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Abstract 

The present work aims at the numerical investigations on the plastic defor-

mation behavior of tungsten single crystals on the microscale, based on finite-

element (FE) wedge nanoindentation simulations. These numerical studies on 

plasticity of body-centered cubic materials in the range of nanometers to few 

micrometers require not only an incorporation of a crystal plasticity model to 

describe slip dominated plastic deformation in the FE-simulations but moreo-

ver, the consideration of geometrically necessary dislocations (GND) and non-

Schmid effects. Thus, an existing crystal plasticity model was extended to de-

termine gradients of plastic shear and non-Schmid effects for the implementa-

tion of enhanced FE-simulations of wedge nanoindentation. A comprehensive 

evaluation of the influence of GNDs and non-Schmid effects on the plastic 

deformation response of the single crystal was performed under plane strain 

conditions. Dependent on the applied model, a significant difference in the 

stress state, the plastic shear on active slip systems and material pile-up around 

the indenter was observed. In contrast, solely slight deviations in the density 

of GNDs and crystal lattice rotation under the residual imprint were found. 

With the gradient-based crystal plasticity model, a size dependency of the plas-

tic deformation could be described in addition. Further, a comparison between 

numerical and experimental results regarding GNDs, crystal lattice rotation 

and the residual geometry of the indent was performed. A very good agreement 

between the experimental and simulated deformed geometry of the specimen 

was found in the crystal plasticity simulation. The comparison of the GND 

density and lattice rotation in the region under the indenter flanks showed a 

good agreement as well. However, all numerical simulations overestimate 

both, the crystal lattice rotation and density of GNDs that occur in the region 

under the indenter tip. 
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Kurzfassung 

Ziel der vorliegenden Arbeit war die numerische Untersuchung des plastischen 

Verformungsverhaltens von Wolfram Einkristallen während eines Nanoinden-

tierungsversuchs mit Hilfe von Finite-Element Simulationen. Die Herausfor-

derung bei numerischen Simulationen des plastischen Verformungsverhaltens 

von kubisch-raumzentrierten Materialien auf der Mikroebene liegt nicht nur in 

der Notwendigkeit eines Materialmodells, um die gleitdominierte plastische 

Verformung des Kristalls zu beschreiben, sondern zusätzlich darin, Gradienten 

der plastischen Scherung und Nicht-Schmidsche Effekte zu berücksichtigen. 

Deshalb wurde in dieser Arbeit ein vorhandenes Modell der Kristallplastizität 

erweitert, um auch Nicht-Schmidsches Verhalten und das Auftreten von geo-

metrisch notwendigen Versetzungen in FE-Simulationen berücksichtigen zu 

können. Mit diesen erweiterten Kristallplastizitätsmodellen wurde detailliert 

untersucht, wie sowohl Nicht-Schmidsches Verhalten als auch das Auftreten 

von geometrisch notwendigen Versetzungen das plastische Verformungsver-

halten in einem ebenen Dehnungszustand beeinflusst. Abhängig von dem ver-

wendeten Materialmodell ergaben sich stark unterschiedliche Simulationser-

gebnisse für den vorherrschenden Spannungszustand, die plastische Scherung 

auf aktiven Gleitsystemen und die Materialanhäufung an der Oberfläche der 

indentierten Probe. Im Gegensatz dazu wurde in den verschiedenen Simulati-

onen eine gute Übereinstimmung der Dichte der geometrisch notwendigen 

Versetzungen und der Gitterrotation gefunden. Das gradientenbasierte Materi-

almodell ermöglichte zudem die Beschreibung der Größenabhängigkeit des 

plastischen Verformungsverhaltens abhängig von der gewählten Indentie-

rungstiefe. Zusätzlich wurden die numerischen Ergebnisse der Dichte der ge-

ometrisch notwendigen Versetzungen und der Gitterrotation unter dem Inden-

ter mit experimentellen Versuchsergebnissen verglichen. Dabei konnte eine 

sehr gute Übereinstimmung der Geometrie der verformten Probe zwischen der 

Kristallplastizitätssimulation und dem experimentellen Ergebnis festgestellt 

werden. Eine gute Übereinstimmung wurde ebenfalls für den Vergleich der 
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Gitterrotation und der Dichte der geometrisch notwendigen Versetzungen für 

alle Materialmodelle und dem Experiment gefunden, allerdings nur in den Be-

reichen rechts und links des Indenters. Direkt unter der Indenterspitze wurden 

in den Simulationen weit höhere Werte berechnet als im Experiment auftraten. 
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1 Introduction and outline 

The wish for highly sophisticated technical systems caused an ever increasing 

demand on high performance structural materials. This constitutes the need for 

advanced numerical simulations to characterize the physical behavior of mate-

rials under thermal and mechanical loads in ever greater detail. In particular, 

the miniaturization of components, e.g. in microelectronics, electro-mechani-

cal microsystems and optical and medical devices requires numerical simula-

tions on the microscale based on material models capable of incorporating mi-

crostructural features. Beside this, the design of a particular microstructure 

may be necessary for macroscopic components that experience severe heat and 

mechanical loads, like e.g. turbine blades, which requires again the possibility 

to model the microstructures of materials and their influence on the mechanical 

response.   

In the course of material research for nuclear fusion reactors, there is particular 

demand on numerical studies on tungsten and tungsten based alloys. They are 

currently seen as the most promising candidates for so-called first wall mate-

rials for components that face the nuclear fusion. On the one hand, their high 

density, high melting point and high heat conductivity make them well suited 

materials for components that have to withstand severe high heat flux and sig-

nificant neutron irradiation (Linsmeier et al. 2017). On the other hand, an ap-

plication of tungsten is limited by its temperature dependent deformation be-

havior, i.e. the brittle-to-ductile transition far above room temperature, that 

various body-centered cubic (bcc) materials exhibit. A detailed understanding 

of the deformation behavior and fracture mechanism at the microscale are 

therefore necessary and indispensable for an application. However, for further 

investigations of e.g. the fracture toughness on the microscale or the incorpo-

ration of a temperature dependency in the simulations, an approach to describe 

the materials deformation behavior regarding for the size effect and a violation 

of Schmid’s law (Schmid 1924) is a prerequisite.  

These challenges are addressed in the course of this thesis by numerical studies 
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based on the crystal plasticity (CP) constitutive model as a starting point. The 

CP model incorporated in the framework of the finite-element method (CPFE) 

enables an integration of the anisotropic deformation of single crystals and dis-

locations in the continuum field of deformation (Roters et al. 2010). Thereby, 

problems with complex boundary conditions can be solved based on computa-

tional tools of continuum mechanics making the CPFE the powerful tool it is. 

However, the model of crystal plasticity lacks an intrinsic length scale and is 

therefore not able to account for the size effect which influences the defor-

mation response on the micrometer length-scale significantly. Furthermore, the 

model is based on Schmid’s law which is violated for bcc materials (Christian 

1983).  

Hence, beyond the CP model, two material models, namely the mechanism-

based strain gradient (MBSGCP) and non-Schmid crystal plasticity (NOSCP) 

models were used in this thesis for numerical microscale studies on the plastic 

deformation of tungsten single crystals. The mechanism-based strain gradient 

crystal plasticity (MBSGCP) constitutive model accounts for size dependency 

by introducing a density of geometrically necessary dislocations (GND) corre-

sponding to gradients of plastic shear. The NOSCP, uses a modified formula-

tion for the determination of the resolved shear stress, the driving force of dis-

location motion, following the atomistic studies of Gröger et al. (Gröger et al. 

2008b).  

This thesis aims at a contribution to a more detailed characterization of tung-

sten at the microscale by applying the crystal plasticity, the MBSGCP and the 

NOSCP within the finite-element method for numerical simulations of wedge 

nanoindentation, a well-established method for the investigation of an abun-

dance of material properties at the microscale. In the course of this thesis, the 

deformation under the indenter is characterized by the activity of slip systems, 

the crystal lattice rotation and the density of geometrically necessary disloca-

tions, all determined with the three models to study the influence of additional 

hardening due to geometrically necessary dislocation and non-Schmid effects 

on the plastic deformation response of tungsten single crystals.  
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Outline of this thesis 

Chapter 2 serves as an overview of the general deformation behavior of tung-

sten and gives an introduction to experimental nanoindentation and its numer-

ical simulation. Further, a brief summary of the physical background of the 

conventional, the mechanism-based strain gradient and non-Schmid model is 

given together with the mathematical formulations. Last, the determination of 

the crystal lattice rotation is described.   

Chapter 3 gives a comprehensive description of the implementation of the 

mechanism-based strain gradient crystal plasticity subroutine as an extension 

of the conventional CP subroutine by Huang (Huang 1991). The MBSGCP 

subroutine was used for a first simulation of a simple bar under traction and 

gravity load for an evaluation.  

Chapter 4 contains a summary of the experimental nanoindentation, regarding 

the sample preparation and indentation procedure, performed by J. Wang at the 

Karlsruhe Institute of Technology. The experimental results were used for a 

comparison to the numerical results calculated in this thesis.  

Chapter 5 gives an overview over the applied crystal orientations and the three 

simulation models used in this work, namely the brick-shaped, the single-layer 

and the bridge-shaped model. The brick-shaped model was used together with 

the conventional and non-Schmid subroutine. For the computationally more 

expensive MBSGCP simulation, the single-layer model was used. For the com-

parison of experimental and numerical results, the bridge-shaped model was 

used together with the conventional and non-Schmid CP subroutines. 

Chapter 6 contains the results of active slip systems, stress state, increments 

of plastic shear, crystal lattice rotation and the GND density calculated in the 

midsection of the brick-shaped model for both, the [01̅0] and [123] orientation, 

with the conventional crystal plasticity subroutine. With the two orientations, 

the dependency of the indentation direction and deformation behavior was in-

vestigated. The [01̅0] simulation results served as reference for the study of the 

influence of strain gradients and non-Schmid effects on the plastic deformation 

behavior.  
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Further, the single-layer model was used together with the MBSGCP subrou-

tine and the [01̅0] oriented single crystal. A comparison of the mechanism-

based strain gradient and conventional crystal plasticity simulation was per-

formed regarding the slip system activities, stress state, crystal lattice rotation 

and GND density. In addition, the indentation size effect was studied in detail 

with the MBSGCP material model. 

Moreover, the influences of non-Schmid effects on the plastic deformation be-

havior was studied with the non-Schmid version of CP together with the brick-

shaped model and the [01̅0] oriented tungsten single crystal. The activities of 

slip systems, the stress state, increments of plastic shear, crystal lattice rotation, 

GND density, material pile-up and load-displacement curve were analyzed in 

the midsection and compared to the conventional CP results.    

The last part of chapter 6 contains the results of the deformed geometry after 

indentation, the crystal lattice rotation and the density of geometrically neces-

sary dislocations determined with the bridge-shaped model together with both, 

the conventional CP and non-Schmid material model. The simulations were 

performed with the [01̅0] oriented tungsten single crystal. The results of the 

two simulations were compared to the experiments conducted by J. Wang. 
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2 Theory and background    

2.1 Plastic deformation of tungsten 

Plastic deformation in single crystals is generally caused by dislocation motion 

on close-packed planes in close-packed directions, i.e. planes with the highest 

density of atoms and directions with the smallest atom spacing. The slip direc-

tions, denoted by the vector s, correspond to the Burgersvector b of a disloca-

tion. Slip planes are denoted by the vector m, perpendicular to slip directions.  

Motion of dislocation requires a driving force, namely the shear stress, re-

solved on the slip plane in the slip direction. According to Schmid (Schmid 

1924), slip occurs if the resolved shear stress τα on slip system α, caused by an 

external load, reaches a critical shear stress τc

α

:  

𝜏α = 𝑷α ∶ 𝝈 =  𝜏c
α. (2.1) 

Here, σ is the stress tensor and P the Schmid tensor, defined by the slip plane 

normal m and slip direction s for a slip system α: 

𝑷α =
1

2
(𝒎α ⊗ 𝒔α + 𝒔α ⊗ 𝒎α). (2.2) 

In opposite to face-centered cubic (fcc) materials, where the operating slip sys-

tems consists of {111} planes and 〈110〉 directions, in body-centered cubic 

structures like e.g. iron, chromium and tungsten, dislocation motion is in 〈111〉 

directions and the Burgersvector is of ½〈111〉 type but potentially on the 

{110}, {112} and {123} family of planes. However, atomistic studies have 

shown, that {110} planes are the principle slip planes in bcc materials (Gröger 

et al. 2008a; Gröger et al. 2008b; Gröger and Vitek 2008) which are shown 

together with the closed packed 〈111〉 direction in the bcc unit cell in figure 1.  
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Figure 1: {110} slip plane with the 〈111〉 slip direction in the unit cell of the bcc crystal  

The motion of dislocation is dependent on the critical shear stress which is the 

Peierls stress at T = 0 K in bcc crystal structures but decreases with increasing 

temperature. This is because thermal motion of atoms promotes the dislocation 

motion and thereby justify the strong temperature dependency of bcc materials 

and their brittle-to-ductile transitions (Gottstein 2014).  

Because of their compact core structure, screw dislocations require a high crit-

ical stress to be moved (on the order of 1 GPa at T = 0 K). Non-screw disloca-

tions however, have a much higher mobility within the bcc crystal and their 

motion forms long screw dislocation segments. Thus, the plastic deformation 

of bcc structures is mainly dominated by the motion of screw dislocations 

(Christian 1983).  Screw dislocation cores in bcc materials spread into three 

{110} planes and a motion requires a recombination of the non-planar dislo-

cation core (Vitek 2004). Two types of screw dislocation core structures exist 

(see Vitek 2004 for a detailed description and visualization of the structures), 

the so-called degenerate and non-degenerate core. The degenerate core struc-

ture can be translated to an energetically equivalent configuration by a rotation 

around the [101̅] axis. This core spreads asymmetrically into the (1̅01), (01̅1) 

and (1̅10) planes. The non-degenerate core does not exhibit such a symmetry 

and spreads into the (1̅01), (01̅1) and (1̅10) planes, too. For the non-planar 

spreading of the core, necessary for a dislocation motion, a prior transfor-

mation is necessary. This transformation is affected by stresses in the slip di-

rection on planes other than the slip plane and shear stresses perpendicular to 

[111]
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the slip direction (Duesbery 1984; Duesbery and Vitek 1998), i.e., Schmid’s 

law is violated at low temperatures for bcc materials. Gröger et al. formulated 

a yield criterion that incorporates stresses perpendicular to the slip direction 

that affects the magnitude of the critical resolved shear stress of this slip system 

(Gröger et al. 2008b). This criterion was modified by Weinberger et al. (Wein-

berger et al. 2012) for an incorporation in the crystal plasticity constitutive 

model. A modified version of this formulation was used in this thesis as the 

basis for non-Schmid simulations and is described in detail in chapter 2.4.  

2.2 Fundamentals of nanoindentation testing and 
simulation 

Comparable to macroscopic hardness test, like e.g. Brinell, Rockwell or Vick-

ers, nanoindentation is a non-destructive testing method that consists basically 

of touching a material with unknown properties with a harder indenter whose 

mechanical properties are known. The basis of most nanoindentation investi-

gations are the so-called load-displacement curves being the fingerprints of a 

tested material. A typically load-displacement curve as determined in 

nanoindentation tests is shown in figure 2 b). Unlike in macroscopic hardness 

tests, the indentation depth in nanoindentation experiments is typically in the 

range of nanomenters up to few micrometers and the reaction force on the in-

denter therefore in the range of millinewton. In nanoindentation, usually the 

hardness of small volumes and thin films is of interest. In macroscopic hard-

ness tests it is possible to determine the residual imprint visually (e.g. the di-

agonals of the quadratic residual imprint in the Vickers hardness test). It is used 

for the determination of the hardness defined as force divided by the contact 

area. In nanoindentation tests, the hardness is defined as the load on the in-

denter divided by the projected area of the imprint. The projected area is usu-

ally determined indirectly, based on the penetration measurements together 

with the known indenter geometry since a visual measurement is not possible.  

There is a great variety of indenter shapes that can be used in nanoindentation 

tests, e.g. cylindrical, conical, spherical, wedge-shaped and four-sided pyramid 
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indenters as well as the Berkovich (Berkovich 1951) and Knoop indenter 

(Knoop et al. 1939). Dependent on the investigations, a suited one has to be 

chosen. A commonly used is the Berkovich indenter, a three-sided pyramid 

with the same surface area to depth ratio as the Vickers indenter. An advantage 

of the Berkovich indenter are the three sides that meet at one single point which 

is not necessarily the case for a four-sides pyramid. For the investigations in 

this work however, a wedge indenter is chosen. Its decisive advantage are 

plane strain conditions that can occur in a plane normal to the indenter tip de-

pendent on the boundary conditions and orientation of the single crystal. A 

comprehensive description and study of the crystal orientation and strain states 

is performed in the chapter 6.1.2 in this work.  

Nanoindentation testing devices were significantly improved regarding the 

precision over the last decades and it has become a standard method which is 

widely used in research laboratories by many scientists whose aim is not solely 

the determination of the hardness of coatings and small volumes of material 

but many other microstructural parameters as well. Further properties of inter-

est are e.g. the elastic modulus, strain hardening exponents, viscoelastic prop-

erties, fracture toughness, piling-up, sinking-in (see figure 2 a)) and together 

with methods like e.g. electron backscattering diffraction (EBSD), the deter-

mination of crystal lattice rotation and the density of geometrically necessary 

dislocations.  

Pioneering work in the field of analysis of nanoindentation testing data was 

made by W. Oliver and G. Pharr. A comprehensive description of load-dis-

placement based determination of hardness and elastic modulus can be found 

in their fundamental work (Pharr and Oliver 1991; Oliver and Pharr 1992; 

Pharr 1998; Pharr and Bolshakov 2002; Oliver and Pharr 2004). Both parame-

ters, the load on the indenter and the displacement, are usually determined con-

tinuously over the indentation process by the indentation devices and appro-

priate software. The continuous stiffness measurement (CSM) method (Pethica 

and Oliver 1988) is today state of the art in nanoindentation devices to provide 

a continuous determination of the contact area, hardness and elastic modulus 

over the indentation process. In the CSM, an oscillation is applied to the in-
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denter with amplitudes of few nanometers, much smaller than the actual inden-

tation depth. Based on the oscillation, i.e. small loading and unloading cycles, 

the contact stiffness can be determined from the unloading slope continuously 

and so, the hardness and elastic modulus of the tested specimen.  

Indentation 

depth 

Sinking-in Piling-up

Original surface

R
e
a
ct

io
n
 f

o
rc

e

Indentation depth

a) b)

 

Figure 2: a) piling-up and sinking-in around an indenter; b) typical load-displacement deter-

mined in nanoindentation with loading and unloading part     

Beside experimental nanoindentation, FE-simulations were widely used to in-

vestigate the deformation response of a material numerically as it is indented. 

A selection of relevant publications for the present work is given in the follow-

ing. Volz et al. e.g. studied the slip system activity and lattice rotation (Volz et 

al. 2018). Yao studied the deformation behavior of single crystal tungsten by 

crystal plasticity FE-simulations of spherical and Berkovich indentation (Yao 

2012). Demiral et al. investigated the surface topography of a body-centered 

cubic metallic material around indents (Demiral et al. 2013) and the crystal 

lattice rotation (Demiral et al. 2014) numerically using a mechanism-based 

strain gradient crystal plasticity model. Gerday et al. focused on the numerical 

modelling of a bcc alloy and investigated nanoindentation curves and pile-up 

and sink-in patterns (Gerday et al. 2009). Numerical investigations of micro 

texture evolution and mechanical properties of a face-centered cubic (fcc) ma-

terial (aluminum) were carried out by Liu et al. (Liu et al. 2015). Indentation 

studies on copper regarding the effects of the crystallographic orientation, the 

indenter angle and contact conditions on the load-displacement curves were 
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studied by Zahedi et al. using the finite element method (Zahedi et al. 2012). 

Other models to simulate the plastic deformation behavior are three-dimen-

sional discrete dislocation dynamics (DDD), (Arsenlis et al. 2007; Ghoniem et 

al. 2000; Kubin et al. 1992; Schwarz 1999; Weygand et al. 2002; Zbib et al. 

1998) and molecular dynamics (MD) (Alder and Wainwright 1959; Marx and 

Hutter 2000). The models are applied at different length- and time scales. J2-

plasticity or crystal plasticity are at the upper end of the time and length scale. 

J2-plasticity finite-element simulations are today the most important tool for 

practical engineering problems. But since it does not care about the microstruc-

ture of a material, which influence the deformation behavior significantly at 

smaller length scales, an application is only convenient down to a certain 

length and time scale. It is best suited for length scales in the range of millime-

ters to meters and time scales from milliseconds to hours (Roters et al. 2010). 

A lower scale model is the DDD method. It describes the motion and interac-

tion of dislocations (line defects within a crystal lattice) resulting in plastic 

deformation. So it accounts for the microstructure and phenomena like the an-

isotropy of crystalline materials are well described. The length and time scale 

in the DDD method are usually in the range of 0.1 µm – 10 µm and 1 µs – 1 

ms, respectively (Sills et al. 2016). For even lower scales, MD is best suited. It 

can describe the structure of defects in a crystal lattice and is therefore usually 

applied to problem setups smaller than few micrometers and time scales lower 

than milliseconds. So the plastic deformation response of tungsten single crys-

tals in the region around the indenter at indentation depth of several microme-

ters and time scales up to minutes is best described by the crystal plasticity 

finite element method. It incorporates dislocation driven plastic deformation 

into the finite element method and thereby offers the possibility to regard for 

the anisotropic plastic deformation behavior of a crystal lattice in a continuum 

mechanical framework.  

However, experimental nanoindentation has shown that metallic materials ex-

hibit an indentation size effect (ISE), stating that the hardness of a metal in-

creases as the indentation depth decreases (following e.g. (Nix 1989, 1997; 

Guzman et al. 1993; Stelmashenko et al. 1993; Atkinson 1995; Ma and Clarke 

1995; Poole et al. 1996; Swadener et al. 2002)), as shown in figure 3 a). The 
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ISE may be caused by the friction between the indenter and the specimen (Li 

et al. 1993), strain-hardening from the sample preparation, residual stresses or 

errors in the determination of the contact area, especially at very small inden-

tation depths (Fischer-Cripps 2011). Particularly in nanoindentation FE-simu-

lation, the determination of the area is challenging and was comprehensively 

described by Volz et al. (Volz et al. 2017). However, even if all these men-

tioned effects can be excluded, the indentation size effect still occurs in 

nanoindentation experiments. The reason are severe strain gradients in the 

stress field under the indenter at small indentation depths. The plastic flow in 

this region does not solely depend on the strain state but also on the gradients 

of strain. These gradients are associated with the so-called geometrically nec-

essary dislocations that arise from the geometry of the indenter as it is pushed 

into the sample as shown in figure 3 b).  

 

Figure 3: a) indentation size effect of (111) single crystal copper determined by McElhaney et al. 

(McElhaney et al. 1998); b) geometrically necessary dislocations in the plastic zone 

around the indent following Fischer-Cripps (Fischer-Cripps 2011) 

For higher indentation depth strain gradients decrease and become insignifi-

cant, explaining the ISE. The wish to regard for the indentation size effect in 

the simulations motivated the implementation of the mechanism-based strain 

gradient crystal plasticity subroutine in this work.  
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The violation of Schmid’s law and the indentation size effect were the motiva-

tion for the extensions of the user-material subroutine (UMAT) for crystal plas-

ticity, implemented by Huang (Huang 1991) and modified by Kysar (Kysar 

1997), to account for non-Schmid effects and gradients of plastic shear. Figure 

4 visualizes the so-called MBSGCP and NOSCP subroutines developed in this 

work, based on the determination of strain gradients and non-Schmid terms.  

 

Figure 4: Extensions of the conventional crystal plasticity for the numerical investigations of the 

plastic deformation of tungsten performed in this work 

2.3 Conventional crystal plasticity  

The numerical investigations performed in this work are based on the crystal 

plasticity model introduced by Rice (Rice 1971), Hill and Rice (Hill and Rice 

1972) and Asaro and Rice (Asaro and Rice 1977) which is based on the Taylor 

dislocation model (Taylor 1938). The first FEM based investigations using a 

strain rate-independent crystal plasticity model was carried out by Peirce et al. 

(Peirce et al. 1982; Peirce et al. 1983), the first rate-dependent investigation by 

Asaro and Needleman in 1989 (Asaro and Needleman 1989). Two years later, 

Huang (Huang 1991) implemented a user-material subroutine for finite ele-

ment simulations in the software package ABAQUS that is used in this work. 

The basics of the implementation are given in the following.  
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In finite non-linear plasticity, the deformation gradient is in general decom-

posed multiplicatively following Lee (Lee 1969):  

𝑭 = 𝑭e𝑭p, (2.3) 

where 𝑭e is the elastic part that causes elastic stretching and rotation of the 

lattice and 𝑭p is the plastic part that causes plastic shear but leaves the crystal 

lattice undistorted (see figure 5).  

FeFp Fe

Fp

γ m

s

m

s

m
s

 

Figure 5: Multiplicative decomposition of the deformation gradient F into the plastic and elastic 

parts Fp and Fe  

The rate of change of 𝑭p is related to the slipping rate γ̇α of slip system α by 

the expression: 

𝑳p = �̇�p𝑭p−1 = ∑ �̇�𝛼
𝛼 𝒔𝛼𝒎𝛼. (2.4) 

The velocity gradient L is related to the deformation gradient F and the sym-

metric rate of stretching D and the unsymmetrical spin tensor Ω by: 

𝑳 = �̇�−1𝑭 = 𝑫 + 𝜴.  (2.5) 
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�̇�e𝑭e−1 and �̇�p𝑭p−1 can be divided in D and Ω: 

�̇�e𝑭e−1 = 𝑫e + 𝜴e and �̇�p𝑭p−1 = 𝑫p + 𝜴p. (2.6) 

The elastic part causes rotation and stretching of the lattice. In a deformed state, 

the current slip directions and planes are defined as:   

𝒔𝛼 = 𝑭e𝒔i
𝛼 and 𝒎𝛼 = 𝒎i

𝛼𝑭e−1, (2.7) 

where si
α and mi

α are the slip directions and slip plane vectors of slip system 𝛼 

in the initial state and sα and mα in the current state respectively. By differen-

tiation one finds: 

�̇�𝛼 = �̇�e𝒔𝛼 and �̇�𝛼 = 𝒎𝛼�̇�e−1. (2.8) 

Based on Schmid’s law, the following rate-dependent formulation is applied 

for the plastic shear rate on slip system α: 

�̇�𝛼 = �̇�0
𝛼𝑠𝑔𝑛(𝜏𝛼) |

𝜏𝛼

𝑔𝛼
|

𝑛

. (2.9) 

In this equation, γ̇
0

α is the reference shear rate, τα is the resolved shear stress, gα 

the current strength of the slip system and n the rate sensitivity exponent.  

The evolution equation: 

�̇�α = ∑  ℎ𝛼𝛽

𝛽

γ̇β (2.10) 

describes the increase of the critical shear stress on every slip system α as a 

follow of plastic deformation, dependent on the hardening module ℎ𝛼𝛽 and the 
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plastic shear rate γ̇β. If α = β, self-hardening and if α ≠ β, latent hardening 

occurs. In case of latent hardening, secondary slip systems also strengthen. The 

hardening module describing self-hardening was proposed by Peirce, Asaro 

and Needleman (Peirce et al. 1982) as: 

ℎ𝛼𝛼 = ℎ(γ) = ℎ0𝑠𝑒𝑐ℎ2 |
ℎ0γ

𝜏s − 𝜏0

|, (2.11) 

where γ denotes the cumulative plastic shear on all slip systems, ℎ0 is the initial 

hardening modulus and 𝜏0 the initial shear stress value which is equal to the 

initial value of the shear strength gα(0). The relation of the latent- and self-

hardening is described by the parameter q: 

ℎ𝛼𝛽 = 𝑞ℎ(γ). (2.12) 

In the equation, q describes the latent hardening effect (hardening on slip sys-

tem α caused by slip on slip system β).  

2.4 Non-Schmid crystal plasticity 

The extension of the conventional crystal plasticity subroutine to incorporate 

non-Schmid effects (motivated in chapter 2.1) for the simulation of tungsten 

single crystals at the microstructure is based on the atomistic simulations of 

Gröger et al. (Gröger et al. 2008b). They defined the following yield criterion 

for slip in bcc single crystals:  

𝜏c = 𝒔𝛼 ∙ 𝝈𝒎𝛼  + 𝑎1𝒔𝛼 ∙ 𝝈𝒎1
𝛼 + 𝑎2(𝒎𝛼 × 𝒔𝛼) ∙ 𝝈𝒎𝛼 

(2.13) 

         +𝑎3(𝒎1
𝛼 × 𝒔𝛼) ∙ 𝝈𝒎1

𝛼, 
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where 𝒎1
𝛼 is the unit vector that stands perpendicular to {110} planes. This 

vector makes an angle of -60° with the reference plane 𝒎𝛼. The constant ma-

terial parameters a1, a2 and a3 were determined by Gröger et al. (Gröger et al. 

2008b) in atomistic calculations. For tungsten, the parameters are a1 = 0, a2 = 

0.56 and a3 = 0.75. The first term in equation (2.13) is the Schmid stress that 

acts on the slip plane in slip direction. The second term represents a contribu-

tion due to the twinning and anti-twinning asymmetry. The third and fourth 

term describe stresses perpendicular to the dislocation core. The last three 

terms are thereby non-Schmid terms which do not contribute to the driving 

force but act on the dislocation core and alter the critical resolved shear stress 

that is necessary for dislocation motion. To facilitate the incorporation of 

(2.13) into a crystal plasticity formulation, Weinberger et al. (Weinberger et 

al. 2012) re-wrote the equation as a set of projection tensors. Beside the Schmid 

tensor Ps
α, they defined a non-Schmid projection tensor Pns

α : 

𝑷ns
𝛼 = 𝑎1(𝒔𝛼 ⊗ 𝒎1

𝛼) + 𝑎1(𝒎𝛼 × 𝒔𝛼) ⊗ 𝒎𝛼 . 
(2.14) 

            +𝑎3(𝒎1
𝛼 × 𝒔𝛼) ⊗ 𝒎1

𝛼 

This allows to express equation (2.13) in the following form: 

𝜏c = 𝑷s
𝛼 ∶ 𝝈 + 𝑷ns

𝛼 ∶ 𝝈. (2.15) 

In this way, stresses that do not act in the slip direction (non-Schmid stresses) 

add to the total driving force on a dislocation:  

𝜏𝛼 = 𝑷s
𝛼 ∶ 𝝈 + 𝑷ns

𝛼 ∶ 𝝈 = 𝜏s + 𝜏ns.  (2.16) 

Following the former consideration, the rate-dependent formulation for the 

plastic shear rate in the conventional crystal plasticity model can be modified: 
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�̇�𝛼 = �̇�0
𝛼𝑠𝑔𝑛(𝜏𝛼) |

𝑷s
𝛼 ∶ 𝝈 + 𝑷ns

𝛼 ∶ 𝝈

𝑔𝛼
|

𝑛

. (2.17) 

As mentioned above, solely slip on the {110}〈111〉 slip systems is expected. 

However, instead of working with 12 slip systems, where each system can be 

activated in positive and negative slip direction, 24 slip systems are generated 

in the non-Schmid subroutine that was used in this work and only positive slip 

on these slip systems is allowed. Adding up the plastic shear γα of slip on each 

two collinear slip systems which only differ in the sign of their slip direction 

gives a value which can be directly compared to the plastic shear computed 

with the conventional CP subroutine. Table 1 lists the slip plane normals and 

slip directions of the 24 slip systems together with the unit vectors 𝒎1
𝛼 defined 

in the non-Schmid simulation.   

Per definition, one of the 24 slip systems can only be active if the Schmid con-

tribution τs
α to the overall resolved shear stress is positive. In case of negative 

values, a slip system is regarded to be inactive independent of the value and 

sign of the non-Schmid contribution τns
α . During the indentation process, the 

Schmid part τs
α can alter from a negative to a positive value. Consequently, slip 

on this slip system gets activated. If the Schmid shear stress undergoes a sign 

change at a point of the indentation process and the non-Schmid contribution 

τns
α  at this time has a high and positive value, exceeding the Schmid contribu-

tion by far, a sudden high activity of this slip system may occur, resulting in a 

very high stress. In the course of this work, it was found that such conditions 

occur in the non-Schmid simulation resulting in a termination of the calcula-

tion. Therefore, the equation (2.17) was modified to: 

�̇�𝛼 = �̇�0
𝛼 𝑠𝑔𝑛(𝜏𝛼) |

√(𝑷𝒔
𝛼 ∶ 𝝈)2 + (𝑷s

𝛼 ∶ 𝝈)(𝑷ns
𝛼 ∶ 𝝈)

𝑔𝛼
|

𝑛

. (2.18) 
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This formulation avoids an abrupt increase of plastic shear on a slip system 

during the indentation simulation. The weighting function leads to an underes-

timation of the non-Schmid effects. However, the reformulation is seen as an 

appropriate way to make the non-Schmid formulation usable in the nanoinden-

tation simulations with its complex stress state under the indent. 

Table 1: Slip systems following Gröger et al. (Gröger et al. 2008b) defined in the non-Schmid 
simulations 

 
Reference- 

system 
sα mα m1 α 

Reference- 

system 
sα mα m1 

1 (011̅)[111] [111] [011̅] [1̅10] 13 (011̅)[1̅1̅1̅] [1̅1̅1̅] [011̅] [101̅] 

2 (1̅01)[111] [111] [1̅01] [01̅1] 14 (1̅01)[1̅1̅1̅] [1̅1̅1̅] [1̅01] [1̅10] 

3 (11̅0)[111] [111] [11̅0] [101̅] 15 (11̅0)[1̅1̅1̅] [1̅1̅1̅] [11̅0] [01̅1] 

4 (1̅01̅)[1̅11] [1̅11] [1̅01̅] [1̅1̅0] 16 (1̅01̅)[11̅1̅] [11̅1̅] [1̅01̅] [011̅] 

5 (01̅1)[1̅11] [1̅11] [01̅1] [101] 17 (01̅1)[11̅1̅] [11̅1̅] [01̅1] [1̅1̅0] 

6 (110)[1̅11] [1̅11] [110] [011̅] 18 (110)[11̅1̅] [11̅1̅] [110] [101] 

7 (01̅1̅)[1̅1̅1] [1̅1̅1] [01̅1̅] [11̅0] 19 (01̅1̅)[111̅] [111̅] [01̅1̅] [1̅01̅] 

8 (101)[1̅1̅1] [1̅1̅1] [101] [011] 20 (101)[111̅] [111̅] [101] [11̅0] 

9 (1̅10)[1̅1̅1] [1̅1̅1] [1̅10] [1̅01̅] 21 (1̅10)[111̅] [111̅] [1̅10] [011] 

10 (101̅)[11̅1] [11̅1] [101̅] [110] 22 (101̅)[1̅11̅] [1̅11̅] [101̅] [01̅1̅] 

11 (011)[11̅1] [11̅1] [011] [1̅01] 23 (011)[1̅11̅] [1̅11̅] [011] [110] 

12 (1̅1̅0)[11̅1] [11̅1] [1̅1̅0] [01̅1̅] 24 (1̅1̅0)[1̅11̅] [1̅11̅] [1̅1̅0] [1̅01] 

2.5 Strain gradient crystal plasticity 

Motivated by the size effect, a variety of strain gradient models were developed 

to regard for size dependency of plastic deformation over the last decades. 

Fleck and Hutchinson (Fleck and Hutchinson 1993) developed a phenomeno-

logical plasticity law where stress is not solely a function of strain but also 

strain gradients. They linked the gradients of plastic strain to the geometrically 

necessary dislocations (GND) introduced by Nye (Nye 1953) and (Ashby 

1970). An example following Arsenlis and Parks (Arsenlis and Parks 1999), 

explaining the link between GNDs and non-uniform plastic deformation is 

shown in figure 6. A non-uniform deformation of the material section shown 

in figure 6 a) can be described by introducing an intermediate state (figure 6 
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b)) in which the section is divided into two similar parts which are plastically 

deformed so that γ1 < γ2 i.e. a gradient of strain occurs between the two sec-

tions, beside lattice rotation, two edge dislocations must be introduced for com-

patibility reasons as shown in figure 6 c). These introduced dislocations are 

GNDs occurring in the crystal to ensure homogenous plastic deformation in 

non-uniformly deformed areas. Whereas GNDs accumulate in regions with 

non-uniform strain states, statistically stored dislocations are uniformly gener-

ated and distributed within the crystal lattice. SSDs accumulate evenly in the 

crystal by random mutual trapping and therefore cause isotropic hardening 

of the material (Ashby 1970). The occurrence of GNDs in regions with non-

uniform deformation however, i.e. additional obstacles in these regions, lead 

to a local, non-homogenous increase of the mechanical strength.  

Following Niordson and Hutchinson (Niordson and Hutchinson 2003), strain 

gradient plasticity theories developed and used in the last decades can be di-

vided into two classes, so-called lower-order theories with conventional 

stresses and boundary conditions (Bassani 2001; Arsenlis and Parks 1999; 

Busso et al. 2000; Han et al. 2005; Meissonnier et al. 2001; Yefimov and van 

der Giessen 2005) and higher theories involving additional stresses and bound-

ary conditions. (Fleck and Hutchinson 1993, 2001, 1997; Borst and Mühlhaus 

1992; Gao et al. 1999; Fleck et al. 1994; Huang et al. 2000a; Huang et al. 

2000b). For the numerical strain gradient plasticity investigations in this work, 

a lower order approach is seen as favorable since the classical finite element 

method with standard element types can be used as no additional stresses or 

boundaries conditions are necessary. Further, an incorporation of the strain 

gradient model into the crystal plasticity model is necessary to account for the 

single crystals anisotropy. A lower order formulation based on the Peach-

Koehler force and the dislocation density tensor, meeting the mentioned re-

quirements was developed by Han et al. (Han et al. 2005). Based on this model, 

Demiral (Demiral 2012) implemented a user subroutine and investigated 

spherical nanoindentation and micro pillar compression of bcc single crystals 

numerically. Siddiq et al. (Siddiq et al. 2007) investigated the fracture of 

bicrystals with the mechanism-based strain gradient crystal plasticity model 
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following Han et al. (Han et al. 2005). Lee and Chen (Lee and Chen 2010) used 

the mechanism-based strain gradient model to simulate the size effect in the 

micro-indentation process of single crystal copper. 
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Figure 6: Introduction of GNDs for geometric compatibility in non-uniformly deformed regions  

The increase in strength due to GNDs is accounted for in the crystal plasticity 

model following Han et al. (Han et al. 2005) by the determination of the total 

current strength 𝑔T
α on a slip system α as the square root of the sum of the 

squares of the current strength contributions by SSDs and GNDs, denoted 𝑔SSD
α  

and 𝑔GND
α :  
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𝑔𝑇
𝛼 = √(𝑔𝑆𝑆𝐷

𝛼 )2 + (𝑔𝐺𝑁𝐷
𝛼 )2. (2.19) 

In the classical crystal plasticity, the evolution of the current slip resistance due 

to strain hardening on a slip system is given by:   

�̇�S
α = ∑  ℎ𝛼𝛽

𝛽

γ̇β, (2.20) 

which only considers hardening due to SSDs. To account for the contribution 

of the geometrically necessary dislocations, their effective density nG is 

needed. In the formulation following Han et al. (Han et al. 2005), the effective 

density is calculated by: 

𝑛𝐺
𝛼 = |𝒎𝛼 × ∑ 𝒔𝛼𝛽𝛻𝛾𝛽 × 𝒎𝛽

𝛽

|, (2.21) 

where ∇γ is the gradient of the plastic shear and 𝒔𝛼𝛽 = 𝒔𝛼 · 𝒔𝛽 (‘·’ denotes the 

scalar product). It has to be mentioned, that the unit of this effective density is 

µm-1 instead of the usually used µm-2. The intrinsic length scale is introduced 

in the formulation in the equation for the slip resistance due to GNDs: 

𝑔𝐺𝑁𝐷
𝛼 = 𝜏0√𝑙𝑛𝐺

𝛼 . (2.22) 

In this equation, τ0 is the reference slip resistance and l the intrinsic length scale 

given by the following equation:  
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𝑙 =
𝛼𝑇

2 𝐺2 𝑏

(𝜏0)2
, (2.23) 

where the parameter αT is ranging usually between 0.2 to 0.5, G is the shear 

modulus and b the magnitude of the Burgersvector.  

2.6 Crystal lattice rotation 

The crystal lattice rotation is of particular importance in this work since it char-

acterizes the plastic deformation of the specimen and can be used for a com-

parison with experimental results determined in EBSD studies. Beyond that, it 

is the basis for further investigations of the density of geometrically necessary 

dislocations via the kernel average misorientation method (KAM).  

In general, the lattice rotates during deformation which is visualized in figure 

7. Two initially connected segments (ABCD) and (EFGH) are assumed to have 

the same slip system characterized by the slip direction s and slip plane normal 

m. The two segments are assumed to undergo a different amount of plastic 

shear, described by the plastic part of the deformation gradient 𝑭p. Thus, the 

two separated segments are translated into an intermediate deformation state. 

For compatibility reasons, elastic stretching and rotation αz of the segments 

described by 𝑭e are necessary to transfer the two segments from the interme-

diate state into a shape in which the segments can be merged (represented by 

the two grey segments in the two bottom pictures of the figure 7).  

The rotation matrix R is defined as a rotation from the initial to the current 

crystal configuration and can be determined as described in detail in appendix 

A.3. In crystallography, usually one of three ways are used to describe the ro-

tation (Gottstein 2014). Crystal directions can be given that are parallel to the 

specimen’s axes. A second way is the specification of a rotation axis and a 

rotation angle around this axis. A third possibility way are the three Euler an-

gles. For the investigations in this work, the latter two are used. The Euler 
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angles following Bunge φ1, Φ and φ2 (Z-X-Z convention) can be calculated 

from the rotation matrix R based on the following relation: 

 𝑹 = 

[

𝑐𝑜𝑠(𝜑1) 𝑐𝑜𝑠(𝜑2) − 𝑠𝑖𝑛(𝜑1) 𝑠𝑖𝑛(𝜑2) cos(𝛷) 𝑠𝑖𝑛(𝜑1) 𝑐𝑜𝑠(𝜑2) − 𝑐𝑜𝑠(𝜑2) sin(𝜑1) sin(𝛷) sin(𝜑2) sin(𝛷)

−𝑐𝑜𝑠(𝜑1) sin(𝜑2) − 𝑠𝑖𝑛(𝜑1) cos(𝜑2) cos(𝛷) −𝑠𝑖𝑛(𝜑1) cos(𝜑2) − 𝑐𝑜𝑠(𝜑1) cos(𝜑2) cos(𝛷) cos(𝜑2) sin(𝛷)

sin(𝜑1) sin(𝛷) −cos(𝜑1) sin(𝛷) cos(𝛷)
] . 

 

(2.24) 

 

 

Figure 7: Intermediate states of deformation: a) different amount of pure shear of the two seg-

ments ABCD and EFGH, as described by Fp; b) elastic stretch and rotation needed to 

join the segments as described by Fe 
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Based on the rotation matrix, the three Euler angles can be determined follow-

ing the three expressions:  

𝜑1 = arctan (
𝑅31

𝑅32

) (2.25) 

𝜑2 = arctan (
𝑅13

𝑅23

) (2.26) 

𝛷 = arccos (𝑅11). (2.27) 

The special case of Φ being zero (or R11 being one) has to be considered sepa-

rately to avoid a division by zero. In the case of Φ = 0, the first and the second 

rotation (Φ and φ1) are set zero and φ2 is calculated based on R21 an R11:  

 
𝑅21

𝑅11
= tan(𝜑2) → 𝜑2 = arctan (

𝑅21

𝑅11
). (2.28) 

For the determination of the rotation axis u and angle θ, following Gottstein 

(Gottstein 2014) , the relations between the matrix components and u and θ 

can be used: 

 𝑹 = 

[

(1 − 𝑢1
2) cos(𝜃) + 𝑢1

2 𝑢1𝑢2(1 − cos(𝜃)) + 𝑢3 sin(𝜃) 𝑢1𝑢3(1 − cos(𝜃)) − 𝑢2 sin(𝜃)

𝑢1𝑢2(1 − cos(𝜃)) − 𝑢3 sin(𝜃) (1 − 𝑢2
2) cos(𝜃) + 𝑢2

2 𝑢2𝑢3(1 − cos(𝜃)) + 𝑢1 sin(𝜃)

𝑢2𝑢3(1 − cos(𝜃)) + 𝑢2 sin(𝜃) 𝑢1𝑢3(1 − cos(𝜃)) − 𝑢1 sin(𝜃) (1 − 𝑢3
2) cos(𝜃) + 𝑢3

2

]. 

(2.29) 

 

The following two equations were used to determine the axis and angle in this 

work: 
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 𝜃 = arccos (
𝑇𝑟(𝑹)−1

2
), (2.30) 

𝒖 = (

𝑢1

𝑢2

𝑢3

) = (

𝑅32 − 𝑅23

𝑅13 − 𝑅31

𝑅21 − 𝑅12

). (2.31) 

To be able to visualize the lattice rotation due to indentation, crystal plasticity 

user subroutine was extended. At each integration point, the orientation of the 

lattice in the deformed configuration is compared to the lattice orientation in 

the undeformed configuration. The rotation matrix R between these configura-

tions is computed, which allows to obtain the axis of rotation with its rotation 

angle as well as Euler angles as described above.  
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3 Implementation  

The extension of the conventional crystal plasticity subroutine for the determi-

nation of plastic shear gradients and the density of geometrically necessary 

dislocation is described in detail in this chapter. The mathematical formula-

tions of the mechanism-based strain gradient crystal plasticity to determine the 

gradients of plastic shear in the finite-element framework are outlined. The 

sequence in which the user and utility subroutines are called are visualized in 

a flow chart for an overview of the extension. Further, a first simulation of a 

simple bar under traction and gravity load was performed with the MBSGCP 

subroutine for an evaluation of the implementation.  

3.1 User subroutine 

The constitutive laws presented in chapter 2 are implemented in the commer-

cial finite element software package ABAQUS (Dassault Systèmes) via user 

subroutines. In every increment a user subroutine is called for every integration 

point (IPT). It is provided inter alia with the actual stress components, solution-

dependent state variables (SDVs), coordinates of the IPT, the strain and time 

increment. These values are used for user-defined calculations. The subroutine 

updates the stresses and SDVs according to the implemented constitutive laws, 

calculates the Jacobian matrix δσ/δε and passes the results back. Data is only 

provided for integration points for which the user subroutine is called. Beside 

the user material subroutine, utility subroutines provided by ABAQUS are nec-

essary to write and read output data to the result file.   
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3.2 Mechanism-based strain gradient crystal 
plasticity  

Basis of the mechanism-based strain gradient implementation is the conven-

tional crystal plasticity subroutine written by Huang (Huang 1991). All neces-

sary extensions to the crystal plasticity subroutine according to the theory of 

Han et al. (Han et al. 2005) were written in Fortran 77. The implementation 

was performed for the general purpose linear brick elements C3D8 with 2 × 2 

× 2 integration points and C3D8R elements with one integration point (see 

figure 8). The node and integration point numbering follows the convention 

shown in the figure. Dependent on the chosen element type, the procedure to 

determine necessary nodal values of plastic shear differs and both methods are 

described in this chapter. As mentioned above, the core idea of the mechanism-

based strain gradient crystal plasticity formulation is the determination of an 

effective density of GNDs analog to the Peach–Koehler force in dislocation 

theory and to incorporate the additional strengthening due to GNDs in the con-

stitutive law via the Taylor relation. The determination of strain gradients, i.e. 

the density of geometrically necessary dislocations in this work is based on the 

derivatives of shape functions (see appendix A.1) within finite elements and 

the calculation of averaged nodal values of plastic shear. A downside of this 

method is a higher computational effort because all nodal coordinates and av-

eraged plastic shear values must be determined. However, this is accepted and 

outweighed by the possibility to use a commercial finite-element software with 

the possibility of using standard element types and simple model creations. 

In the finite element method, field variables within every element are interpo-

lated between nodes via shape functions, denoted Ni in the following. Table 2 

lists the shape functions applicable for the chosen linear brick element type in 

local coordinates, denoted ψ or (𝜉,η,ρ) in this work. So the displacement uIPT, 

as an example, can be determined at integration points within an element with 

the nodal values uN and shape functions, following the equation: 
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𝒖𝐼𝑃𝑇 = 𝑁𝑖(𝝍)𝒖𝑁
𝑖   (sum over i). (3.1) 

The chosen element types possess same number of nodes and shape functions, 

whereas the number of integration points differs (eight in the C3D8 and one in 

the C3D8R element). One property of shape functions of an element is that 

they are one at one node of the element and zero at all other nodes (Bathe 

1996). Per definition, the first shape function N1 has the value one at the node 

with the local number one, shape function two, has the value one at the node 

number two and so on. The eight linear shape functions for linear brick ele-

ments are listed in the following table 2.  
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a) b)

 

Figure 8: a) C3D8 element with eight nodes and eight integration points with local numbering b) 

C3D8R element with the unique integration point and the eight nodes with local num-

bering 

Table 2: Shape functions expressed in local coordinates (ξ,η,ρ) for linear brick elements 

i Ni  i Ni 

1 
1

8
(1 - ξ)(1 - η)(1 -ρ) 

 
5 

1

8
(1 - ξ)(1 - η)(1 + ρ) 

2 
1

8
(1 + ξ)(1 - η)(1 - ρ) 

 
6 

1

8
(1 + ξ)(1 - η)(1 + ρ) 
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3 
1

8
(1 + ξ)(1 + η)(1 - ρ) 

 
7 

1

8
(1 + ξ)(1 + η)(1 + ρ) 

4 
1

8
(1 - ξ)(1 + η)(1 - ρ) 

 
8 

1

8
(1 - ξ)(1 + η)(1 + ρ) 

3.2.1 Determination of plastic shear gradients 

Like the displacement u shown in equation (3.1), the plastic shear on slip sys-

tem α at an integration point 𝛾IPT
𝛼  can be determined from nodal values 𝛾N

𝛼 via 

the expression:  

𝛾IPT
𝛼 = 𝑁𝑖(𝝍)𝛾N

𝛼𝑖   (sum over i). (3.2) 

In case of the chosen linear element type, the superscript i is a variable ranging 

from 1 to 8 referring to eight nodes and the eight shape functions. The deriva-

tives of plastic shear regarding the global coordinates can be determined with 

the derivatives of the shape functions N: 

𝛻𝛾IPT
𝛼 =

∂𝛾IPT
𝛼

∂𝒙
=

∂𝛾IPT
𝛼

∂𝝍

𝜕𝝍

∂𝒙
=

∂(𝑁𝑖(𝝍)𝛾N
𝛼i)

∂𝝍

∂𝝍

∂𝒙
. (3.3) 

∇γ
IPT
α  is the gradient of the plastic shear of slip system α and x denotes the 

global coordinates (x,y,z). The expression of the global with respect to the local 

coordinates ∂x/∂ψ is called Jacobian matrix J so that the expression for the 

gradient of plastic shear can be written as: 

𝛻𝛾IPT
𝛼 = (𝑁𝑖(𝝍)𝛻𝝍)𝛾N

𝛼𝑖𝑱−1  (sum over i). (3.4) 

In the expression, the term denoting the derivative of shape function in terms 

of the nabla operator 𝛻ψ can be rewritten: 
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𝑁𝑖(𝝍)𝛻𝝍 = (
𝜕𝑁𝑖(𝝍)

𝜕𝜉
,
𝜕𝑁𝑖(𝝍)

𝜕𝜂
,
𝜕𝑁𝑖(𝝍)

𝜕𝜌
). (3.5) 

Not only field variables like displacement and plastic shear are connected be-

tween nodes and integration points via the shape functions but also the global 

coordinates x: 

𝒙𝐼𝑃𝑇 = 𝑁𝑖(𝝍)𝒙𝑁. (3.6) 

For the implementation in the subroutine, the Jacobian matrix is expressed de-

pendent on the derivative of the linear shape functions following (Liang and 

Dunne 2009): 

𝑱 = ∑ [

𝑥𝑖

𝑦𝑖

𝑧𝑖

]

8

𝑘=1

⊗ [

𝑁𝑖,𝜉

𝑁𝑖,𝜂

𝑁𝑖,𝜌

]. (3.7) 

The inverse of the Jacobian matrix J-1 is calculated for every integration point 

of every element using Cramer’s rule. 

3.2.2 Averaging scheme  

With the chosen element type, the displacements are interpolated linearly. As 

the strain ε is a derivative of the displacement u, the strain is constant within 

elements. The same holds for the plastic shear γα. Consequently, the gradients 

of plastic shear within an element are zero. To be able to obtain plastic shear 

gradients in an element without the need of introducing higher order elements, 

nodal values of plastic shear of adjoining elements are averaged. These nodal 

values are subsequently used to calculate gradients of plastic shear at integra-

tion points of elements. The underlying idea of this approach is that plastic 

shear may differ significantly in adjoining elements as visualized in figure 9 
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showing a simple model consisting of four one-dimensional elements. By av-

eraging the nodal values of a field variable, here the plastic shear, of adjoining 

elements sharing the same node, discontinuities at the nodes are eliminated. 

With the averaged values, the gradients of plastic shear can be determined 

within elements.  
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Figure 9: Actual and averaged nodal values of a field variable along four one-dimensional ele-

ments  

3.2.3 Procedure overview  

The extensions to be able to compute the plastic shear gradients can be divided 

into four steps executed in four different subroutines as described in the fol-

lowing (related to the flow chart of figure 10). For the steps necessary to cal-

culate plastic shear gradients, in the output section of the input file, the global 

coordinates of all nodes have to be written to the result file in every increment 

via the keyword *NODE FILE. The necessary information about global ele-

ment numbering and attached nodes are written to the result file by default and 

can be read at the end of every element together with the global node coordi-

nates as described below in more detail.  
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Writing the plastic shear to a common block (UMAT): This step is neces-

sary since all nodal values of plastic shear of an element have to be available 

to calculate the gradients of plastic shear at an integration. To the knowledge 

of the author, the only way to make the nodal values available i.e. share data, 

(here the plastic shear) at integration points between subroutines is to store the 

data in common blocks which are available in Fortran 77 (Stanford University 

1995). This step is performed for the first time in the initial increment of the 

simulation the position denoted by the global integration point number. At the 

end of the first increment when the subroutine was called for every integration 

point, “Gammaint1” contains all global node numbers together with the plastic 

shear values. The values are used at the end of the increment to calculated the 

averaged values. 

In the second increment, the averaged values of plastic shear at integration 

points are available for the first time for further calculations. According to the 

procedure in the initial increment, the plastic shear of every integration point 

is again written to “Gammaint1” in the second and all other increments to fol-

low. The old values from the previous increment can be overwritten since they 

are no longer needed after the averaging scheme. It has to be noted that in this 

procedure, values from the previous increment of the plastic shear are used for 

operations in the current increment. However, by the knowledge of the author 

of this thesis, there is no alternative procedure to be in line to make all integra-

tion point values accessible.  

Reading data from the result file (URDFIL): For the averaging of the nodal 

plastic shear values, the global element numbers with attached nodes must be 

known and are therefore read from the input file uniquely at the end of the first 

increment. These global node numbers are stored in the common block called 

“Nodelem” together with global number of the eight attached nodes. As men-

tioned, the global node numbers and attached nodes are written to the result 

file by default. Furthermore, the global coordinates of all element nodes that 

were written to the result file as described above, are read together with the 

global node numbers from the result file and saved in another common block 
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named “Coordsk”. These data are needed for the calculation of the inverse of 

the Jacobian matrix.     

Averaging the nodal values (UEXTERNALDB): The averaging scheme is 

performed in the utility subroutine UEXTERNALDB which is called at the 

end of every increment. First, the integration point values of plastic shear have 

to be assigned to the element nodes. In case of C3D8R elements, the single 

integration point value is directly allocated to all eight element nodes. In case 

of the C3D8 elements, the extrapolation scheme following Busso (Busso et al. 

2000) is applied to determine the nodal values:  

𝛾𝐼𝑃𝑇
𝛼𝑖 = 𝑁𝑖(𝝍)𝛾𝑁

𝛼. (3.8) 

The subroutine runs through all global element numbers in ascending order. 

Starting at the first element, the single integration point value of the element is 

assigned to all eight nodes in case of C3D8R elements. For C3D8 elements, 

the extrapolation scheme is applied. After this operation, the global element 

number, the global numbers of the eight attached nodes (from “Nodeelem”) 

and the eight nodal values of plastic shear of the element are known. The next 

step is to save the nodal values of plastic shear in the common block “All-

gamma1” at the position denoted by the global node number. This procedure 

is performed for every element. As a node is shared by different elements, its 

global node number is found several times as the subroutine runs through all 

elements. Every time a global node number appears, its plastic shear values is 

added at the position denoted by the global node number in “Allgamma1” and 

not overwritten. Additionally, a counter at the same position in the common 

block “Nodeadjel” is increased by one. Finally, “Allgamma1” contains the 

added up plastic shear values for all nodes which are then divided by the value 

of the corresponding counter in “Nodeadjel”. These averaged values are again 

saved in “Allgamma1” and used in the following increment to determine the 

gradients of plastic shear. 
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Figure 10: Flow chart of the MBSGCP extension as an addendum to the conventional crystal 

 plasticity user-material subroutine 
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Calculation of plastic shear gradients (CAL_DGAMMA): In all increments 

other than the initial, the calculation of the gradients is the first step. For this, 

the subroutine CAL_DGAMMA is called in which the inverse of the Jacobian 

matrix and the gradients of the plastic shear are calculated based on the data of 

the previous increment. This procedure is performed every time the subroutine 

is called for an integration point in the current increment.  

The implementation of the mechanism-based strain gradient crystal plasticity 

was performed for both, the C3D8 and the C3D8R elements. However, only 

the elements with reduced integration are used in this thesis. The reasons are 

the lower cost of computational time and more stability in non-linear simula-

tion with contact.  

All common blocks used in this work are listed in appendix A.2. 

3.3 Influence of gradients of plastic shear on a bar 
under tensile and gravity load  

For an evaluation of the mechanism-based strain gradient crystal plasticity im-

plementation regarding strain gradients and the ability to describe the size de-

pendency, simple bar-shaped ten element model were set up with different 

lengths and cross sections (figure 11). Simulations with the conventional and 

mechanism-based strain gradient crystal plasticity were performed and com-

pared. The simple bar-shaped model is inspired by the analytical investigations 

of Huang et al. (Huang et al. 2004). The model consists of ten regular hexahe-

dron shaped elements (C3D8R) with the side length h (see figure 11). The four 

nodes at the top of the bar are fixed in all three directions, whereas the four 

nodes at the bottom of the bar are fixed in the z- and x-direction but uncon-

strained in the y-direction. Two loads were defined, namely a traction on the 

bottom surface of the bar and a gravity load to induce a gradient along the y-

direction. A value of 0.8 mN/µm2 was chosen for the traction t in the negative 

y-direction. The gravity load g was set to 4.25 ·1014 µm/s2 for the smallest bar 

with a length of 0.1 µm and decreased for the larger models. Together with the 
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gravity load, the density of tungsten ρ = 19.3 ·1015 kg/µm3 was defined. For 

the investigation of the size dependency, five models with different side 

lengths h and overall length l0, ranging from 0.1 to 100 µm were set up. The 

dimensions of the bars are listed together with the loads in the following table 

3. The overall length of the bar l0 in the different models is always ten times 

the side length h of one element. To achieve the same stress conditions in the 

different sized bars, with different lengths and cross-sections, the traction t on 

the bottom face was defined constant in all models. The analytic equation for 

the calculation of the stress distribution σ(x) = t + ρgx, shows that the gravity 

load g needs to be reduced by the same factor as the length of the bars is in-

creased (listed in table 3) for the same stresses within the bars. 

Table 3: Dimensions and loads defined in the ten element bar simulations 

 l0 in µm h × h in µm2 g in 
µ𝑚

𝑠2
 t in 

𝑚𝑁

µ𝑚2
 

0.1 0.01 × 0.01 4.25·1014 0.8 

0.25 0.0125 × 0.0125  1.7·1014 0.8 

1.0 0.1 × 0.1 4.25·1013 0.8 

10.0 1.0 × 1.0 4.25·1012 0.8 

100.0 10.0 × 10.0 4.25·1011 0.8 

The material parameters for the simulation correspond to those chosen in the 

single-layer MBSGCP wedge nanoindentation simulation described in chapter 

5. Moreover, slip was defined to occur on the {110}〈111〉 slip systems.  

The conventional crystal plasticity model does not regard for an internal length 

scale. Hence, the same linear stress distribution in all differently sized bars 

leads to the same strain conditions and no dependency on the length of the bar 

occurs. However, the gradient of εxx increases with decreasing length of the 

bars. The mechanism-based strain gradient crystal plasticity model accounts 

for this fact by calculating higher strengthening on slip systems as the gradients 

increase and thus accounts for a size-dependency.  
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The formulation of the mechanism-based strain gradient crystal plasticity con-

tains an intrinsic length scale that defines a border under which a size depend-

ency occurs: 

𝑙 =
𝛼2𝐺2𝑏

𝑔0
2

. (3.9) 

For tungsten, the empirical coefficient α was set 0.3, the shear modulus µ = 

160 GPa, the magnitude of the Burgersvector b = 0.27 nm and the reference 

slip resistance g0 = 210MPa in this equation. With these values, the intrinsic 

length scale l = 14 µm was calculated. Simulations with characteristic lengths 

(length of the bar) under 14 µm will therefore exhibit a size dependency. The 

models described above were used to simulate bars under traction and gravity 

load. The crystal orientation was defined so that the local and global coordi-

nates coincident (see figure 11). The loading duration was set to 1 s with a 

constant increment size of 0.001 s. Figure 12 shows the total cumulative plastic 

shear along the bar in the y-direction for all models using the mechanism-based 

strain gradient and the conventional crystal plasticity subroutine. The total cu-

mulative plastic shear is a measure for the plastic deformation of the bar and 

therefore well suited for an investigation of the size dependency. The figure 

shows that the cumulative shear stress along an edge of the bar in y-direction 

is the same for MBSGCP simulation of the bar with 100 µm length and the 

conventional crystal plasticity simulations. The results show that in the con-

ventional CP simulation, no size dependency occurs. With the MBSGCP a 

slight decrease of the cumulative plastic shear occurs for the bar with the length 

of 10 µm in comparison to the 100 µm long bar. As the length of the bar is 

further decreased, the occurring cumulative plastic shear decreases signifi-

cantly and is only about 30% as the length is decreased from 100 µm to 0.1 µm 

by the factor of 1000. The reason for the decline can be explained by the addi-

tional hardening occurring on slip systems due to GNDs. The smaller the 

length of the investigated bar, the higher the occurring gradients of plastic 

shear and with that the density of GNDs. Consequently, the strengthening on 
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slip systems increases and with that the resistance of the bar against plastic 

deformation increases as well. For all bars, the maximum plastic shear on slip 

systems occurs about 3.5 µm under the clamping of the bar where the maxi-

mum necking occurs. 

 

Figure 11: Ten element bar-shaped model for the investigation of strain gradients and size  

 dependency with the defined gravity load and traction on the bottom face of the bar 

The comparison of cumulative plastic shear shows a small difference between 

the 100 µm and 10 µm long bars but a significant decrease as the lengths of 

the rods decreases to 1 µm, 0.25 µm and 0.1 µm. This observation confirms 

the calculated intrinsic length scale of about 14 µm, meaning that above this 

vale no size-dependency occurs.  

Figure 12 shows in addition the elongation Δl/l0 of the different bars dependent 

on the loading duration on the right. The curves of all conventional CP simu-

lations and the ones from the MBSGCP 10 µm and 100 µm simulations are 
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similar. With decreasing length of the bars, the results of the MBSGCP simu-

lations show a significant decrease of Δl/l0, confirming the higher strengthen-

ing of slip systems at smaller length of the bars. 

Figure 13 shows the plastic shear on the twelve slip systems plotted over the 

true distance in y-direction. The simulation results show that for all models, 

four slip systems are not activated. Four slip systems, namely number 2, 5, 11 

and 12 are positive and slip systems 1, 6, 7 and 8 are negative, following the 

ABAQUS internal numbering. The shapes of the curves exhibit a symmetry 

with respect to the x-axis.  

  

Figure 12: a) total cumulative plastic shear along the bars in y-direction; b) plastic strain 

 along the different bars in y-direction   

For further investigations of the strain gradients, two approximation function 

f 1(x) = -f 2(x) drawn as dotted line in figure 13 were fitted to the curves, fol-

lowing: 

𝑓1(𝑥) = −0.252𝑥5 − 0.61𝑥4 + 0.42𝑥3 − 0.09𝑥2 + 0.035𝑥 + 0.002. (3.10) 

The derivatives of the functions f 1(x) and f 2(x) are shown in Figure 13. In 

addition, the graph shows the simulation results of the plastic shear gradient in 

y-direction along an edge of the bar. Both, the analytical calculated derivatives 

of the approximation functions and the simulation results for the plastic shear 

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

conventional CP, 100 µm  

T
o

ta
l 

cu
m

u
la

ti
v

e 
p

la
st

ic
 s

h
ea

r 
g cu

m

Normalized distance x/l0

10 µm 1 µm

0.25 µm

0.1 µm

a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0.2

0.4

0.6

0.8

1.0

conventional CP

L
o

ad
in

g
 d

u
ra

ti
o

n
 i

n
 s

Dl/l0

10 µm, 100 µm, 

1 µm0.2
5 µ

m

0.
1 

µ
mb) 



3.3 Influence of gradients of plastic shear on a bar under tensile and gravity load 

41 

gradients in y-direction are similar. This proves the ability of the subroutine to 

calculate the plastic shear gradients accurate.   

  

Figure 13: a) plastic shear on each slip system along the edge of the bar with the length of 1 

 µm in y-direction; b) derivatives of the functions f
1(x) and f

2(x) together with 

 the computed strain gradients along the edge of the bar with the length of 1 µm in y-

 direction  
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4 Summary of experimental results 

The numerical results of this work are compared to the nanoindentation exper-

iments performed by J. Wang at the Institute of Applied Materials (IAM-

WBM) at the Karlsruhe Institute of Technology (KIT). The comparison is per-

formed in chapter 6.6 for the deformed geometry, crystal lattice rotation and 

density of geometrically necessary dislocations for the bridge-shaped model. 

A comprehensive description of the sample fabrication, preparation and exper-

imental indentation procedure can be found in the Phd-thesis of Wang, which 

was in the completion parallel to this work. A brief summary of the experi-

ments is given in the following.  

The static wedge nanoindentation test was performed using a Nano Indenter 

G200 (Agilent Technologies, Keysight, KLA-Tencor) and a 90° diamond 

nanoindenter. A load-controlled indentation process to achieve different con-

stant strain rates was chosen. The maximum indentation depth in the wedge 

nanoindentation test was set to 2 µm.  

The fabrication of the sample, called bridge in the following, was performed 

by Wang in two steps, first the preparation of the surface of the single crystal 

and second the actual cutting of the bridge. In the first step, the surface was 

mechanically polishing using SiC-paper and subsequently cloth and diamond 

suspension. Last, the surface was electrolytically polished. In the second step, 

focused ion beam (FIB) was used to cut the final form of the bridge shown in 

figure 14 a) before the indentation test was performed. The geometry of the 

experiment is shown in figure 14 before and after the indentation in a) and b), 

respectively. The bridge has a length of approximately 22.26 µm and a width 

of 3.507 µm. 

For the determination of the crystal lattice rotation and GND density, FIB was 

used to cut the TKD lamella, representing the midsection, with a width of about 

200 nm after the indentation (see Figure 14 b)). The lamella was then used for 

the following EBSD investigations to determine the initial crystal orientation 
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and lattice rotation under the indent after the indentation. The crystal lattice 

rotation data were used for the further investigations of the distribution and 

density of geometrically necessary dislocations.  

 

Figure 14: a) initial shape of the bridge before the indentation; b) residual imprint in the bridge 

after indentation with the 90° wedge indenter  

The investigations via EBSD carried out by Wang revealed a normal to the 

indented surface (global y-direction in figure 14) parallel to an edge of the unit 

cell, i.e. a 〈100〉 direction. Furthermore, a surface diagonal, corresponding to a 

〈1̅10〉 direction was determined to be parallel to the global x-direction. The 

specimen’s geometry and crystal orientation were the basis for the definition 

of the so-called bridge shaped model used for the numerical wedge nanoinden-

tation simulations.   
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5 Finite element modeling 

For the numerical investigation of wedge nanoindentation using the conven-

tional, non-Schmid and strain-gradient crystal plasticity model, suited FE-

models are necessary. Therefore, three models were set up, namely the brick-

shaped model, the single-layer model and the bridge-shaped model, each dis-

cretized with general purpose linear brick elements with reduced integration 

(C3D8R). A comprehensive element study was performed to guarantee and 

independence of results on the mesh. The results of the study can be found in 

appendix A.8 to A.10. While the brick-shaped model is used with the conven-

tional and non-Schmid CP as material law, the single-layer model is applied in 

the mechanism-based strain gradient crystal plasticity simulation. The two 

models were used for principal investigations of the deformation behavior of 

tungsten. The bridge-shaped model was set up for simulations to be compared 

with experimental results using the conventional and non-Schmid crystal plas-

ticity material model. The analysis was mainly performed in the midsection of 

the three models (highlighted in figure 16, figure 17 and figure 18) where all 

models have the same mesh in the contact region. The first part of this chapter 

covers the chosen crystal orientation for the investigations. Secondly the three 

different models are described in detail and finally, the material parameters 

used for the simulations are listed at the end of this chapter. 

5.1 Crystal orientation 

The investigations in this work were performed for two crystal orientations, 

namely the [01̅0](101) and [123](111̅) orientation (called [01̅0] and [123] ori-

entation, respectively in the following). The first vector denotes the direction 

of indentation and the second the normal to the midsection in which the results 
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are evaluated (see figure 15) in the crystal coordinate system. In both orienta-

tion, the indenter is aligned parallel to the global [001] direction and indents 

the crystal in global [010] direction.  
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Indenter

[001]L

[100]L

[010]L

[001]G

[100]G

[010]G
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[100]L

[101]L

[001]L

[010]L

[010]L

[101]L

a) b)

 

Figure 15: Visualization of the [123] and [010] oriented single crystal in a) and b) with respect to 

the midsection and the indenter tip parallel to the global (01̅0) direction 

5.2 Brick-shaped model 

This model consists of two parts, namely the rigid 90° wedge indenter with a 

flat tip and the deformable specimen shaped like a brick giving this model its 

name. The dimensions of the specimen are h = 40 µm, l = 80 µm and w = 70 

µm (see figure 16). The dimensions of the specimen are chosen to guarantee 

that boundaries do not influence the simulation results. The indenter is mod-

elled as an analytic surface. The exact shape of the indenter tip is not important 

as long as it is smaller than the minimal node distance since contact between 
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the indenter and the specimen is only determined between nodes and the ana-

lytic surface (Reuber et al. 2014). The indenter tip radius in the experiments is 

about 100 nm which corresponds to the minimal node distance in the simula-

tion and is therefore assumed to have no influence on the simulation results.  

Rigid wedge indenter

y

xz

l
w

h

z fixed

z fixed

x, y, z fixed

x, y, z fixed

x, y, z fixed

Midsection

 

Figure 16: Brick-shape model with boundary conditions and the refined FE-mesh in the midsec-

tion of the model 

The nodes on the front, the back and the top surface of the specimen are free 

in all directions, while those on the sides and the bottom are fixed in all direc-

tions. A displacement boundary condition is defined for the indenter to simu-

late the displacement controlled indentation process. The direction of indenta-

tion is parallel to the global [01̅0] direction. The contact between the indenter 

and the specimen is defined as hard contact with Coulomb friction. Eight layers 

of elements were defined in the global z-direction with a length of 8.75 µm. 

Right underneath the indenter, where the indenter and specimen are in contact, 

the mesh is much finer than in the unaffected regions (see figure 16) in order 
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to keep computational time reasonable. The minimal element size under the 

indenter is 0.1 µm in the y-direction and 0.1 µm in the x-direction. Overall, the 

specimen is discretized by 19024 C3D8R elements.     

5.3 Single-layer model 

The single-layer model consists of the specimen and the 90° rigid wedge in-

denter. While the length l = 80 µm and the height h = 40 µm are the same than 

as in the brick-shaped model, the width w, discretized with only one element, 

is solely 0.1 µm. The wideness corresponds to the size of the smallest element 

under the indenter. The mesh corresponds to the one defined in the brick-

shaped model shown in figure 16. However, the model consists only of 2378 

C3D8R elements which is only an eighth of the elements used in the brick-

shaped model. Just like in the brick-shaped model, the side and bottom faces 

are fixed in all directions and the top face is unrestricted. Additionally, the 

displacements of nodes on the front and back faces of the specimen are re-

stricted in the z-direction.  

Rigid wedge indenter

l
w

h

y

xz

 

Figure 17: Single-layer model consisting of the deformable specimen and the rigid 90° wedge 

indenter 
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5.4 Bridge-shaped model 

For a comparison of the simulation carried out in this work and the experi-

mental results of J. Wang, the third model, namely the bridge-shaped model 

was set up. The mesh in the midsection is similar to the mesh shown in figure 

16 in the indented region. Ten elements were defined in over the width of the 

bridge. The overall length and height and width of the indented bridge is l = 25 

µm, h = 10 µm and w = 4.3 µm, respectively. The geometry represents the 

dimensions of the experimental indented bridge. To match the conditions of 

the experiments, additional material around the bridge was modeled with the 

overall size of 33 µm × 12.6 µm × 16 µm (length × width × height). Node 

displacement on the side, front, back and bottom surfaces are fixed in all di-

rections (see figure 18). The top surface and the front and back face of the 

indented bridge are unrestricted. Like the brick-shaped and single-layer model, 

the bridge-shaped model consists of two part, the rigid indenter and the de-

formable specimen. The specimen is discretized with 25447 C3D8R elements.  
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Figure 18: Bridge-shape model consisting of the deformable specimen and the rigid 90° 

 wedge indenter 
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5.5 Input parameters 

The described conventional, non-Schmid and mechanism-based strain gradient 

crystal plasticity material models are together with their material parameters 

the basis for the numerical investigations. The material parameters describing 

elasticity C11, C12, C44, the viscoplastic deformation n, γ̇
0

α and the hardening h0, 

τs, τ0 and q have to be defined. For the simulations using the non-Schmid crystal 

plasticity subroutines, additionally, the material parameters a1, a2, a3 and for 

the MBSGCP simulation, the parameters G, b and α are necessary. For every 

simulation, a maximum step time of 0.000075 s and an indentation depth of 2 

µm were defined.  

Elastic constants 

The anisotropic elastic deformation behavior of crystalline materials is gener-

ally described by the elastic tensor. For cubic crystals, the elastic tensor is com-

pletely defined by the three tensor components C11, C12 and C44. Tungsten sin-

gle crystals can be assumed to deform elastically almost isotropic. The 

experimental isotropic constants that are used in this work were taken from 

(Liu et al. 2009) and are listed in the following table 4. 

Table 4: Elastic constants of tungsten single crystal as input parameters for the user material 
subroutines (Liu et al. 2009) 

Elastic constants Experimental value in GPa 

C11 532.6 

C12 204.9 

C44 163.1 

Viscoplastic parameters 

The viscoplastic deformation behavior of the tungsten single crystal is de-

scribed by the reference shear rate γ̇
0

α and strain rate sensitivity exponent n. 

Both parameters can be found in the literature, e.g. (Liu et al. 2009). Following 

(Zambaldi and Raabe 2010), γ̇
0

α and n are more numerically meaningful and 
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less related to mechanical properties of the single crystal. High strain rate sen-

sitivity exponents n > 100 can suppress the strain rate sensitivity. The defined 

parameters are listed in the following table 5 for the {110}〈111〉 slip systems.  

Table 5: Viscoelastic parameters of tungsten single crystal as input parameters for the user ma-

terial subroutines 

Viscoelastic parameter Defined value 

γ̇
0

α 10-4 

n 20 

Hardening parameters 

Strengthening of the single crystal is described by the evolution equation (2.11) 

following Peirce, Asaro and Needleman (PAN) (Peirce et al. 1982). The nec-

essary input parameters of the PAN-hardening model are the initial hardening 

modulus h0, the stage I stress τs, the yield stress τ0 and the parameter q. The 

parameters were determined by Yao (Yao 2012) for tungsten single crystal 

Berkovich nanoindentation simulations and taken for the investigations in this 

work. Table 6 lists the values of the four parameters for the {110}〈111〉 slip 

systems applied in all simulations. 

Table 6: Hardening parameters of tungsten single crystal as input parameters for the user mate-
rial subroutines  

Hardening parameter Defined value 

h0 1350 MPa 

τs 530 MPa 

τ0 210 MPa 

q 1.4 

MBSGCP input parameters 

Beside the input parameters in the material card of the conventional crystal 

plasticity user subroutine (Huang 1991), the magnitude of the Burgersvector b 

and the parameter α need to be defined for the calculations.  
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Table 7: Additional input parameters in the mechanism-based strain gradient crystal plasticity 

simulations 

MBSGCP parameter Defined value 

b 0.27 nm 

α 0.3 

Non-Schmid input parameters 

For the non-Schmid simulations, the three constant material parameters a1, a2 

and a3 were defined for tungsten following Gröger et al. (Gröger et al. 2008b). 

As described above, a1 represents the contribution due to the twinning and anti-

twinning asymmetry and is zero. The parameters a2 and a3 are given in the 

following table 8. 

Table 8: Additional input parameters in the non-Schmid crystal plasticity simulations 

NOS parameter Defined value 

a1 0.0 

a2 0.56 

a3 0.75 

Friction 

Coulomb friction was chosen in the contact definition between the diamond 

indenter and the polished tungsten single crystal. The coefficient of friction 

(COF) was found to have a significant influence in particular on the material 

pile-up and load-displacement curves (see appendix A.4), however, the exact 

value in the experiments is not known. The study of the COF performed in this 

thesis showed that low values in the rage between µ=0.0 and µ=0.1 result in 

unrealistic distortion of the elements in contact with the indenter. Higher val-

ues in the range of µ=1.0 are also unrealistic for a contact between polished 

tungsten and the diamond indenter. So a value µ=0.2 is seen as appropriate and 

was chosen for the simulations in the course of this work. A similar value of 

µ=0.15 was proposed by Engineering ToolBox (Engineering ToolBox 2004). 
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6 Results and discussion 

6.1 Results of the [01̅0] oriented brick-shaped 
conventional CP simulation  

The brick-shaped model was used together with the conventional crystal plas-

ticity subroutine to simulate 90° wedge nanoindentation into the tungsten sin-

gle crystal. For the study of strain gradients and non-Schmid effects and their 

influence on plastic deformation of the single crystal at the microscale in the 

following chapters, results in the midsection of the brick-shaped conventional 

crystal plasticity model serves as reference. Plastic deformation behavior i.e. 

activity of slip systems, the stress state, plastic shear rate, crystal lattice rotation 

and the GND density under the indent was investigated for both, the [01̅0] and 

[123] orientation with the conventional crystal plasticity model.  

6.1.1 Slip system activity 

The FE-model described in chapter 5 was applied to simulate 90° wedge in-

dentation in the tungsten single crystal. The indenter tip was aligned parallel 

to the global [001] direction and indented the crystal in the [01̅0] direction with 

a speed of 2 µm/s and a maximum time increment size of 7.5 · 10-5 s up to the 

defined indentation depth of 2 µm. Plastic shear is expected to occur on the 

{110}〈111〉 slip family which was defined in the subroutine together with the 

material parameters described in chapter 5.5. The slip directions and slip plane 

normals of all slip systems are listed in table 9 in local and global coordinates 

together with the numbering as defined in the subroutine. 

The evaluation of computed plastic shear shows that it is either zero or very 

small on six of the twelve potentially active slip systems compared to the six 

slip systems that are active in the midsection. Plastic shear occurs solely on 
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slip system 2, 5, 8, 9, 10 and 12 (see figure 19), whereas slip systems 1, 3, 4, 

6, 7 and 11 are inactive. 

Table 9: Slip plane normal and slip directions in the [01̅0] oriented specimen in local and global 
coordinates 

slip system              local (crystal)  global (specimen) 

 mL
α  sL

α  mG
α  sG

α  

1 [011] [11̅1] (1,-√2,1) (0,1,√2) 

2 [011] [111̅] (1,-√2,1) (-√2,-1,0) 

3 [101] [1̅11] (0,0,1) (√2,-1,0) 

4 [101] [111̅] (0,0,1) (-√2,-1,0) 

5 [110] [1̅11] (-1,-√2,1) (√2,-1,0) 

6 [110] [11̅1] (-1,-√2,1) (0,1,√2) 

7 [01̅1] [111] (1,√2,1) (0,-1,√2) 

8 [01̅1] [1̅11] (1,√2,1) (√2,-1,0) 

9 [101̅] [111] (-1,0,0) (0,-1,√2) 

10 [101̅] [11̅1] (-1,0,0) (0,1,√2) 

11 [1̅10] [111] (1,-√2,-1) (0,-1,√2) 

12 [1̅10] [111̅] (1,-√2,-1) (-√2,-1,0) 

In the [01̅0] orientation, always two of the six active slip systems exhibit the 

same absolute value for the resolved shear stresses and consequently the same 

amount of plastic shear, namely slip system 2 and 12, slip system 5 and 8 as 

well as slip system 9 and 10. Therefore, it is sufficient to show plastic shear 

solely for slip system 2, 5 and 9 representing all active slip systems. The dis-

tribution of plastic shear γ2, γ5 and γ9 in the midsection is given in figure 19 at 

the indentation depth of 2 µm. The contour plots of slip system 2 and 5 are 

mirrored with respect to the indentation direction. 

The corresponding slip systems either possess the same slip directions or slip 

planes (see table 9). The Schmid-tensors of the active slip systems are listed in 

the appendix A.5 showing that for all active slip systems, the components P33 

are zero. The components P31, P13, P23 and P32 do not influence the resolved 

shear stress on the slip systems since the stress components σ13 and σ23 are zero 
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in the midsection of the brick-shaped model due to the high symmetry of the 

chosen [01̅0] orientation. 

 

Figure 19: Slip system activity of slip systems 2, 5 and 9 (corresponding to slip system 12, 8 and 

10 respectively) in the midsection of the conventional crystal plasticity brick-shaped 

simulation underneath the indent at the indentation depth of 2 µm. 

The Schmid-tensors of the active slip systems reveal, that the components P11, 

P12, P21 and P22 of corresponding slip systems are either the same or differ by 

their sign. Consequently, the coherences τ2 = τ12, τ5 = -τ8 and τ9 = -τ10 of the 

resolved shear stresses on corresponding slip systems can be determined. Fig-

ure 20 b) illustrating the slip directions and slip planes of the corresponding 

slip systems in the initial state, shows that slip systems 2 and 12 have the same 

slip direction lying in the midsection under an angle of 35.3° to the surface of 

the specimen. Slip systems 5 and 8 have the same slip directions within the 

midsection under an angle of 35.3° as well but are mirrored to the slip direc-

tions of slip system 2 and 12 with respect to the indenter axis. Slip systems 9 

and 10 have different slip directions but they lie in the same slip plane, which 

is normal to the midsection. 

Following Rice (Rice 1987), it is useful to define three effective slip systems 

based on each two corresponding slip systems, consisting of an effective slip 

direction and slip plane in the midsection resulting in the same Schmid-tensor 

than the combination of corresponding slip systems. These effective slip sys-

tems based on slip system 2 and 12, 5 and 8 as well as 9 and 10 are shown in 

figure 20 c) in the initial state. The effective slip system based on slip system 
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2 and 12 is mirrored to the effective slip system based on slip system 5 and 8. 

The combination of slip system 9 and 10 results in effective plastic shear solely 

in vertical direction (i.e. in indenter direction) with a slip plane orthogonal to 

the midsection. 

As slip system 2 and 12 possess the same resolved shear stress, their plastic 

shear rate corresponds as well. This means that �̇�s
2 = �̇�s

12, where the subscript 

s denotes the results of the conventional crystal plasticity simulation. Conse-

quently, the combined rate of stretching Ds
2/12 of the two slip systems can be 

determined by:  

As the slip directions s2 and s12 are the same, the expression can be reduced to: 

With the slip directions and slip plane normal vectors for the two slip systems 

2 and 12, the rate of plastic stretching can be determined: 

Ps
2/12, eff is the effective Schmid-tensor resulting from the combination of slip 

systems 2 and 12. This effective slip system leads to plastic shear in the mid-

section under an angle of 35.3° to the horizontal surface of the specimen (figure 

20 c). The shear components D13, D23, D31 and D32 are zero in the resulting rate 

of stretching. 

𝑫s
2/12

= �̇�s
2𝑷s

2 + �̇�s
12𝑷s

12. (6.1) 

𝑫𝑠
2,12 =

�̇�𝑠
2/12

2
[𝒔2 ⊗ (𝒎2 + 𝒎12) + (𝒎2 + 𝒎12) ⊗ 𝒔2]. (6.2) 

𝑫𝑠
2/12

=  �̇�2/12 (
−2√2 1 0

1 2√2 0
0 0 0

) = �̇�2/12𝑷𝑠
2/12,𝑒𝑓𝑓

. (6.3) 
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The similar procedure is performed in the appendix A.67A.6 for slip system 9 

and 10 as well as 5 and 8 resulting in the rate of plastic stretching Ds
5/8 and 

Ds
9/10: 

The effective slip system 5/8 is mirrored to the effective slip system 2/12 caus-

ing plastic shear solely in the midsection under an angle of 35.3° to the hori-

zontal surface (figure 20c). By the combination of slip system 9 and 10, the 

components D13, D23, D31 and D32 cancel each other out. The resulting effective 

slip system 9/10 leads to pure shear in the midsection. Here, the components 

D11 and D22 of the rate of stretching tensor are zero. 

The contour plots of plastic shear in figure 19 show that the maximum value 

of plastic shear occurring on slip systems 2 and 5 and on 12 and 8 is with an 

amount of about 0.8 higher than on corresponding slip systems 9 and 10 with 

a maximum values of about 0.55. Plastic shear on the effective slip system 9/10 

occurs in two regions left and right of the indent expanding vertically to about 

-4.0 µm. The regions exhibit an asymmetry with respect to the indenter axis 

with negative plastic shear on the left and positive plastic shear on the right. 

Right underneath the indent, in an area limited by the two lines AB̅̅ ̅̅  and AC̅̅ ̅̅ , 

including an angle of approximately 90°, no plastic shear occurs on slip system 

9/10. Its highest amount appears left and right of the indent about 2.5 µm under 

the indented surface. As shown above, the effective slip system 9/10 causes 

solely vertical strain ε12 in these areas. The mirrored contour plots of effective 

slip systems 2/12 and 5/8 in figure 19 show that in both, plastic shear occurs 

𝑫𝑠
5/8

=  �̇�𝑠
5/8

(
−2√2 −1 0

−1 2√2 0
0 0 0

) = �̇�5/8𝑷𝑠
5/8,𝑒𝑓𝑓

, (6.4) 

𝑫𝑠
9/10

=  �̇�𝑠
9/10

(
0 √2 0

√2 0 0
0 0 0

) = �̇�9/10𝑷𝑠
9/10,𝑒𝑓𝑓

. (6.5) 
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mainly in a region under the indent expanding vertically to about -5 µm. On 

effective slip system 2/12, the maximum plastic shear occurs underneath the 

right flank of the indent close to the tip and corresponding on the left of the 

indent close to the tip on the mirrored effective slip system 5/8.     
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Figure 20: a) crystal orientation (xL, yL, zL) with respect to the midsection of the brick-shaped 

model (xG, yG, zG) and the indenter; b) corresponding slip systems; c) effective slip 

systems in the midsection  

Regions where slip systems are active under the indent were investigated and 

combined resulting in a so-called slip system activity map. The determination 

of the slip system activity map in this work follows Dahlberg et al. (Dahlberg 



6.1 Results of the [010] oriented brick-shaped conventional CP simulation 

59 

et al. 2014). Plastic shear at an element node is considered to occur solely on 

one effective slip system if 90% or more of the total cumulative plastic shear 

is contributed by this slip system. If the sum of two effective slip systems ex-

ceeds 90% of the effective cumulative plastic shear and more than 10% of cu-

mulative plastic shear occurs on each of the two effective slip systems, it is 

marked that plastic shear occurs on these two slip systems. Consequently, the 

third effective slip system contributes less than 10% to the cumulative plastic 

shear in this region and its contribution is negligible. In regions where all ef-

fective slip systems contribute more than 10% to the cumulative plastic shear, 

all slip systems are considered to be active. The regions in which effective slip 

systems are active following the previously described rules, are superimposed 

to create the slip system activity map shown in figure 21 for the midsection of 

the specimen at the indentation depth of 2 µm. 

 

Figure 21: Slip system activity map in the midsection of the brick-shaped model underneath the 

indenter in the conventional crystal plasticity simulation at the maximum indentation 

depth of 2 µm 
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Regions under the indent can be identified following Volz et al. (Volz et al. 

2018) where either one or two pairs of corresponding slip systems are active. 

In the region in contact to the indenter, high plastic deformation occurs and all 

slip system are active. Figure 21 shows that the particular regions of the activ-

ity map in which slip systems are active are symmetric with respect to the in-

denter axis. However, the slip systems active in these regions are not the same 

in the mirrored regions in every case. The magenta regions in which both, the 

effective slip systems 2/12 and 5/8 are active, are symmetric with respect to 

the indenter axis. So are the green regions in which solely the effective slip 

system 9/10 is active. The blue and red regions left and right of the indent in 

which only the effective slip systems 2/12 and 5/8 are active have the same 

shape but the active slip systems are interchanged. The same is observed for 

the cyan and yellow regions where the effective slip system 9/10 is active to-

gether with the effective slip systems 2/12 and 5/8.   

Figure 20 c) shows the slip direction of the effective slip systems in the initial 

state showing that slip directions of the effective slip systems 2/12 and 5/8 are 

mirrored with respect to the indenter axis. Since the lattice rotation is antisym-

metric with respect to the indenter axis, the slip directions of effective slip sys-

tems preserve their symmetry over the whole indentation process. Conse-

quently, dislocation motion left and right of the indent can be seen as mirrored 

with respect to the indenter axis.  

6.1.2 Stress state 

The crystal plasticity constitutive law describes the dependency of the plastic 

shear rates on the stress states. To analyze the stress state underneath the indent 

calculated in the simulation, it helps to determine the yield surface according 

to Schmids-law as performed by (Volz et al. 2018) for tungsten following Rice 

(Rice 1987). Whereas in this rate-independent formulation no plastic yielding 

occurs within the yield-surface and stress states outside the surface are not pos-

sible, the rate-dependent formulation used in the simulations results in yielding 

for stress states inside the yield surface and stress conditions outside the sur-

face may emerge.  
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As mentioned above, in the investigated orientation, the shear stresses σ13, σ31, 

σ23 and σ32 are zero in the midsection. Therefore, the resolved shear stress 𝜏α 

simplifies according to equation (2.1) to: 

𝜏𝛼 =  (𝜎11𝑚1
𝛼𝑠1

𝛼 + 𝜎22𝑚2
𝛼𝑠2

𝛼 + 𝜎33𝑠3
𝛼𝑚3

𝛼 + 𝜎12(𝑠1
𝛼𝑚2

𝛼 + 𝑚1
𝛼𝑠2

𝛼)). (6.6) 

Table 9 confirms that for the six active slip systems 2, 5, 8, 9, 10 and 12, the 

product s3m3 is zero. Consequently, the stress components σ33 has no influence 

on plastic shear in the midsection. Another consequence of either s3 or m3 being 

zero in case of the active slip systems is that direction s1m1 corresponds to  

–s2m2 as slip plane and slip direction remain orthogonal to each other and the 

expression can be further simplified to: 

𝜏𝛼 =  𝑚1
𝛼𝑠1

𝛼(𝜎11 − 𝜎22) + (𝑠1
𝛼𝑚2

𝛼 + 𝑚1
𝛼𝑠2

𝛼)𝜎12. (6.7) 

Following Schmid’s law, plastic shear only occurs when the resolved shear 

stress 𝜏𝛼 on a slip system reaches the critical shear stress of a slip system τc. 

For the case that τα = ±τc, the expression (6.7) to determine the yield surface 

can be rearranged to write 𝜎12 as a function of σ11 - σ22:  

𝜎12

τc

=  
1

𝑠1
𝛼𝑚2

𝛼 + 𝑚1
𝛼𝑠2

𝛼 −
2𝑚1

𝛼𝑠1
𝛼

𝑠1
𝛼𝑚2

𝛼 + 𝑚1
𝛼𝑠2

𝛼

𝜎11 − 𝜎22

2τc

. (6.8) 

Consequently, for every of the six active slip systems α, a line can be deter-

mined in a two-dimensional stress space with (σ11 - σ22)/(2τc) on the abscissa 

and σ12/τc on the ordinate as proposed by Rice (Rice 1987) for yielding under 

plane strain conditions. The resulting inner envelope defines a hexagonal yield 

surface shown in figure 22.  
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Figure 22: Yield surface based on Schmid´s law under plane strain condition in the midsection of 

the brick-shaped model  

Via the yield surface, the stresses (σ11-σ22)/2 and σ12 are related to the active 

slip systems. In case σ12 is zero, e.g. at the free surface of the specimen, (σ11-

σ22)/2 has to reach a value of ±√3/2τc to cause yielding. The corresponding 

point in the yield surface is either vertex C or F, dependent on the sign of (σ11-

σ22)/2. Then, the effective slip systems 2/12 and 5/8 are activated, whose lines 

intersect at vertex C or F respectively. In case (σ11-σ22)/2 is zero or up to 

±3/√24τc, σ12 has to reach ±√3τc to cause slip on a slip system. In that case 

solely the effective slip system 9/10 is activated. If σ12 stays constant at ±√3τc 

on one of the horizontal lines AB̅̅ ̅̅  or ED̅̅ ̅̅  and (σ11-σ22)/2 is larger than ±√3/2τc, 

the corresponding point on the yield surface is at one of the vertexes A, B, E 

or D. So, either slip systems 9/10 and 5/8 (at vertex A and D) of 9/10 and 2/12 

(at vertex B and E) are active. 

The simulation gives the stress state under the indenter at the indentation depth 

of 2 µm calculated with the rate dependent formulation of crystal plasticity. 

The stresses can be related to the activity of effective slip systems with the help 
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of the yield surface. Figure 23 shows the contour plots of (σ11-σ22)/2 and σ12. 

Due to the rate-dependent formulation, it is likely that stress states outside the 

yield surface occur. The plots show an asymmetry and symmetry with respect 

to the indenter axis for σ12 and (σ11-σ22)/2, respectively. The contour plots of 

the stresses, suggest a division into fan-shaped areas in which either both, σ12 

and (σ11-σ22)/2 are close to zero or one of them is positive or negative while the 

other is zero. The regions are limited by the six lines (denoted 1 to 6) in the 

contour plots (figure 23) for a comparison to the stress states determined in the 

MBSGCP and non-Schmid simulation performed in the following chapters.  

Along the symmetry axis (indenter axis) and as mentioned before, at the free 

surface of the specimen, the shear stress component σ12 has to be zero which is 

confirmed in the simulation. Left and right of the indent along the surface of 

the specimen, the absolute value of (σ11-σ22)/2 is approximately 500 MPa, de-

creasing further away from the indent. The maximum current strength τc is 

about 340 MPa along the surface. Thus, (σ11-σ22)/2 exceeds √3/2τc at the free 

surface left and right of the indent causing plastic shear here. At the indenter 

axis, the current strength reaches the saturation value of 530 MPa (see chapter 

5.5) leading to √3/2τc ≈ 650 MPa. The value of (σ11-σ22)/2 along the axis is 

about 900 MPa, causing plastic shear in this region. Left and right of where the 

indenter is in contact, under an angle of about 35° to the surface, the shear 

stress is below 100 MPa and the maximum current strength in this area is about 

400 MPa thus (σ11-σ22)/2 has to exceed approximately 490 MPa (compare ver-

tex C or F of the yield surface) to ensure yielding. Up to a distance of 5 µm left 

and right of the indenter tip, (σ11-σ22)/2 exceeds this value. In the rate-depend-

ent crystal plasticity formulation, two effective slip systems may be active not 

only at exact one stress state. Figure 23 also shows regions with small absolute 

values of (σ11-σ22)/2, There the shear stress reaches a maximum value of well 

over 1000 MPa exceeding the value of √3τc ≈ 920MPa for the current strength 

of 530 MPa reached in this regions.   

Additionally, the stress states and corresponding active slip systems are ana-

lyzed at the seven points marked in the plots shown in figure 23. At point 1, 

the values of (σ11-σ22)/2 and σ12 are negative. This corresponds to vertex A on 
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the yield surface. Consequently, slip system 5, 8, 9 and 10 should be active 

which is confirmed by the slip system activity map in figure 21.  

 

 

Figure 23: Distribution of (σ11-σ22)/2 and σ12 in the midsection of the brick-shaped model under 

the indent at the maximum indentation depth of 2 µm 
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At point 2, the value of (σ11-σ22)/2 is close to zero and σ12 is still negative, 

corresponding to the point between vertexes A and B meaning that solely the 

effective slip system 9/19 is active in this region which is again confirmed by 

the slip system activity map. At the third highlighted point, (σ11-σ22)/2 is posi-

tive and σ12 still negative, corresponding to vertex B and as confirmed by the 

slip system activity map, effective slip system 9/10 and 2/12 are active. At the 

fourth point on the vertical line under the indent, (σ11-σ22)/2 is positive and σ12 

zero, consequently effective slip systems 5/8 and 2/12 are active at this point. 

Due to the symmetry of the contour plot of (σ11-σ22)/2, the same values at the 

points 5, 6 and 7 occur than at points 1, 2 and 3. The values of σ12 are the same 

at these points but differ by sign. Thus, point 5 corresponds to vertex D on the 

yield surface and effective slip systems 5/8 and 9/10 are active. The stress state 

at point 6 leads to a corresponding point on the yield surface between vertex D 

and E so that only the effective slip system 9/10 is active at this point. At the 

last highlighted point, (σ11-σ22)/2 is negative and σ12 positive. Thus, the stress 

state changes to vertex E and systems 2/12 and 9/10 are active. Just like on the 

left of the indent, the investigations based on the yield surface and the stress 

states are confirmed by the slip system activity map determined in the simula-

tion.  

6.1.3 Increments of plastic shear 

So far the analysis focused on the cumulative plastic shear at the indentation 

depth of 2 µm. In the present chapter, the shear rate and its evolution during 

indentation were investigated following the work of Reuber et al. (Reuber et 

al. 2014) and Dahlberg et al. (Dahlberg et al. 2014). Figure 24 shows the plastic 

shear rate γ̇α calculated via the increment of the plastic shear divided by the 

time increment ∆γ/∆t of the six active slip systems at the three indentation 

depths 1 µm, 1.5 µm and 2 µm. Again, solely the results of the three slip sys-

tems 2, 5 and 9 are shown representing the corresponding slip systems 12, 8 

and 10, respectively. The two plots of plastic shear increments on systems 2/12 

and 5/8 are mirrored but asymmetric. For slip systems 9/10 however, the plots 

are antisymmetric with respect to the indenter axis.  
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On slip system 2/12, a band of plastic shear occurs on the left side of the in-

denter. This band emanates from the point where contact between indenter and 

specimen starts (called contact point in the following) and points down towards 

the indenter axis.  

 

Figure 24: Increments of plastic shear γ̇ at the three indentation depths 1 µm, 1.5 µm and 2 µm in 

the conventional single-layer crystal plasticity simulation 

With an increase of the indentation depth, the overall shape of the band stays 

similar but the plastic shear rate within the band decreases. Besides, plastic 

shear appears under the right indenter flank during the indentation process. 
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With increasing indentation depth, plastic shear in this region decreases as 

well. The figure shows that plastic shear evolves alike on slip systems 5/8 but 

mirrored with respect to the indenter axis like the resolved shear stress. On slip 

systems 9/10, two symmetric bands of plastic shear occur but with different 

sign, both starting at the contact points on the left and right of the indent, em-

anating down with a convex shape. The three plots of different indentation 

depth show similar shaped of the bands. Like slip systems 2/12 and 5/8, the 

plastic shear rate within the bands decreases at higher indentation depths. A 

comparison of the three different indentation depth for all active slip systems 

shows that the overall shape of regions of the plastic shear rate is similar. The 

bands in which plastic shear occurs propagate through the crystal starting in-

variably at the contact point of the of the indenter. These propagating bands 

can be explained following Kords (Kords 2013) by a deformation induced sig-

nificant increase of dislocations with increasing indentation depth under the 

indent leaving a region where the material experienced high strengthening be-

coming less favorable to plastic deformation. The occurring bands are the hull 

of this region propagating through the crystal with increasing indentation 

depth, always starting at the contact point.  

In order to gain deeper insight in the plastic deformation fields under the con-

tact points, further investigations regarding plastic shear and rotation incre-

ments were performed for the tungsten bcc single crystal. As reported by Hill 

et al. (Hill et al. 1947), Johnson (Johnson 1985) and Saito (Saito and Kysar 

2011; Saito et al. 2012) angular sectors that characterize the plastic zone under 

the indent can be determined in wedge nanoindentation between the indenter 

flank and the original surface.  

To investigate if sectors can be determined in the numerical investigations in 

this work, too, a plastic shear increment map shown in figure 25 was deter-

mined at the indentation depth of 2 µm. If more than 90% of plastic shear oc-

curred on one effective slip system, solely this system was assumed to be active 

in the current increment. Two effective slip systems were assumed to be active 

if 90% or more of plastic shear occurred on these two slip systems just like in 

the determination of the slip system activity map. The map shows different 



6 Results and discussion 

68 

regions in which plastic shear occurs in the last increment of the simulation 

emanating from the contact point in a fan shape. Three regions can be deter-

mined where solely plastic shear on effective slip system 5/8, 9/10 and 2/12 

occurs (red, yellow and blue). However, the region where solely slip system 

5/8 is active is very narrow. Between the regions where solely plastic shear 

occurs on one effective slip system, plastic shear on two effective slip systems 

occur (magenta, orange and green).  

Along the circular path highlighted in figure 25 with a radius of 4 µm, the 

plastic shear increments are investigated in detail. Figure 26 a) shows the plas-

tic shear increments of the three effective slip systems 5/8, 9/10 and 2/12 along 

the circular path. Starting at the indenter axis, in section I, slip systems 5/8 and 

2/12 are active, marked as section I. In about 1 µm distance, in section II, solely 

plastic shear on slip system 5/8 occurs. In the following region III, slip systems 

5/8 decrease while 9/10 increases, so both are active simultaneously. In the 

following region IV, plastic shear occurs mainly on slip system 9/10. In region 

V, slip systems 2/12 and 9/10 are active. This is confirmed by the plastic shear 

increment map.  

 

Figure 25: Plastic shear increment map of the right side of the indent in the midsection of the 

conventional brick-shaped model at the indentation depth of 2 µm 
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In the second last region VI along the path, slip occurs mainly on slip system 

2/12 while in the last section VII, close under the surface, plastic shear incre-

ments are rather small. Beside the plastic shear rates, figure 26 b) shows the 

lattice rotation increment (increment of the first Euler angle) divided by the 

time increment along the path. It turns out that in the regions II, IV and VI, 

where plastic shear occurs mainly on one effective slip system, the absolute 

value of lattice rotation rate is maximal with changing sign. In the regions 

where two slip systems are active, the absolute value of in-plane rotation rate 

decreases significantly. This is due to fact that one of the active slip systems 

leads to positive rotation and the other one to negative. This corresponds well 

to the investigations of Saito et al. (Saito and Kysar 2011; Saito et al. 2012).  

 

Figure 26: a) γ̇ on the three effective slip systems; b) ω̇ along the circular path at the indentation 

depth of 2 µm 

6.1.4 Crystal lattice rotation and GND density 

The undeformed crystal lattice is characterized by the three Euler angles φ1, θ 

and φ2 following Bunge. For the chosen crystal orientation with its plane strain 

conditions in the midsection, the two Euler angles θ and φ2 are constant during 

the indentation process. Solely the first Euler angle φ1 changes and character-

izes the in-plane lattice rotation. The value of the first Euler angle calculated 

in the user material subroutine for each integration point were read from the 
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ABAQUS data file and interpolated on uniformly distributed points using the 

SciPy griddata interpolation method (The SciPy community 2019). Then the 

interpolated data were visualized in Matlab (MathWorks). The visualization of 

the in-plane rotation as contour plot directly with the post processing tool of 

ABAQUS is also possible. For a visualization corresponding to the experi-

ments and a comparison of experimental and numerical results, the interpolated 

Euler angles are used as input for the software package MTEX (Hielscher et 

al.) that was modified by J. Wang in the course of her dissertation to use the 

kernel average misorientation method (KAM) to determine the GND density. 

Figure 27 shows the in-plane crystal lattice rotation under the indent in the 

midsection at the indentation depth of 2 µm. A vertical line running down from 

the indenter tip divides the rotation map in figure 27 into two antisymmetric 

regions. Significant lattice rotation occurs close to the flanks and under the 

indenter. The maximum values of lattice rotation in this region ranges from 

approximately -20° to 20°. Outside this region, the lattice rotation maps exhibit 

a fan-shape with alternating regions of positive and negative rotation and sig-

nificantly less rotation than in the region close to the indenter.  

 

Figure 27: First Euler angle 𝜑1 in the midsection of the model, representing the in-plane lattice 

rotation  
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Beside the in-plane rotation, the regions where effective slip systems are active 

are plotted in figure 27. A correlation between these regions and the rotation 

map is visible. In regions where two effective slip systems are active, a sign 

change of the rotation patterns occurs and rotation is either positive or negative 

in regions where solely two corresponding slip systems are active. This corre-

sponds to the former investigations of the increments of plastic shear showing 

that in regions where solely one effective slip system is active, the lattice rota-

tion increment reaches a peak and decrease to low values in regions where two 

of the effective slip systems are active.  

Based on the crystal lattice rotation calculated in the brick-shaped conventional 

crystal plasticity simulation, the density of geometrically necessary disloca-

tions in the midsection at the indentation depth of 2 µm determined via the 

kernel average misorientation method in MTEX (Hielscher et al.). The result 

is shown in the following figure 28.  

 

Figure 28: Density of geometrically necessary dislocations in the midsection of the brick-shaped 

conventional crystal plasticity simulation at the indentation depth of 2 µm, deter-

mined with the kernel average misorientation method 
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The plot of shows three bands of high GND density, two emanating from the 

contact points downwards and the one starting under the indenter tip along the 

indenter axis. A comparison with the in-plane lattice rotation shows that the 

bands with high GND-densities occur at the sharp boundaries of the regions 

under the indenter flanks where high lattice rotation occurs and along the in-

denter axis where a sudden sign change occurs. Further away from the indent, 

fan-shaped regions with higher GND-densities occur, corresponding to the re-

gions in which two effective slip systems are active. Regions where two effec-

tive slip systems are active can be seen as transit regions, in which one of the 

effective slip system increases and the other one decreases causing a higher 

GND density.  

6.2 Results of the [123] oriented brick-shaped 
conventional CP simulation  

Beside the [01̅0] orientation of the single crystal, the lattice rotation in the mid-

section, material pile-up at the indented surface and the load-displacement 

curve were investigated for the [123] orientation. Beside the crystal orienta-

tion, all other input parameters and boundary conditions were the same in both, 

the [123] and [01̅0] brick-shaped conventional crystal plasticity simulation. 

The aim of the study is the investigation of the influence of the single crystal’s 

orientation on the plastic deformation behavior in the wedge indentation sim-

ulations. All investigations were again performed in the midsection of the 

brick-shaped specimen.  

6.2.1 Slip system activity and lattice rotation 

Plastic shear on six slip systems were identified to be rather small in the mid-

section of the [123] oriented brick-shaped simulation. However, in opposite to 

the [01̅0] simulation, none of the Schmid-tensors of the twelve slip systems 

correspond in any way to each other and the distributions of plastic shear for 

all active slip systems in the midsection exhibit different shapes. Further, the 
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investigation of the stress state in the midsection showed that no stress compo-

nents are zero, which was beside the corresponding Schmid-tensors the second 

condition for plane strain conditions in the [01̅0] simulation. So it is confirmed 

by the simulation, that general strain conditions are present in the midsection. 

With that, no in-plane lattice rotation occurs and the first Euler angle 𝜑1 is not 

sufficient to describe the lattice rotation. The distributions of the three Euler 

angles are shown in the following figure 29 at the indentation depth of 2 µm 

in the specimen’s midsection. All three Euler angles exhibit a fan shape with 

areas in which the sign of the Euler angles changes from positive to negative 

comparable to the result of the [01̅0] simulation. However, in opposite to the 

first Euler angle, describing the lattice rotation in the [01̅0] simulation, no sym-

metry occurs for any of the three Euler angles. With maximum values of ap-

prox. –35° to +40° right under the indenter flanks, the first Euler angle deter-

mined in the [123] simulation is much higher than the second and third Euler 

angles. These are both between -5° and +5°. However, in comparison to the 

[01̅0] simulation, they are not zero.  

A further investigation of the material pile-up of the surface of the specimen 

in the [123] simulation and a comparison to the [01̅0] results was performed. 

Figure 30 shows in a) and b) the piled-up material at the indented surface in 

the [123] and [01̅0] simulation, respectively. Only in the [01̅0] simulation, a 

symmetry of the piled up material with respect to the indenter tip occurs. In the 

[123] simulation, the amount of piled-up material is significantly higher at the 

right of the residual imprint. Further, a symmetry with respect to the midsec-

tion highlighted in a) and b) occurs in the [01̅0] simulation but not in the [123] 

simulation. Here, slightly more material piles up below the midsection. In the 

same figure in c) and d), the vertical displacement is shown in the midsection. 

Again, the distribution is symmetric with respect to the indenter axis in the 

[01̅0] simulation but not in the [123] simulation. Here vertical displacement is 

more prominent on the right side.  
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Figure 29: Three Euler angles in the midsection of the [123] brick-shaped conventional crystal 

plasticity simulation at the indentation depth of 2 µm 

Stated by Wang at al. (Wang et al. 2004), the elevated material at the indented 

surface (pile-up) can be understood by the translation of material along the 

intersection of the primary slip systems and the indented surface. It was shown 
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above (figure 20) that for the [01̅0] oriented single crystal three effective slip 

systems can be determined in the midsection. These have the effective slip 

plane normals (1√20), (1̅√20) and (1̅00).  

 

Figure 30: Material pile-up (uy) at the surface of the specimen in the [123] simulation in a) and 

the [01̅0] simulation in b), respectively; uy in the midsection of the [123] simulation in 

c) and the [01̅0] simulation in d), respectively   

All effective slip plane normals intersect the indented (010) surface in an [001] 

direction (see figure 30 b)) in the midsection. The effective slip systems 2/12 
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and 5/8 have mirrored plastic shear, slip directions and slip planes, so a sym-

metry of the piled up material in the midsection occurs. For the [123] oriented 

single crystal, neither a symmetry of slip directions or slip planes nor corre-

sponding plastic shear occurs. Thus, an unsymmetric pile-up pattern at the in-

dented surface for the [123] simulation in the midsection must occur (see figure 

30 a)).    

The determination and comparison of the load-displacement curves for both, 

the [123] and [01̅0] crystal orientation shows that a significantly lower load on 

the indenter is necessary for the same penetration depth of 2 µm in the [123] 

simulation. The maximum load on the indenter at 2 µm indentation depth is 

with 1400 mN in the [01̅0] simulation, approx. 100 mN higher than in the [123] 

simulation. This indicates that in the [123] orientation, the orientation of the 

slip systems enables the crystal to deform easier under the penetrating indenter 

in comparison to the [01̅0] orientation. So, the orientation of the crystal has a 

significant influence of the plastic deformation response in the wedge indenta-

tion simulation.  

 

Figure 31: Load-displacement curves determined in the conventional [123] and [01̅0] simulation  
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6.3 Results of the [01̅0] oriented single-layer 
MBSGCP simulation 

The aim of the mechanism-based strain gradient crystal plasticity simulations 

is a study of the influence of gradients of plastic shear and the associated addi-

tional hardening due to GNDs on the plastic deformation behavior of the single 

crystal on the microscale. Therefore, the single-layer model was used together 

with the MBSGCP subroutine for the FE-simulation of wedge nanoindentation 

into the single crystal in the [01̅0] orientation. The activity of slip systems, 

deformed geometry, stress state, resolved and critical shear stress on slip sys-

tems and the crystal lattice rotation and GND density was determined and com-

pared to the results of the conventional CP simulation in the midsection of the 

brick-shaped model for an evaluation of the influence of gradients of plastic 

shear. Additionally, a study of the indentation size effect was performed based 

on the MBSGCP simulation.   

6.3.1 Influence of GNDs on strain conditions  

As shown in chapter 6.1.1, plane strain conditions occur in the midsection of 

the brick-shaped model for the [01̅0] oriented single crystal using the conven-

tional CP subroutine and only six slip systems which can be reduced to three 

effective slip systems are active under the indent. Since gradients of plastic 

shear, i.e. geometrically necessary dislocations solely increase the current 

strength of a slip system, it is most likely that, like in the conventional CP 

simulation, solely slip systems 2, 5, 8, 9 and 10 are active in the MBSGCP 

simulation (the numbering in both, the MBSGCP and conventional CP subrou-

tine corresponds). Furthermore, plane strain conditions in the single-layer 

model using the MBSGCP subroutine solely occur if the stress components σ13 

and σ23 are zero, which they are, and the densities of geometrically necessary 

dislocations on corresponding slip systems following the equation:  
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𝑛G
𝛼 = |𝑚𝛼 × [𝑠𝛼,2𝛻𝛾2 × 𝑚2 + 𝑠𝛼,12𝛻𝛾12 × 𝑚12 + 𝑠𝛼,5𝛻𝛾5

× 𝑚5 + 𝑠𝛼,8𝛻𝛾8 × 𝑚8   + 𝑠𝛼,9𝛻𝛾9 × 𝑚9

+ 𝑠𝛼,10𝛻𝛾10 × 𝑚10]|, 

(6.9) 

are equal. Corresponding plastic shear γ2 = γ12, γ5 = -γ8 and γ9 = -γ10 were iden-

tified at the first increments of the simulation, so the gradients of strains corre-

spond as well in the same manner: ∇γ2 = ∇γ12, ∇γ5 = -∇γ8 and ∇γ9 = -∇γ10. Fur-

thermore, the following connections were found for the inner product sαβ: 

s𝛼,2 = s𝛼,12, s𝛼,5 = s𝛼,8, s2,9 =-s2,10, s5,9 = -s5,10, s8,9 = -s8,10, s12,9 = -s12,10 but 

s9,9 = s10,10 and s10,9 = s9,10. In case of slip systems 9 and 10, the slip plane 

normal m9 and m10 are the same. For slip system 2 and 12 as well as 5 and 8, 

the normal to slip planes differs. With these findings, together with the equa-

tion for the calculation of the densities of geometrically necessary dislocations 

on slip systems, it was found that in the [01̅0] orientation, nG
2  = nG

12, nG
5  = nG

8  

and nG
9  = nG

10 and thus, strain gradients and associated geometrically necessary 

dislocations do not violate the plane strain conditions in the single-layer 

MBSGCP simulation. 

6.3.2 Slip system activity 

Simulations performed with the single-layer model using the MBSGCP sub-

routine confirm that gradients of plastic shear and the associated geometrically 

necessary dislocation density on slip systems correspond on slip system 2 with 

slip system 12, 5 with 8 and 9 with 10. The plastic shear on slip systems 2, 5 

and 9 are shown in figure 32 (representing slip system 12, 8 and 10, respec-

tively). Like in the conventional crystal plasticity simulation, the distribution 

of plastic shear on slip system 2 and 5 (and so on 8 and 12) are mirrored with 

respect to the indenter axis. The distribution of plastic shear of slip system 9 

and 10 is antisymmetric with respect to the indenter axis. Comparing the plastic 

shear on active slip systems of the MBSGCP (figure 32) with the conventional 

CP simulation results (figure 19) reveals that for all active slip systems, both, 

the absolute values and the distributions of the plastic shear are similar. On slip 
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system 2, 5, 8 and 12, slip occurs mainly under the indent limited by vertical 

lines that emanate from points where contact between indenter and specimen 

starts (called contact point in the following). In contrast, no slip in a region 

limited by the two lines AB̅̅ ̅̅  and AC̅̅ ̅̅  right under the indent occurs on slip sys-

tems 9 and 10.  

 

Figure 32: Plastic shear on slip system 2, 5 and 9 under the indent at the indentation depth  

of 2 µm 

Figure 33 shows the slip system activity map under the residual imprint after 

unloading. The activity map for the MBSGCP simulation was determined in 

the same manner as for the conventional CP simulation. The slip system activ-

ity maps determined in the conventional and mechanism-based strain gradient 

crystal plasticity simulation shown in figure 21 and figure 33, respectively, 

exhibit a high similarity like the individual slip systems. In both, at the flanks 

of the indenter, all six slip systems are active. The shape and size of this region 

(grey) is similar. Like in the conventional simulation, fan-shaped regions 

where either one or two effective slip systems are active occur and regions with 

one or two effective slip systems alternate. The angles of the individual regions 

with respect to the surface of the specimen are similar in the conventional and 

mechanism-based strain gradient crystal plasticity simulation. Right under the 

indent, slip systems 2, 5, 8 and 12 are active. However, this region ends at 

about 6 µm under the original surface in the MBSGCP while it expands to the 

bottom of the shown figure in the conventional CP simulation.  
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Figure 33: Slip system activity map underneath the indenter in the mechanism-based strain gra-

dient crystal plasticity simulation 

Figure 34 a) shows the indentation profile of the surface determined in the 

conventional and mechanism-based strain gradient crystal plasticity simulation 

after unloading. Due to symmetry it is sufficient to show only the right half. 

The indentation profiles differ slightly with a higher pile-up in the CP simula-

tion. To figure out the reason, the computed plastic shear on active slip systems 

was analyzed in detail along three paths to the right of the residual imprint. 

Their location is marked in figure 33 and figure 34 a). Figure 34 b), c) and d) 

show the total cumulative plastic shear as well as plastic shear on slip system 

9 and 10 along these three paths 1, 2 and 3, respectively. The total cumulative 

plastic shear along the paths is a measure for the overall plastic deformation. 

Slip on slip system 9 and 10 together is responsible for material transport in 

vertical (i.e. indentation) direction and is seen to be decisive for the occurrence 

of material piling-up or sinking-in. The slip system activity map in figure 33 

shows that along path 1, initially all slip systems are active till about 1 µm 

under the surface before slip systems 9 and 10 become dominating. This is also 
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visible in figure 34 b). At about 3 µm under the surface, almost the whole cu-

mulative plastic shear is made up of plastic shear on slip system 9 and 10. The 

figure also shows that in the MBSGCP simulation, the cumulative plastic shear 

and plastic shear on slip system 9 and 10 are always higher up to 3 µm than in 

the conventional CP simulation. In a higher depth they are the same. Along 

path 2, till about 1 µm under the surface, mainly slip systems 2, 5, 8, and 12 

are active (purple region in the slip system activity map). In this area, the cu-

mulative plastic shear is higher in the conventional CP simulation.  

  

  

Figure 34: a) conventional and MBSGCP indentation profiles; b) plastic shear on slip systems 9 

and 10 together with the cumulative plastic shear along path 1, 2 and 3 in b), c) and d) 

However, between 3 µm and 6 µm along the path 2 under the indent (yellow 

area in the slip system activity map), plastic shear mainly occurs on slip system 

0 1 2 3 4
-2.0

-1.5

-1.0

-0.5

0.0

0.5

D
is

ta
n

ce
 a

lo
n

g
 y

-a
x

is
 i

n
 µ

m

Distance along surface in µm

a)

Path 1
Path 2

Path 3

 MBSGCP

 Conventional CP

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
la

st
ic

 s
h

ea
r 

g 

Distance along path 1 in µm

|g 9
 MBSGCP|+|g 10

 MBSGCP|

g cumulative
 MBSGCP

g cumulative
 CP

|g 9
 CP|+|g 10

 CP|

b)

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
la

st
ic

 s
h

ea
r 

g 

Distance along path 2 in µm

|g 9
 MBSGCP|+|g 10

 MBSGCP|

g cumulative 
 MBSGCP

g cumulative
 CP

|g 9
 CP|+|g 10

 CP|

c)

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25

P
la

st
ic

 s
h

ea
r 

g 

Distance along path 3 in µm

|g 9
 MBSGCP|+|g 10 

 MBSGCP|

g cumulative
 MBSGCP

g cumulative
 CP

|g 9
 CP|+|g 10

 CP|

d)



6 Results and discussion 

82 

9 and 10 again and is higher in the MBSGCP simulation. On the third path, 

again mainly slip on slip systems 2, 5, 8, and 12 occurs directly below the 

surface and the cumulative plastic shear is higher in the conventional CP sim-

ulation like along path 2. Between 4 µm and 6 µm, however, slip occurs again 

mainly on slip system 9 and 10 again (yellow area) and plastic shear on these 

slip systems is again higher in the MBSGCP simulation. So along all paths, 

slip on slip systems 9 and 10 is higher in the MBSGCP simulation explaining 

the less present pile-up (the higher cumulative plastic shear along path 2 and 3 

under the surface, where mainly slip systems 2, 5, 8 and 12 are active is as-

sumed to have an insignificant influence of the pile-up behavior).   

6.3.3 Stress state 

The plane strain conditions are not violated due to the occurrence of GNDs in 

the mechanism-based strain gradient crystal plasticity simulations. Conse-

quently, the resolved shear stress τα on active slip systems in the investigated 

highly symmetric orientation depends solely on the stress components σ11- σ22 

and σ12. The distribution of (σ11-σ22)/2 and σ12 are shown in figure 35 a) and 

b). Like in the stress state of the conventional CP simulation, (σ11-σ22)/2 ex-

hibits two areas left and right of the indenter between the surface of the speci-

men and the lines 2 and 5 with a positive value. Right under the indent, a region 

with a positive value occurs with line 3 and 4 as borders. Between line 2 and 3 

as well as 4 and 5, the value of (σ11-σ22)/2 decreases to zero. While the maxi-

mum negative value of (σ11-σ22)/2 at the contact points and the maximum pos-

itive value under the indenter tip are about -1.2 GPa and 1.8 GPa, they are 

about 0.95 GPa and 1.2 GPa in the conventional CP simulation. Thus, the oc-

curring maximum value of (σ11-σ22)/2 is much higher in the MBSGCP simu-

lation. However, the distribution of (σ11-σ22)/2 can be, just like in the conven-

tional CP simulation, divided into fan-shaped regions with either positive or 

negative values.  

The same holds for the distribution of σ12 under the indent shown in figure 35. 

Again, two regions occur left and right of the indent limited by the two lines 1 

and 6. Within these regions, the value of σ12 is close to zero. In the region 
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between the lines 1 and 3 as well as 4 and 6, σ12 becomes negative and positive, 

respectively, whereby the absolute value is much higher closer to the indent 

and decreases further away. However, right at the indenter flanks, σ12 de-

creases to a small value. In the region between line 3 and 4, the value of σ12 is 

again close to zero.  

 

 

Figure 35: Distribution of (σ11-σ22)/2 and σ12 in the midsection of the single-layer model under 

the indent at the maximum indentation depth of 2 µm 
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So, just like the distribution of (σ11-σ22)/2, areas with positive, negative and 

with small values close to zero can be identified exhibiting a fan-shape starting 

at the indent. The occurring maximum absolute values of σ12 at the contact 

points left and right of the indenter are with about 2.2 GPa and about 1.6 GPa 

in the MBSGCP and the conventional crystal plasticity simulation and so again 

much higher in the MBSGCP simulation.  

Concluding, the overall shape of the contour plots of (σ11-σ22)/2 and σ12 are 

similar in the conventional and mechanism-based strain gradient crystal plas-

ticity simulation. However, the stress state in the midsection is much higher in 

the MBSGCP simulation.  

The determination of the stress state in the single layer MBSGCP model and 

its comparison to the stress state calculated in the conventional CP simulation 

showed significantly higher stresses under the indent in the MBSGCP simula-

tion. This indicates that a much higher resolved shear stress as driving force on 

the active slip systems is necessary in the MBSGCP simulation to achieve the 

same enforced plastic shear on the active slip systems. This is confirmed by 

the distributions of resolved shear stresses on the three slip systems 2, 5 and 9 

(representing 12, 8 and 10) of the MBSGCP and conventional CP simulation 

shown in figure 36. The overall shape of the results is similar for the compared 

slip systems. However, much higher resolved shear stresses occur in the re-

gions under the indent in the MBSGCP simulation as already indicated by eval-

uation of stresses. Like the plastic shear, the contour plots of the resolved shear 

stress on slip system 2 and 5 are mirrored with respect to the indenter axis. The 

resolved shear stress on slip system 9 is antisymmetric with respect to the in-

denter axis. The highest value of τres in the conventional CP simulation is about 

0,85 mN/µm2 but about 1.7 mN/µm2 in the mechanism-based strain gradient 

simulation on slip systems 2, 5, 8 and 12. On slip system 9 and 10, the resolved 

shear stress in the MBSGCP simulation is only slightly larger in small regions 

right underneath the indenter. Thus, a much higher resistance against slip, 

mainly on slip system 2, 5, 8 and 12 must be present due to the occurrence of 

geometrically necessary. The distribution of the resolved shear stress on slip 

systems 2 and 5 show that further away from the indent, the values of τres are 
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similar, but in the region close around the indent, significantly higher shear 

stresses occur. Areas with high resolved shear stress occur on slip system 2 and 

12 at the right flank of the indenter and right under the indenter tip. Left of the 

indenter a small area with high resolved shear stress starts at the contact point 

emanating downwards. At the left flank of the indenter however, smaller val-

ues of resolved shear stress occur. On slip system 5 and 8, areas with high τres 

occur mirrored to those on slip systems 2 and 12. The higher resolved shear 

stresses in the described areas corresponds to regions with high values of (σ11-

σ22)/2 and σ12 at the contact points and right under the indenter tip.  

 

Figure 36: Resolved shear stress 𝜏res on slip system 2, 5 and 9 under the indent at the indentation 

depth of 2 µm calculated  
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6.3.4 Critical shear stress 

The contribution to strain hardening due to geometrically necessary disloca-

tions is investigated in this chapter in detail. As described in chapter 2.5, the 

overall critical shear stress gt is the sum of gSSD and gGND describing the hard-

ening due to statistically stored dislocation and geometrically necessary dislo-

cations, respectively. The much higher resolved shear stress that was found in 

regions under the indent on slip systems 2, 5, 8 and 12 indicates much higher 

strengthening in the MBSGCP simulation. This is confirmed by the results of 

the distributions of g
GND

 plotted in figure 37 a) to c) for the six active slip 

systems. As shown in chapter 6.3.1, the effective density of geometrically nec-

essary dislocations and with that the contribution to the overall strengthening 

g
GND

, is the same on corresponding slip systems, so g
GND
2  = g

GND
12 , g

GND
5  = 

g
GND
8  and g

GND
9  = g

GND
10 . Again, solely the results for slip system 2, 5 and 9 are 

shown in the figure 37 as they also represent the slip systems 12, 8 and 10. 

Figure 37 d) shows the distribution of the resolved shear stress g
SSD

, which is 

the same for every active slip system. The results of g
GND

 determined in the 

MBSGCP simulation have mirrored contour plots with respect to the indenter 

axis for slip system 2 and 12 as well as 5 and 8, like the plastic shear and 

resolved shear stress shown above. The distribution of g
GND

 on slip systems 9 

and 10 is mirrored with respect to the indenter axis. The saturation value of 

g
SSD

 is an input material parameter which is set to 0.53 GPa. This maximum 

value is reached in a spherical-shaped region under the indent as shown in fig-

ure 37 d). Outside this area, the value decreases steadily. In contrast, the dis-

tribution of g
GND

 determined in the mechanism-based strain gradient crystal 

plasticity simulation exhibits small areas in which high values of g
GND

 occur 

defined by the gradients of plastic shear. The highest value of g
GND

 is about 

1.04 GPa in the MBSGCP simulation and occurs on slip system 2, 12, 5 and 8 

right under the indenter tip and thus exceeds the maximum value in the con-

ventional simulation by far. Further away from the indent however, the value 

of g
GND

 on all slip systems decreases faster than g
SSD

. It can be concluded, that 

in the regions close to the indent from about two microns left to two microns 
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right of the indenter axis and down to about 5 microns under the surface, geo-

metrically necessary dislocations influence the strengthening of the material 

significantly. Outside this region, the influence decreases and strengthening is 

mainly caused by g
SSD

.  

 

Figure 37: Distributions of the critical resolved shear stress g for slip system 2 and 12, 5 and 8 

 as well as 9 and 10 in the mechanism-based strain gadient crystal plasticity  

 simulation in a), b), c) and in the conventional CP simulation in d) 
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The contribution to strain hardening due to GNDs generally differs on every 

slip system since it is calculated based on the density of geometrically neces-

sary dislocations (see equation (2.22)). Thus, it is useful to determine the sum 

of g
GND

 for the investigation of the evolution of the contribution to strain hard-

ening due to GNDs dependent on the indentation depth. The following figure 

38 shows the sum of g
GND

 over all active slip systems for the two indentation 

depth 2 µm and 4 µm on the left and right side of the figure, respectively. One 

has to note, that the dimensions of the right plot are twice the dimensions of 

the left plot. For a detailed investigation of the overall contribution of GNDs 

to the hardening, the plots are evaluated along the three semicircular paths 

shown in figure 38. Since the indentation depth is 2 µm and 4 µm in the two 

compared deformation states, the distances between the paths is double, too.  

 

Figure 38: g
GND

 under the indent at a) 2 µm and b) 4 µm indentation depth, determined in the 

 single-layer MBSGCP simulation 

The overall contribution to the hardening due to GNDs along the three paths is 

plotted in figure 39. For a comparison, the distance along the path is normal-

ized for both indentation depths. Along all path, g
GND

 is significantly higher 

for the smaller indentation depth of 2 µm. Solely along path 1, a higher value 

occurs right under the indenter tip for the indentation depth of 4 µm. This is 
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most likely because the elements under the indenter tip are highly distorted 

with increasing indentation depth and the results right under the tip are not 

trustworthy. However, on path 2 and 3, further away from the indenter tip, the 

values at the indenter axis are always smaller for the indentation depth of 4 

µm. 

 

 

Figure 39: g
GND

 along the paths 1, 2 and 3 under the indenter at 2 µm and 4 µm indentation 

depth in a), b) and c) 

The investigation of g
GND

 along the paths for the two different indentation 

depths show that the contribution to the overall hardening decreases with in-

creasing indentation depth.  
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According to equation (2.22) this also means that the GND density decreases 

with increasing indentation depth. Additionally, it confirms that the imple-

mented mechanism-based strain gradient crystal plasticity subroutine is capa-

ble of describing the experimentally observed size dependency in nanoinden-

tation.  

6.3.5 Size effect 

It was shown in the former chapter that the contribution to hardening due to 

GNDs, g
GND

 decreases with increasing indentation depth and thus, the single 

crystal deforms easier at higher indentation depths. This size dependency was 

investigated in detail by the comparison of the load-displacement curves and 

the hardness between the conventional and mechanism-based strain gradient 

crystal plasticity simulation.  

The load-displacement curves, the fingerprints of a nanoindentation simula-

tion, are showed in figure 40. The comparison reveals a significantly higher 

load that is necessary to achieve the defined indentation depth of 2 µm in the 

MBSGCP simulation.  

 

Figure 40: Load-displacement curves determined in the conventional and mechanism-based 

strain gradient crystal plasticity  
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This result agrees well with the much higher stresses and resolved shear 

stresses that were determined in the mechanism-based strain gradient crystal 

plasticity simulation in comparison to the conventional simulation. Thus, for 

an indentation depth of 2 µm, a significant size effect occurs and the material 

at this length scale has a much higher resistance against plastic deformation.   

Beside the analysis of the simulation of the single-layer model up to an inden-

tation depth of 2 µm, the simulation was extended to an indentation depth of 5 

µm to investigate how the deformation response, represented by load-displace-

ment curves, changes at higher indentation depths. Consequently, simulations 

up to three indentation depths, 1.5 µm, 2 µm and 5 µm, were performed and 

the normalized load-displacement curves were determined following Lewan-

dowski et al. (Lewandowski and Stupkiewiez 2018a, 2018b). Both, the load 

and the indentation depth were normalized with the particular maximum in-

dentation depth hmax. Figure 41 shows the results for the MBSGCP and the 

conventional CP simulation with the normalized load F/hmax and normalized 

displacement h/hmax at the ordinate and abscissa, respectively.  

  

Figure 41: Normalized load-displacement curves determined in the conventional and mecha-

nism-based strain gradient crystal plasticity simulation for the three indentation depth 

of 1.5µm, 2 µm and 5 µm  
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For all indentation depths, the normalized curves are the same in the conven-

tional CP simulation since no size effect can be described with this theory. The 

normalized curve up to the indentation depth of 1.5 µm in the MBSGCP sim-

ulation is higher, than normalizing the load-displacement curve up to an inden-

tation depth 2 µm or 5 µm simulations. The difference between the curves de-

termined in the 1.5 µm and 5 µm indentation depth simulation is about 6%. 

The curve determined in the conventional CP simulation is even lower, indi-

cating that at 5 µm indentation depth, still an influence of the size effect is 

present. 

In addition to the load displacement curves, the hardness H of the single crystal 

was investigated in detail. The definition of the hardness used in the following 

is F/A, where F is the load on the indenter in global y-direction and A is the 

true area between the indenter and the specimen that is determined in 

ABAQUS directly. The results of the hardness show a strong scattering due to 

the stair cased evolution of the contact area (caused by the surface elements 

coming in contact with the indenter after each other). Thus, the curves were 

smoothed and are shown as moving average in figure 42. The investigation of 

the hardness shows a significant increase for indentation depths under 1 µm in 

the conventional crystal plasticity simulation with a sharp tip. A similar effect 

was observed by Qu et al. (Qu et al. 2004). However, this effect is not a size 

effect but a dependency of the hardness on the indenter tip radius. To investi-

gate this in more detail, the conventional single-layer simulation was per-

formed with three different wedge indenter tips with a radius of 0.0 µm, 0.2 

µm and 0.5 µm. The result of the hardness for the three simulations show that 

with increasing radius, the hardness decreases at smaller indentation depths. 

For a small tip radius, it is supposed that the FE-mesh is too coarse to describe 

the exact contact area for small indentation depths and underestimates the area 

for small indentation depth. In case of the large tip radius of 0.5 µm, the contact 

at small indentation depths corresponds to a spherical indentation and the con-

tact area is larger for small indentation depth, leading to an underestimation of 

the hardness. 
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However, figure 42 a) shows that for an indentation depth larger than 1 µm, 

the hardness determined in the conventional CP simulation is constant. The 

curve determined in the mechanism-based strain gradient crystal plasticity sim-

ulation with a perfectly sharp indenter tip however, shows a decrease between 

1.0 µm and 5.0 µm and approaches the conventional crystal plasticity curves. 

The plot of 1/h and (H/H0)2 (where H0 is the hardness value at the infinite in-

dentation depth with a value of 6.6 mN/µm2) in figure 42 b), shows the ap-

proach of the two curves for the indentation depth between 1.0 µm and 5.0 µm 

even clearer. The increase of hardness under 1/h = 0.4 µm-1 occurs due to larger 

elements making contact with the indenter as the indentation depth exceeds 2.5 

µm, leading to an underestimation of the contact area.  

 

Figure 42: a) hardness detemined in the conventional crystal plasticity single-layer model for a 

sharp tip and the radius of 0.2 µm and 0.5 µm together with the MBSGCP single layer 

simulation result determined with the sharp indenter; b) depth dependence determined 

with the sharp indenter and the conventional and MBSG crystal plasticity model 

following Nix and Gao (Nix and Gao 1998) 

6.3.6 Crystal lattice rotation and GND density 

The Euler angles following Bunge were determined in the MBSGCP single-

layer simulation corresponding to the conventional CP simulation. The first 

Euler angle describes the in-plane lattice rotation and is shown in figure 43. 
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Due to plane strain conditions, the second and third Euler angles are constant 

over the whole indentation process. Like in the conventional CP simulation, 

the maximum in-plane lattice rotation is about ±20° around the indenter. The 

lattice rotation pattern exhibits an antisymmetry with respect to the indenter 

axis. The highest rotation occurs at the flanks of the indenter and right under 

the indent. Along the indenter axis, a change of sign occurs and the rotation 

decreases to zero.  

 

Figure 43: First Euler angle 𝜑1 in the MBSGCP single-layer simulation, representing the in-

plane lattice rotation 

Further away from the indent, fan-shaped regions can be identified with alter-

nating positive and negative rotation. The regions correspond to the slip system 

activity map shown in figure 33. The boarders of regions where solely one 

effective slip system is active are marked in the figure. In these regions either 

positive or negative lattice rotation occurs. In between these regions, where 

two effective slip systems are active, a sign change of the crystal lattice rotation 

and thus, a decrease of the lattice rotation to zero occurs. Consequently, always 

two of the effective slip systems must cancel the lattice rotation out if they are 

equally active, leading to the fan-shaped lattice rotation pattern. In the region 
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close under the indent where all slip systems are active, the largest lattice ro-

tation occurs. Overall, the pattern of crystal lattice rotation determined in the 

MBSGCP and the conventional CP are similar.    

Figure 44 shows the density of geometrically necessary dislocations as sum of 

the GND density on the individual six active slip systems determined in the 

mechanism-based strain gradient crystal plasticity simulation following equa-

tion (2.21) instead of a GND density determined with the KAM method, based 

on the crystal lattice rotation. However, the result is visualized in the same 

manner as the GND density determined by KAM in the conventional CP sim-

ulation. Following Han et al. (Han et al. 2005), the unit of the effective density 

of GNDs is 1/µm instead of 1/m2. The distribution of GNDs is symmetric with 

respect to the indenter axis. The highest density occurs under the indenter tip 

and in regions starting the left and right contact points and emanating down-

wards. Under the indenter flanks, solely a small GND density is present. The 

comparison with the resolved shear stress shows an expected correlation be-

tween regions on slip system 2, 5, 8, and 12 with high resolved shear stress and 

the regions of high GND density.  

 

Figure 44: Effective density of geometrically necessary dislocations nG in the midsection of the 

 brick-shaped conventional crystal plasticity simulation at the indentation depth  

 of 2 µm, determined in the MBSGCP subroutine following Han et al. (Han et al.  

 2005)  
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While the highest density occurs under the indent, fan-shaped regions further 

away can be identified with low and higher GND densities. Like in the plot of 

the crystal lattice rotation, the boarders between regions where one or two ef-

fective slip system are active are shown in the plot of the GND density. Here, 

a region where mainly one effective slip system is active, correspond to a re-

gion with low and a region where two effective slip systems are active with 

high GND density. The reason for this are small gradients in regions where 

solely one effective slip system is active. In the border areas between two re-

gions with only one effective slip system, the two adjoining effective slip sys-

tems decrease or increase, respectively, causing higher strain gradients and 

thus, a higher density of geometrically necessary dislocations, explaining the 

shape of the GND density distribution.   

6.4 Results of the [01̅0] oriented brick-shaped non-
Schmid crystal plasticity simulation  

The brick-shaped model as described in chapter 5.2 together with the non-

Schmid version of CP as material law was used for an FE-simulation of the 

90° wedge nanoindentation into the [01̅0] oriented tungsten single crystal. The 

same definitions regarding crystal orientation, indentation speed, increment 

size, active slip family and material parameters were defined as in the conven-

tional crystal plasticity simulations. The aim of the investigations is to study 

the influences of non-Schmid effects on the plastic deformation behavior. For 

this purpose, the activities of slip systems, the stress state, slip increments, 

crystal lattice rotation, GND density, material pile-up and load-displacement 

curve were analyzed in the midsection and compared to the conventional CP 

results.    

6.4.1 Influence of non-Schmid effects on strain conditions  

Internally in the subroutine, the 24 non-Schmid slip systems are ordered ac-

cording to table 1 in chapter 2.4. For the comparison with conventional CP 
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results, not only the plastic shear γα of the two collinear slip systems are merged 

but also renumbered and assigned to the conventional CP slip systems as 

shown in appendix A.7. In the following, only the added plastic shear values 

are given and the numbering of slip systems α corresponds to the one of the 

conventional CP subroutine.  

The non-Schmid simulations shows, that just like in the conventional CP sim-

ulations, slip systems 1, 3, 4, 6, 7 and 11 are inactive over the whole indentation 

process. The simulation shows in addition, that the three pairs of active slip 

systems 2 and 12, 5 and 8 as well as 9 and 10 (shown in figure 45) exhibit the 

same resolved shear stress and plastic shear, like in the conventional CP sim-

ulation. The comparison of the non-Schmid tensors of active slip shows that 

the components 𝑃11
NoS, 𝑃12

NoS, 𝑃21
NoS, 𝑃22

NoS and 𝑃33
NoS are the same for each of the 

mentioned pairs of slip systems. Other components of the non-Schmid tensor 

are negligible since the simulation shows that the stress components σ13, σ31, 

σ23 and σ32 are zero in the investigated midsection. These findings confirm cor-

responding plastic shear and shear stress on slip systems 2 and 12, 5 and 8 and 

9 and 10 found in the simulation. These findings show, that non-Schmid effects 

do not violate the plane strain conditions in the midsection of the brick-shaped 

model. However, deviations of plastic shear on active slip systems between the 

non-Schmid and conventional CP results are likely and investigated in detail 

in the following chapter. 

6.4.2 Slip system activity 

As mentioned above, solely six slip systems are active and always two of these 

correspond regarding shear stress and plastic shear. Thus, only the plastic shear 

on one of the corresponding slip systems is shown in figure 45 in the midsec-

tion. Plastic shear on slip system 9 (and 10) is like in the conventional CP sim-

ulation antisymmetric with respect to the indenter axis and mirrored in case of 

slip systems 2 and 5 (12 and 8). The contour plots of plastic shear on slip sys-

tem 2 and 5 determined in the non-Schmid and conventional crystal plasticity 

simulation are similar.  
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Figure 45: Slip system activity of slip systems 2, 5 and 9 (corresponding to slip system 12, 8 and 

10 respectively) in the midsection of the non-Schmid crystal plasticity brick-shaped 

simulation underneath the indent at the indentation depth of 2 µm. 

The maximal absolute value however, occurring near under the indenter tip in 

both simulations, is with 0.766 higher than in the non-Schmid than in the con-

ventional simulation where a maximal value of 0.724 was determined. Slip 

system 9 (and the corresponding slip system 10) behave significantly different 

in the two simulations. The regions where plastic shear occurs under the indent 

is larger in the non-Schmid simulation and occurs mainly in the region under-

neath the indent but hardly left and right of it. The maximal value determined 

on slip system 9 and 10 is with ±0.644 in the non-Schmid simulation much 

higher than in the conventional CP simulation where the maximum value is 

solely ±0.558. Therefore, the non-Schmid effects promote dislocation mobility 

mainly on slip system 9 and 10 but do not have a significant influence on slip 

system 2, 5, 8 and 12.  

Figure 46 shows the indentation profiles determined in the midsection with the 

non-Schmid and conventional CP model. The profiles exhibit a symmetry with 

respect to the indenter axis and thus only the right side is shown in the figure. 

Significantly more material pile-up at the indenter flanks occurs in the non-

Schmid crystal plasticity simulation. For a deeper understanding of this result, 

again the plastic shear along four paths shown in figure 46 were investigated.  
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Figure 46: Indentation profiles determined in the conventional and non-Schmid brick-shaped 

wedge indentation simulations at the indentation depth of 2 µm 

Along these four paths, the cumulative plastic shear and plastic shear on slip 

system 9 and 10 are shown in figure 47 a), b), c) and d). Along path 1, 2, 3 and 

4, both, the cumulative plastic shear and individual shear on slip system 9 and 

10 are much lower in the non-Schmid than in the conventional simulation. In 

the MBSGCP simulation however, higher cumulative plastic shear and shear 

on slip system 9 and 10 occurred. So with the assumption that slip on slip sys-

tem 9 and 10 mainly influences material pile-up at the surface, less plastic shear 

on these two slip systems as it occurs in the non-Schmid simulation leads to 

more material pile-up while more plastic shear as observed in the MBSGCP 

simulation, results in much less material-pile-up than in the conventional crys-

tal plasticity simulation. Along path 1, higher plastic shear on slip system 9 

and 10 and cumulative shear occurs which however, does not influence the 

material deformation behavior right of the indenter.  

The slip system activity map determined in the non-Schmid simulation in fig-

ure 48 shows the same overall fan-shape like in the conventional and MBSG 

crystal plasticity simulations. 
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Figure 47: Plastic shear on slip systems 9 and 10 together with the cumulative plastic shear along 

path the four paths 1, 2, 3 and 4 in a), b), c) and d)  

All six slip systems are active under the indenter. Emanating from the indent, 

three regions where the three effective slip systems 5/8, 9/10 and 2/12 are ac-

tive, left and right of the indenter axis occur. In between, transition regions 

occur in which always the two adjoining slip systems are active. Although it 

was shown in the investigation of individual slip systems that more plastic 

shear occurs in the non-Schmid simulation, the overall shape of the slip system 

activity map is not significantly influenced by non-Schmid effects. 
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Figure 48: Slip system activity map underneath the indenter in the non-Schmid crystal plasticity 

simulation 

6.4.3 Stress state 

Just like in the conventional and mechanism-based strain gradient crystal plas-

ticity simulation, the driving force causing plastic shear is solely the three 

stress components σ11, σ22 and σ12 in the midsection of the non-Schmid brick-

shaped simulation. The distribution of σ12 and (σ11-σ22)/2 are shown in figure 

49. The overall shapes of the contour plots are similar to the ones in the mech-

anism-based and conventional crystal plasticity. In the distribution of (σ11-

σ22)/2, there is a region with positive values at the flanks and underneath the 

indent. Even more pronounced than in the conventional crystal plasticity sim-

ulation, a band in the distribution of (σ11-σ22)/2 emanates from the contact 

point almost vertically downwards in which the value of (σ11-σ22)/2 decreases 

to zero. Left and right of these bands, two regions with negative values of (σ11-

σ22)/2 adjoin. About 3 µm under the surface of the specimen, the bands in 

which (σ11-σ22)/2 is zero bend outwards under an angle of approx. 45° with 

respect to the surface. Within these bands, solely shear stress σ12 occurs, and 

thus only the effective slip system 9/10 is active following the yield surface 
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determined in chapter 6.1.2. At the indenter flanks and under the indenter tip, 

a large region with a positive value of (σ11-σ22)/2 occurs.  

The distribution of σ12 in the midsection has two areas limited by the line 1 

and 6 and the surface of the specimen in which σ12 is zero. Between line 3 and 

4 under the indent and at the indenter flanks, σ12 is zero as well. However, 

there are two regions in which shear stress occurs, one left of the indent with 

negative shear stress between line 1 and 3 and on the right side of the indenter 

between line 4 and 6 with positive value of σ12.  

 

Figure 49: Distribution of (σ11-σ22)/2 and σ12 in the Non-Schmid brick-shaped model under the 

indent at the maximum indentation depth of 2 µm 
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6.4.4 Increments of plastic shear 

Following the investigation of the plastic shear increments in the conventional 

crystal plasticity simulation, γ̇α is evaluated for the non-Schmid simulation for 

the three indentation depths of 1.0 µm, 1.5 µm and 2.0 µm. The results are 

shown for slip system 2, 5 and 9 in figure 50. For a comparison, the same 

increment size of 7.5 · 10-5 s was chosen in the non-Schmid as in the conven-

tional simulation. Like in the conventional CP simulation, the plots of plastic 

shear increments of slip system 9/10 are antisymmetric with respect to the in-

denter axis. The plots of slip system 2/12 and 5/8 are mirrored. On slip system 

2 and 12, respectively, a band with high γ̇ emanates from the left contact point 

downwards in all indentation depths. Under the right indenter flank, there is a 

region where the slip systems are active in the current increment. Like in the 

conventional simulation, the activity under the flank decreases with higher in-

dentation depths. The values γ̇ and the distribution are similar in the non-

Schmid and conventional crystal plasticity simulation. This was indicated by 

the comparison of the individual slip system activities showing a similar result 

for slip systems 2, 5, 8 and 12. Again, the same values but mirrored distribu-

tions of plastic shear increment were determined for slip systems 5 and 8 for 

the three different indentation depths. A significant difference however, ap-

pears between the slip systems 9 and 10 in the non-Schmid and conventional 

simulation. Although all the contour plots of slip system 9 and 10 show the 

two antisymmetric bands emanating downwards from the two contact points, 

two significant differences occur. First, the absolute values of γ̇ are higher in 

the non-Schmid simulation. Secondly, the bands emanate downwards verti-

cally in the non-Schmid whereas they bend outwards in the conventional sim-

ulation. Both was already indicated by the comparison of the plastic shear on 

slip system 9 and 10 showing higher absolute values and plastic shear only in 

the vertical region under the indent in the non-Schmid simulation but also left 

and right of the indent in the conventional CP simulation. However, like in the 

conventional simulation, the bands in which high plastic shear increments oc-

cur, emanating from the contact point on all slip systems, propagate outwards 

with the contact point with increasing indentation depth.  
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Figure 50: Increments of plastic shear γ̇ at the three indentation depths 1 µm, 1.5 µm and 2 µm in 

the midsection of brick-shaped non-Schmid simulation 

Figure 51 shows the plastic shear increment map of the right side of the indent, 

determined in the non-Schmid simulation in the same manner than in the con-

ventional CP simulation. In addition, the shear increments along the circular 

path are plotted in figure 52. At the start of the path at the indenter axis, in 

region I, slip systems 2, 5, 8 and 12 are active followed by a small region where 

solely the effective slip system 5/8 is active. Between approximately 2 and 3 

µm, plastic shear occurs on slip systems 5/8 and 9/10.  
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Figure 51: Plastic shear increment map of the right side of the indent in the non-Schmid brick-

shaped simulation at the indentation depth of 2 µm  

 

Figure 52: Plastic shear increment along the circular path highlighted in figure 51 
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At about 2 µm on the path, plastic shear occurs almost solely on the effective 

slip system 9/10 followed by a large region where the effective slip systems 

2/12 and 9/10 are active. At the end of the path, the overall value of the plastic 

shear increment decreases significantly and at approximately 5 µm, only slip 

system 5/8 is active. Close under the surface, the plastic shear increments de-

crease to a very small value. Overall, the plastic shear increment map deter-

mined in the non-Schmid simulation is similar to the conventional crystal plas-

ticity result. The peaks of effective slip systems along the circular paths are 

slightly shifted but overall, the distribution along the path is quiet similar.  

6.4.5 Crystal lattice rotation and GND density 

For the determination of the crystal lattice rotation in the non-Schmid brick-

shaped simulation, the same SciPy griddata interpolation method (The SciPy 

community 2019) was used than in the conventional and mechanism-based 

strain gradient crystal plasticity simulation and was plotted in Matlab (Math-

Works). Since plane strain conditions occur in the midsection of the brick-

shaped model, the first Euler angle φ1 following Bunge represents the in-plane 

lattice rotation and is plotted in figure 53.  

  

Figure 53: First Euler angle 𝜑1 in the midsection of the non-Schmid brick-shaped model, repre-

senting the in-plane lattice rotation 
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The overall shape of the lattice rotation corresponds well to the results of the 

conventional and mechanism-based strain gradient crystal plasticity simula-

tion. The plot exhibits a antisymmetry with respect to the indenter axis. Left 

and right under the indenter, regions with high lattice rotation occurs, corre-

sponding to the regions under the indenter where high plastic shear on all active 

slip systems occurs. Further away, fan-shaped regions occur with alternating 

regions with positive and negative rotation. Just like in the conventional and 

mechanism-based strain gradient crystal plasticity simulations, a link between 

the slip system activity map and the lattice rotation exists. In regions where 

two effective slip systems are active, the lattice rotation decreases to zero but 

is rather positive or negative in regions where solely one effective slip system 

is active.  

Overall, the distribution of the density of geometrically necessary dislocations 

determined by the kernel average misorientation method under the indent in 

the midsection of the brick-shaped model in the non-Schmid simulation agrees 

with the results from the conventional crystal plasticity simulation. There are 

two bands emanating from the contact points and another one starting at the 

indenter tip along the indenter axis. 

 

Figure 54: Density of geometrically necessary dislocations in the midsection of the brick-shaped 

non-Schmid crystal plasticity simulation at the indentation depth of 2 µm, determined 

with the kernel average misorientation method 
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There are almost no GNDs occurring right under the indenter flanks. Corre-

sponding to the conventional CP results, a fan-shaped distribution of the GND 

density further away from the indent occurs with higher GND densities in the 

regions where two effective slip system are active.   

6.4.6 Load-displacement curves 

Last, the load-displacement curves of the brick-shaped non-Schmid and con-

ventional crystal plasticity simulations are compared. Figure 55 shows the two 

load-displacement curves determined in the two simulations. The necessary 

load in the non-Schmid simulation is significantly lower than in the conven-

tional simulation. This confirms the result of the stress state investigated in 

chapter 6.4.3 where significantly lower stresses were found to occur in the non-

Schmid than in the conventional CP simulation. Both, the lower occurring 

stresses and load-displacement curves in the non-Schmid simulation can be 

explained by the non-Schmid effect.  

 

Figure 55: Comparison of the load-displacement curves determined in the conventional and non-

Schmid crystal plasticity brick-shaped simulations  
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As shown above, the Non-Schmid effect does not influence the effective slip 

system 2/12 and 5/8 but leads to more plastic shear on slip system 9/19 despite 

the lower occurring stress in the midsection. Thus, the non-Schmid effect on 

slip system 9/10 promotes the plastic deformation behavior, i.e. the single crys-

tal deforms easier in the non-Schmid simulation.  

6.5 Results of the [01̅0] oriented bridge-shaped 
crystal plasticity simulation  

After the principle investigations using the brick-shaped and single-layer 

model together with the conventional, non-Schmid and mechanism-based 

strain gradient crystal plasticity, the brick-shaped model was set up for a com-

parison of the numerical and experimental results. The model was defined to 

meet the boundary conditions and geometry of the experimentally indented 

bridge described in detail in chapter 4. Together with the conventional and non-

Schmid crystal plasticity subroutines, it was used to simulate the wedge 

nanoindentation into the [01̅0] oriented tungsten single crystal. The aim of both 

simulations is a comparison of the numerically determined deformed geometry 

after indentation, the crystal lattice rotation and the density of geometrically 

necessary dislocations to the experimental results, determined by Wang.  

6.5.1 Strain conditions in the [01̅0] oriented bridge-shaped 
model  

Due to its small thickness of 4.3 µm, plane strain conditions no longer occur 

in the midsection of the bridge-shaped model. Now slip systems 1, 6, 7 and 11 

are active in addition to the six active slip systems (2, 5, 8, 9, 10 and 12) in the 

thick brick-shaped model (see table 9). Because of the symmetry, the stress 

components σ23 and σ31 are still zero in the midsection. Therefore, slip systems 

3 and 4 with all Schmid-tensor components except P13, P23, P31 and P32 being 

zero are inactive over the whole indentation process. For the slip systems 1, 6, 

7, and 11, the product s3m3 is no longer zero (see table table 9 listing the slip 
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plane normals and slip directions in the initial state in the midsection of the 

brick-shaped and bridge-shaped model) and therefore, the driving force on 

these slip systems depends on σ33. 

A detailed analysis of the computed slip system activity reveals that the newly 

active slip systems 6 and 7 as well as 1 and 11 correspond in their amount just 

like slip systems 2 and 12, 5 and 8, and 9 and 10 in the chosen [01̅0] orientation 

do: γ1 = -γ11, γ6 = γ7, γ̇1 = -γ̇11 and γ̇6 = γ̇7. The contour plots of plastic shear of 

the five slip systems are shown in figure 56 and figure 57. Again solely five 

slip systems are shown, representing the corresponding slip systems. The max-

imum plastic shear on slip systems 1, 6, 7 and 11 is about the same value as on 

the slip systems 2, 5, 8, and 12. On the slip systems 9 and 10, the absolute 

values of maximum plastic shear is slightly smaller. So, in the bridge-shaped 

model, the plastic deformation in the midsection is significantly driven by the 

slip systems 1, 6, 7 and 11 which were not active in the brick-shaped model. 

The regions where slip occurs on slip systems 2, 5, 8 and 12 in the bridge-

shaped simulation are still similar to the brick-shaped simulation. Slip systems 

2 and 5 (and so 8 and 12) are mirrored again. The same holds for slip systems 

1 and 6 (and so 7 and 11). Slip systems 9 and 10 are still antisymmetric with 

respect to the indenter axis. So the difference between the brick-shaped and 

bridge-shaped model is mainly the activity of the four slip systems 1, 6, 7 and 

11. Based on these findings, two additional effective slip systems can be de-

fined by the combination of slip system 1 and 11 as well as 6 and 7. For the six 

slip system 2, 5, 8, 9, 10 and 12, the determination of the effective slip systems 

performed in chapter 6.1.1 and appendix A.6, is still valid.  

Consequently, the rate of stretching Ds
1/11 of the effective slip system 1/11 can 

be determined following the equation:   

𝑫s
1/11

= �̇�s
1𝑷s

1 + �̇�s
11𝑷s

11 = �̇�1/11 (

0 1 0

1 −2√2 0

0 0 2√2

). (6.10) 
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In the same manner, the rate of stretching Ds
6/7 can be determined for slip sys-

tem 6 and 7: 

Thus, slip systems 1, 6, 7 and 11 cause strain in the global z-direction and out 

of plane rotation is likely to occur also in the midsection. However, the inves-

tigation of the Euler angles show that the lattice rotation occurs mainly in the 

midsection and solely the first Euler angle changes significantly while the sec-

ond and third Euler angles exhibit only a change between approx. ±1.0° under 

the residual imprint. Based on this investigation, the comparison of the lattice 

rotation between the experimental results and the conventional and non-

Schmid simulation was performed solely for the first Euler angle while θ and 

𝜑2 where neglected in the following comparison in the next chapter.  

  

Figure 56: Plastic shear on slip system 1 (corresponding to 7) in the midsection of the bridge-

shaped model at the indentation depth of 2 µm determined in the conventional and 

non-Schmid crystal plasticity simulation  

𝑫s
6/7

= �̇�s
6𝑷s

6 + �̇�s
7𝑷s

7 = �̇�
6

7 (

0 −1 0

−1 −2√2 0

0 0 2√2

) = �̇�6/7𝑷s
6/7,𝑒𝑓𝑓

.  (6.11) 
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Figure 57: Plastic shear on slip systems 2, 5, 6 and 9 (corresponding to 8, 10, 11 and 12) in the 

midsection of the bridge-shaped model at the indentation depth of 2 µm determined in 

the conventional and non-Schmid crystal plasticity simulation  
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6.6 Comparison of numerical and experimental 
results 

6.6.1 Residual imprint geometry  

The profiles of the imprints in the midsection after unloading determined in 

the experiment, the conventional and the non-Schmid crystal plasticity simu-

lation are shown in figure 58. The surface profile of the imprint is symmetric 

with respect to the indenter axis and thus, solely the profile of the right part of 

the imprint is shown in the figure. 

 

Figure 58: Indentation profiles in the midsection of the experiment, conventional and non-

Schmid simulation after unloading  

A comparison of the three shown profiles reveals a good agreement of profiles 

determined in the experiments and calculated in the conventional CP simula-

tion. The profile in the non-Schmid result is slightly higher than in the conven-

tional CP simulation. The reason was discussed in chapter 6.4.2. The input 

parameters used for the simulation determined by Yao (Yao 2012) were fitted 

to spherical and Berkovich indentation into tungsten single crystals in conven-

tional crystal plasticity simulations and not non-Schmid simulations. The in-

vestigations of Yao (Yao 2012) also showed that the indentation profiles are 



6 Results and discussion 

114 

significantly influenced by the material parameters h0, τs, τ0 and the hardening 

exponent n. As shown in appendix A.4, an increase of the coefficient of friction 

leads to more pronounced material pile-up. Summarized the profiles of the re-

sidual imprint agree quantitatively very well between simulation and experi-

ment.  

 

Figure 59: Material pushed out of the side faces of the bridge in the conventional and non-

Schmid simulations and in the experiment 
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Additionally, the shape of the residual imprint was compared regarding the 

material pushed out of the side faces of the bridge. Figure 59 shows the de-

formed geometry of the bridge after unloading determined in the experiment 

(bottom) and the conventional and non-Schmid simulation (top and middle, 

respectively). The overall deformed shape of the indented bridge of the exper-

iments and the two simulations agrees well.  

The material laterally pushed out at the side faces is larger in the conventional 

than in the non-Schmid simulation. The plastic shear on slip system 1/11 and 

6/7 which are responsible for strain in the global z-direction in the midsection 

shows a higher value in the conventional than in the non-Schmid simulation 

(see figure 56 and figure 57). This agrees well with the higher peak of pushed 

out material at the side faces of the bridge. So, the non-Schmid effects on slip 

system 1/11 and 6/7 lead to less plastic shear on these slip systems, i.e. aggra-

vate plastic shearing.  

6.6.2 Comparison of the crystal lattice rotation and GND 
density 

The crystal lattice rotation was determined in the bridge shaped experiment by 

Wang as described in chapter 4. Based on the EBSD data, the crystal lattice 

rotation was investigated. As already indicated, the out-of-plane rotation is 

negligible during wedge indentation into the bridge and thus, solely the first 

Euler angle is taken to characterize the lattice rotation. Figure 60 shows the 

first Euler angle as determined in the conventional and non-Schmid simulation 

and the experimental result. All plots exhibit an antisymmetry with respect to 

the indenter axis and two regions with high positive and negative rotation un-

der the left and right flanks of the indent, respectively. The overall shape of 

these regions agrees very well. Under the indenter flanks in the experiment 

however, the maximum rotation angle is significantly larger. Further away 

from the indent, the values agree well. Along a virtual arch starting at the free 

surface of the specimen down to the indenter axis, a positive rotation occurs at 

the start of the arc in all plots. Further along the arch, the rotation decreases to 

zero and then enters a region with negative rotation in all plots. Towards the 
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end of the arch, approaching the indenter axis, the rotation decreases to zero in 

a region under the indent limited by the two lines AB̅̅ ̅̅  and CD̅̅ ̅̅  in the plot de-

termined in the experiment. However, in both, the conventional and the non-

Schmid simulation, again a positive first Euler angle occurs. So, beside the 

good agreement of the rotation field, there is a significant disagreement in the 

area between the lines AB̅̅ ̅̅  and CD̅̅ ̅̅  in the experiment and simulation. 

 

Figure 60: Crystal lattice rotation in the midsection of the bridge in the experiment, the conven-

tional and the non-Schmid crystal plasticity simulation 

 

As Figure 60 shows, gradients of plastic shear and non-Schmid effects hardly 

change the distribution of the Euler angle. It seems that a phenomenon only 

appearing in the experiment is seen to be responsible for the disagreement, for 

example recrystallization i.e. the formation of subgrains under the indenter 

flanks is not handled in the model. However, this cannot be finally proved in 

this thesis.  

Beside the first Euler angle, representing the lattice rotation, the kernel average 

misorientation method in the software package MTEX was used to determine 

the density of geometrically necessary dislocations in the midsection in the 

simulations and experiment, always based on the three Euler angles. The re-

sults are shown in figure 61. The overall GND density is higher in the experi-

ment. High values occur right under the indenter flanks. This may be due to 
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friction and recrystallization in a small layer under the flanks. In both simula-

tions, no GNDs occur under the flanks. As already described in detail above, 

in both simulations, bands starting at the contact point emanating downwards 

to the indenter axis occur with a length of about 3 µm. In the experiment, also 

two band starting at the contact point can be identified, however, they are con-

nected to the indenter tip and do not point downwards as in the simulation 

results. This is because no lattice rotation occurs under the indenter tip in the 

experiments, in contrast to the experiments. Furthermore, another ray starting 

at the indenter tip along the indenter axis occurs in the simulations but not in 

the experimental result.   

 

Figure 61: Density of geometrically necessary dislocations in the midsection in the experiment, 

conventional and non-Schmid simulation determined with the kernel average misori-

entation method (KAM) based on the crystal lattice rotation  
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7 Summary and conclusion 

In the present work, the plastic deformation behavior of tungsten single crys-

tals on the microscale was investigated using finite-element wedge nanoinden-

tation simulations.  

The focus of the first part of this work was thereby to determine constitutive 

models that area able to describe the indentation size effect and non-Schmid 

effects. The chosen models, namely the mechanism-based strain gradient and 

non-Schmid crystal plasticity model were implemented in the conventional CP 

constitutive model. For a use in the framework of the finite-element method, 

both models were implemented as extensions for the crystal plasticity subrou-

tine by Huang (Huang 1991) and used together with the commercial FE-soft-

ware package ABAQUS.  

In the second part of the thesis an investigation of the deformation behavior in 

wedge nanoindentation with the conventional, mechanism-based strain gradi-

ent and non-Schmid crystal plasticity model was performed. Therefore, the slip 

system activities, stress states, increments of plastic shear, deformed geome-

tries, load-displacement curves as well as crystal lattice rotation and density of 

geometrically necessary dislocations were determined. For the MBSGCP sim-

ulation, an additional investigation of the critical shear stress and the indenta-

tion size effect was performed. All studies were carried out for the [01̅0](101) 

oriented single crystal. To study the orientation influence, the crystal lattice 

rotation, deformed geometry and load-displacement curves were determined 

for the [123](111̅) oriented crystal in addition and compared to the results from 

the [01̅0](101) simulation. Different FE-models, namely the conventional and 

non-Schmid simulation with the brick-shaped and the computationally signif-

icantly more expensive MBSGCP simulation with the single-layer model were 

used. The use of the single-layer model was possible since plastic deformation 

can be described by the sum of dislocation on solely three effective slip sys-

tems in the [01̅0](101) simulation causing plane strain conditions in the mid-

section of the brick-shaped model.  
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The third part of this work contains a comparison of the deformed geometry of 

the indented bridge-shaped specimen, the crystal lattice rotation and the den-

sity of geometrically necessary dislocations determined in the numerical study 

and the experiment conducted by J. Wang at the Karlsruhe Institute of Tech-

nology. 

The key results and findings are summarized in the following paragraphs.   

Conventional crystal plasticity studies 

 Based on the activity of individual slip systems, a slip system activity map 

was determined in the midsection of the model showing fan-shaped re-

gions in which either one or two effective slip systems are active. On these 

active slip systems, a dependency of plastic shear solely on the stress com-

ponents σ11, σ22 and σ12 was found for the [01̅0](101) oriented crystal. A 

connection between the activity of slip systems and the stress state was 

observed. For a better understanding, a yield surface was determined in a 

two-dimensional stress space with (σ11-σ22)/2τc on the abscissa and σ12/τc 

on the ordinate. With the yield surface and the distribution of (σ11-σ22)/2 

and σ12, the activity of slip systems at points under the indent were deter-

mined. The results correspond to the slip system activity map.  

 Further, the increments of plastic shear were investigated at different in-

dentation depths. It was found that plastic shear occurs in bands, propagat-

ing through the crystal always starting at the contact point of the indenter. 

These propagating bands are explained by an increase of dislocations un-

der the indent with increasing indentation depth. So a region with high 

strengthening under the indent becomes less favorable to plastic defor-

mation and the material around this zone deforms preferable, resulting in 

the observed plastic shear bands.  

 An investigation of the increments of plastic shear at an indentation depth 

of 2 µm revealed a fan shaped distribution of areas in which either one or 

two effective slip systems are active. This result of the numerical investi-

gation in this work agrees well with the analytic results determined e.g. in 
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the work of Hill et al. (Hill et al. 1947), Johnson (Johnson 1985) and Saito 

(Saito and Kysar 2011; Saito et al. 2012). 

Influence of the crystal orientation 

 In opposite to the plane strain conditions in the midsection of the brick-

shaped [01̅0](101), out of plane strain was found in the [123](111̅) simu-

lation.  

 A comparison of the load-displacement curves, showed that the crystal in-

dented in the [123] direction has a smaller resistance against the penetrat-

ing indenter than it has in the [01̅0](101) orientation. This indicates, that 

the orientation of the slip systems in the [123](111̅) orientation enable an 

easier displacement of material under the indenter. This was confirmed by 

the comparison of the pile-up profiles of the indented surface which 

showed that overall more material piles-up at the surface as the crystal is 

indented in the [123] direction. 

Influence of gradients of plastic shear 

 More material piled-up at the surface of the specimen in the conventional 

CP simulation compared to the MBSGCP simulation. A comparison of the 

plastic shear on the resulting slip system 9/10 (causing mainly vertical 

shear and seen to be responsible for pile-up) along vertical paths under the 

piled-up material showed higher values in the MBSGCP simulation. This 

difference is seen to be the reason for the different pile-up profiles. A qual-

itative comparison of the distributions of plastic shear on the three effec-

tive slip systems and the slip system activity maps did not show a signifi-

cant difference between the conventional and MBSG crystal plasticity 

simulations. 

 The introduction of gradients of plastic shear does not violate the plane 

strain conditions in the single-layer model and a dependency of the shear 

stress solely on σ11, σ22 and σ12 was found. A comparison between (σ11-

σ22)/2 and σ12 determined in the conventional and mechanism-based strain 

gradient crystal plasticity revealed much higher values in the MBSGCP 
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simulation. This can be explained by the occurrence of GNDs in the 

MBSGCP simulation that aggravate plastic deformation. In the displace-

ment controlled simulation, this additional strengthening is compensated 

by an increase of the resolved shear stress, i.e. the driving force, which in 

turn makes higher stresses necessary.  

 A study on g
GND

, the contribution to hardening by GNDs, under the indent 

revealed a decrease of g
GND

 for increasing indentation depths, correspond-

ing to decreasing gradients of plastic shear with increasing indentation 

depth. Thereby, the increase of the hardness with smaller indentation 

depths and a higher resistance against the penetration of the indenter can 

be explained.   

 The influence of strain gradients on the lattice rotation and GND density 

turned out to be rather small. Only a small difference in a comparison be-

tween the conventional and MBSGCP simulation occurred. Since gradi-

ents of plastic shear do influence the occurring stresses severely but not 

the distribution and absolute values of plastic shear, it is only reasonable 

that the lattice rotation agrees well in the two simulations. Since gradients 

of plastic shear, i.e. additional hardening do not change the lattice rotation 

and GND density, a change of the hardening model in the conventional CP 

simulations can be assumed to cause no significant change, too.  

Influence of non-Schmid effects 

 Compared to the conventional and MBSGCP simulation, significantly 

more material pile-up at the surface of the specimen occurred in the non-

Schmid simulation. The comparison of plastic shear on effective slip sys-

tem 9/10, again along vertical paths under the piled-up material, revealed 

lower values in the non-Schmid than in the conventional simulation. In 

opposite to the higher values of plastic shear in the MBSGCP simulation 

that corresponded with less material pile-up, the non-Schmid effects lead 

to lower values of plastic shear along the paths and thus, more material 

pile-up occurs. The qualitative comparison of the distributions of plastic 

shear on the three effective slip systems between the conventional and 
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non-Schmid simulation showed significantly more plastic shear on slip 

system 9/10 in the vertical region under the indenter, while on slip system 

2/12 and 5/8, no significant difference occurred. Consequently, non-

Schmid effects must promote plastic shear mainly on the effective slip sys-

tem 9/10 but not on slip system 2/12 and 5/8. The determined slip system 

activity map shows again a good qualitative agreement with the ones de-

termined in the conventional and MBSG crystal plasticity simulation. 

 Like in the first two simulations, non-Schmid effects did not influence the 

plane strain conditions in the midsection of the brick-shaped model. Thus, 

the stress state was studied in the same manner than in the conventional 

and MBSG crystal plasticity simulations. The result shows significantly 

lower occurring stresses under the indent. So, the non-Schmid effects lead 

to a facilitation of the deformability of the crystal. The same indicates the 

much lower load-displacement curve determined in the non-Schmid sim-

ulation in comparison to the conventional CP simulation. 

 Regarding the study of the increments of plastic shear, it was found that 

the absolute values are higher in the non-Schmid simulation than in the 

conventional CP simulation. Propagating bands were found like in the con-

ventional CP simulation. However, while they are slightly bend outward 

in the conventional CP simulation, they point downwards almost vertically 

in the non-Schmid simulation. Thus, the zone under the indent where se-

vere strengthening occurs, changes its shape due to the non-Schmid ef-

fects. This is mainly because of the effective slip system 9/10 that is more 

active in the non-Schmid simulation under but not left and right of the 

indent. The plastic shear increment map determined in the non-Schmid 

simulation agrees well with the one determined in the conventional crystal 

plasticity simulation.  

 The qualitative comparison of the overall distributions and values of in-

plane rotation and density of geometrically necessary dislocation agrees 

well between the non-Schmid and conventional CP simulation. The small 

difference can be explained by the more active slip system 9/10. 
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Comparison of the numerical and experimental studies   

 The comparison of experimental and numerical results regarding the de-

formed geometry of the indented bridge after the indentation agrees well. 

The comparison of the pile-up in the midsection of the bridge shows a 

good agreement between the conventional CP simulation and the experi-

ment. Like in the simulations of the brick-shaped model, more material 

pile-up occurs in the non-Schmid simulation.  

While crystal lattice rotation occurs right under the indenter tip in all simula-

tions, no rotation was determined in the experiment. This disagreement may 

be caused by recrystallization i.e. the formation of subgrains under the indenter 

flanks which was not handled in the numerical simulations. 
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A Appendix 

A.1 Shape functions and their derivatives 

For both, the calculation of the plastic shear gradients and the determination of 

the Jacobian matrix for every element, the partially derivatives of the shape 

functions with respect to the local coordinates are needed. These derivatives 

are defined in the subroutine and listed in the following table 10 for the used 

C3D8 and C3D8R elements. 

Table 10:  Partially derived shape functions with respect to the local coordinates 

i 𝑁𝑖,𝜉 𝑁𝑖,𝜂 𝑁𝑖,𝜌 

1 - 
1

8
(1 - η)(1 - ρ) -

1

8
(1-ξ)(1-ρ) -

1

8
(1-ξ)(1-η) 

2 
1

8
(1-η)(1-ρ) -

1

8
(1+ξ)(1-ρ) -

1

8
(1+ξ)(1-η) 

3 
1

8
(1+η)(1-ρ) 

1

8
(1+ξ)(1-ρ) -

1

8
(1+ξ)(1+η) 

4 -
1

8
(1+η)(1-ρ) 

1

8
(1-ξ)(1-ρ) -

1

8
(1-ξ)(1+η) 

5 -
1

8
(1-η)(1+ρ) -

1

8
(1-ξ)(1+ρ) 

1

8
(1-ξ)(1-η) 

6 
1

8
(1-η)(1+ρ) -

1

8
(1+ξ)(1+ρ) 

1

8
(1+ξ)(1-η) 

7 
1

8
(1+η)(1+ρ) 

1

8
(1+ξ)(1+ρ) 

1

8
(1+ξ)(1+η) 

8 -
1

8
(1+η)(1+ρ) 

1

8
(1-ξ)(1+ρ) 

1

8
(1-ξ)(1+η) 

Further the values of the shape functions and their derivatives at the integration 

points are necessary for the calculations. The local coordinates of integration 

points are listed in table 11 together with the local coordinates of the elements 
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nodes for C3D8 elements and exemplarily the values of the first, second and 

eights shape function at integration points. In the C3D8R element, solely one 

integration point exists at the local coordinates ζ = η = ρ = 0.  

Table 11:  local coordinates of nodes and integration points within the C3D8 element together 

with the values of shape function 1, 2 and 8 at the eight integration points 

IPT ζ η ρ 𝑁1 𝑁2 … 𝑁8 Node ζ η ρ 

1 -0.577 -0.577 -0.577 0.490 0.131 … 0.035 1 -1.0 -1.0 -1.0 

2 0.577 -0.577 -0.577 0.131 0.490 … 0.009 2 1.0 -1.0 -1.0 

3 -0.577 0.577 -0.577 0.131 0.035 … 0.131 3 1.0 1.0 -1.0 

4 0.577 0.577 -0.577 0.035 0.131 … 0.035 4 -1.0 1.0 -1.0 

5 -0.577 -0.577 0.577 0.131 0.035 … 0.131 5 -1.0 -1.0 1.0 

6 0.577 -0.577 0.577 0.035 0.131 … 0.035 6 1.0 -1.0 1.0 

7 -0.577 0.577 0.577 0.035 0.009 … 0.490 7 1.0 1.0 1.0 

8 0.577 0.577 0.577 0.009 0.035 … 0.131 8 -1.0 1.0 1.0 

The values of derivatives of the eight shape functions are listed in the following 

table 12, exemplarily for the shape functions one and eight.  

Table 12:  Values of derivatives of shape functions 1 and 8 at the eight integration points 

IPT 𝑁1
,𝜉  𝑁1

,𝜂 𝑁1
,𝜌 … 𝑁8

,𝜉  𝑁8
,𝜂 𝑁8

,𝜌 

1 -0.311 -0.311 -0.311 … -0.022 0.083 0.083 

2 -0.311 -0.083 -0.083 … -0.022 0.022 0.022 

3 -0.083 -0.311 -0.083 … -0.083 0.083 0.311 

4 -0.083 -0.083 -0.022 … -0.083 0.022 0.083 

5 -0.083 -0.083 -0.311 … -0.083 0.311 0.083 

6 -0.083 -0.022 -0.083 … -0.083 0.083 0.022 

7 -0.022 -0.083 -0.083 … -0.311 0.311 0.311 

8 -0.022 -0.022 -0.022 … -0.311 0.083 0.083 

A.2 Common blocks and additional STATEV 

Additional STATEVs were defined for the studies performed in this work. 

These contain the contribution to the current strength of a slip system caused 

by GNDs and the gradients of plastic shear in the x- y- and z-direction. The 

numbering of the additional STATEVs is listed in the following table 13. 
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Table 13:  Additional STATEVs in the MBSGCP subroutine 

STATEV(10*NSLPTL+2)-   

STATEV(11*NSLPTL+1)  

Contribution to the current strength due to 

the geometrically necessary dislocations 

 

STATEV(11*NSLPTL+2)-   

STATEV(12*NSLPTL+1) 

Gradient of plastic shear in global x-direc-

tion 

 

STATEV(12*NSLPTL+2)-   

STATEV(13*NSLPTL+1) 

Gradient of plastic shear in global y-direc-

tion 

 

STATEV(13*NSLPTL+2)-   

STATEV(14*NSLPTL+1) 

Gradient of plastic shear in global z-direc-

tion 

Furthermore, an overview of the needed user-defined common blocks neces-

sary in the MBSGCP subroutine is shown in the following table 14 containing 

the common block names and a brief description of the contents: 

Table 14:  User-defined common blocks in the MBSGCP subroutine 

GAMMAINT1  (global element number, 

 number of slip system) 

Contains all plastic shear 

values with the global ele-

ment number at the unique 

integration point of an 

C3D8R element  

 

NODELEM       (global element number,  

 local node number) 

Contains the elements in 

global numbering and the 

eight attached nodes in lo-

cal numbering 

  

NODEADJEL   (global node number) Contains how often a 

unique node is shared by 

different elements 

 

ALLGAMMA1  (global node number, 

 number of slip system) 

Contains the averaged 

value of plastic shear at all 

nodes in global numbering 
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COORDSK         (global node number,     

 global coordinates) 

Contains the three compo-

nents of the global coordi-

nates of nodes in global 

numbering 

A.3 Characterization of crystal lattice rotation 

For the characterization of the crystal lattice rotation, the initial values of the 

slip directions si and slip plane normal mi are saved as additional solution-de-

pendent state variables (SDV) and remain unchanged till the simulation end. 

The determination can be performed based on each of the twelve slip systems 

since all vectors undergo the same rotation at a material point. In this work, the 

first system was used for the calculations. A third vector t in the initial and 

current state defined by ti/c = |mi/c × si/c| is calculated in the subroutine and saved 

in the initial increment as SDV as well. All vectors are normalized for the cal-

culation of the rotation matrix in every increment. The rotation matrix R can 

be determined by setting up the three equations (sum over j and k):  

𝑚j
c = 𝑅jk𝑚k

i  (A.1) 

𝑠j
c = 𝑅jk𝑠k

i  (A.2) 

𝑡j
c = 𝑅jk𝑡k

i . (A.3) 

With these nine equations, the nine components Rij of the rotation matrix can 

be calculated. Therefore, the matrix A is set up in the subroutine in the follow-

ing form: 
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𝑨 = (

𝑚1
i 𝑚2

i 𝑚3
i

𝑠1
i 𝑠2

i 𝑠3
i

𝑡1
i 𝑡2

i 𝑡3
i

). (A.4) 

With the matrix A, the following three expressions can be formulated:  

(

𝑚1
c

𝑠1
c

𝑡1
c

) = 𝑨 (

𝑅11

𝑅12

𝑅13

) , (

𝑚2
c

𝑠2
c

𝑡2
c

) = 𝑨 (

𝑅21

𝑅22

𝑅23

) , (

𝑚3
c

𝑠3
c

𝑡3
c

) = 𝑨 (

𝑅31

𝑅32

𝑅33

). (A.5) 

By inverting the matrix A, the components of the rotation matrix R can be 

determined. 

A.4 Influence of the coefficient of friction 

It is assumed that in all models used in this work the influence of friction is 

comparable and hence, the investigations on friction were performed on the 

basis of the single-layer model with mesh 2 and the [01̅0] orientation. It was 

observed that the distortion of the elements in contact with the indenter and 

several layers of elements beneath are significantly influenced by the coeffi-

cient of friction. For a high coefficient, the lateral deformation of elements in 

contact with the indenter is restricted. For small values, massive lateral distor-

tion was observed. The comparison of the first Euler angle, the indentation 

profiles and the load-displacement curves determined with different coeffi-

cients of friction show that the described effect influences the results signifi-

cantly. The higher the coefficient of friction is chosen, the higher the load on 

the indenter is and the more material pile-up occurs. Furthermore, a significant 

increase of the first Euler angle appears as the coefficient of friction increases. 

The exact coefficient of friction is not known, however, a too low value leads 

to unrealistic distortion of elements under the indenter.   
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Figure 62: Influence of the coefficient of friction on in-plane lattice rotation, material pile-up and 

load-displcament curves in a), b) and c), repectively 

A.5 Schmid-tensors of active slip systems 

The Schmid-tensors of the six active slip systems in the midsection of the con-

ventional CP simulation using the brick-shaped model are listed in the follow-

ing: 

P2= (
-0.408 0.144 -0.204

0.144 0.408 -0.144

-0.204 -0.144 0.000

) (A.6) 
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P12= (
-0.408 0.144 0.204

0.144 0.408 0.144

0.204 0.144 0.000

) (A.7) 

P5= (
-0.408 -0.144 0.204

-0.144 0.408 -0.144

0.204 -0.144 0.000

) (A.8) 

P8= (
0.408 0.144 0.204

0.144 -0.408 -0.144

0.204 -0.144 0.000

) (A.9) 

P9= (
0.000 0.289 -0.408

0.289 0.000 0.000

-0.408 -0.000 0.000

) (A.10) 

P10= (
0.000 -0.289 -0.408

-0.289 0.000 0.000

-0.408 -0.000 0.000

). (A.11) 

A.6 Determination of effective slip systems  

Slip systems 9 and 10 have the same slip plane but different slip directions. 

Simultaneous slip occurs along these slip directions (�̇�s
9 = −�̇�s

10). With these 

findings, slip systems 9 and 10 can be combined following the expression: 

𝑫s
9/10

= �̇�s
9𝑷s

9 − �̇�s
10𝑷s

10. (A.12) 

Again, the Schmid-tensor can be written in terms of s and m: 

𝑫s
9/10

=
�̇�s

9/10

2
[(𝒔9 ⊗ 𝒎9 + 𝒔9 ⊗ 𝒎9) − (𝒎10 ⊗ 𝒔10

+ 𝒎10 ⊗ 𝒔10)]. 

(A.13) 

With the corresponding slip plane normals but the different slip directions 

of slip system 9 and 10 the equation can be simplified to determine the 
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resulting rate of stretching caused by the combination of corresponding slip 

systems 2 and 10: 

𝑫s
9/10

=
�̇�s

9/10

2
[𝒎9 ⊗ (𝒔9 − 𝒔10) + (𝒔9 − 𝒔10) ⊗ 𝒎9]. (A.14) 

The slip systems 5 and 8 have the same slip direction but different slip 

planes and again simultaneous slip occurs on the two slip systems  

(�̇�𝑠
5 = −�̇�𝑠

8): 

𝑫s
5/8

= �̇�s
5𝑷s

5 − �̇�s
8𝑷s

8. (A.15) 

With the expression for the Schmid-tensor, the equation for the calculation of 

the rate of stretching can be determined: 

𝑫s
5/8

=
�̇�s

5/8

2
[(𝒔5 ⊗ 𝒎5 + 𝒔5 ⊗ 𝒎5) − (𝒎8 ⊗ 𝒔8

+ 𝒎8 ⊗ 𝒔8)]. 

(A.16) 

Consequently, the expression to calculate the rate of stretching D gives: 

𝑫s
5/8

=
�̇�s

5/8

2
[𝒔5 ⊗ (𝒎5 − 𝒎8) + (𝒎5 − 𝒎8) ⊗ 𝒔5]. (A.17) 

A.7 Numbering of slip systems in CP and NOSCP subroutine 

Per definition, there are 24 slip systems in the non-Schmid model imple-

mented. Always two of the 24 slip systems are corresponding slip system with 

the same slip plane and slip direction that point however, in the opposite direc-

tion. This means that each two corresponding slip systems have the same 
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Schmid-tensor but with different sign. For a comparison of the 24 slip systems 

in the non-Schmid model and the twelve slip systems in the conventional CP 

model, each two slip systems with collinear slip directions in the non-Schmid 

simulation were combined for the investigation of the slip system activities. 

For every slip system in the conventional crystal plasticity, two corresponding 

slip systems can be found in the non-Schmid subroutine. For some slip sys-

tems, the defined slip plane normal in the non-Schmid simulation is defined in 

the opposite direction than in the conventional simulation. This leads to differ-

ent signs in the Schmid-tensors. However, the definition of the slip plane nor-

mal does not influence the simulation results. For the comparison of the results, 

the internal numbering of slip systems as defined in the conventional crystal 

plasticity simulation is used and the corresponding slip systems in the non-

Schmid simulation are renumbered to match the conventional CP numbering. 

In the following, e.g. slip system 2 from the conventional CP is compared to 

renumbered slip system 2NoS++2NoS-. The + defines the non-Schmid slip system 

with the same slip direction than the slip system from the conventional simu-

lation and – the corresponding slip system with opposite slip direction. A sum-

mary of the corresponding slip systems is given in the following table 15. For 

both, the non-Schmid and conventional crystal plasticity simulation, plastic 

shear on six of the twelve slip systems is either zero or very small in compari-

son to the slip systems that are considered active. These slip systems are not 

shown in the table. 

Table 15:  Numbering of active slip systems in the conventional and non-Schmid crystal  

plasticity simulation 

conventional  

CP numbering 

non-Schmid  

numbering 

non-Schmid  

renumbered  

2S 
7NoS 2NoS+ 

19NoS 2NoS- 

5S 
6NoS 5NoS+ 

18NoS 5NoS- 

8 
5NoS 8NoS+ 

17NoS 8NoS- 

9 
2NoS 9NoS- 

14NoS 9NoS+ 
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10 
10NoS 10NoS+ 

22NoS 10NoS- 

12 
9NoS 12NoS- 

21NoS 12NoS+ 

A.8 Element size study  

To ensure that the results of the simulations are independent on the element 

size, the single-layer model was discretized with three different meshes. The 

results regarding the pile-up, load-displacement and crystal lattice rotation 

were compared. Three meshes, namely mesh 1, mesh 2 and mesh 3, consisting 

of 1330, 2378 and 10698 linear hexahedral elements of type C3D8R. The 

smallest element sizes under the indent in the contact region were 300 nm × 

300 nm, 100 nm × 100 nm and 33 nm × 33 nm, for the three meshes respec-

tively.  

Figure 63 shows the results for the calculated first Euler angel φ1 representing 

in-plane lattice rotation in the single-layer model, along a path emanating from 

the indenter axis to the right about 0.6 µm underneath the surface of the spec-

imen in a) and the indented surface profile after unloading in b), both for the 

three different meshes. The maximum value along the path is larger in the re-

gion between 0 µm and 0.5 µm in the simulation with mesh 1. The overall 

shapes of regions where lattice rotation occurs and the maximum values are 

similar for all three meshes. Both, mesh 2 and mesh 3, lead to a similar surface 

profile. However, the profile in the simulation using mesh 1 is slightly lower. 

The reason is that the larger elements in the region where contact stops cannot 

resolve the exact profile as determined with mesh 2 and mesh 3. Figure 63 c) 

shows the load-displacement curves determined with the three different 

meshes. Again, just like in the comparison of the indentation profiles, mesh 2 

and mesh 3 lead to similar results. The curve determined with mesh 1 exhibits 

a yattering shape. This is caused by the large elements and their nodes respec-

tively, increasing the reaction force on the indenter suddenly as they make con-

tact with the surface of the indenter.  



A     Appendix 

135 

  

 

Figure 63: First Euler angel φ1 along the path 600 nm underneath the surface of the specimen, 

material pile-up profiles of the indented surface after fully unloading and load-dis-

placement curves in a), b) and c). All figures show the comparison of the three differ-

ent meshes 

The comparison induces that the coarsest mesh tends to be not suitable for the 

investigations. The simulations with mesh 2 and mesh 3 determine similar re-

sults. However, due to the significantly lower computational effort, mesh 2 is 

used for the investigations using the single-layer model in this work.   
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A.9 Influence of the number of layers in the brick-shaped 

model  

Beside the element size in the midsection, the number of elements in the global 

z-direction may influence the simulation results in the brick-shaped model and 

was therefore investigated. Three models with the same mesh (corresponding 

to mesh 2 used in the single-layer model) in the global x-y-plane but with a 

different amount of elements in the z-direction, namely eight, twelve and 16 

elements were used for the simulations and the three Euler angles, the material 

pile-up and the load-displacement curves were compared. For the [01̅0] orien-

tation, the number of elements in the z-direction can be assumed negligible due 

to the plane strain conditions and so the investigations were carried out for the 

brick-shaped model and the [123] orientation. Since no plane strain conditions 

occur in the midsection of the simulations of the [123] indented crystal, all 

three angles were evaluated and compared along the path 600 nm under the 

specimen’s surface. It was found that neither the Euler angles nor the indenta-

tion profiles or load-displacement curves are influenced by the number of ele-

ments and therefore, the results are not shown here. To keep computational 

time as low as possible, eight elements were defined in the global z-direction 

in all simulations of the brick-shaped model. 
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A.10 Influence of wideness of the brick-shaped model 

It was found, that a minimum thickness of the brick-shaped model is necessary 

for plane strain conditions, i.e. in-plane lattice rotation in the midsection. The 

evaluation of the three Euler angles for the [123] orientation, again along the 

path 600 nm under the surface, shown in figure 64, reveals a derivation of the 

angles for a wideness w of the specimen smaller than 50 µm. The comparison 

of the indentation profiles in figure 65 shows a decrease of material pile-up 

with decreasing wideness of the specimen. A lower profile was determined for 

the 50 µm wide specimen. For a wideness of 30 µm, an even more significant 

lower profile was determined. Consequently, the brick-shaped model for the 

studies in this work has to have a wideness of 70 µm.  

  

 

Figure 64: Comparison of the three Euler angles 𝜑1, 𝛷 and 𝜑2 along the path about 600 nm under 

the indented surface after unloading in the brick-shaped model in a), b) and c) 

-3 -2 -1 0 1 2 3
-40

-30

-20

-10

0

10

20

30

 t = 30 µm

 t = 50 µm

 t = 70 µm

 t = 90 µm

φ
1

 i
n

 °

Distance along x-axis in µm

a)

-3 -2 -1 0 1 2 3
-8

-6

-4

-2

0

2

4

 t = 30 µm

 t = 50 µm

 t = 70 µm

 t = 90 µm

θ
 i

n
 °

Distance along x-axis in µm

b)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4
 t = 30 µm

 t = 50 µm

 t = 70 µm

 t = 90 µm

φ
2

 i
n

 °

Distance along x-axis in µm

c)



A     Appendix 

138 

 

Figure 65: Comparison of the surface profiles of the indented specimens with the 30 µm, 50 µm, 

 70 µm and 90 µm wideness of the brick-shaped model after unloading   
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