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A B S T R A C T

Mobile robots and autonomous vehicles rely on multi-modal sensor
setups to perceive and understand their surroundings. Aside from
cameras and RaDAR sensors, LiDAR sensors represent a key com-
ponent of state-of-the-art perception systems. In addition to accurate
spatial perception, a comprehensive semantic understanding of the
environment is essential for efficient, safe operation.

In this thesis, the LiLaNet - a novel real-time capable neural net-
work architecture for high-quality LiDAR-based point-wise classifi-
cation known as semantic labeling - is developed. Considering the
well-known domain of image-based processing, the 3D LiDAR point
cloud is represented as a 2D cylindrical image. As a result, pub-
lished state-of-the-art methods for LiDAR-based semantic labeling
are outperformed on different benchmarks.

For developing deep learning approaches, large-scale datasets
are of paramount importance. Therefore, datasets are created based
on two state-of-the-art mobile LiDAR sensors. Reducing the cost
and time consumption of cumbersome manual annotation work, an
automated cross-modal training data generation process for large-
scale datasets is introduced by combining state-of-the-art camera-
based semantic labeling approaches with precise calibration of a
multi-modal sensor system. The resulting semantic information can
be transferred from the camera domain to the LiDAR domain.

In addition, an efficient multi-modal data compression technique
is proposed by transferring a stereoscopic camera compression ap-
proach known as Stixel-World to the LiDAR domain. This leads to a
reduction in the large quantity of LiDAR measurements by retain-
ing the underlying semantic and geometric information, increasing
the real-time capability of downstream algorithms of autonomous
driving or mobile robotic platforms.

Furthermore, two different extensions of the proposed LiDAR-
based semantic labeling approach are outlined. First, a reduction
in sensor dependence is presented by introducing the PiLaNet, a
novel 3D neural network architecture for point-wise semantic label-
ing leveraging the strength of 3D representation compared to the
rather sensor specific cylindrical projection of the LiDAR point cloud.
Second, the uncertainty of deep learning approaches is implicitly
modeled by introducing a label hierarchy into the training process
of semantic labeling approaches.

In conclusion, this thesis significantly advances the state-of-the-art
in real-time 3D scene understanding for LiDAR sensors, yielding a
gain in performance, robustness, and redundancy for future mobile
robots and autonomous vehicles.
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Z U S A M M E N FA S S U N G

Mobile Roboter und autonome Fahrzeuge verwenden verschiedene
Sensormodalitäten zur Erkennung und Interpretation ihrer Umge-
bung. Neben Kameras und RaDAR Sensoren repräsentieren LiDAR
Sensoren eine zentrale Komponente für moderne Methoden der
Umgebungswahrnehmung. Zusätzlich zu einer präzisen Distanzmes-
sung dieser Sensoren, ist ein umfangreiches semantisches Szenev-
erständnis notwendig, um ein effizientes und sicheres Agieren au-
tonomer Systeme zu ermöglichen.

In dieser Arbeit wird das neu entwickelte LiLaNet, eine
echtzeitfähige, neuronale Netzarchitektur zur semantischen,
punktweisen Klassifikation von LiDAR Punktwolken, vorgestellt.
Hierfür finden die Ansätze der 2D Bildverarbeitung Verwendung,
indem die 3D LiDAR Punktwolke als 2D zylindrisches Bild
dargestellt wird. Dadurch werden Ergebnisse moderner Ansätze
zur LiDAR-basierten, punktweisen Klassifikation übertroffen, was
an unterschiedlichen Datensätzen demonstriert wird.

Zur Entwicklung von Ansätzen des maschinellen Lernens, wie sie
in dieser Arbeit verwendet werden, spielen umfangreiche Datensätze
eine elementare Rolle. Aus diesem Grund werden zwei Datensätze
auf Basis von modernen LiDAR Sensoren erzeugt. Durch das in
dieser Arbeit entwickelte automatische Verfahren zur Datensatz-
generierung auf Basis von mehreren Sensormodalitäten, speziell
der Kamera und des LiDAR Sensors, werden Kosten und Zeit der
typischerweise manuellen Datensatzgenerierung reduziert.

Zusätzlich wird eine multimodale Datenkompression vorgestellt,
welche ein Kompressionsverfahren der Stereokamera auf den LiDAR
Sensor überträgt. Dies führt zu einer Reduktion der LiDAR Daten
bei gleichzeitigem Erhalt der zugrundeliegenden semantischen und
geometrischen Information. Daraus resultiert eine erhöhte Echtzeit-
fähigkeit nachgelagerter Algorithmen autonomer Systeme.

Außerdem werden zwei Erweiterungen zum vorgestellten Ver-
fahren der semantischen Klassifikation umrissen. Zum einen wird
die Sensorabhängigkeit durch Einführung des PiLaNets, einer neuen
3D Netzarchitektur, reduziert indem die LiDAR Punktwolke im 3D
kartesischen Raum belassen wird, um die eher sensorabhängige 2D
zylindrische Projektion zu ersetzen. Zum anderen wird die Unsicher-
heit neuronaler Netze implizit modelliert, indem eine Klassenhierar-
chie in den Trainingsprozess integriert wird.

Insgesamt stellt diese Arbeit neuartige, performante Ansätze des
3D LiDAR-basierten, semantischen Szeneverstehens vor, welche zu
einer Verbesserung der Leistung, Zuverlässigkeit und Sicherheit
zukünftiger mobile Roboter und autonomer Fahrzeuge beitragen.
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A C R O N Y M S

1D 1-Dimensional
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AN Adversarial Network

ANN Artifical Neural Network

BEV Bird’s Eye View

CNN Convolutional Neural Network
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FCN Fully Convolutional Neural Network

FFN Feed Forward Network
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HOG Histogram of Oriented Gradients

IoU Intersection over Union

LASER Light Amplification by Stimulated Emission of
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LiDAR Light Detection and Ranging

LiLaBlock LiDAR Labeling Block

LiLaNet LiDAR Labeling Network

mIoU mean Intersection over Union
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PiLaNet Pillar Labeling Network
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SIFT Scale-Invariant Feature Transform

SVM Support Vector Machine

TN True Negative
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VFE Voxel Feature Encoder (also called Voxel Feature
Extractor within the literature)
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w/ with

w/o without
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M AT H E M AT I C A L N O TAT I O N

Matrices, Vectors, Scalars, Constants, and Functions

M Matrix of arbitrary size (bold, uppercase,
and non-italic)

Mi,j Matrix element at position (i, j) (bold, up-
percase, and non-italic)

v Vector of arbitrary size (bold and italic)
x Scalar (italic)
c Constant scalar (non-italic)
f(x) Function f(. . . ) with a scalar argument x
f′(x) Derivative of function f(. . . ) with a scalar

argument x
δf
δx Partial derivative of function f(. . . ) with

respect to x

Probability Theory and Statistics

Pr(A) Probability of event A
Pr(A|B) Conditional probability of event A, condi-

tioned on event B

General Definitions

i, j, k, n, o Indices
c speed of light
e Euler’s number
α, γ Different angles
β, ε Different Model parameters
c Class for classification
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LiDAR measurements

t Timestamp of measurements
p Single point of a LiDAR point cloud con-

taining the cartesian coordinates
px X value of the cartesian coordinates of a

point p
py Y value of the cartesian coordinates of a

point p
pz Z value of the cartesian coordinates of a

point p
ξ Reflectivity of a point p
r Distance to the sensor
T Homogeneous transformation matrix for

a transformation of a point p to a different
coordinate system

Artificial Neural Networks

Ξ Threshold of the nucleus of a neuron
ω Single artificial neuron of an Artificial

Neural Network
x Single input of an artificial neuron ω

(scalar case)
w Single weight for the input of an artificial

neuron ω (scalar case)
xnb Input vector of an artificial neuron ω with-

out bias encoding (1D case)
wnb Weight vector of an artificial neuron ω

without bias encoding (1D case)
x Input vector of an artificial neuron ω with

bias encoding (1D case)
w Weight vector of an artificial neuron ω

with bias encoding (1D case)
X Input tensor of an artificial neuron ω with

bias encoding (≥ 2D case)
W Weight tensor of an artificial neuron ω

with bias encoding (≥ 2D case)
b Bias of an artificial neuron ω

z Weighted sum of the inputs of an artificial
neuron ω
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fact(. . . ) Activation function of an artificial neuron
ω

y Single output of an artificial neuron ω
(scalar case)

y Output vector of multiple artificial neuron
ω (1D case)

Y Output Tensor of a filter of a convolution
layer (≥ 2D case)

φ Index of the class cφ returned from an
argmax operator

Φ(. . . ) Softmax function
M Number of classes used for prediction
N Number of classifications
L Number of training samples
χ Inputs of training samples
ψ Desired classification outputs for training

samples
η Learning rate
E(. . . ) Error function
ρψ,k Weight for the cross-entropy function re-

lated to the desired output ψ and the in-
dex k of the class ck

Λ, dΛ Hierarchical loss weighting
H Height of a feature map
W Width of a feature map
C Number of channel of a feature map
g Padding width of a convolution layer
δ Stride of a convolution layer
ζ Dilation width of a dilated convolution

layer

Multi-Modal Stixels

S Vector of Stixels
s Single Stixel
l Label of a Stixel
u Bottom index of a Stixel
a Top index of a Stixel
D Vertically ordered depth measurements
L Vertically ordered label measurements
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M Vertically ordered multi-modal measure-
ments containing depth measurements
and label measurements

d Depth measurement
l Label measurement
m Multi-modal measurement containing

depth and label measurements
Π(. . . ), Θ(. . . ), Ω(. . . ) Energy functions of the Stixel computa-
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1
I N T R O D U C T I O N

contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Autonomous Driving . . . . . . . . . . 1

1.1.2 Modules of Autonomous Driving
Platforms . . . . . . . . . . . . . . . . . 3

1.1.3 Semantic Labeling . . . . . . . . . . . 3

1.1.4 Perception in Autonomous Driving . 4

1.1.5 Deep Learning . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . 6

1.3 Structure of Thesis . . . . . . . . . . . . . . . . 8

Within this chapter, a motivation as well as an overview of the
thesis in terms of the contributions and the structure of the thesis
are provided.

1.1 motivation

This section describes the motivation of the thesis and provides an
introduction to related topics.

1.1.1 Autonomous Driving

For several decades, the mobility of humans is constantly increasing
concerning local journeys of day-to-day life as well as global journeys
(e. g. holidays). Already grandparents of today could not imagine
covering several hundred kilometers per day to reach their daily
business. This can also be seen in the number of vehicles within
Germany, which increased from 1953 to 2017 by a factor of 12

[Statistisches Bundesamt (Destatis), 2018].
The higher demand of mobility increases the risk of accidents. For

that reason, a standardization of mobility took place (e. g. speed lim-
its, maximum blood alcohol, mandatory seat-belts), which reduced
the number of people killed in road traffic accidents and increased
the safety of mobility as shown in Figure 1.1. In parallel to the safety
standardization, technical systems were developed which prevent
accidents or reduce the severity of an accident by assisting the driver
of a vehicle. For example, assistance systems such as the Anti-lock
Braking System (ABS), Electronic Stability Control (ESC), or active
braking systems were introduced [Reif, 2010].

1



2 introduction

Figure 1.1: Trend in the number of persons killed in road traffic accidents
from 1953 to 2019 in Germany, which is decreasing although the
number of vehicles increased by a factor of 12 between 1953 and
2017. This figure is based on [Statistisches Bundesamt (Destatis),
2020] and [Verband der Automobilindustrie e. V. (VDA), 2015].

Although the number of people killed decreased over the last
few decades, human mistakes are still responsible for 88.4% of the
accidents in Germany in which people are injured [Statistisches Bun-
desamt (Destatis), 2019a]. For that reason, driver assistance systems
and automated driver systems are developed further to increase
safety in day-to-day mobility.

In general, driver assistance systems and automated driver sys-
tems are divided into six levels of automation as shown in Figure 1.2.
The highest level of automation is full autonomous driving, which
does not need a driver or driver responsibilities anymore. This level
of autonomy should not only increase the safety of a vehicle, but
also lead to the increased mobility of those who are not able to
drive (e.g. impaired or young people). Furthermore, the comfort of
mobility is increased by being a passenger instead of being stressed
by traffic as a driver.
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Figure 1.2: Level of automation for a vehicle defined by the Society of
Automotive Engineers. The illustration is based on [National
Highway Traffic Safety Administration (NHTSA), 2020].

1.1.2 Modules of Autonomous Driving Platforms

In realizing autonomous driving, systems are often divided into dif-
ferent modules [Thrun et al., 2006, Urmson et al., 2009, Ziegler et al.,
2014], as shown in Figure 1.3. First of all, the autonomous vehicle has
sensors to detect and extract information on the environment based
on perception systems [Feng et al., 2020]. Afterwards, the sensor in-
formation can be combined by fusion approaches to create a holistic
representation of the environment such as a Dynamic Occupancy
Grid Map (DOGMa) [Nuss et al., 2018]. This environmental repre-
sentation provides the basis for high-level tasks such as localization
and object tracking [Vu et al., 2011], which are important to create a
well-founded scene understanding and situation analysis [Laugier
et al., 2011], including the prediction of other traffic participants.
By using these components, a maneuver can be planned through
the analyzed environment [Bai et al., 2015]. This allows the cooper-
ation of other traffic participants to be taken into account [Hobert
et al., 2015]. Finally, the planned maneuver is executed based on the
control system of the vehicle.

1.1.3 Semantic Labeling

For calculating a collision-free path through the environment, the
autonomous vehicle has to understand the relevant parts of the
scene. This includes the detection and classification of all measure-
ments into e. g. movable or non-movable objects as well as even
more detailed classes such as vehicles, pedestrians, and roads. This
classification of each measurement is known as semantic labeling. It
can be applied to a holistic environmental representation such as a
DOGMa, as shown by Piewak et al. [2017]. Thereby, each grid cell of
the DOGMa is classified as movable or non-movable to increase the
performance of object tracking approaches. Other approaches use
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Perception Maneuver
Planning

ControlSituation
Analysis

Fusion

Figure 1.3: Modules of autonomous driving platforms: First the percep-
tion based on different sensor types, followed by the fusion of
the perceived information to generate a holistic environmental
representation. Afterwards, the situation analysis as a base for
the maneuver planning. Finally, the execution of the maneuver
over the vehicle control system. Icons are designed by monkik and
Freepik from Flaticon.

semantic labeling as an additional task for detecting objects. Wirges
et al. [2018], for example, uses semantic labeling of a DOGMa to
detect vehicles, bicycles, and pedestrians. The results in both ap-
proaches showing that classification into a small number of classes
is feasible on an abstract and compact environmental representation,
but for an in-depth scene understanding and classification of the
measurements as required for autonomous driving, classification
has to be executed in an earlier module of autonomous driving plat-
forms. For this reason, this thesis focuses on extracting multi-class
semantic labeling on perception level.

1.1.4 Perception in Autonomous Driving

Within the field of autonomous driving, vehicles are typically
equipped with different sensors of complementary modalities such
as cameras, Radio Detection and Ranging (RaDAR) sensors and
Light Detection and Ranging (LiDAR) sensors (see Figure 1.4)
[Thrun et al., 2006, Urmson et al., 2009, Levinson et al., 2011, Wei
et al., 2013, Ziegler et al., 2014]. Each sensor modality leverages its
specific strengths in order to contribute to the overall geometric and
semantic understanding of the scene.

Based on the history of the automotive industry, RaDAR sensors
are already well known due to series production since the late 1990s
[Meinel, 2014]. Related to the field of semantic labeling, camera
images are already well known within the research domain, which
aims to classify each pixel in a given camera image [Cordts et al.,
2016, Garcia-Garcia et al., 2018, Feng et al., 2020]. By comparison,
LiDAR sensors recently entered the market and the research domain
[Mei et al., 2019]. However, each sensor modality has to extract as
much information as possible from its environment independently
of other modalities to maximize overall system performance, avail-
ability, and safety. This includes semantic information for generating
an in-depth scene understanding. For that reason, this thesis focuses
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Figure 1.4: Example of a typical autonomous vehicle from Waymo LLC
equipped with automotive sensors like cameras, RaDAR sen-
sors, and LiDAR sensors. The illustration is based on [Waymo
LLC, 2018]. © 2018 Waymo LLC

on the extraction of semantic information for each measurement
based on LiDAR sensors.

1.1.5 Deep Learning

In recent years, the corresponding task of semantic labeling of cam-
era images has experienced a significant boost due to the improve-
ments in advanced deep learning techniques [Siam et al., 2017] as
compared to classical approaches1, which often use random forests
[Shotton et al., 2008], Conditional Random Field (CRF) [Ladický
et al., 2009], boosting methods [Shotton et al., 2006], or Support
Vector Machines (SVMs) [Yi Yang et al., 2012]. Thereby, the perfor-
mance of most of the classical approaches was bound to the hand
crafted features provided as an input for the classical approaches
[Siam et al., 2017] (e. g. pixel colors [Szeliski, 2011], Histogram of
Oriented Gradients (HOG) features [Dalal and Triggs, 2005], or
Scale-Invariant Feature Transform (SIFT) features [Lowe, 2004]). In
contrast, deep learning approaches are learning a complex feature
representation leading to outperform classical approaches within the
field of semantic labeling in terms of classification performance. This
can be observed at several benchmarks such as the PASCAL Visual
Object Classes (VOC) Challenges [Everingham et al., 2011, 2012], the
NYU Depth Dataset V2 [Silberman et al., 2012], or the Cambridge
Driving Labeled Video Database (CamVid) [Brostow et al., 2009].
Within newer benchmarks such as the Cityscapes Benchmark Suite
[Cordts et al., 2016] or the semantic segmentation evaluation of the
KITTI Vision Benchmark Suite [Abu Alhaija et al., 2018], classical

1 The reader is referred to [Thoma, 2016] and [Zhu et al., 2016] for details about
classical approaches.
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approaches either do not appear within the benchmark or reach
only the last positions (e. g. [Kang and Nguyen, 2019]2). This the-
sis therefore focuses on advanced deep learning approaches to be
transferred to the field of LiDAR-based semantic labeling.

1.2 contributions

Well known within the domain of deep neural networks is the fact
that large-scale datasets are of paramount importance for training
competitive deep learning approaches [Sun et al., 2017]. Conse-
quently, large-scale datasets such as ImageNet [Russakovsky et al.,
2015] and Cityscapes [Cordts et al., 2016] have been made available
for this purpose within the camera domain. In contrast, within the
LiDAR domain, only a few datasets (most of them without relation
to road scenarios or autonomous driving) have been made available
in the context of semantic labeling [Silberman et al., 2012, Hackel
et al., 2017, Behley et al., 2019]. Therefore, in this thesis, an approach
is developed to generate large-scale datasets in an automatic fashion.
This reduces not only the cumbersome and time-consuming man-
ual annotation work, but also reduces the costs of generating such
large-scale datasets at the same time.

In addition to automatic dataset generation, the semantic labeling
approach is developed within the context of autonomous driving,
which requires a real-time execution of proposed algorithms.

Overall, three different aspects are focused on in this thesis:

1. Robust, LiDAR-based semantic labeling with high classification
performance

2. Automatic training data generation for large-scale datasets in
the context of LiDAR-based semantic labeling

3. Real-time execution of the robust LiDAR-based semantic label-
ing approach

For approaching the three aspects of the thesis, different elements
are developed and combined. The generation of a dataset as one
aspect represents the basis for the development of semantic labeling
approaches. Such a dataset is usually created manually by annotat-
ing each measurement. This manual annotation is a time and cost
extensive task especially within the 3-Dimensional (3D) space of a
LiDAR point cloud, where objects are seen from only one side. These
types of point clouds are referred to as semi-dense point clouds.
For generating such datasets in an efficient and automated fashion,
multi-modal training data generation is proposed based on a cam-
era and a LiDAR sensor. Thereby, the strength of a high-resolution

2 Although Kang and Nguyen [2019] inserted a representation learning component
into their random forest approach, the ranking of shows that the classical methods
are outperformed by deep learning approaches.
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Calibration
Automatic
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LiDAR-based
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Figure 1.5: Overview of the research pipeline starting with a precise calibra-
tion for an automatic multi-modal training data generation, fol-
lowed by an approach for LiDAR-based semantic labeling and
a multi-modal stixel approach as data compression technique at
the end. (The images are extracted from the related publications
[Schneider et al., 2017, Piewak et al., 2018a,b] © 2017-2018 IEEE)

camera is used to automatically extract labels and transfer them to
the LiDAR measurements. To facilitate the transfer of the labels, a
precise calibration of the two sensors has to be generated, which rep-
resents the first element of the research pipeline before starting the
label transfer with a multi-modal training data generation approach
(see Figure 1.5).

Afterwards, the automatically created dataset offers the opportu-
nity to develop a robust and real-time capable approach for LiDAR-
based semantic labeling. In this context, the well-known semantic
labeling approaches of the camera domain [Garcia-Garcia et al.,
2018, Feng et al., 2020] are used and adapted to develop a semantic
labeling approach based on a LiDAR sensor.

In addition to the developed semantic labeling approach, two
extensions are proposed. First, a reduction in sensor dependence
based on an alternative deep learning approach is presented. Second,
a hierarchical semantic labeling approach is outlined to encode a
label hierarchy into the training process of deep neural networks for
semantic labeling.

The resulting semantically labeled LiDAR measurements extracted
from the developed LiDAR-based semantic labeling approach can
then be used to generate a detailed environment model as the ba-
sis for high-level tasks of mobile robotics and autonomous driving.
However, a measurement cycle of one LiDAR sensor consists of
thousands of single measurements that are recorded in a fraction
of a second. This decreases the real-time capability of downstream
algorithms as well as of the entire system. At the same time, the
LiDAR measurements are highly redundant in terms of geometric
as well as semantic information. For this purpose, the Stixel-World
of the camera domain [Badino et al., 2009, Pfeiffer, 2012, Schneider
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et al., 2016, Cordts et al., 2017, Hernandez-Juarez et al., 2017], which
reduces the amount of data by retaining the underlying geometric
and semantic information, is adapted and transferred to the LiDAR
domain. Additionally, the approach is extended to directly com-
bine different types of sensors into one Stixel representation. This
increases the real-time capability of downstream algorithms while
minimizing information loss.

The contributions can be summarized as follows:

• An efficient approach for high-quality semantic labeling of
semi-dense LiDAR measurements as provided by state-of-the-
art mobile LiDAR sensors. (Chapter 4)

• A large-scale automated cross-modal training data generation
process for boosting LiDAR-based semantic labeling perfor-
mance (Chapter 3)

• A novel deep neural network architecture reducing sensor
dependence for high-quality semantic labeling of semi-dense
point clouds (Chapter 5)

• An effective training technique encoding label hierarchy into
high-quality semantic labeling approaches of semi-dense
LiDAR measurements (Chapter 6)

• A compact and robust mid-level representation for semantic
LiDAR measurements based on the Stixel-World (Chapter 7)

• A multi-modal fusion approach integrated into the proposed
mid-level representation (Chapter 7)

• An in-depth analysis and evaluation of the proposed methods
based on different datasets (Chapters 3 to 7)

Note that all contributions except the two extensions of semantic
labeling (Chapters 5 and 6) are applied and evaluated in the context
of a research vehicle for autonomous driving.

1.3 structure of thesis

The thesis is structured similarly to the research pipeline of Fig-
ure 1.5. Following an introduction in Chapter 1, a technical back-
ground is provided in Chapter 2 including background knowledge
of LiDAR sensors, artificial neural networks, and evaluation metrics
as well as calibration approaches for different sensors as the first
step of the research pipeline. Automatic training data generation,
which represents the next step of the research pipeline, is covered in
Chapter 3. The third part of the research pipeline is separated into
three different chapters. Chapter 4 represents the main approach
of LiDAR-based semantic labeling, and Chapters 5 and 6 represent
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the extensions of the LiDAR-based semantic labeling approach in
terms of reducing sensor dependence as well as hierarchical seman-
tic labeling. The last step of the research pipeline is mentioned in
Chapter 7, where the multi-modal Stixel approach is described. Each
main chapter containing steps of the research pipeline is divided into
five sections representing an overview, related work, the method,
the evaluation, and an outcome. At the end of the thesis, Chapter 8

summarizes the main findings and provides an outlook to future
research in this area.
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In this chapter, a basic technical background related to LiDAR-
based semantic labeling is provided. This includes an introduction
to LiDAR systems, Artifical Neural Networks (ANNs), evaluation
metrics, and calibration of multiple sensor modalities. Parts of the
section regarding the calibration of multiple sensor modalities have
previously appeared in [Schneider et al., 2017] and [Piewak and
Schneider, 2018].

2.1 lidar

This section describes LiDAR sensors, including their measurement
principle, and presents the LiDAR sensors used within this thesis.

2.1.1 Measurement Principle

LiDAR sensors are based on Light Amplification by Stimulated
Emission of Radiation (LASER) systems sending out a pulsed
LASER light over an emitter. This LASER light is reflected on a
target and returned to a receiver component of the LiDAR sensor

11
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LiDAR Target

Figure 2.1: Measurement principle of a LiDAR sensor: The LiDAR sensor
emits focused LASER light (orange) to a target point (red) and
measures the reflection (green). Based on the elapsed time, a
precise distance is calculated.

(see Figure 2.1). Based on the time of flight ∆t f of the emitted
LASER light and the known speed of light c, a distance r can be
measured with

r = ∆t f · c
2

. (2.1)

Thereby, the LASER light is focused on a small area being able to
measure one specific point as the target. It might be the case that
the LASER light is not reflected e. g. by pointing the LASER system
to the sky. This is recognized as well by the receiver by generating
so-called invalid points without distance.

In a LiDAR sensor, multiple LASER systems or rotating LASER
systems are integrated to measure points of the environment based
on the precise pose of each LASER system. Each measurement cycle
generates a 3D point cloud as shown in Figure 2.2. In addition to
the distance of the targeted points, the receiver of modern LASER
system measures the amount of received light to provide coarse
reflectivity estimates. This represents color information of the used
light spectrum similar to the color information extracted by the
cones (light-sensitive cells) of the human eye1. Typically, the LiDAR
sensors use light in the infra-red spectrum. This results in a higher
reflectivity of traffic signs and road markings as compared to other
obstacles, which increases the attractiveness of a LiDAR system for
road scenario use cases.

For further details on LiDAR sensors, the reader is referred to
[Rasshofer and Gresser, 2005] and [Wandinger, 2006].

2.1.2 Sensor Types within this Thesis

Within this thesis, two main LiDAR sensor types are used to val-
idate the methods developed: A lower resolution Velodyne VLP-
32C (VLP-32C) [Velodyne LiDAR Inc., 2019a] and a higher resolution
Velodyne VLS-128 (VLS-128) [Velodyne LiDAR Inc., 2019b]. Both
sensors contain stacked LASER systems (32 LASER systems for
the VLP-32C and 128 LASER systems for the VLS-128) which are

1 The human eye has a different light spectrum as a LASER system. The mentioned
comparison is only used as a basic explanation.
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Figure 2.2: Example of a 3D point cloud of a VLP-32C. The color of the
point cloud represents the reflectivity estimate obtained by the
VLP-32C (black = low reflectivity, red = high reflectivity). The
test vehicle is headed to the top right of the figure (arrow), the
corresponding camera image is shown on the top left for clarity.

also called layers. These stacked LASER systems are rotating over
a vertical axis to generate a 360-degree 3D point cloud as shown in
Figure 2.2.

In addition to the two mentioned sensors, the developed method
for semantic labeling is evaluated based on a recently published
dataset for LiDAR point cloud semantics called SemanticKITTI
[Behley et al., 2019], which is based on the Kitti odometry dataset
[Geiger et al., 2012a]. This dataset uses a Velodyne HDL-64 (HDL-64)
[Velodyne LiDAR Inc., 2019c], representing a rotating system that
contains 64 LASER systems.
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Figure 2.3: Illustration of a biological neuron as a motivation for artificial
neurons of an ANN. Only parts that are relevant for this thesis
are mentioned. The illustration is based on [Habibi Aghdam
and Jahani Heravi, 2017]. Reprinted/adapted by permission from
Springer Nature Customer Service Centre GmbH: Springer, Guide
to Convolutional Neural Networks by Habibi Aghdam and Jahani
Heravi, © 2017.

2.2 artificial neural networks

Within this section a brief introduction to ANNs is provided as a
basis for the next chapters. For an in-depth introduction to this topic,
the reader is referred to [Goodfellow et al., 2016], [Habibi Aghdam
and Jahani Heravi, 2017], or [Skilton and Hovsepian, 2018].

2.2.1 Biological Motivation

Since the invention of machines, there is an effort to increase their
intelligence for solving problems adaptively without human inter-
action. The paradigm for this kind of machine are living beings,
including the humans with their cerebral nervous system. The mini-
mal module of such nervous systems is the biological neuron [Habibi
Aghdam and Jahani Heravi, 2017] as shown in Figure 2.3.

The biological neuron is mainly divided into 4 parts [Kandel
et al., 2013, Habibi Aghdam and Jahani Heravi, 2017]: Dendrites,
nucleus, axon, and synapses. The dendrites represent the input of
a neuron by being connected to other neurons over synapses or
being connected directly to biological inputs such as an eye. These
inputs are then collected within the nucleus by accumulation. The
inputs are thereby represented over electrical signals and can be
stimulating (positive influence) or inhibiting (negative influence),
depending on the synaptic strengths of the input signal [Kandel et al.,
2013]. In case the nucleus reaches a certain threshold, it sends out
an electrical pulse of a certain intensity. The intensity also depends
on the accumulated inputs. The electrical pulse is sent through the
axon, ending at multiple synapses which are connected to other
biological neurons.
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Figure 2.4: Example of an artificial neuron ω as part of an ANN.

2.2.2 Artificial Neuron

The aforementioned biological neuron is transferred to an artificial
representation as shown in Figure 2.4. The dendrites are represented
by multiple inputs xnb = (x1, x2, . . . , xn). The synaptic strength of
the inputs is modeled over weights wnb = (w1, w2, . . . , wn) for each
of the inputs. These weighted inputs are accumulated, which corre-
spond to the operation of the nucleus. In addition to the accumulated
inputs, a bias b = −Ξ is added which replaces the threshold Ξ of the
nucleus. At the end, an activation function fact(z) is executed repre-
senting the signal which is sent through the axon to the synapses
and other neurons [Habibi Aghdam and Jahani Heravi, 2017]. As a
result, the artificial neuron ω can be formulated as

z = wnbxnb + b (2.2)
y = fact(z) = fact(wnbxnb + b) . (2.3)

Simplifying further processing of the neuron, the bias is represented
as separate weight w0 = b, while the corresponding input is set to
x0 = 1 [Goodfellow et al., 2016, Tino et al., 2015]. As a result, the
Equations (2.2) and (2.3) can be transformed to

z = wx (2.4)
y = fact(z) = fact(wx) , (2.5)

while the inputs x = (x0, x1, . . . , xn) as well as the weights w =
(w0, w1, . . . , wn) include the bias. Note that z represents the inner
state of the artificial neuron before executing the activation function.

Similar to the biological archetype, the artificial neuron is flexible
in terms of changing its behavior [Habibi Aghdam and Jahani Heravi,
2017]. This is realized by adapting the weights w including the bias
b. This process is called learning.

The activation function can in general be an arbitrary function
which fulfills the requirements of the learning rule2, improving the

2 The activation function has to be e. g. partially differentiable to fulfill the require-
ments of the learning rule (see Section 2.2.4).
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Figure 2.5: Example of activation functions of artificial neurons: Top left:
Sigmoid function, top right: Hyperbolic tangent function, bot-
tom left: ReLU function, bottom right: Identity function.

learning process or the execution speed of the neuron computa-
tion. Commonly used activation functions are e. g. the sigmoid, the
hyperbolic tangent, the Rectified Linear Unit (ReLU), or the iden-
tity function (see Figure 2.5) [Habibi Aghdam and Jahani Heravi,
2017, Goodfellow et al., 2016]. Over the last few decades, the ReLU
functions became the activation function of choice caused by its sim-
plicity which heavily accelerates training [Krizhevsky et al., 2012]
and improves the training procedure [Maas et al., 2013] of large
ANNs. Additionally, non-linear activation functions are required
to learn arbitrary non-linear tasks. This property is fulfilled by the
ReLU function.

2.2.3 Feed Forward Networks

With the definition of an artificial neuron, more complex neural
networks can be defined by combining multiple artificial neurons
similar to the biological archetype. Hence, two general types of
ANNs exist which depend on the connection type of the different
neurons [Habibi Aghdam and Jahani Heravi, 2017]. By connecting
the neurons to a directed cyclic graph (e. g. see Figure 2.6), a recur-
rent neural network is created. This type of ANN is not related to
this thesis and the reader is referred to [Goodfellow et al., 2016]
for more details. The other neuron combination is represented by
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Figure 2.6: Example of a recurrent network represented by a directed cyclic
graph. In comparison to Figure 2.7, this ANN has a connection
from the third to the second layer, representing a cycle of a
recurrent network.

a directed acyclic graph (e. g. see Figure 2.7) and is known as Feed
Forward Network (FFN).

FFNs are typically structured in layers [Goodfellow et al., 2016].
Thereby, each layer Li contains neurons which are only connected to
the previous layer Li−1 (see Figure 2.7). The first layer which does
not have any previous layer is called the input layer and represents
the input of the ANN. The last layer which is not the input for
another layer represents the output of the ANN and is called the
output layer containing output neurons. The other layers are called
hidden layers.

A specific type of layer is the fully connected layer [Skilton and
Hovsepian, 2018], whereby each neuron within one layer is con-
nected to all neurons of the previous layer. This type of layer is
usually used within FFNs to homogenize the processing of the
ANN.

In addition to the aforementioned definition of FFNs, neurons
can be connected to previous layers by skipping the connections
to the direct predecessor layer [Goodfellow et al., 2016]. This type
of connection is called shortcut or skip connections as shown in
Figure 2.8.

With these definitions, large ANNs can be created which are able
to regress arbitrary non-linear functions per output neuron. Within
this thesis, the focus is to generate a classification into multiple
classes. For this reason, the FFN has to be extended for classification.
This is usually realized by extracting a score yi (also called a logit)
based on an output neuron per class ci. Afterwards, this score is



18 technical background

Output
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Layer

Figure 2.7: Example of an FFN represented by a directed acyclic graph.
The network is composed of one input layer, two hidden layers,
and one output layer.

normalized over the softmax function [Bishop, 2006] to generate a
probability per class with

Pr(ci|y) =
eyi

∑M
j=0 eyj

, (2.6)

while y = (y0, y1, . . . , yM−1) represents the output of neurons within
the output layer and the number of neurons M represents the num-
ber of classes. This normalization step is also called the softmax layer.
Combining the softmax layer with the fully connected output layer
results in the multinominal logistic function [Bishop, 2006, Habibi
Aghdam and Jahani Heravi, 2017]

Pr(ci|x) =
ewix

∑M
j=0 ewjx

, (2.7)

which represents the multi-class classification within the probability
theory. Consider that the activation function of the output layer
is set to the identity function [Habibi Aghdam and Jahani Heravi,
2017] in contrast to the other layers, which typically use the ReLU
function as an activation function. Finally, the classification can be
solved by extracting the class with the highest probability based on
an argmax layer, which applies an argmax function that selects the
largest element.

2.2.4 Learning Rule

Given a defined network structure, the ANN has to learn the desired
classification outputs ψ = (ψ0, ψ1, . . . , ψL−1) given corresponding
input samples χ = (χ0, χ1, . . . , χL−1) for L training pairs by adap-
tion of the weights w of the ANN. This type of learning technique
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Figure 2.8: Example of an FFN with skip connections. In comparison to
Figure 2.7, this ANN has a connection from the input layer to
the second hidden layer and from the first hidden layer to the
output layer, representing skip connections.

is called supervised learning, which is solved based on gradient
descent approaches within the domain of ANNs [Goodfellow et al.,
2016, Habibi Aghdam and Jahani Heravi, 2017].

The learning rule is separated into two steps. First, the outputs yo
of the ANN are processed based on the given input sample χo and
the error E(yo, ψo) is calculated. Afterwards, the error is propagated
back to each weight of the ANN to be adapted with a gradient
descent-based approach.

The error E(yo, ψo) can be calculated with every function such as
the mean squared error3 [Goodfellow et al., 2016, Habibi Aghdam
and Jahani Heravi, 2017] after processing the output of the ANN.
Within the context of multi-class classification, the cross-entropy loss
function is typically used as an error function which directly utilizes
the output of the softmax layer for all classes (see Equation (2.7))

ECES(yo, ψo) = −
M

∑
k

ρψo ,k ln yo,k (2.8)

with

yo = (yo,0, yo,1, . . . , yo,M−1)

= (Pr(c0|χo), Pr(c1|χo), . . . , Pr(cM−1|χo) . (2.9)

ρψo ,k represents the elements of a binary vector with the length
corresponding to the number of classes M and the values set to zero

3 For using the mean squared error, the desired classification output ψo has to be
expanded to a binary vector with the length corresponding to the number of
predicted classes and where all values are zero besides the index of the desired
class, which is set to one.
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except the index k of the desired class ψo, which is set to one as
defined with

ρψo ,k =

1, if k = ψo

0, otherwise
. (2.10)

This definition indicates that only one class represents the true class.
Expanding the error function from a single classification task to
multiple classification tasks, the cross-entropy function is defined as
[Bishop, 2006]

ECE(y, ψ) = −
N

∑
n

M

∑
k

ρψn,k ln yn,k , (2.11)

while ρψn,k represents the elements of a matrix which correspond to
a binary vector similar to Equation (2.10) for each classification n.

The expansion to multiple classifications N can be carried out by
executing multiple classifications for one sample (such as a classifica-
tion for each measurement as performed in this thesis) by processing
multiple samples at once or both in combination. The processing
of multiple samples at once is a common regularization technique
called batch normalization to increase the training speed as well as
the performance.

The second step of the learning rule is to adapt the weights w of
the ANN by iteratively applying a gradient-based method proposed
by Rumelhart et al. [1986], who generalized the delta rule for an
ANN with a single layer. Therefore, the weight wij connecting the
neurons ωi and ωj is adapted with

∆wij = −η
δE

δwij
= −η

δE
δzj

δzj

δwij
= −η

δE
δzj

yi (2.12)

based on the learning rate η, which represents the step size of the
learning based on the gradient δE

δwij
. The learning rate controls the

speed and the convergence of the learning method. Note that yi
represents the output of neuron ωi. Furthermore, δE

δzj
is represented

by
δE
δzj

=
δE
δyj

δyj

δzj
=

δE
δyj

f′act(zj) , (2.13)

while f′act(zj) describes the derived activation function of neuron
ωj and δE

δyj
describes the partial derivative of the error function

(e. g. cross-entropy function) with respect to the output yj of neuron
ωj. Rumelhart et al. [1986] continued applying the chain rule of
derivative to calculate the gradient for all weights within an ANN.

Based on the proposed backpropagation of error approach [Rumel-
hart et al., 1986], several adapted and improved methods have been
published which decrease the training time and enable a better
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convergence of the gradient-based approach e. g. by dynamically
adapting the learning rate. The current state-of-the-art technique is
the Adam optimizer [Kingma and Ba, 2015], which is also used in
this thesis.

2.2.5 Convolutional Neural Networks

The definition of the FFNs makes it possible to extract characteristics
called features from an input for classification. Thereby, each feature
extractor is represented with the weights corresponding to a neuron.
These are related to the full previous layer of the neuron or the full
input of the FFN. In contrast, within the cerebral nervous system of
living beings (e. g. feature extraction of an eye), features are extracted
on a local neighborhood which is also called the receptive field of
the feature extractor. For example, the human can recognize a bird
within the left part of an image as well as on the right part with
the same feature extractor. This translation invariant behavior was
first technically replicated by Fukushima [1980]. Afterwards, LeCun
et al. [1998] extended this replication with the learning component
of an ANN and created the Convolutional Neural Network (CNN).
In this context, the neurons of a layer are connected only to a part of
the neurons of the previous layer to extract features of a local neigh-
borhood. For enforcing the same feature extractor over the entire
input, weight sharing between different neurons was introduced.
As a result, this kind of feature extractor can be formulated as a
convolution with

Zi,j = W ∗ X =
∫

k

∫
o

Wk,oXi−k,j−o (2.14)

for the 2-Dimensional (2D) case, where Z represents the 2D output
for a specific feature extractor W (also called a filter within the
context of CNNs). X represents the input of the feature extractor. In
terms of a discrete input such as a 2D image, the equation becomes
a sum with

Zi,j = W ∗ X = ∑
k

∑
o

Wk,oXi−k,j−o . (2.15)

This formulation replaces Equation (2.4) to form the convolution
layer of a CNN including the activation function. Consider that
the input image which is also called a feature map can be of arbi-
trary dimensionality (e. g. an RGB image with two dimensions to
determine its pixel position has three color channels: red, green,
and blue), while Equation (2.15) convolves only 2 dimensions. The
other dimensions are treated over the scalar product of the feature
extractor W and the input X.

Compared to conventional computer vision techniques [Szeliski,
2011], the convolution layer represents similar image processing
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techniques as e. g. a Canny edge detector, except the fact that the
filter is not defined manually, but implicitly by adapting the filter
weights W during learning.

The output shape Hout ×Wout of the convolution formulated in
Equation (2.15) depends on the one hand on the size of the input
feature map Hin×Win×Cin and the size of the filter HW×WW×Cin.
On the other hand, it depends on two additional parameters: The
stride δ, which defines the step size of the filter configuring the
calculation of the convolution for every δth element (representing the
increment of the sums of Equation (2.15)) and the padding g, which
represents the extension at the border of the image. The extended
elements can be e. g. zero for zero padding. Within this thesis, the
same padding is used, which replicates the border elements of the
input feature map. The dimension H of the output shape is defined
with

Hout =
Hin − HW + 2g

δ
+ 1 , (2.16)

correspondingly to the dimension W. The padding is typically used
to ensure the same shape at the output of the convolution by setting
it to

g =
HW − 1

2
(2.17)

while using a stride of δ = 1. This configuration is used within this
thesis, unless explicitly stated otherwise.

By applying multiple filters per layer (similar to multiple neurons
per layer within an FFN), the output feature map of the convolution
layer becomes 3D with Hout ×Wout × C f ilter, while C f ilter represents
the number of filters as shown in Figure 2.9. Note that Figure 2.9 also
shows the receptive field at the convolution layer, which represents
the local neighborhood used as an input for the filter. Combining
the receptive fields of each layer represents the receptive field of the
entire CNN.

Based on the defined convolution layer, feature extractors can be
learned with the learning rule of Section 2.2.4. These features are
related to a specific size of the feature map. For learning feature
extractors of different input features map sizes, LeCun et al. [1998]
used pooling layers to reduce the size of the feature maps and in-
crease the receptive field of the CNN. These pooling layers combine
a number of elements within the feature map by applying an arbi-
trary operation. Commonly, the resulting element is calculated by
choosing the mean, minimum, or maximum of the according region.
Typically, a maximum operation is selected as for this thesis. As a
result, the feature map size can be reduced as shown in Figure 2.10.
The learned feature extractors of different input feature map sizes
represent different abstractions of features [Zeiler and Fergus, 2014],
similar to conventional computer vision techniques [Szeliski, 2011],
which extract low-level features e. g. edges or blobs as a first step
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Hin ×Win × Cin Hout ×Wout × C f ilter

HW ×WW × Cin

Figure 2.9: Visualization of a convolution layer, whereby one filter, his
input, and his output is highlighted.
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Figure 2.10: Visualization of a maximum pooling layer. The elements of
the 2D feature map with the same color are combined by a
maximum operation.

as well as high-level features e. g. human heads by combining the
low-level features (see Figure 2.11).

Combining convolution and pooling layers with fully connected
layers at the end of the network, LeCun et al. [1998] introduced
the first trainable CNN for image classification (see Figure 2.12).
Following his approach, several state-of-the-art CNN architectures
were developed in the task of image classification such as AlexNet
[Krizhevsky et al., 2012], VGG-net [Simonyan and Zisserman, 2015]
or GoogLeNet [Szegedy et al., 2015].

2.2.6 Fully Convolutional Neural Networks

The CNNs presented use fully connected layers at the end of the
network to reduce the size of the feature map to one output rep-
resenting e. g. the classification of a complete image. In terms of
e. g. image region classification, the output has to be represented
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Figure 2.11: Visualization of CNN filters by Zeiler and Fergus [2014]. The
CNN extracts low-level features within the first layers (left)
and high-level features within the last layers (middle). For
illustration, the input images which activates the high-level
features (middle) are shown on the right. The images are based
on [Zeiler and Fergus, 2014]. Reprinted/adapted by permission
from Springer Nature Customer Service Centre GmbH: Springer,
Visualizing and Understanding Convolutional Networks by Zeiler
and Fergus, © 2014.

Figure 2.12: First trainable CNN architecture introduced by LeCun et al.
[1998] containing convolution layers, pooling layers (called
subsampling), and fully connected layers. The numbers at
the top represent the sizes of the feature maps. The image is
extracted from [LeCun et al., 1998]. © 1998 IEEE

by more than one classification, depending on the input shape. For
that purpose, the fully connected layers are replaced by convolution
layers, which was initially done by Matan et al. [1991] for the 1-
Dimensional (1D) case and Wolf and Platt [1994] for the 2D case. As
a result, the Fully Convolutional Neural Network (FCN) can handle
arbitrary sizes of inputs, in contrast to the CNNs containing fully
connected layers, which require a fixed number of neurons as an
input.

Note that the result of a fully connected layer is equivalent to a
convolution layer with the filter size equal to the input feature map
size, which reduces the outlay of converting a CNN to an FCN.

2.2.7 Fully Convolutional Neural Network for Semantic Labeling

The goal of semantic labeling is to classify each measurement of a
certain input. In terms of an image, each pixel has to be classified.
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With the presented FCNs, the output size is reduced by pooling
layers or by the stride of the convolution layer. For this purpose,
Long et al. [2015] used the transposed convolution layer4 of Zeiler
and Fergus [2014], which was initialized with a bilinear upsampling
strategy to increase back the size of the feature maps to end up with
the same output dimension as the input of the network. With this so-
called encoder-decoder architecture of an FCN, it is possible to train
semantic labeling approaches supervised in an end-to-end manner.
As a result, the research within the field of image-based semantic
labeling was accelerated [Siam et al., 2017, Garcia-Garcia et al., 2018].
Classical approaches for semantic labeling were outperformed by
advanced deep learning techniques due to the ability of learning a
complex feature representation compared to hand crafted features
used within classical approaches as mentioned in Section 1.1.5. At
the same time, the advanced deep learning approaches require a
large amount of data to learn such a complex feature representa-
tion [Sun et al., 2017, Zhu et al., 2016] based on the learning rule
described in Section 2.2.4. However, the performance benefits pre-
ponderate particularly within large-scale outdoor scenarios as within
the context of autonomous driving and mobile robotics [Siam et al.,
2017].

4 Sometimes the transposed convolution layer is also called the deconvolution layer,
however a deconvolution represents a different mathematical operation.
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2.3 evaluation metrics

This section describes different evaluation metrics for semantic label-
ing related to this thesis. This includes accuracy, Intersection over
Union (IoU), and confusion matrices. Other metrics used within
this thesis are explained within the corresponding chapters. For
further details, the reader is referred to [Rahman and Wang, 2016]
and [Habibi Aghdam and Jahani Heravi, 2017].

2.3.1 Terminology

Evaluating semantic labeling approaches, different types of errors
and successes can be extracted. For this reason, different terminolo-
gies are defined based on the difference between the predicted class
cp and the true class cgt (also called ground-truth), while considering
a specific class cc (see Table 2.1):

• True Positive (TP): A sample is classified correctly as consid-
ered class (cc = cp = cgt)

• True Negative (TN): A sample is not classified as considered
class, but is classified correctly (cc 6= cp = cgt)

• False Positive (FP): A sample is incorrectly classified as consid-
ered class (cc = cp 6= cgt)

• False Negative (FN): A sample is incorrectly classified as
another class instead of being classified as considered class
(cc = cgt 6= cp)

Based on this terminology, different performance measures are de-
fined for classification of multiple classes as described within the
next subsections.

2.3.2 Confusion Matrix

The confusion matrix visualizes the distribution of predicted classes
per true classes as shown in Tables 2.2 and 2.3. This allows an
in-depth analysis of incorrect classifications in terms of confusion
between different classes. The ideal confusion matrix is an identity

prediction
positive negative

true label positive TP FN
negative FP TN

Table 2.1: Terminology of errors and successes for a binary classifier.
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prediction
vehicle person two-wheeler road

tr
ue

la
be

l vehicle 3 7 7 7

person 7 3 7 7

two-wheeler 7 7 3 7

road 7 7 7 3

Table 2.2: General description of a confusion matrix. Usually the confusion
matrix is filled with probabilities. Here, the content describes the
errors (7) and successes (3) independent of the considered class
cc.

prediction
vehicle person two-wheeler road

tr
ue

la
be

l vehicle TP FN FN FN
person FP TN TN TN

two-wheeler FP TN TN TN
road FP TN TN TN

Table 2.3: Description of a confusion matrix considering the class vehicle.
Usually the confusion matrix is filled with probabilities. Here,
the content describes the errors and successes for the considered
class cc = vehicle while the predicted class cp corresponds to the
columns and the true class cgt corresponds to the rows of the
matrix. Note that all TNs are correctly classified related to the
class vehicle but could contain errors related to other classes.

matrix representing that all samples are classified correctly as the
true class (diagonal of the matrix) and no FP or FN exists. Typically,
each row of the confusion matrix is normalized with the total number
of samples per true class. This allows for a comparison without
taking the dataset class distribution into account.

2.3.3 Accuracy

The confusion matrix represents an in-depth analysis of predicted
and true classes. For directly comparing different approaches, a
more general performance measure has to be defined. Therefore, the
accuracy is represented by

acc(ci) =
correctly classified samles

all samples

=
TPci + TNci

TPci + TNci + FPci + FNci

(2.18)
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for a specific class ci. This definition allows to directly compare
different approaches based on a single performance measure per
class, while the accuracy acc(ci) = 1 represents the highest and the
accuracy acc(ci) = 0 the lowest performance concerning class ci.

2.3.4 Intersection over Union

The disadvantage of the accuracy is the strong dependence on the
dataset distribution. In other words, the accuracy of a class can be
easily increased by adding samples of an easier class, increasing the
number of TNs. For this reason, the IoU was defined to reduce the
dependence on dataset distributions with

IoU(ci) =
Intersection of predicted and true samples of ci

Union of predicted and true samples of ci

=
TPci

TPci + FPci + FNci

, (2.19)

which became state-of-the-art for multi-class semantic labeling. In
addition to the class-based IoU, a performance measure is used
averaging all classes to a mean Intersection over Union (mIoU) with

mIoU =
1
M

cM−1

∑
ci=c0

IoU(ci) . (2.20)

This performance metric is mainly used within this thesis for com-
paring different semantic labeling approaches.
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2.4 calibration of multiple sensor modalities

In Section 1.1.4, the perception of autonomous driving is introduced
with different sensors of complementary modalities. Fulfilling the
needs of autonomous vehicles, these sensors have to be precisely
calibrated in space and time to allow a common environmental
representation. The calibration in time is often realized as a time
synchronization to ensure a common time reference of the sensor
measurements [Sivrikaya and Yener, 2004]. The spatial calibration is
composed of two parts: The intrinsic and the extrinsic calibration of
the sensor. The intrinsic calibration is sensor type-specific and well
known in e. g. camera [Hemayed, 2003] or LiDAR domain context
[Muhammad and Lacroix, 2010]. It represents internal parameters
of the sensor, which can be initially defined by the manufacturer
and adapted afterwards by an intrinsic calibration. The extrinsic cal-
ibration leads to precise positioning of the sensor related to another
sensor or a reference coordinate system and is represented by an
affine transformation matrix. Thereby, two types of extrinsic calibra-
tion are distinguished: Offline and online calibration. The offline
calibration is performed before the sensor system starts to operate
as an initial calibration of the system. Once the sensor system goes
online, e. g. as a product or test fleet vehicle, external forces such
as mechanical vibrations or temperature changes may decrease the
calibration quality. In this case, the system has to detect and correct
such decalibrations. This is referred to as online calibration.

The extrinsic calibration has been studied for a variety of sensor
modalities and combinations. Most approaches can be divided into
three steps:

1. Find distinct features in the sensor data, e. g. corners or artificial
targets

2. Use those features to establish correspondences between the
sensors

3. Given the correspondences, determine the affine transforma-
tion matrix by solving a system of equations or by minimizing
an error function

The extraction of distinct features can be challenging as correspon-
dences have to be made across different sensor modalities. Most
offline calibration approaches therefore rely on special calibration
targets which provide strong and distinct signals in all modalities,
allowing for easy detection and localization [Geiger et al., 2012b,
Mirzaei et al., 2012, Zhang and Pless, 2004]. However, those ap-
proaches are time-consuming as they need human interaction for
feature selection or they have to be performed in a controlled envi-
ronment. Therefore, several online calibration methods have been
proposed [Bileschi, 2009, Levinson and Thrun, 2013, Pandey et al.,
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2015, Chien et al., 2016]. Challenging for online calibrations is to find
matching patterns in an unstructured environment. Most of the state-
of-the-art approaches address this by using handcrafted features
such as image edges. An alternative was proposed by Schneider et al.
[2017] and Piewak and Schneider [2018], who presented an online
calibration based on CNNs, which learn features of an unknown but
structured environment.

A precise calibration based on the proposed techniques represents
the first step of the research pipeline (see Figure 1.5), allowing cross-
modal training data generation for LiDAR-based semantic labeling
approaches as described within the following chapter.
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Within this chapter, the second step of the research pipeline (see
Figure 1.5) called Autolabeling is described. Parts of this chapter have
previously appeared in [Piewak et al., 2018b] and [Piewak et al.,
2019].

3.1 overview

After generating a precise calibration of multi-sensor systems as
described in Section 2.4, in the next step of the research pipeline (see
Figure 1.5), automatic training data generation can be approached.
Here, large-scale datasets are of paramount importance for training
competitive deep neural networks [Sun et al., 2017]. Consequently,
large-scale generic datasets such as ImageNet [Russakovsky et al.,
2015] and COCO [Lin et al., 2014], as well as medium-scale datasets
dedicated to road scenarios such as KITTI [Geiger et al., 2012a] and
Cityscapes [Cordts et al., 2016] have been made available within
the camera domain. In contrast, in the LiDAR domain, only indoor
datasets [Silberman et al., 2012, Armeni et al., 2017, Dai et al., 2017] or
outdoor datasets [Hackel et al., 2017] obtained from high-resolution
stationary sensors have been published within the last years. For this
reason, recently, a new dataset called SemanticKITTI [Behley et al.,
2019] including semantic information for LiDAR point clouds has
been published. This dataset is further discussed in Section 4.4.3.

Generating manually annotated point cloud data for LiDAR-based
semantic labeling to scale presents a vast effort and involves even
higher cost than manual image annotation in the computer vision

31
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domain. This is due to the additional spatial dimension as well
as the sparsity of the data, which yields a representation that is
non-intuitive and tedious for human annotators. Therefore, some
authors have used existing datasets dedicated to other tasks such as
3D object detection [Geiger et al., 2012a] to extract point-wise LiDAR
semantics [Dewan et al., 2017, Wu et al., 2018, 2019, Biasutti et al.,
2019, Dewan and Burgard, 2019, Madawi et al., 2019]. However, only
a small number of semantic classes can be extracted in this manner.

Hence, a so-called Autolabeling process is proposed - an effec-
tive approach for the automated generation of large amounts of
semantically annotated mobile LiDAR data by the direct transfer
of high-quality semantic information from a registered reference
camera image.

3.2 related work

Related to the topic of semantic labeling of semi-dense LiDAR point
clouds, only a few publications directly operate in the field of road
scenarios and autonomous driving. This is related to the lack of
publicly available datasets (see Section 3.1).

Generating an additional dataset in an automatic manner rep-
resents a cost- and time-efficient opportunity for developing se-
mantic labeling approaches within the field of road scenarios and
autonomous driving. Related to the automatic annotation process, 3

different types can be found within the literature. These are related
to the handling of different application fields, which are also called
domains.

First, simulation strategies can be used to automatically gener-
ate training data and increase performance. Fang et al. [2020] used
simulated LiDAR data to increase the performance of LiDAR-based
instance segmentation and LiDAR-based object detection validated
on the KITTI dataset [Geiger et al., 2012a]. Therefore, they intro-
duced a simulation pipeline based on augmented real-world data.
The first step of their pipeline is the acquisition of LiDAR data
based on high-resolution LiDAR sensors. After extracting the static
background of the recorded scenarios, dynamic objects are aug-
mented into the scene serving as label injections. Finally, a specific
sensor type is simulated within this high-resolution road scenario
extracting a semi-dense LiDAR point cloud including the labels
for LiDAR-based instance segmentation and LiDAR-based object
detection. Wang et al. [2019b] as well as Wu et al. [2019] used fully
simulated pipelines such as the CARLA simulator [Dosovitskiy et al.,
2017] or game engines such as the GTA-V to extract point-wise labels.
Additionally, they used real-world data for developing LiDAR-based
semantic labeling approaches. All of the mentioned approaches em-
phasize the benefit of using simulated or augmented data in addition
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to real-world data in terms of performance gain and cost reduction
for applying the methods to real-world data. At the same time, they
show critical performance losses by using only simulated or aug-
mented data due to the larger domain shift between the simulation
and real-world [Fang et al., 2020, Wu et al., 2019, Wang et al., 2019b],
which decreased the portability of the proposed methods for those
domains. Tobin et al. [2017] and Andrychowicz et al. [2020] reduced
the domain shift within the field of robotics by randomizing the
simulated camera data. Hence, they changed randomly the color
and the textures of the objects and the background to introduce
more diversity into the simulated data. This approach is restricted to
specific use cases, whereby the domain shift can be represented by
randomization. Based on more complex scenarios with different ob-
ject appearances, this approach is difficult to transfer. For this reason,
Shrivastava et al. [2017] proposed a method based on Adversarial
Networks (ANs) to reduce the domain shift between simulated and
real-world data applied to the gaze direction detection of humans.
Although they presented valuable results, this approach still needs
real-world data to generate the AN. Preventing the domain shift
between simulation and real-world scenarios, within this chapter an
automatic training data generation based on real-world data only is
proposed.

The second type of automatic data generation is based on the
combination of different sensor modalities. This can be applied to
learning models that generate one output representing a specific
sensor modality by using a different sensor modality as an input
without any further processing. Bojarski et al. [2016] and Hubschnei-
der et al. [2017] created CNN models to approach autonomous
driving in an end-to-end fashion. Thereby, their CNN models use
one or multiple camera images as an input and directly output vehi-
cle control commands represented by the steering angle. Collecting
data for this task can easily be performed by driving a prepared
vehicle while recording camera images as well as the steering angle
of the driver representing two different sensor modalities. Similar
efforts are needed e. g. for generating depth information from a
monocular camera [Kumar et al., 2018] by recording a LiDAR sensor,
which generates depth information for training purposes. Within
other application areas, this approach can also be applied as within
bioinformatics, where e. g. Han [2017] used magnetic resonance im-
ages as inputs to generate computed tomography scans, which are
recorded based on the same person. These approaches show a con-
siderable benefit for data collection by generating large quantities
of data without human labeling effort. However, they are restricted
to a small set of tasks where the input and the output are record-
able with different sensor modalities. In the case of LiDAR-based
semantic labeling, no sensor modality exists to generate a point-wise
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classification without any further processing. As a result, this type
of automatic data generation cannot be applied.

The last type of automatic training data generation is represented
by data enrichment based on the same sensor modality. Here, typ-
ically a manual correction is needed to increase the quality of the
labeled data. Pan et al. [2018] created a dataset for camera image-
based lane marking based on the Hough transformation of a camera
image. Thereby, they labeled straight lines as lane markings auto-
matically. Other types of lane markings were annotated manually.
Afterwards, they trained a CNN to detect the lane markings with
the generated training data. A different approach is proposed by
Das et al. [2019], which trained a CNN for camera image classi-
fication on a manual labeled dataset. Afterwards, they extracted
the internal CNN features of the manually labeled data to create a
feature distribution per class. This distribution is used to classify
unknown images and extend the dataset automatically. Although
these approaches represent a valid opportunity to automatically
increase the amount of data, human interaction is still needed to
initially generate data.

Combining the second and the third type of automatic training
data generation, different sensor modalities are used for data enrich-
ment. For example, Bhoi [2019] generated depth information from
a monocular camera. In this context, they recorded a stereoscopic
camera which generates depth information in a post-processing step
for training purposes. This represents a valuable technique to au-
tomatically increase the amount of training data. For adaptation to
the LiDAR sensor, Wang et al. [2019a] created a manual annotation
tool which transfers e. g. bounding box proposals of the camera
to the LiDAR sensor based on a precise calibration of the sensor
system. This alleviates the effort of labeling 3D LiDAR data. Varga
et al. [2017] proposed an alternative method to generate a seman-
tically labeled point cloud at runtime based on a combined setup
of fisheye cameras and LiDAR sensors. First, pixel-wise semantics
are extracted from the camera images via a CNN model trained
on Cityscapes [Cordts et al., 2016]. Subsequently, the LiDAR points
are projected into the images to transfer the semantic information
from pixels to 3D points. However, spatial and temporal registration
of the sensor modalities remain a challenge. In this chapter, the
idea of Varga et al. [2017] is taken one step further by utilizing a
joint camera/LiDAR sensor setup to generate large amounts of 3D
semantic training data while extending the temporal and spatial
registration of both sensor modalities.
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3.3 method

This section describes an efficient automated cross-modal data gen-
eration process including a spatial optimization and a class mapping
of the output which is referred to as Autolabeling.

3.3.1 Autolabeling

Generating manually annotated training data for LiDAR-based se-
mantic labeling to scale presents a considerable effort and entails
even higher cost compared to manual image annotations in the
2D domain. This is due to both the additional spatial dimension
and the sparsity of the data, which results in a representation that
is non-intuitive and cumbersome for human annotators. For these
reasons, an efficient automated process for large-scale training data
generation called Autolabeling is introduced.

As illustrated in Figure 3.1, the Autolabeling concept is based on
the use of one or more reference cameras in conjunction with the
LiDAR sensor capturing the point cloud data. The obtained reference
camera images have to be registered to the LiDAR data in space and
time as described in Section 2.4. Preferably, the spatial displacement
between the sensor origins is minimized to avoid occlusion artifacts.

In the first step, a high-quality pixel-wise semantic labeling of the
reference camera image is computed via state-of-the-art deep neural
networks, as can be found on the leaderboard of the Cityscapes
benchmark [Cordts et al., 2016]. Second, the captured point cloud
is projected into the reference image plane to transfer the semantic
information of the image pixels to the corresponding LiDAR points.
While a single reference camera will in general only cover a fraction
of the full point cloud, it is straightforward to extend the approach
to multiple cameras for an increased coverage.

The described fully automated procedure yields semantically la-
beled point clouds, which can be directly used to train LiDAR-based
semantic labeling networks as described in Chapter 4. In the follow-
ing subsections, the various stages of the data generation process
are explained in detail.

3.3.1.1 Semantic Image Labeling

For the experiments in this chapter, the efficient reference network
described in [Cordts, 2017] to obtain the pixel-wise semantic label-
ing of the camera images is used1. The network is trained on the
Cityscapes dataset and achieves a mIoU test score of 72.6% with re-

1 The proposed CNN architecture is based on the GoogLeNet architecture [Szegedy
et al., 2015] adapted with a higher learning rate, data augmentation, context
modules, and a usage of coarse labels for the training. For details, the reader is
referred to [Cordts, 2017].
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Figure 3.1: Overview of the Autolabeling process for large-scale automated
training data generation. Each pixel of the reference camera im-
age is classified via an image-based semantic labeling network.
Subsequently, the point cloud is projected into the camera image
and the reference labels are transferred to the corresponding
LiDAR points. The following semantic classes are visualized:
road, sidewalk, person, rider, small vehicle, large vehicle, two
wheeler, construction, pole, traffic sign, vegetation, terrain. The
figure is based on [Piewak et al., 2019] © 2019 IEEE.

gard to the original Cityscapes label set. Since the Cityscapes dataset
was designed with vehicle-mounted front-facing cameras in mind,
a single front-facing camera is used in this context to evaluate the
proposed automated training data generation process.

Note that the Autolabeling process can be applied using any image-
based reference network providing sufficient output quality. More-
over, the process will in general directly benefit from the ongoing
research and improvements in image-based semantic labeling net-
works.

3.3.1.2 Point Projection

In order to project the 3D points captured by a scanning LiDAR
sensor into the reference camera image plane, several aspects have
to be taken into account. Since the LiDAR scanner rotates around its
own axis in order to obtain a 360° point cloud, each measurement is
taken at a different point in time. In contrast, the camera image is
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taken at a single point in time, or at least with a comparatively fast
shutter speed.

To minimize potential adverse effects introduced by the scanning
motion of the LiDAR sensor, a point-wise ego-motion correction
using vehicle odometry is applied. First, the measured 3D points
are transformed from the LiDAR coordinate system to the vehicle
coordinate system via the extrinsic calibration parameters of the
sensor (see Section 2.4). Given the points pv = (pxv, pyv, pzv) in
the vehicle coordinate system, the wheel odometry data is used to
compensate for the ego-motion of the vehicle. To this end, the time
difference ∆tpc between the point measurement timestamp tp and
the image acquisition timestamp tc of the camera is computed for
each point. In case of a rolling shutter camera, half of the shutter
interval tr is added to move the reference timestamp to the image
center:

∆tpc = tc − tp +
tr

2
. (3.1)

The time difference ∆tpc is used to extract the corresponding ego-
motion data of the vehicle from the odometry sensor. This yields
a transformation matrix T∆tpc describing the motion that occurred
between the two timestamps of interest. Using the transformation
matrix T∆tpc , each point pv is ego-motion corrected withptc

1

 =


pxtc

pytc

pztc

1

 = T−1
∆tpc
∗


pxv

pyv
pzv

1

 . (3.2)

This effectively transforms each point pv in the vehicle coordinate
system to its corresponding position ptc = (pxtc

, pytc
, pztc

) at camera
timestamp tc. Finally, the corrected points ptc are transformed to the
camera coordinate system and projected to the image plane using a
pinhole camera model [Hartley and Zisserman, 2005].

3.3.2 Optimization in Space and Time

An essential factor for accurate Autolabeling results is a small spatial
distance between the LiDAR sensor and the reference camera, as
occlusion artifacts tend to introduce inconsistencies to the datasets.
This can be facilitated by both a small mounting distance of the two
sensors and explicit time synchronization. In the used setup, the
camera is not being triggered by the LiDAR sensor, which results
in cases where the LiDAR sensor orientation is not well aligned
with the front-facing camera during image acquisition time. This
misalignment causes a significant timestamp difference between the
projected point cloud and the image data. While this effect is com-
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Figure 3.2: Illustration of the timing problem (top view), whereby the cam-
era (orange) is mounted on top of the LiDAR sensor (blue). At
a given timestamp, the rotating LiDAR sensor measures points
only at the angle αh (blue line). The tree (green) is detected by
the LiDAR sensor at timestamp tc −∆ tpc, while the camera cap-
tures an image of the tree occluded by the traffic sign (yellow)
at tc. This time difference ∆tpc results in a spatial displacement
of the sensor origins, which causes occlusion artifacts based
resembling a large mounting distance between the two sensors.
This illustration is based on [Piewak et al., 2018b].

pensated by the ego-motion correction described in Section 3.3.1.2,
it usually results in a significant translatory motion between the two
measurements of the sensors while driving. This in turns leads to
considerable occlusion artifacts. See Figure 3.2 for an illustration of
the problem. For this reason, a maximum heading deviation range
αm has to be defined which is allowed between the camera principal
axis orientation αc and the current LiDAR azimuth angle αh at the
camera timestamp tc. All captured frames which lie outside of this
maximum deviation range are discarded, yielding an optimized
subset of the originally recorded data.

3.3.3 Class Mapping

Based on initial experiments with regard to the discrimination of
different semantic classes in LiDAR data, a mapping of the original
Cityscapes labelset [Cordts et al., 2016] to a reduced set of 13 seman-
tic classes (see Table 3.1) is applied. This reduced label set is better
tailored to the specific properties of the data provided by current
LiDAR sensors, where limited spatial resolution and coarse reflec-
tivity estimates prohibit truly fine-grained semantic differentiation.
For example, the original ‘truck’ and ‘bus’ classes are merged into
a common ‘large vehicle’ class. Similarly, the original ‘motorcycle’
and ‘bicycle’ classes are combined into a single ‘two-wheeler’ class.
The ‘fence’ class is not retained in the mapping, as such thin and
porous structures are hardly captured by LiDAR sensors addition-
ally to a usually wrong classification of behind objects within the
semantically labeled camera image. Note that the reduced label set
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Cityscapes LiDAR
Semantics

road road
sidewalk sidewalk
person person
rider rider
car small vehicle

truck large vehicle
bus large vehicle

on rails large vehicle
motorcycle two-wheeler

bicycle two-wheeler

Cityscapes LiDAR
Semantics

building construction
wall construction
fence unlabeled
pole pole

traffic sign traffic sign
traffic light construction
vegetation vegetation

terrain terrain
sky sky

Table 3.1: Mapping of the Cityscapes label set [Cordts et al., 2016] to the
reduced LiDAR label set. This table is based on [Piewak et al.,
2018b].

still provides an abundance of valuable semantic information, which
is highly beneficial for a large set of application scenarios.

3.4 evaluation

Within this section, the evaluation of the datasets generated based on
the Autolabeling process is described. Therefore, a dataset overview,
a dataset analysis, and an Autolabeling performance analysis is pro-
vided.

3.4.1 Dataset Overview

For evaluating methods within this thesis, two large datasets were
created based on the Autolabeling process explained in Section 3.3.
Both datasets are based on state-of-the-art LiDAR sensors: A
VLP-32C and a VLS-128 (see Section 2.1.2). Approximately 550,000
frames with the VLP-32C and 300,000 with the VLS-128 of different
road types (cities, rural roads, and highways) and different city
areas (e.g. Karlsruhe or Stuttgart) were recorded and automatically
labeled based on own recording drives of several days. The drives
were realized with a Mercedes Benz E-Class equipped with LiDAR
sensors and cameras as well as a vehicle interface to extract
ego-motion information. Note that the variety within the recorded
data is not complete in terms of all possible scenarios within the
field of autonomous driving (e. g. adverse weather conditions or
seasonal changes). However, it represents a valuable basis for
further development and analysis of LiDAR-based semantic labeling
approaches.
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Training Validation Testing
Autolabeled Frames

VLP-32C 344,027 73,487 137,682

Autolabeled Frames
VLS-128

179,042 31,139 84,839

Manually Annotated
Frames VLP-32C 1,909 373 718

Manually Annotated
Frames VLS-128

1,257 335 1,110

Table 3.2: Split of the two employed datasets into the subsets for training,
validation, and testing. They are distinguished between automat-
ically and manually annotated point clouds (frames). The table
is based on [Piewak et al., 2019] © 2019 IEEE.

The recorded frames are split into subsets for training, validation
and testing, with a split of approximately 60% - 10% - 30%. Details
are listed in Table 3.2. The dataset split is performed on a sequence
basis instead of via random selection in order to prevent correlations
in between subsets. The training set is used to train the FCNs (see
following chapters), while the validation set is used to optimize
the hyper parameters of the network architectures. The testing set
is used to evaluate the achieved results showed within this thesis.
Note that the VLS-128 dataset is approximately half the size of the
VLP-32C dataset (see Table 3.2).

Based on the optimized frames described in Section 3.3.2, 3,000
frames for the VLP-32C and approximately 2,700 frames for the
VLS-128 called keyframes were selected for manual annotation2 with
the classes corresponding to the class mapping of Section 3.3.3. This
manually annotated data forms the basis for the evaluation within
this thesis. This includes the Autolabeling process (Chapter 3), the
LiDAR-based semantic labeling (Chapter 4) including its extensions
(Chapters 5 and 6), and the multi-modal stixel approach (Chapter 7).
Note that invalid LiDAR points are not being annotated and, hence,
the ‘sky’ class is not considered for evaluation within this thesis.

3.4.2 Dataset Analysis

In contrast to other classification tasks such as image classification,
datasets for semantic labeling typically contain a bias within the
label distribution as shown in Figures 3.3 and 3.4. This is related
to the appearance of traffic scenarios, where e. g. the LiDAR mea-
surements of ‘road’ are more probable than the measurements of

2 Preventing naming confusions within this thesis, the automatic generation of se-
mantic data (e. g. based on a CNN) is called labeling, while the manual generation
of semantic data is called annotation.
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Figure 3.3: Label distribution of the VLP-32C and VLS-128 dataset based
on the autolabeled frames.

‘rider’. This appearance is captured in each frame, resulting in a
certain label distribution per frame and hence in a label distribution
of the dataset. Within the presented datasets, a large bias for the
classes ‘vegetation’, ‘construction’, and ‘road’ can be recognized.
This is due to the appearance of traffic scenarios within cities and
rural roads where the dataset was captured. Similar distributions
can be found at other datasets of traffic scenarios such as Cityscapes
[Cordts et al., 2016] and SemanticKITTI [Behley et al., 2019]. Note
that the keyframes used for the manual annotation were optimized
to reach a similar label distribution of the manual annotated points
and the autolabeled points. Thereby, the number of labeled points of
the VLS-128 is higher even by recording a smaller number of frames
due to the four times higher resolution of the LiDAR sensor.

Reducing the influence of the mentioned bias within the label
distribution towards the comparison of LiDAR-based semantic la-
beling approaches, the IoU and the mIoU are chosen as evaluation
metrics (see Section 2.3.4) similar to public benchmarks such as the
Cityscapes Benchmark Suite [Cordts et al., 2016] or SemanticKITTI
[Behley et al., 2019].

3.4.3 Autolabeling Performance

The Autolabeling process introduced in Section 3.3 was applied to au-
tomatically generate the large-scale datasets defined in Section 3.4.1,
which in turn was used to develop LiDAR-based semantic labeling
approaches described within the following chapters. Within this
section, the performance of the Autolabeling process is evaluated con-
cerning the optimized frames, the ego-motion correction as well as
an overall performance analysis. Note that all evaluations are based
on the testing set of the manually annotated frames for each dataset
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Figure 3.4: Label distribution of the VLP-32C and VLS-128 dataset based
on the manually annotated frames. Note that invalid points are
not labeled and, hence, the class ‘sky’ is not present within the
manually annotated frames.

if not mentioned otherwise. According to the results of Section 3.4.2,
the IoU metric for an overall performance evaluation is applied.

3.4.3.1 Optimized Frames

As described in Section 3.3.2, a maximum heading deviation range
αm has to be defined to create an optimized subset of the originally
recorded data. Therefore, the performance of the Autolabeling process
related to the maximum heading deviation range αm is evaluated and
visualized in Figure 3.5. Consider that this evaluation is performed
based on the autolabeled validation set of the VLP-32C dataset
and not based on the manually annotated testing set due to the
impact of the selection of keyframes for the manually annotation.
The results show that a higher heading deviation range reduces
the performance of the Autolabeling process. This is related to the
occlusion artifacts as shown in Figure 3.2. At the same time, a higher
heading deviation range increases the number of frames. Due to the
fact that the number of frames can easily be increased by additional
recording drives, a lower maximum heading deviation range of
αm = 60° is selected for generating the optimized subset of the
originally recorded data which is used to select keyframes for the
manual annotation.

3.4.3.2 Ego-Motion Compensation

Projecting the 3D LiDAR points into the reference camera image
plane requires, in addition to a spatial calibration of both sensors, an
ego-motion compensation as described in Section 3.3.1.2. For evaluat-
ing the ego-motion compensation, Table 3.3 depicts the difference in
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Autolabeling w/o ego-
motion compensation 80.5 42.9 67.0 36.8 72.8 35.6 26.1 43.8 24.1 22.2 42.6 5.0 41.6

Autolabeling w/ ego-
motion compensation 89.5 61.2 77.0 51.3 80.7 58.5 45.4 74.7 29.8 40.4 80.5 54.7 62.0

Table 3.3: Impact of the ego-motion compensation of the Autolabeling pro-
cess based on the class-wise and overall IoU scores in % for the
VLP-32C dataset.

performance with and without ego-motion compensation. The ego-
motion compensation clearly increases the IoU scores of all classes.
This results in a relative improvement of the mIoU score of 49.0%.
An example of the point projection with and without ego-motion
correction is shown in Figure 3.6. Thereby, the recording vehicle
takes a right turn at an intersection which causes a large angular
ego-motion for this scene. This causes strong displacements of the
projected points and the corresponding object (e. g. see the poles,
the traffic lights, and the traffic sign). Applying the ego-motion cor-
rection, these displacements are compensated to align the projected
points with the corresponding object. As a result, the ego-motion
compensation is activated for both recorded datasets used within
this thesis.
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Figure 3.6: Example of the point projection without (top) and with (bottom)
ego-motion correction. The colors of the semantically labeled
images represent the Cityscapes label set [Cordts et al., 2016],
while the projected points are color-coded according to distance
(dark green = far away, yellow = close). Note that invalid LiDAR
points are not projected into these images. Images are based on
[Piewak et al., 2018b].

3.4.3.3 Overall Performance

The overall performance of the Autolabeling process is shown in
Table 3.4. It also shows the evaluation of the used image-based
semantic labeling network (see Section 3.3.1.1), which was previously
analyzed in detail in [Cordts, 2017], achieving an IoU score of 72.6%
on the Cityscapes Benchmark Suite. Here, the image-based approach
is re-evaluated on the Cityscapes testing set by using the class
mapping defined in Section 3.3.3. This yields an IoU score of 79.3%
(see Table 3.4).
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Image Labeling4

based on Cityscapes 98.0 81.5 81.4 61.3 94.7 80.8 70.2 91.8 58.0 71.8 92.7 69.0 79.3

Autolabeling
VLP-32C dataset 89.5 61.2 77.0 51.3 80.7 58.5 45.4 74.7 29.8 40.4 80.5 54.7 62.0

Autolabeling
VLS-128 dataset 87.7 57.6 63.0 44.0 81.4 54.0 39.3 82.5 26.5 35.3 82.8 55.0 59.1

Table 3.4: Class-wise and overall IoU scores in % of the Autolabeling process
for the different datasets. Parts of this table are based on [Piewak
et al., 2018b].

The quality of the point cloud semantics obtained by the Autolabel-
ing process is summarized in the last two rows of Table 3.43. It has
to be noted that the results of the VLP-32C dataset are slightly better
than the VLS-128 dataset. This is due to differences in the record-
ing setup, including extrinsic calibration data of both sensors with
respect to different calibration inaccuracies. Additionally, the lower
resolution of the VLP-32C makes the process less susceptible to
errors caused by both extrinsic and intrinsic calibration inaccuracies,
which reduce the precision of the point-wise projection into the RGB
camera image. Nevertheless, the results lie within a similar range
and allow for an initial assessment of the quality of the datasets.

Compared to the pure image-based semantic labeling result, the
Autolabeling output used to generate the large-scale datasets shows
similar label distributions but worse performance scores. This may
be attributed to various characteristics which are discussed within
the following paragraphs.

calibration First, a multi-sensor setup is rarely free of small
calibration offsets in practice, even if optimized manually. These
imperfections cause projection misalignments of the LiDAR points
within the camera images, which result in inaccurate label assign-
ments, in particular for points at a large distance to the sensors. Also,
despite the ego-motion correction efforts described in Section 3.3.1.2,
the remaining inaccuracies still result in a certain number of occlu-
sion artifacts, which slightly decrease the overall performance.

image cnn performance The second characteristic of the Au-
tolabeling results relates to the used image-based semantic labeling
approach [Cordts, 2017], which indeed results in a favorable perfor-

3 The Autolabeling results differ from the values reported in Piewak et al. [2018b]
due to a restriction to the camera field of view of the Autolabeling process.

4 Image Labeling of Cordts [2017] based on the Cityscapes Benchmark Suite [Cordts
et al., 2016] re-evaluated on the Cityscapes testing set based on the class mapping
described in Section 3.3.3.
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Figure 3.7: Example of plausible confusion of an image-based semantic
labeling approach by presenting the orinal camera image (top)
and the semantically labeled camera image (bottom). The classes
‘vegetation’ and ‘terrain’ are confused due to an unclear classi-
fication of the highway embankment. Label colors correspond
to the Cityscapes semantic class color coding [Cordts et al.,
2016]. The following semantic classes are visualized: road, side-
walk, person, rider, small vehicle, large vehicle, two-wheeler,
construction, pole, traffic sign, vegetation, terrain, sky.
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road 99 0 0 0 0 0 0 0 0 0 0 0

sidewalk 8 89 1 0 0 0 0 0 0 0 0 1

construction 0 0 97 0 0 2 0 0 0 0 0 0

pole 0 2 18 70 1 7 1 0 1 0 0 0

traffic sign 0 0 14 2 79 3 0 0 0 0 0 0

vegetation 0 0 2 0 0 96 0 0 0 0 0 0

small vehicle 1 0 1 0 0 0 98 0 0 0 0 0

large vehicle 1 0 6 0 0 1 6 85 0 0 0 0

person 1 1 4 1 0 1 1 0 91 1 1 0

rider 1 0 3 0 0 1 2 0 11 72 10 0

two-wheeler 1 2 3 1 0 1 4 0 2 3 82 0

terrain 4 11 1 0 0 6 0 0 0 0 0 78

Table 3.5: Confusion matrix of the image-based semantic labeling approach
of Cordts [2017] based on the Cityscapes testing set [Cordts et al.,
2016] with the reduced labelset defined in Section 3.3.3. The
values are rounded to integer percentage.

mance score on the Cityscapes Benchmarks Suite [Cordts et al., 2016]
but still produces inconsistencies for certain classes, as shown in
Table 3.5. These inconsistencies directly influence the output of the
Autolabeling process resulting in a similar confusion matrix shown in
Table 3.6 and Table 3.7. Comparing these three confusion matrices, a
similar layout, particularly concerning certain class confusions, can
be recognized. For example, the confusion between ‘rider’ and ‘two-
wheeler’, between ‘road’ and ‘sidewalk’, or between ‘vegetation’ and
‘terrain’ (see Figure 3.7) is apparent at all three confusion matrices
since these classes are similar to each other. As a result, the labeling
characteristics of the used image-based semantic labeling approach
are directly transferred by the Autolabeling process.

domain transfer Taking a closer look at the differences be-
tween the confusion matrices of the datatsets in Tables 3.5 to 3.7,
it can be seen that the inconsistencies of the image-based semantic
labeling approach are present and even larger within the LiDAR
domain (e. g. the confusion between ‘large vehicle’ and ‘small vehicle’
or between ‘terrain’ and ‘vegetation’). This is additionally related
to the label transfer from the high-resolution image domain to the
sparse LiDAR domain. The difference between the two domains is
visualized in Figure 3.8, where the ratio between the number of mea-
surements on the house surface to the house borders is larger within
the image domain as in the LiDAR domain. Therefore, the used
image-based semantic labeling approach is optimized towards the



48 automatic training data generation

Autolabeling

ro
ad

si
de

w
al

k

co
ns

tr
uc

ti
on

po
le

tr
af

fic
si

gn

ve
ge

ta
ti

on

sm
al

lv
eh

ic
le

la
rg

e
ve

hi
cl

e

pe
rs

on

ri
de

r

tw
o-

w
he

el
er

te
rr

ai
n

Tr
ue

La
be

l
road 95 1 0 0 0 0 0 0 0 0 0 0

sidewalk 15 75 2 0 0 1 0 0 0 0 0 3

construction 1 2 81 1 1 7 2 0 0 0 0 1

pole 1 2 15 53 2 15 2 0 0 0 0 4
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small vehicle 2 0 1 0 0 1 89 4 0 0 0 0

large vehicle 2 0 4 0 0 1 9 80 0 0 0 0

person 1 1 5 0 0 1 1 0 87 0 0 0

rider 0 0 2 0 0 5 2 0 8 65 13 0

two-wheeler 4 3 4 1 0 2 4 0 2 6 68 0

terrain 4 3 2 0 0 20 0 0 0 0 0 67

Table 3.6: Confusion matrix of the Autolabeling process with the VLP-32C
dataset based on the manually annotated testing set. The values
are rounded to integer percentage.
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road 92 4 0 0 0 0 1 0 0 0 0 0

sidewalk 11 77 2 0 0 2 1 0 0 0 0 3

construction 0 2 86 1 1 7 0 0 0 0 0 0

pole 1 2 19 49 4 18 2 0 0 0 0 1

traffic sign 0 0 8 2 79 6 0 0 0 0 0 0

vegetation 0 0 2 0 0 94 0 0 0 0 0 1

small vehicle 0 0 2 0 0 1 90 2 0 0 0 0

large vehicle 0 0 7 0 0 2 7 80 0 0 0 0

person 0 1 6 0 0 2 1 0 84 0 0 0

rider 0 0 2 0 0 4 1 0 15 62 10 0

two-wheeler 1 1 3 0 0 1 5 0 2 10 72 0

terrain 3 8 1 0 0 20 0 0 0 0 0 64

Table 3.7: Confusion matrix of the Autolabeling process with the VLS-128

dataset based on the manually annotated testing set. The values
are rounded to integer percentage.
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Figure 3.8: Illustration of the domain transfer problem of the Autolabeling
process concerning a camera (orange pixel row) and a LiDAR
sensor (green point row). Both sensor types measure the bor-
ders of the house with one measurement from each side. The
surface of the house is detected with more measurements of
the camera domain compared to the LiDAR domain. As a re-
sult, surfaces have a larger bias in the camera domain as in the
LiDAR domain.

specific properties of high-resolution camera domain including the
bias of the surfaces, which leads to a higher error rate at the object
borders compared to surfaces (see Figure 3.7). Applying the label
transfer from the camera domain to the LiDAR domain, the higher
error rate at object borders of the camera domain and the larger bias
towards object borders of the LiDAR domain are combined. This
results in a slight reduction in performance when transferring the la-
bels into the LiDAR domain. Note that this effect is not recognizable
between the confusion matrices of the VLP-32C and the VLS-128

dataset due to the fact that the horizontal resolution of the LiDAR
sensors is identical [Velodyne LiDAR Inc., 2019a,b].

3.5 outcome

In this chapter, a fully automated process for large-scale cross-modal
training data generation called Autolabeling was presented. The ap-
proach is based on the use of reference cameras in order to transfer
high-quality image-based semantic labeling results to LiDAR point
clouds. This approach was implemented into a research vehicle to
be applied to two different datasets recorded with state-of-the art
LiDAR sensors (VLP-32C and VLS-128). Both datasets show similar
inconsistencies as the underlying image-based semantic labeling
approach even with small calibration misalignments as well as the
domain transfer which slightly decreases the performance. However,
the Autolabeling process describes a cost- as well as time-efficient
cross-modal approach for generating large-scale datasets. Further



50 automatic training data generation

positive effects of the Autolabeling process will be discussed in the fol-
lowing chapter in combination with LiDAR based semantic labeling
approaches.

Two different datasets for LiDAR-based semantic labeling are
therefore generated including a small number of manually annotated
LiDAR point clouds. This represents the second step of the research
pipeline (see Figure 1.5) and forms the basis for the next step of
LiDAR-based semantic labeling.
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The focus of this chapter represents the third step of the research
pipeline (see Figure 1.5). Parts of this chapter have previously ap-
peared in [Piewak et al., 2018b] and [Schillinger, 2018].

4.1 overview

After generating a large-scale dataset as described in Chapter 3, the
next step of the research pipeline (see Figure 1.5) represented by the
LiDAR-based semantic labeling can be approached. As mentioned in
Sections 1.1.2 and 1.1.4, vehicles within the fields of mobile robotics
and autonomous driving are typically equipped with multiple sen-
sors of complementary modalities such as cameras, LiDAR sensors
and RaDAR sensors in order to safely act within their environment.

In order to master the dynamics of road scenarios, it is essential
for an autonomous vehicle to not only distinguish between generic
obstacles and free-space, but to also obtain a deeper semantic under-
standing of its surroundings. Within the field of computer vision,
the corresponding task of semantic image labeling has experienced
a significant boost in recent years (see Section 1.1.5). However, de-
tailed semantic information of similar quality has to be extracted
independently from each of the sensor modalities to maximize sys-
tem performance, availability, and safety. Therefore, in this chapter,
the LiDAR Labeling Network (LiLaNet) - an efficient deep neural
network architecture for point-wise, multi-class semantic labeling

51
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of semi-dense LiDAR point clouds - is introduced based on the
VLP-32C dataset of Chapter 3.

4.2 related work

LiDAR-based semantic labeling has gained increased attention in
recent years due to the availability of improved mobile sensor tech-
nology, providing higher resolution, and longer range at reduced
cost. The various proposed approaches of LiDAR-based semantic
labeling can be discriminated by the way the point-wise 3D informa-
tion is utilized.

First, the 3D information can be represented as RGB-D data, which
complements RGB image data with an additional depth channel
[Couprie et al., 2013, Gupta et al., 2014], allowing to recycle 2D
semantic image labeling algorithms. Frequently, a stereo camera
is used to create a dense depth image, which is then fused with
the RGB image. Tosteberg [2017] developed a technique to use the
depth information of a LiDAR sensor accumulated over time to
project it into the camera space. The accumulation yields a depth
image of increased density without requiring dedicated upsampling
algorithms.

A different category of approaches considers the 3D LiDAR data
as an unordered point cloud, including PointNet [Qi et al., 2017a],
PointNet++ [Qi et al., 2017b], and PointCNN [Li et al., 2018]. The
PointNet architecture [Qi et al., 2017a] combines local point features
with globally extracted feature vectors, allowing for the inference
of semantic information on a point-wise basis. Extending this idea,
PointNet++ [Qi et al., 2017b] introduces a hierarchical PointNet ar-
chitecture to generate an additional mid-level feature representation
for improved handling of point neighborhood relations. Both ap-
proaches are evaluated successfully on indoor scenes but reach their
limits in large-scale outdoor scenarios caused by the representation
of the entire scene within one global feature vector (PointNet) or a
restricted number of hierarchical feature vectors (PointNet++). The
PointCNN [Li et al., 2018] approach is based on unordered point
clouds as well, but introduces modified convolution layers extended
by permutations and weighting of the input features. This allows for
the transfer of the advantages of traditional CNNs (e. g. local neigh-
borhoods based on convolution layers as described in Section 2.2.5)
to unordered point cloud processing and prevents the restriction to
a restricted number of feature vectors for the entire scene. However,
the approach is only used for object detection and has not yet been
applied to semantic labeling of point clouds.

Another way of representing LiDAR input data is within cartesian
3D space, which is used in the SEGCloud [Tchapmi et al., 2017] and
OctNet [Riegler et al., 2017] methods. Here, a voxel (SEGCloud) or
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an octree (OctNet) representation is created, and the convolution
layers are extended to 3D convolutions. These approaches retain
the original 3D structure of the input points, making them more
powerful in preserving spatial relations. However, the algorithms
have to cope with the high sparsity of the data. Additionally, the
inference time as well as memory requirements increase dramatically
for large-scale outdoor scenes. Note that within recent years, this 3D
representation was boosted due to different publications within the
field of object detection [Zhou and Tuzel, 2018, Lang et al., 2019].
An introduction into these recent 3D representation approaches is
provided in Section 5.2.

A possible solution to avoid the computational complexity of 3D
convolutions is rendering 2D views of the input data. Based on such
2D views, state-of-the-art, image-based deep learning algorithms
can be applied. Depending on the use case, different viewpoints or
virtual cameras may be used. Caltagirone et al. [2017] used a top-
view image of a LiDAR point cloud for labeling road points within
a street environment. This top-view projection of the LiDAR points
is a valid choice for road detection, but the resulting mutual point
occlusions generate difficulties for more general semantic labeling
tasks as in the case with this thesis. An alternative is to place the
virtual camera origin directly within the sensor itself. The resulting
2D view is often visualized via a cylindrical projection of the LiDAR
points (see Figures 4.1 and 4.2), which is particularly suitable for
the regular measurement layout of common rotating LiDAR scan-
ners (see Section 2.1) In this case, the sensor view provides a dense
depth image, which is highly advantageous for subsequent process-
ing steps. Dewan et al. [2017] used this type of input image for a
CNN based on the Fast-Net architecture [Oliveira et al., 2016] to dis-
tinguish between movable and non-movable points. The bounding
boxes of the KITTI object detection dataset [Geiger et al., 2012a] were
used to transfer the point-wise semantic information required for
training and evaluation. The approach of Wu et al. [2019] uses the
cylindrical projection of the LiDAR data as an input for the Sqeeze-
Seg architecture, which performs SqeezeNet-based [Iandola et al.,
2017] semantic labeling to segment cars, pedestrians and cyclists.
Similar to Dewan et al. [2017], the KITTI object detection dataset is
used for transferring the ground-truth bounding box labels to the en-
closed points. Similar approaches have been published within recent
years [Mei et al., 2019, Wang et al., 2018] that exploit the real-time
capacity and the performance of proposed CNN architectures based
on the cylindrical projection of the LiDAR data for a small num-
ber of semantic classes. Consider that the mentioned approaches
and CNN architectures are optimized towards the small number of
classes extracted of the KITTI object detection dataset [Geiger et al.,
2012a]. In contrast, within this thesis, a large number of diverse
semantic classes is used for an in-depth semantic labeling of the
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semi-dense point cloud. Therefore, the mentioned state-of-the-art
approaches cannot be applied directly and a novel CNN architecture
is proposed.

4.3 method

Within this chapter, a novel CNN architecture called LiLaNet for
the point-wise, multi-class semantic labeling of LiDAR data is in-
troduced. Obtaining high output quality and retaining efficiency at
the same time, lessons learned from image-based semantic label-
ing methods are transferred to the LiDAR domain. The cylindrical
projection of a 360° point cloud captured with a VLP-32C (see Sec-
tion 2.1) is used as an input to the network, while the training
of the LiLaNet is boosted by the Autolabeling process described in
Chapter 3.

This section describes the cylindrical projection of the LiDAR point
cloud, the base architecture of the LiLaNet, as well as optimization
examples. For further optimization of the LiLaNet, the reader is
referred to [Schillinger, 2018].

4.3.1 LiDAR Images

As mentioned in Section 2.1, the used VLP-32C is a rotating LiDAR
sensor with 32 LASER systems. While rotating, each module periodi-
cally measures the distance and reflectivity at its current orientation,
i.e. at the respective azimuth and elevation angles. In this chapter,
the measurements of a full 360° scan are combined to create cylindri-
cal depth and reflectivity images, as illustrated in Figures 4.1 and 4.2.
This projection represents the view of a virtual 360° cylindrical cam-
era placed at the sensor origin. At 10 revolutions per second, images
of size 1,800× 32 pixels are obtained.

The cylindrical point cloud projection provides dense depth and
reflectivity images which are free from mutual point occlusions.
This allows for the application of optimized 2D convolution layers,
as used with great success in state-of-the-art image-based CNN ar-
chitectures. In this manner, inference time is reduced dramatically
compared to the use of full 3D input representations such as voxel
grids or octrees due to the reduction of one dimension [Shen, 2019].
Furthermore, since measurement times and orientation angles are
known with high accuracy, it is straightforward to transform the
cylindrical image back to a full three-dimensional point cloud repre-
sentation without any loss of information. Note that invalid points
are transferred as well into the cylindrical projection, represented by
the distance and reflectivity value zero (see Figure 4.2).
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Figure 4.1: Illustration of the cylindrical image generation of a LiDAR
point cloud. The illustration is based on [Schillinger, 2018].

Figure 4.2: Example of a depth image (center, blue = close, red = far) and
reflectivity image (right, black = non-reflective, cyan = highly
reflective) resulting from the cylindrical point cloud projection.
The corresponding camera image is shown on the left. Note
that here the 360° LiDAR scan has been cropped to the camera
field of view for illustration. The images are based on [Piewak
et al., 2018b].

4.3.2 LiLaNet Architecture

Using the LiDAR images described in Section 4.3.1 as input, a ded-
icated CNN architecture for high-quality LiDAR-based semantic
labeling is presented. To cope with the low resolution and extreme
asymmetry in the aspect ratio of the used LiDAR images, a ded-
icated network block called LiDAR Labeling Block (LiLaBlock) is
proposed, which is inspired by the GoogLeNet inception modules of
Szegedy et al. [2016]. The block structure is illustrated in Figure 4.3.
In order to successfully handle relevant objects of various aspect
ratios, the usual filter size of 3× 3 is extended to apply filters of sizes
7× 3, 3× 7, and 3× 3 in parallel1. The output is then concatenated
and the dimension is decreased by a factor of three via a bottleneck.
In this way, the dimensionality of the feature space is reduced, yield-
ing a more compact representation. At the same time, the inference
complexity of the LiLaNet is lowered. Note that each convolution is
followed by a ReLU layer.

1 Note that the maximum height of the filters is restricted to 7 to prevent a larger
receptive field of the entire LiLaNet compared to the LiDAR image height of a
VLP-32C LiDAR scan.
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Figure 4.3: The LiLaBlock structure allows to cope with the extreme asym-
metry in the aspect ratio of the input LiDAR images. The illus-
tration is based on [Piewak et al., 2018b].
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Figure 4.4: The LiLaNet consists of a sequence of five consecutive
LiLaBlocks. The final 1 × 1 convolution reduces the dimen-
sionality to the desired label set. The illustration is based on
[Piewak et al., 2018b].

The full LiLaNet consists of a sequence of five LiLaBlocks with a
varying number of filters as shown in Figure 4.4. The sequence of
LiLaBlocks is followed by a 1× 1 convolution layer to reduce the
number of feature maps to the number of output classes according
to the label set defined in Section 3.3.3. The two input channels
represent the concatenated depth and reflectivity images, while
the output provides the corresponding point-wise semantic image
labeling based on an argmax layer as described in Section 2.2.

4.3.3 Optimization of the LiLaNet Architecture

The proposed LiLaNet represents the basis for further optimizations
towards performance as well as inference time. For this reason,
three optimization techniques are discussed in this subsection. For
further optimization strategies of the LiLaNet, the reader is referred
to [Schillinger, 2018].

4.3.3.1 Filter Reduction

Optimizing a CNN architecture requires a large number of trainings
to differentiate the influence of certain parameters or architectural
choices. Each training represents a time-consuming task until the
CNN converges to its final stage. For this purpose, the first opti-
mization step represents the reduction of filters per LiLaBlock. This
reduces the total number of weights of the CNN, influencing both
the required training time and the inference time, thereby leading
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Figure 4.5: Example of the dilated convolution operation based on an input
feature map (orange) and the resulting output features map
(blue). Different dilation widths are shown for visualization: A
dilation width ζ = 1 corresponding to the common convolution
layer, a dilation width ζ = 2 (middle), and a dilation width
ζ = 3 (bottom).

to an increase in the real-time capability of the LiLaNet. At the
same time, this reduction of filters reduces the number of param-
eters, which reduces the learning capacity of the CNN, resulting
in potentially decreasing performance. Both consequences have to
be analyzed against each other, which is realized within the first
optimization step.

4.3.3.2 Dilation

As described in Section 2.2.5, pooling layers leads to an increase
in the receptive field of the CNN to generate features of a higher
abstraction level. Related to the small size of LiDAR images (see
Section 4.3.1) as well as the high-resolution output required by
semantic labeling, the application of pooling layers is restricted. For
this reason, Yu and Koltun [2016] introduced the dilated convolution
layer, which is an extension of the convolution layer by inserting
the dilation width ζ into the equation of the convolution layer (see
Equation (2.15)) with

Zi,j = W ∗ X = ∑
k

∑
o

Wk,oXi−ζ·k,j−ζ·o . (4.1)

This increases the receptive field by retaining the resolution of the
input feature map as well as the number of weights as shown in
Figure 4.5. As a result, more complex features can be extracted,
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Figure 4.6: Factorization of a 3 × 3 filter by a 3 × 1 and 1 × 3 filter as
proposed by Szegedy et al. [2016].

leading to a higher resolution for image-based semantic labeling
without increasing the number of parameters [Yu and Koltun, 2016].

Transferring this knowledge to the architecture of the LiLaNet,
parts of the feature extracting convolutions of the LiLaBlock (7× 3,
3× 7, and 3× 3) are replaced by dilated convolution layers as a
second optimization step.

4.3.3.3 Factorization

In terms of optimizing network architectures for shorter inference
time, Szegedy et al. [2016] proposed to factorize a convolution layer
into multiple convolution layers. This leads to a reduction of param-
eters at the same receptive field. They proposed e. g. the substitution
of a convolution layer with a filter size k× o with two convolution
layers of a filter size ki × oi and k j × oj with

k = ki + k j − 1 and (4.2)

o = oi + oj − 1 , while (4.3)

ki, k j, oi, oj > 0 , (4.4)

as shown in Figure 4.6. As explained in Section 4.3.3.1, the reduction
of the parameters potentially decreases performance. Both the in-
crease of the real-time capability as well as the potential performance
decrease are analyzed in the last step of optimization.

For investigating this suggestion, three additional types of
LiLaBlocks are defined as shown in Figures 4.7 to 4.9. There,
different substitutions are applied to reduce the number of
parameters and increase the real-time capability. Figure 4.7 shows
a LiLaBlock that factorizes the large asymmetric filter sizes into a
squared convolution layer and a smaller asymmetric convolution
layer. Afterwards, the squared convolution layers are combined
into one common squared convolution layer to reduce duplicated
convolution layers (see Figure 4.8). Finally, the squared convolution
layer is factorized into smaller asymmetric convolution layers as
proposed by Szegedy et al. [2016] (see Figure 4.9).
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Figure 4.7: The optimized LiLaBlock structure by substitution of large con-
volution filters. The asymmetric filters are factorized into a
smaller asymmetric filter and a 3× 3 filter compared to the
original LiLaBlock (see Figure 4.3).

m

Conv
3× 3

Conv
5× 1

Conv
1× 5

Conv
1× 1

n

n

n

3n n

LiLaBlock

Figure 4.8: The optimized LiLaBlock structure by combining similar filters.
The symmetric filters are combined to reduce duplicated filters
compared to the first optimized LiLaBlock (see Figure 4.7).
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Figure 4.9: The optimized LiLaBlock structure by substitution of symmetric
convolution filters. The symmetric 3× 3 filters are factorized
into a 1× 3 and a 3× 1 filter to reduce parameters compared
to the second optimized LiLaBlock (see Figure 4.8).
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Figure 4.10: Overview of the various training strategies, which differ in the
amount of training data (see Table 3.2) as well as the labeling
type of the true labels. The figure is based on [Piewak et al.,
2018b].

4.4 evaluation

The Autolabeling process introduced in Chapter 3 was applied to au-
tomatically generate the large-scale dataset described in Section 3.4.1,
which in turn was used to train the proposed LiLaNet architecture
for LiDAR-based semantic labeling. In this section, different training
strategies as well as optimizations for LiLaNet corresponding to the
proposed methods in Sections 4.3.2 and 4.3.3 are evaluated in detail.

The network training is performed via the Adam solver [Kingma
and Ba, 2015]. The suggested default values of β1 = 0.9, β2 = 0.999
and ε = 10−8 are used. The learning rate is fixed at η = 10−3

(η = 10−4 for fine-tuning) and the batch size is set to βbatch = 5
for the base LiLaNet architecture in Section 4.4.1 and to βbatch = 10
for a training speed-up of the optimized LiLaNet architectures in
Section 4.4.22, while the weights are initialized with MSRA [He et al.,
2015] for the base LiLaNet architecture in Section 4.4.1 and with
Xavier [Glorot and Bengio, 2010] for the optimized LiLaNet architec-
tures in Section 4.4.2. According to the results of Section 3.4.2, the
IoU metric for performance evaluation is applied (see Section 2.3).

4.4.1 LiLaNet Architecture

Within this subsection, the impact of boosting the training via large-
scale datasets obtained from the Autolabeling process (see Chapter 3)
is analyzed. All evaluations are based on the test subset of the
manually annotated frames of the VLP-32C dataset.

2 Note that the changes of the training parameters to increase training speed
influence the learning process. For this reason, the base LiLaNet architecture is
trained additionally with these parameters as a reference model to evaluate the
optimizations proposed in Section 4.4.2.
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The following evaluation schemes are applied, which are also
visualized in Figure 4.10:

(1) LiLaNet Manual Annotations:
This evaluation assesses the performance of the LiDAR-based
semantic labeling using a small set of cost-intensive manu-
ally annotated point clouds from the annotated keyframes for
training (see Table 3.2).

(2) LiLaNet Autolabeled Reduced:
This evaluation measures the performance of the LiDAR-based
semantic labeling using a small set of automatically gener-
ated training data based on the annotated keyframes (same
keyframes that constitute the training set of the manually an-
notated dataset shown in Table 3.2).

(3) LiLaNet Autolabeled Full:
This evaluation assesses the performance of the LiDAR-based
semantic labeling when using the Autolabeling process on the
full training dataset of the original frames (see Table 3.2).

(4) LiLaNet Fine-Tuned:
This evaluation measures the performance of the LiDAR-based
semantic labeling by fine-tuning the network using a small set
of manually annotated data (1) with a pre-training based on
the full Autolabeling process (3).

The detailed results of the various training strategies applied to
LiLaNet are listed in Table 4.1 and illustrated in Figure 4.11. It can
be seen that the training on manually annotated data (1) yields a
higher performance than the training on autolabeled data (2), but
only for as long as the same amount of data is being used. This is
due to the imperfect results of the Autolabeling output itself. How-
ever, in practice, the amount of available manually annotated data is
severely limited by the high cost of point-wise manual annotation.
In contrast, the Autolabeling process allows to automatically generate
training datasets of arbitrary size at low cost. When using the large
amount of automatically generated data for training (3), LiLaNet in
fact outperforms its respective variant trained on manual annota-
tions (1) by 4.6 percentage points with regard to mIoU. Moreover,
the network seems to generalize well within the LiDAR domain
and suppresses some errors introduced by the Autolabeling process,
which is indicated by the improved performance for some classes
when compared to the pure Autolabeling output (e.g. ‘pole’ or ‘traffic
sign’). Note that the significant improvement of the class ‘traffic sign’
is related to the reflectivity information used as an input for the
LiLaNet. Hence, the classification of that class is simplified due to
the higher reflectivity of traffic signs within the LiDAR domain. Fur-
thermore, Figure 4.11 shows that the training on the small amount of
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Autolabeling
(see Table 3.4) 89.5 61.2 77.0 51.3 80.7 58.5 45.4 74.7 29.8 44.4 80.5 54.7 62.0

(1) LiLaNet
Manual Annotations 90.8 61.6 48.8 15.2 79.7 37.4 22.4 71.1 35.9 69.4 75.1 59.9 55.6

(2) LiLaNet
Autolabeled Reduced 86.8 51.3 44.9 13.2 72.6 32.7 19.0 60.2 20.9 45.7 66.4 44.2 46.5

(3) LiLaNet
Autolabeled Full 89.7 61.7 72.2 46.6 79.6 49.6 38.3 75.0 31.5 50.2 78.0 49.8 60.2

(4) LiLaNet
Fine-Tuned 94.1 73.9 73.8 48.9 86.4 52.2 49.2 83.4 46.6 75.7 84.8 67.4 69.7

(3) SqueezeSeg3

Autolabeled Full 89.0 60.9 56.7 6.1 76.4 39.2 25.9 66.6 18.6 46.8 73.0 57.3 51.4

(4) SqueezeSeg3

Fine-Tuned 92.2 68.2 56.8 12.9 80.1 38.5 33.1 72.0 26.1 67.1 75.7 63.0 57.1

Table 4.1: Class-wise and overall IoU scores in % of the different training
strategies of the LiLaNet based on the VLP-32C dataset. The
highest IoU scores of each column are marked in bold. The table
is based on [Piewak et al., 2018b].

data in (1) and (2) saturates after several thousand iterations, while
the training on the large-scale dataset (3) continues to increase out-
put performance. Finally, using the manual annotations to fine-tune
LiLaNet after pre-training on the automatically generated dataset
(4) boosts performance by another 9.5 percentage points. This cor-
responds to a total gain of 14.1 percentage points over the training
on manually annotated data only. Note that after fine-tuning, most
classes achieve a significantly higher performance than obtained by
the pure Autolabeling output itself. Hence, the LiDAR-based seman-
tic labeling result provided by LiLaNet with a training supported
by the Autolabeling process outperforms the image-based semantic
labeling results projected into the LiDAR domain. It is worth noting
that the network fine-tuning reaches its maximum performance only
after a few thousand iterations and soon starts to overfit on the
small manually annotated dataset, as can be seen in Figure 4.11. A
qualitative result of the fine-tuned network is shown in Figure 4.12.

In order to compare the presented LiLaNet architecture to the
state-of-the-art, the performance of the SqueezeSeg architecture
[Wu et al., 2018] proposed for LiDAR-based semantic labeling on a
smaller set of semantic classes (’car’, ’pedestrian’, ’cyclist’) is also an-
alyzed. Consider that the SqueezeSeg approach is evaluated without
its CRF stage for a fair comparison. The results in Table 4.1 as well
as Figure 4.11 illustrate that LiLaNet outperforms the SqueezeNet
architecture in each class. This may be due to the following reasons:
First, SqueezeNet uses five horizontal pooling layers which increase
the learnable feature size dramatically. Consequently, the network

3 LiDAR-based semantic labeling approach of [Wu et al., 2018]
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Figure 4.11: mIoU of the different training strategies and network archi-
tectures during training based on the VLP-32C dataset. The
figure is based on [Piewak et al., 2018b].

may have difficulties in capturing small but relevant objects. Fur-
thermore, the SqueezeSeg architecture does not distinguish between
different object shapes and sizes in the design of the convolution fil-
ters, as is done in the LiLaBlock structure. However, the SqueezeNet
does indeed also benefit from the combined process of fine-tuning
after pre-training on an automatically generated dataset.

4.4.2 Optimization

Within this subsection, the proposed optimization strategies of Sec-
tion 4.3.3 are evaluated in terms of inference time as well as clas-
sification performance. All strategies represent changes within the
architecture of the LiLaBlock or hyper parameter tuning. As a result,
the evaluation is performed on the optimized validation set of the
autolabeled frames of the VLP-32C dataset.

4.4.2.1 Filter Reduction

The reduction of the filter size tends to reduce the overall number of
parameters of the LiLaBlock. As a result, the training time as well
as the inference time decrease. At the same time, the learning capac-
ity of the LiLaNet decreases by a slight decrease of the mIoU. The
results can be seen in Table 4.2. The evaluated filter sizes represent a
decreased number related to the base LiLaNet. Thereby, in experi-
ment (a) and (b), the typical increase to the middle and decrease to



64 lidar-based semantic labeling

Figure 4.12: Example of a LiDAR point cloud labeled by LiLaNet. Point
colors correspond to the Cityscapes semantic class color cod-
ing Cordts et al. [2016]. The following semantic classes are
visualized: road, sidewalk, person, rider, small vehicle, large
vehicle, two-wheeler, construction, pole, traffic sign, vegeta-
tion, terrain. The test vehicle is headed to the top right of the
figure (arrow), the corresponding camera image is shown on
the top left for clarity. The images are based on [Piewak et al.,
2018b].

the end of the CNN as realized in encoder-decoder architectures (see
Section 2.2.7) is retained. In experiments (c) and (d), this structure
is replaced with a consistently growing filter size. The results show
that the training time as well as the inference time can be decreased
by more than 50% while reducing the mIoU score by 0.7 percentage
points (see experiment (c) in Table 4.2). The highest mIoU score is
realized with the base LiLaNet while using the highest inference
time. As a compromise between performance and real-time capabil-
ity, the filter reduction (d) is chosen for further experiments within
this subsection, which decreases the inference time by 45.7% (second
best inference time) while accepting a reduction of the mIoU score
of 0.4 percentage points (second best mIoU score). Note that this
configuration is called Slim LiLaNet within this thesis.

4.4.2.2 Dilation

The usage of dilation within the convolution layer (see Section 4.3.3.2)
leads to an increase in the receptive field of the FCN without reduc-
ing the resolution of the input and without increasing the number
of parameters. As a result, larger and more abstract features can

4 Runtime measured on a Nvidia GeForce RTX 2080 Ti.
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LiLaBlock Filters
Training
Time in

h

Parameters
in 106

Inference
Time4 in

ms

mIoU
in %

LiLaNet 96 128 256 256 128 60.5 7.85 74.4 60.2

(a) 64 96 128 256 128 39.6 4.63 47.1 59.7

(b) 48 64 128 256 128 36.1 4.24 42.3 59.1

(c) 48 64 96 128 256 29.6 3.07 33.8 59.5

(d) 64 96 128 128 256 33.6 3.79 40.4 59.8

Table 4.2: Results of the first optimized LiLaBlock to evaluate the perfor-
mance against the inference time related to the number of filters.
The lowest value of the training time, the number of parame-
ters, and the inference time as well as the highest mIoU score is
marked in bold. The table is based on [Schillinger, 2018].

Dilation Width Share of Dilated Convolutions mIoU

7× 3 3× 3 3× 7 in %

Slim LiLaNet 1 1 1 - 59.8

(a) 2 2 2 25% 62.1

(b) 2 2 2 50% 62.0

(c) 2 2 2 100% 59.0

(d) 3 3 3 25% 62.9

(e) 3 3 3 50% 62.9

(f) 3 3 3 100% 55.6

Table 4.3: Results of the second optimized LiLaBlock to evaluate the per-
formance related to the different dilation strategies. The dilation
is only applied to a share of the 7× 3, 3× 3, and 3× 7 filters.
The highest mIoU score is marked in bold. The table is based on
[Schillinger, 2018].

be learned. The results can be seen in Table 4.3. The influence of
the dilation is analyzed while applying the dilation to parts of the
convolution layers within the LiLaBlock. For example, in experiment
(a), the dilation is only applied to 25% of the filers of size 7× 3,
3× 3, and 3× 7. Additionally, different dilation widths (ζ = 2 and
ζ = 3) are analyzed to distinguish between the influence of a larger
receptive field.

Due to the larger receptive field, dilated convolution layers focus
on larger structures within the input (e. g. ‘construction’), while
undilated convolutions focus on smaller structures (e. g. ‘rider’).
Using both types of convolution layer increases the performance as
shown in Table 4.3 (e. g. mIoU increases by 3.1 percentage points for
(e)). In contrast, using only one type of convolution layer results in a
lower performance (Slim LiLaNet, (c), or (f)).

The different dilation strategies clearly show a performance in-
crease by using partly dilated convolution layers. Thereby, a larger
dilation width is advantageous in combination with undilated con-
volutions.
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LiLaBlock Layout
Parameters in 106 Inference Time5 in ms mIoU

tall square wide

Slim LiLaNet 7× 3 3× 3 3× 7 3.79 40.4 59.8

(a) 3× 3 3× 3 3× 3 3.29 35.2 60.4
5× 1 1× 5

(b)
3× 3

2.07 25.3 59.8↙↓↘
5× 1 1× 5

(c)

1× 3

2.00 28.0 59.53× 1

↙↓↘
5× 1 1× 5

Table 4.4: Results of the third optimized LiLaBlock to evaluate the perfor-
mance against the inference time related to different factorization
strategies. The lowest value of the number of parameters and the
inference time as well as the highest mIoU score is marked in
bold. The table is based on [Schillinger, 2018].

4.4.2.3 Factorization

The factorization of convolution layers as proposed in [Szegedy
et al., 2016] tends to increase the real-time capability of an FCN
while maintaining performance. Therefore, different configurations
of factorized LiLaBlocks are proposed in Section 4.3.3.3 (see Fig-
ures 4.7 to 4.9) and evaluated in Table 4.4.

The first step of factorization is the substitution of the large asym-
metric filters with a 3× 3 filter and a smaller asymmetric filter (see
Figure 4.7). The result can be seen in experiment (a), where the infer-
ence time decreases by 12.9% and the performance slightly increases.
This configuration confirms the potential of factorizing large filter
sizes.

The second step is the combination of the same 3× 3 filters to
reduce duplicated filters and create common features extractors
(see Figure 4.8). This configuration (see experiment (c) in Table 4.4)
reduces the inference time by additional 28.1%, while loosing the
performance gain of experiment (a). As a result, the combination of
similar convolution layers shows a clear inference time improvement
while slightly decreasing performance.

The last step of factorization replaces the remaining 3× 3 filter
with the corresponding factorized convolution layers (see Figure 4.9
and experiment (c)). Here, a decrease in the parameters as well as
a further performance decrease can be recognized. However, the
inference time increases. This is related to the hardware structure of
a Graphics Processing Unit (GPU), which is able to process identical
instructions in parallel. By factorizing the 3× 3 filter, the execution
is serialized, while the parallel GPU cores are not utilized optimally.

5 Runtime measured on a Nvidia GeForce RTX 2080 Ti.
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Figure 4.13: Sparse LiDAR images of the SemanticKITTI benchmark
[Behley et al., 2019]. Due to the ego-motion correction of the
point cloud, the 2D cylindrical LiDAR images contain a large
amount of invalid points, which can be seen within the dis-
tance image at the top (yellow = near, red = far, black = invalid),
within the reflectivity image in the middle (yellow = high re-
flectivity, blue = low reflectivity, black = invalid), and within
the semantic label image at the bottom (color coding is based
on the Cityscapes label colors [Cordts et al., 2016]).

As a result, this configuration shows that the factorization of small
filter sizes can be disadvantageous.

Comparing the results to the Slim LiLaNet, an inference time
reduction by 37.4% could be achieved by factorizing large filters and
combining similar convolutions while maintaining the performance
measured based on the mIoU score.

4.4.3 SemanticKITTI Benchmark Evaluation

Recently, a benchmark for LiDAR-based semantic labeling known
as SemanticKITTI was published [Behley et al., 2019]. In it, Behley
et al. [2019] used the LiDAR point clouds of the Kitti Odometry
benchmark [Geiger et al., 2012a] and manually annotated them for
a LiDAR-based semantic labeling benchmark. Although the point
clouds are only available in ego-motion corrected form (see ego-
motion compensation in Section 3.3.1.2), which results in a lossy
projection of the 3D point cloud into a sparse 2D LiDAR image (see
Figure 4.13), the optimized LiLaNet was applied to this benchmark.
Note that the 2D projection of the ego-motion corrected LiDAR
point cloud into an image of size 2,048× 64 results in a mean loss
of approximately 20% of the LiDAR points, depending on the speed
of the ego-motion due to the projection of multiple points to the
same pixel position. The optimized LiLaNet is represented by the
Slim LiLaNet of Section 4.3.3.1 by applying a dilation with a dilation
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width ζ = 3 on 50% of the filters (see Section 4.3.3.2) and using the
optimized factorized LiLaBlock of Figure 4.8 (see experiment (b) in
Section 4.3.3.3). Additionally, it has to be mentioned that the opti-
mized LiLaNet architecture was not optimized towards the HDL-64,
which is used within this benchmark. Reducing the information loss
of the projection method, the optimized LiLaNet is executed twice
per point cloud as a second experiment: Once for the closest points
and once for the farthest points, which are projected into the same
pixel positions of the 2D cylindrical LiDAR image. Afterwards, the
results are merged.

The results of the benchmark are shown in Table 4.5, where each
approach is trained on the training set (sequences 00 to 10, except
sequence 08, which is used for validation) and evaluated on the
testing set (sequences 11 to 21) of the SemanticKITTI benchmark
[Behley et al., 2019]. The optimized LiLaNet returns similar results
as state-of-the-art approaches with a factor of nearly 25 fewer pa-
rameters and an inference time of 73.8 ms6. Consider that the lossy
projection introduces false classifications, reducing the overall mIoU
score. Adapting the semantic labeling approach with a second exe-
cution of the LiLaNet concerning the farthest points (LiLaNet Twice
in Table 4.5), all mentioned state-of-the-art approaches are outper-
formed by at least 1.5 percentage points based on the mIoU score.
Note that all mentioned approaches use the 2D cylindrical LiDAR
images except the PointNet [Qi et al., 2017a] and the PointNet++
[Qi et al., 2017b]. These two network architectures show difficul-
ties of recognizing the large-scale outdoor scenes as mentioned in
Section 4.2.

4.5 outcome

In this chapter, the point-wise multi-class semantic labeling of 3D
point clouds is considered by transferring the concept of pixel-wise
image-based semantic labeling to the LiDAR domain. As a result,
the LiLaNet, a novel CNN architecture for efficient LiDAR-based
semantic labeling, is proposed including some optimization in terms
of real-time capability as well as performance. This architecture
significantly outperforms current state-of-the-art CNNs for multi-
class LiDAR-based semantic labeling when evaluated on different
manually annotated datasets.

Furthermore, a training technique is presented combining the
automatically generated training dataset of Chapter 3 with a fine-
tuning step based on small-scale manually annotated data. This
yields a performance boost of up to 14 percentage points, while
keeping manual annotation efforts low.

6 Runtime measured on a Nvidia GeForce RTX 2080 Ti for an HDL-64 scan.
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Table 4.5: Class-wise and overall IoU scores in % of the different network
architectures based on the SemanticKITTI benchmark (testing
set) [Behley et al., 2019]. The highest IoU scores of each column
are marked in bold. Parts of this table are based on [Behley et al.,
2019] © 2019 IEEE.

1 [Qi et al., 2017a]
2 [Qi et al., 2017b]
3 [Wu et al., 2018]
4 [Wu et al., 2019]
5 [Behley et al., 2019]
6 Slim LiLaNet with the optimized LiLaBlock of Sections 4.3.3.2 and 4.3.3.3 executed

once (for the closest points).
7 Slim LiLaNet with the optimized LiLaBlock of Sections 4.3.3.2 and 4.3.3.3 executed

twice (for the closest and the farthest points).
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This results in a high-quality real-time capable multi-class seman-
tic labeling approach, which represents the third step of the research
pipeline (see Figure 1.5) and forms the basis for the next step of
multi-modal Stixels.
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6 extension - hierarchical semantic label-
ing 87

Within this chapter, an extension of the third step of the research
pipeline (see Figure 1.5) is presented. This extension focuses on
the cross-sensor portability of LiDAR-based semantic labeling ap-
proaches. Parts of this section have previously appeared in [Piewak
et al., 2019].

5.1 overview

The task of semantic labeling originated in the field of computer
vision (see Section 1.1.3), with the aim to individually classify each
pixel in a given image [Garcia-Garcia et al., 2018]. Within recent years,
this task has been applied successfully to other sensor modalities
such as LiDAR sensors or RaDAR sensors [Feng et al., 2020]. Across
all modalities, state-of-the-art results are obtained by modern deep
learning techniques. However, approaches based on the application
of deep CNNs are often tailored to the specific characteristics of the
respective sensor instance. Transferring a network architecture from
e.g. one LiDAR sensor model to another represents a significant chal-
lenge, especially due to sensor specific design choices with regard
to network architecture as well as data representation. This effect is
intensified by the fact that LiDAR sensor technology keeps evolving
at a fast pace, with numerous new sensor types being announced or

71
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released to the market every year, featuring novel scanning patterns,
as well as ever increasing range and spatial resolution.

Given the sensor-specific tailoring of many current CNN architec-
tures as well as the difficulty of generating annotated training data
to scale (see Chapter 3), in this section, the cross-sensor portabil-
ity of neural network architectures is considered for LiDAR-based
semantic labeling. Portable network architectures could provide a
solution to above challenges by enabling the reuse of annotated data
and reducing the effort required for adapting CNN architectures to
new sensor models.

5.2 related work

In recent years, LiDAR point cloud processing has gained more
and more attention due to decreasing hardware cost and an increas-
ing number of sensor models available on the market. The main
difference between the different algorithmic approaches is the rep-
resentation of the 3D point cloud to be processed as discussed in
Section 4.2. Three different types of point cloud representations are
commonly found in the literature.

First, the point cloud can be represented as a projection of the
3D data to a 2D space e. g. as a Bird’s Eye View (BEV) [Yang et al.,
2018, Beltran et al., 2018] or a cylindrical projection as described in
Section 4.3.1. The main advantage of these projection methods is the
efficient processing based on 2D convolution layers. However, the
generated CNNs are usually rather sensor specific and can only be
transferred to different sensor models with significant effort. Such
transfer learning techniques [Torrey and Shavlik, 2009] use either a
pre-trained CNN on the same [Yosinski et al., 2014] as well as on
different tasks [Garcia-Garcia et al., 2018] or multi-task approaches
[Hong et al., 2016, Liu et al., 2019] to benefit from the combination
of different datasets. Most existing approaches have been developed
for the camera domain, where the input representation is very simi-
lar between different cameras, especially after a rectification of the
obtained image. Within the LiDAR domain, the input representation
can strongly differ between LiDAR sensors with regard to range, re-
flectivity representation1, non-uniform resolution, and aspect ratio2.
Particularly for 2D projections of the LiDAR data, this can represent
a significant challenge due to the changes of feature representations
for classification tasks.

An alternative method to represent point clouds is by way of an
unordered point set [Qi et al., 2017a,b, Li et al., 2018]. While this
approach is able to handle an arbitrary number of unordered points,

1 The characteristics of the reflectivity representation can already change between
LiDAR sensors of the same type.

2 Some LiDAR sensors have e. g. a different vertical resolution around the horizon
compared to the full field of view.
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the resulting classification performance tends to be problematic in
large-scale outdoor scenarios as are usually encountered in the field
of autonomous driving (see Sections 4.2 and 4.4.3).

The third common type of point cloud representation performs
a discretization of the 3D space into a voxel grid [Maturana and
Scherer, 2015] or an octree [Riegler et al., 2017]. Riegler et al. [2017]
evaluated a semantic segmentation task by predicting a single seman-
tic class for all points within an octree cell. Occupancy information is
used as a feature for each voxel. Zhou and Tuzel [2018] proposed Vox-
elNet for the task of object detection. Here, the idea of PointNet [Qi
et al., 2017a] is adopted to extract features from an arbitrary number
of points per voxel. While this representation increases cross-sensor
portability due to the regularity of the voxel grid, the additional
dimension and the employed 3D convolution layers dramatically
increase the training and inference time for larger CNN architectures.
Lang et al. [2019] alleviated this problem by introducing PointPil-
lars. Here, the 3D space is compressed to a 2.5-Dimensional (2.5D)
space by reducing the number of voxels along the vertical axis to
one, leading to an intermediate structure resembling pillars. Sim-
ilar to BEV-based approaches, this 2.5D pseudo-image can then
be processed using 2D convolutions, thereby benefiting from the
learned features per pillar. Both VoxelNet [Zhou and Tuzel, 2018]
and PointPillars [Lang et al., 2019] are optimized for object detection
tasks. In this section, a CNN architecture for point-wise semantic
segmentation is built upon these approaches, which increase the
portability across different LiDAR sensors compared to other point
cloud representation strategies.

5.3 method

In this section, previous work [Zhou and Tuzel, 2018, Lang et al.,
2019] is extended and a new CNN architecture for the point-wise
semantic labeling of LiDAR data is proposed. Increasing the cross-
sensor portability, a voxel-based processing approach is chosen,
similar to the data structures used by VoxelNet [Zhou and Tuzel,
2018] and PointPillars [Lang et al., 2019]. Hence, the resulting pillar-
based labeling network is called Pillar Labeling Network (PiLaNet).
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Figure 5.1: 3D voxel CNN architecture for point-wise semantic labeling.
The voxel space as well the processing chain per voxel are
represented in green and orange (different colors per voxel).
The three main components (Voxel Feature Encoder (also called
Voxel Feature Extractor within the literature) (VFE), backbone
CNN, and point-wise semantic extraction head) are represented
as violet, yellow, and gray boxes. This illustration is based on
[Piewak et al., 2019] © 2019 IEEE.
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Figure 5.2: Example of a voxel feature encoder based on two consecutive
VFE-Layers. The original point features serve as input to the first
VFE-Layer, while the second VFE-Layer uses the combination
of the point-wise features with the global features as input. This
illustration is based on [Piewak et al., 2019] © 2019 IEEE.
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Within the following subsections, the network architecture of the
PiLaNet is described in detail. It consists of three main components
(see Figure 5.1):

• The VFE, which generates a feature vector that encodes the
properties of the voxel content

• The backbone CNN, which accumulates the generated voxel
features in 3D space

• The point-wise semantic extraction head, which infers a se-
mantic label for each point from the encoded voxel features3

5.3.1 Voxel Feature Encoder

The VFE represents a network component designed to condense the
essential properties of all points contained within a voxel into one
feature vector (see Figure 5.2). This idea was originally proposed
in PointNet [Qi et al., 2017a] to encode a full point cloud into a
single feature vector. It was later adapted and applied to individual
voxels in the VoxelNet architecture [Zhou and Tuzel, 2018]. Each
point is represented by its global cartesian coordinates pxg, pyg,
and pzg, the measured reflectivity ξ as well as the relative cartesian
coordinates with respect to the mean of all points within a voxel
pxv, pyv, and pzv. To obtain an initial point-wise feature encoding,
each point is processed individually via FFNs. Each FFN consists of
one layer, representing a trainable feature combination of each point.
These sub-networks use shared weights to enforce identical feature
encoders for each point. Subsequently, a maximum pooling operator
is applied to the point-wise features in order to generate a single
feature vector per voxel. The combination of these processing steps
is also known as the VFE-Layer in the literature [Zhou and Tuzel,
2018].

The VFE-Layer can be applied repeatedly by concatenating the
encoded point-wise features with the voxel feature vector resulting
from the previous step (see Figure 5.2). Eventually, the FFN as well
as the maximum pooling operator are applied once more to obtain a
final refined feature vector for each voxel.

Since the VFE can handle arbitrary numbers of input points, it
is applicable to various voxel sizes and point cloud densities. It
provides a parameterizable representation which is highly portable
between different sensor types.

The features computed by the VFE-Layers are combined into a 3D
voxel grid, which forms the input to the backbone CNN described
in the next subsection.

3 This semantic extraction head replaces the region proposal network of related
object detection approaches [Zhou and Tuzel, 2018, Lang et al., 2019].
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Voxel
Compression

Voxel Grid Pillar Grid

Figure 5.3: Compression of the 3D space to the 2.5D space by reducing
the number of voxels along the vertical axis to one, leading
to an intermediate structure resembling pillars as proposed in
[Lang et al., 2019]. This illustration is based on [Piewak et al.,
2019] © 2019 IEEE.

5.3.2 Backbone CNN

To fully exploit the spatial context within the encoded data, a CNN
backbone architecture is applied to the voxel grid. Here, various
architectural choices are possible. VoxelNet [Zhou and Tuzel, 2018]
employs a full 3D backbone CNN to extract features from the voxel
representation via 3D convolution layers. This architecture is well
suited for the task of object detection, where the size of the 3D repre-
sentation can be reduced by applying pooling or strided convolution
layers without a significant loss in output accuracy. However, for
the semantic labeling task considered in this thesis, a fine-grained
point-wise prediction is required. In this case, a full 3D CNN entails
high computational complexity, leading to excessive memory con-
sumption as well as long training and inference times. To reduce
the dimensionality of the voxel grid and, hence, the computational
complexity of the backbone CNN, the concept of pillars as proposed
in [Lang et al., 2019] (see Figure 5.3) is adopted. The dimension-
ality of the voxel grid is reduced by directly encoding the height
information of each point within its associated pillar. The result-
ing representation resembles a 2D pseudo-image similar to a BEV.
Consequently, a 2D CNN architecture can be applied to process the
voxel representation in an efficient manner while retaining the full
information of the encoded data.

5.3.3 Point-Wise Semantic Extraction

The backbone CNN yields voxel-wise output features similar to the
probability score maps of object detection approaches [Zhou and
Tuzel, 2018, Lang et al., 2019]. These features can be used to infer
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Figure 5.4: Exemplary semantic labeling result obtained via the proposed
PiLaNet on a VLP-32C point cloud. The corresponding camera
image on the top left is shown for clarity, with the camera’s
field of view covering the top center of the point cloud (arrow).
The following semantic classes are visualized: road, sidewalk,
person, rider, small vehicle, large vehicle, two-wheeler, con-
struction, pole, traffic sign, vegetation, terrain. The images are
based on [Piewak et al., 2019] © 2019 IEEE.

a semantic class for each voxel. However, to obtain a point-wise
semantic labeling result, this approach is not sufficient, particularly
for large voxels such as pillars, where all points within a voxel would
be assigned the same semantic class. Therefore, a point-wise seman-
tic extraction head is introduced as shown in Figure 5.1. For each
point, the corresponding input vector (pxg, pyg, pzg, ξ, pxv, pyv, pzv)

of the voxel feature encoder is concatenated with the voxel-wise
features extracted by the backbone CNN. Subsequently, each point
is processed independently by multiple FFNs to extract a point-
wise classification result independent of its containing voxel. In this
manner fine-grained semantic class predictions within a voxel are
achieved.

5.4 evaluation

This section describes the evaluation of the proposed network archi-
tecture PiLaNet against a state-of-the-art reference method, with a
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Figure 5.5: Exemplary semantic labeling result obtained via the proposed
PiLaNet on a VLS-128 point cloud. The corresponding camera
image on the top left is shown for clarity, with the camera’s
field of view covering the top center of the point cloud (arrow).
The following semantic classes are visualized: road, sidewalk,
person, rider, small vehicle, large vehicle, two-wheeler, con-
struction, pole, traffic sign, vegetation, terrain. The images are
based on [Piewak et al., 2019] © 2019 IEEE.

focus on cross-sensor portability as visualized in Figures 5.4 and 5.5.
The evaluation is based on the manually annotated frames of the test-
ing set of the VLP-32C and of the VLS-128 dataset (see Section 3.4.1).
As a reference, the LiLaNet is used (see Section 4.3.2).

PiLaNet implements the voxel representation as described
in Section 5.3, whereby the voxel space is limited to the range4

(0.0 m,−30.0 m,−2.0 m) ≤ (pxg, pyg, pzg) ≤ (60.0 m, 30.0 m, 9.2 m).
The number of voxels is set to (numpx , numpy , numpz) = (300, 300, 1).
These parameters were optimized based on available GPU memory,
overall network performance, and training time. The used VFE is
composed of two VFE-Layers as explained in Section 5.3.1, with a
voxel feature vector size of 128. For the implementation of the VFE,
the maximum number of points per voxel is restricted to 35 and
a random sampling is applied in case the limit is exceeded. Since
a single voxel is used along the Z-axis (pillars), the backbone is
modeled as a 2D CNN. For a valid comparison, the LiLaNet is used
as a reference method and as a backbone CNN, with the number

4 The axis of the cartesian coordinate system follows the ISO 8855 [Deutsches
Institut für Normung, 2011].
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of output features per voxel set to 24. The point-wise semantic
extraction head includes three consecutive fully connected layers
with 64, 64, and 12 features. The last layer provides the scores of the
12 semantic classes (see Section 3.3.3 without the class ‘sky’). Aside
from the classification score, after each layer, a ReLU is applied.

Note that no optimization of the considered network architectures
for the specific sensor types is performed. In this context, a valid
evaluation of the unmodified CNN architectures and corresponding
point-cloud representations in terms of cross-sensor portability are
achieved.

The training of both LiLaNet and PiLaNet is performed with a
batch size5 βbatch = 8 via the Adam solver [Kingma and Ba, 2015].
With regard to the training strategy, the fine-tuning strategy of
Section 4.4.1 is applied. Thereby, the training on the autolabeled
set is run for 300,000 iterations before starting the fine-tuning. As
training parameters, the suggested default values for the Adam
solver of β1 = 0.9, β2 = 0.999, and ε = 10−8 are used. The learning
rate is fixed at η = 10−3 (η = 10−4 for fine-tuning), while the weights
are initialized with MSRA [He et al., 2015].

Evaluation is performed based on the testing set of the manually
annotated frames, whereby for each class, the IoU metric as well as
the overall mIoU are calculated. The evaluation is restricted to the
defined voxel range to ensure comparability between the different
point cloud representations, i.e. the voxel representation used by
PiLaNet and the cylindrical 2D projection of LiLaNet. This results
in slightly different IoU scores in Table 5.1 as compared to Table 3.4.

Several evaluation stages are performed on both datasets, which
are discussed in more detail in the following subsections:

1. Performance of the networks (LiLaNet and PiLaNet) trained,
fine-tuned, and evaluated on the same sensor

2. Performance of the networks (LiLaNet and PiLaNet) trained
and fine-tuned on one sensor and evaluated on the other sensor

3. Performance of the networks (LiLaNet and PiLaNet) trained
and fine-tuned on one sensor and additionally fine-tuned as
well as evaluated on the other sensor

5.4.1 Same-Sensor Evaluation

First, the networks are trained as described in Section 5.4, whereby
training, fine-tuning as well as evaluation are performed on the
same dataset (but on different subsets). The second block of Table 5.1

5 In case the network does not fit into the GPU memory, the batch is distributed
over multiple devices.
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Autolabeling
evaluation VLP-32C 90.3 62.4 79.7 52.7 83.1 61.9 46.5 76.5 33.6 45.1 79.6 55.5 63.9

Autolabeling
evaluation VLS-128

88.3 58.3 64.2 44.6 82.8 56.6 39.8 83.0 26.5 36.7 83.1 55.4 60.1

LiLaNet VLP-32C
evaluation VLP-32C 93.9 73.0 72.2 45.3 86.3 49.3 47.2 84.1 48.3 79.0 83.0 66.6 69.0

PiLaNet VLP-32C
evaluation VLP-32C 93.2 69.8 81.8 50.2 88.9 67.3 47.5 81.6 48.8 77.5 79.4 64.3 70.9

LiLaNet VLS-128

evaluation VLS-128
89.9 62.3 59.5 19.1 82.1 24.8 31.5 83.5 41.3 48.3 85.0 65.7 57.7

PiLaNet VLS-128

evaluation VLS-128
91.1 63.9 69.1 49.7 88.5 41.9 40.0 85.3 47.4 42.2 84.5 64.2 64.0

LiLaNet VLP-32C
evaluation VLS-128

55.6 19.9 17.5 7.5 45.1 4.6 9.5 65.7 33.4 36.5 72.7 28.0 33.0

PiLaNet VLP-32C
evaluation VLS-128

46.5 20.0 48.5 35.4 81.2 34.5 20.3 73.7 41.3 33.9 77.1 30.7 45.2

LiLaNet VLS-128

evaluation VLP-32C 83.0 30.8 40.2 4.8 68.3 22.7 19.5 63.8 29.6 46.3 68.1 49.7 43.9

PiLaNet VLS-128

evaluation VLP-32C 86.2 50.4 75.9 36.5 80.8 34.0 28.4 69.5 35.4 35.5 70.5 47.5 54.2

LiLaNet VLP-32C
fine-tuned VLS-128

evaluation VLS-128

87.8 58.0 46.0 13.6 77.1 14.1 25.0 81.5 39.0 46.0 84.4 65.2 53.2

PiLaNet VLP-32C
fine-tuned VLS-128

evaluation VLS-128

88.5 58.0 64.9 42.5 87.3 49.5 36.9 84.4 45.6 45.1 83.6 63.1 62.5

LiLaNet VLS-128

fine-tuned VLP-32C
evaluation VLP-32C

92.2 66.3 63.8 29.1 83.1 45.6 36.5 80.3 41.1 75.8 80.1 63.8 63.1

PiLaNet VLS-128

fine-tuned VLP-32C
evaluation VLP-32C

92.6 66.6 77.6 53.1 86.8 58.8 39.0 78.9 43.6 76.3 77.3 62.3 67.7

LiLaNet VLP-32C
fine-tuned VLS-128

evaluation VLP-32C
89.4 56.8 67.1 27.4 81.6 34.0 35.2 78.2 44.0 55.2 77.5 59.4 58.8

PiLaNet VLP-32C
fine-tuned VLS-128

evaluation VLP-32C
90.8 61.8 81.2 51.0 86.8 56.1 42.4 79.0 45.7 52.1 77.4 60.5 65.4

LiLaNet VLS-128

fine-tuned VLP-32C
evaluation VLS-128

74.5 39.2 40.3 7.1 72.6 16.2 21.6 79.8 38.2 39.2 81.5 49.0 46.6

PiLaNet VLS-128

fine-tuned VLP-32C
evaluation VLS-128

86.0 53.9 67.3 51.9 87.7 48.6 37.5 84.4 45.6 42.6 83.1 55.6 62.0

Table 5.1: Overview of the results obtained in the different evaluation stages
discussed in Section 5.4. Each row represents a semantic labeling
approach. The corresponding descriptions are given in the first
column, where the first two rows describe the architecture and
the training dataset as well the additional fine-tuning dataset
(if used). The last row of the description denotes the dataset
used for evaluation. The top results of the respective network
architectures trained with the same strategy are marked in bold.
Parts of this table are based on [Piewak et al., 2019] © 2019 IEEE.
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shows the results of this same-sensor evaluation strategy. The pro-
posed PiLaNet clearly outperforms LiLaNet on the VLS-128 dataset
and reaches slighly better results on the VLP-32C dataset as well.
This indicates that the voxel representation outperforms the cylin-
drical 2D representation in terms of output quality. This might be
related to the feature representation within the voxel space, which is
more location independent (e.g. height or distance to the sensor) as
compared to the features within the cylindrical 2D representation.

Interestingly, both network architectures achieve better results
on the VLP-32C dataset than on the VLS-128 dataset. This effect is
mainly due to the smaller overall size of the VLS-128 dataset. Also,
the decrease in performance is larger for LiLaNet than for PiLaNet.
This can be attributed to the higher resolution of the VLS-128, which
directly influences the object sizes within the cylindrical point cloud
representation. This indicates that the PiLaNet architecture is more
suitable for transfer between sensors than LiLaNet.

5.4.2 Cross-Sensor Evaluation

Using the already trained networks of Section 5.4.1, the second
evaluation stage is performed on the data of the opposite sensor in
order to evaluate cross-sensor portability. The corresponding results
are listed in the third block of Table 5.1. PiLaNet clearly outperforms
LiLaNet by more than 10 percentage points, confirming that the
voxel representation results in a far more portable architecture than
the cylindrical projection. At the same time, the mIoU of PiLaNet
drops by more than 16 percentage points compared to the same-
sensor evaluation results. This drop might in part be due to the
backbone CNN, which has to handle strongly varying densities for
the different sensor types and resolutions. While the cross-sensor
results are very promising, it is worth mentioning that there is still
ample room for tuning the voxel representation for portability.

5.4.3 Cross-Sensor Fine-Tuning

As seen in Section 5.4.2, the direct application of network models to
different sensors leads to a significant drop in output performance.
Therefore, a data-driven adaptation step is proposed, whereby the
pre-trained model is fine-tuned on the target sensor using manu-
ally annotated data. Note that only a small amount of manually
annotated data is required, while the full amount of autolabeled
data of the target sensor is not used. This represents the use-case
of changing a sensor model without reacquiring a large amount of
data for the target sensor, which reduces the time as well as the
cost of adapting CNNs towards a different sensor, especially for the
fast-paced development of LiDAR hardware technology. The results
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Network Architecture Inference Time6 in ms

LiLaNet 74.4

PiLaNet with
(numpx , numpy , numpz ) = (300, 300, 1) 138.1

PiLaNet with
(numpx , numpy , numpz ) = (600, 600, 1) 468.2

Table 5.2: Inference time of the LiLaNet and the PiLaNet evaluated on the
VLP-32C dataset. Due to the restriction of the voxel space, two
different voxel space ranges are evaluated for the PiLaNet.

of this strategy are shown in the fourth block of Table 5.1. After
fine-tuning the network architecture on the target sensor, PiLaNet
still outperforms LiLaNet, which once more confirms the superior
portability of the PiLaNet architecture, allowing for an adaptation
to the target sensor type with only small amounts of additional data.
Note that the performance on the pre-trained sensor is decreased
as shown in the fifth block of Table 5.1 (compared to the second
block of Table 5.1). However, the performance drop of the PiLaNet
is smaller with 5.5 percentage points on the VLP-32C dataset and
with 2.0 percentage points on the VLS-128 dataset compared to the
performance drop of the LiLaNet with 10.2 percentage points on the
VLP-32C dataset and with 11.1 percentage points on the VLS-128

dataset. This confirms once more the superior portability of the
PiLaNet architecture.

When compared to pure Autolabeling, the training strategy of
fine-tuning the architecture on a target sensor increases the mIoU
of PiLaNet by 2.4 percentage points on the VLS-128 dataset and
by 3.8 percentage points on the VLP-32C dataset. This shows that
the presented adaptation process can be used to successfully trans-
fer network architectures across sensors by applying only a small
manually annotated dataset for fine-tuning instead of using another
sensor modality such as cameras to generate reference data. It is
conceivable that a fine-tuned PiLaNet can be used to extend the
Autolabeling concept, which originally relies on an additional sensor
modality, in order to automatically generate large-scale datasets
for new sensor types of the same modality (e.g. LiDAR to LiDAR
Autolabeling).

5.4.4 Inference Time

As seen within the previous sections, the PiLaNet outperforms the
LiLaNet in terms of mIoU performance and portability between
different sensors. This advantage is caused by the 3D representation
of the LiDAR point cloud. At the same time, this representation
causes an increased inference time due to the additional dimension

6 Runtime measured on a Nvidia GeForce RTX 2080 Ti.
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added to the network architecture7, as shown in Table 5.2 where
the inference time for the PiLaNet is by a factor of 1.9 longer than
the LiLaNet based on the VLP-32C. Additionally, the voxel range of
the PiLaNet is restricted compared to the LiLaNet, which predicts a
semantic label for each point as mentioned in Section 5.4. Extending
this range from 60.0 m to 120.0 m for the width and the length of
the voxel space, the inference time increases further and reaches a
factor of 6.2 compared to the LiLaNet based on the VLP-32C.

5.5 outcome

This chapter focuses on CNN architecture for the fine-grained se-
mantic labeling of LiDAR point clouds based on a pillar-like voxel
representation. The proposed architecture is designed for portability
across different LiDAR sensor types to successfully handle varying
spatial resolution and scanning patterns. The network architecture is
evaluated against the LiLaNet representing a state-of-the-art seman-
tic labeling approach based on a cylindrical projection of LiDAR data.
The evaluation on manually annotated data across different sensors
shows that the proposed architecture is indeed highly portable be-
tween sensors, yielding an improvement of 10 percentage points in
mIoU when compared to the LiLaNet. However, the employed voxel
representation leads to an increase in computational complexity,
resulting in significantly longer inference times.

Furthermore, the presented architecture can be fully transferred
across different sensor types with minimal adaptation effort by fine-
tuning the pre-trained network on a small target sensor dataset.
This represents a significant advantage given the fast-paced devel-
opment of LiDAR hardware technology. The results indicate that
the proposed network architecture can provide an efficient way
for the automated generation of large-scale training data for novel
LiDAR sensor types without the need for a multi-modal sensor
setup. Hence, it might complement or even replace the multi-modal
Autolabeling method as shown in Figure 5.6 to train real-time capable
LiDAR-based semantic labeling approaches such as the LiLaNet.

7 Even if only 2D convolution layers are executed, the PiLaNet operated within the
3D space.
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LiDAR-based
Semantic Labeling

Sensor-Independent 
(slow)

Multi-Modal Stixels

Calibration
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Training Data
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Semantic Labeling
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Different LiDAR 
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Figure 5.6: Extended research pipeline to minimize the effort for LiDAR-
based semantic labeling of new LiDAR sensor models by using
sensor independent network architectures and transferring the
knowledge from one sensor model to another. (The images are
extracted from the related publications [Schneider et al., 2017,
Piewak et al., 2018a,b] © 2017 IEEE)
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Within this chapter, an extension of the third step of the research
pipeline (see Figure 1.5) is presented. This extension focuses on
a proof of concept for the combination of LiDAR-based semantic
labeling with hierarchical labels. Parts of this section have previously
appeared in [Bozatzidou, 2019] and [Piewak et al., 2020c].

6.1 overview

As already mentioned in Section 1.1.3, semantic labeling represents
the foundation for an in-depth scene understanding within the con-
text of autonomous vehicles. High-performance semantic labeling is
needed to maximize overall system performance, availability, and
safety. For this reason, different datasets are available [Cordts et al.,
2016, Behley et al., 2019] or created (see Chapter 3) in road traffic sce-
narios. The achieved results already reach a favorable classification
performance e. g. within the camera domain [Cordts et al., 2016] as
well as within the LiDAR domain (see Chapter 4). However, there is
still room for improvement.

Taking a closer look at the different failure cases of the proposed
semantic labeling approach of Chapter 4, the confusion matrix (see
Table 6.1) presents two types of misclassification. First, misclassifi-
cations for the predicted classes ‘construction’ and ‘vegetation’ can
be recognized (slightly red vertical line within the confusion ma-
trix). These two classes have a larger occurrence in the dataset and
therefore create a bias within the prediction (see Figures 3.3 and 3.4).
This bias can be reduced in data-driven fashion by adapting the
dataset label distribution. Most of the remaining misclassifications

87
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Figure 6.1: Example of point cloud of a ‘bicycle’ with a ‘rider’ in 13 meters
(left) and 60 meters (right) distance to the LiDAR sensor. In
13 meters distance, the difference between the ‘rider’ and the
‘bicycle’ can clearly be seen based on the 3D shape of the point
cloud. In 60 meters, the differentiation is challenging result-
ing in a higher confusion of both classes. The point cloud is
captured based on a VLP-32C.

are plausible due to sensor-specific constraints. For example, the
class ‘two-wheeler’ is confused with the class ‘rider’ due to the high
uncertainty of the object borders within the sparse LiDAR point
cloud, especially at large distances between the obstacle and the sen-
sor (see Figure 6.1). Also, the class ‘small vehicle’ is confused with
the class ‘large vehicle’, which is obvious due to unclear definitions
of mid-sized vehicles.

The obvious and plausible confusions within the semantic labeling
are caused by the equal weighting of the label classes based on the
learning rule (see Section 2.2.4). Therefore, the CNN is neither able
to distinguish more plausible confusions (like ‘person’ and ‘rider’)
from implausible confusions (like ‘person’ and ‘road’), nor predict
a fallback class in case of high uncertainty (like ‘vehicle’ instead of
‘small vehicle’ or ‘large vehicle’).

To prevent these kinds of misclassification, a hierarchical semantic
labeling approach is introduced within this section as a proof of
concept by adapting the learning rule of CNNs based on a label
class hierarchy.

6.2 related work

Related to the topic of managing confusions within classification
tasks of CNNs, two different types of approaches can be found
within the literature.

The first type of approach models the uncertainty of the CNN
prediction explicitly in a probability estimate which can be em-
ployed in higher-level modules of autonomous driving platforms
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road 96 2 0 0 0 0 0 0 0 0 0 0

sidewalk 7 86 1 0 0 0 0 0 0 0 0 3

construction 0 0 92 0 0 3 0 0 0 0 0 0

pole 0 0 16 65 2 10 1 0 0 0 0 2

traffic sign 0 0 7 2 87 1 0 0 0 0 0 0

vegetation 0 0 3 0 0 89 0 0 0 0 0 5

small vehicle 0 0 2 0 0 0 91 3 0 0 0 0

large vehicle 0 0 9 0 0 0 22 63 2 0 0 0

person 0 0 3 0 0 1 0 0 91 1 0 0

rider 0 0 2 0 0 1 3 0 21 57 12 0

two-wheeler 1 2 8 0 0 2 8 0 4 7 62 0

terrain 2 2 1 0 0 10 0 0 0 0 0 82

Table 6.1: Confusion matrix of the LiLaNet trained and evaluated on the
VLP-32C dataset. The values are rounded to integer percentage.

(see Figure 1.3). Guo et al. [2017] therefore analyzed different train-
ing techniques that influence the probability estimate extracted from
the softmax layer of the CNN. They proposed a so-called tempera-
ture scaling to adjust the probability estimate. For this purpose, a
logistic regression model is trained on the validation set of a dataset
to return probabilities based on the non-probabilistic predictions
of a CNN. Gal and Ghahramani [2016] introduced the dropout at
inference time as a Bayesian approximation for probability estimates.
Therefore, the CNN is executed multiple times by randomly deacti-
vating neurons. Although these approaches increase the quality of
the probability estimates, they require a completeness of the dataset
or increase the inference time which is difficult to realize within
real-time environments (e. g. autonomous driving).

The second type of approach introduces a label hierarchy (see
Figure 6.2) into the training process to formulate the label uncertainty.
Three different types of hierarchical classification exist as defined by
Silla and Freitas [2011] (see Figure 6.3).

The common way of classification is the usage of a flat hierarchy
which represents the classification of each leaf of the label hierarchy
without introducing the knowledge of the hierarchy into the training
process. This kind of classification is typically utilized for semantic
labeling within the camera [Cordts et al., 2016] or the LiDAR do-
main (see Chapter 4). Nevertheless, a label hierarchy is provided by
grouping the label classes (e. g. ‘vegetation’ and ‘terrain’ belongs to
‘nature’ [Cordts et al., 2016]).

The second type of hierarchical classification is represented by
a local classification, whereby for each level of the label hierarchy
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or for each parent of the class hierarchy, a separate classifier is ex-
ecuted. Mo et al. [2019] hence introduced a top-down architecture
which represents a classifier per parent label class of the hierar-
chy for a semantic segmentation of dense point clouds of indoor
environments.

The third hierarchical classification is represented by a global
classification which takes the full label hierarchy into account. Here,
leaves of the label hierarchy are predicted at a low uncertainty and
parent label classes at a high uncertainty. Redmon and Farhadi
[2017] therefore introduced a combination of global classification
at training time and local classification at inference time by replac-
ing the overall softmax layer at the end of the CNN with multiple
softmax layers per parent class extracting probability estimates per
parent class. At inference time, the label hierarchy is descended
until a threshold of the probability estimate is reached. Weber et al.
[2018] adopted this approach for hierarchical traffic light detection
in terms of classifying the state and the direction of a traffic light.
Lippe [2018] extended the approach of Redmon and Farhadi [2017]
to handle rare classes for image-based semantic labeling in combina-
tion with multiple datasets of different label hierarchies. Although
these approaches reach favorable results by using label hierarchies,
they lead to similar problems as the above-mentioned approaches
by generating a meaningful probability estimate. Additionally, the
chosen threshold for descending the label hierarchy is modeled by a
manually adjusted parameter.

In contrast, Nourani-Vatani et al. [2015] introduced a fully global
classification approach of label hierarchy based on a Support Vector
Machine for seafloor image classification. They therefore adapted
the true labels to represent the class hierarchy.

Within this section, the concept of Nourani-Vatani et al. [2015] is
taken one step further to a fully global classification approach of
label hierarchy by preventing an explicit formulation of the prob-
ability estimate and learning the inference of the label hierarchy
implicitly with the knowledge of the CNN based on an adaption
of the cross-entropy function. This has the advantage of an implicit
uncertainty representation of a CNN within the inferred classifica-
tion without the requirements of an explicit probability estimate.
As a result, the ascending or descending of the label hierarchy is
performed implicitly by the inference of the CNN.

6.3 method

This section introduces the hierarchical semantic labeling. Hence, a
label hierarchy as well as the adaption of the cross-entropy function
is described.
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Figure 6.2: Example of a label hierarchy represented by a tree. Leaf nodes
are visualized in orange while parent nodes are visualized in
blue. The green node represents the root of the class hierarchy.

6.3.1 Class Taxonomy

Formulating the relations between label classes, the label hierarchy
is defined as a tree as shown in Figure 6.2. The tree consists of nodes
which represent the label classes (e. g. class ‘1’ and class ‘3’). Each
node is related at most to one parent class like

parent(4) = 1 (6.1)

and can be related to child classes like

children(6) = {9, 10} . (6.2)

Only one node exists within the tree that does not relate to a parent
class which represents the root node (class ‘0’). Note that this class
represents the overall fallback class within the context of semantic
labeling. Nodes that do not relate to child classes are called leaves
of the label hierarchy (e. g. class ‘4’ or ‘7’). These classes represent
the most specific classes for semantic labeling. Nodes between the
root node and the leaf nodes (here, class ‘1’, ‘2’, and ‘6’) represent
abstract label classes or categories, which combine classes together
(e. g. ‘Golden Retriever’ and ‘Border Terrier’ both correspond to the
class ‘Dog’).

Additionally, nodes are related to their ancestor, representing all
parent nodes until reaching the root node like

ancestor(6) = {0, 2} ,
ancestor(4) = {0, 1} , or (6.3)
ancestor(0) = {} .

Based on these definitions, the path between two nodes is repre-
sented by all nodes lying on the shortest path between both nodes,
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Figure 6.3: Illustration of different hierarchical classification types as de-
fined by Silla and Freitas [2011] based on the label hierarchy
of Figure 6.2. Each yellow box represents a classifier. (a) has
one single classifier for all leaf class of the hierarchy. Parent
classes cannot be predicted. (b) has four classifiers, one per
parent class. (c) has three classifiers, one per hierarchy level. (d)
has one classifier to predict all classes of the label hierarchy.

including all parents until the first common ancestor of both nodes
and the nodes itself like

path(5, 7) = path(7, 5) = {0, 1, 2, 5, 7} ,
path(9, 7) = path(7, 9) = {2, 6, 7, 9} , or (6.4)
path(6, 6) = {6} .

The number of elements within a path of two classes is known as
the distance of these classes.

Furthermore, each mode corresponds to a hierarchy level as shown
in Figure 6.4 representing the abstraction level of the label hierarchy.

6.3.2 Hierarchical Learning Rule

Assuming the definition of label hierarchy of Section 6.3.1, the hard
constraint of the learning rule that only one class represents the true
class (see Section 2.2.4) is softened, similar to [Nourani-Vatani et al.,
2015]. Therefore, Equation (2.10) is adapted in different ways to
adapt the weighting of the class hierarchy within the cross-entropy
function. Four different weighting functions are presented within
this chapter.
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Figure 6.4: Illustration of hierarchy levels (gray) of a label hierarchy. Level
0 represents the highest and most abstract hierarchy level while
level 3 represents the lowest and most specific hierarchy level
containing only leaf classes.

First, the hierarchy can be inserted by allowing classes correspond-
ing to the ancestor of the desired class ψo compared to Equation (2.10)
with

Λψo ,k =

1, if k ∈ ancestor(ψo) or k = ψo

0, otherwise
. (6.5)

This represents the base idea of a label hierarchy which allows
fallback classes corresponding to the ancestor.

Similarly, this definition can be extended to the path between
the desired class ψo and the predicted class φo to insert the full
knowledge of the label hierarchy with

Λφo ,ψo ,k =

1, if k ∈ path(ψo, φo)

0, otherwise
, (6.6)

where φo is represented by the argmax of the outputs yo with

φo = (argmax)
i

yo,i . (6.7)

In addition, to the definition in Equations (6.5) and (6.6), the classes
can be weighted to the distance to the desired class ψo similar to
[Nourani-Vatani et al., 2015] to insert a weighting towards the leaf
class with

dΛψo ,k =

 1
|path(ψo ,k)| , if k ∈ ancestor(ψo) or k = ψo

0, otherwise
, (6.8)

and

dΛφo ,ψo ,k =

 1
|path(ψo ,k)| , if k ∈ path(ψo, φo)

0, otherwise
. (6.9)
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For preventing the scaling of the loss based on the hierarchy, a soft-
max function Φ (see Equation (2.6)) is applied to the class weights.
As a result, the Equation (2.10) is adapted e. g. with Λψo ,k to

ρψo ,k = Φ(Λψo)k =
eΛψo ,k

∑M
j=0 eΛψo ,j

, (6.10)

while Λψo = (Λψo ,0, . . . , Λψo ,M−1) represents the weight vector for
all predicted classes. For Equations (6.6), (6.8), and (6.9), the Equa-
tion (2.10) is adapted analogously.

6.4 evaluation

Within this section, the proposed fully global hierarchical semantic
labeling approach is evaluated. The evaluation is performed on the
autolabeled frames of the optimized validation set of the VLP-32C
dataset (see Section 3.4.1) instead of the testing set due to the param-
eter optimization of the learning strategy. Adapting the learning rule
according to Section 6.3.2 with the four proposed class weightings,
the Slim LiLaNet (see Section 4.3.3) is used as a reference CNN.

The network training is performed via the Adam solver [Kingma
and Ba, 2015]. The suggested default values of β1 = 0.9, β2 = 0.999
and ε = 10−8 are used. The learning rate is fixed at η = 10−3 and
the batch size is set to βbatch = 10, while the weights are initialized
with Xavier [Glorot and Bengio, 2010]. The training is performed on
the autolabeled frames of the training set of the VLP-32C dataset,
and no fine-tuning on the manually annotated frames is performed.

Given the available classes for LiDAR-based semantic labeling
(see Section 3.3.3) and inspired by Lippe [2018], a label hierarchy is
defined as shown in Figure 6.5. It contains 21 classes, including the
13 leaf classes of the generated or manually annotated datasets (see
Section 3.4.1). Note that the 8 parent classes are not present within
the dataset.

The performance is evaluated with two steps. First, the perfor-
mance of a hierarchical training is evaluated based on the mIoU
metric (see Section 2.3.4) to be compared to non-hierarchical seman-
tic labeling approaches. Afterwards, a qualitative evaluation of the
different weighting approaches is depicted. Note that the uncertainty
cannot be evaluated directly due to the implicit formulation within
the CNN instead of an explicit formulation at inference time.

6.4.1 Non-Hierarchical Comparison

According to Section 3.4.2, the mIoU metric is evaluated for different
hierarchy levels of the label hierarchy (see Figure 6.5) while project-
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Figure 6.5: Label hierarchy applied to the Slim LiLaNet. The leaf classes
represent the 13 classes of Autolabeling process (see Section 3.3.3).
The different hierarchy levels are visualized in gray. The label
hierarchy is based on [Bozatzidou, 2019].

ing leaf nodes of higher hierarchy levels to lower hierarchy levels1.
The results can be seen in Table 6.2, where the flat classification
represents a semantic labeling of the leaf classes, while the hierar-
chical classification takes the full label hierarchy into account. Note
that the mIoU metric is not intended to handle a label hierarchy.
However, the mIoU is used to compare the proposed hierarchical
approach to non-hierarchical semantic labeling approaches. The re-
sult is the prediction of a parent class at a high uncertainty of the
leaf classes representing a FN in terms of IoU of the leaf classes. For
this reason, the mIoU of the hierarchical classification is lower than
the flat classification for the hierarchy level 2 and 3. The hierarchy
level 0 represents only one class (root class), which produces the
mIoU score at 100%. Nevertheless, the hierarchy level 1 in Table 6.2
presents the potential of hierarchical classification by outperforming
the flat classification due to an implicit formulation of the class
hierarchy within the learning rule. As a result, a high uncertainty at
the leaf classes can be reduced at a higher label class hierarchy level.

6.4.2 Qualitative Results

Due to a restricted evaluation capability of the IoU regarding a
hierarchical semantic segmentation with a validation set contain-
ing only leaf classes of the label hierarchy, this section presents
qualitative results of the four weighting strategies of Section 6.3.
Therefore, a representative frame is visualized for all four strategies
(see Figures 6.6 to 6.9).

First, the equal weighting of all ancestor classes related to the
true class (strategy Λψo ,k) is visualized in Figure 6.6. There, it is

1 The class ‘sky’ is a leaf node at the hierarchy level 1. It is therefore used for the
evaluation of hierarchy levels 1, 2, 3, and 4.



96 extension - hierarchical semantic labeling

Figure 6.6: Visualization of an evaluation sample for the hierarchical
weighting with Λψo ,k. On the top the camera image of the
evaluation sample is visualized, middle left the distance LiDAR
image is visualized (yellow = near, violet = far, black = invalid),
middle right the reflectivity LiDAR images is shown (yellow =
high reflectivity, blue = low reflectivity, black = invalid), bot-
tom left represents the true labels generated by the Autolabeling
technique, and bottom right shows the prediction of the hier-
archical training with a weighting of Λψo ,k. The zoomed part
within the LiDAR image visualizes the leading ‘large vehicle’
as shown within the camera image. The following semantic
classes are visualized: road, sidewalk, small vehicle, large vehi-
cle, construction, traffic sign, vegetation, terrain, sky, obstacle,
dynamic obstacle, root , unlabeled. Note that the LiDAR im-
ages are cropped to the front facing part of the point cloud. The
images are based on [Bozatzidou, 2019].
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Hierarchy Level mIoU Performance

Flat Classification Hierarchical Classification

0 100.0% 100.0%

1 89.2% 91.5%

2 74.8% 52.5%

3 70.5% 44.0%

Table 6.2: Evaluation of the mIoU for hierarchical semantic labeling based
on the upper four different hierarchy levels. The flat classifi-
cation represents the Slim LiLaNet of Section 4.3.3, while the
hierarchical classification is defined by the hierarchical training
of the Slim LiLaNet. Note that leaf classes are projected to lower
hierarchy levels for evaluation (e. g. class ‘sky’ is used for evalua-
tion of all hierarchy levels besides level 0). The table is based on
[Bozatzidou, 2019].

Figure 6.7: Visualization of an evaluation sample for the hierarchical
weighting with Λφo ,ψo ,k. The left image represents the true labels
generated by the Autolabeling technique and the right image
shows the prediction of the hierarchical training with a weight-
ing of Λφo ,ψo ,k. Note that the images are cropped to the front
facing part of the point cloud. The following semantic classes
are visualized: road, sidewalk, small vehicle, large vehicle, con-
struction, traffic sign, vegetation, terrain, sky, unlabeled. The
images are based on [Bozatzidou, 2019].

clearly visible that the Slim LiLaNet takes the label hierarchy into
account to ascend the label hierarchy. The main parts of the predicted
image are labeled as root class, which is obvious due to the same
weighting of the leaf class and the root class, while the root class is
a valid classification for all LiDAR points. Taking a closer look at
the remaining other class predictions, it is apparent that the CNN
implicitly learns the label hierarchy. For example, the leading ‘large
vehicle’ is correctly classified as related classes like ‘dynamic obstacle’
and ‘obstacle’. However, this kind of semantic labeling is unusable
within the context of robotics and autonomous driving due to the
high rate of root class predictions representing the overall fallback
class.

Second, the equal weighting of all path classes between the true
and the predicted class (strategy Λφo ,ψo ,k) is visualized in Figure 6.7.
There, the CNN does not learn the label hierarchy and predicts only
leaf classes. This is related to the hierarchical learning rule, whereby
the minimal value of the loss function is achieved by predicting the
outputs yo with a similar distribution as the weight vector Λ of the



98 extension - hierarchical semantic labeling

Figure 6.8: Visualization of an evaluation sample for the hierarchical
weighting with dΛφo ,ψo ,k. The images are arranged identical as
Figure 6.7 including the class labels and are based on [Bozatzi-
dou, 2019].

hierarchical learning rule2. At a prediction of an equal distribution,
this initially leads to a selection of the argmax φo similar to the
above-mentioned strategy. As a result, one of the path classes (e. g.
path(‘terrain’, ‘root’) = ‘terrain’, ‘ground’, ‘root’) is inferred. In case
of inferring the class with the largest hierarchical distance to the true
class (e. g. ‘root’), the weight vector Λ stays unchanged. In case of
inferring another path class (e. g. ‘ground’), the weight vector Λ is
changed to an equal weighting of the path classes between the true
class and the inferred class due to the dependence of the weighting
Λφo ,ψo ,k to the argmax φo. This results in the predicted distribution
being changed based on the learning process. Thereby, the classes
with the originally longer hierarchical distance to the true class will
not be predicted anymore. Caused by the fact that the dataset only
contains leaf classes, this effect optimizes the weight vector Λ and
corresponding the CNN towards leaf class predictions, which can
be seen in Figure 6.7.

In the case of the distance-dependent weighting strategy of all
path classes (strategy dΛφo ,ψo ,k), this effect is even accelerated due
to the fact that the maximal value of the weight vector Λ is equal
to the true class, which corresponds to a leaf class within the given
dataset. This is visualized in Figure 6.8.

Finally, the distance-dependent weighting of all ancestor classes
related to the true class (strategy dΛψo ,k) is visualized in Figure 6.9.
There, the weight vector Λ is not dependent on the argmax φo
as the weighting related to the path classes (strategy Λφo ,ψo ,k and
dΛφo ,ψo ,k). As a result, the full hierarchical class tree can be predicted.
Additionally, an improvement to the equal weighting (strategy Λψo ,k)
is clearly visible at the reduced number of root class predictions
in Figure 6.9. At the same time, the hierarchical knowledge is still
present as visible at the leading ‘large vehicle’. Furthermore, it can
be observed that the parent classes including the root class primarily
appear at object borders where a higher uncertainty of the CNN is
expected.

2 The weight vector Λ depends on the weighting strategy and is represented by
Λφo ,ψo for the equal weighting of all path classes or by Λψo for the equal weighting
of all ancestor classes.
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Figure 6.9: Visualization of an evaluation sample for the hierarchical
weighting with dΛψo ,k. The images are arranged identical as
Figure 6.7 including the class labels. The following additional
classes that are visualized: obstacle, dynamic obstacle, root .
The zoomed area corresponds to the leading ‘large vehicle’ as
visualized in Figure 6.6. The images are based on [Bozatzidou,
2019].

6.5 outcome

Within this chapter, a hierarchical semantic labeling approach based
on an extension of the cross-entropy function is introduced. There-
fore, a label hierarchy is defined as a tree structure which represents
the relations between the different classes while grouping the classes
together to more abstract classes. Compared to related work, the
proposed hierarchical semantic labeling approach does not require
an explicit formulation of the uncertainty or the probability estimate.
It introduces the knowledge of the label hierarchy directly into the
CNN, while the uncertainty is learned implicitly. As a result, the
CNN is capable to ascend or descend the label hierarchy implicitly
at inference time and can even predict the root class as the overall
fallback class.

The results present the potential of this hierarchical approach
which is able to reduce confusions between leaf classes by predicting
parent classes of the label hierarchy. As a result, semantic labeling
approaches can be taken one step further by implicitly encoding the
uncertainty into the CNNs.
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Within this chapter, the last step of the research pipeline (see Fig-
ure 1.5) is described. Parts of this chapter have previously appeared
in [Piewak et al., 2018a], [Piewak et al., 2020a], and [Piewak et al.,
2020b].

7.1 overview

After generating a valuable LiDAR-based semantic labeling ap-
proach in Chapter 4, the last step of the research pipeline (see Fig-
ure 1.5) represented by the multi-modal Stixels can be approached.

Within the field of mobile robotics and autonomous driving, strin-
gent requirements regarding accuracy, availability, and safety have
led to the use of sensor suites that incorporate complimentary sen-
sor types such as camera, LiDAR sensor, and RaDAR sensor. Each
sensor modality needs to leverage its specific strengths to contribute
to a holistic picture of the environment (see Section 1.1.4).

The sensor output typically involves quantities that are derived
from raw measurements, such as detailed semantics (see Section 4.2)
or object instance knowledge [Yang et al., 2016, Zhou and Tuzel,
2018]. The different representations provided by the various sensor
types are typically fused into an integrated environment model as
discussed in Section 1.1.2.

Fusing the massive amounts of data provided by multiple different
sensors represents a significant challenge in a real-time application.
For this reason, mid-level data representations have been proposed
that reduce the amount of sensor data but retain the underlying
information at the same time. A prime example of such a mid-level
representation is the so-called Stixel-World [Badino et al., 2009, Pfeif-
fer, 2012, Schneider et al., 2016, Cordts et al., 2017, Hernandez-Juarez

101
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Figure 7.1: Example of a multi-modal Stixel scene visualized as 3D image
(right) generated based on a camera image (top left) and a se-
mantic point cloud (bottom left). Note that only object Stixels are
visualized. The colors correspond to the Cityscapes semantic
class color coding [Cordts et al., 2016]. The following seman-
tic classes are visualized: road, sidewalk, person, rider, small
vehicle, large vehicle, two-wheeler, construction, pole, traffic
sign, vegetation, terrain. The images are based on [Piewak et al.,
2018a].

et al., 2017] that provides a compact, yet geometrically and semanti-
cally consistent model of the observed environment. Thereby, a 3D
scene is represented by a set of narrow vertical segments, the Stixels,
which are described individually by their vertical extent, geometric
surface, and semantic label. The Stixel concept was originally applied
to stereo camera data, whereby the segmentation is primarily based
on dense disparity data as well as pixel-level semantics obtained
from a deep neural network [Schneider et al., 2016, Cordts et al.,
2017, Hernandez-Juarez et al., 2017].

In this chapter, a transfer of the Stixel concept into the LiDAR
domain to develop a compact and robust mid-level representation
for 3D point clouds is proposed. Moreover, the Stixel concept is
extended to a multi-modal representation by incorporating both
camera and LiDAR sensor data into the model.

7.2 related work

The multi-modal Stixel approach presented in this chapter combines
LiDAR distance measurements with the point-wise semantic labeling
information obtained from both - the LiDAR sensor and monocular
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camera. The approach is related to three different categories of
existing work: Semantic labeling, sensor fusion, and compact mid-
level data representations.

First, semantic labeling describes a range of techniques for the
assignment of object class or object type to each measurement (e.g.
pixel-wise) as explained in Section 1.1.3. The topic has been well
explored within the camera domain [Garcia-Garcia et al., 2018, Long
et al., 2015, Cordts, 2017, Sankaranarayanan et al., 2018]. In contrast,
semantic labeling for 3D point clouds is a relatively recent topic as
described in Chapter 4. As the multi-modal Stixel approach pro-
posed in this chapter utilizes semantics from both LiDAR sensor
and camera data, the LiLaNet (see Section 4.3.2) is applied to di-
rectly extract the detailed point-wise semantics from LiDAR data.
This results in a class representation similar to the camera domain,
whereby the efficient FCN architecture represented by Cordts [2017]
is used.

Second, different fusion strategies can be applied to the multi-
modal data of various sensors. Several approaches perform so-called
low-level fusion by directly combining the raw data to obtain a
joint sensor representation, which is then used for object detection
[Gupta et al., 2014] or semantic labeling [Muller and Behnke, 2014].
A different method commonly used within the autonomous driving
context is high-level fusion [Nuss et al., 2018], whereby the sensor
data is processed independently and the results are later combined
on a more abstract level. In this chapter, a novel fusion concept is
presented which integrates the sensor data on mid-level, reducing
the data volume while minimizing information loss. This represen-
tation can further be integrated into a more abstract environment
model such as an occupancy grid [Nuss et al., 2018].

Third, the presented multi-modal Stixel approach is closely related
to other compact mid-level representations in terms of the output
data format. In particular, the Stixel-World obtained from camera
sensors is referred, which has successfully been applied with [Be-
nenson et al., 2012, Pfeiffer, 2012, Liu et al., 2015] and without [Levi
et al., 2015] the use of stereoscopic depth information. The integra-
tion of camera-based semantic labeling information into the Stixel
generation process was presented in [Schneider et al., 2016, Cordts,
2017, Hernandez-Juarez et al., 2017], thereby further improving ro-
bustness and promoting the semantic consistency of the result. The
Stixel concept has also been adapted to other image-based sensor
techniques, e. g. to a camera-based infrared depth sensor as shown in
[Martinez et al., 2017]. Forsberg [2018] made use of a LiDAR scanner
to obtain depth information for the Stixel generation process. Similar
to an early idea in [Pfeiffer, 2012], the LiDAR point cloud is simply
projected into the camera image to replace the original dense dispar-
ity information with the sparse LiDAR-based depth measurements.
In contrast within this chapter, a LiDAR-specific sensor model that
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Figure 7.2: Example of a multi-modal Stixel scene visualized as 2D images
(right, colors = Cityscapes semantic class [Cordts et al., 2016],
each image column is separated into multiple semantic Stixels)
and the corresponding LiDAR distance image (center, blue =
close, red = far) projected to a cylindrical view. The correspond-
ing camera image is shown on the left. The images are based
on [Piewak et al., 2018a].

is particularly tailored to exploit the superior geometric accuracy
of the LiDAR sensor over a stereo camera is introduced. Finally,
semantics from both LiDAR and camera data are integrated into the
Stixel generation process to obtain a high-quality, comprehensive
mid-level 3D representation of the environment.

7.3 method

The proposed Stixel model is inspired by the stereoscopic camera
approaches of [Pfeiffer, 2012, Schneider et al., 2016, Cordts et al.,
2017]. After a general definition of the Stixel representation, the
transfer of the Stixel model to the LiDAR domain as well as the
adapted Stixel generation process is described.

7.3.1 Stixel Definition

Stixels are segments which represent sensor data in a compact fash-
ion while retaining the underlying semantic and geometric prop-
erties. Generally, the segmentation of an image represents a 2D
optimization problem which is challenging to solve in a real-time
environment. Instead, Stixels are optimized column-wise, which
reduces the optimization task to a 1D problem that can be efficiently
solved via dynamic programming [Pfeiffer, 2012]. As a result, each
column is separated into rectangular stick-like segments S called
Stixels. Within the LiDAR domain, the input data is represented
as an ordered set of columns of the LiDAR scan, obtained from
a cylindrical projection of the 3D measurements onto a 2D grid,
as described in Section 4.3.1 and shown in Figure 7.2. Each Stixel
si = (u, a, r, l, c) is represented by the bottom row index u and the
top row index a, describing its vertical extent with regard to the
vertically ordered measurements M = (m1, . . . , mh). Additionally,
each Stixel has a semantic label l, a structural class c, and a distance r
to the sensor or the ideal ground plane (depending on the structural
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Figure 7.3: Exemplary Stixel extraction based on a vertical LiDAR scan
column. The image is based on [Piewak et al., 2018a].

class c). There are three different Stixel structural classes, i.e. support
(G) for flat regions such as road surface or sidewalk, object (O) for
obstacles such as people or vehicles, and sky (S) for areas without
LiDAR measurements, as indicated in Figure 7.3.

7.3.2 Stixel Model

The vertically ordered (bottom to top) set of measurements M =
(m1, . . . , mh) is processed column-wise (see Figure 7.2) and contains
LiDAR depth measurements D = (d1, . . . , dh) as well as semantics
from the camera Lcam = (lcam1 , . . . , lcamh) and the LiDAR sensor
Llidar = (llidar1 , . . . , llidarh

), respectively. The extraction of semantics
from the LiDAR sensor is performed using the LiLaNet architecture
(see Section 4.3.2). The semantic information of the camera is asso-
ciated with the 3D LiDAR points based on the Autolabeling process
(see Chapter 3), which projects the LiDAR points into the image
plane in order to associate the semantics provided by a state-of-the-
art image-based FCN to each point.

Based on this definition, the posterior distribution Pr(S|M) of the
Stixels S given the measurements M of a column is defined using
the likelihood Pr(M|S) as well as the prior Pr(S) as

Pr(S|M) =
Pr(M|S) · Pr(S)

Pr(M)
. (7.1)

Here, the Stixels S = (s1, . . . , sn) are vertically ordered in accor-
dance with the measurement vector M. Formulating the posterior
distribution in the log-domain yields

Pr(S|M) = e−Π(S,M) , (7.2)

where Π(S, M) represents an energy function as defined by Cordts
et al. [2017] as

Π(S, M) = Θ(S, M) + Ω(S)− log(Pr(M)) . (7.3)
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Note that Θ(S, M) represents the data likelihood, Ω(S) the segmen-
tation prior, and Pr(M) a normalization. In contrast to camera-based
Stixel applications, as discussed in Section 7.2, the proposed ap-
proach of this thesis puts forward a LiDAR-specific sensor model to
better integrate the accurate LiDAR geometry into the Stixel concept.
This will be discussed within the next subsections.

7.3.2.1 Prior

The prior Ω(S) puts constraints on the Stixel model in terms of
model complexity and segmentation consistency with

Ω(S) = Ωmc(S) + Ωsc(S) . (7.4)

The model complexity term Ωmc(S) describes the trade-off between
the compactness and the accuracy of the representation. The seg-
mentation consistency Ωsc(S) governs hard constraints on the Stixels
concerning the relation of Stixels within a column. The formulation
of these prior terms does not depend on the LiDAR measurements.
As a result, the existing definitions of the camera domain are used.
For further details, the reader is referred to [Cordts et al., 2017].

7.3.2.2 Data Likelihood

The data likelihood represents the matching quality of the mea-
surements M to a given set of Stixels S, considering three different
data modalities: LiDAR geometry, LiDAR semantics, and camera
semantics:

Θ(S, M) = ∑
si∈S

∑
mj∈M∗i

βgeolidar Θgeo(si, dj, dj−1)

+ βsemlidar Θsemlidar(si, llidarj
)

+ βsemcam Θsemcam(si, lcamj) .

(7.5)

Here, M∗i represents a subset of the measurements M associated
with a specific Stixel si. The parameters βgeolidar , βsemlidar , and βsemcam

represent the weighting parameters of each modality. The different
modalities are described within the following paragraphs.

lidar geometry The LiDAR geometry data likelihood consists
of three elements defined as follows:

Θgeo(si, dj, dj−1) = Θdist(si, dj) + Θgr(si, dj, dj−1)

+ Θsens(si, dj) .
(7.6)

First, the relation of a LiDAR depth measurement dj and the Stixel si
is given by the term Θdist(si, dj). This data likelihood is represented
as a mixture of a normal distribution, encoding the sensor noise



7.3 method 107

based on the variance σ, and a uniform distribution representing
outlier measurements with an outlier rate of pout. Note that this
data likelihood is not LiDAR sensor specific, but rather specific
to distance-measuring sensors except the parameters σ and pout.
Resulting is the definition of Cordts et al. [2017] applied.

In addition to the common depth likelihood definition Θdist(si, dj),
two additional likelihood terms are defined to take advantage
of LiDAR-specific measurement properties: A ground term
Θgr(si, dj, dj−1) and a sensor term Θsens(si, dj). The ground term
assesses the consistency of the data with an assumed ground model,
based on the gradient between two measurements

γ(dj, dk) = arctan

(
∆pz jk

dgroundjk

)

= arctan
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px

2
k + py

2
k −

√
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2
j + py

2
j

 . (7.7)

Note that a geometric LiDAR measurement dj = (rj, αhj
, αvj) is

represented using polar coordinates and consisting of a measured
distance rj, a horizontal angle αhj

, and a vertical angle αvj . Based on
these polar coordinates, the Cartesian coordinates (px j, py j, pz j) are
extracted.

The gradient γ obtained from the high-quality LiDAR measure-
ments provides structural information of the environment to dis-
tinguish between flat surfaces such as ground (low gradient) and
obstacles (high gradient). This information is encoded into an object
existence probability using a parameterized hyperbolic tangent as

Prob(dj, dj−1) =
1 + tanh(βgr,steep(γ(dj, dj−1)− βgr,shi f t))

2
. (7.8)

Note that the parameters βgr,steep and βgr,shi f t adapt the sensitivity
of the gradient model. Subsequently, the data likelihood based on
the ground model is defined as

Θgr(si, dj, dj−1) =
− log(1− Prob(dj, dj−1)) if γ is def. & ci = G

− log(Prob(dj, dj−1)) if γ is def. & ci = O

0 if γ is undef. or ci = S

, (7.9)

where ci describes the structural class of the Stixel si. Note that the
data likelihood based on the ground model is set to zero when the
gradient is undefined, which can be caused by missing reflections
of the LiDAR sensor (e.g. if the LASER beam is pointing to the
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sky). However, both the vertical and horizontal angles of the polar
coordinate of the so-called invalid measurement are still available.

In case of an invalid measurement, the data likelihood based on
both the ground model and the depth matching cannot be processed.
For this reason, the sensor term Θsens(si, dj) is introduced to the
likelihood formulation, which is based on the vertical distribution
of measurement angles of the LiDAR sensor. It is assumed that a
sky Stixel is more likely to occur at larger vertical angles, which is
encoded into a parameterized hyperbolic tangent similar to Equa-
tion (7.8) as

PrS (αvj) =
1 + tanh(βsens,scale(αvj − βsens,shi f t))

2
. (7.10)

A similar definition is used with regard to small vertical angles and
support Stixels by inverting the vertical angle PG(αvj) = PS (−αvj).
Consequently, the sensor term contribution for invalid points is
defined by

Θsens(si, dj) =

− log(PrS (αvj)) if dj is invalid & ci = S

− log(PrG(αvj)) if dj is invalid & ci = G

− log(1− PrB(αvj)) if dj is invalid & ci = O

∞ if dj is valid & ci = S

0 if dj is valid & ci ∈ {G,O}

, (7.11)

with PrB(αvj) = PrS (αvj) + PrG(αvj). Note that a hard constraint is
inserted to prohibit sky Stixels resulting from valid measurements.

semantic information The semantic information obtained
from the LiDAR data is utilized in a similar way as in the Stixel
concept of the camera domain. Each semantic measurement llidarj

holds a probability estimate Prllidarj
(l) of each class l conditioned on

the input data, which can be obtained from the underlying semantic
labeling method represented by the LiLaNet (see Chapter 4). The
definition of the semantic data likelihood is adapted from [Schneider
et al., 2016] and [Cordts et al., 2017] as

Θsemlidar(si, llidarj
) = − log(Prllidarj

(li)) . (7.12)

To obtain high-resolution semantic information from the camera
image, the efficient FCN architecture described by Cordts [2017]
is used. Fusing this information into the proposed multi-modal
Stixel approach enables the combination of high-resolution camera
semantics with geometrically accurate information of the LiDAR
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sensor. For this purpose, the projection technique of the Autolabeling
(see Chapter 3) is applied to extract the semantic information of the
camera by projecting the LiDAR measurements into the semantically
labeled image. Consider that this projection represents a dense
measurement transfer due to the fact that each LiDAR measurement
then holds additional semantic information from the camera domain
lcamj , which is processed similar to Equation (7.12) based on the
probability Prlcamj

(l) for each semantic class l with

Θsemcam(si, lcamj) = − log(Prlcamj
(li)) . (7.13)

Note that this definition is independent of the LiDAR-based se-
mantics, which enable the extraction of different domain-specific
semantic classes l from the camera and LiDAR sensor. Especially
the camera-based FCN [Cordts, 2017] extracts more semantic classes
based on the higher resolution as well as the larger receptive field
compared to the LiLaNet. Hence, the domain specific strengths of
each sensor modality and the differing object appearance within the
LiDAR sensor and the camera are combined to increase the semantic
consistency of the multi-modal Stixel result.

7.3.3 Stixel Generation

Based on the proposed Stixel model, Stixels are generated by finding
the maximum-a-posteriori solution of Equation (7.1). This is equal to
the minimization of the energy function given in Equation (7.3). Note
that the probability of the measurement Pr(M) represents a scaling
factor which is ignored within the optimization process. To solve this
1D column-wise optimization process, a dynamic programming ap-
proach is used as defined in the original Stixel formulation ([Pfeiffer,
2012] and [Cordts et al., 2017]).

7.4 evaluation

To evaluate the proposed multi-modal Stixel model, the manually
annotated testing set of the VLP-32C dataset (see Section 3.4.1) is
used. The dataset consists of manually annotated semantic LiDAR
point clouds recorded from a vehicle in various traffic scenarios,
and further includes corresponding image data captured by a front-
facing monocular camera. This enables the usage of the LiDAR
depth data, the LiDAR semantic data based on the LiLaNet as dis-
cussed in Chapter 4, and the camera semantic data transferred to
the LiDAR with the Autolabeling process (see Chapter 3) as three
input modalities for the multi-modal Stixel model. Furthermore, the
dataset allows both a semantic evaluation of the proposed method
based on the manually annotated semantic LiDAR data and a geo-
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Stereo
Camera1

LiDAR
Depth
only

LiDAR
Semantics

only

Camera
Semantics

only

Multi-
Modality

Outlier Rate in % 6.7 0.62 28.8 35.3 0.95

mIoU in % 66.5 61.8 70.0 60.8 70.6

Compression Rate in % - 54.0 81.2 85.3 58.3

Table 7.1: Comparison of the original Stixel World (based on a stereoscopic
camera), the different independent Stixel optimization modalities,
and the combined multi-modal representation based on an equal
weighting of the modalities (βsemlidar = βgeolidar = βsemcam = 1).
The table is based on [Piewak et al., 2018a].

metric evaluation based on the LiDAR depth data. Due to the sensor
configuration within the dataset, the evaluation is restricted to the
area inside the field of view of the camera. Various performance
metrics on a point-wise basis are evaluated to measure the geometric
and semantic consistency as well as the compactness of the model:

1. Outlier Rate

A distance deviation of the original LiDAR depth measurement
to the associated Stixel relative to the original LiDAR depth
measurement of more than 5% is declared as an outlier. Based
on this formulation, the outlier rate is defined as the ratio of
the amount of outliers to the number of total LiDAR points.
Note that a small outlier rate represents a model with a high
geometric consistency.

2. mIoU

Based on the manually annotated semantic ground-truth, a
mIoU of the Stixels to the ground-truth LiDAR points can be
calculated as defined in Section 2.3. Note that a high mIoU
represents a model with a high semantic consistency.

3. Compression Rate

The data compression rate θ defines the ratio between the
amount of stixels numstixels and the amount of original LiDAR
points numpoints via

θ = 1− numstixels
numpoints

. (7.14)

Note that a high compression rate represents a high compact-
ness of the model.

The quantitative results are illustrated in Figure 7.4. First, the
impact of the LiDAR semantic weight βsemlidar is evaluated within

1 The results of the original Stixel-World (stereo camera) are added for comparison
based on [Cordts et al., 2017]. No evaluation is done on the VLP-32C dataset.
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Figure 7.4: Impact of considering the semantic information within the
multi-modal Stixel model with a constant LiDAR geometry
weight (βgeolidar = 1). Left: Adaption of the LiDAR seman-
tic weight βsemlidar based on a deactivated camera semantics
(βsemcam = 0). Right: Adaption of the camera semantic weight
βsemcam based on a LiDAR semantic weight βsemlidar = 1. Note
that in both plots the left axis represents the mIoU (red) and
the compression rate (blue) in %, while the right axis represents
the outlier rate (brown) in %. The figure is based on [Piewak
et al., 2018a].

the left plot of Figure 7.4, while the LiDAR geometry weight is set to
βgeolidar = 1 and the camera semantics are deactivated (βsemcam = 0).
It is observable that the semantic consistency is constantly increasing
with an increase of the LiDAR semantic weight. At the same time, the
compression rate raises as well as the outlier rate. Putting too much
focus on the semantic input thus reduces the number of individual
Stixels and yields a model purely tuned to the LiDAR semantics. In
turn, consistency with the underlying geometry decreases.

Considering the multi-modality in the model by activating the
camera semantics (right plot of Figure 7.4), the compression rate
slightly decreases and the outlier rate further increases with an in-
crease of the camera semantic weight. This represents a decrease
concerning the geometric consistency as well as the data compres-
sion. The semantic consistency further improves until the weighting
of the camera semantics βsemcam reaches the weighting of the LiDAR
semantics βsemlidar . However, the camera semantics on its own reaches
a lower mIoU after the transfer to the LiDAR domain (see Table 7.1).
This demonstrates the potential of the novel multi-modal Stixel ap-
proach, which creates a compact, geometrically and semantically
consistent, mid-level representation by combining the advantages
of different sensor domains to reach a higher accuracy than each
modality on its own. The proposed method of equally weighting the
different modalities represents the best combination with regard to
the semantic consistency as well as a good compromise concerning
the geometric consistency and the compression rate. This setup out-
performs the original Stixel-World based on a stereoscopic camera
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regarding the geometric and the semantic consistency of the data
representation (see Table 7.1) by combining the strength of each
sensor modality. Note that the outlier rate of the LiDAR depth-only
weighting and the multi-modality weighting is significantly smaller
than the stereo camera approach due to the fact that the stereo
camera generates distance estimates with a lower accuracy than a
LiDAR sensor.

7.5 outcome

In this chapter, the multi-modal Stixel-World is presented, a Stixel-
based environment representation to directly leverage both camera
and LiDAR sensor data. The design goal is to jointly represent
accurate geometric and semantic information based on a multi-
sensor system within a compact and efficient environment model. To
this end, a LiDAR-specific sensor model is introduced that exploits
the geometric accuracy of LiDAR sensors as well as a mid-level
fusion technique to combine valuable semantic information from
both camera and LiDAR sensor.

In the presented experiments, the benefits of the multi-modal
Stixel-World over uni-modal representations in terms of represen-
tation and compression quality is demonstrated. The specific com-
bination of the high resolution and semantic detail of camera data
with the high distance accuracy of LiDAR data in the multi-modal
Stixel-World results in a very powerful environment representa-
tion that outperforms the state-of-the-art. Moreover, the presented
multi-modal Stixel approach can easily be extended to other sensor
modalities as long as they can be projected densely into a commonly
structured data format.

The result is a compact mid-level representation of LiDAR point
clouds based on the multi-modal Stixel-World as presented as the
last step of the research pipeline (see Figure 1.5). This representation
reduces the amount of data per LiDAR point cloud by retaining the
underlying geometric and semantic information of both camera and
LiDAR sensor and increases the real-time capability of subsequent
modules of autonomous driving platforms (see Figure 1.3).
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Within this chapter, the main findings of this thesis are summa-
rized and an outlook to future research is provided.

8.1 summary

In this thesis, an efficient research pipeline (see Figure 1.5) is pro-
posed which describes the necessary modules to create a real-time
capable LiDAR-based semantic scene understanding with high per-
formance. Therefore, 4 steps are defined including a precise calibra-
tion of multi-modal sensor systems, a large-scale cross-modal train-
ing data generation, a high-quality semantic labeling of semi-dense
LiDAR measurements, and a compact mid-level representation for
semantic LiDAR measurements as well as a multi-modal mid-level
fusion approach.

First, the precise calibration of a multi-modal sensor system repre-
sents the basis for further multi-modal approaches like a large-scale
cross-modal training data generation or a multi-modal mid-level
fusion. Different strategies are discussed in Section 2.4 as the first
step of the research pipeline.

Based on a precise calibration, the cross-modal training data gen-
eration representing the second step of the research pipeline is dis-
cussed in Chapter 3. Thereby, the generation of large-scale datasets
is of paramount importance for generating data-driven approaches
like deep learning. Usually these datasets are generated in a manual
fashion representing a cumbersome and cost extensive task espe-
cially within the 3D space of LiDAR sensors. For that reason, a fully
automated process for large-scale training data generation called Au-
tolabeling is introduced based on the transfer of high-quality image-
based semantic labeling results of state-of-the-art approaches to
LiDAR point clouds. Hence, a reference camera is mounted within
a small spacial distance to a LiDAR sensor to transfer the labels
based on a precise intrinsic and extrinsic calibration of both sensor

113
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modalities. Additionally, the temporal distance of both sensor mea-
surements is taken into account to further improve the label transfer.
However, the performance of the Autolabeling process is limited to
the calibration performance, the performance of the state-of-the-art
image-based semantic labeling approach, and the domain transfer
from camera to LiDAR sensor, large-scale datasets for two state-of-
the-art mobile LiDAR sensors (VLP-32C and VLS-128) of in total
more than 840,000 frames including a small amount of manually
annotated point clouds are created on a basis of 13 label classes.
The result is a cost-efficient as well as time-efficient cross-modal
approach for generating large-scale datasets is proposed.

The large amount of training data generated by the Autolabeling
process enables the data-driven generation of high-quality semantic
labeling approaches of semi-dense LiDAR measurements, which
represents the third step of the research pipeline. In Chapter 4, the
concept of pixel-wise image-based semantic labeling is transferred to
the LiDAR domain. Therefore, the sparse 3D point cloud of a LiDAR
sensor is transferred to a dense 2D LiDAR image by a lossless cylin-
drical projection of the 3D point cloud to leverage the potential
of 2D CNNs. As a result, the LiLaNet, a novel CNN architecture
for efficient LiDAR-based semantic labeling, is proposed. Addition-
ally, a training technique is developed combining the automatically
generated training dataset based on the Autolabeling process with
a fine-tuning step based on small-scale manually annotated data.
This yields a performance boost of up to 14 percentage points while
keeping manual annotation efforts low. Furthermore, different op-
timization techniques like the filter reduction, dilated convolution
layer, and factorization of convolution layers are applied to the
LiLaNet to additionally increase the real-time capability as well as
classification performance. The optimized LiLaNet is evaluated on
the recently published SemanticKITTI Benchmark [Behley et al.,
2019] while outperforming published state-of-the-art approaches for
multi-class LiDAR-based semantic labeling at a real-time capable
inference time. This real-time capability was exploited by integrating
the LiLaNet into a research vehicle to further analyze the perfor-
mance in a qualitative way.

The high quality semantically labeled LiDAR point cloud gener-
ated by the LiLaNet can be used by higher level modules of mobile
robotics or autonomous driving platforms. Thereby, a LiDAR sen-
sor generates thousands of points in a fraction of a second, which
decreases the real-time capability of such modules. For this reason,
Chapter 7 transferred, as the last step of the research pipeline, the
Stixel-World of the stereoscopic camera domain to the LiDAR do-
main introducing a Stixel representation for LiDAR point clouds in-
cluding a multi-modal mid-level fusion approach to combine monoc-
ular camera and LiDAR measurements. This multi-modal Stixel
representation compresses the data of both camera and LiDAR sen-
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sor by retaining the underlying geometric and semantic information.
This increases the real-time capability of downstream algorithms
while minimizing the information loss. Furthermore, the benefits
of the multi-modal Stixel-World over uni-modal representations
are demonstrated by outperforming the original Stixel-World based
on stereoscopic camera regarding the geometric and the semantic
consistency of the data representation.

In addition to the different steps of the research pipeline, two
different extensions for high-quality LiDAR-based semantic labeling
are outlined in Chapters 5 and 6.

First, the portability of the LiLaNet between different LiDAR sen-
sors types is analyzed in Chapter 5. There, the cylindrical projection
to a 2D LiDAR image as used for the LiLaNet showed high sensor
dependency. In contrast, a novel deep neural network architecture
for semantic labeling of semi-dense LiDAR point clouds based on a
pillar-like voxel representation called PiLaNet is proposed. Although
this representation increases the computational complexity, it shows
a higher portability between different LiDAR sensor types. There-
fore, a cross-sensor evaluation based on the automatically generated
VLP-32C and VLS-128 dataset is performed yielding an improve-
ment of 10 percentage points in mIoU comparing to the LiLaNet.
Furthermore, the PiLaNet can be fully transferred across different
LiDAR sensor types with minimal adaption effort by fine-tuning the
pre-trained network on a small target sensor dataset.

Second, the remaining misclassifications of the LiLaNet are an-
alyzed in Chapter 6 showing mainly plausible misclassifications
due to sensor specific constraints like the confusion between the
class ‘large vehicle’ and the class ‘small vehicle’. These types of
misclassifications are related to the uncertainty of the prediction
of the CNN. Unfortunately, the uncertainty of a CNN is difficult
to estimate while maintaining real-time capability and without re-
quiring a completeness of the dataset. For this reason, an effective
training technique is proposed encoding a label hierarchy into high-
quality semantic labeling approaches. This presents the ability of
the CNN to implicitly learn the label hierarchy and predict more
abstract classes (e. g. ‘vehicle’ for ‘large vehicle’ and ‘small vehicle’)
at a high uncertainty which occurs in large distances to the sensor
or for underrepresented obstacles within the dataset.

Overall, the proposed research pipeline including the outlined
extensions describes different steps to create a robust and real-time
capable 3D semantic scene understanding with a high performance
for LiDAR sensors. At the same time, the manual effort is low based
on an automatic training data generation for large-scale datasets.
The proposed 3D scene understanding raises the performance of
environment perception of LiDAR sensors leading to an additional
valuable sensor modality for mobile robotics and autonomous driv-
ing. Consequently, those systems gain performance, robustness, and
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redundancy increasing the safety as well as the comfort of future
mobility.

8.2 outlook

This thesis proposed and discussed a research pipeline for high-
quality, LiDAR-based semantic labeling including different exten-
sions. Thereby, the evaluation of the results depicts further capabil-
ities of the proposed approaches, which are discussed within the
following subsections.

8.2.1 Automatic Training Data Generation

The results of the Automatic Training Data Generation present three
reasons for a decreased performance at transferring the labels from
the camera image to the LiDAR point cloud (see Section 3.4.3)

First, the projection of the LiDAR point cloud into the camera im-
age showed some performance limitations due to slight calibration
inaccuracies. These can be improved by generating a more precise
offline calibration as well as a continuous online calibration of the
multi-modal system. Furthermore, the projection misalignment can
be reduced by adapting the multi-modal sensor system. For exam-
ple, multiple cameras at different positions can be used to reduce
the occlusion problem and to optimize the sensor system towards
different obstacle distance (e. g. fish-eye cameras for small distances
and telephoto lens cameras for large distances). Additionally, the
projection can be improved by optimizing the ego-motion correction
of each point towards each row of the rolling shutter image in case
of using rolling shutter cameras.

Second, the results of the Automatic Training Data Generation
showed a limitation by the performance of the image-based se-
mantic labeling approaches. These image-based semantic labeling
approaches are continuously improving. As a result, newer available
image-based CNN models with a higher performance will improve
the performance of the Autolabeling process. At the same time, the
model uncertainty can be used either by extracting a probability
estimate for weighting the training of the LiLaNet or by applying
an implicit uncertainty representation as discussed in Chapter 6 to
reduce the impact of wrong classifications (e. g. at object borders
or at plausible misclassifications). Also, an execution of multiple
image-based CNN architectures can be used to improve the overall
performance.

Third, problems occur due to the domain transfer of the camera
to the LiDAR sensor. These can be reduced by adapting the training
technique of image-based semantic labeling approaches towards
higher performance at object borders, e. g. a higher weighting of
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pixels at object borders within the error function of the learning
rule can lead to a higher performance at object borders. This will
directly influence the performance of the LiLaNet as discussed in
Section 3.4.3.3.

In addition to the three reasons for the performance decrease, the
results showed an overall performance limitation of the Autolabeling
due to temporal inconsistencies caused by e. g. occlusion artifacts.
Adding temporal information in terms of accumulating the LiDAR
point clouds of each frame to a dense 3D point cloud might reduce
these temporal inconsistencies of the Autolabeling process, increasing
overall performance.

8.2.2 LiDAR-based Semantic Labeling

The LiDAR-based semantic labeling approach represented by the
LiLaNet and the optimized LiLaNet already shows outperforming
results on different datasets. However, the results depict different
limitations which can be further discussed.

In Chapter 4, the performance of the LiLaNet is boosted with the
large amount of automatic generated training data based on the
Autolabeling process, which directly influences the performance of
the LiLaNet. As a result, a higher performance of the Autolabeling
process as proposed within the previous section should increase
the performance of the LiLaNet. In addition, the fine-tuning of the
LiLaNet with manually annotated point clouds strongly increases
the classification performance. Therefore, an in-depth analysis on the
necessary amount of manually annotated point clouds to increase
the performance of the LiLaNet can be performed.

Additionally, due to a valid evaluation of the LiLaNet within this
thesis, the specific network architecture is not changed related to
the different datasets used. At the same time, the analysis of the
portability between different LiDAR sensors (see Chapter 5) showed
that the 2D LiDAR image used within the LiLaNet is rather sensor
dependent. As a result, the network architecture of the LiLaNet can
further be optimized towards different sensor types like the HDL-64

for the SemanticKITTI Benchmark (see Section 4.4.3).
Furthermore, two different extensions, the reduction of the sensor

dependence and the hierarchical semantic labeling, can be pushed
one step further to become more robust due to different sensor types
and uncertainties of the prediction.

The reduction of the sensor dependence based on the pillar-like
architecture of the PiLaNet (see Chapter 5) was compared to the
LiLaNet. For that reason, the LiLaNet was used as a backbone CNN
which already showed a higher portability between different LiDAR
sensors. Furthermore, sensor independence can be expected by opti-
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mizing the field of view of the LiLaNet as the backbone CNN to the
specific dimensions of the voxel space.

After an increased sensor independence, the PiLaNet can further
be used to replace the Autolabeling process for new sensor types
and generate a LiDAR to LiDAR label transfer. Similar to a teacher
network, the computational complex PiLaNet can be used to au-
tomatically generate training data for light-weight and real-time
capable sensor specific CNN architectures as the LiLaNet (see Fig-
ure 5.6 as illustration). This changes the motivation of the reduction
of the sensor dependence from the reduced effort to transfer the
knowledge of a CNN from one sensor to another (see Chapter 5)
to an even lower sensor dependence independent of an affordable
higher effort. For that reason, the PiLaNet can be trained in par-
allel on large (automatically labeled) datasets of different sensor
types. This should increase the sensor independence of both the
VFE and the backbone CNN. Additionally, this can be supported
by Generative Adversarial Networks (GANs) to generate a sensor
independent voxel representation.

The hierarchical semantic labeling as outlined in Chapter 6

presents an implicit uncertainty integration, while implicitly ascend-
ing and descending a label hierarchy related to the uncertainty of a
CNN. The results show e. g. the prediction of parent classes at object
borders due to higher uncertainty. This can further be improved by
adapting the weights of the learning rule to create sharp obstacle
borders within the LiDAR semantic labeling image.

Furthermore, the hierarchical semantic labeling is evaluated based
on the IoU for a comparison with other non-hierarchical semantic
labeling approaches. For an adaption of parameters or weights as
mentioned before, an in-depth quantitative evaluation of hierarchical
semantic labeling approaches is needed. Therefore, an evaluation
metric similar to the IoU taking the label hierarchy into account has
to be defined.

In addition, the hierarchical semantic labeling can be used for an
active learning technique due to the implicit uncertainty represen-
tation. As a result, LiDAR point clouds, whereby parent classes are
predicted at a high rate, can be manually annotated. This should
directly lower the implicit uncertainty of the hierarchical semantic
labeling approach and increase the overall performance.

8.2.3 Multi-Modal Stixels

The multi-modal Stixel-World as proposed in Chapter 7 represents
the last step of the research pipeline (see Figure 1.5). Resulting is a
performance increase of LiDAR-based semantic labeling approaches
as suggested within the previous section that directly influences the
multi-modal Stixel-World. Additionally, the extensions of LiDAR-
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based semantic labeling approaches as proposed in Chapters 5 and 6

can be integrated including the hierarchical semantic labeling which
implicitly encodes the uncertainty of the prediction into a hierarchi-
cal label output. The quality of the probability estimates required
for the data likelihood of LiDAR semantics can thus be improved.

Finally, the multi-modal Stixel-World operates on a dense mea-
surement representation as the dense cylindrical projection of a
single LiDAR point cloud or a dense camera image. This restric-
tion can be reduced to increase the possible combinations of sensor
modalities. For example, a combination of two LiDAR sensors is
challenging due to the sparse projection of one LiDAR point cloud
into the dense LiDAR image of the second point cloud. As a result,
the multi-modal Stixel-World can further be extended to handle
different sparse sensor representations.
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