ties broken uniformly at random. We perform this process iteratively,
where at every step, one vertex updates its cell. Note that the first assignment of a vertex is
not necessarily final. Therefore, the process continues until no vertex v ∈ V + ∩ C̄l

i changes
its cell anymore. Convergence is guaranteed since we move a vertex v from Ci to Cj only if
NCj (v) is strictly greater than NCi(v), where NC(v) is the number of neighbors in cell C.
Hence, with every such move, the sum

∑
v Nc(v)(v) increases by 2(NCj

(v) − NCi
(v)) ≥ 2

(note that Nc(u)(u) changes not only for u = v but also for each neighbor u of v in Ci ∪ Cj ,
causing the factor of 2). As the sum cannot exceed

∑
v deg(v), the process eventually stops.

To implement this approach efficiently, we keep track of the next vertex to assign with
a min-heap, initialized with all new vertices adjacent to at least one old vertex. Every
time we assign a vertex to a different cell, we insert its neighbors in V + into the min-heap.
The priority of a vertex v is given by key(v) = N⊥(v) +N2(v)−N1(v), where Ni(v) is the
number of neighbors in the i-th most common neighboring cell (ties broken uniformly at
random), and N⊥(v) is the number of as-yet-unassigned neighbors. The intuition here is
that all assignments are both final and unambiguous as long as we only extract vertices v
with key(v) < 0. This is easy to verify by induction on the number of delete-min operations.



V. Buchhold, D. Delling, D. Schieferdecker, and M. Wegner 26:7

When key(v) = 0, the assignment is not unambiguous but still final. Therefore, the choice of
priorities ensures that we start with as many final assignments as possible, and thus reduces
the number of cell corrections and the time to converge. Note that vertices unreachable from
any vertex v ∈ (V \ V −) ∩ C̄l

i remain unassigned after this phase. These vertices will be
assigned to cells during the second phase that repairs and reoptimizes the partition.

To process the single cell on level L+ 1, we must run cell assignment on the full input
graph. For each cell C on all levels below, cell assignment must be run on Ḡ[C]. For
efficiency, we create a temporary copy of Ḡ[C] and run cell assignment on it. This simplifies
cell assignment, allows us to use sequential local IDs, and improves locality.

3.3 Repair and Reoptimization
After the cell assignment phase, the partition of Ḡ

[
C̄l

i

]
is not necessarily feasible. First,

there may be oversized cells, i.e., cells containing more than U l−1 vertices. Second, vertices
unreachable from any vertex v ∈ (V \ V −) ∩ C̄l

i have not been assigned to a cell yet. In the
second phase, we repair both issues and locally reoptimize the partition.

Let K be a graph whose vertices are the cells in the partition. Each as-yet-unassigned
vertex in Ḡ

[
C̄l

i

]
forms a cell of its own. The size of each vertex in K is the number of vertices

in the corresponding cell. There is an edge {R,S} in K if there is an edge {u, v} in Ḡ
[
C̄l

i

]
with u ∈ R and v ∈ S. Its weight is the total weight of the corresponding edges in Ḡ

[
C̄l

i

]
.

Let K ′ be a graph obtained from K by unpacking some of the cells (we will discuss cell
unpacking in detail in Section 3.4). In the following, we compute a partition of K ′, which
can easily be transformed into a partition of Ḡ

[
C̄l

i

]
. Note that to obtain a feasible partition,

we must unpack at least each oversized cell. To increase the similarity between P and P̄ , we
can relax our definition of oversized cells, allowing cells to contain at most gl−1U l−1 vertices,
where gl−1 ≥ 1 is the growth factor on level l − 1.

To find an initial feasible partition, we run the greedy algorithm from PUNCH on K ′,
yielding a contracted graph H. This partition is then reoptimized by running a variant of
the local search from PUNCH on H. That is, we repeatedly pick two adjacent cells R,S at
random from H, run the greedy algorithm on the subgraph of H induced by R, S, and their
neighbors in H, and update the current solution H accordingly. However, while PUNCH
unpacks R and S into their constituent fragments, we unpack them into the corresponding
vertices in K ′. Since both the greedy algorithm and the local search are randomized, we run
them M times on K ′ and return the partition with the smallest cut size.

As already mentioned, we handle cells on a level l ≤ L in parallel. On such levels, we run
a sequential version of the local search. On level L+ 1 (where there is only a single cell), we
parallelize the local search by trying multiple pairs of adjacent vertices concurrently.

3.4 Cell Unpacking
We considered three variants of cell unpacking, inspired by PUNCH, which differ in how
much they unpack. See Figure 2 for an illustration. The simplest variant replaces the single
vertex in K representing an oversized level-l cell C̄l

i with one vertex for each level-(l − d)
subcell Cl−d

j with Cl−d
j ∩ C̄l

i 6= ∅ (where d ≥ 1 denotes the descent step) and one vertex for
each vertex v ∈ V + that has been assigned to C̄l

i during the first phase (cell assignment).
The size of these vertices is the number of vertices in the new graph that they represent
(possibly one). We call this variant simple unpacking.

The second variant, neighbor unpacking, gives the second phase more degrees of freedom
to reoptimize the partition. Besides unpacking oversized cells, this variant also unpacks all
cells that have a common boundary with an oversized cell.
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Figure 2 Unpacking an oversized cell during the reoptimization phase. Left: The simple variant
unpacks only the oversized cell. Middle: Neighbor unpacking also unpacks all neighboring cells.
Right: Partial unpacking unpacks the neighboring cells partially.

The third variant, which we call partial unpacking, unpacks each oversized level-l cell C̄l
i

fully and each level-l cell C̄l
j that has a common boundary with C̄l

i partially. More precisely, we
replace the single vertex inK representing C̄l

j with one vertex for each level-(l−d) subcell Cl−d
k

with Cl−d
k ∩ C̄l

j 6= ∅ that directly borders on C̄l
i , one vertex for each vertex v ∈ V + that

has been assigned to C̄l
j during the first phase, and one vertex representing the remaining

level-(l − d) subcells of C̄l
j . Again, the size of each vertex is the number of vertices in the

new graph that are represented by the vertex.

4 Experiments

4.1 Implementation and System
Both the partitioning and repartitioning algorithms are implemented in C++11 and were
compiled with GCC 4.8.5 on a system running CentOS 7.7. For parsing the instances we use
the RoutingKIT library [10]. The machine has 2 NUMA nodes, each equipped with a 10
core/20 threads Intel®Xeon®CPU E5-2640 v4 clocked at 2.40GHz with 2.5 MiB L2 and 25
MiB L3 cache. It has 192 GiB of DDR4-2400 RAM.

4.2 Instances
We evaluate and compare our algorithm with the full partitioning algorithm (FP ) on road
networks extracted from OpenStreetMap (https://www.openstreetmap.org). Our FP
algorithm uses Inertial Flow to find a starting solution and an assembly phase similar to
the one from PUNCH to optimize it. OpenStreetMap’s contributors edit the map regularly
which enables us to test our repartitioning algorithm on snapshots taken at different dates of
the same cutout. We test our algorithms on the Australia, South America, North America
and Europe instances available from GeoFabrik (https://download.geofabrik.de/index.
html). Evaluation is performed between snapshots that are one year (1/1/2018 - 1/1/2019)
and one month apart (10/1/2019 - 11/1/2019). Shorter time periods (e.g. a week) differ less
and thus repartitioning performs at least as good as it does on monthly and yearly instances.
More detailed information on the instances can be found in Table 1. For the remainder of
this section, we reference the graph pairs of the time frames by an M and a Y suffix for
the monthly and yearly instances respectively (e.g. NorthAmericaY for the North America
graph pair on 1/1/2018 and 1/1/2019).

https://www.openstreetmap.org
https://download.geofabrik.de/index.html
https://download.geofabrik.de/index.html
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Table 1 Instances and their properties. Absolute numbers in millions, relative numbers and
vertex churn (V C) in percent. V C is defined as the ratio of |V +∪V−|

|V | .

1/1/2018 1/1/2019 10/1/2019 11/1/2019
Instance 1) |V18| |E18| |V19|

|V18|
|E19|
|E18| V CY |V10| |E10| |V11|

|V10|
|E11|
|E10| V CM

Australia 1.23 2.85 7.83 6.63 11.33 1.41 3.18 0.45 0.41 0.62
N. America 24.90 61.38 1.27 0.98 6.84 26.05 63.94 0.28 0.26 0.99
Europe 30.55 71.46 3.44 3.05 7.12 32.69 76.00 0.54 0.52 1.00

1) Downloaded from https://download.geofabrik.de on 12/16/2019.

Table 2 Algorithm quality and performance on AustraliaY . Best values in bold.

Algorithm CutSize [%] S1 [%] S2 [%] S3 [%] S4 [%] S5 [%] Runtime [s]

SU 2.00 79.53 71.18 65.15 57.19 49.78 58.57
NU 0.40 68.05 63.57 58.25 50.64 22.11 98.06
P U 2.00 79.53 71.18 65.15 57.19 49.78 58.35

4.3 Parameters
Algorithms. We start with a comparison of our repartitioning algorithm variants SU (simple
unpacking), NU (neighbor unpacking) and PU (partial unpacking) on the AustraliaY

instance with a cell growth of 0% and a descent step d = 1 (cf. Section 3.3) in Table 2. Using
a larger d does not result in better quality or similarity based on our experiments. Simple
unpacking and partial unpacking perform almost identically, both increasing the overall cut
size by 2% compared to the result of the full partitioning algorithm. In our experiments
we found that PU often has slightly worse similarity on the two lowest levels and identical
similarity on the higher levels compared to NU while runtimes are comparable. The neighbor
unpacking approach considers even more cells than PU for distributing unassigned vertices
which results in smaller cuts at the cost of a reduced similarity and higher runtimes. Other
instances produce similar results. Based on this evaluation, we focus on the simple unpacking
approach a descent step d = 1 as it produces partitions of good quality and similarity with
reasonable runtimes. In the remainder of this section, we use RP to denote our repartitioning
algorithm using simple unpacking and FP to denote the full partitioning (from scratch)
algorithm. The level-dependent parameters for both algorithms can be found in Table 3. We
use the default parameters for our FP algorithm, whereas we reduce φRP and MRP on the
higher levels. Running more local searches and producing more candidates on these levels
reduces similarity since the searches optimize cut size, not similarity and it increases the
runtime.

Cell Growth. When new vertices are added to the graph, some cells have to be split in order
to hold the size constraint on the cell size. However, most often these additional vertices
do not affect the boundary of a cell but are contained in it. So instead of splitting cells,
increasing the cut size and decreasing similarity, it is better to allow some cell growth in order
to improve similarity. We evaluate the effect of cell growth on AustraliaY and AustraliaM

in Table 4. As expected, the similarity increases on all levels with higher cell growth at
the cost of a more imbalanced partition - some cells utilizing all the allowed growth. The
similarity change is most pronounced on the highest level, on the lowest level the change
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Table 3 Common partitioning parameters per level of F P and RP .

Level U f ϕF P ϕRP MF P MRP

1 25 16 9 9 3 3
2 200 16 9 9 3 3
3 1600 32 16 9 4 3
4 12800 32 16 9 4 3
5 102400 32 32 9 6 3
6 819200 32 32 9 6 3
7 6553600 32 32 9 16 3

Table 4 Impact of allowing cell growth when running RP on AustraliaY and AustraliaM .

Oversized Cells [%] SL [%] Runtime [s]
Cell Growth [%] Year Month Year Month Year Month

0 0.00 0.00 49.78 77.00 58.57 2.26
1 0.86 0.66 37.24 97.60 63.17 2.05
5 13.25 1.24 61.62 97.60 39.16 1.89
10 19.72 1.70 75.86 94.14 20.39 1.82

is less than 2%. There are now oversized cells that exceed the maximum cell size on each
level. In the table we report the ratio of the total number of oversized cells over the total
number of cells over all levels. The runtime of RP decreases with higher cell growth because
the local optimizer has less work to do. While the imbalance introduced for the AustraliaM

instance is always below 2%, it is significantly higher for AustraliaY which is due to the
fact that the latter instance has much more churn in both vertices and edges which makes it
harder to repair the partition.

4.4 Comparison with Full Partitioning

Quality and Performance over Time. The more a graph churns over time, the harder it
gets to keep the partition stable which is reflected in increased runtimes of our algorithm.
Figures 3 and 4 show the effect of increased churn on the quality and runtime on monthly
North America snapshots from 02/01/2018 to 12/01/2018 with 01/01/2018 used as the
baseline partition that we want to keep stable. Vertex churn starts at 0.7% for 02/01/2018
and increases strictly monotonously to 6.1% for 12/01/2018. We report the similarity S1,
the total relative amount of oversized cells (over all levels) and the total runtime of RP with
cell growth parameters 0%, 5% and 10%. For comparison, we include the FP algorithm
with a cell growth of 0%. For FP , cell growth means increasing the maximum cell size U
on each level. Higher cell growths for FP do not change the runtime significantly and lead
to worse similarity as FP optimizes cut size and not similarity, so we exclude them in the
figure. Similarity on higher levels follows the same trend as the similarity on level one, just
slightly lower as is the case in our other experiments. A cell growth of 10% results in the
best similarity values but there is never more than 1% difference between the different cell
growth configurations. In contrast, the similarity of FP is much worse as FP does not
optimize this measure. In terms of the partition quality, we compare cut size increases over
the partition obtained by FP with the same amount of cell growth and notice that the
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Figure 3 Similarity and runtime comparison of RP and F P for different cell growths on the
monthly North America graphs between 02/01/2018 and 12/01/2018 with 01/01/2018 as the baseline
partition to be kept stable.
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Figure 4 Oversized cells, cut size increase of RP for difference cell growths and graph churn on
the monthly North America graphs between 02/01/2018 and 12/01/2018 with 01/01/2018 as the
baseline partition to be kept stable. Cut size is compared to F P with the same cell growth.

cut size increases by roughly 1%, 3% and 6% for the respective cell growths and does not
significantly increase with more churn. This can be explained by the fact that our algorithm
mainly optimizes similarity to the input partition whereas allowing FP a higher imbalance
can lead to different (smaller) cuts. As expected, the ratio of all oversized cells compared to
the number of cells increases for a cell growth greater than 0% but stays within reasonable
limits for the purpose of road network partitioning. The runtime of RP with 0% cell growth
is comparable to the higher cell growths for the first month but increases sharply starting
with the third month. Allowing cell growths of 5% and 10% yield similar running times up
to month 6. Starting with month 7, however, RP with cell growth 5% has a significantly
higher runtime, while the vertex/edge churn does not have any significant increase during
these months. A possible explanation might be the merging of small connected components
with bigger ones. In this case, a larger cell growth often allows to assign all vertices of the
previously connected component to the now neighboring cell, improving the runtime and
retaining the similarity.
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Table 5 Comparison of RP and F P , both with 5% cell growth, on the monthly instances.

CutSize [%] S1 [%] SL [%] Runtime [s]
Instance RP RP F P RP F P RP F P

AustraliaM 3.09 98.87 64.57 97.60 39.27 2.01 24.27
NAmericaM 3.11 98.64 64.01 87.16 31.07 144.26 1390.57
EuropeM 3.24 98.35 62.70 94.70 50.73 197.90 1851.13

Table 6 Comparison of RP and F P , both with 20% cell growth, on the yearly instances.

CutSize [%] S1 [%] SL [%] Runtime [s]
Instance RP RP F P RP F P RP F P

AustraliaY 10.91 85.16 49.60 75.49 23.33 3.50 22.08
NAmericaY 13.14 91.04 54.55 62.46 32.53 356.81 1459.72
EuropeY 12.83 90.41 52.98 73.64 46.03 251.47 1880.93

Quality and Performance on Monthly Instances. Based on the results of our monthly RP
evaluation over the course of a year in the previous paragraph, we select a cell growth of 5%
for the comparison with FP on the monthly instances. For FP , we use a cell growth of 0%
for comparing similarity for best FP results and a cell growth of 5% for a fair comparison
of cut sizes. The result of that evaluation can be found in Table 5. The similarity to the
previous partition is always higher than 98% on the lowest level compared to about 67% for
FP . RP is able to maintain high similarity values on higher levels as well. The cut size is no
more than about 3% higher compared to FP and the runtime is up to a factor of 12 lower.

Quality and Performance on Yearly Instances. We also include quality and performance
figures for the yearly instances where we select a cell growth of 20% to maximize similarity.
For FP , we chose the same testing methodology as in the monthly comparison in terms of
cell growth. While our algorithm is able to maintain good similarity values of 85% or higher
on the lowest level, similarity decreases more drastically compared to the monthly instances.
The FP algorithm only achieves up to 54% similarity on the lowest level and higher levels
even worse. In terms of cut size, it shows the limitations of trying to keep a partition stable
for a full year with good similarity as our algorithm produces cuts that are overall up to 14%
higher compared to FP .

5 Conclusion

We studied the stable graph partitioning problem in road networks. We showed how to
keep a graph partition stable on OpenStreetMap road networks over time. A nice benefit of
our approach is a reduction of an order of magnitude in runtime compared to partitioning
the networks from scratch. Regarding future work, we are interested in dealing with larger
churn in the graph, like adding large new regions to the input. One possible approach here
might be to find natural cuts in these new regions and then add the fragments to our scheme.
Finally, we are interested in studying other types of evolving networks.
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