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Abstract

The main goal of this PhD thesis is the search for new physics in the neutrino sector. In
particular the search for eV sterile neutrinos in neutrino oscillation phenomena (a,b) and
MeV neutrinos at the MiniBooNE experiment (f). Of equal importance in this thesis, is the
contribution of the study of neutrino oscillations for a better understanding of the standard
neutrino properties (d,e).

Motivated by the unexpected deficit of ν̄e flux observed in reactor experiments, which
is known as the reactor anti-neutrino anomaly, a combined analysis of the reactor exper-
iments is performed in the context of active-to-sterile oscillations. In the light of recent
measurements that question the reliability of the ν̄e flux predictions, we performed reactor
data analyses based on the relative comparison of measured spectra, what makes them flux
independent: Daya Bay and NEOS analyses. They were used in two publications (a) and
(b). In (a) we performed a dedicated study of the active-to-sterile oscillation hypothesis
using global reactor data. In (b), a complete study of the active-to-sterile oscillation frame-

work is performed using global data in the
(–)

ν e →
(–)

ν e,
(–)

ν µ →
(–)

ν e and
(–)

ν µ →
(–)

ν µ oscillation
channels.

We found that the active-to-sterile oscillation hypothesis is compatible with the global

reactor data and global
(–)

ν e →
(–)

ν e data. Oscillations are preferred at the 3σ level with
respect to the no oscillation case, with the best fit value at ∆m2

41 ' 1.3 eV2, |Ue4| ' 0.1.

On the other hand, within the active-to-sterile oscillation framework, the anomalous
(–)

ν e
excesses found in LSND and MiniBooNE data in the

(–)

ν µ →
(–)

ν e oscillation channel are

incompatible with the null results from the searches done in the
(–)

ν µ →
(–)

ν µ channel. The
disagreement is found to be at the level of 5.1σ, excluding the active-to-sterile oscillation
hypothesis as an explanation for LSND and MiniBooNE anomalous excesses.

The Daya Bay reactor analysis code was modified in order to study the standard oscil-
lation parameters within the 3ν oscillation framework. A RENO data analysis in the 3ν
standard picture was also performed. Both analyses were used in the publications (d) and
(e). They are crucial for the determination of the θ13 mixing angle, and they complement
the accelerator data analyses in the determination of the θ23 octant and the mass ordering,
as it is shown in (d). We also perform an alternative analysis of the current Daya Bay and
RENO data combined, which sets an upper limit on ∆m2

21 ≤ 18.3×10−5 eV2 at the 2σ level
(e).

Given the incompatibility of the MiniBooNE excess with an active-to-sterile oscilla-
tion, we have studied an alternative explanation based on a heavy neutrino decaying into
a photon. It is found that the excess is compatible with a heavy neutrino, with a mass
mN ' 250 MeV, that is produced in kaon decays via the mixing with the electron or muon
flavors. The mixing parameter it is found to lie in the range 10−11 . |Uµ4|2 . 10−8. The
heavy neutrino decays into a photon and a light neutrino through an effective operator me-
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diated by new physics at the energy scale 104 TeV . Λ . 107 TeV.

During the course of the PhD thesis we have also done a study on the complementarity
of β and 0νββ decay processes in order to discern between different low-scale seesaw real-
izations (c). Since this work is off topic from the main research line of the PhD thesis it was
not included in the main text. For its potential use in other studies, a parameterization of
the low-scale seesaw realizations that was done in this work is included in an appendix.
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(c) A. Abada, Á. Hernández-Cabezudo and X. Marcano, JHEP 1901 (2019) 041 doi:10.1007/JHEP01(2019)041
[arXiv:1807.01331 [hep-ph]].

(d) I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, JHEP 1901
(2019) 106 doi:10.1007/JHEP01(2019)106 [arXiv:1811.05487 [hep-ph]].

(e) A. Hernandez-Cabezudo, S. J. Parke and S. H. Seo, Phys. Rev. D 100 (2019) no.11, 113008
doi:10.1103/PhysRevD.100.113008 [arXiv:1905.09479 [hep-ex]].
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Chapter 1

Introduction

Neutrinos are the most elusive particles of the Standard Model (SM). They have a tiny
mass and neutral electric charge, they only interact through weak interactions, what makes
then extremely difficult to be detected. The neutrino was first postulated by Wolfgang
Pauli in 1930, as the particle that carries the missing energy measured in beta decays [1].
Its existence was only hypothetical until 1956 when Frederick Reines and Clyde Cowan
detected electron anti-neutrinos for the first time [2]. In the SM there are three different
types of neutrinos, commonly called flavors: electron, νe, muon, νµ and tau, ντ , flavors.
They are named according to the accompanying charged lepton in charged current (CC)
interactions.

The neutrino changing flavor in flight, known as neutrino oscillations, was first postulated
by Bruno Pontecorvo [3, 4]. Already since 1968 there were some evidences of neutrino
oscillations in the solar neutrino experiment Homestake [5] and in the proton decay and
neutrino observatory experiments IMB [6] and Kamiokande [7]. But they were not confirmed
until 1998, when the Super-Kamiokande reported a strong evidence of neutrino flavor change
as a function of the traveled distance and energy in the way it is predicted by the theory [8].
For their contributions on the discovery of neutrino oscillations in the Super-Kamiokande
and Sudbury Neutrino Observatory (SNO) experiments, Takaaki Kajita and Arthur B.
McDonald were awarded with the Nobel Prize in 2015: “For the discovery of neutrino
oscillations, which shows that neutrinos have mass”.

During the last two decades neutrino oscillations have become a very well established
phenomena, which puts into manifest that neutrinos have mass and are mixed among each
other. Whitin the SM neutrinos are massless [9, 10]. Therefore, neutrino oscillations is
a clear experimental evidence of physics beyond the standard model. Moreover neutrino
masses are very small, they lie at a much smaller scale than the rest of the SM particles,
what might indicate an alternative origin for the neutrino masses different from the Higgs
mechanism, for example the seesaw mechanism [11–14]. This mechanism would imply that
the SM is just an effective low energy theory of a more fundamental underlying theory.

The neutrino flavor basis is defined by the neutrinos that interact in weak CC interac-
tions. In a three family neutrino framework, 3ν, the flavor and the mass neutrino basis are
related by a unitary matrix, called PMNS matrix [3, 4, 15, 16], which depends on 3 mixing
angles and one CP violating phase, opening the possibility of CP violation in the lepton sec-
tor, which is an important ingredient for the baryogenesis scenarios via leptogenesis [17,18]
and therefore important for the understanding of the matter anti-matter asymmetry in the
universe [19].

Deviations from unitarity of the PMNS matrix, would be an indication of extra massive
neutrinos mixed with the light active known ones. Measurements of the “invisible” decay
width of the Z boson determines very precisely the number of light active neutrinos to be

1



2 CHAPTER 1. INTRODUCTION

three [20], so that the hypothetical massive neutrinos have to be mainly sterile, meaning
that they do not couple to the SM model particles, except via their mixing with the active
flavor neutrinos. Their existence is motivated by scenarios addressing the neutrino mass
generation, leptogenesis and they can also be a good dark matter (DM) candidate [21].
The mass scale of these neutrinos could be any, and depending on it, their phenomenology
is very diverse. Light sterile neutrinos, at the eV scale, will have an impact in neutrino
oscillations [22], heavier neutrinos will be visible in beta and meson decays [23], and much
heavier neutrinos could be produced and studied in colliders [24]. Thanks to their mixing
with the light neutrinos, their existence can also be confirmed by the non-unitarity of the
PMNS matrix [25].

The precise determination of the neutrino masses and the PMNS matrix elements is very
important, since they can guide the search for new physics coupled to the neutrino sector
and help to discern between the different models that explain the origin of the neutrino
masses and hence to find a more complete theory than the SM. The elements of the PMNS
matrix can be determined measuring neutrino oscillations. Neutrino oscillations can not
determine the absolute neutrino mass, but they are sensitive to the neutrino mass squared
differences. During the last two decades neutrino oscillations have been measured in many
experiments. Given the large amount of data generated, global fits are a very powerful
tool that allows to understand the global data within the same theoretical framework in a
consistent way.

Part of the work presented in this disertation is the contribution to the three flavor
neutrino (3ν) oscillation global fit [26], done by the NuFit collaboration [27], performing
the medium baseline (MBL) reactor data analyses. In the literature, MBL reactor data
has not been used for the study of the solar parameters, which drive the solar neutrino
phenomena. In this work it is also presented how it can be used to set an upper limit on
the solar oscillation frequency [28].

Although the standard 3ν oscillation framework is very well established, there are some
anomalous results, found in what are called short baseline (SBL) experiments. The anoma-
lies are: LSND and MiniBooNE, gallium and reactor antineutrino anomaly (RAA). The
LSND experiment measured an unexpected excess of ν̄e from a ν̄µ beam [29]. With less
significance, a similar excess of ν̄e was found by the MiniBooNE collaboration [30]. A deficit
of νe emitted in strong radioactive sources was found at gallium experiments, seting the gal-
lium anomaly [31,32]. The RAA is set by SBL reactor experiments that measure a deficit of
ν̄e flux with respect to the theoretical expectations [33]. SBL experiments are located very
close to the neutrino source, thus not being sensitive to the standard oscillations in the 3ν
framework. The anomalous excesses and deficits can be solved introducing a new neutrino
oscillation, usually called active-to-sterile oscillation, caused by a new massive neutrino,
mostly sterile, with a mass in the eV scale. This scenario is commonly referred to as the
3 + 1ν oscillation framework.

In this thesis the active-to-sterile oscillations in the 3 + 1ν framework is studied, with
especial focus on the reactor data. There are two common explanations for the RAA: the
introduction of a new massive neutrino with a mass in the eV range that leads to an extra
oscillation, and a possible miscalculation of the flux predictions. The latter is motivated by
recent measurements that shed doubt on the reliability of the flux predictions [34, 35]. In
the present work, after showing that both scenarios are acceptable [36], a global analysis
of all the reactor data is performed under the hypothesis of an active-to-sterile oscillation,
making especial emphasis on flux independent analyses.

For a complete study of the 3 + 1ν oscillation framework, global analyses of all the

experimental data sensitive to the new hypothetical oscillation are performed in the
(–)

ν e and



3

(–)

ν µ disappearance and the
(–)

ν e appearance channels 1. The disappearance channel
(–)

ν e data,
which includes reactor data is compatible with an active-to-sterile oscillation above the 3σ

level [37]. In the
(–)

ν e disappearance channel, LSND and MiniBooNE data is also compatible
with an active-to-sterile oscillation, however this explanation is totally inconsistent with the

null searches in the
(–)

ν µ disappearance data [37], disproving the 3+1ν oscillation framework
as the explanation for the LSND and MiniBooNE anomalies.

The MiniBooNE anomalous ν̄e excess [30] reported in 2010 was supported with more
statistics in 2013 [38], and recently by an unexpected νe excess, 4.5σ off from the SM
predictions [39]. Together, the ν̄e and the νe excesses add up to 4.7σ. Motivated by this
high significance and being the active-to-sterile oscillation hypothesis, as it was originally

considered by the collaboration, ruled out by the null results from the
(–)

ν µ disappearance
searches, alternative explanations for the excesses are investigated.

In the MininiBooNE detector, νe/ν̄e scatter with the nucleons in the medium via charged-
current-quasi-elastic (CCQE) interactions producing electrons/positrons. Based on the fact
that the MiniBooNE detector can not distinguish between the signal produced by an elec-
tron/positron or a photon, in this thesis it is presented an alternative model explaining the
MiniBooNE anomaly [40] with a heavy neutrino decaying into a photon.

This work is structured as follows. In chapter 2 we introduce the basic concepts of
neutrino mixing and how they can acquire mass. We also explain the heavy neutrino phe-
nomenology in the laboratory, review the status of the standard neutrino parameters and
briefly discuss the role of neutrinos in cosmology. In chapter 3 we explain reactor neutrino
oscillations, and give details on the studies done in the 3ν and 3 + 1ν oscillation frameworks
using reactor neutrino data. In chapter 4 we study the MiniBooNE excess alternative ex-
planation by a decaying heavy neutrino. Finally, in chapter 5 we summarize and conclude.
Details on data analyses, simulations and long calculations are given in the appendices.

1The flavor of the emitted and detected neutrino defines what is known as oscillation channel. When the
same flavor that is produced is detected, it is called disappearance channel, and when the flavor is different,
appearance channel.
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Chapter 2

Physics of massive neutrinos

Neutrino flavor change in flight can be explained with neutrino oscillations. For that neu-
trinos must have a non-zero mass and must mix among each other. In this section the basic
concepts of massive neutrinos are introduced. In section 2.1, how neutrino mixing arises
and how it enters in CC interactions is explained. The current status of the values of the
standard neutrino parameters can be found in section 2.2. Section 2.3 is dedicated to the in-
troduction of the neutrino masses in the SM, focusing as a particular example on the type-I
mechanism, in which new massive heavy neutrinos are introduced. The phenomenology of
the massive neutrinos in the laboratory at different energy scales is summarized in section
2.4. Finally in section 2.5 the role of neutrinos in cosmology and astrophysics is briefly
discussed.

2.1 Neutrino mixing

In analogy to the quark sector, the flavor neutrino basis (νe, νµ, ντ ) is related to the mass
basis (ν1, ν2, ν3) by a mixing matrix. After EW symmetry breaking, the relevant Lagrangian
terms for the neutrino phenomenology are:

LK = iν ′αL/∂ν
′
αL + i`′αL/∂`

′
αL + i`′αR/∂`

′
αR , (2.1.1)

LCC = − g√
2
`′αLγ

µPLν
′
αLW

−
µ + h.c. , (2.1.2)

LNC = − g

2 cos θW
ν ′αLγ

µν ′αLZµ + h.c. , (2.1.3)

Lmass = −m`
αβ`
′
αL`

′
β R −

(
mν
αβ

2
ν ′TαLCν

′
β L

)
+ h.c. . (2.1.4)

LK , LCC , LNC and Lmass are the kinetic, CC, neutral currents (NC) and mass terms of
the SM Lrangian. ν ′L and `′L are the components of the SU(2)L doublet LL = (νL `L)T ,
i.e. the left-handed neutrino and charged lepton fields, and `′R are the right-handed charged
lepton fields. PL projects over the left-handed components of the fields: PLν = νL = PLνL
and ν̄ ≡ ν†γ0, with γ0 the Dirac matrix. There is an implicit sum over the greek indices
α, β = e, µ, τ , which label the flavor. W and Z are the massive gauge bosons mediating
the charged and neutral current interactions, respectively. g is the SU(2)L coupling and
θW is the weak angle. C is the charged conjugation matrix. m` is the dirac mass matrix of
the charged leptons and mν is the neutrino Majorana mass matrix, which here is added by
hand. h.c. stands for Hermitian conjugated.

5
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PMNS matrix

The charged lepton mass matrix is a general complex 3×3 matrix which can be diagonalized
by two unitary transformations, VL and VR:(

V `
)†
L
m`V `

R = m`
d ,

where m`
d has real and positive values [41]. Making a rotation of the charged leptons

`′L = V `
L`L and `′R = V `

R`R the kinetic Lagrangian (2.1.1) is left invariant and the mass
matrix can be diagonalized. The Majorana neutrino mass matrix is a complex symmetric
matrix which can be diagonalized by a unitary transformation [41]:

(V ν
L )TmνV ν

L = mν
d .

This can be done by a rotation of the neutral leptons ν ′L = V ν
L νL, which leaves the kinetic

(2.1.1) and the neutral current (2.1.3) Lagrangian terms invariant, while in the charged
current term there is a product of two unitary matrices V ν †

L V `
R ≡ U , being U unitary too:

LCC = − g√
2
Uαj`αLγ

µνj LW
−
µ + h.c. , (2.1.5)

where α = e, µ, τ and j = 1, 2, 3 are the flavor and mass indices, respectively. Note that for
the charged leptons the flavor and the mass basis are conveniently chosen to be the same,
while for the neutrinos the bases are related by a mixing matrix

να = Uαjνj , (2.1.6)

called the PMNS (Pontecorvo–Maki–Nakagawa–Sakata) matrix [3,4,15,16]. For anti-neutrinos,
which are right-handed particles ν̄R, they are related by the conjugate matrix

ν̄α = U∗αj ν̄j .

This matrix appears in the charged current interaction (2.1.5), and as an abuse of lan-
guage it is usually said that neutrinos are mixed with the charged leptons, while in reality
the massive neutrinos are mixed with the flavor neutrinos, which couple to charged leptons
of the same flavor in the charged current interactions. In this text, both ways of saying are
used indistinctly.

PMNS matrix physical parameters

A unitary N ×N matrix depends on N2 real parameters which can be divided into

N(N − 1)

2
mixing angles ,

and
N(N + 1)

2
phases .

In the case where there are three generations of charged leptons, N = 3, this translates into
three mixing angles and six phases. Some of these phases are not physical, since all the
Lagragian terms are invariant under a global rephasing,

`α → eiφα`α , νβ → eiϕβνβ ,

except the charged current (2.1.2) and the Majorana neutrino mass term. The U mixing
matrix can be parameterized in such a way, cf. section 4.3 of reference [42], that the previous
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rephasing would allow to absorb five of its six phases if neutrinos were Dirac particles1 in
the following way:

LCC = − g√
2
`αLe

−iφαUαjγ
µeiϕjνj LW

+
µ = −ei(ϕ2−φµ) g√

2
`αLe

−i(φα−φµ)Uαjγ
µei(ϕj−ϕ2)νj LW

+
µ .

In order to keep the Majorana neutrino mass term invariant, the neutrino fields can not
be rephased and only three phases of the mixing matrix can be reabsorbed by the rephas-
ing of the charged lepton fields, hence the lepton mixing matrix depends on three mixing
parameters and three phases, a Dirac CP violating phase and two Majorana phases, see
(2.2.1).

In expression (2.1.5) j = 1, 2, 3 and labels the three known light massive neutrinos. In
models in which new massive neutrinos are postulated, j = 1 ... n, the mixing matrix in
(2.1.5) becomes a rectangular 3× n matrix and the 3× 3 sub-matrix that relates the three
known flavor neutrinos with the three known light massive neutrinos is not longer unitary.
The new elements of U3×n account for the deviations from unitarity.

For an extended discussion on this topic, see for instance [42].

2.2 Status of the standard neutrino parameters

As it has been explained above, neutrinos are massive and the flavor basis and the mass
basis are related via the PMNS matrix, which in the 3ν framework depends on 3 angles and
3 phases, whose most common parameterization is given by

U =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 eiα1 0 0
0 eiα2 0
0 0 1

 ,

(2.2.1)

where sij ≡ sin θij and cij ≡ cos θij; θ12, θ13 and θ23 are the three mixing angles, δCP is the
CP violating phase and α1 and α2 are the Majorana phases.

Neutrino oscillation phenomena allow to measure many of the standard neutrino prop-
erties but the absolute neutrino mass and the Majorana phases, as it will be explained in
section 3.1. Apart from the 3 mixing angles and the CP violating phase, neutrino oscilla-
tions depend on the two independent mass squared differences which are usually called the
solar, ∆m2

sol, and the atmospheric, ∆m2
atm, since they drive the oscillation frequency of the

solar and atmospheric neutrino oscillation phenomena, see section 3.1.
The order of the neutrino masses, the mass ordering, can be either normal (NO) i.e.

m3 > m2 > m1 or inverted (IO) i.e. m2 > m1 > m3 as it is depicted in figure 2.2.1. ∆m2
sol is

taken positive for convention, but depending on the ordering, ∆m2
atm can be either positive

or negative. Here the convention from the NuFit collaboration [26,27] is used:

∆m2
sol ≡ ∆m2

21 > 0 ; ∆m2
atm ≡ ∆m2

3` =

{
∆m2

31 > 0 for NO,
∆m2

32 < 0 for IO.
(2.2.2)

Given the large amount of experiments measuring neutrino oscillations, global fits are
necessary to determine all the oscillation parameters consistently within the same theoret-
ical framework. Oscillation parameters are in general measured by different experiments,

1Note that this is what happens in the quark sector and this is why the CKM matrix has only one CP
violating phase, see chapter 4 in [42].
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NO IO

Figure 2.2.1: Neutrino masses for normal (left) and inverted (right) ordering. Yellow, red
and green represent a representative fraction of the flavor composition of each massive state,
electron, νe, muon, νµ, and tau, ντ , flavors respectively.

so a combination of these measurements gives a more precise determination, due to the
complementarity of the data sets. Analyzing the global data together also allows to detect
inconsistencies and tensions among the experiments.

With current data it is possible to determine accurately most of the oscillation param-
eters, but the θ23 octant, the δCP value and the mass ordering. More on global analysis is
discussed in section 3.3.1.

In table 2.1 a summary of the current values of the standard neutrino parameters, ob-
tained in the global analysis by the NuFit collaboration [27], can be found. The relative 3σ
precision of the parameters is given by

θ12 : 14% , θ13 : 8.9% , θ23 : 24% ,

∆m2
21 : 16% , |∆m2

3`| : 7.6% ,

δCP : 92% .

NO is favored over IO by ∆χ2 = 9.3 (3σ).
The absolute neutrino mass can be measured in β-decay experiments, which are sensitive,

depending on their resolution power, to the single neutrino masses mi or to their weighted
sum:

m2
νe ≡

3∑
i=1

|Uei|2m2
i ,

where Uei are the 1i elements of (2.2.1).
The KATRIN experiment set recently the most stringent limit on this massm2

νe < 1.1 eV2

at 90% C.L. [43]. In the extreme case that the lightest neutrino is massless, given the current
values of the measured mass squared differences, cf. table 2.1, the smallest value on mνe

can be computed, so that for NO(IO)2:

0.009(0.04) < mνe < 1.05 eV .

0νββ decay can also give direct information on the neutrino masses through the effective
electron neutrino Majorana mass, cf. (2.4.5). Cosmological measurements also provide
information on the sum of the neutrino masses

∑
mν , cf. section 2.5.

2In the case that the lightest neutrino is massless, for NO: m1 = 0, m2 =
√

∆m2
21 and m3 =

√
∆m2

31;

and for IO: m1 =
√
−∆m2

21 −∆m2
32, m2 =

√
−∆m2

32, m3 = 0.
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Parameters
Normal Ordering (best fit) Inverted Ordering (∆χ2 = 9.3)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.310+0.013
−0.012 0.275→ 0.350 0.310+0.013

−0.012 0.275→ 0.350

θ12/
◦ 33.82+0.78

−0.76 31.61→ 36.27 33.82+0.78
−0.75 31.61→ 36.27

sin2 θ23 0.563+0.018
−0.024 0.433→ 0.609 0.565+0.017

−0.022 0.436→ 0.610

θ23/
◦ 48.6+1.0

−1.4 41.1→ 51.3 48.8+1.0
−1.2 41.4→ 51.3

sin2 θ13 0.02237+0.00066
−0.00065 0.02044→ 0.02435 0.02259+0.00065

−0.00065 0.02064→ 0.02457

θ13/
◦ 8.60+0.13

−0.13 8.22→ 8.98 8.64+0.12
−0.13 8.26→ 9.02

δCP/
◦ 221+39

−28 144→ 357 282+23
−25 205→ 348

∆m2
21

10−5 eV2 7.39+0.21
−0.20 6.79→ 8.01 7.39+0.21

−0.20 6.79→ 8.01

∆me
3`

10−3 eV2 +2.528+0.029
−0.031 +2.436→ +2.618 −2.510+0.030

−0.031 −2.601→ −2.419

Table 2.1: Status of the 3ν oscillation parameters, latest update of NuFit collaboration,
version 4.1. The two first columns are the values for NO and last two for IO. For all the
parameters the best fit point together with its 1σ uncertainty and their 3σ C.L. range are
shown. NO shows a preference of 9.3 units in ∆χ2, but the values of the confidence levels,
for both NO and IO, are taken with respect to their respective local minimum. In [26] there
is a discussion on the Super-Kamiokande ∆χ2 tabulated table, which is included to obtain
the values shown here. Table taken from [27], details on the whole data set used for the
analysis can also be found in that reference.

Neutrino oscillations are also not sensitive to the Majorana phases, however 0νββ decays
are. An observation of this process will be a direct measurement of new physics, as explained
below. This phenomenon has not been observed so far.

2.3 Neutrino masses and the Standard Model

The fact that neutrinos oscillate shows that they are massive and that they mix among
each other. But in the SM they are massless. This is why neutrino oscillations is one of
the experimental evidences that the SM is not complete and needs an extension in order to
include neutrino masses.

Since in the SM there are only left-handed neutrinos (and right-handed anti-neutrinos),
they can not have a Dirac mass, so a way to give them mass could be introducing a Majorana
mass of the form

mννTLCνL ,

but it violates UY(1) symmetry by two units, cf table 2.2. Given the SM gauge symmetries
(SUC(3)×SUL(2)×UY(1)) and its particle content it is not possible to write a renormalizable
four dimensional term in the Lagrangian accounting for the neutrino masses.

Using an Effective Field Theory (EFT) approach, with the SM particle content, a five
dimensional neutrino mass term can be written, which satisfies the SM gauge symmetries:
the Weinberg operator.
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T T3 Y

LL
νL 1

2

1
2 −1

` −1
2

eR 0 0 −2

φ
φ+

1
2

1
2 1

φ0 −1
2

φ̃
φ̃0

1
2

1
2 −1

φ̃− −1
2

Table 2.2: Quantum numbers of the left-handed leptons and higgs doublet under the SU(2)L
(T3) and U(1)Y (Y) gauge symmetries.

∝ 1
Λ

φ φ

LL LL

Figure 2.3.1: Feynman diagram of the Weinberg operator.

Weinberg operator

The Weinberg operator is given by

L5 =
1

Λ
LCL φ̃

∗φ̃†LL , (2.3.1)

where LL = (νL `L)T is the left-handed lepton doublet and LCL = LTLC with C being the
charge conjugation matrix. φ = (φ+ φ0)T is the Higgs doublet, and φ̃ = iσ2φ

∗ with σ2 the
second Pauli matrix. Λ is a constant with dimension [Λ] = E1, its value is related to a new
physics energy scale. The corresponding Feynman diagram is depicted in figure 2.3.1.

Although the Weinberg operator (2.3.1) complies with all the SM gauge symmetries, see
table 2.2, it is five dimensional, hence not renormalizable. Since it is an effective operator
it is not a problem provided that the underlying theory is renormalizable.

After Electro-Weak Symmetry Breaking (EWSB), i.e. 〈φ〉 =
(
v/
√

2 0
)T

, with v being
the Higgs vacuum expectation value, the Weinberg operator takes the form

L5 =
1

Λ

v2

2
νCL νL , (2.3.2)

which is a Majoranna mass term for the neutrinos that violates lepton number by two units3,
with the mass given by mM = v2/Λ. Here, the Majorana neutrino mass is suppressed by
the new energy scale Λ, so that the lightness of the neutrino mass can be explained when it
lies at very high energies.

The fact that neutrino masses are so small compared with the masses of the rest of
the SM particles, suggests that there must be an alternative mechanism that give them
mass, different from the Higgs mechanism. Of the most common ones are the type-I, II

3Lepton number is an accidental symmetry of the SM Lagrangian.
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φ φ

νL νR νR νL

mD mDM

Figure 2.3.2: Type-I seesaw mechanism for the neutrino mass generation.

and III seesaw mechanisms [11–14,44], in which the SM particle content is extended with a
right-handed singlet, scalar SUL(2) triplet and a SUL(2) fermion triplet, respectively. The
neutrino mass can also be generated radiatively at one or more loops level depending on the
extension of the particle content of the SM, like for example in the Zee-Babu model [45]. As
an illustrative example, the type-I seesaw mechanism for one neutrino family is explained
below.

Type-1 seesaw

A straight forward way of extending the SM particle content is adding right-handed neutrinos
νR which are singlets of all the SM gauge symmetries, usually called sterile neutrinos. So
that the most general Lagrangian is given by

L = LSM + iν̄R/∂νR −
(
YνLLφ̃νR +

1

2
νCRMνR + h.c.

)
. (2.3.3)

φ̃ is introduced in order to make the Dirac mass term invariant under SUL(2)×UY(1). Since
νR are singlets under the SM gauge symmetries, the Majorana mass term is allowed4, where
νCR = νTRC. Then the neutrinos acquire mass through the tree level diagram depicted in
figure 2.3.2.

After EWSB the full neutrino mass term can be written in the following form:

nTCMn =
(
νTL

(
νCR
)T)C ( 0 mD

mT
D M

)(
νL
νCR

)
, (2.3.4)

where mD = Yν
v
2

and v is the Higgs v.e.v.. The first entry in the matrix is 0, since a
Majorana mass term for the νL would violate hypercharge by two units. In general there
are three νL and in principle there could be any number, m, of νR, so that mD is a 3 ×m
matrix and M a m×m matrix. For simplicity these indices do not appear explicitly.

In order to see how the light neutrinos can acquire a small mass through this mechanism,
let us considered the particular example of one single νL and one single νR with a Majorana
mass M � mD. Then,

M =

(
0 mD

mD M

)
,

is a 2 × 2 matrix. It is expressed in the neutrino “flavor” basis {νL, νCR}. Since M is
symmetric it can be diagonalized by a unitary matrix U :

UTMU = diag {mlight,mheavy} .
4Note that in order to conserve lepton number in the Dirac mass term, νR must have lepton number +1,

so that the Majorana mass term violates it by two units.
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In the approximation M � mD the masses are given by

mlight =
m2
D

M
+O

(
m2
D

M

)2

; mheavy = M +O
(
m2
D

M

)
(2.3.5)

and the mixing matrix by

U =

(
cos θ sin θ
− sin θ cos θ

)
=

(
1 mD

M

−mD
M

1

)
+O

(mD

M

)2

. (2.3.6)

So that the light neutrino mass can be expressed as:

mlight ' θ2M , (2.3.7)

where θ is approximately the mixing of the active neutrino with the heavy mass eigenstate.
From (2.3.5) it can be seen that in the limit M � mD the spectrum of masses consist of

a light and a heavy neutrino. This way the light neutrinos acquire a small mass, suppressed
by the large right-handed neutrino Majorana mass. From (2.3.6) it can be seen how the
“flavor” basis mixes with the massive eigenstates. In the limit considered here:

νL ' νl − mD
M
νh ,

νCR ' mD
M
νl + νh . (2.3.8)

where νl,h are the light and heavy mass eigenstates. Note that the light mass eigenstate, νl,
is mainly an active neutrino, νL, and the heavy, νh, a sterile neutrino νCR . As an abuse of
language heavy and sterile neutrinos are named indistinctly, also here in this work.

The same can be generalized in a three light neutrino family scenario, when the scale of
the Dirac mass matrix, mD, is much smaller than the scale of the Majorana mass matrix,
M . In that scenario, taking into account that the deviations from unitarity of the PMNS
matrix are very small, it is obtained that the light neutrinos are related to the active flavor
neutrinos by

Ũ = U
(
11 +O (Θ)2) , (2.3.9)

where U is the unitary PMNS matrix and Θ is a matrix that accounts for its deviations
from unitarity that is precisely the mixing between the known flavor neutrinos, νL, and the
heavy neutrinos N , i.e.

νL,α ' Ũαiνi + ΘαJNJ , (2.3.10)

whit α = e, µ, τ and J = 1 . . .m, in analogy to the one νL family case (2.3.8). See appendix
D.

2.4 Phenomenology with massive neutrinos

Massive neutrinos have a rich phenomenology. This work is not limited to the study of the
three known light neutrinos, but also scenarios where a heavier neutrino is coupled to the
known neutrinos are studied. Those scenarios are effective, in the sense that they should be
embedded in a more general theoretical framework, which for instance can provide mass to
the light neutrinos via the seesaw mechanism as it was discussed above.

In the same way as light neutrinos are mixed among each other, i.e. the flavor basis
is a linear combination of the massive eigenstates, the heavy neutrinos talk to the active
known ones via mixing as well. Depending on the mass scale of the extra neutrino its
effects are going to be visible in different physical phenomena. A summary of the heavy
neutrino phenomenology and its constraints are shown in [46]. In the following, some of the
laboratory searches for heavy neutrinos, from the eV to the TeV scale, are explained.
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eV neutrinos and neutrino oscillations

An eV scale heavy neutrino can be studied in neutrino oscillation experiments. Its exis-
tence would give rise to new oscillation frequencies, the heavier the neutrino the higher the
frequency, changing the expected patterns of the standard 3ν framework oscillation prob-
ability, see section 3.1. The new oscillation frequencies would cause an excess or deficit
of neutrinos of a given flavor, with respect to the expectations, through what is called
active-to-sterile oscillations. Depending on the mass and mixing with the active neutrinos,
it can be tested in different neutrino oscillation experiments: solar, reactor, atmospheric or
accelerator experiments.

It is worth to highlight that those experiments measuring at a short distance from the
neutrino source, are sensitive to high oscillation frequencies, being crucial in the study of
eV neutrino as it will be explain in section 3.

Neutrino detection via NC interactions also provides very valuable information in the
search for these sterile neutrinos. Through NC interactions all the neutrino flavors of a given
flux, e.g. solar or an accelerator neutrino flux, can be detected indistinctly. Then the mea-
surement is proportional to the total neutrino flux regardless of the neutrino flavor change
in the oscillations. Therefore any suppression of the total expected neutrino flux would be a
clear probe of active neutrinos oscillating into sterile states that are not measurable in NC
interactions.

A gobal search for the eV sterile neutrino through neutrino oscillations, focusing on the
contribution from reactor neutrino experiments, is described in section 3.4, based on the
work done in reference [37].

KeV neutrinos and β-decay

Heavier neutrinos, in the KeV scale, are interesting in the context of cosmology and as-
trophysics since they are candidates of warm dark matter (WDM)5. However, within the
simplest neutrino model and not considering exotic cosmological frameworks, many as-
trophysical and cosmological observations constrain the parameter space for these heavy
neutrinos, see references [47,48] for a detailed review.

Different probes for KeV neutrinos can be achieved in laboratory searches, for example
in β-decay experiments. In a β-decay both and electron and an electron anti-neutrino are
produced

A(Z,N)→ A(Z + 1, N − 1) e− ν̄e ,

where A is a nucleus with Z protons and N neutrons. In this process there is a probability
of producing a heavy neutrino weighted by its mixing with the electron neutrino, Ue4, as
long as it is kinematically allowed, i.e. provided it is lighter than the available energy in the
process.

In this way a heavy neutrino of mass m4 and mixing |Ue4|2 would contribute to the elec-
tron β-decay spectrum, since in that scenario the total spectrum would be a superposition
of the light and heavy neutrino contributions [23]:

dΓ

dE
(E) = Θ (E0 − E −mlight)

(
1− |Ue4|2

) dΓ

dE
(E,mlight)

+Θ (E0 − E −m4) |Ue4|2
dΓ

dE
(E,m4) , (2.4.1)

5A review of the cosmological and astrophysical motivation for the sterile neutrinos can be found in
references [47–49].
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Figure 2.4.1: Figure taken from figure 1 in reference [50]. Tritium β-decay spectrum
(2.4.1) for a light neutrino only (dashed black) and introducing a heavy neutrino mass
ms ≡ m4 = 10 KeV and mixing sin2 Θ ≡ |Ue4|2 = 0.2 (red). Here the mixing is exaggerated
so that the kink like feature, at an energy E = E0 −m4, is visible.

where mlight is the effective mass of the light neutrino, E is the electron kinetic energy and
E0 is the available energy of β-decay the process. dΓ/dE(E,m) is the β-decay spectrum as a
function of the neutrino mass [50,51]. The Θ function accounts for the energy conservation,
which leads to a step like feature in the β-decay spectrum proportional to |Ue4|2, at an
energy given by the difference E0 −m4. An example of this feature is represented in figure
2.4.1.

From β-decays, the light neutrino mass can be determined measuring at the very end
point of the spectrum, as the KATRIN experiment is aiming to do [43], while scanning
the entire β-decay energy spectrum there is a potential of discovery of new particles that
couple to the electron in a wide range of energies, from the eV to the tenths of KeV scale,
in particular KeV heavy neutrinos [50].

MeV neutrinos and meson decays

Heavier neutrinos are not kinematically allowed in β-decay processes but they are in meson
decays.

MeV neutrinos that couple to the charged leptons, can be searched for in meson decays
[23,52]. Of particular interest are the pure leptonic decays of charged pseudoscalar mesons,
M → `ν, where ` is a charge lepton and ν a light active neutrino. In these decays the
charged leptons show a characteristic signal consisting of a monochromatic energy peak at
an energy given by:

E` =
m2
M +m2

` −m2
ν

2mM

. (2.4.2)

Due to the neutrino mixing, mesons could also decay into a heavy neutrino and a charged
lepton, M → `N . In this decay the lepton energy (2.4.2) would be shifted by −m2

N/2mM .
The relation between the decay rates into a light and heavy neutrino is given by [23,52]:

Br(M → `N)

Br(M → `ν)
=
|U`4|2ρ̄(mN)

1− |U`4|2
, (2.4.3)

where

ρ̄(mN) =
(x2

N + x2
` − (x2

N − x2
`)

2)
√

(1− (xN + x`)2)(1− (xN − x`)2)

x2
`(1− x2

`)
2

, (2.4.4)
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with xi ≡ mi/mM ; i = `,N . The ρ̄(mN) factor is a kinematic enhancement of the decay
rate into heavy neutrinos with respect to the decay rate into light neutrinos. It accounts
for two effects: a helicity enhancement and a phase space suppression [23]. The helicity
enhancement arises from the decay matrix element. Pseudoscalar mesons have spin 0, light
neutrinos and anti-neutrinos have a definite chirality and since they are essentially massless
their helicity coincides with their chirality. Thus the charged lepton helicity has to be
the opposite in order to conserve angular momentum. The heavy neutrino helicity do not
coincide with its chirality, hence any helicity is allowed, also for the charged lepton. This
leads to an enhancement with respect to the decay into light neutrino that depends on
the neutrino mass. See [23] for further details. The phase space suppression arises when
computing the decay rate, because the heavier the neutrino the less kinetic energy for the
final states is left, leading to a mass dependent suppression.

For small mixing the branching ratio relation (2.4.3) is proportional to |U`4|2, hence so
is the sensitivity to the heavy neutrino.

The range of energies at which the new particles that couple to the charged leptons
can be found, depends on the energy available in the given process. This is given by the
difference between the meson mass and the rest of the daughter particle masses in the
decay: mN ≤ mM −

∑daughters
i 6=N mi. In the particular case of the two body decay M → `ν, it

is mN ≤ mM −m`.

In beam dump experiments these meson decays can be searched for, where a beam
of protons is dumped into a target, producing many particles, in particular many pions,
kaons and even D mesons, depending on the original energy of the proton beam. These
mesons subsequently decay into lighter particles, neutrinos among them. Mesons can also
be stopped before decaying, producing charged leptons with definite energy (2.4.2), being
possible to search for heavy neutrinos as it is here described, as for example in the NA62 [53]
and E949 [54] experiments.

GeV neutrinos at colliders

Heavy neutrinos with masses at the GeV-TeV scale, have to be studied at high energy
colliders where the heavy neutrino can be produced as long as its mass is below the center
of mass energy. Such heavy Majorana neutrinos can be searched for via lepton number
violation processes from meson decays, as for example it is done at the B factories, LHCb
[55–57] and Belle [58], and generated via the CC Drell-Yan processes [59]. They can also
be long lived and thus leave displaced vertex signals in the detector [60,61]. For a complete
review of heavy neutrino signatures at colliders with lepton number violation see for instance
references [24,62,63]. A complete overview of lepton number-conserving signatures and their
prospects at running and future colliders can be found in [64].

Heavy neutrinos and non-unitarity

The mixing between active and sterile neutrinos (2.3.10) gives rise to deviations of the
PMNS matrix from unitarity. Non unitarity has been studied in the literature as a viable
way of searching for sterile neutrinos, at different energy scales [64–66]. With high enough
precision, hints of much heavier neutrinos, with masses at an energy scale much larger than
what is achievable in current and near future experiments, can still be obtained studying
the deviations of the PMNS matrix from unitarity.
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Figure 2.4.2: Feynman diagram of a 0νββ decay. A nucleus A with Z protons and N
nucleus decay without emitting neutrinos A(Z,N)→ A(Z+2, N−2) e− e−. Here the decay
is represented being mediated by Majorana neutrinos.

Heavy neutrinos and 0νββ

If neutrinos are Majorana particles, they will have an impact in 0νββ decay processes, which
can also provide information on the mass and the mixing of heavy neutrinos at any mass
scale.

In 0νββ decays

A(Z,N)→ A(Z + 2, N − 2) e−e− ,

lepton number is violated by two units. Its observation could be understood as being
mediated by Majorana neutrinos, see figure 2.4.2, where the mass insertion could be a
heavy neutrino exchange at tree level (2.3.2). However this process could be also casued by
other particles and interactions from new physics models that violates lepton number by
two units [67–71].

The 0νββ decay amplitude is proportional to what is called effective electron neutrino
Majorana mass:

mee '

∣∣∣∣∣
3∑
i=1

U2
eimi

∣∣∣∣∣ . (2.4.5)

Being 0νββ decays sensitive to the Majorana phases (2.2.1). So far this process has not
been measured. The limit on mee is currently given by mee . 0.06 − 0.200 eV at the 90%
C.L. [72, 73].

A heavy neutrino that mixes with the electron neutrino would have an impact on mee

with respect to the SM model case [74,75]:

mee '

∣∣∣∣∣
3+N∑
i

U2
eip

2 mi

p2 −m2
i

∣∣∣∣∣ . (2.4.6)

Here p is the exchange of virtual momentum in the nucleus decay, with a typical value of
p2 ' −(125 MeV)2. In the case of the three light neutrino masses mi, the expression (2.4.5)
is recovered. For a discussion on how the heavy neutrino affects the nuclear matrix element,
which are omitted here, see reference [75].

As can be seen in (2.4.6), regardless of the mass of the heavy neutrinos they will have
an impact in the effective electron neutrino mass [46], making 0νββ decay studies com-
plementary to other searches for heavy neutrinos. In [76] we performed a study on the
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complementarity of heavy neutrino searches in β and 0νββ decays in the context of low-
scale seesaw realizations [77–80].

2.5 Neutrinos and cosmology

Neutrinos contribute to the energy density of the universe, taking part on the dynamics of
the cosmos and hence its evolution, see for instance references [42,81]. In the early universe
they are relativistic particles, so they contribute to the energy density as relativistic degrees
of freedom. The effective number of relativistic neutrino species, Neff , have an impact in
the Big Bang nucleosynthesis (BBN) [82] and cosmic microwave background (CMB) [83]
observables. The CMB and structre formation also depend on the sum of the neutrino
masses

∑
mν [84,85]. Precise measurements on these observables set Neff = 2.99± 017 and∑

mν . 0.12 eV [83].
In the standard picture, sterile neutrinos are produced in collisions in the in the early

universe through active-to-sterile transitions, knwon as the Dodelson-Widrow production
mechanism [21]. The amount of sterile neutrinos produced depends on their mixing with
the active ones. For a large enough mixing they can even reach thermal equilibrium with
the primordial bath before neutrino decoupling [86]. Depending on their mass and mixing,
heavy neutrinos will contribute to Neff , and to the sum of the neutrino masses. Therefore
BBN, CMB and structure formation observables can be used to set bounds on the sterile
neutrino parameters [87].

Detailes on the role of the sterile neutrino in cosmology and its constraints from cos-
mological and astrophysical observables can be found in the review articles [22, 48, 49]. Of
special interest in this work are the constraints on the eV and MeV mass scale sterile neu-
trinos.

The BBN, CMB and structure formation bounds on Neff and
∑
mν constrain the mass

and mixing of an extra sterile neutrino in the eV range [83, 86]. In the eV sterile neutrino
searches performed in this work cosmological constraints are not applied, since they are
model dependent and in non-minimal frameworks they can be weakened or even vanished.
For example, including new interactions in the sterile neutrino sector, usually called secret
interactions [88].

MeV neutrinos will have an impact on BBN observables depending on their life time [89],
its bounds restrict MeV neutrinos to have a lifetime less than 1s [90]. The supernova
SN1987A also set bounds on neutrinos at this mass scale since they work as a cooling mech-
anism, thus reducing the observed time of the neutrino burst [89]. As it will be explained
in chapter 4, the MeV neutrino required to explain the MiniBooNE anomalous excess, is
compatible with both BBN and SN1987A constraints.

Cosmological bounds are model dependent and modifications of the standard scenario
can relax them, see for example [87,91]. Therefore even though some of the sterile neutrino
constrains, coming from cosmology, are more stringent than the current sensitivity of labora-
tory searches, where measurements can be repeated under the same circumstances, the latter
are always a good check for consistency and will have the last word on the determination of
the standard and non-standard neutrino parameters.
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Chapter 3

Oscillation studies with reactor
neutrinos

Studies on neutrino oscillations in the 3ν standard framework as well as in the 3 + 1ν are
discussed in this chapter, based on references [26,28,36,37].

Section 2.1 is an introduction to neutrino oscillations in the 3ν framework and how
to extend then to a 3 + 1ν framework. In section 2.2 the basics of reactor neutrinos are
introduced, also it is explained how the analyses of their data are performed. In section
2.3 and 2.4 studies using the reactor neutrino data in the 3ν and 3 + 1ν frameworks are
presented.

3.1 Neutrino oscillations

In this section, basic concepts of neutrino oscillations, useful for this work, are briefly dis-
cussed.

Oscillation probability in vacuum

The neutrino flavor states can be expressed as a linear combination of the mass eigenstates,
weighted by the conjugate PMNS mixing matrix1 (2.2.1):

|να〉 = U∗αj|νj〉 .

The index α labels the flavor and j the mass eigenstate, i.e. α = e, µ, τ and j = 1, 2, 3.
In the case of anti-neutrinos U∗ has to be replaced by U . Since the neutrino masses are
different, each of the mass eigenstates evolves differently in time, t. In vacuum they evolve
as follows:

|νj(t)〉 = e−iEjt|νj〉 ,

where Ej =
√
m2
j + p2 is the neutrino energy, which depends on its mass mj and momentum

p. Then, the evolution of the flavor state can be written as

|να(t)〉 = U∗αje
−iEjt|νj〉 .

1Note that the flavor and mass eigenstates are related by the conjugate PMNS matrix, U∗, while this
relation for the neutrino fields (2.1.6) is given by U . The conjugate PMNS matrix arises because the neutrino
state, |να〉, is created when the anti-neutrino filed, ν̄α, containing the creator opperator, a†να(p), acts on the
vacuum [42,92].

19
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Writing the mass eigenstate as a combination of the flavor eigenstates, |νj〉 = Uβj|νβ〉,
the probability of finding a flavor neutrino β when a flavor neutrino α was produced and
propagated through vacuum a distance L, is given by the oscillating probability

Pνα→νβ = |〈νβ|να(t)〉|2 =
∣∣U∗αje−iEjtUβj∣∣2

=
∑
j,k

U∗αjUβjUαkU
∗
βk exp

{
i
∆m2

kjL

2E

}
, (3.1.1)

where ∆m2
kj ≡ m2

k −m2
j . Here it is assumed that the light neutrinos are highly relativistic,

so that t = L in natural units, and that the neutrinos have definite momentum, so

Ek − Ej '
∆m2

kj

2E
+O

(
m4

E3

)
.

This way of obtaining the oscillation probability is ilustrative but it is not rigorous, since
neither neutirnos are plane waves nor have definite momentum. For rigorous derivations of
the neutrino oscillation probability, see for instance [42, 93, 94]. The result obtained here
(3.1.1) is valid as long a neutrinos are highly relativistic.

From (3.1.1) it can be seen that the amplitudes of the oscillations are driven by the
mixing matrix elements and the frequencies by the mass squared differences. Expression
(3.1.1) can be rewritten in the following way [42]:

Pνα→νβ = δαβ − 4
∑
k>j

<e
[
U∗αjUβjUαkU

∗
βk

]
sin2

(
∆m2

kjL

4E

)

− 2
∑
k>j

=m
[
U∗αjUβjUαkU

∗
βk

]
sin

(
∆m2

kjL

2E

)
. (3.1.2)

As can be seen in expression (3.1.2) taking a matrix element and a conjugate of the same
column cancels the Majorana phases, cf. (2.2.1), playing no role in neutrino oscillations.

The oscillation probability (3.1.2) depends on the produced and detected neutrino fla-
vors, α and β , determining what is called an oscillation channel. When the same neutrino
flavor that was produced is measured, να → να, it is called disappearance channel, and when
the flavor is different, να → νβ, appearance channel.

As it is clear from (3.1.2), in neutrino oscillation phenomena the absolute mass can not
be measured, but only mass squared differences, in the 3ν framework ∆m2

21 and ∆m2
atm.

These two parameters along with the three mixing angles, the CP violating phase, δCP, and
the mass ordering discrete parameter are the measurable parameters in neutrino oscillation
experiments. In table 2.1 the status of these parameters is summarized.

Oscillation regimes

Depending on the neutrino energy, E, and the distance traveled from the source to the
detector, commonly called baseline, L, neutrino oscillation experiments are sensitive to
different parameters. In order to discuss the different oscillation regimes, the illustrative
example of the two family approximation is very suitable, for which equation (3.1.2) reduces
to

Pνα→νβ = sin2 2θ sin2

(
∆m2

4E
L

)
' sin2 2θ sin2

(
1.27

∆m2[eV2]

E[MeV]
L[m]

)
. (3.1.3)
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In this case there is only one mass squared difference and one mixing angle2. As can be
seen in equation (3.1.3), apart from the size of the mixing angle, which determines the
amplitude of the oscillation, the mass squared difference determines at which regime of
baseline and energy an experiment has to run in order to be sensitive to the oscillation. The
optimal regime is when ratio L/E is such that 1.27∆m2L/E is close to π/2, i.e. close to the
maximum of the oscillation. That means that an experiment with an L/E ∼ 1 Km/MeV
will be sensitive to an oscillation frequency driven by ∆m2 ' 10−3eV2.

In a three family framework, as can be seen in (3.1.2), different oscillation regimes
change the mixing parameters that an experiment is sensitive to. This is because only the
oscillating terms in which the sin(. . . ) is not negligible are going to have measurable effects.
And this depends on the oscillation frequency, the larger the oscillation frequency the faster
the oscillation term develops and the faster it becomes non negligible3.

For instance, experiments with an L/E ∼ 1 Km/MeV are sensitive only to oscillating
terms depending on the atmospheric mass splitting ∆m2

atm ∼ 10−3eV2. The solar frequency,
∆m2

21 ∼ 10−5 eV2, is much smaller and hence the oscillating terms depending on it are not
developed. In this case the experiment is sensitive to the amplitudes U∗α3Uβ3Uα(1,2)U

∗
β(1,2),

but not U∗α2Uβ2Uα1U
∗
β1. Increasing L/E the experiment would start being sensitive to both

atmospheric and solar oscillations.
For very big L/E the oscillations average out:

sin2

(
∆m2L

4E

)
→ 1

2
.

The averaging out effect is produced by the finite energy resolution of an experiment, σE.
In this case, it defines the precision of determining the true energy of a detected neutrino,
Etrue
ν . The energy resolution gives a certain probability of measuring a neutrino energy,

Emes
ν , given a certain Etrue

ν . It can be modeled as a gaussian distribution centered at the
measured neutrino energy, Emes

ν , with width σE. It averages the oscillation probability as
follows:

〈P (L,Emes
ν )〉 =

1√
2πσE

∫ ∞
−∞

dEtrue
ν P (L,Etrue

ν ) exp

{
(Etrue

ν − Emes
ν )

2

2σ2
E

}
.

The more peaked is the gaussian, i.e. the finer is the energy resolution, the more precise will
Etrue
ν be measured. The argument of the sines in (3.1.2) depends on L and E such that the

larger the baseline L, the more oscillations are contained in small intervals of E. Then the
averaging effect of the energy resolution will have a larger impact, averaging out completely
the oscillations for sufficiently large L, as is depicted in figure 3.2.2.

Matter effects

Neutrinos traveling through matter can interact coherently with matter, without changing
their momentum, via CC (νe e → e νe) and NC (να `α → `α να) interactions, depicted in
figure 3.1.1. These interactions give rise to an effective matter potential affecting their
evolution in time.

For certain regimes of energy, baseline and matter density, matter effects can not be ne-
glected, like for example in LBL and atmospheric experiments, where neutrinos can travel
through the Earth for long distances, or neutrinos propagating inside the sun and super-
novae, which are very dense mediums. Matter effects have an impact on the neutrino

2The mixing matrix in a two neutrino scenario is just a rotation depending on one mixing angle.
3The function is oscillating, so at some point it will decrease become negligible again.
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Figure 3.1.1: Feynman diagrams of the elastic CC and NC neutrino scattering.

oscillation probability, modifying the mixing angle and oscillation frequency. The most im-
portant effects are the Mikheyev-Smirnov-Wolfenstein (MSW) resonant effect [95, 96], for
which the mixing angle is resonantly enhanced; and the introduction of a CP asymmetry.
The latter is due to the fact that neutrinos or anti-neutrinos propagate through a medium
made out of matter and never anti-matter. The matter CP violating effect adds to the
intrinsic CP violating effect, due to δCP, in a non-trivial way.

Complete lectures on neutrino matter effects can be found, for example, in references
[42,97].

3 + 1ν framework

The 3ν oscillation paradigm is very well tested, however there are some experimental results
that do not agree with it. As it be explained below, they point into the direction of a
new oscillation frequency driven by a new massive eigenstate, which mixes with the flavor
neutrinos as the three known ones do. In this scenario, known as the 3 + 1ν oscillation
framework, the PMNS matrix have to be extended to a 4× 4 unitary matrix

U =


Ue1 Ue2 Ue3 Ue4
Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4

 , (3.1.4)

being now the 3× 3 PMNS matrix no longer unitary.

In the 3ν oscillation framework the PMNS matrix is considered to be unitary and de-
viations from unitarity would be directly related to the new matrix elements Ue4, Uµ4, Uτ4.
Within the current uncertainties on the elements of the 3×3 mixing matrix, the hypothetical
deviations are expected to be small and so the new matrix elements, depicted in figure 3.1.2.
The last row of the U matrix is added by hand in order to make it unitary. The elements Usi
are the mixings of a new hypothetical flavor neutrino s with the massive eigenstates. This
new flavor, which is commonly called sterile, does not couple to the charged and neutral
current interactions.

In the 3 + 1ν oscillation framework, there are also three new mass squared differences
∆m2

41, ∆m2
42 and ∆m2

43, which will drive three new oscillations. Current anomalies are
compatible with a new oscillation driven by a ∆m2

new ' 1eV2. In this case, there is only
one new effective oscillation frequency, since ∆m2

sol, ∆m2
atm � ∆m2

41 ' ∆m2
42 ' ∆m2

43 ≡
∆m2

new, depicted in figure 3.1.2.
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NO IO

Figure 3.1.2: Neutrino masses in a 3 + 1ν framework, for normal (left) and inverted (right)
ordering. Yellow, red and green represent a representative fraction of the flavor composition
of each massive state and blue represent the fraction of sterile neutrino.

3.2 Basics on reactor neutrinos

Reactor power plants are a very powerful source of electron anti-neutrinos, ν̄e. A pure ν̄e
flux with a typical energy of MeV is produced in long chain β-decay reactions of unstable
isotopes [98–101]. The predominant4 contributions to the flux come from four isotopes:
235U, 239Pu, 238U and 241Pu, whose proportions vary in time. A recalculation of the reactor
anti-neutrino fluxes by P. Huber and Th. A. Mueller [102, 103] led to the RAA [33], which
consists of a deficit of measured anti-neutrinos with respect to the expectations5. As it
will be shown below in this chapter, this anomaly is at the level of 3σ away from the SM
predictions, and data, up to spring 2018, is compatible with an active-to-sterile neutrino
oscillation.

In this section we review the different oscillation regimes in reactor neutrino experiments
and describe the basic principle on how do they detect neutrinos. We also present a general
way of predicting reactor anti-neutrino events and of analyzing reactor data independently
of the ν̄e flux predictions.

Long, medium and short baseline reactor experiments

Reactor experiments search for ν̄e events via inverse beta decay (IBD), ν̄e p→ n e+, so they
measure in the disappearance oscillation channel νe → νe, whose oscillation probability is
given by

Pνe→νe = 1− 4
N∑
j=1

∑
k>j

|Uek|2 |Uej|2 sin2

(
∆m2

kj

L

4E

)
, (3.2.1)

As discussed above in this chapter, different oscillation regimes will be sensitive to different
oscillation parameters.

Long baseline (LBL) reactor experiments, working in an oscillation regime of L ∼ 100 km
and E ∼ MeV, are sensitive to the solar frequency. That is the case of KamLAND [105]
experiment, which together with solar experiments determines what are called the solar
parameters θ12 and ∆m2

21. The KamLAND experiment consists of a single detector, which
is located underground at the Kamioka Observatory in Japan, measuring ν̄e produced in
the nuclear power plants in Japan, with a typical baseline of 180 Km.

4More than 99% of the total reactor ν̄e [102].
5A revaluation of the RAA with updated flux predictions was recently done in [104].
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Figure 3.2.1: Electron appearance oscillation probability in the 3ν framework (3.2.1). Both
oscillation frequencies atmospheric (short oscillation) and solar (long oscillation) are in-
cluded. The oscillation parameters are taken from NuFit 4.1. In this example the neutrino
energy is set to 4 MeV. The orange regions represent typical baselines for the far and near
detector sites of the MBL reactor experiments and in green a representative baseline of the
KamLAND experiment.

MBL reactor experiments, as Daya Bay [106], RENO [107] and Double Chooz [108],
work in a regime of L ∼ 1 Km and E ∼ MeV, being sensitive to the atmospheric oscillation
frequency and to θ13, which was first measured by the Daya Bay collaboration in 2012 [109].
Double Chooz is based in France. It consist of 2 detectors that measure ν̄e from two reactors.
One of the detectors is closer to the reactors, called near detector, with an averaged baseline
of 〈L〉 ' 400 m, and the other one further, far detector, with 〈L〉 ' 1050 m. The RENO
experiment is based in South Korea, it consist of 2 detectors, near (〈L〉 ' 430 m) and far
(〈L〉 = 1445 m) detectors, which measure ν̄e from 6 nuclear reactors. Daya Bay is based in
China, closed to Hong Kong, it consists of 8 detectors placed in three different locations,
called experimental halls (EH), which measure ν̄e produced at 6 powerful reactors. The EH
are placed such that two of them work as near detectors (〈L〉 ∼ 575 m) and the other one as
a far detector (〈L〉 = 1640 m). All three experiments measure energy spectral information.

In figure 3.2.1 it can be seen how MBL reactor experiments can be sensitive to the
atmospheric oscillation frequency and the LBL to the solar one, given the baseline at which
the detectors are placed.

Short baseline (SBL) reactor experiments are located very close to the source, L ∼
10 m, so that they are not sensitive to the solar and atmospheric frequencies, but they
would be sensitive to a frequency driven by a hypothetical ∆m2 ∼ eV. ILL [111], Gösgen
[112], Krasnoyarks [113–115], ROVNO [116,117], Bugey-4 [118] and SPR [119] experiments,
measure a deficit of total ν̄e with respect to the theoretical expectations, setting the RAA
[33]. This suggests either a miscalculation of the flux predictions or an extra oscillation,
usually called active-to-sterile oscillation. As can be seen in figure 3.2.2 a fast oscillation,
which averages out due to the finite energy resolution can cause a suppression of the flux
solving the RAA. Added to the possible overestimation of the flux predictions found by
Daya Bay and RENO [34,35], experiments measuring energy spectra (Daya Bay, RENO and
Double Chooz) found a spectral distortion in the energy range 4−6 MeV [108,110,120,121],
which is commonly referred as the 5 MeV “bump”. Possible origins of these bumps have been
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Figure 3.2.2: Ratio of number of observed over predicted ν̄e events in the SBL experiments
(black dots) and electron appearance oscillation probability with energy resolution effects
added, for the standard 3ν (blue line) and the 3+1ν (red line) oscillation frameworks (3.2.1).
The three oscillation frequencies are included: atmospheric, solar and the extra one. The
standard oscillation parameters are taken from NuFit 4.1 and the new ones (|Ue4|2,∆m2

new)
are set to

(
0.01, 1.3 eV2

)
. In this example the energy is set to 4 MeV. The resolution effects

are simulated performing an integral of the oscillation probability weighted by a gaussian
distribution with a variance σ = 0.5 MeV. The ratios1 of the SBL experiments are taken
from table 11 of reference [110]. 1

The ratios shown are from the experiments: Buyey-4, ROVNO91, Bugey-3-I,

Bugey-3-II, Bugey-3-III, Goesgen-I, Goesgen-II, Goesgen-III, ILL, Krasn. I, Krasn. II, Krasn. III, SRP-I, SRP-II, ROVNO88-1I,

ROVNO88-2I, ROVNO88-1S, ROVNO88-2S and ROVNO88-3S.

studied [122–124] but it is still under debate. The bump’s presence questions the reliability
of the flux predictions. These two reasons make it necessary to consider flux mismodeling
as another possibility to explain the RAA.

Recent SBL reactor experiments like NEOS [121], DANSS [125], STEREO [126] and
PROSPECT [127], measure energy spectral information at different baselines, which allows
them to make neutrino oscillation analyses independent of the flux shape and normalization
predictions, being crucial in order to study sterile oscillations in a 3 + 1ν framework. This
is discussed below in detail in section 3.4.2. The NEOS experiment is based in Korea at
23.7 m from a commercial reactor core, it measures ν̄e energy spectral information at a fixed
baseline. DANSS is located at ∼11 m from a nuclear reactor core in Russia. The detector is
movable allowing it to measure ν̄e spectral information at two different baselines, 10.7 m and
12.7 m. STEREO is in France, installed at a distance of 9.4 m from a reactor core, being the
back of the detector at 11.1 m. The detector is modulated in 6 separate cells, allowing it to
measure ν̄e spectral information at 6 different baselines. PROSPECT detector is installed
at 6.7 m from from a reactor core in the US. It measures ν̄e spectral information at different
baselines within its segmented detector (6.7-7.1 m, 7.1-7.5 m, 7.5-8.0 m, 8.0-8.4 m, 8.4-8.8 m,
8.8-9.2 m).

Note that in this work SBL, MBL and LBL experiments, refers to experiments placed
at ∼10 m (like NEOS), ∼1 Km (like Daya Bay) and ∼180 Km (like KamLAND) from
the reactor core. In the literature it can be also found that experiments at ∼10 m and
∼1 Km from the reactor core are called very short baseline (VSBL) and SBL experiments,
while MBL refer to experiments placed at ∼50 Km from the source like JUNO [128]. The
JUNO experiment is a future experiment, which is under construction. It will be placed at
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GdLS

Figure 3.2.3: IBD process followed by the electron positron annihilation and the later neu-
tron capture. An electron anti-neutrino comes into the detector and interacts via IBD with
one proton in the medium, being gadolinium-doped liquid scintillator (GdLS) commonly
used. The produced positron is slowed down emitting Bremstrahlung radiation, which
along with the two photons coming from the subsequent annihilation with an electron in
the medium constitute the deposited prompt energy signal. The produced neutron, even-
tually gets captured around 30µs later, emitting a delayed signal of 8 MeV. This signal is
characteristic of the IBD process and is crucial in its identification.

a distance of ∼53 Km from a reactor source in China. At this baseline it will be sensitive
to both atmospheric and solar oscillations.

Reactor anti-neutrino events

In the detection process in reactor experiments, the electron anti-neutrino enters the detector
and interacts via IBD.

In a neutrino event, the signal measured by reactor experiments are photons coming
from the Bremsstrahlung radiation of the positron emitted in the IBD process, ν̄e p→ n e+,
when it slows down and from its subsequent annihilation with an electron in the medium
e+ e− → γ γ. The energy deposited in the slowing down process is given by the positron
kinetic energy, Te, and the energy of the two photons produced in the annihilation is twice
the electron mass, me. So that the energy of the signal, which is called deposited prompt
energy, is given by Edep = Te+2me. The neutron produced in the IBD process is eventually
captured in the medium emitting a signal of around 8 MeV about 30µs later6. This delayed
neutron capture signal is characteristic from IBD processes and it is a key feature for the
signal selection and background rejection. The process is depicted in figure 3.2.3.

The cross section of the IBD process has a threshold given by Eν̄e > mn −mp + me '
1.8 MeV, below which the process is not kinematically possible. Here mp and mn are the pro-
ton and neutron masses. The kinetic energy of the positron which turns into Bremsstrahlung
radiation is given by

Te+ = Eν̄e +mp −mn − Tn −me ,

where Tn is the neutron kinetic energy. Then, the relation between the deposited prompt

6The energy depends on the medium, in Gadolinium (Gd) Edelay
γ ∼ 8 MeV.
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energy and the neutrino energy is given by

Edep = Eν̄e +mp −mn − Tn +me

' Eν̄e − 0.78 MeV − Tn . (3.2.2)

The neutron kinetic energy gives a small correction that is of order ∼ 10 KeV for reactor
experiments, which we always neglect.

IBD cross section

The IBD cross section, σIBD, up to corrections O (1/m2), were m is the nucleon mass, is
given by:

σIBD(Eν̄e)

σ0

=
(
f 2 + 3g2

) [
Ee,0pe,0 −

Ee,0
m

(
Ee,0
pe,0

+
pe,0
Ee,0

)(
Ee,0Eν̄e + y2

)]
+
Ee,0
m

pe,0

[
2(f + f2)y

(
(2Ee,0 + ∆)− m2

e

Ee,0

)
+ (f 2 + 3g2)Ee,0

+(f 2 + g2)

(
∆ +

m2
e

Ee,0

)
− (f 2 − g2)

1

3
(Ee,0 + ∆)

]
+

2

3

(
f 2 − g2

) Ee,0
m

Eν̄epe,0 . (3.2.3)

It has been obtained performing the dcos θ integral of the angular distribution given in
reference [129], where

Ee,0 = Eν̄e −∆ , ∆ = mn −mp , m =
mn +mp

2
,

y2 =
(∆2 −m2

e)

2
, σ0 =

G2
F cos2 θC
π

(
1 + ∆R

inner

)
,

with me, mp and mn the electron, proton and neutron masses. cos θC is the Cabibbo angle,
and f = 1 and g = 1.26 are the vector and axial-vector coupling constants, respectively.
f2 = µp − µn = 3.706 is the difference between the anomalous magnetic moments of the
proton and the neutron, GF is the Fermi constant and ∆inner ' 0.024 is the inner radiative
correction. See [129] for more details. σIBD is plotted in red in the left panel of figure 3.2.4.

Reactor anti-neutrino flux

The total ν̄e flux, φ, has four different components coming from the successive β-decays
of the isotopes: 235U, 239Pu, 238U and 241Pu. In this work we use the Huber-Mueller flux
predictions for each isotope contribution, φiso, taken from [102, 103]. We construct the flux
function linear-interpolating the tabulated flux values for Eν̄e ∈ [2, 8] MeV; from the energy
threshold 1.8 to 2 MeV the flux is taken constant, extrapolating its value at 2 MeV; and for
energies Eν̄e > 8 MeV we take the exponential of a fifth order polynomial [102]:

φ(Eν̄e) = exp

(
6∑
i

αiE
i−1
ν̄e

)
, (3.2.4)

where the coefficients αi are taken from [102] for the φ235, φ239 and φ241 flux components
and from [103] for the φ238 one.

In the reactor core, the isotopes are present in different relative proportions, called
fission fractions, f iso

c , that vary in time. The usual information given by the experimental
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Figure 3.2.4: Left: The four different components of the reactor anti-neutrino flux coming
from the four different isotopes (left y-axis) and the IBD cross section represented in red
(right y-axis). Both are given as a function of the anti-neutrino energy. Right: total reactor
anti-neutrino flux weighted by the IBD cross section. In this example, the fission fractions
f 235
c = 0.564, f 238

c = 0.076, f 239
c = 0.303, f 241

c = 0.056 are used.

collaborations are the averaged-in-time relative amount of an isotope seen at the detectors,
f iso, called effective fission fractions. The total flux is given by φ =

∑
iso f

iso
(c)φ

iso. In the

left panel of figure 3.2.4 the different contributions φiso are plotted as a function of the
anti-neutrino energy.

The amount of IBD events as a function of the anti-neutrino energy is proportional to the
total flux weighted by the cross section, φ(Eν̄e)σIBD(Eν̄e). The latter is plotted in the right
panel of figure 3.2.4. The dominant contribution of the weighted flux appears at energies
∼4 MeV. This is why in figures 3.2.1 and 3.2.2 the neutrino energy is set to 4 MeV.

The amount of IBD events also depends on the oscillation probability (3.2.1). Since
the reactor anti-neutrino flux is isotropic, the number of IBD events in a detector is also
proportional to the solid angle weighting factor A/4πL2:

A

4πL2
φ(Eν̄e)σIBD(Eν̄e)Pν̄e→ν̄e(Eν̄e , L) , (3.2.5)

where A is the area of the detector and L the baseline. Ideally, these are all the ingredients
to predict the number of neutrino events, but in reality detector and detection effects also
have to be taken into account.

Detector response

Due to detector characteristics and detection effects, namely the inner acrylic vessel (IAV),
non linearity and energy resolution effects; the prompt energy deposited by the positron,
Edep (3.2.2), is not the same as the prompt reconstructed energy, Erec. All these effects have
to be taken into account in order to trace the Erec back to the neutrino energy Eν̄e . The IAV
effect accounts for the probability that a positron is produced and starts depositing energy
outside the detection region. Non linearity takes into account non linear effects in the light
emission and detection. The energy resolution is the probability of reconstructing a different
energy than the given true energy, which is usually modeled by a gaussian distribution
centered at the true energy. The function that relates the anti-neutrino energy Eν̄e and
the reconstructed energy Erec is called detector response function, R(Eν̄e , Erec), which takes
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into account all the above mentioned reconstruction and detection effects and the energy
shift given by the IBD process (3.2.2). A detailed example of the event detection and
reconstruction performed by the Daya Bay collaboration can be found in [110,130].

Event predictions

In order to perform a neutrino oscillation analysis, neutrino event predictions have to be
compared with data. In the reactor neutrino experiments measuring energy spectral infor-
mation the predicted number of signal events in the detector d and reconstructed energy
bin i is computed as follows:

Xd
i (θ) = N

∑
r

∑
iso

εff
L2
rd

∫ Ereci+1

Erec
i

dErec

×
∫ ∞

0

dEν̄e σIBD(Eν̄e)f
isoφiso(Eν̄e)Pν̄e→ν̄e(Eν̄e , Lrd,θ)R(Erec, Eν̄e) , (3.2.6)

where the indices r and iso refers to the rth reactor, in the case that there is more than one
reactor and to the isoth fissionable isotope (235U, 239Pu, 238U or 241Pu). Lrd is the distance
between the reactor r and detector d and εff is the relative detector efficiency. As explained
above Eν̄e and Erec are the true incoming neutrino energy and the measured prompt re-
constructed energy, related by the detector response function R(Erec, Eν̄e). σIBD(Eν̄e) is the
IBD cross section (3.2.3), f iso are the effective fission fractions7, and φiso are the different
flux contributions from each isotope. As it is done and explained in section 2.6 of [110],
non-equilibrium relative corrections taken from table VII of [103] are applied to the Huber-
Mueller fluxes [102, 103]. Pν̄e→ν̄e(Eν̄e , Lrd,θ) is the electron anti-neutrino disappearance
oscillation probability as a function of the neutrino energy, reactor-detector distance and
oscillation parameters θ (3.2.1). N is the common input to all the identical detectors of an
experiment, like the total reactor power or the total number of protons inside the detectors8.

Far-to-near ratio analysis

Modern reactor experiments like Daya Bay, RENO, Double Chooz, NEOS, DANSS, STEREO
and PROSPECT, measure energy spectral information at two different sites. This allows
them to perform an analysis based on a far-to-near ratio, which is a powerful tool that
makes the oscillation analysis independent of the predicted flux shape, avoiding problems
like the unexplained “5 MeV” bump, and of global flux normalization, hence independent
of the RAA [33]. Ratios of measured spectra at different baselines are only sensitive to
relative shape distortions which is a crucial point to the results presented in this chapter.
Taking ratios also makes predictions (3.2.6) independent of the common input N , with only
relative differences being important.

A general flux independent analysis recipe for the reactor neutrino experiments, using a
least-squares statistic method, reads as follows:

χ2 =
∑
ij

(
OF
i

ON
i

− XF
i (θ)

XN
i (θ)

)
V −1
ij

(
OF
j

ON
j

−
XF
j (θ)

XN
j (θ)

)
, (3.2.7)

where OS
i is the observed number of events in the energy bin i and experimental site

S = N(near), F (far); XS
i (θ) are the predictions (3.2.6), which depend on the oscillation

7Ideally we would have information on the fission factions as a function of time in each reactor, f iso
c .

Instead we usually have effective time-averaged values for each detector, f iso.
8Daya Bay, RENO and Double Chooz near and far detectors are identical.
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parameters θ of the model, and V is the covariance matrix which accounts for the statisti-
cal, and systematic uncertainties as well as their correlations. Depending on the available
data and the available experimental details given by the collaborations, such as systematic
uncertainties and their correlations, in what follows we will use different variations of (3.2.7)
in order to reproduce analyses of different data sets, see appendix A.

Note that the predicted ratios in (3.2.7) are not fully independent of the flux predictions,
since the flux function is convoluted in an energy bin Erec

i along with other energy dependent
functions (3.2.6). However, flux independence is a good approximation for a small Erec

i bin
size and smooth functions.

3.3 3ν Oscillation framework

In this section we study reactor neutrino experiments in the 3ν standard oscillation frame-
work and we show two applications: their role in a global 3ν oscillation fit in section 3.3.1
and their power to constrain the solar ∆m2

21 parameter in section 3.3.2.

ν̄e → ν̄e oscillation probability

As it was introduced before, the oscillation probability (3.1.2) in the 3ν oscillation framework
depends on six parameters and the mass ordering. Using the PMNS parameterization in
(2.2.1), the ν̄e disappearance oscillation probability takes the explicit form

Pνe→νe = 1− cos4 θ13 sin2 2θ12 sin2

(
∆m2

21

L

4E

)
− sin2 2θ13

(
cos2 θ12 sin2

(
∆m2

31

L

4E

)
+ sin2 θ12 sin2

(
∆m2

32

L

4E

))
,(3.3.1)

which depends on the independent parameters: θ12, θ13, ∆m2
21 and ∆m2

31.
For the discussion it is convenient to define the solar and the atmospheric oscillating

terms as follows:

P12 ≡ sin2 2θ12 cos4 θ13 sin2 ∆21 ,

P13 ≡ sin2 2θ13

(
cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32

)
,

where ∆ij ≡ ∆m2
ijL/4E. Given the current values of the oscillation parameters, cf. table

2.1, they are given by

P12 ' 0.8 sin2

(
π

2

(
L/E

17 Km/MeV

))
(3.3.2)

P13 ' 0.08 sin2

(
π

2

(
L/E

0.5 Km/MeV

))
. (3.3.3)

Here we can see how the atmospheric frequency has a maximum of oscillation at L/E '
0.5 Km/MeV while the solar one has it at L/E ' 17 Km/MeV. For a given energy it is clear
that the atmospheric oscillating term becomes relevant at much shorter baselines than the
solar one, which takes more time to develop.

The LBL reactor experiment, KamLAND, with a typical baseline of L ∼ 180 Km is
sensitive to the solar oscillation. However the atmospheric one is averaged out due to finite
energy resolution effects. Therefore its oscillation probability is given by

Pν̄e→ν̄e,LBL = sin4 θ13 + cos4 θ13

{
1− 1

2
sin2 2θ12 sin2

(
∆m2

21L

2E

)}
, (3.3.4)
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being KamLAND mainly sensitive to the solar parameters θ12 and ∆m2
21 and marginally to

θ13.
The MBL reactor experiments (Daya Bay, RENO and Double Chooz) measure at two

different baselines, near and far, with identical detectors. From atmospheric and accelerator
measurements it is known that in order to be sensitive to ∆m2

atm (2.2.2) the far detector
has to be placed at a baseline ∼ 1 Km. At that baseline the oscillation probability (3.3.1)
is dominated by P13 since the solar oscillation does not have time to develop, i.e. P12 is
negligible. This can be seen approximating sin x ∼ x in equation (3.3.2), and writing it as

P12 ' 0.002

(
L/E

0.5 Km/MeV

)2

, (3.3.5)

From (3.3.5) and (3.3.3) it is clear that for the MBL oscillation regime, the solar term P12

is much smaller than P13.
It will be shown later in section 3.3.2 that the determination of ∆m2

atm with MBL data
depends very little on the specific value of ∆m2

21, as long as it is of the order ∆m2
21 ∼

10−5 eV2.

Effective atmospheric frequency

For MBL reactor experiments it is very useful to consider the atmospheric frequencies ∆m2
31

and ∆m2
32 ≡ ∆m2

31 −∆m2
21 as an effective one ∆m2

ee, turning (3.3.1) into an approximated
oscillation probability

Pνe→νe = 1− cos4 θ13 sin2 2θ12 sin2

(
∆m2

21

L

4E

)
− sin2 2θ13 sin2

(
∆m2

ee

L

4E

)
, (3.3.6)

where

∆m2
ee ≡ cos2 θ12∆m2

31 + sin2 θ12∆m2
32 . (3.3.7)

Using that ∆m2
21/∆m

2
31 � 1, in [131, 132] an expansion in ∆m2

21 of the atmospheric os-
cillation term of the complete probability (3.3.1) is performed reaching the expression
(3.3.6) in which terms O(∆m2

21L/(4E))2 are neglected, while the effective mass squared
difference (3.3.7) contains the first order effect in ∆m2

21. This approximation holds to
a very good accuracy in the oscillation regime in which MBL reactor experiments work,
L/E . 1 Km/MeV [133]. The oscillation probability (3.3.7) is used in the data analyses
performed by the collaborations, Daya Bay, RENO and Double Chooz.

Validations of the reactor analyses

In order to use the available reactor data for the studies presented in this work the first
thing to do is making sure that the collaboration results are reproduced under the same
assumptions. In this work, Daya Bay and RENO analyses have been reproduced at a very
good accuracy, see figure 3.3.19. In appendix A we describe in detail how to perform these
data analyses. For other reactor data analyses that are based on far-to-near ratios a similar
procedure could be done, accounting for differences between different experiments and the
available information on the systematic uncertainties.

In what follows applications of these MBL reactor analyses are discussed: their role in
global neutrino oscillation data analyses and their current capability to constrain ∆m2

sol, as
a way of checking the robustness of the 3ν oscillation framework.

9For these validation analyses the approximated oscillation probability is used (3.3.6) but for the rest of
the analyses performed in this work using this data the complete oscillation probability (3.3.1) is used.
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Figure 3.3.1: Comparision of our results, in red and blue-dashed including and not including
systematic uncertainties respectively, with Daya Bay (left) and RENO (right) collaboration
analyses, in black, of the data sets [106] and [107] respectively. The best fit value together
with the 1, 2 and 3 σ C.L. are shown. Plots are taken from [28].

3.3.1 Global analysis

This section is based on the global analysis performed by the NuFit collaboration [26]. Main
results and figures are also taken from this reference. A list of the experimental data used
in the global analysis cited here can be found in [26,27].

Currently there are a large amount of neutrino oscillation data, in different oscillation
channels and different oscillation regimes, being sensitive to different oscillation parameters.
In this present situation, global analyses are very important in order to measure all the
oscillation parameters consistently within the same theoretical framework. With current
global data, a global fit is able to determine most of the oscillation parameters in the
standard 3ν oscillation framework, but still some of them are unknown: δCP , the mass
ordering and the octant of θ23. The present status of the global picture is summarized in
section 2.2.

MBL reactor data

The MBL reactors experiments (Daya Bay, RENO and Double Chooz) enter into the global
fit as key input in the determination of θ13 mixing angle. As it was explained before these
experiments work in a regime in which the solar oscillation term in the oscillation probability
(3.3.1) plays a marginal role compared to the atmospheric oscillation term. In figure 3.3.2
it is shown the 1, 2 and 3σ C.L. regions in the ∆m2

atm vs sin2 θ13 space determined by Daya
Bay, RENO and Double Chooz and their combination, for the NO case10, fixing the values
for the solar parameters (∆m2

21, sin2 θ12) = (7.39 × 10−5 eV2, 0.310) set by the solar and
KamLAND experiments. The combined best fit value is given at ∆m2

31 = 2.58 × 10−3 eV2

and sin2 θ13 = 0.0223. From figure 3.3.2 it can be seen that the combined fit is dominated
by Daya Bay, followed by a significant contribution from RENO, being Dooble Chooz only
marginally relevant. The Daya Bay and RENO data sets [106,107] are analyzed as described

10For the NO case ∆m2
atm = ∆m2

31, cf. (2.2.2).
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Figure 3.3.2: 1, 2 and 3 σ C.L. regions in the ∆m2
atm vs sin2 θ13 parameter space, determined

by the MBL reactor experiments in normal ordering: Daya Bay (red), RENO (blue) and
Double Chooz (green) from the data sets [106, 107, 134] respectively. The combined fit is
represented in black. The black cross represents the global best fit value (∆m2

31, sin2 θ13) =
(2.58 × 10−3 eV2, 0.0223). The solar parameters are fixed to (∆m2

21, sin2 θ12) = (7.39 ×
10−5 eV2, 0.310).

in appendix A11. The Double Chooz data set [134] analysis is performed following a similar
procedure.

θ13 is determined by the MBL reactor experiments with high precision. Marginalizing
over ∆m2

31, it is found that sin2 θ13 = 0.0223+0.0006
−0.0007. Comparing this result with the one

obtained in the global fit, cf. table 2.1, it can be seen that θ13 determination is totally
dominated by the MBL reactor data contribution.

Global neutrino oscillation data

In order to perform a consistent combined fit of all the neutrino data, a least-squares statis-
tics, χ2, including all the data, which depends on all the oscillation parameters has to be
built. In [26] reactor, solar, LBL accelerator and atmospheric data is included.

As it was said above, MBL reactor experiments, measure neutrinos in the ν̄e → ν̄e
oscillation channel, whose oscillation probability is given by (3.3.1). Its χ2 contribution
depends on the same oscillation parameters that its oscillation probability depends on,
hence:

χ2
reactor

(
θ12,∆m

2
21, θ13,∆m

2
31

)
.

The KamLAND experiment [105] also measured in the ν̄e → ν̄e channel and its oscillation
probability is given by (3.3.4).

The solar experiments, Gallex [135], SAGE [136], Super-Kamiokande [137], SNO [138]
and Borexino [139], measure νe neutrinos coming from the sun. The sun is a very dense
medium, and its density is considered to slowly decrease in the direction from the core
towards the surface, what is called the adiabatic approximation. Due to these strong matter
effects inside the sun, the νe states are basically produced and leave the sun as ν2 massive

11In [26] Daya Bay analysis is done implementing an older version for χ2 than the one described in the
appendix A, which is the newest an more rigorous one, used in [28].
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eigenstates, see reference [97] for details. Then, they propagate in vacuum to the Earth and
solar experiments detect approximately ν2 mass eigenstates. If they are detected via CC
interactions, due to their low energy, ∼MeV, only the electron neutrino component can be
measured and the experiment is sensitive to the mixing |Ue2|2 = sin2 θ12 cos2 θ13, cf. (2.2.1).

Then the χ2 contribution from KamLAND and solar data depends on the three param-
eters:

χ2
sol+KamLAND

(
θ12,∆m

2
21, θ13

)
LBL accelerator experiments T2K [140], NOνA [141] and MINOS [142] measure a neu-

trino beam produced in an accelerator source that travel through the Earth for long dis-
tances. Neutrinos are produced in meson decays after the mesons are produced in a proton
beam-target interaction. The T2K experiment is based in Japan, the neutrinos are produced
at Tokai and measured at the Super-Kamiokande detector, which is located at the Kamioka
mine, at a baseline L = 295 Km. NOνA and MINOS detectors are based in the US at a
baseline L = 734 and 810 Km from the NuMI beam at Fermilab.

Atmospheric experiments like Super-Kamiokande [143,144] and Ice Cube [145,146] mea-
sure neutrinos produced as a result of cosmic ray interactions with particles in the atmo-
sphere. These neutrinos, depending on the zenith angle with which they face the detector,
travel for long distances through the Earth. In the extreme case of being produced at the
other side of the globe, i.e. zenith angle 0o, the neutrinos go through the entire Earth, twice
its radius.

Both atmospheric and LBL experiments measure neutrino oscillations in the
(–)

ν µ →
(–)

ν µ disappearance and
(–)

ν µ →
(–)

ν e appearance oscillation channels, whose corresponding
oscillation probabilities depend on all the oscillation parameters and matter effects. A
series expansion of these oscillation probabilities taking into account matter effects can be
found in reference [147].

The LBL experiments work in a regime that allows to approximate the
(–)

ν µ disappearance
oscillation probability as being driven by an effective mass squared difference: ∆mµµ [131].
Analogous to the ν̄e disappearance probability (3.3.6), it can be written as

P(–)

ν µ→
(–)

ν µ

' 1− sin 2θµµ sin2

(
∆m2

µµ

4Eν

)
, (3.3.8)

where

sin2 θµµ = cos2 θ13 sin2 θ23 ,

∆m2
µµ = sin2 θ12∆m2

31 + cos2 θ12∆m2
32 + cos δCP sin θ13 sin 2θ12 tan θ23∆m2

21 . (3.3.9)

Approximately, the
(–)

ν µ →
(–)

ν e appearance probability can be written as follows:

P(–)

ν µ→
(–)

ν e

' sin2 θ23 sin2 2θ13

(
∆13

±A−∆31

)2

sin2

(
±A−∆31

2
L

)
+ cos2 θ23 sin2 2θ12

(
∆12

A

)2

sin2

(
AL

2

)
+J̃

∆21

A

∆31

±A−∆31

sin

(
AL

2

)
sin

(
±A−∆31

2
L

)
cos

(
±δ +

∆31L

2

)
,

(3.3.10)

where J̃ ≡ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 is proportional to the Jarlskog invariant [148], A

is a constant matter potential and ∆ij ≡
∆m2

ij

2E
.
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As can be seen from equations (3.3.9) and (3.3.10), in LBL and atmospheric experiments,
the oscillation probabilities depend on all the oscillation parameters, hence their contribution
to the global χ2 is:

χ2
LBL

(
θ12,∆m

2
21, θ13,∆m

2
31, θ23, δCP

)
χ2

atmospheric

(
θ12,∆m

2
21, θ13,∆m

2
31, θ23, δCP

)
Moreover, due to matter effects, which both LBL and atmospheric experiments experience,
they are sensitive to the mass ordering. In equation (3.3.10), it can be seen how the matter
potential A affects differently the oscillation probability for normal or inverted ordering, i.e.
sing of ∆31.

A fully consistent combination of all the data gives rise to a total χ2 given by

χ2
global

(
θ12,∆m

2
21, θ13,∆m

2
31, θ23, δCP

)
= χ2

sol+KamLAND

(
θ12,∆m

2
21, θ13

)
+ χ2

reactor

(
θ12,∆m

2
21, θ13,∆m

2
31

)
+ χ2

atmospheric

(
θ12,∆m

2
21, θ13,∆m

2
31, θ23, δCP

)
+ χ2

LBL

(
θ12,∆m

2
21, θ13,∆m

2
31, θ23, δCP

)
. (3.3.11)

In order to get the χ2 profile for one specific parameter, χ2
global has to be marginalized, i.e.

minimized over the rest of the parameters. For instance, for the θ12 profile:

χ2
global(θ12) = min∆m2

21,θ13,∆m
2
31,θ23,δCP

χ2
global

(
θ12,∆m

2
21, θ13,∆m

2
31, θ23, δCP

)
.

Since not all the experiments are equally sensitive to the parameters that their oscillation
probability depends on, it is valid and cheaper in computational time to fix some parameters
that are well determined by certain experiments. For example the solar parameters, whose
determination is essentially driven by KamLAND and solar experiments.

In the work performed by the NuFit collaboration [27], the MBL reactor analyses were
included in the global fit, fixing the solar parameters to the best fit values determined by the
solar and KamLAND experiments. Obtaining then a χ2

reactor(∆m
2
atm, sin

2 θ13) function. This
function is added consistently to the χ2 contributions from LBL accelerator and atmospheric
experiments, which depend on the remaining oscillation parameters ∆m2

atm, sin2 θ13, sin2 θ23

and δCP .
In what follows it is shown how the interplay between the current reactor and LBL

data can be useful for the determination of the θ23 octant and the mass hierarchy. All the
references of the data used by the NuFit collaboration can be found in [26].

Reactor and LBL complementarity for the θ23 octant determination

Figure 3.3.3 illustrates how both reactor and LBL data complement each other for the
determination of ∆m2

atm. The right panels show the MBL reactor allowed regions and their
combination in the ∆m2

atm vs sin2 θ13 parameter plane, for both normal (upper panel) and
inverted (lower panel) ordering. While the left panels show the LBL allowed regions in the
plane ∆m2

atm vs sin2 θ23, for normal (upper panel) and inverted (lower panel) ordering.
The LBL experiments (T2K, NOνA and MINOS) allowed regions in the ∆m2

atm vs sin2 θ23

plane present a non trivial correlation between the two parameters. Smaller values of the
atmospheric mass splitting prefer maximal mixing, i.e. sin2 θ23 = 0.5, while larger values
deviate from it. The preferred ∆m2

atm value by the MBL reactor experiment is somewhat
larger than the one preferred by the LBL experiments, so that a combined fit will push the
preferred value for ∆m2

atm such that sin2 θ23 will be pushed to non-maximality. In [26] it is
shown how in this way a combined fit of LBL and reactor data gives a slight preference for
non maximal mixing, with respect to LBL data alone.
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Figure 3.3.3: Figure taken from reference [26]. Determination of ∆m2
atm at 2σ CL for NO

(upper pannels) and IO (lower pannels). For each experiment, contours are defined with
respect to global minimum of the two orderings. Left: Appearance and disappearance data
from MINOS (green), T2K (red), NOνA (brown) as well as IceCube/DeepCore (orange)
and Super-Kamiokande atmospheric (maroon) and their combination (black regions) in
the parameter space ∆m2

atm vs sin2 θ23. sin2 θ13 is minimized over and constrained using
the global best fit value. Right: MBL reactor data from Daya Bay (red), RENO (violet)
and Double Chooz (magenta) and their combination (balck region) in the parameter space
∆m2

atm vs sin2 θ13. In all panels the solar parameters ∆m2
21 and sin2 θ12 are fixed to the best

fit values.

Reactor and LBL complementarity for the ordering determination

From equation (3.3.10) it can be seen that LBL experiments are sensitive to the mass order-
ing thanks to matter effects. LBL data make an important contribution to the mass ordering
determination. But also the interplay between MBL reactor experiments measuring in the

ν̄e disappearance channel and LBL experiments measuring in the
(–)

ν µ disappearance chan-
nels contributes significantly, [131,149]. The ν̄e disappearance probability is symmetric with

respect to the sign of the effective mass squared difference ∆m2
ee (3.3.6) and

(–)

ν µ disappear-
ance probability is also symmetric with respect to the sign of ∆m2

µµ, i.e. the probabilities
depend on their absolute value. The difference between them is given by [131]

|∆m2
ee| = |∆m2

µµ| ± cos 2θ12∆m2
21 ∓ cos δCP sin θ13 sin 2θ12 tan θ23∆m2

21 , (3.3.12)

where the different upper(lower) signs are for normal(inverted) ordering [131]. Then a
precise determination of both ∆m2

ee and ∆m2
µµ is sensitive to the mass ordering.

In figure 3.3.4 the ∆χ2 profile of the atmospheric mass squared difference is shown, for
IO (left panel) and for NO (right panel), following convention (2.2.2). The agreement on
the determination of ∆m2

atm between the reactor and LBL data is better for NO ordering,
which makes this ordering to be preferred. In the upper plots, the long baseline analysis
is performed constraining θ13 using a prior given by its precise determination from reactor
data, while in the lower panels, LBL and reactor data are consistently combined. The
combined LBL fit (blue line) for NO has a smaller χ2 for both types of analysis, i.e. NO is
preferred. But the analysis in which T2K, NOνA and MINOS data is consistently combined
with MBL reactor data, increases the preference for NO by two units of ∆χ2 with respect
to the case in which θ13 is constrained.
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Figure 3.3.4: Figure taken from reference [26]. ∆m2
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and MBL reactor experiments, for IO (left panels) and NO (right panels). For each experi-
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show the χ2 projection over ∆m2

atm constraining θ13 from reactor data and the lower panels
show the χ2 projection when LBL and reactor data is combined consistently. In all panels
the solar parameters ∆m2

21 and sin2 θ12 are fixed to the best fit values.

Summary

In this section it has been shown that MBL reactor data constitutes the main contribution to
the determination of the θ13 mixing angle, and that a consistent combination of reactor and
LBL data push into the direction of preference for non-maximal θ23 mixing and increases
the preference for NO over IO by two units in ∆χ2 with respect to the case in which both
data sets are analyzed independently.

3.3.2 Constrains on ∆m2
sol using reactor data

This section is based on reference [28] and contains numerical results and figures from that
reference.

As it has been pointed out in the previous section, the 3ν framework is a very well tested
framework but there are still some parameters to be measured, θ23 octant, δCP and the mass

ordering. LBL experiments are sensitive to δCP through the
(–)

ν µ →
(–)

ν e channel, cf. (3.3.10)
and the size of the CP violation oscillating term is proportional to ∆m2

21. Therefore, for the
determination of δCP in current (NOνA and T2K) and future LBL experiments (T2HK [150],
DUNE [151] and T2HKK [152]), it is crucial to have a precise value for ∆m2

21.

∆m2
21 tension

The determination of ∆m2
21 is driven by the solar and KamLAND experiments, measuring

solar and reactor neutrino oscillations in the oscillation channels νe → νe and ν̄e → ν̄e
respectively. If CPT is a good symmetry of nature, both measurements should give the
same value for ∆m2

21, but a 2σ tension is found between the two determinations [26]. Solar
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Fig. 1. Dependence of the probabilities Pee integrated over
the day and night time periods, for Δm2

21 determined from
the global fit of the solar neutrino data only (red) and from
the global fit of all oscillation data (blue). Also shown are the
results from different experiments. We use abbreviations “Brx”
for Borexino and “KL” for KamLAND.

distance to the core. So, detectors of 7Be-neutrinos can in
principle “see” the core.

The probabilities should be averaged over the produc-
tion region in the Sun. In the first approximation this can
be accounted by the effective initial densities n0

e → n̄0
e [31].

2.6 Energy profile of the effect

Flavor conversion is described by Pee(E, t) (24) which de-
pends on neutrino energy and time. The time dependence
is due to oscillations in the Earth since the effect depends
on the zenith angle of trajectory of neutrino. The main
dependence on energy is in θm12(n0), and much weaker one
is in θm13(n0) and P1e.

Fig. 1 shows dependence of the probabilities Pee(E) in-
tegrated over the day and the night times. At low energies
neglecting the νe regeneration one has

Pee ≈ c413(1− 0.5 sin2 2θ12)− 0.5c613 cos 2θ12 sin
2 2θ12�12 .

(31)
With decrease of energy: Pee → P vac

ee . For the best fit value
of the 1-2 mass splitting deviations of the probability (31)
from its vacuum values are 6% for the 7Be-neutrinos and
2% for the pp-neutrinos with E = 0.3 MeV.

At high energies the matter effect dominates and

Pee = c413 sin
2 θ12+c212Freg+

1

4
cos 2θ12 sin

2 2θ12�
−2
12 . (32)

The intermediate energy region between the vacuum
and matter dominated limits is actually the region where
the resonance turn on (turn off). The middle of this region
(before averaging) corresponds to the MSW resonance at
maximal densities in the Sun. Value of θ12 determines
sharpness of the transition, that is, the size of transition
region. The larger θ12 the bigger the size of the region. In-
tegration over the neutrino production region in the Sun
smears the transition, thus reducing the sensitivity to θ12.

As follows from Fig. 1 almost all experimental points
are within 1σ from the prediction. Larger deviations can
be seen in the intermediate region.

2.7 Scaling

The conversion probability of solar neutrinos obeys certain
scaling which allows to understand various features of the
LMA MSW solution as well as effects of new physics. The
survival probability averaged over the oscillations on the
way to the Earth (related to loss of propagation coherence)
is function three dimensionless parameters:

Pee = Pee(�12, �13,φE) . (33)

Here

φE ≈ Δm2
21L

2E
(34)

is the phase of oscillations in the Earth and �12, �13 are
defined in Eqs. (17), (19) correspondingly.

Several important properties follow immediately:
1. The probability is invariant with respect to rescaling

Δm2
21 → bΔm2

21 , Δm2
31 → bΔm2

31 , E → bE . (35)

2. The adiabatic probability does not depend on dis-
tance and any spatial scale of the density profile. So, the
only dependence on distance is in the phase φE . If oscil-
lations in the Earth are averaged, then whole the proba-
bility, Pee = Pee(�12, �13), is scale invariant. This happens
for practically all values of the zenith angle. In this case
Pee is invariant with respect to rescaling

Δm2
21 → aΔm2

21 , Δm2
31 → aΔm2

31 , Ve → aVe . (36)

In particular, if a = −1, Pee is invariant with respect
to change of the signs of mass squared differences and
potentials. Since the oscillation probability in the Earth
(the regeneration factor) does not change under φE →
−φE , the invariance with respect to simultaneous change
of signs of Δm2 and potential (Eq. (36) with a = −1)
holds also for the non-averaged probability (33).
3. If |Δm2

31| is kept fixed, the scaling (36) is broken by
the 1-3 oscillations.
4. The dependence of the probability on �13 is weak, and

if neglected,

Pee ≈ Pee(�12) = Pee

�
2VeE

Δm2
21

�
(37)

depends on one combination of the parameters only.
We will use these properties in the following discussion.

3 Determination of the neutrino parameters

The conversion effect of the solar neutrinos depends mainly
on sin2 θ12 and Δm2

21. In the approximation sin2 θ13 = 0
the problem is reduced to 2ν problem. Due to low neutrino

Figure 3.3.5: Left panel: figure taken from [26]. ∆χ2 profile of the ∆m2
21 parameter, deter-

mined by KamLAND (green) and solar experiments: using the GS98 (red) and the AGSS09
(dashed black) solar models, and removing the day-night data from SuperKamiokande.
Right panel: figure taken from reference [153]. Solar oscillation probability vs the neutrino
energy. For the fixed parameters sin2 θ13 = 0.022 and sin2 θ12 = 0.31, the predicted red
(blue) curve corresponds to the ∆m2

21 value preferred by solar experiments (KamLAND).
Solid (dashed) lines correspond to the day (night) predictions. The data points in the low
end of the spectrum correspond to the Borexino, Super-Kamiokande and SNO data, see
text for details. The abbreviations “Brx” and “KL” are used for Borexino and KamLAND.

experiments prefer a somewhat smaller value ∆m2
21 ' 5.1× 10−5eV2 than the one preferred

by KamLAND12 ∆m2
21 ' 7.5×10−5eV2. The tension is shown in the left panel of figure 3.3.5,

where it can be seen that it does not depend on the assumed solar flux model. This
tension is driven by the non-observation of the low energy up turn in the SNO [138], Super-
Kamiokande [137, 154, 155] and Borexino [156] 8B data, and by the day-night asymmetry
observed in Super-Kamiokande [157], with respect to the predictions based on KamLAND
∆m2

21 measurement, cf. right panel of figure 3.3.5. The tension could be caused by a
statistical fluctuation or new physics, but with only the KamLAND measurement from
reactor neutrinos it is difficult to make a strong statement and new experiments and checks
are needed to address this issue.

As it was demonstrated with simulated data in [133], Daya Bay and RENO experiments
are capable of setting an upper limit, and potentially a lower one, on ∆m2

21 to be less than 3
times the measured value by KamLAND. Although they can not address the 2σ tension, this
upper limit measured at much smaller baseline compared to KamLAND, would contribute
as a consistency check of the 3ν standard framework. Future experiments, JUNO [128]
measuring reactor neutrinos at a baseline L ∼ 50 Km and Hyper-K [158] and DUNE [159]
measuring 8B solar neutrinos, will determine this parameter very precisely.

MBL reactor oscillation probability as a function of ∆m2
21

Given the current values of the oscillation parameters, cf. table 2.1, in MBL reactor ex-
periments the electron disappearance oscillation probability (3.3.1) is dominated by the
atmospheric oscillation term over the solar one, cf. equations (3.3.3) and (3.3.5). As can
be seen in figure 3.3.6 for a larger value of ∆m2

21 the solar oscillation term becomes more

12The global fit [26] sets ∆m2
21 ' 7.39×10−5 eV2, being KamLAND measurement the main contribution.
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important and comparable to the atmospheric one. This can be seen rewriting (3.3.2) as

P12 ' 0.002

(
L/E

0.5 Km/MeV

)2(
∆m2

21

7.5× 10−5 eV2

)2

,

which is a good approximation of (3.3.2) provided ∆m2
21 . 4 × 7.5 × 10−5 eV2. For a

value ∆m2
21 = 3× 7.5× 10−5 eV2, P12 and P13 are already of comparable size. Therefore a

sufficiently large ∆m2
21 would have an impact in the MBL reactor experiments analyses, such

that the data can be used to set an upper limit. Note that after the atmospheric oscillation
maximum at L/E ∼ 0.5 Km/MeV, P12 keeps on increasing while P13 starts decreasing,
hence the constraint on ∆m2

21 will come predominantly from the data with large L/E, cf.
figure 3.3.6.

Daya Bay and RENO analysis

Following the study done in [133], current available data by Daya Bay [106] and RENO [107]
are used to set an upper limit on ∆m2

21. The data analysis is performed as explained in
Appendix A. For this analysis the free parameters are ∆m2

21 and sin2 θ13. θ12 is kept fixed to
the value sin2 θ12 = 0.310 and ∆m2

ee is constrained to the value set by the LBL experiments,
including an additional penalizing term to the χ2-function:(

∆m2
ee,LBL −∆m2

ee

)2

σ2
ee

.

∆m2
ee,LBL and its uncertainty, σee, are inferred from the measurement of ∆m2

µµ by LBL
experiments [26]. The relation between ∆m2

ee and ∆m2
µµ is given by (3.3.12). Although in

the analysis ∆m2
21 is left to vary up to 3 × 10−4 eV2, since θ13 is very small, the product

sin θ13∆m2
21 suppresses the second term over the first, so that [131]

|∆m2
ee| ' |∆m2

µµ| ± cos 2θ12∆m2
21 ,
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values are shown. Right: χ2 projection over ∆m2
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systematic uncertainties included. Plots are taken from [28].

is a good approximation. The “+” and “−” signs are for NO and IO cases.
Since ∆m2

21 is a free parameter in this study and the hierarchy is unknown, the second
term acts as an uncertainty on |∆m2

ee|:

|∆m2
ee| = |∆m2

µµ| ± σeµ .

∆m2
µµ is computed taking the best fit value of ∆m2

atm from the LBL combined analysis
in [26] and the global best fit values for θ12 and ∆m2

21, ignoring the term proportional to
sin θ13∆m2

21 in (3.3.9). The uncertainty, σeµ, is estimated considering small variations of
sin2 θ12 and ∆m2

21 < 4×7.5×10−5 eV2, which translates into a 4% relative uncertainty. The
uncertainty on ∆m2

µµ, about 4%, is computed propagating the 1σ uncertainty on ∆m2
atm

determined by the combined LBL analysis. Adding both, the total relative uncertainty on
∆m2

ee becomes 6%:

|∆m2
ee| = (2.45± 0.15)× 10−5 eV2 .

The data analysis is performed using the complete oscillation probability (3.3.1), meaning
that ∆m2

31 and ∆m2
32 are computed according to (3.3.7) for each value of the parameters

θ12, ∆m2
21 and ∆m2

ee that we scan over.

Results

The best fit of the Daya Bay and RENO combined data analysis, together with the 1,2 and
3σ confidence regions in the plane ∆m2

21 vs sin2 θ13 are shown in the left panel of figure
3.3.7, including systematic uncertainties in red solid lines and including only statistical
uncertainties in dashed blue. The right panel of figure 3.3.7 shows the χ2 projection over
∆m2

21, computed minimizing over sin2 2θ13. The upper bound on ∆m2
21 at the 2σ confidence

level is 18.3× 10−5 eV2.
We also performed a more conservative analysis, in which no assumptions for ∆m2

ee are
taken, fitting it together with ∆m2

21 and sin2 θ13, fixing sin2 θ12 = 0.310. In figure 3.3.8 the
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ee vs sin2 2θ13 (lower left) and ∆m2

ee vs ∆m2
21 (lower right) planes, from the simultaneous

3 parameter combined fit, ∆m2
21, sin2 2θ13 and ∆m2

ee of Daya Bay and RENO data sets,
systematic uncertainties included. θ12 parameter is set to sin2 θ12 = 0.310. Plots are taken
from [28].

three different projections of the fit including both statistical and systematic uncertainties
are shown. The best fit value is found at ∆m2

21 = 3.3 × 10−5 eV2, ∆m2
ee = 2.5 × 10−3 eV2

and sin2 2θ13 = 0.088.

Comparing figure 3.3.7 left panel and figure 3.3.8 upper panel, it can be seen how
constraining ∆m2

ee with complementary information from LBL experiments helps to set
a stronger upper limit on ∆m2

21.

Note that the solar and KamLAND experiments determine at the same time both ∆m2
21

and sin2 θ12. Then, in order to be independent of their measurements, no assumption on
sin2 θ12 should be taken. In our analysis, in which ∆m2

21 is varied up to 30× 10−5 eV2, the
approximated oscillation probability (3.3.6) holds to a good accuracy13, so that the MBL
reactor experiments are sensitive to the combination sin2 2θ12∆m2

21. Which can be seen
approximating sin2 ∆21 ' ∆2

21 in (3.3.1) for small ∆21 = ∆m2
21L/(4E). That means that

∆m2
21 in these analyses can be reinterpreted as ∆m2

21 sin2 2θ12/0.92, where 0.92 is the value
taken for sin2 2θ12 in the analyses. [133] discusses the little impact of varying sin2 θ12 on
these analyses.

13For ∆m2
21 = 30× 10−5 eV2 in the MBL regime: ∆m2

21
L

4E < 0.5, so the approximation holds to a good
acuracy, [133].
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Summary

A precise determination of ∆m2
21 is needed in order to measure δCP in future LBL exper-

iments. The current sensitivity of MBL reactor experiments is far from addressing the 2σ
tension in the determination of ∆m2

21 between solar and KamLAND experiments. So far
the upper limit on ∆m2

21 is set to be less than 18.3 eV2 at the 2σ C.L. As can be seen in
figure 3.3.7, current bounds are limited by statistics so are still to be improved with more
data and with a possible improvement of the systematic uncertainties. In the near future,
a precise determination of ∆m2

21 by JUNO, Hyper-K and DUNE will solve the present 2σ
tension, until then the limit set by MBL reactor experiments, Daya Bay and RENO, works
as a consistency check of the 3ν oscillation framework.

3.4 3 + 1ν Oscillation Framework

In this section, reactor data compatible with active-to-sterile oscillations in the context of
3 + 1ν framework is studied. In spite of the success of the 3ν standard scenario, in the last
decade this framework has been actively under research driven by anomalies in neutrino
oscillation data, in particular in SBL experiments. This section starts with an overview on
the SBL anomalies, section 3.4.1. Then we perform a detailed study on the reactor anti-
neutrino flux in section 3.4.2. Finally, in sections 3.4.3 and 3.4.4 the current status of the
global picture of the active-to-sterile oscillations is discussed.

3.4.1 Overview on short baseline anomalies

As discussed in the previous section, the 3ν framework, although some of the oscillation pa-
rameters are unknown, is a very well tested and consistent framework. However there are a
number of experimental results that disagree with this picture: LSND [29], MiniBooNE [38],
reactor [33] and intense radioactive source [31,32] anomalous results. The LSND experiment
measures an excess of νe like events in the oscillation channel νµ → νe, also the MiniBooNE

experiment measures an excess of
(–)

ν e like events in the oscillation channels
(–)

ν µ →
(–)

ν e. Re-
actor experiments, measuring in the ν̄e → ν̄e channel, after a recalculation of the theoretical
ν̄e predictions [102, 103], found a deficit in the ratio of measured vs the predicted events.
This deficit is supported by a similar deficit found in gallium-based radiochemical detectors
in the oscillation channel νe → νe, using an intense radioactive source as the source of νe.
These anomalous results, the LSND, reactor and gallium anomalies, occur at a very short
baseline, so they are commonly referred as the SBL anomalies. As it was explained before,
at a SBL regime, the 3ν standard framework oscillations do not have time to develop, being
not measurable. Since the 3ν standard picture is well established and compatible with a lot
of different data sets, the excesses and deficits of events setting these anomalies must come
from another source. The existence of a hypothetical eV scale sterile neutrino, which would

drive active-to-sterile oscillations, could cause an excess of νe like events in the
(–)

ν µ →
(–)

ν e

channel and a deficit of events in the
(–)

ν e →
(–)

ν e channel. In figure 3.2.2 it can be seen
how the oscillation probability Pν̄e→ν̄e can fit the measured deficit of ν̄e events when an
active-to-sterile oscillation is included.

In this scenario, which is called 3 + 1ν oscillation framework, the LSND, reactor and
gallium anomalies have to be contrasted with all the constraints on the eV active-to-sterile
neutrino oscillation searches, set by the null results from the experiments that would be

sensitive to this new hypothetical oscillation, measuring in the channels
(–)

ν µ →
(–)

ν e,
(–)

ν e →
(–)

ν e

and
(–)

ν µ →
(–)

ν µ. This is discussed in section 3.4.5. Apart from existing constrains, concerning
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the reactor data, there is experimental evidence that sheds doubt into the reliability of
the reactor ν̄e flux predictions, indicating that a miscalculation of the ν̄e fluxes could be
the origin of the RAA. This is discussed in detail in section 3.4.2. Given this situation,
experimental data based on ratios of reactor spectral information is of high importance,
since those experiments are insensitive to reactor ν̄e flux shape and normalization.

In the short baseline regime only the oscillating terms in (3.1.2) driven by the new mass
squared difference, ∆m2

new, have time to evolve and have a measurable effect. Since the mass
of the new massive eigenstate considered is at the eV scale, ∆m2

new ≡ ∆m2
41 ' ∆m2

42 ' ∆m2
43

the appearance and disappearance oscillation probabilities are given by:

P SBL
να→να = 1− 4 |Uα4|2

(
1− |Uα4|2

)
sin2

(
∆m2

41L

4E

)
P SBL
να→νβ = 4 |Uα4|2 |Uβ4|2 sin2

(
∆m2

41L

4E

)
. (3.4.1)

In these expressions it can be clearly seen that the active-to-sterile oscillation cause a deficit
of α favor neutrinos in the disappearance channel and an excess of β flavor neutrinos in the
appearance channel. Here Uα4 are the elements of the 4 × 4 lepton mixing matrix (3.1.4).
According to [37], here we use the following parameterization:

U ≡ R34(θ34)R24(θ24, δ24)R14(θ14)R23(θ23)R13(θ13, δ13)R12(θ12, δ12) ,

where Rij(θij) denotes a real rotation of θij in the ij−plane and Rij(θij, δij) includes complex
phases, e.g.:

R14 =


cos θ14 0 0 sin θ14

0 1 0 0
0 0 1 0

− sin2 θ14 0 0 cos θ14

 ; R24 =


1 0 0 0
0 cos θ24 0 sin θ24e

−iδ24

0 0 1 0
0 − sin2 eiδ24 0 cos θ24

 .

Here the Majorana phases are omitted14.

In this parameterization U14 ≡ Ue4 = sin θ14. Then, in a SBL regime, the reactor neutrino
oscillation probability is given by

Pνe→νe = 1− sin2 2θ14 sin2

(
∆m2

41

L

4E

)
. (3.4.2)

3.4.2 Flux predictions vs. sterile neutrino oscillations

This section is based on the study done in reference [36]. Expressions and figures are taken
or based on the ones from that reference.

The RAA relies on the theoretical ν̄e flux predictions and the magnitude on their pre-
dicted uncertainties [102,103]. Recent experimental data, as the unpredicted 5 MeV bump
in the measured spectrum and the measurements of the individual flux components by Daya
Bay [34] and RENO [35], suggest that the predictions should not be trusted at face value
and that the source of the anomaly can be a mismodelling of the flux predictions.

14Following this notation, (2.2.1) is parameterized as R23(θ23)R13(θ13, δ13)R12(θ12)diag{eiα1 , eiα2 , 1}.
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Daya Bay measurement

The Daya Bay collaboration measured for the first time the contributions to the ν̄e flux
coming from the four different isotopes 235U, 239Pu, 238U and 241Pu, by using the measured
IBD yield per fission, σ, and the effective fission fractions, F iso, as a function of time at the
near site detectors, EH1 and EH2 [34]. F iso are the relative amount of a given isotope iso
that is effectively seen at the near site detectors15. The IBD yield per fission is proportional
to the neutrino flux normalization, it is given by the convolution of the neutrino flux per
fission, φ(Eν), and the IBD cross section, σIBD(Eν):

σ =
∑
iso

Fisoσiso =
∑
iso

Fiso

∫
φiso(Eν)σIBD(Eν)dEν .

σiso is the contribution from each isotope. The effective fission fractions of each isotope were
measured as a function of time using information on the isotope composition of the reactor
fuel and the total power generated in each reactor together with their time dependence [34].

The collaboration reported a 7.8% deficit between the observed and predicted IBD yield
from 235U, σ235, while the rest σ239, σ238 and σ241 are consistent within the uncertainties.
This suggests that an over estimation of the 235U flux predictions is the main source of the
RAA.

Active-to-sterile ν oscillations

Daya Bay data in [34] favours the 235U overestimation hypothesis over the global suppression
of the four components at the level of 2.8σ. The global suppression is identical to the effect
that an active-to-sterile neutrino oscillation would cause with a new mass squared difference
of ∼ 1eV. For this value the oscillation probability (3.4.2) is completely averaged out16 at
the Daya Bay near detectors baseline, acting then as a global suppression factor

Pν̄e→ν̄e = 1− 1

2
sin2 2θ14 . (3.4.3)

In the light of these results, before performing an analysis of the SBL reactor data under the
active-to-sterile neutrino oscillation hypothesis, it is worth to check how well this hypothesis
fits to the Daya Bay flux measurement. To do that, the goodness of fit for this hypothesis
is computed using [34] data.

Analyses: flux free and flux fixed hypotheses

Since there is basically a 1 to 1 correspondence between the time evolution of the effective
fission fraction F239 and the other Fiso, c.f. figure 1 in [34], the time dependent total IBD
yield measurements and effective fission fractions Fiso are expressed as a function of F239 in
8 different bins. The IBD yields are given in units of cm2 per fission. The predictions of the
total IBD yields, σpred, in each F239 bin a are computed as

σapred =
∑
iso

P iso
oscξisoF

a
isoσ

HM
iso , (3.4.4)

where P iso
osc is the oscillation probability (3.4.3)17. F a

iso are the effective fission fractions for
each isotope iso in each F239 bin (a = 1, . . . , 8). σHM

iso are the Huber-Mueller IBD yield

15The difference between F iso and f iso in (3.2.6), is that the latter are averaged in time.
16The average lim∆→∞

1
2∆

∫∆

−∆
dx sin2 x = 1

2 .
17P iso

osc depends on the oscillation frequency, energy and baseline, so it depends on the Daya Bay near
detector configuration. Also, the different energy spectra of each isotope introduces a small dependence on
them. For ∆m2

41 & 0.05 eV2 the probability is completely averaged out in the Daya Bay near detectors,
therefore independent of the isotope, energy and baseline.
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predictions, for the 235U, 239Pu and 241Pu isotopes [102] and for 238U [103]. ξiso are the pull
parameters that allow each IBD yield to be rescaled from their predictions.

The analysis is performed using a least-squares statistic method as follows:

χ2 =
8∑

a,b=1

(σaobs − σapred)V −1
ab (σbobs − σbpred) + χ2

flux(σ̂) . (3.4.5)

Here the measured IBD yields σobs as well as the covariance matrix V , which includes statis-
tical and systematic uncertainties and their correlations, are taken from the complementary
material provided in [34]. Depending on the assumptions taken for the analysis, different
expressions are taken for χ2

flux(ξi) which accounts for the constrains over the pull parameters.
Here we performed two different analyses: one in which no active-to-sterile oscillation

is considered and the flux normalizations are left free and fitted to the data, called “flux
free (no ν)” analysis, and the second one in which active-to-sterile oscillations are included
and the flux normalizations are constrained to the predicted values within their predicted
uncertainties, called “flux fixed (ν)”. In the “flux fixed (ν)” case, χ2

flux(ξi) includes the
systematic uncertainties of the IBD yields [102,103]:

χ2
flux(σ̂) = (σ̂i − σHMi )V −1

σij
(σ̂j − σHMj ) , (3.4.6)

where V −1
σij

is the covariance matrix with the uncertainties of predicted IBD yields and their

correlations, taken from table 3 in reference [160]. σ̂i ≡ σHM
i ξi (no summed indices). In the

“flux free (no ν)” analysis, these penalizing terms are not considered, but since the 238U and
241Pu contributions to the total flux are subdominant, a 1σ constraint of 10% uncertainty is
imposed to the IBD yields of theses two isotopes in order to avoid unphysical results. In the
“flux free (no ν)” analysis, χ2

min is expected to follow a χ2 distribution with 8 − 2 degrees
of freedom, since there are 8 data bins and 2 main fit parameters, σ235 and σ239, whereas in
the “flux fixed (ν)” case, 8− 1 degrees of freedom are expected, coming from the θ14 mixing
angle that causes the global suppression. We checked by a Monte Carlo simulation that the
χ2

min in both analyses follow a χ2 distribution with 6 and 7 degrees of freedom. In appendix
B details on the Monte Carlo study are provided.

Results

The goodness of fit, computed assuming χ2 distributions with 7 and 6 degrees of freedom,
can be found in table 3.1. The “flux free (no ν)” hypothesis fits better to the data with a
p-value of 73%, but the “flux fixed (ν)” hypothesis can not be rejected at a high enough
confidence level since it has a reasonably good p-value of 17%. In the latter case, it is
found that active-to-sterile oscillations are preferred with respect to no oscillations at the
level of 4.0 units in ∆χ2 (∼ 2σ for a χ distribution of 1 dof), with the best fit value at
sin2 2θ14 = 0.13.

In order to quantify how disfavored the “flux fixed (ν)” is with respect to the “flux free
(no ν)” hypothesis, denoted as H0 and H1 respectively, a test statistic T is built as follows

T = χ2
min(H0)− χ2

min(H1) . (3.4.7)

T is expected to follow a χ2 distribution with one degree of freedom, since H0 is a subset
of H1, a particular case in which all the fluxes are rescaled with the same factor. It was
checked by a Monte Carlo study that this approximation is good, cf. appendix B.

TDB flux = 6.8 , p-value =

{
0.7% (2.7σ) (Monte Carlo),
0.9% (2.6σ) (χ2 approximation).
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Analysis χ2
min/dof gof sin2 2θ14 ∆χ2(no osc)

flux fixed (ν) 10.4/7 0.17 0.13 4.0
flux free (no ν) 3.6/6 0.73 - -

Table 3.1: Analysis of the Daya Bay IBD yields per fission measurements [34] for two
different hypothesis: keeping the fluxes normalization to the predictions including an active-
to-sterile oscillation, “flux fixed (ν)”, and leaving the fluxes normalization free and fitting
them to the data without considering the oscillation, “flux free (no ν)”. The goodness of
fit are computed under the assumption that the χ2

min follow a χ2 distribution with 7 and 6
degrees of freedom respectively.

Here the sterile neutrino hypothesis H0 is disfavored with respect to H1 at 99.3% confidence
level. This is in agreement with [34] in which it is found that H0 is disfavored with respect
to H1 at the 2.8σ level. The number here obtained is smaller since the “flux fixed (ν)”
hypothesis includes the predicted uncertainties of the IBD yields, which was not taken into
account in [34]. Whit the latter assumption, the p-values found for χ2

(ν),min and TDB flux

are 12% and 0.5%(2.8σ) respectively. In appendix B, details on the p-values for the dif-
ferent assumptions and the verification that the least square statistics quantities follow χ2

distributions are shown.

Conclusions

Although Daya Bay data on the different flux contributions [34] prefers the “flux free (no
ν)” with respect to the “flux fixed (ν)”hypothesis, we have shown in this section that it
is worth to perform an analysis of the reactor data in the 3 + 1ν oscillation framework,
since this hypotheses fits good enough to the Daya Bay flux data, with a goodness of fit
of 17%. Moreover, as it will be shown in the next section when including all the reactor
data available up to February 2018, the test statistic Treactors = −1.3 do not longer disfavor
active-to-sterile neutrino oscillations, being both hypothesis equally compatible.

3.4.3 Global reactor analysis

This section is based on results from reference [37]. Numerical results and some of the plots
are taken from that reference.

As it was shown in the previous section, despite the problems with the ν̄e flux predictions,
it is licit to consider the reactor data analysis within the 3 + 1ν oscillation framework.
Therefore we perform a global analysis of all the reactor data sensitive to the hypothetical
active-to-sterile oscillation.

Data sets

Two sets of experiments are studied, the one that set the reactor anomaly [33] together with
the Double Chooz [161] and RENO [162] near detector rate measurements, called “old”, and
all the available data up to February 2018 called “all”, summarized in table 3.2. The “old”
data set was used in the analysis performed in [167], here we do a follow up of this analysis
including new data, the “all” data set, and implementing the new codes.

Besides the Daya Bay flux data [34], there are two types of data: total rates and ratios of
measured spectra. The latter is independent of the flux shape and normalization, as it was
explained in section 3.2. The total rate measurements consists of the integrated spectrum
and depend on the normalization of the flux predictions. But it is worth to highlight that
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Experiment References L [m] Data type

al
l



ol
d



ILL [111] 9 total rate
Gösgen [112] 38, 45, 65 total rate
Krasnoyarks [113–115] 33, 92, 57 total rate
ROVNO [116,117] 18, 25 total rate
Bugey-3 [163] 15, 40, 95 spectra at 3 different sites
Bugey-4 [118] 15 total rate
SRP [119] 18, 24 total rate
Double Chooz [161] 400 near detector total rate
RENO [162,164] 430 near detector total rate
KamLAND [165] 180000 spectral data
Daya Bay [130] 570, 1640 2 ratios of spectral data
Daya Bay flux [34] 570 flux contributions from each isotope
NEOS [110,121] 24 ratio of NEOS and Daya Bay spectral data
DANSS [166] 11 ratio of spectral data

Table 3.2: “Old” and “all” data sets included in the global reactor analysis. Details on the
baseline L and data type are given in the third and fourth columns.

no direct comparison of spectral predictions to measurements is done, being the whole data
set insensitive to the 5 MeV bump.

The “old” data set basically consists of total ratios between the predictions and expec-
tations, except the Bugey-3 data, whereas in the data set “all”, spectral information at
different short baselines and direct information on the normalization of the four individual
fluxes [34] is added.

Experiments of special importance are NEOS [121] and DANSS [125], which perform
analyses based on far-to-near spectral ratios which are flux shape and normalization inde-
pendent, allowing to study the active-to-sterile oscillations independently of the flux predic-
tions, which is crucial given the current situation. NEOS data is based on a ratio between
the observed energy spectrum, at a basline L = 24 m and a no-oscillation prediction based
on the unfolded Daya Bay ν̄e spectrum [110], such that Daya Bay works as a far detector for
NEOS. The Daya Bay unfolded spectrum is the measured spectrum decoupled from the 3ν
oscillations, which can be used as a model independent ν̄e flux input in other experiments.
DANSS data is given as a ratio of measured spectra at two different baselines, L = 12.7 m
(down) and L = 10.9 m (up), from the center of the reactor core.

In figure 3.4.1 the NEOS and DANSS spectral data is shown, together with the theo-
retical predictions for the best fit values of the NEOS and DANSS single analysis and the
global analysis described below. As it can be seen, the spectral data show distortions that
are compatible with active-to-sterile oscillations, with NEOS and DANSS being compatible
for the same oscillation parameters. Details on NEOS and DANSS analyses can be found
in sections A.2 and A.3.

The Daya Bay oscillation data analysis is also based on a ratio between two measured
spectra at two different baselines, as it was done for the 3ν standard analysis. Daya Bay
operates at a much larger baseline than NEOS and DANSS, so it is sensitive to much smaller
mass squared differences, cf. discussion on oscillation regimes in section 3.1. Out of the
three MBL reactor experiments, only the Daya Bay [130] spectral information is included
in the analyses. Double Chooz and RENO spectral information [107, 168] is not included
since their statistical power is much inferior than the Daya Bay one.

The Daya Bay flux data [34] is also taken into account in the analysis and provides
very valuable information on the flux normalizations, constraining the flux predictions in
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Figure 3.4.1: Observed and predicted energy spectra of the NEOS (left panel) and DANSS
(right panel) experiments. DANSS data shows the ratio between the down and up detector
position spectra and NEOS data the ratio between the observed spectrum and the predicted
one without oscillations, based on the Daya Bay unfolded spectrum. Data are denoted
with black dots and error bars, which account for the statistical uncertainties. The best
fit parameters for NEOS (blue dashed) and DANSS (red dashed) are ∆m2

41 = 1.78 eV2,
sin2 = 0.013 and ∆m2

41 = 1.32 eV2, sin2 = 0.012 respectively. The global best fit (green
line) is at ∆m2

41 = 1.29 eV2, sin2 θ14 = 0.0089. Plots are taken from [37], error bars of the
plot on the right have been corrected.

a consistent way for all the experiments. Its contribution to the total χ2-function is given
in equation (3.4.5), where the complete dependence of the oscillation probability on base-
line and isotopes is considered in the predictions. The penalizing term (3.4.6) is included
in a consistent way, such that the pull parameters affect the flux predictions of all the
experiments.

Analyses

Given the situation of the flux predictions, two analyses of the active-to-sterile oscillation
are performed, one in which the fluxes and their uncertainties are fixed to the Huber-
Mueller predictions, called “flux fixed” analysis, and one in which the flux normalization
from each isotope are left free and are fitted to the data together with the oscillation
parameters, the “flux free” analysis. As explained in the previous section, depending on the
analysis performed, the explicit form of (3.4.6) varies. In the latter case, an additional weak
constraint of 20% is added to the subleading isotope flux contributions, 238U and 241Pu, in
order to avoid unphysical results. Note that all the experimental data based on ratios of
spectral information are flux shape and normalization independent, so that they contribute
in the same way to both “flux free” and “fixed” analyses.

In SBL experiments, the oscillation probability depends on θ14 and ∆m2
41 (3.4.2), so that

their contribution to the total χ2 depends as well on those parameters:

χ2
SBL(θ14,∆m

2
41) .

In the 3 + 1ν oscillation framework, the Daya Bay oscillation probability depends on θ12,
∆m2

21, θ13, ∆m2
31, θ14 and ∆m2

41, and so does its χ2 contribution:

χ2
DB

(
θ12,∆m

2
21, θ13,∆m

2
31, θ14,∆m

2
41

)
.
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Figure 3.4.2: Allowed regions at 95% CL (2σ) in the parameter space ∆m2
41 vs |Ue4|2 from

different reactor data sets. The light-shaded regions correspond to the “old” data set for
the flux fixed (orange) and free (green) analyses. Solid lines correspond the data based on
ratios of measured spectra: Daya Bay (black), NEOS+Daya Bay (green), DANSS (brown);
independent of the analysis performed. The results of the global analyses, “all” data set,
are shown for the flux fixed (dashed pink) and free (shaded blue). The pink and white stars
corresponds to the best fit values ∆m2

41 = 1.29 eV2 vs |Ue4|2 = 0.0096 and ∆m2
41 = 1.29 eV2

vs |Ue4|2 = 0.0089, for the flux fixed and free analyses. Figure taken from reference [37].

The analysis were performed scanning over the oscillation parameters ∆m2
41, θ14, fixing

the solar parameters, θ12 and ∆m2
21, and the atmospheric mass squared difference, ∆m2

atm,
to their best fit values, cf. table 2.1. Finally, a marginalization over θ13 is performed in
order to get a χ2 map depending on the two new oscillation parameters:

χ2
marginalized(θ14,∆m

2
41) = minθ13 χ

2(θ14,∆m
2
41, θ13) .

Results

The results of both analyses, “flux fixed” and “free”, are shown in figure 3.4.2, which shows
the allowed regions of different data sets in the parameter space ∆m2

41 vs |Ue4|2. The “old”
data set, represented by the light-shaded regions, shows a preference for active-to-sterile
oscillation in the “flux fixed” analysis with |Ue4|2 ' 0.01, while it loses all the sensitivity
to the active-to-sterile oscillation in the “flux free” analysis, i.e. it is compatible with no
mixing. This is because the active-to-sterile oscillation global suppression effect (3.4.3) can
be also caused by the rescaling of the flux predictions, so that for |Ue4|2 = sin2 θ14 = 0 data
can be equally fitted as when |Ue4|2 ' 0.01 with an extra rescaling of the flux normalizations.

On the other hand, NEOS along with DANSS and “all” data sets favor active-to-sterile
neutrino oscillations at the level of around 3σ, for very similar best fit values. These results
are driven by ratios of spectral data, which is independent of the flux predictions, being the
best fit value dominated by the remarkable agreement between NEOS and DANSS data.
In the “flux fixed” analysis there is a minor tension between the “old” data set and the
new spectral information, which exclude the “old” data set preferred region. Adding this
to the uncertainty on the reliability of the flux predictions, a “flux free” analysis should be
considered as the representative one.

In table 3.3, the results of the “all” data set “flux free” and “fixed” analyses as well as
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Analysis ∆m2
41 [eV2] |Ue4|2 χ2

min/dof ∆χ2
no−osc

“all” data set (flux fixed) 1.3 0.00964 196.0/(233-3) 15.5(3.5σ)
“all” data set (flux free) 1.3 0.00887 185.8/(233-5) 11.5(2.9σ)
DANSS + NEOS 1.3 0.00964 74.4/(84-2) 13.6(3.3σ)

Table 3.3: Results of the analyses from the “all” data set for the “flux fixed” and “flux free”
analyses, and from the DANSS + NEOS data set. The best fit values for ∆m2

41, |Ue4|2, χ2

and the ∆χ2 between the no active-to-sterile oscillation hypothesis and the best fit, along
with its significance assuming a χ2 distribution with 2 degrees of freedom.

the single analysis of NEOS together with DANSS are shown. The number of degrees of
freedom of χ2

min is given by the number of data points minus the number of free parameters
of the model: two parameters ∆m2

41 and θ14 for NEOS and DANSS analysis, being θ13 fixed
to the best fit value and being independent of the flux predictions; three parameters, the
free parameter θ13 enters in the “flux fixed” analysis when including Daya Bay data; and
finally two extra free parameters coming from the main flux contributions in the “flux free”
analysis makes then five parameters. In table 3.3 it can be seen that χ2

min/dof ' 1, so that
the fits have a good goodness of fit.

The result of the “all” data set analysis is mainly driven by the remarkable agreement
between NEOS and DANSS, cf. figure 3.4.2. So it can be said that reactor data is compatible
with a “new” reactor anomaly, which is independent of the flux predictions, than can be
explained with an active-to-sterile neutrino oscillation within the 3 + 1ν framework and the
oscillation parameters (∆m2

41, |U14|2) ' (1.3 eV2, 0.01).
Coming back to the question of the model preferred by the fits to the data, “flux fixed

(ν)” (H0) or “flux free (no ν)” (H1), the test statistic (3.4.7) is built using the “all” data
set, from table 3.3:

Tall = χ2
min, free −

(
χ2

min, fixed + ∆χ2
no−osc,fixed

)
= −1.3 .

This result tells that the H1 hypothesis is no longer favoured over H0, once all the reactor
data is considered, and that both hypotheses are equally compatible, even a slight preference
for H0 shows up, since χ2

H0
< χ2

H1
. This statement is just qualitative, but valid since Tall = 0

would mean that both hypothesis are equally compatible. A translation of Tall into a p-value
needs a full Monte Carlo study, which was not performed in this work.

New data

Note that in this study the data used is up to February 2018. The latest data from DANSS
[169] is not included, RENO flux data [35] is not used, and neither are the STEREO [170] and
PROSPECT [171] results, which are also based on a ratio of measured spectra independent
of flux predictions. Their limits [170,171], depicted in figure 3.4.3 together with the allowed
regions of the global analyses, already exclude the region of the “old” data set RAA, the
orange shaded region in figure 3.4.2, but are still not sensitive to the new interesting region
driven by NEOS and DANSS data. So it could be said that the “new” reactor anomaly
independent of flux predictions, set by NEOS and DANSS experiments, is compatible with
all the experiments with flux shape information. Note that in figure 3.4.3, the PROSPECT
limit is shown at 90 % C.L. while the rest are shown at a 95 % C.L., not being consistently
plotted, but shown for comparison and to contextualize their current sensitivity, which will
increase as they collect more data. Neutrino-4 [172] results are also not included. The best
fit value of their analysis is shown as a read star. This result has been very controversial
because the way the analysis was performed and its best fit value is already excluded by
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Figure 3.4.3: Limits from the STEREO (orange) and PROSPECT (green) experiments in
the ∆m2

41 vs sin2 θ14 parameter space, taken from references [170,171], along with the global
reactor data allowed regions, as comparison. Neutrino-4 best fit value is also shown as a red
star. Note that the allowed regions and PROSPECT limit are given at 95% CL while the
STEREO is given at 90% CL.

STEREO and PROSPECT current limits, and by solar bounds, see figure 3.4.4. From
the SoLid experiment [173], also designed to measure spectral information, there is still no
available information.

In the near future, as more data is collected and the analyses are refined, the experiments
measuring spectral information (NEOS, DANSS, STEREO, PROSPECT, Neutrino-4 and
SoLid) are going to be able to test the interesting region of the parameter space preferred
by NEOS and DANSS (∆m2

41, |U14|2) ' (1.3 eV2, 0.01), and say something conclusive about
the RAA.

3.4.4 Global ν̄e/νe disappearance analysis

This section is based on reference [37]. Figures and numerical results are taken from that
reference.

Reactor experiments measure in the ν̄e disappearance channel. As long as CPT is a good
symmetry of nature, experiments measuring in the νe disappearance channel are sensitive to
the same oscillation parameters. Then it makes sense to combine all those experiments and
check in a consistent way if the RAA explanation in terms of an active-to-sterile oscillation
is compatible with existing bounds and the Gallium anomaly.

Experiments

In [37], on top of the reactor experiments listed in table 3.2, solar, atmospheric, νe scattering

on carbon and radioactive source experiments are used in the global
(–)

ν e disappearance study.

The solar experiments Chlorine [174], GALLEX and GNO [135], SAGE [136], Super-
Kamiokande (solar) [137, 154, 155, 157], SNO [175–177] and Borexino [139, 156, 178] were
used. The explicit dependence of their oscillation probability can be found in appendix C
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or reference [167]. This experiments set a bound on |Ue4|2, which depends on how well the
normalization of the solar neutrino flux is known.

The intense radioactive source measurements in the Gallium solar experiments GALLEX
[135, 179] and SAGE [180, 181] are also included. These measurements where done during
the calibration of these experiments introducing intense radioactive sources, 37Ar and 51Cr,
inside the detectors. The measurements done during the calibration observed a deficit of νe
with respect to the expectations, setting the Gallium anomaly. This deficit can be explained
by the hypothesis of the νe disappearance due to active-to-sterile neutrino oscillations, with
a new frequency set by a new mass squared difference of ∼ 1 eV2. This supports the active-
to-sterile neutrino oscillation explanation of the RAA in a totally independent way, since the
production of the νe flux has a different origin than the ν̄e flux produced in nuclear power
plants. Since the νe source is inside the detector, the experiments measure νe disappearance
at a very short baseline, so that the oscillation probability is given by (3.4.2).

The 12C experiments LSND [182, 183] and KARMEN [183–185] measured νe from the
decay at rest of µ+. They are beam dump experiments that produce a stream of particles
colliding protons into a wall. Among the out-coming particles, there are charged pions which
decay into leptons π+ → µ+ νµ. The decay of negative particles is suppressed by the high
probability of nuclear capture. The muons produced in pion decays are then stopped and
subsequently decay at rest µ+ → e+ νe ν̄µ, producing a flux of νe. The νe are detected by
the scattering onto 12C, νe

12C → e− 12N , producing an electron signal. Then, the Nitrogen
decays back, N12 →12 C e+ νe, producing a positron delayed signal, which allows for precise
identification of the signal events and background rejection. These experiments did not find
a discrepancy between the measured numbers of events and the expectations, so they set
bounds on the active-to-sterile oscillation parameters. Since the muons are stopped very
close to the detector, the experiments operate at a short baseline, so for a 3 + 1ν analysis
the oscillation probability is given by the appearance probability (3.4.1).

In [37], also the atmospheric experiments Super-Kamiokande, IceCube and DeepCore
are included, which set a bound in the ∆m2

41 vs θ14 parameter space. In reference [186] the
impact of a sterile neutrino on low-energy atmospheric data is studied.

Analysis

In the global reactor data analysis, it was checked that the θ13 measurement is very well
determined by Daya Bay measurement and that its best fit does not depend on the intro-
duction of an active-to-sterile neutrino oscillation, so then the χ2 contribution of all the
experiments depends on 6 parameters, see [37]:

χ2
(–)

ν e, disapp
(∆m2

31,∆m
2
41, θ12, θ14, θ24, θ34) . (3.4.8)

When combining with reactor data under the “flux free” assumption, the two extra free
parameters coming from the two main contributions of the ν̄e reactor flux add up to 8 free
parameters, cf. table 3.4. A marginalization over all the parameters but ∆m2

41 and θ14 gives
the χ2 allowed regions shown in figure 3.4.4.

Results

In figure 3.4.4, it can be seen how the “flux free” analysis of the reactor data, which is
taken as the representative one, is compatible with bounds from solar, atmospheric and
νe scattering on 12C data. There is a minor tension between the preferred region by the
radioactive source data that set the Gallium anomaly, denoted by the yellow region, and
the global data allowed regions, which are driven by the reactor data. This tension can
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Figure 3.4.4: Allowed regions and limits in the parameter space ∆m2
41 vs |Ue4|2, minimizing

over the rest, at 90 and 95% CL (2σ) from different νe/ν̄e appearance data sets: flux free
global reactor analysis (blue), gallium anomaly (yellow), solar bounds (dashed black), 12C
limits (dashed brown), atmospheric limits (green), and the combination of all (red). Figure
taken from reference [37].

Analysis ∆m2
41 [eV2] |Ue4|2 χ2

min/dof ∆χ2
no−osc

(–)

ν e disappearance (flux free) 1.3 0.00901 542.9/(594-8) 13.4(3.2σ)

Table 3.4: Results of the analyses from the whole νe/ν̄e disappearance data set: the best
fit values for ∆m2

41, |Ue4|2, χ2 and the ∆χ2 between the no active-to-sterile oscillation
hypothesis and the best fit, along with its significance assuming a χ2 distribution with 2
degrees of freedom.

be quantified performing a parameter goodness of fit test statistic, explained below in this
section. Since the best fit value of the combined fit, reactor and radioactive source experi-
ments, lies in a region excluded by the solar and νe scattering on 12C experiments, the PG
test is computed comparing the χ2

min,reactors and χ2
min,radioactive, with the global χ2

min,
(–)

ν e

and

it is found that the tension between the reactor and radioactive source data, at the global
best fit value, is given by ∆χ2

PG = 7.2, translating into a p-value of 2.8%. This indicates
some tension between the two data sets, but minor. Here “flux free” hypothesis for the
reactor data analysis was considered. Recently, it has been pointed out that the predictions
in the radioactive source experiments might be over estimated, being the revisited allowed
parameter space compatible with the preferred region by reactor experiments [187].

In table 3.4, the best fit value of the global
(–)

ν e disappearance data set analysis is given,
leaving the reactor flux free, shown also as a black star in figure 3.4.4. Despite the small ten-
sion, the significance of rejecting the no active-to-sterile oscillation hypothesis is disfavoured
at the level of 3.2σ, two more units in ∆χ2 with respect to the global reactor analysis.

Summary

The global
(–)

ν e disappearance data favours the active-to-sterile oscillation hypothesis at the
level of 3σ with respect to the no oscillation hypothesis, i.e. |Ue4|2 = 0. This result is mainly
driven by the reactor data as can be seen comparing the results from reactor data alone, cf.
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table 3.3, with the global
(–)

ν e disappearance results, cf. table 3.4.

Parameter goodness of fit test statistic

The parameter goodness of fit (PG) test statistic [188] quantifies the compatibility of sta-
tistically independent sub-sets of data A and B of a data set C. A,B ⊂ C. The quantity

χ2
PG ≡ χ2

min,C − χ2
min,A − χ2

min,B = ∆χ2
A + ∆χ2

B , (3.4.9)

where χ2
min,X are the minimum χ2 value of the data set X, measures by how much the fit

gets worse when the two data sets are combined. If χ2
A,B,C depend on PA, PB and PC free

parameters (PA, PB ≤ PC), respectively, it was shown in reference [188] that χ2
PG follows a

χ2 distribution with NPG ≡ PA + PB − PC degrees of freedom. NPG accounts for the “join”
free parameters of the sub-sets A and B. Then the p-value can be computed as

p =

∫ ∞
χ2
PG

dx fχ2(x;NPG) ,

where fχ2(x; NPG) is the probability density function of a χ2 distribution with NPG degrees
of freedom.

3.4.5 Global picture and tensions

This section is based on reference [37]. Figures and numerical results are taken from that
reference.

In order to perform a complete analysis of the active-to-sterile oscillation, other os-

cillation channels have to be investigated:
(–)

ν µ disappearance and
(–)

ν µ →
(–)

ν e appearance

channels. In the
(–)

ν µ →
(–)

ν e appearance data, there is an allowed region in the parameter

space ∆m2
41 vs |Uµ4Ue4|2, which is driven by LSND [29] and MiniBooNE [38, 189]

(–)

ν e ex-
cesses, compatible with the bounds set by the other experiments measuring in the same

appearance channel, cf. left panel of figure 3.4.5; while from the
(–)

ν µ disappearance global
data, only bounds on the mixing parameter |Uµ4|2 are obtained, cf. right panel of figure
3.4.5.

Appearance data

In [37], a combined fit of the experiments measuring in the
(–)

ν µ →
(–)

ν e appearance channel
was performed: LSND [29], MiniBooNE [38, 189], KARMEN [190], NOMAD [191], E776
[192], ICARUS [193,194] and OPERA [195].

LSND and KARMEN experiments measured oscillations of ν̄µ, produced in muon decays
at rest µ+ → e+ νe ν̄µ, into ν̄e. The detectors were located at an averaged distance of 30
and 17.7 m from the beam stop neutrino source. LSND also has a contribution to the ν̄µ

flux from pions decaying in flight. The MiniBooNE experiment measures an anomalous
(–)

ν e
appearance from

(–)

ν µ produced at the Booster neutrino beam at Fermilab, after a flight of
540 m. The NOMAD experiment measured neutrinos from the SPS wide-band neutrino
beam at CERN, consisting predominantly of νµ, produced in pion an kaon decays, which
are originated in the collision of high energy (450 GeV) protons into a beryllium target. The
detector was located at an average distance of 620 m from the source. The E776 experiment,
with a baseline of 1 Km, measured νµ from a high energy beam at Brookhaven. E776 was

fitted together with solar data in order to constrain the
(–)

ν e background. The ICARUS and
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Figure 3.4.5: νe/ν̄e appearance (left panel) and νµ/ν̄µ disappearance (right panel) combined
analyses. Left: Allowed regions on the parameter space ∆m2

41 vs sin2 2θµe set by the LNSD
and MiniBooNE anomalous ν̄µ → ν̄e appearance, together with the constraints set by the
null results on the active-to-sterile oscillation searches by KARMEN, NOMAD, E776+solar,
ICARUS and OPERA experiments. Right: constraints from νµ/ν̄µ disappearance data
in the parameter space ∆m2

41 vs |Uµ4|2. Constraints from IceCube (IC), DeepCore (DC),
Super-Kamiokande (SK), NOνA, MINOS and MINOS+, CDHS and MiniBooNE are shown.
In black it is shown the combined limit. The red shaded region is the projected allowed
parameter region from the combined νe/ν̄e appearance and disappearance data. Figures are
taken from reference [37].

OPERA experiments searched for νe appearance from the high energy νµ flux of the CNGS
beam at CERN. νµ are produced in pions and kaons decays originated in collisions of high
energy protons (400 GeV) into a graphite target. The detectors were located at 730 Km
from the source, at the Gran Sasso Laboratory.

When studying this data within a 3+1ν oscillation framework, the appearance oscillation
probability in the SBL given in (3.4.1) is used, which depends on the oscillation frequency
∆m2

41 and the effective mixing angle |Ue4Uµ4|2 ≡ sin2 2θµe. For ICARUS and OPERA, which
have longer baselines than the rest of the experiments, the oscillation probability depends
on more oscillation parameters. However the extra parameters do not play a role neither
for the global nor for the appearance best fit points.

Of all these experiments, only LNSD and MiniBooNE18 data present an excess in the
ν̄µ → ν̄e channel with respect to the SM expectations. The rest have found no evidence

for an anomalous
(–)

ν e appearance, setting strong bounds in the parameter space ∆m2
41 vs

sin2 2θµe. In the right panel of figure 3.4.5 the combined analysis is shown. The red shaded
region shows the preferred region, compatible with all the constraints, which is driven by
LSND and MiniBooNE anomalous appearance data.

The preferred new mass square difference is of the order of the one that explains the
RAA, but the value of the effective mixing parameter sin2 θµe is in contradiction with the

limits set by the
(–)

ν e and
(–)

ν µ disappearance limits. We discuss this below.

18Recently MiniBooNE has reported a new excess in the νµ → νe channel [39] after [37] was done.
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Disappearance data

In [37], a combined fit of the experiments measuring in the
(–)

ν µ →
(–)

ν µ disappearance channel
was performed: IceCube [196–198], DeepCore [145, 146], Super-Kamiokande (atmospheric)
[199,200], NOνA [201], MINOS and MINOS+ [202], CDHS [203] and MiniBooNE [204–206].

The IceCube experiment is a neutrino telescope based at the South Pole. It measures
neutrinos coming from space and atmospheric neutrinos as a function of the zenith angle of
incidence and energy. In the search of ν̄µ appearance, given the energy range, from 320 GeV
to 20 TeV, and distances traveled through matter, the MSW resonance effect has a huge
impact on the oscillation probability. DeepCore is a sub-detector based in the inner part of
the IceCube detector, which is more compact and thus can measure lower energy neutrinos,
of tens of GeV. Super-Kamiokande, is a tank of water based in the Kamioka mine under the
Japanese Alps mountains, it also measures low energy atmospheric neutrinos as DeepCore.
NOνA measures neutrinos with energies 1-10 GeV from the NuMI beam in Fermilab at
a baseline of 810 Km. It searches for the mixing of a light new massive eigenstate with
the flavor neutrinos from a reduction of the expected NC interactions. MINOS and its
upgrade MINOS+ measure νµ neutrinos from the NuMI beam in Fermilab. They consist
of two detector located at 1.04 Km and 735 Km from the source, being sensitive to a
wide range of oscillation frequencies. Given the energy range of the neutrino beam, 1-
10 GeV, and baselines, for ∆m2

41 ∼ 10−3− 10−1 eV2 oscillations are expected only in the far
detector. Increasing ∆m2

41, the oscillations would start averaging out in the far detector and
showing up in the near detector. For ∆m2

41 ∼ 1 − 100 eV2 oscillations are expected at the
near detector. They search for active-to-sterile oscillations through CC and NC neutrino
interactions. CDHS was a short baseline experiment measuring νµ from a neutrino beam
produced by a proton beam from the CERN Proton Synchrotron, it consist of two detectors
located at 130 and 885 m from the source. CDHS searched for νµ oscillations comparing
the CC neutrino interaction rates at the two detectors. The MiniBooNE experiment, apart

from the anomalous appearance searches, also performed searches in the
(–)

ν µ disappearance
channel.

NC interactions are of high importance in the search of active-to-sterile mixing, since
they are sensitive to the mixing of a fourth neutrino mass eigenstate with any of the flavor
neutrinos.

Except for the SBL experiments, CDHS and MiniBooNE, matter effects have to be
taken into account in the oscillation probability, specially in the atmospheric experiments,
IceCube, DeepCore and Super-Kamiokande, since, depending on the zenith angle of inci-
dence, neutrinos can travel for long distances through the Earth. The oscillation proba-
bility depends mainly on 6 free paraemters ∆m2

31,∆m
2
41, θ12, θ14, θ24, θ34 and so does their

χ2-function. In order to get the χ2 profile in the ∆m2
41 vs |Uµ4| plane, a marginalization

over the rest of the parameters has to be performed.
None of these experiments found evidence for active-to-sterile oscillations, so that they

set limits on the new mass squared difference and mixing, plotted in the right panel of figure
3.4.5. The combined limit is plotted in black, which sets a strong bound |Uµ4|2 < 0.01 for
the whole interesting range of ∆m2

41.

For comparison, in figure 3.4.5 the allowed region of the combined
(–)

ν e appearance and
disappearance data is plotted, for the “flux fixed” and “free” analyses of the reactor anti-
neutrino data. This region is obtained embedding the appearance χ2 contribution into the
three parameter space:

χ2
(–)

ν µ,app

(
|Ue4Uµ4|2,∆m2

41

)
−→ χ2

(–)

ν µ,app

(
|Ue4|2, |Uµ4|2,∆m2

41

)
.

So that the total χ2 function is given adding the disappearance and appearance contribu-
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tions:

χ2
(–)

ν µ,app/dis

(
|Ue4|2, |Uµ4|2,∆m2

41

)
= χ2

(–)

ν µ,dis

(
|Ue4|2,∆m2

41

)
+ χ2

(–)

ν µ,app

(
|Ue4|2, |Uµ4|2,∆m2

41

)
.

Finally a marginalization over |Ue4| gives the χ2 profile over the parameter space ∆m2
41 vs

|Uµ4|2.

Tension

The oscillation probabilities for the three above mentioned channels in the SBL regime can
be written in terms of effective mixings as follows:

P(–)

νe→
(–)

νe
= 1− sin2 2θee sin2

(
∆m2

41E

4L

)
P(–)

νµ→
(–)

νµ
= 1− sin2 2θµµ sin2

(
∆m2

41E

4L

)
P(–)

νµ→
(–)

νe
= sin2 2θeµ sin2

(
∆m2

41E

4L

)
,

where sin2 2θee ≡ 4|Ue4|2 (1− |Ue4|2), sin2 2θµµ ≡ 4|Uµ4|2 (1− |Uµ4|2) and sin2 2θeµ ≡ 4|Ue4Uµ4|2.
Then in the approximation of small mixings it follows that:

sin2 2θeµ '
1

4
sin2 2θee sin2 2θµµ . (3.4.10)

This equation shows how a lack of evidence for active-to-sterile oscillation in any of the
disappearance channels is going to suppress the effective mixing in the appearance channel.

Then, since no signal in favor of active-to-sterile oscillation is found in the
(–)

ν µ disappearance

data, the limits from the whole
(–)

ν e/
(–)

ν µ disappearance data set on the effective mixing

sin2 2θeµ are very stringent, as can be seen in figure 3.4.6. In order to project the
(–)

ν e/
(–)

ν µ
disappearance limits onto the ∆m2

41 vs sin2 2θeµ plane, first the contributions from each
channel are combined

χ2
dis(|Ue4|, |Uµ4|,∆m2

41) = χ2
(–)

ν e,dis
(|Ue4|,∆m2

41) + χ2
(–)

ν µ,dis
(|Uµ4|,∆m2

41) ,

and then the projection over sin2 2θeµ is performed minimizing χ2
dis keeping the product

|Ue4||Uµ4| constant.
This disappearance/appearance tension is quantified performing a PG test, explained at

the end of the previous section, dividing the global data into two subsets: appearance and
disappearance, cf. reference [37]. In table 3.5, the results of the PG test for two different
global data sets are shown: global data and global without reactor data. For the complete
set of active-to-sterile oscillation data, appearance and disappearance data are incompatible
at the level of 5σ. Being sceptical about the RAA, it was proven that removing the reactor
data from the disappearance data set does not alleviate the tension, which remains at the
level of 4σ. In the latter case, the bounds on |Ue4|2 from solar and atmospheric experiments,
cf. figure 3.4.4, together with the bounds on |Uµ4|2, cf. right panel in figure 3.4.5, are
sufficient to have a large suppression in their product |Ue4Uµ4|2, so that the tension between
the two data sets is strong.

In [37], it was shown that the tension is independent of any particular constraint in

the
(–)

ν µ disappearance channel, neither on the MiniBooNE and gallium data sets. This was
done removing these particular data sets one by one and computing the PG test. Only when
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Figure 3.4.6: Allowed region (red) by the appearance data set together with the projected
limits (blue) from the disappearance data set in the parameter space ∆m2

41 vs sin2 2θeµ plane,
at the 99.73% CL for 2 dof. The pink region is obtained by not including the LSND decay
in flight data set into the appearance data. The dark blue and light blue limits correspond
to the “flux free” and “fixed” reactor analysis. Figure taken from reference [37].

Analysis χ2
PG/dof p-value

Global 29.6/2 3.7× 10−7(5.1σ)
Without reactors 20.3/2 3.9× 10−5(4.1σ)

Table 3.5: Results of the PG test, comparing appearance and disappearance data, for the
global data set and the global data set without reactor data, together with its p-value and
significance.

removing the LSND data from the appearance data set, the tension decreases, being the
tension at the level of 3σ (p-value = 1.6× 10−30). Note however that the latest MiniBooNE
results, reported in [39], were not included in these analyses. From a qualitative point of
view, it is clear that they would make the tension even stronger, since the new MiniBooNE

excess data would favor the allowed region from the
(–)

ν µ →
(–)

ν e data. Then, it is expected that
the PG test performed in [37] removing the LSND data would give a strong disagreement,
even when removing the LSND data set.

Given the incompatibility between the appearance and disappearance data sets, it does
not make sense to considered LSND and MiniBooNE data within an active-to-sterile oscil-
lation framework and alternative explanations for those anomalies have to be pursued. In
chapter 4, an alternative explanation [40] for the latest MiniBooNE excess [39], is studied.

3 + 2ν oscillation framework

The study described above is done within a 3 + 1ν framework. Driven by the appear-
ance/disappearance tension, there is room for questioning if a 3 + 2ν framework would
alleviate the tension. In this framework, another massive eigenstate is considered, so that
there is more than one new oscillation frequency. It could happen that one frequency ex-

plains the RAA and another one the anomalous
(–)

ν e appearance.

In reference [167], a 3 + 2ν oscillation framework is considered and it is found that this
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framework does not help to get a better fit to the data. Moreover, it does not help to solve
the tension, since the suppression on the effective mixings driving the appearance channel
is going to be suppressed in an analogous way as it was described in (3.4.10) by the strong

constrains on the effective mixings driving the
(–)

ν µ disappearance oscillations.
In a 3 + 2ν oscillation framework, the disappearance oscillation probabilities in the SBL

and LBL regimes are given by [167]:

P SBL,3+2ν
(–)

ν α→
(–)

ν α

= 1− 4

(
1−

∑
i=4,5

|Uαi|2
)∑

i=4,5

|Uαi|2 sin2

(
∆m2

i1L

4E

)
−4|Uα4Uα5|2 sin2

(
∆m2

54L

4E

)
(3.4.11)

P LBL,3+2ν
(–)

ν α→
(–)

ν α

=

(
1−

5∑
i=3

|Uαi|2
)2

+
5∑
i=3

|Uαi|4

+2

(
1−

5∑
i=3

|Uαi|2
)
|Uα3|2 cos

(
2

∆m2
31L

4E

)
(3.4.12)

where in the long baseline regime, the frequencies driven by ∆m2
4i and ∆m2

5i are considered
to be infinite and the oscillation driven by the solar frequency to be averaged out.

In this framework, the SBL regime appearance oscillation is given by [167]:

P SBL,3+2ν
(–)

ν α→
(–)

ν β

= 4|Uα4|2|Uβ4|2 sin2

(
∆m2

41L

4E

)
+ 4|Uα5|2|Uβ5|2 sin2

(
∆m2

51L

4E

)
+8|Uα4Uβ4Uα5Uβ5| sin

(
∆m2

41L

4E

)
sin

(
∆m2

51L

4E

)
× cos

(
∆m2

54L

4E
− arg

{
U∗α4Uα5Uβ4U

∗
β5

})
(3.4.13)

Expressions (3.4.11) and (3.4.12) show that a null disappearance observed in the
(–)

ν µ
disappearance channel indicates that both |Uµ4|2 and |Uµ5|2 are negligible, suppressing the
appearance oscillation probability (3.4.13) quadratically. So the tension would still persist
in this scenario.
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Chapter 4

An alternative MiniBooNE
explanation

This chapter is based on the study and results from reference [40]. Numerical results and
some of the figures are taken from that reference.

The MiniBooNE experiment, based at Fermilab, was designed to test the LSND anoma-
lous νe appearance [29]. A beam of protons with an energy up to 8 GeV are dumped into
a beryllium target, producing a stream of secondary particles that subsequently decay into
light neutrinos along a 50 m long decay pipe, resulting in a neutrino beam that travels an-
other 500 m through the Earth before reaching the detector. In the detector, the νe and ν̄e
interact with the medium via a CCQE scattering producing an electron or positron that
emits a shower of radiation that is measured in the photomultipliers.

In summer 2018, the MiniBooNE collaboration reported an excess of νe appearance
events of 381.2±85.2 over the SM predictions [39], which combined with a previous measured
excess of ν̄e appearance, adds up to a total excess of 460.5 ± 95.8 events, which translates
into a 4.8σ deviation with respect to the SM predictions. This supports the LSND anomaly
with a significance of the combined excess of 6.0σ.

The excess of events was interpreted as a
(–)

ν e appearance due to neutrino oscillations in

the
(–)

ν µ →
(–)

ν e channel [39]. In order to comply with the standard 3ν oscillation measured
parameters, the excess has to be caused by a new active-to-sterile oscillation. As it was
explained in section 3.4.5, this interpretation is not consistent with many bounds set by null

active-to-sterile oscillation searches in the
(–)

ν µ disappearance channel at the level of 4− 5σ,
and this tension is robust regardless of any particular constraint. This makes clear that the
excess can not be interpreted as an active-to-sterile oscillation within a 3 + 1ν oscillation
framework and alternative explanations have to be studied.

The electron like signal measured at MiniBooNE can be mimicked by the signal produced
by a photon or a collimated electron-positron pair. Based on that, recent models have
been proposed in which a heavy neutrino, produced by νµ scattering with nuclei inside the
detector, decays into a photon [207, 208] or an electron-positron pair [209, 210]. Different
models are studied in [211,212], in which heavy neutrinos are produced and decay radiatively.
Recently it has been proposed in [213,214] that the excess can be caused by a fourth heavy
neutrino decaying into a light electron neutrino and light boson. See also [215].

In this work, an alternative explanation based on a decay of a heavy neutrino, of around
250 MeV, into a photon and a light neutrino is proposed as the cause of the excess [40]. Note
that the model here presented can not explain the LSND excess, since the heavy neutrino
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∝ GFfKpµKU`4K

` = e, µ

N

q

q̄

Figure 4.1.1: Effective kaon decay into a heavy neutrino N and an electron or muon.

is too heavy to be produced at LSND1. The decay of a lighter neutrino give a too much
forward peaked signal, inconsistent with MiniBooNE data [216].

The heavy neutrino is produced in Kaon decays via mixing with the charged leptons,
|U4`|. It travels through the Earth as the light neutrinos do and decays into the detector via
an effective interaction mediated by new unknown physics. The emitted high energy photon
interacts inside the detector producing an electromagnetic shower mimicking the electron
like signal. The heavy neutrinos in general travel more slowly towards the detector than the
light neutrinos, so that some of them will decay outside the time window in which the light
neutrinos are expected to reach the detector. This timing signal can be the ultimate proof
of this model or can rule it out, and any other model in which a heavy particle is produced
at the proton beam-target interaction.

This chapter is organized as follows: In section 4.1 the heavy neutrino production and
decay mechanisms are described. In section 4.2 we compute the predictions of the model:
total number of signal events, energy and angular spectra and the time distribution of the
signal events. The data analysis is done in section 4.3. In section 4.4 the results of the
analysis are presented as well as the constraints from other searches. Finally in section 4.5
the conclusions and further searches are summarized.

4.1 Effective model

A Dirac heavy neutrino with mass at around 250 MeV is introduced. It is produced, after
the proton beam is dumped into the target, in kaon decays, via a mixing with the charged
leptons through the effective operator:

OK`N = GFfKpµKU`4
¯̀γµPLN , (4.1.1)

where fK is the kaon decay constant, pK the kaon four-momentum, GF the Fermi constant,
PL ≡ (11− γ5)/2 is the left-handed projection operator and U`4 the mixing matrix element
between the heavy neutrino N and the charged lepton2 ` = e, µ; depicted in figure 4.1.1.
Then the heavy neutrino travels towards the detector and there decays into a photon and a

1The neutrino flux in LSND is produced in π+ decays, so that mN < mπ.
2The accompanying charged lepton can not be a tau, since its mass is larger than the kaon mass.



4.1. EFFECTIVE MODEL 63

∝ 1
ΛN

γ

ν

Figure 4.1.2: Effective ONγν operator (4.1.2) that mediates the heavy neutrino N decay into
a photon and a light neutrino.

light neutrino via its magnetic moment, N → γν, through the effective operator3:

ONγν =
1

Λ
N̄σαβνLFαβ , (4.1.2)

where νL is a light neutrino, Fµν = ∂µAν−∂νAµ is the electromagnetic field strength tensor,
σµν = i

2
(γµγν − γνγµ) is an anti-symmetric tensor, and Λ is an unknown energy scale. The

Feynman diagram is depicted in figure 4.1.2. The operator (4.1.2) is not SUL(2) gauge
invariant, so it must be originated after the EWSB from a dimension-6 operator, so that
1/Λ ≡ v/Λ′2, where v is the Higgs v.e.v.

The differential decay width in the laboratory frame, neglecting the light neutrino mass,
is given by:

dΓlab
N→νγ =

1

2EN
|M|2(2π)4δ4(pN − pγ − pν)

d3pγ
(2π)32pγ

d3pν
(2π)32pν

. (4.1.3)

where EN the heavy neutrino energy. The four-momenta are denoted as p and the three-
momenta as p. N , γ and ν label the heavy neutrino, the photon and the light neutrino
respectively. The matrix element |M|2 is computed as follows:

|M|2 =
1

2

∑
s,s′,r

[
ūν(s

′, pν)

(
11 + γ5

2

)
σλρ 2pργ ε

∗λ
r uN(s, pN)

][
ūN(s, pN)

(
11− γ5

2

)
σβα 2pβγ ε

α
r uν(s

′, pν)

]
,

where uN , uν and ε are the heavy and light neutrino spinors and the photon polarization,
respectively; pγ is the photon four-momentum; s, s′ and r label the heavy and light neutrino
helicities and the photon polarization and λ, ρ, α and β are Lorentz indices. The factors of
2 written before the photon four-momenta come from the contraction of the anti-symmetric
electromagnetic field strength tensor with the anti-symmetric tensor σ. The factor 1/2 av-
erages over the initial polarizations of the heavy neutrino. Using the completeness relations,∑

s

u(s, p)ū(s, p) = (/p+m) ;
∑
r

ε∗λr ε
α
r = −gλα ,

and the four-momentum Dirac delta, we find,

|M|2 = 4
m4
N

Λ2
.

3The operator ONνγ could be generated at loop level, such that 1/Λ is a combination of a typical loop
suppression factor, the inverse of the new physics mass scale, MNP, and unknown coupling constants, g:

1

Λ
∼ g

16π2

1

MNP
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Using the dirac delta in (4.1.3), dpν can be integrated. Since the experiment configuration
has an axial symmetry, dϕ from d3pγ can be also integrated, leaving the differential decay
rate as a function of the photon momentum and its angle with respect to the beam line:

dΓlab
N→νγ =

1

4πΛ2

m4
N

ENpν
δ(EN − pγ − pν)pγdpγd cos θ ,

where

pν =
√
p2
N + p2

γ − 2pNpγ cos θ .

Performing the change of variables for the dirac delta:

y ≡ EN − pγ −
√
p2
N + p2

γ − 2pNpγ cos θ ,

and differentiating it with respect to pγ and cos θ, allows to perform the integral over d cos θ
and dpγ, so that the differential decay rates with respect to pγ and d cos θ are:

dΓlab
N→νγ

dpγ
=

1

4πΛ2

m4
N

ENpN
, (4.1.4)

dΓlab
N→νγ

d cos θ
=

1

8πΛ2

m6
N

EN(EN − pN cos θ)2
. (4.1.5)

Where we have used that the Dirac delta sets y = 0, which solved for pγ gives:

pγ =
m2
N

2(EN − pN cos θ)
. (4.1.6)

Hence the minimum value of pγ is for the backward direction cos θ = −1, pγ,min = (EN −
pN)/2, and the maximum for the forward direction cos θ = 1, pγ,max = (EN + pN)/2. The
total decay rate, in the lab frame, is obtained either integrating the differential the decay
rate (4.1.4) or (4.1.5):

Γlab
N→νγ =

m4
N

4πΛ2EN
.

The decay rate is the inverse of the life time and it Lorentz transforms as Γlab = γΓ, where
γ = EN/mN . Hence the decay rate in the proper frame is:

ΓN→νγ =
m3
N

4πΛ2
≈ 1.2× 10−16 MeV

(
105 TeV

Λ

)2 ( mN

250 MeV

)3

. (4.1.7)

Since the heavy neutrino is mixed with the charged leptons, it is allowed to decay via a
W boson exchange. For the masses of interest in this work, mπ < mN < mK , the dominant
decay modes via mixing are N → `∓π± and N → νπ0 [24, 63], whose decay rates are
estimated as:

Γπ ≡ ΓN→leptπ =
G2
Ff

2
πm

3
N

32π
|U`4|2g(mπ,mlept,mN)

≈ 3× 10−13 MeV |U`4|2
( mN

250 MeV

)3

g(mπ,mlept,mN) , (4.1.8)

where fπ ' 130 MeV is the pion decay constant and g(mπ,mlept,mN) is a dimensionless
kinematical function that depends on the decay channel [63], “lept” can be either a light
neutrino or an electron or muon.
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Under the assumption that ΓN→νγ is much bigger than Γπ, the branching ratio Br(N →
γν) = ΓN→νγ/Γtot ' 1, with Γtot, the total decay width. Anticipating the results below,
a wide range of values of |Uµ4|2, for which the MiniBooNE excess can be explained, make
N → γν the dominant decay channel.

It is worth to note that at the target, in the processes following the protons collision
with the beryllium wall, a huge amount of high energy photons is expected, producing heavy
neutrinos via the operator introduced in (4.1.2). Reinterpreting figure 1 of reference [212],
which considers this effective interaction as the production and decay mechanism, it can be
concluded that the production mechanism through (4.1.2) is subleading with respect to the
process (4.1.1), as it will be explained below.

4.2 Predictions

In this section the predicted number of events and the energy and angular spectra inside
the MiniBooNE detector are computed, as well as the time spectral shape of the signal.

4.2.1 Total number of events

The number of heavy neutrinos that decay inside the detector is obtained by integrating
over the heavy neutrino flux φN(pN), together with the decay probability inside the detector,
Pdec:

Ndecay = POT Brνγ AMB

∫
dpN φN(pN)ε̂(pN)Pdec(pN)ωtime(pN ,mN) . (4.2.1)

Here, POT denotes the number of protons on target, which is 12.84 (11.27) × 1020 for the
neutrino (anti-neutrino) mode. Brγν = ΓN→γν/Γtot is the decay branching ratio and AMB =
π(5 m)2 is the effective area of the MiniBooNE detector. An effective area is considered,
since the geometry of the detector is a sphere and then the area varies as a function of the
longitudinal distance at which the heavy neutrino decays. The decay probability is given by

Pdec(pN) = e−t1Γlab
tot − e−t2Γlab

tot ,

where t1 and t2 are the times at which the heavy neutrino reaches the beginning and the
end of the detector. The decay rate can be expressed in the rest frame Γtot = Γlab

tot/γ, and
the time can be converted into the length from the source to the beginning and end of the
detector tβ = L, where β ≡ v/c = pN/EN is the heavy neutrino velocity for c = 1. Then,
the probability can be rewritten as

Pdec(pN) = e
−L1Γtot

mN
pN − e−L2Γtot

mN
pN (4.2.2)

' Γtot
mN

pN
∆L , (4.2.3)

with ∆L = 12 m. For the MiniBooNE baseline, L = 540 m, the approximation (4.2.3) holds
provided Γtot . 10−15 MeV and pN & 50 MeV. ε̂(pN) is the integrated detection efficiency,
which imposes an energy threshold to the heavy neutrino momentum as a function of the
signal energy, in this case the photon energy. It is computed integrating the detection
efficiency ε(pγ) weighted by the photon momentum distribution:

ε̂(pN) =

∫ pγ,max

pγ,min

dpγε(pγ)
1

Γlab
N→νγ

dΓlab
N→νγ

dpγ
.
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Figure 4.2.1: MiniBooNE detection efficiency as a function of the photon energy. Obtained
by private communication, see reference [40].

ε(pγ), figure 4.2.1, was obtained via private communication, see reference [40]. ωtime(pN ,mN)
is a weight related to the arrival time of the heavy neutrinos into the detector. Here we
assume that the proton beam pulse produces step-like neutrino pulses of δt = 1.6µs. Then,
the light neutrino signal is expected in a time window δt, after the expected arrival time
from the source to the detector, i.e. t0 = L/c. The heavy neutrinos in general arrive later
at the detector than the light ones, and only those that arrive between t0 and t0 + δt are
expected to have been considered in the original MiniBooNE analysis. Then, taking into
account the beam pulse structure and the heavy neutrino arrival time tN = L/vN = t0/β,
the weight is given by

ωtime(pN ,mN) =

{
t0+δt−tN

δt
for tN < δt+ t0 ,

0 for tN ≥ δt+ t0 .

The time window ωtime cuts the slow neutrino pulses that arrive completely out of the time
window, while the ones that are fast enough are weighted by the relative amount of heavy
neutrinos that actually make it to the detector in time, depicted in figure 4.2.2. This results
in a suppression of the heavy neutrino flux for low momentum. Finally, φN(pN) is the
heavy neutrino flux which is constructed from the φνµ produced in kaon decays, obtained
from reference [217], assuming only the two body decay channel K → N`. In appendix C,
the complete process of constructing φN(pN) from the kaon induced φνµ is explained. As
a general observation, it can be said that the flux components with lower momentum are
going to be suppressed by the timing window and angular acceptance4, see figure C.3.3.

MiniBooNE runs in two modes, neutrino and anti-neutrino modes, depending on the
horn polarization that focus either mainly the positive charged mesons or the negative ones,
respectively. The relative ratio of number of events between the anti-neutrino and neutrino
modes is given by

Rpred =
Nν̄

Nν

. (4.2.4)

This ratio can be predicted in this model, given as a function of the mass, figure 4.2.3. The
difference in the number of events, between the different modes, comes from the different
POT and the light neutrino predicted fluxes [217] induced from kaon decays. The ratio
depends on the heavy neutrino mass because the heavy neutrino flux depends on it, see
appendix C.

4This ensures that pN & 50 MeV, necessary for the approximation (4.2.3).
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Figure 4.2.2: Time pulse for a light neutrino ν (blue) and a heavy neutrino N (orange),
both of size δt. The origin of the x axis is taken at the arrival time of the light neutrinos
to the detector, t0. When the time window function, ωtime, is applied, only the fraction
of the heavy neutrino pulse that overlaps with the light neutrino pulse is included in the
MiniBooNE analysis.
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Figure 4.2.3: Predicted ratio of the total number of events between the anti-neutrino and
neutrino modes, considering the production of the heavy neutrino from kaon decays together
with a muon (left panel) and with an electron (right panel). The time window function,
ωtime, is applied.

4.2.2 Spectral predictions

The spectral shape predictions are computed convoluting, in each energy and angular bin,
the detection efficiency with the photon momentum and angular distributions:

1

Γlab
N→γν

dΓlab
N→γν

dpγ
(pγ) ;

1

Γlab
N→γν

dΓlab
N→γν

d cos θ
(cos θ) .

The angular spectrum is given by:

Ai(z) = POT Brνγ AMB

∫
dpN φN(pN)Pdec(pN)ωtime(pN ,mN)

×
∫ pγ,i+1

pγ,i

dpγ ε(pγ)
1

Γlab
N→νγ

dΓlab
N→νγ

dpγ
Stp(pγ) . (4.2.5)
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And the energy spectrum by:

Ei(pγ) = POT Brνγ AMB

∫
dpN φN(pN)Pdec(pN)ωtime(pN ,mN)

×
∫ zi+1

zi

dz ε(pγ(z))
1

Γlab
N→νγ

dΓlab
N→νγ

dz
. (4.2.6)

z ≡ cos θ is related to pγ by (4.1.6) and Stp(pγ) is a step function that prevents the pγ from
being larger or smaller than the values allowed for a given pN :

Stp(pγ) ≡ θ(pγ − pγ,min)− θ(pγ − pγ,max) ,

where pγ,min = (EN − pN)/2 and pγ,max = (EN + pN)/2.
As explained before, the MiniBooNE detector does not distinguish between the signal

produced by a photon and an electron/positron emitted in the interaction of a
(–)

ν e via
CCQE. The MiniBooNE collaboration interprets the signal of the excess as being produced
by an electron/positron. In the predictions described here, the energy and angular distri-
butions of the photon are identified with the visible energy and angular distributions of the
electromagnetic shower produced by that electron/positron, originally considered by the
MiniBooNE collaboration.

4.2.3 Time shape

As mentioned above, heavy neutrinos arrive in general later at the detector than light
neutrinos, so only those ones that are very relativistic would make it into the detector within
the time window at which the light neutrinos are expected to arrive. Here it is explained
how to predict the time distribution of the signal produced by the heavy neutrino.

Given the arrival time of the expected neutrinos

tN = t0
EN
pN

, (4.2.7)

see section 4.2.1, the heavy neutrino flux φN(pN ,mN), computed in appendix C, can be
written as a function of time:

φN(t,mN) = φN(pN ,mN)

∣∣∣∣dpNdt

∣∣∣∣ ,
with the variable transformation |dpN/dt| = pN t/(t

2 − t20), which follows from (4.2.7).
In order to predict the time signal, the heavy neutrino decay probability has to be taken

into account, here the linear approximation (4.2.3) is used, so that the flux is weighted by
the factor mN/pN . As it was explained above in section 4.2.1, a step-like feature of width
δt is assumed for the neutrino beam pulse, so that the time distribution of the signal is
obtained from a cumulative integral in the beam pulse structure at each time t:

T (t) ∝
∫ t

t−δt
dt′φN(t,mN)

mN

pN
. (4.2.8)

Since only the timing signal shape is important for the discussion, global factors, like the
POT, effective area or Br(N→ γν), are not taken into account. In figure 4.2.4, the time
distributions of the signal events of the heavy neutrino with a mass of 260 MeV for the
neutrino and anti-neutrino modes are shown. The fractions of events that lie inside the
time window are 41% and 34% for the neutrino and anti-neutrino modes, respectively.
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Figure 4.2.4: Time distribution of signal events for a heavy neutrino of 260 MeV assuming
a step-like neutrino pulse of δt = 1.6µs, for the neutrino (left panel) and antineutrino mode
(right panel). The origin of the x axis corresponds to the arrival time of the light neutrinos
t0. See text for details. The blue region corresponds to the fraction of events that lie inside
the time window [t0, t0 + δt], while the red region corresponds to those that lie outside it.
Figures are taken from [40].

In figure 4.2.4, the effect of the monochromatic peak can be seen as a steep rise in-
side the timing window (in the blue region) corresponding to the first neutrinos of the
monochromatic peak pulse arriving to the detector, and a steep decrease outside the timing
window (in the red region) corresponding to the last neutrinos of the pulse. The tail after
the monochromatic peak corresponds to the neutrinos emitted backwards in the kaon rest
frame, which in the laboratory frame are slower than the neutrinos from the monochromatic
peak, produced from kaon decays at rest with a fixed momentum, pN,0, see appendix C.

As it has been shown, the time signal is very characteristic of heavy neutrinos and it
would work as an ultimate test of the model. Actually, any model in which heavy particles
are produced at the proton beam-target interaction and later decay or scatter in the detector
can be tested via the time distribution of the signal events. Searches for heavy neutrinos in
this way were also suggested in reference [218].

4.3 Analysis

Given the MiniBooNE data, taken from figure 14 of reference [39], the model can be tested
fitting both the energy and the angular spectra of the excess. Since no correlation infor-
mation is provided between the energy and angular spectral data, the fits are performed
independently. In each of the fits, data from both neutrino and anti-neutrino modes are
considered.

The free parameters of the fit are the total normalization, Ntotal, i.e. total number of ex-
cess events, and the heavy neutrino mass, mN . Then the spectral predictions in each bin are
given by Nνf

ν
i (mN) and Nν̄f

ν̄
i (mN) for the neutrino and anti-neutrino mode, respectively,

where fi are the spectral shapes normalized to one, given by (4.2.5) and (4.2.6), and

Nν =
Ntotal

1 +Rpred(mN)
and Nν̄ = Ntotal

Rpred(mN)

1 +Rpred(mN)

are the respective normalizations for each mode. Rpred is the predicted total number of
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Bkg contribution ν mode ν̄ mode
νe from µ 0.24 0.3
νe from K± 0.22 0.21
νe from K0 0.38 0.35
π0 miss 0.13 0.10

∆→ Nγ 0.14 0.16
dirt 0.25 0.25

other 0.25 0.25

Table 4.1: Relative uncertainties σa and σ̄a for the different background contributions in
the neutrino and anti-neutrino modes, taken from table 1 of reference [39]. Uncertainties
for “dirt” and “other” contributions are estimates. Table taken from [40].

events ratio (4.2.4), which depends only on the mass, shown in figure 4.2.3.
The fit to the data is done by the following least squares statistics:

χ2(Nν ,mN) =
∑
i

(Oν
i − baBa

i −Nνf
ν
i (mN))2

(σstat
i )2 + (σsyst

i )2

+
∑
i

(
Oν̄i − b̄aB̄a

i −RpredNνf
ν̄
i (mN)

)2

(σ̄stat
i )2 + (σ̄syst

i )2

+
∑
a

(
ba − 1

σa

)2

+
∑
a

(
b̄a − 1

σ̄a

)2

. (4.3.1)

O
(–)

ν are the observed number of events in each energy or angular bin i for the neutrino and
anti-neutrino modes, Ba

i is the contribution from background a in each bin i. σstat
i and σsyst

i

are the statistical and systematic uncertainties. The latter ones are a 20% uncertainty on
the spectral shape, given by:

σsyst
i (mN) = 0.2Nνf

ν
i (mN) ,

σsyst
i (mN) = 0.2Nν̄f

ν̄
i (mN) .

They are added by hand due to the fact that the heavy neutrino flux is an estimate only,

see appendix C.
(–)

b a are the pull parameters accounting for the background component a
uncertainty, σa, which can be found in table 4.1. Since no information is found in the original
publication [39] all the background uncertainties are assumed to be uncorrelated. These pull
parameters are going to give different weights to the different background contributions,
resulting in a rescaled background shape.

4.4 Results

4.4.1 Spectral fits

The timing window ωtime plays a crucial role in the angular spectral analysis. This is because
the signal coming from slow heavy neutrinos5, which is less forward-peaked distributed, is
cut from the analysis.

5Slow heavy neutrinos come mainly from neutrinos emitted in the backward direction in the kaon rest
frame and from the monochromatic peak contribution, cf. appendix C.
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Figure 4.4.1: 1, 2 and 3σ contours for the energy (orange) and the angular spectral fits
(dashed blue) in the Ntotal vs mN parameter space. In the left (right) panel the heavy
neutrino is assumed to be produced in kaon decays together with a muon (electron). The
black crosses correspond to the energy best fit value. The green band shows the reported
excess [39] together with the 1σ uncertainty. The left figure is taken from reference [40].

The analysis performed here is done under certain assumptions, which might not be fully
correct, since it is not clear whether the time cut is applied or not in the original analysis
from the MiniBooNE collaboration. Therefore here we study the two extreme cases: in
which the timing window function is and is not applied.

Applying timing cut

Results of the energy and angular fit preformed according to (4.3.1) are shown in figure
4.4.1, where both cases, a heavy neutrino produced together with a muon or an electron in
kaon decays, are considered.

For the muon and electron cases, the energy spectral fit gives preferred regions in the
parameter space with a best fit value at (mN , Ntotal) = (250 MeV, 640) and (260 MeV, 640),
respectively, while the angular fit sets only an upper limit, being both fits in tension. The
goodness of fit of the energy fit χ2

min/dof = 58.1/36, translates to a p-value of 1%.

In figure 4.4.2, both spectral fits are shown for a benchmark point, for the muon case,
compatible with the reported excess and the energy fit at (mN , Ntotal) = (250 MeV, 400).

Although the energy fit seems by eye that it fits very well the data, the χ2
min/dof = 61/36

is rather high. This can be understood from considering the lower panels of figure 4.4.2,
where it can be seen how a large contribution to the χ2 comes from the high energy bins,
where an excess is neither predicted nor observed.

On the other hand, in the neutrino mode the angular fit is too much forward-peaked
compared to the data. While the anti-neutrino mode seems to fit well the spectra, in the
neutrino mode there is a large contribution to the χ2 coming from three scattered bins
around cos θ = 0, especially the negative one, which could not be fitted by any smooth
curve predicted by a model. This gives a total χ2

min/dof = 52/18, with a very poor p-value.
As it was studied in detail in reference [216], models in which new physics is produced
at the proton beam-target interaction and later decays at the detector always produce a
very forward-peaked spectrum. As explained before, an energy and angular fit has to be
performed consistently at the same time. Such a fit together with a time signal analysis
would provide the definitive fit to accept or exclude this model.
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Figure 4.4.2: Visible energy (left panels) and angular (right panels) spectral fits (upper
panels) and χ2 contribution per bin (lower panels), at the benchmark point (mN , Ntotal) =
(250 MeV, 400). The black (brown) dots are the observed number of events with the rescaled
background subtracted, for the neutrino (anti-neutrino) mode. The error bars represent the
statistical and systematic uncertainties. The blue (red) histogram is the predicted excess for
the neutrino (anti-neutrino) mode. The heavy neutrino is assumed to be produced together
with a muon in kaon decays. The upper plots are taken from reference [40]. In the lower
plots the blue (red) lines corresponds to the neutrino (anti-neutrino) mode.

Not applying the timing cut

In figure 4.4.3 it is shown, for the muon case, how the same fit looks like if the timing
window is removed from the fit, i.e. the complete heavy neutrino flux, φN(pN), is considered.
The spectral fits are shown for the benchmark point (mN , Ntotal) = (370 MeV, 400). This
point now is compatible at the 1σ level with the best fit values for the energy and angular
spectral fits. In the right lower panel it can be clearly seen how the angular spectrum
improves, because now it is not so much forward-peaked. The fit is reasonable with a
χ2

min/dof = 33/18. The energy fit, with χ2
min/dof = 63/36, shown in the left lower panel, is

as good as it was when the timing cut was applied.

4.4.2 Allowed parameters of the model

In what follows, the timing cut analysis is considered.
Using the expression of the total number of predicted events (4.2.1), the allowed regions

obtained in the energy fit, cf. figure 4.4.1, can be translated to allowed regions in the model
parameters: the mixing |U`4|2, the heavy neutrino mass mN and the decay rate ΓN→γν ,
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Figure 4.4.3: Upper plot: allowed 1,2 and 3σ regions for the energy (orange) and angular
(dashed blue) spectral fits, not applying the timing cut, in the parameter space Ntotal vs mN .
The green band correspond to the reported excess in reference [39] and its 1σ uncertainty.
Lower plots: visible energy (left) and angular (right) spectral fits not applying the timing
cut. The black (brown) dots are the observed number of events with the rescaled background
subtracted, for the neutrino (anti-neutrino) mode. The error bars represent the statistical
and systematic uncertainties. The blue (red) histogram is the predicted excess for the
neutrino (anti-neutrino) mode. A heavy neutrino produced together with a muon in kaon
decays is assumed. Figures are taken from reference [40].

which is directly related to the energy scale Λ (4.1.7).

In figure 4.4.4, the 1 and 2σ allowed regions in the parameter space |U`4|2 vs ΓN→γν for
a fixed mass, are shown as red and orange bands. The linear behavior on the left of the
figures corresponds to the parameters for which the decaying probability can be linearly
approximated. In this regime6 Ndecay ∝ |U`ν |2ΓN→γν . This linear approximation breaks
down at the “knee” before the upwards turn, which corresponds to the parameters for
which the heavy neutrino decays before reaching the detector.

In 4.4.5, a projection onto the |U`4|2 vs mN parameter space is performed minimizing
over ΓN→γν . The lower limit of the allowed 1 and 2σ regions that explains MiniBooNE, red
and orange shaded regions, is set by the lowest part of the knee in 4.4.4, where the decay
probability linear approximation does not hold.

For an excess of 400 events, fitting the mass dependence of the number of events to a
power law and choosing the regime in which the decay probability can be linearly approxi-

6Note that in (4.2.1) in the linear approximation Br(N → γν)Γtotal = ΓN→γν .
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Figure 4.4.4: 1 and 2σ allowed regions in the parameter space |U`4|2 vs ΓN→`ν (red and
orange regions) for the neutrino mass fixed at the best fit value. The left (right) plot
assumes that the heavy neutrino is produced from a kaon decay together with a muon
(electron). Also the upper limits on |U`4|2 from NA62 and E949 direct searches (light gray)
and the region excluded by NOMAD (dark gray), as well as the region for ΓN→γν disfavoured
by the supernova bound SN1987A (blue) are shown. Figures are taken from [40].
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Figure 4.4.5: 1 and 2σ allowed regions projected in the parameter space |U`4|2 vs mN (red
and orange regions). The projection is done minimizing the χ2 over ΓN→γν . For the left
(right) panel the heavy neutrino is produced by K → µN(eN). Excluded parameter space
from peak searches in the kaon decay spectra of electron and muon from the NA62 and
E949 experiments are shown as gray shaded regions. The regions disfavoured by SN1987A
constraints are shown as blue shaded regions. Figures are taken from [40].
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mated (4.2.3), i.e. Ndecay ∝ ΓN→γν |U`4|2, the following relation is obtained:

ΓN→γν ' 3× 10−17 MeV

(
10−10

|U`4|2

)(
250 MeV

mN

)2.3(
Ndecay

400

)
. (4.4.1)

Comparing it with the decay rate via mixing (4.1.8), it is found that in order for ΓN→γν to
dominate over ΓN→leptπ, the mixing has to be

|U`4|2 � 10−7

(
250 MeV

mN

)2.65(
Ndecay

400

)−1/2

.

For larger values of the mixing extra signals from the decay channels (4.1.8) are expected.
When the linear approximation of the decay probability breaks, |U`4|2 is small so that the
N → γν is the dominant decay channel. Then, as it was anticipated in section 4.1, for a
large range of the values of the parameters that explain the MiniBooNE excess, the leading
signal comes from the decay channel N → γν.

As it was stated in section 4.2.1, for the allowed regions of the parameters that explain
MiniBooNE, the production mechanism through (4.1.2) is subleading with respect to the
process (4.1.1). This can be seen plotting the allowed regions of the parameters obtained
here against figure 1 of reference [212]. This region would lie below the allowed region derived
in that work, for which the production and decay mechanisms considered are through the
effective operator (4.1.2). This means that the production mechanism considered here is
stronger, not requiring a small value Λ (4.1.7) that enhances the heavy neutrino decays at
the detector in order to have the excess.

4.4.3 Constraints

Constrains on the model come from direct searches experiments as NA62 [53] and E949 [54],
setting limits on the mixings |Ue4|2 and |Uµ4|2 respectively. Those experiments search for
peaks in the charged lepton spectra coming from the kaon decays, as it is described in section
2.4. In figures 4.4.4 and 4.4.5 their limits at the 90% C.L. are shown as grey shaded regions.

A null search for single photon events performed by the NOMAD experiment [219] can
be reinterpreted within this model to set a bound in the parameter space. The NOMAD
experiment is also a beam dump experiment, with an original proton beam of 450 GeV.
Predictions can be done using the expression (4.1.7). The heavy neutrino flux is constructed
as explained in section C from the kaon-induced muon neutrino flux given in reference [220].
The POT is 2.2× 1019, the average baseline L = 620 m, and the dimensions of the detector
are 7.5 m in the beam line direction and 3.5×3.5 m2 in the transverse direction. A constant
reconstruction efficiency of 90%, an analysis efficiency of 8%, and a trigger efficiency of
30% [219] are included. In order to take into account a cut on the observed energy, only heavy
neutrinos with momentum greater than 1.5 GeV are considered. No information on the
timing window was found, so no time window cut is applied for the events prediction. The
limit at 90% C.L. shown in figures 4.4.4 and 4.4.5 is set for a total number of predicted events
of 187. Given its similar baseline and higher neutrino energies compared to MiniBooNE,
the linear behavior starts breaking at larger values of ΓN→γν (4.2.2).

Heavy neutrinos are subject to supernova constraints, since they could work as a cooling
mechanism. This translates into a bound on the decay rate, so that it is large enough
to keep the neutrinos trapped inside the supernova. The bounds set by SN1987A can be

7The NOMAD collaboration excludes Nevents ≥ 18 at 90% C.L..
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approximately extracted from figure 1 of reference [212] in the parameter space 1/Λ vs mN ,
for 50 . mN . 320 MeV:

ΓN→νγ > 2.4× 10−18 MeV

(
250 MeV

mN

)
.

For larger values of the masses, the neutrinos are gravitationally bound inside the supernova
[221]. In figure 4.4.4, the bound on the decay rate can be seen, which translates into a bound
on the mixing in figure 4.4.5.

For the allowed parameters of the model that explain the MiniBooNE excess (4.4.1), the
heavy neutrino life time is below 1 millisecond, so that BBN bounds do not apply [48,90].

4.5 Conclusions and further searches

Taking the constraints into account it can be seen, for the analysis in which the timing
window is included, how the model is compatible with the MiniBooNE excess in a large
range of the model parameters: 10−11 . |Uµ4|2 . 10−8, mN ∼ 250 MeV and the new physics
scale8 104 TeV . Λ . 107 TeV.

If the heavy neutrino were Majorana, it would contribute to the mass of the light neu-
trinos through the seesaw mechanism, figure 2.3.2. For some of the allowed parameters, e.g.
mN ' 250 MeV and |U`4|2 ' 10−10, the seesaw contribution to the light neutrino mass is
mν ' 0.025 eV (2.3.7), of the order expected for the light neutrino masses. On top of that
contribution, the operator (4.1.2) gives a loop level contribution to the light neutrino masses,
cf. figure 3 of [212], whose size depends on the ultra violet completion of the operator.

Apart from the constraints mentioned above, further present and future experiments can
search for this type of signal and test this model, like the NOνA and T2K near detectors,
Minerva [222] and the experiments of the Fermilab short-baseline neutrino (SBN) program:
MiniBooNE, SBND, MicroBooNE and Icarus [223,224]. In particular, T2K made an analysis
searching for single photon events, cf. reference [225], and no excess was found. We have
estimated that the limit from this null search is weaker than the one set by NOMAD, so we
do not include it.

Of great interest are the Fermilab SBN program experiments since they are based at
the same neutrino beam as MiniBooNE. Moreover, the SBND, MicroBooNE and Icarus
detectors, which are filled with liquid argon, are very suitable for this kind of searches, since
they would not misidentify a photon and an electron signal. Assuming that the angular
size of all the detectors are smaller than the angular size of the beam spread and that the
linear approximation of the decay probability (4.2.3) holds for all the detector baselines,
we can do a rough estimation of the number of events in each detector by scaling with the
proportionality factor

POT× V/L2 , (4.5.1)

where L is the baseline and V is the detector volume. In table 4.2, the benchmark charac-
teristics of each detector are shown together with the relative ratio of expected events with
respect to MiniBooNE. As can be seen in the last row, assuming 400 signal events in Mini-
BooNE, the three SBN program detectors expect a significant number of heavy neutrino
decay events, so that they will be able to test this model in the near future.

Apart from these tests, the MiniBooNE experiment can perform a direct test of the
model by measuring the time distribution of the signal events, which we have shown that is
very characteristic of this model.

8The new physics scale can be obtained from the limits on ΓN→γν in figure 4.4.5 with Λ =
√

1
4π

m3
N

ΓN→γν
.
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MiniBooNE SBND MicroBooNE Icarus
POT / 1020 24 6.6 13.2 6.6
Volume / m3 520 80 62 340
Baseline / m 540 110 470 600
Ratio 1 0.09 0.15
Events 400 400 35 58

Table 4.2: Benchmark characteristics of the three SBN program detectors [223, 224]. We
use the number of POT quoted in [218]. For MiniBooNE we sum the POT in neutrino
and antineutrino modes. In the row “Ratio” we show the ratio of heavy neutrino events
relative to MiniBooNE, based on the scaling with the proportionality factor (4.5.1). In the
row “Events” the expected number of events assuming 400 signal events in MiniBooNE are
given. Table taken from [40].



78 CHAPTER 4. AN ALTERNATIVE MINIBOONE EXPLANATION



Chapter 5

Summary and conclusions

In this thesis we have shown applications of the reactor neutrino data to neutrino oscillation
studies in the 3ν standard and 3 + 1ν oscillation frameworks. We have also presented
an alternative explanation of the MiniBooNE excess, different from the active-to-sterile
oscillation, in terms of a heavy neutrino decaying into a photon and a light neutrino.

3ν oscillations

In this work the MBL reactor data from the Daya Bay, RENO and Double Chooz exper-
iments has been analyzed in the 3ν standard oscillation framework. It has been shown
that in a global fit the determination of the mixing angle θ13 is dominated by MBL reactor
experiments. Daya Bay, RENO and Double Chooz combined analysis determines θ13 with
high precision: sin2 θ13 = 0.0223+0.0006

−0.0007; and also provide information on the oscillation pa-
rameter ∆m2

atm, complementary to its determination by LBL accelerator experiments. In
this work we have summarized two relevant implications of the consistent combination of
MBL reactor and LBL accelerator data: the preference for non-maximality of the θ23 mixing
angle improves slightly and the preference for NO over IO increases by two units in ∆χ2;
both with respect to the LBL accelerator independent data analysis using a constraint on
θ13 given by the MBL reactor data.

The Daya Bay and RENO data has also been used to get information on the solar
parameter ∆m2

21. A combined analysis of Daya Bay and RENO data set the upper limit
∆m2

21 ≤ 18.3 × 10−3 eV2 at the 2σ C.L., constraining the ∆m2
atm parameter using inde-

pendent information from LBL experiments. This measurement is far from solving the 2σ
tension between the solar and the KamLAND measurements, but it gives a consistent result
in a complete different oscillation regime that shows the robustness of the 3ν oscillation
framework. The limit can be lowered as statistics increases, but the tension is not expected
to be solved until the JUNO experiment provides additional information on ∆m2

21.

3 + 1ν oscillations

The study of the 3 + 1ν oscillation framework with reactor data has been affected by recent
measurements in reactor anti-neutrino experiments, as the discovery of the “5 MeV bump”
and the determination of the independent contributions to the neutrino flux by Daya Bay.
Both shed doubt on the reliability of the flux predictions, on which the RAA depends on.
Based on these measurements, in this work the Daya Bay flux data was analyzed under two
hypothesis: “flux free (no ν)” and “flux fixed (ν)”. We confirm the Daya Bay result, which
favors the first over the latter at the level of 2.8σ, however we also found that the “flux fixed
(ν)” hypothesis gives a reasonable goodness of fit to the data, with a p-value = 17%. Thus
the explanation of the RAA based on an active-to-sterile oscillation can not be rejected.

79
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Therefore, a global analysis of all the reactor data within the 3 + 1ν framework is
performed, in which no assumptions for the anti-neutrino fluxes are taken, i.e. their
normalizations are left free and fitted to data together with the oscillation parameters.
Reactor data shows to be compatible with the active-to-sterile oscillation, which is pre-
ferred over the no oscillation hypothesis at the level of 2.9σ with the best fit value at
(∆m2

41, |U14|2) ' (1.3 eV2, 0.01). This result is mainly driven by the remarkable agreement
between NEOS and DANSS data, whose analyses, based on a comparison of measured
spectra, are independent of the flux predictions.

The combined analysis of all the experiments, sensitive to the hypothetical active-to-

sterile oscillations in the disappearance oscillation channel
(–)

ν e →
(–)

ν e, gives a preference for
the oscillation over 3σ, also at the best fit value (∆m2

41, |U14|2) ' (1.3 eV2, 0.01). This result
is mainly driven by the reactor data.

Although an active-to-sterile oscillation is compatible with the reactor and the global
(–)

ν e disappearance data, it has been shown that it is not a good explanation for the
(–)

ν e
appearance anomalies, namely the LSND and MiniBooNE anomalies. A study of the os-
cillation global data, within the 3 + 1ν framework, shows that the constraints set by the

null results in the
(–)

ν µ disappearance channel searches lead to a strong tension between the
(–)

ν e appearance and the
(–)

ν e/
(–)

ν µ disappearance data sets. A PG test-statics shows that the
p-value measuring their incompatibility is at the 5.1σ level, using the whole global data set.

The tension does not rely on any particular
(–)

ν µ disappearance experiment, and it is very
strong even when removing the reactor data set, remaining at the level of 4.1σ. This result
excludes the active-to-sterile oscillation as an explanation for the LSND and MiniBooNE
anomalies, so that alternative explanations are needed.

MiniBooNE alternative explanation

In the present work an alternative explanation for the MiniBooNE excess is shown by
introducing a heavy neutrino that decays radiatively into a photon and a light neutrino
through an effective magnetic moment interaction.

The heavy neutrinos are produced in kaon decays via mixing with the light neutrinos, U`4
(` = e, µ), after the kaons are originated in the proton beam-target collisions. They travel
through the Earth and decay in the detector into a photon and a light neutrino. Based on
the fact that the MiniBooNE detector can not distinguish between an electron/positron and
a photon, in this model the excess is produced by the photon signal.

Both the energy and angular spectra, as well as the time distribution of the signal events,
can be predicted with the model. The angular spectral fit is in tension with the energy fit
which gives a reasonable goodness of fit to the data. This tension can be alleviated with
different assumptions for the event selection applying a timing cut. Ideally a joined fit of
the energy and angular spectral data have to be performed, but no information for this kind
of fit is provided by the collaboration. Based on the energy spectral fit, the excess can be
explained for a wide range of the model parameters: mN ' 250 MeV, 10−11 . |U`4|2 . 10−8,
and the scale 104 TeV . Λ . 107 TeV of the new physics that mediates the decay of the
heavy neutrino.

Since heavy neutrinos travel more slowly to the detector than the light ones, 60% of the
events are predicted to lie outside the expected time of the signal produced by light neutrinos.
So that a study of the time distribution of the signal events measured at MiniBooNE will
provide an ultimate test of the model, and not only this model but any model in which heavy
particles are produced at the proton beam-target interaction and either decay or scatter at
the detector.



Appendix A

Reactor data analyses

In this appendix it is explained how Daya Bay, RENO, NEOS and DANSS data analyses
are performed. This appendix is an extension on the details given in [26,28,36].

A.1 Daya Bay and RENO

Daya Bay and RENO predictions are computed according to (3.2.6) and their data analyses
are performed using the least-squares statistic method (3.2.7) which is based on an a far-to-
near ratio, thus become flux shape and normalization independent and the flux systematic
uncertainties are reduced. In both analyses the systematic effects are included in a pull
parameter approach. Systematic uncertainties on the relative detection efficiency, relative
energy scale and the main background contributions are taken into account, summarized in
table A.1.

Daya Bay RENO
EH1,EH2 - EH3 Near,Far

Source Uncertainty %
Relative detection efficiency 0.13 0.21
Energy scale 0.2 0.15
Li-He background 30 5-8
Fast neutron background 13-17 –
Accidental background 1 –

Table A.1: Relative systematic uncertainties in each detector used for the Daya Bay and
RENO analyses, taken from [106,107] respectively.

The validation of Daya Bay and RENO analyses can be seen in figure 3.3.1.

A.1.1 Daya Bay data analysis

Daya Bay data, background estimation, energy response function, and systematic uncer-
tainties are taken from the supplementary material in [106]. The efficiencies εd include
εµ × εm × life time days, obtained from table 1 in [106], and the relative difference of target
protons ∆Np of each detector, taken from [130]. The baselines Lrd are also taken from [130].
For each isotope, f iso is computed as the average of the fission fractions in table 9 of [110].
The detector response function is given in the complementary material of [106] as a 2 × 2
array R (Erec, Edep) relating both Erec and Edep. In order to perform the integral over dErec,
for every Edep column of the matrix, a trapezoidal integral is performed over the Erec rows
contained in each Erec

i bin. The result is a detector response function depending only on Edep
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for each bin i of Erec, R̂i(Eν), which will be linear-interpolated over Eν when performing
the integral over dEν . The relation between Eν and Edep is just an energy shift (3.2.2).

The Daya Bay experimental set up has two near detector sites, called experimental halls
(EH1 and EH2) and a far one (EH3). For the Daya Bay analysis two pairs of far-to-near
ratios, EH3/EH1 and EH3/EH2, are considered

χ2(θ) =

2Nbins∑
i,j

(
OF
i −BF

i

ON
i −BN

i

− XF
i (θ)

XN
i (θ)

)
V −1

stat,ij

(
OF
j −BF

j

ON
j −BN

j

−
XF
j (θ)

XN
j (θ)

)

+

Npull∑
α

(ξα − 1)2

σ2
α

, (A.1.1)

where the superscripts F (N) and the indices i (j) represent the Far (Near) detector and
ith (jth) prompt energy bin, respectively. Being O the observed number of IBD candidate
events and B the estimated background number of events taken from the complementary
material of [106], X are the expected number of events for a given value of the oscillation
parameters θ (3.2.6). The total number of bins is taken to be 2Nbins in order to include in
a compact notation the two ratios considered. For 1 6 i 6 Nbins, F =EH3 and N =EH1,
and for Nbins + 1 6 i 6 2Nbins, F =EH3 and N =EH2. The reason why the background is
subtracted from the observed events and not added to the predictions is because in this way
the normalization of the total number of events is not needed, only the relative normalization
matters. V −1

stat,ij accounts for the statistical uncertainties and its correlations1,

Vstat,ij =

2Nbins∑
α=1

∑
β=F,N

∂DFN
i

∂Oβ
α

∂DFN
j

∂Oβ
α

(√
Oβ
α

)2

, (A.1.2)

where DFN
i ≡ OFi −BFi

ONi −BNi
. The statistical correlations come into the expression since EH3 is

being used in the two ratios. The relative systematic uncertainties σα, cf. table A.1, are
included with pull parameters ξα. Since the detectors are identical, the relative uncertainty
in each experimental hall is obtained dividing the detector systematic uncertainties by

√
2

in EH1 and EH2 and by 2 in EH3, since there are 2 and 4 detectors, respectively. In
order to reproduce as good as possible the Daya Bay collaboration result [106] with the
available information, a 1.3 fudge factor is added to the relative energy scale and Li-He
background uncertainties. The pull parameters accounting for detection efficiency (εd) and
relative energy scale (ηd) are included in the number of expected events (3.2.6) as follows:

Xd
i (εd, ηd) = εd

∑
r

∑
iso

εd

L2
rd

∫ ηdEreci+1

ηdErec
i

dErec

∫ ∞
0

dEν σ(Eν)f
isoφiso(Eν)P

rd
ν̄e→ν̄e(Eν)R(Erec, Eν) .

The background pull parameters are included in background events Bd
i used in D

F/N
i as

follows:

Bd
i (bdLH, b

d
acc, b

d
n) = Bd

i + (bdLH − 1)Bd
LH,i + (bdacc − 1)Bd

acc,i + (bdn − 1)Bd
n,i .

Here Bd
i (Bd

LH,i, B
d
acc,i and Bd

n,i) represents the number of total (Li-He, accidental and fast
neutron) background events in the ith prompt energy bin in the dth detector, and b represents
the corresponding pull parameters.

1The χ2 defined in this section was used in [28], older versions in which the statistical correlations were
not considered, where used in [26,36,37]
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As explained above, the predicted number of events (3.2.6) is computed taking the same
effective fission fractions f iso in all the detectors, so that if any uncertainty on the flux
normalizations were considered, it will cancel when taking the ratios of predicted events.

The data analysis is performed scanning over the oscillation parameters of the model,
θ, minimizing over the pull parameters at each value of the model parameters. For that, a
linear expansion over the pull parameters in (A.1.1) is performed. This way, it is possible
to minimize with respect the n pull parameters solving a linear system of n equations:

∂χ2(α1, · · · , αn)

∂αj
= 0 , j = 1, · · · , n . (A.1.3)

As an example, the explicit linearization of one of the components of (A.1.1) reads

O3
i −B3

i (b
3
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3
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3
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In order to linearize with respect to the energy scale pull parameter, which appear in
the limits of the dErec integral ∫ ηErec

i+1

ηErec
i

dErecR(Erec, Eν) ,

the Leibniz integral rule is applied

∂

∂η
Xi

∣∣∣∣
η=1

=

∫ ∞
0

dEν̄e · · ·
∂

∂η

∫ ηErec
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∣∣∣∣∣
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∫ ∞
0

dEν̄e · · ·
(
R(Erec

i+1, Eν)E
rec
i+1 −R(Erec

i , Eν)E
rec
i

)
.

In works [26,36,37] Daya Bay predictions are different from what it is described in this
appendix, a different pair of ratios was used, EH3/EH1 and EH2/EH1, and the statistical
correlations were not considered. In this case the statistical correlations are on the observed
events at EH1 (near detector), so they are not so relevant since they are proportional to the
squared relative uncertainty on the observed events in EH1 (A.1.2), which is the EH with
more statistics, while in the analysis here described, statistical correlations are proportional
to the relative uncertainty at EH3 (far detector), which has the least statistics. In [28] the
here described more sophisticated analysis was performed.

A.1.2 RENO data analysis

RENO data and background estimation are extracted from FIG.1 in [107], the systematic
uncertainties are also taken from [107]. The baselines are taken from [226], the averaged
fission fractions from [35] and the life times can be found in [107]. For the detector response
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function the on from Daya Bay is used. The relative far to near normalization is computed
normalizing to the total number of expected events in the far detector without oscillations

ε =

∑
i P

F
R i∑

iO
N
R i

PFi
PNi

,

where for each energy bin i, P F
R i are the predictions performed by the RENO collaboration

at the far detector without oscillations, ON
R i are the observed number of events measured at

the near detector, P F
i and PN

i are the predicted events at the far and near detectors.

The RENO χ2 is based on the far to near ratio implemented as follows

χ2 =
∑
i

(
O′F
i

O′N
i
− XF

i (θ)

XN
i (θ)

)2

(σstat
i )2 +

∑
α

(ξα − 1)2

σ2
α

.

Here O′Di , are the observed number of events, background subtracted, at the D = F,N
detector in the energy bin i. O′Di = OD

i − BD
i , with O the total number of observed events

and B the estimated background, so that the statistical uncertainties are computed as:

σstat
i =

∑
α=N,F

∂
O′F
i

O′N
i

∂Oα
i

(√
Oα
i

)2

.

Both O′Di and the estimated background contributions are obtained from fig. 1 of [107],
XD
i are the predictions as a function of the oscillation parameters θ and ξα are the pull

parameters accounting for the systematic uncertainties σα. The most relevant systematic
uncertainties used are summarized in table A.1, which are included in the same way as it
is done in the Daya Bay analysis, but the detection efficiency pull parameter is included in
the far-to-near ratio, instead of in each detector.

Following this method and with the available information, in order to match as good as
possible the RENO collaboration result [107] an extra factor of 0.984 to the relative far to
near efficiency has to be included and the relative detection efficiency uncertainty has to be
increased by a factor of 1.4.

A.2 NEOS data analysis

In this section it is explained how NEOS data [121] is analyzed in order to reproduce the
collaboration result.

The number of events in every energy bin is computed following equation (3.2.6). Since
the NEOS detector is very close to the source and both the source and detector finite sizes
can not be neglected, an average of the probability over the size of the source and detector,
∆L, is performed:

1

∆L

∫ L+∆L/2

L−∆L/2

dl
sin2

(
∆m2 l

4E

)
l2

, (A.2.1)

with ∆L = 3m and L = 24m. Since no response function R(Erec, Ep) is provided by the
NEOS collaboration, following reference [123] a renormalized gaussian centered in Erec = Ep
(Ep ≡ Edep ' Eν − 0.8MeV) plus a constant value for Erec < Ep accounting for the IAV
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effect is considered:

R(Erec, Ep) =
1√

2πσ(Ep)
exp

{
−(Erec − Ep)2

2σ2(Ep)

}
Θ (Erec − Ep)

+

(
Z +

1−
√

2πσ(Ep)Z√
2πσ(Ep)

exp

{
−(Erec − Ep)2

2σ2(Ep)

})
Θ (Ep − Erec) ,

where the width of the gaussian is the energy resolution given in equation (1) in reference
[123], σ(Ep) = (0.05

√
Ep + 0.12) MeV, and Z = 0.022. In order to reproduce the NEOS

spectrum of figure 3(b) in [121] as good as possible, an energy rescale factor of 0.935 was
included as well as the non-linearity effect, E ′p = Epf(Ep), for the energy deposited, for
which the non-linearity function provided by Daya Bay in the complementary material
of [130] is used, which was found to work properly in this case.

The NEOS analysis is done minimizing the least-squares statistic:

χ2(θ14,∆m
2
41) =

∑
i,j

[
Oi − Pred, i(θ14,∆m

2
41)
]
V −1
ij

[
Oj − Pred, j(θ14,∆m

2
41)
]

where Oi is the NEOS data in every energy bin i, extracted from figure 3(c) of reference [121].
It is presented as a ratio of the NEOS spectrum and a NEOS prediction in the 3ν framework
based on the Daya Bay unfolded spectrum [110], Pred are the predictions and V is the
covariance matrix accounting for the statistical and systematic uncertainties. Since Daya
Bay unfolded spectrum is computed in the 3ν framework, it is only unfolded from the 3ν
oscillations but not from the active-to-sterile one, hence the NEOS predictions in the 3ν
framework have to take the information from the active-to-sterile oscillations from Daya
Bay. As a good approximation this is done bin per bin in the following way:

Pred, i =
PNEOS

4ν, i

PNEOS
3ν, i

PDB
4ν, i

PDB
3ν, i

,

where P
NEOS(DB)
3(4)ν, i are the predicted energy spectrum for NEOS (Daya Bay) in the 3(4)ν

framework, computed as described in (3.2.6). Here Daya Bay predictions are computed
with the NEOS bin size, which is different from the one used in Daya Bay.

The covariance matrix V includes the statistical uncertainties, extracted from figure 3(c)
in reference [110] and the relative covariance matrix of the Daya Bay unfolded spectrum,
which is obtained dividing the covariance matrix of table 13 of reference [110] by the corre-
sponding components of the flux, table 12 of reference [110], in each bin, and then rebinning
it to match the NEOS binning.

A.3 DANSS data analysis

The DANSS data, taken from slide 10 in reference [166], is analyzed using the least-squared
statistics defined in (A.2.2). The DANSS detector is movable an measures at two different
positions from the detector, L = 12.7 m (down position) and L = 10.7 m (up position). Oi is
the data at each energy bin i, which is given as a ratio of measured events at the two different
baselines, down/up. The measured spectrum is given as a function of the kinetic energy of
the positron emitted in the IBD process. Pred,i are the predictions, computed as in (3.2.6).
For the detector response function an energy resolution modeled as a gaussian with a width
given by figure 5 in reference [227] is used. The detection efficiency here cancels in the
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ratio since measurements come from the same detector. The covariance matrix V contains
statistical uncertainties and a 2% systematic uncertainty on the down/up ratios. As in the
NEOS analysis, the DANSS detector and reactor core can not be considered punctual, so
an average over L = 12.85± 4.0 m of the oscillation probability weighted by the geometrical
factor 1/L2 (A.2.1) have to be performed.



Appendix B

Monte Carlo study on the Daya Bay
flux data

A Monte Carlo study is performed in order to determine the p-values of different hypotheses
for the analysis of the Daya Bay data [34] and to verify that the minimum of their least
square statistics follows χ2 distributions.

Simulated data

The simulated IBD yield data σMC
i is generated, for a given “true” θ14, using a random

number generator following a multivariate gaussian distribution

f(x) =
1√

(2π)4|V |
exp

{
−1

2
(xi − σHM

i )V −1
ij (xj − σHM

j )

}
,

where the means σHM
i and the covariance matrix V , with running indices i, j = 1, ..., 8

labelling the F 239
i bins, are computed as follows

σHM
i = Posc

∑
iso

F iso
i σHM

iso

Vij = V stat
ij + V syst

ij σHM
i σHM

j (no summed indices) ,

here F iso
k are the effective fission fractions, in each F 239

k bin, for each isotope iso, Posc is the
averaged out1 oscillation probability (3.4.3) determined by the “true” θ14. V stat and V syst

are the statistical uncertainties and the systematic correlation matrix respectively, taken
from the complementary material in [34]. The IBD yield contributions, σHM

iso , are Huber and
Mueller predictions [102,103].

Analyses

Given the mote carlo generated data, their analysis is performed using the following least-
squares statistic:

χ2(θ14, σ̂) =
8∑

a,b=1

(σaobs − σapred)V −1
ab (σbobs − σbpred) + χ2

flux(σ̂) .

Where σapred ≡ Posc

∑
iso ξisoF

a
isoσ

HM
iso and σapred ≡

∑
iso ξisoF

a
isoσ

HM
iso , for the “flux fixed (ν)”

(hypothesis H0) and the “flux free (no ν)” (hypothesis H1) analyses, respectively. σ̂iso ≡
1The averaged out regime is valid for ∆m2

41 > 0.05 eV2.
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ξisoσ
HM
iso (no summed indices). The covariance matrix is given by Vij = V stat

ij + V syst
ij σiobsσ

j
obs

(no summed indices). For the “flux fixed (ν)” analysis, two different cases are considered,
what is called Huber-Mueller (HM) analysis in which the uncertainties of the flux predictions
are taken into account, and the Daya Bay (DB) analysis in which they are fixed to their
predicted value. In the HM case the penalizing term takes the form

χ2
flux(σ̂) = (σ̂i − σHMi )V −1

σij
(σ̂j − σHMj ) ,

where Vσ is the covariance matrix with the uncertainties of predicted IBD yields and their
correlations, taken from table 3 in reference [160]. While in the DB case the penalizing term
is not considered. For the “flux free (no ν) analysis a constraint of a 10% is added to the
two least contributions to the flux σHM238 and σHM241 in order to avoid unphysical results, hence
the penalizing term takes the form

χ2
flux(σ̂) =

(
σ̂238 − σHM

238

0.1σHM
238

)2

+

(
σ̂241 − σHM

241

0.1σHM
241

)2

.

The parameters σ̂iso are minimized solving a linear system of equations

∂χ2(σ̂)

∂σ̂iso

= 0 . (B.0.1)

In the “flux fixed (ν)” analysis, as a double check, two ways of minimizing with respect to
Posc(θ14) are performed: finding the minimum scanning over Posc and including it analytically
into the linear system of equations (B.0.1). Using the second method, first the predictions
have to be linearized with respect to the parameters the χ2 is minimized over, Posc and σ̂:

σapred = Posc

∑
iso

F a
isoσ

HM
iso +

∑
iso

F a
isoσ̂iso −

∑
iso

F a
isoσ

HM
iso (B.0.2)

Results

Distributions of the quantities χ2
min(H0), χ2

min(H1) and T ≡ χ2
min(H0)−χ2

min(H1) are obtained
generating ten thousand of simulated data for each “true” θ14. These distributions coincide
with χ2 distributions with 7, 6 and 1 degree of freedom, respectively, see figure B.0.1. The
goodness of fit of H0 and H1, and the p-value of the test statistic T for each θtrue

14 , shown in
figure B.0.2, are given by the relative area enclosed under the distributions on the right of
the measured values: χ2

DB flux,min and TDB flux,min; computed with the actual measured data,
table 3.1.

The p-values of H0 are 18 and 12 % for the HM and DB analyses, respectively, of the
H1 hypothesis is 73 %, and of the test statistic T is 0.7 and 0.5 % for the HM and DB
analyses, respectively. The two different cases for the H0 hypothesis analysis, HM and DB,
give a different gof, being smaller the DB one, as expected, since it does not consider an
uncertainty to the Huber-Mueller predictions. This difference is also visible in the p-value
of the test statistic T .

Remarks

The p-values show a systematic up-turn feature for sin2 2θ14 small and close to 1 when
minimizing the χ2 scanning over Posc, specially in the H0 and T cases, lower left and right
panels. These features are understood, they appear because in the scanning over Posc,
the physical boundary 0 ≤ sin2 2θ14 ≤ 1 is imposed, but the random generated data for
sin2 2θtrue

14 close to 0 and 1, due to the random fluctuations, can generate data out of the
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Figure B.0.1: Distributions of statistical quantities for the Daya Bay data [34] analysis.
Left: χ2

min distributions for the “flux fixed (ν)” and “flux free (no ν)” analyses, blue an
pink solid lines, and χ distributions for 7 and 6 degrees of freedom, black and red dashed
lines, for comparison. Right: test statistic T (3.4.7) distribution, green solid line, and χ2

distribution for one degree of freedom in dark green dashed lines.
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Figure B.0.2: p-values of the H0 (lower left panel) and H1 (upper middle panel) hypotheses,
and of the test statistic T (lower right panel) for the Daya Bay data [34] analysis. Different
assumptions on the flux predictions, HM and DB cases, and different minimization methods,
linearizing and scanning over the minimizing parameters, are shown. See text fro details.

physical range. With the other minimization method, when σpred is linearized, the minimum
in Posc is found solving the linear system of equations, so that the physical boundaries are
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not imposed and thus the up-turn feature does not show up. Note that sin2 2θ14 has to
be small so that the expansion (B.0.2) holds with good accuracy, in this case values up to
sin2 2θtrue

14 ∼ 0.25 are considered.
It is important to note that in order to get the correct goodness of fit for the H1 hy-

pothesis, the random generated data should be generated for every σ̂true combination, while
here only the particular case in which all the IBD yields are rescaled with the same factor,
Posc, is considered. As can be seen in the upper middle panel of figure B.0.2, with the used
method, the p-value is independent of the values of the common rescaling, Posc, of σ̂HM.
So there is no need to generate the data for every σ̂true combination. Consequently this
method is additionally much cheaper in computational time.



Appendix C

Heavy neutrino flux from meson
induced ν flux

This appendix is an extended version of the appendix in reference [40].

Here it is described in detail how to derive a heavy neutrino flux from a light neutrino
flux originated from meson decays, showing as a particular example the construction of the
heavy neutrino flux in MiniBooNE given the kaon induced νµ flux.

First, assuming that the light neutrino fluxes are produced from two body kaon decays,
K → `ν, the kaon flux can be reconstructed relating by a Lorentz transformation the light
neutrino momentum in the laboratory and in the kaon rest frames. Second, assuming that
the kaons and the heavy neutrinos that are produced in kaon decays are parallel to the beam
line, there are two contributions to the flux: the heavy neutrinos that go into the forward
and backward directions in the kaon rest frame; which we called forward and backward flux
contributions. The latter is important when the kaon momentum is large enough to boost
the backward emitted neutrinos into the forward direction. Finally, a different weighting
factor to account for the angular acceptance, given the geometry of the experiment, has to
be included to both the backward and forward heavy neutrino flux contributions.

C.1 Lorentz transformations

Given a laboratory frame S and the kaon rest frame S0 which moves with respect to the
laboratory frame with a momentum pK , the energy an momentum of other particles seen
at each reference frame are related by the Lorentz transformations:(

p0

E0

)
=

(
γ −γβ
−γβ γ

)(
p
E

)
;

(
p
E

)
=

(
γ γβ
γβ γ

)(
p0

E0

)
,

where γ ≡ 1√
1−β2

, with β = pK
EK

and γ = EK
mK

.

C.2 Kaon flux reconstruction

The light neutrino flux φνµ(pνµ) coming from kaon decays is taken from figs. 29 and 31 in
reference [217], for the neutrino and anti-neutrino operation modes, respectively. Both νµ
from K+ and ν̄µ from K− fluxes are considered since both, N and N̄ , equally contribute to
the heavy neutrino flux. The signal at the MiniBooNE detector do not distinguish N from
N̄ , given the decay mechanism considered in section 4. Assuming that the νµ flux coming
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Figure C.2.1: Reconstructed kaon flux as a function of the kaon momentum, φK(pK), for
the neutrino mode (solid blue) and anti-neutrino mode (dashed red).

from kaon decays was produced by the two body decay K → `ν1, the momentum of the
neutrino in the kaon rest frame is fixed to

pν0 =
m2
K −m2

`

2mK

,

and can be related to their momentum in the lab frame, pν , by the Lorentz transformation:

pν =
pK
mK

Eν0 +
EK
mK

pν0 .

Solving for pK ,

pK =
mN

2

(
pν
pν0
− pν0
pν

)
, (C.2.1)

we find a one to one relation between the kaon and light neutrino momenta in the lab frame,
pK and pν . Then the kaon spectrum φK(pK) can be reconstructed from the light neutrino
flux in the laboratory frame φν(pν), figure C.2.1

For the φν flux, both decays K → µ+νµ and K → π0µ+νµ, with branching ratios
63.44 % and 3.32 % respectively, are considered by the MiniBooNE collaboration, table I
in reference [217]. That translates into a dominant contribution for the two body decay
of 95 %, which means that under the assumption made here, a small error both in the
normalization and shape of the kaon flux is introduced 2. The light neutrino flux that has
to be considered starts at pν0 , for which the kaons decay at rest. At pν0 there is actually a
peak feature, which corresponds to those neutrinos produced from stopped kaons, the ones
that arrive at the end of the decay pipe and are stopped in the shield before decaying. That
structure will be called the monochromatic peak from now on.

1Leptonic three body decays and other contributions from kaons to the light neutrino flux are not
considered because there is not a one to one relation between the light and heavy neutrinos momenta
generated in this processes, which is what the method described here is based on. This will introduce an
uncertainty in the heavy neutrino reconstructed flux shape and normalization.

2Other contributions to the heavy neutrino flux, apart from the kaon decays, are not considered, which
also introduces an uncertainty both in shape an normalization of the heavy neutrino flux.
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Figure C.3.1: Backward (purple and dashed brown) and forward (blue and dashed red)
components of the heavy neutrino flux, for masses of 250 MeV (left panel) and 350 MeV
right panel, assuming a parallel direction to the beam line, for the neutrino (solid lines) and
anti-neutrino (dashed lines) modes. The forward component starts at pN = pN0 , while the
backward component starts at pN = 0. The spectra is neither normalized to the original
light neutrino flux, nor the factor Br(K → `N)/Br(K → µ+νµ) is included.

C.3 Heavy neutrino flux

The kaons decay into heavy neutrinos together with a charged lepton, either muon or elec-
tron3, K → `N , producing a heavy neutrino flux. In the kaon rest frame the heavy neutrinos
have a definite momentum

pN0 =

√
(m2

K − (mN −m`)2)(m2
K − (mN +m`)2)

2mK

. (C.3.1)

So, assuming that the heavy neutrino momenta in the lab frame is parallel to the beam line,
it can be obtained via the Lorentz transformation:

pN =
pK
mK

EN0 ±
EK
mK

pN0 . (C.3.2)

The ± sign corresponds to the forward and backward emitted neutrinos in the kaon rest
frame, which give rise to two separate contributions to the heavy neutrino flux, called forward
and backward. As can be seen in (C.3.2), given a heavy neutrino mass, for sufficiently large
kaon momentum the heavy neutrinos produced in the backward direction in the kaon rest
frame are boosted to the forward direction in the lab frame, i.e. pN is positive. Which for
the light neutrinos can not happen, since Eν0 ' pν0 , and then pN , for those emitted in the
backward direction in the kaon rest frame, is always negative.

The two components of the flux, backward and forward, have to be renormalized to the
original light neutrino flux, since in both directions the same number of heavy neutrinos
is emitted. Also the normalization factor Br(K → `N)/Br(K → µ+νµ) (2.4.3), which
accounts for the heavy neutrino mixing and the kinematical factors related to the helicity
enhancement and phase space suppression with respect to the light neutrino case have to
be taken into account.

In figure C.3.1, the two flux components, forward and backward, are shown for heavy
neutrino masses mN = 250, 350 MeV. They are not normalized to the original light neutrino
flux, neither the factor Br(K → `N)/Br(K → µ+νµ) is included. Note that the heavier is

3The kaons can not decay into a tau lepton because its mass is larger than the kaon mass.
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the neutrino the larger are the momenta of the backward contribution to the flux, i.e. the
heavier are the neutrinos the slower are emitted in the backward direction and the more
they are boosted into the forward direction.

Angular acceptance factor

So far, the heavy neutrino flux components have been computed under the assumption that
their momentum is parallel to the beam line. In reality, both light an heavy neutrinos are
produced with an angle cos θ, and they will reach the detector provided it is smaller than
the angular size of the detector θD = arctanR/L ' R/L, with R the MiniBooNE detector
radius and L the baseline. The maximum decaying angle in the kaon rest frame, θrest

N , can
be computed by solving:

θD =
pN,⊥
pN,‖

=
pN,0 sin θrest

N
pK
mK

EN,0 ± EK
mK

pN,0 cos θrest
N

. (C.3.3)

here the parallel component of the momentum is boosted to the lab frame while the per-
pendicular component is unaffected. The + and − signs corresponds to the forward and
backward decays. Approximating for small angles sin θ ' θ, cos θ ' 1, equation (C.3.3) can
be easily solved:

θrest
N =

mK

pN,0
(pKEN,0 ± EKpN,0) θD . (C.3.4)

The angular distribution in the kaon rest frame is isotropic, then the heavy neutrino flux
components have to be corrected by adding a geometrical factor given by the ratio between
the maximum acceptance angles for the heavy and light neutrinos, in the kaon rest frame:

f fwd =
θrest, fwd
N

θrest
ν

; fbwd =
θrest, bwd
N

θrest
ν

. (C.3.5)

Here it is assumed that the angular acceptance for light neutrinos is already included in the
original flux φνµ . For small angles, equation (C.3.5) have the form

f fwd(pK) =
(pKEN,0 + EKpN,0)

pN,0 (pK + EK)
; fbwd(pK) =

(pKEN,0 − EKpN,0)

pN,0 (pK + EK)
. (C.3.6)

Note that for the MiniBooNE proton beam energy, it might be considered that only the
light neutrinos decaying in the forward direction reach the detector. Hence, the acceptance
angle of the two components of the heavy neutrino, backward and forward, are compared
to the light neutrino one in the forward direction.

These factors result in a different weight for the forward and backward contributions. For
the same emission angle in the kaon rest frame, the backward and forward emitted neutrino
face the detector with a different angle. This can be easily visualized in figure C.3.2, where
the blue and red arrows corresponds to the forward and backward heavy neutrino momenta.

Rigorously, equation (C.3.3) has to be solved numerically for both light an heavy neutri-
nos, from which one can obtain the ratio of the two kaon rest frame angles, (C.3.5). The ap-
proximated expression (C.3.6) holds to good accuracy up to masses closed to mN ∼ mK+mµ

and/or large kaon momenta. In the case of MiniBooNE, given the low kaon energies, up to
5 GeV, choosing not to be very close to the limiting heavy neutrino mass, the small angle
approximation is very accurate. In figure C.3.3 the geometrical factors (C.3.5) and their
approximation (C.3.6) are shown as a function of the kaon momentum, for the backward and
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Figure C.3.2: Representations of the heavy neutrino momenta in the forward (blue) and
backward (red) directions. In the kaon rest frame both are depicted decaying with the same
angle and momentum (left panel). In the laboratory frame (right panel), after the Lorentz
transformation is applied, they are different. θD is the angular size of the MiniBooNE
detector, shown as a yellow disc.
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Figure C.3.3: Geometrical factors for the forward (green and red lines) and backward (light
green and magenta lines) flux components as a function of the kaon momentum, for masses
mN = 250 MeV (left panel) and mN = 350 MeV (right panel). Both the proper geometrical
factors (solid lines) and their approximation are plotted (dotted-dashed). The blue vertical
line, shows the maximum kaon momentum at MiniBooNE. A zoomed-in plot for the Kaon
momentum at MiniBooNE is shown in each panel. The backward geometrical factor is zero
utill the kaon momentum is large enough to forward boost the heavy neutrinos emitted in
the backward direction.

forward flux components. The validity of the approximation for the MiniBooNE experiment
can be seen in the zoomed-in plots in figure C.3.3.

In the whole range of kaon momentum the effect of the geometrical acceptance factors is
that the low momentum part of the flux is suppressed with respect to the higher momenta.
For larger kaon momenta the approximation starts to break down, and both forward and
backward geometrical factors tend to a value close to 0.5. This can be understood, since for
large enough kaon momentum even the light neutrinos emitted in a backward direction with
an angle can be forward boosted, being the range of available angles −1 < cos θrest

ν < 1,
whereas the heavy neutrino flux components are considered separately, so that the angles
can span only in half of the range, i.e. 0 < cos θrest

N < 1, for both forward and backward
components.

The geometrical factors (C.3.5), given as a function of the kaon momentum, pK , can be
expressed as a function of the heavy neutrino momentum, which can be computed perform-
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Figure C.3.4: Heavy neutrino flux, φN(pN), for the neutrino (blue) and anti-neutrino (dashed
red) modes, for masses mN = 250, 350 MeV. The factor Br(K → `N)/Br(K → µ+νµ) is
not included.

ing the Lorentz transformation:

pK
mK

EN +
EN
mK

pN = ±pN,0 .

Solving for pK :

pK = ∓mK

m2
N

ENpN,0 +
mK

mN

√(
EN pN,0
mN

)2

+ p2
N − p2

N,0 ,

where upper (lower) signs apply to the forward (backward) geometrical factors. Note that
in the forward decay case pN starts from pN,0 and in the backward decay from 0.

The heavy neutrino flux is obtained summing both components weighted by the angular
acceptance factors:

ΦN(pN) = f fwd(pN ,mN)Φfwd
N (pN ,mN) + fbwd(pN ,mN)Φbwd

N (pN ,mN) .

In figure C.3.4 the final flux for the neutrino and anti-neutrino modes is shown, for masses
mN = 250, 350 MeV.

Finally, the monochromatic peak at pN0 is added by hand to the final flux, which for
the original φν flux has a magnitude of 6.36(7.25)× 10−13 cm−2/POT in the neutrino (anti-
neutrino) mode. Extracted from figs. 29 and 31 in reference [217].



Appendix D

3+2 type-I seesaw parameterizations

In this appendix we derive in detail the seesaw parameterizations used in [76].

The objective of this appendix is to show a possible parameterization for a general type-
I seesaw and the low-scale linear+inverse seesaw [228], both with only two extra neutrino
species, ((3 + 2)ν seesaw).

These parameterizations were used in [76] in order to study the interplay between the β
and 0νββ decay for the discrimiation between different low-scale seesaw realizations [77–80]
involving at least one heavy neutrino in the KeV range. The interest on these models arise
from the fact that the KATRIN experiment future upgrade (TRISTAN) [229] can search
for heavy neutrinos in the range ∼ [1, 18]KeV, with a mixing |Ue4|2 . 10−6.

The parameterizations presented here are constructed such that they are compatible
with the 3ν standard measured parameters, cf. table 2.1.

D.1 Low-scale seesaw realizations

For a general (3 + 2)ν seesaw, the mass matrix (2.3.4) have the form:

M =

(
0 mD

mT
D M

)
, (D.1.1)

where the Dirac, mD, and Majorana M , matrices have dimensions 3× 2 and 2× 2, respec-
tively. In the seesaw limit, the scale of mD is much smaller1 than the scale of M . The mass
matrix can be diagonalized by a unitary matrix U :

UTMU = diag {m1,m2,m3,m4,m5} , (D.1.2)

giving rise to the neutrino mass spectrum. U is the mixing matrix that relates the massive
eigenstates to the active, νL, and new sterile, νR, neutrinos. m1, m2 and m3 are the light and
m4 and m5 the heavy neutrino masses. In this case, in which only two new neutrino species
are added, the rank of the matrix (D.1.1) is four, so it follows that the lightest neutrino is
massless2.

The mass squared differences, measured in neutrino oscillations, tell us that at least two
light neutrinos have non-zero mass, cf. table 2.1. Therefore, in order to give mass to the
light neutrinos through the type-I seesaw mechanism, cf. (2.3.3), there must be at least

1A way of defining the scale of the matrix is by the square root of the determinant of the squared matrix:√
det
{
m†DmD

}
�
√

det {M†M}.
2The rank of a matrix is invariant under the base choice.
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two new neutrino species. This is so, because the mass matrix (D.1.1) with only one right-
handed neutrino would have at most rank two. Hence, the neutrino mass spectrum would
consist of two massive neutrinos and two massless, the latter corresponding to two of the
light neutrinos. Adding three neutrino species instead, the matrix can have rank six and
hence all the neutrinos can have non-zero mass.

Linear and inverse seesaw

The mass matrix (D.1.2) corresponds to a general type-I seesaw mechanism (2.3.3). Some
particular realizations of this mechanism are based on an approximate lepton number sym-
metry, like the linear seesaw (LSS) [230,231] and the inverse seesaw (ISS) [232–234]. In these
models, the neutrino masses are generated when the lepton number symmetry is broken.
The smallness of the neutrino masses is achieved when the symmetry is broken perturba-
tively, by adding small lepton number violating parameters. The small parameters also
break the degeneracy of the heavy neutrino masses, which constitute heavy pseudo-Dirac
states [228,235].

Adding two extra sterile neutrinos νs,1 and νs,2 with lepton numbers L = 1,−1, respec-
tively, the conserving lepton number Lagrangian is given by:

L = LSM + iν̄s,1/∂νs,1 + iν̄s,2/∂νs,2 −
(
Yν1LLφ̃νs,1 + Y12ν̄s,1φ̃νs,2 + h.c.

)
. (D.1.3)

After EWSB, analogous to (2.3.4), the neutrino mass matrix in the base
{
νL, ν

C
s,1, ν

C
s,2

}
is

given by3:

M =

0(3×3) η 0(3×1)

ηT 0 Λ
0(1×3) Λ 0

 (D.1.4)

where η = Yν1
v
2

is a 3 × 1 matrix and Λ = Y12
v
2

is a scalar parameter, with v the Higgs
vacuum expectation value. To provide masses to the light neutrinos, the lepton number
symmetry has to be broken. Two common ways of accomplishing this are adding either a
3× 1 matrix, ε, or a scalar parameter, µ, as follows:

MLSS =

 0 η ε
ηT 0 Λ
εT Λ 0

 ; MISS =

 0 η 0
ηT 0 Λ
0 Λ µ

 , (D.1.5)

where the scale of the parameters ε and µ is smaller than the scale of η and Λ. Here the
first matrix corresponds to the LSS and the second one to the ISS. A combination of both,
linear and inverse, it is called linear+inverse seesaw (LISS) [76, 228], whose mass matrix is
given by:

MLISS =

 0 η ε
ηT 0 Λ
εT Λ µ

 . (D.1.6)

D.2 Parameterization

In this section we show parameterizations of the mass matrix (D.1.1) constructed in such a
way that after diagonalization the 3ν standard parameters are recovered, cf. table 2.1, for
the general type-I seesaw and LISS.

3Implicitly, νL has the three components corresponding to the three active flavors.
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Block diagonalization

In order to get the parameterizations, we can start block-diagonalizing the mass matrix
(D.1.1). According to what is done in [236], we write the diagonalization matrix U as a
block-diagonalization, UB, and two unitary matrices, U and X:

U =

(
A(3×3) B(3×2)

C(2×3) D(2×2)

)
︸ ︷︷ ︸

≡UB

(
U(3×3) 0

0 X(2×2)

)
, (D.2.1)

such that

UT
BMUB =

(
mlight 0

0 mheavy

)
, (D.2.2)

where mlight and mheavy are 3× 3 and 2× 2 matrices, respectively. U diagonalizes mlight, so
we identify it with the PMNS matrix (2.2.1). Since we are not interested in how the heavy
neutrinos mix among each other, we can work directly in the heavy neutrino mass basis
without loss of generality, setting X = 11 and mheavy = diag {M1,M2}, with M1,M2 ∈ R+.

Since the deviations from unitarity of the PMNS matrix are expected to be small, we
have that A ·U = (11− ζ)U , where ζ is a small quantity. From the unitarity condition of U ,
it follows that 11 = AA† +BB†. Hence, since A is close to the identity, B has to be a small
scale matrix.

Anologously as it is done in [236], we write UB as the exponential of a small scale 3× 2
matrix4, Θ:

UB = exp

(
0(3×3) Θ
−Θ† 0(2×2)

)
'
(

11(3×3) − 1
2
ΘΘ† Θ

−Θ† 11(2×2) − 1
2
Θ†Θ

)
. (D.2.3)

In this approximation the mixing matrix is given by

U =

((
11− 1

2
ΘΘ†

)
U ΘX

−Θ†U
(
11− 1

2
Θ†Θ

)
X

)
.

Note that for the choice that we made here, X = 11, Θ is the mixing of the heavy neutrinos
with the active ones.

Using (D.2.3), from the 0 entries of (D.2.2) follows:

0 = mD −Θ∗M +O
(
Θ2
)
.

Solving for Θ we obtain:

Θ∗ = mDM
−1 , (D.2.4)

in analogy to the one neutrino generation case, cf. (2.3.6). Using (D.2.3) and (D.2.4), from
the two diagonal entries in (D.2.2) and neglecting terms O(M−2) we get:

mlight = −mDM
−1mT

D , (D.2.5)

mheavy = M +
(
M−1

)†
m†DmD −

1

2
mT
Dm

∗
D

(
M−1

)∗ − 1

2
M
(
M−1

)∗
m†DmDM

−1 . (D.2.6)

Now that the matrix is block-diagonalized, we can find the parameterization for mD.
Note that M is already parameterized:

M = mheavy +O
(
M−1

)
.

Which in the case considered here, i.e. X = 11: M = diag {M1,M2}.
4Note that in [236] Θ is a 3 × 3 matrix, while here we are using an analogous procedure with a 3 × 2

matrix.
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General type-I seesaw parameterization

For a general type-I seesaw, in which to first approximation M = diag {M1,M2}, the mD

parameterization can be found as follows.
Using expression (D.2.5) and imposing that the PMNS matrix (2.2.1) diagonalizes mlight,

we find:

−UTmDM
−1mT

DU = diag {0,m2,m3} , (D.2.7)

for NO and diag {m1,m2, 0} for IO5. Where m1,m2,m3 are the light neutrino masses that
satisfy the two mass squared differences ∆m2

sol and ∆m2
atm, cf. section 2.2.

Following the prodecure done in [237], we can parametrize the Dirac mass defining a
complex matrix that satisfies RTR = diag {0,m2,m3}:

R(NO) =

(
0
√
m2 cos(a+ ib)

√
m3 sin(a+ ib)

0 ∓√m2 sin(a+ ib) ±√m3 cos(a+ ib)

)
, (D.2.8)

for NO and

R(IO) =

( √
m1 cos(a+ ib)

√
m2 sin(a+ ib) 0

∓√m1 sin(a+ ib) ±√m2 cos(a+ ib) 0

)
, (D.2.9)

for IO. Where a, b ∈ R.
Rewriting (D.2.7) as6:

RTR = −UTmD

√
M−1
√
M−1mT

DU ,

we can identify R = −i
√
M−1mT

DU and solve for mD:

mT
D = i

√
MRU † . (D.2.10)

With this parameterization, there are six free parameters: a, b, M1, M2, δCP and α. a
and b are the real parameters introduced in the R parameterization (D.2.8). M1 and M2 are
the heavy Majorana masses, i.e. the diagonal elements of M . From the PMNS matrix, we
considered only the Dirac phase δCP and the Majorana phases. Given the parameterization
(2.2.1) and the form of the R matrix, mD only depends on one of the Majorana phases, α.
The rest of the parameters can be considered fixed: the mixing angles θ12, θ13 and θ23, and
the light neutrinos masses m2 and m3 or m1 and m2, depending on the ordering.

LISS parameterization

In the LISS model, the mass matrix is given by (D.1.6). Identifying the Dirac and Majorana
matrices according to (D.1.1) we obtain:

mD (3×2) =
(
η(3×1) ε(3×1)

)
; M =

(
0 Λ
Λ µ

)
.

In the seesaw limit, i.e. M scale7 is much larger than mD scale, we can use expressions
(D.2.5) and (D.2.6), giving rise to:

mlight =
1

Λ

(
µ
ηηT

Λ
−
(
ηεT + εηT

))
+O

(
1/Λ2

)
(D.2.11)

mheavy =

(
0 Λ
Λ µ

)
+O (1/Λ) (D.2.12)

5For IO, the lightest neutrino mass is ν3, hence m3 = 0.
6Remember that without loss of generality M = diag {M1,M2} with M1,M2 ∈ R+, hence

√
M−1 =

diag
{√

M1,
√
M2

}
.

7Since µ is a small parameter, the scale of M is dominated by Λ.
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where we have used the inverse of M :

M−1 =
1

Λ

(
− µ

Λ
1

1 0

)
.

Note that in this case Θ is no longer the mixing between the heavy mass neutrinos and the
active ones, but ΘX is instead, where X is the 2× 2 unitary matrix that diagonalizes M .

Defining ε′ = ε− µ
2Λ

, mlight takes the form

mlight = −ηε
′T + ε′ηT

Λ
.

From the diagonalization ofmlight with the PMNS matrix we get: mlight = U∗diag {0,m2,m3}U †
for NO and mlight = U∗diag {m1,m2, 0}U † for IO. Explicitly they read

NO : −
ηiε
′
j + ε′iηj

Λ
= m2U

∗
i2U
∗
j2 +m3U

∗
i3U
∗
j3 ,

IO : −
ηiε
′
j + ε′iηj

Λ
= m1U

∗
i1U
∗
j1 +m2U

∗
i2U
∗
j2 ,

and their solutions are given by

NO : ηj = ξ

√
Λ√
2

(
√
m3U

∗
i3 + i

√
m2U

∗
i2) ; ε′j =

1

ξ

√
Λ√
2

(
√
m3U

∗
i3 − i

√
m2U

∗
i2) .

IO : ηj = ξ

√
Λ√
2

(
√
m2U

∗
i2 + i

√
m1U

∗
i1) ; ε′j =

1

ξ

√
Λ√
2

(
√
m2U

∗
i2 − i

√
m1U

∗
i1) .

Here, ξ is a real parameter that have to satisfy that the scale of the η and ε matrices is
much smaller than the scale of M , being the latter dominated by Λ.

Undoing the change of variables ε′ = ε− µ
2Λ

, we reach the LISS parameterization:

NO : ηj = ξ

√
Λ√
2

(
√
m3U

∗
i3 + i

√
m2U

∗
i2) ; εj =

1

ξ

√
Λ√
2

(
√
m3U

∗
i3 − i

√
m2U

∗
i2) +

µ

2Λ

IO : ηj = ξ

√
Λ√
2

(
√
m2U

∗
i2 + i

√
m1U

∗
i1) ; εj =

1

ξ

√
Λ√
2

(
√
m2U

∗
i2 − i

√
m1U

∗
i1) +

µ

2Λ
.

(D.2.13)

In this parameterization, the free parameters are given by Λ, µ and ξ, and the δCP phase
and one of the Majorana phases, α, from the PMNS matrix. In [76] we chose, Λ, ξ ∈ R and
µ ∈ C. Thus, there are six free parameters in total. As in the general type-I seesaw, the
mixing angles θ12, θ13 and θ23, and the light neutrinos masses m2 and m3 or m1 and m2,
depending on the ordering, are considered fixed.

The heavy mass spectrum in the LISS is obtained diagonalizing (D.2.12):

m4,5 = Λ± 1

2
|µ| , (D.2.14)

with the heavy mass splitting given by the lepton number violating parameter µ, to leading
order.

The parameterizations in (D.2.10) and (D.2.13) are such that in the outcome of the
diagonalization of the mass matrix M (D.1.1), which is used in the studies performed
in [76], one recovers the 3ν standard neutrino parameter values, cf. table 2.1, regardless of
the values chosen for the free parameters.
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[198] C. A. Argüelles, New Physics with Atmospheric Neutrinos. PhD thesis, University of
Wisconsin, Madison, 2015. available from
https://docushare.icecube.wisc.edu/dsweb/Get/Document-75669/tesis.pdf.

[199] Super-Kamiokande, R. Wendell, Atmospheric Results from Super-Kamiokande,
AIP Conf. Proc. 1666 (2015), no. 1 100001, [1412.5234].

[200] Super-Kamiokande, R. Wendell et al., Atmospheric neutrino oscillation analysis
with sub-leading effects in Super-Kamiokande I, II, and III, Phys. Rev. D81 (2010)
092004, [1002.3471].

[201] NOvA, P. Adamson et al., Search for active-sterile neutrino mixing using
neutral-current interactions in NOvA, Phys. Rev. D96 (2017), no. 7 072006,
[1706.04592].

[202] MINOS+, P. Adamson et al., Search for sterile neutrinos in MINOS and MINOS+
using a two-detector fit, Phys. Rev. Lett. 122 (2019), no. 9 091803, [1710.06488].

[203] F. Dydak et al., A Search for Muon-neutrino Oscillations in the Delta m**2 Range
0.3-eV**2 to 90-eV**2, Phys. Lett. 134B (1984) 281.

[204] MiniBooNE, A. A. Aguilar-Arevalo et al., A Search for muon neutrino and
antineutrino disappearance in MiniBooNE, Phys. Rev. Lett. 103 (2009) 061802,
[0903.2465].

[205] MiniBooNE, SciBooNE, G. Cheng et al., Dual baseline search for muon
antineutrino disappearance at 0.1eV2 < ∆m2 < 100eV2, Phys. Rev. D86 (2012)
052009, [1208.0322].

[206] MiniBooNE, “Data release for arxiv:0903.2465.”
http://www-boone.fnal.gov/for_physicists/data_release/numu_numubar/.

[207] S. N. Gninenko, The MiniBooNE anomaly and heavy neutrino decay, Phys. Rev.
Lett. 103 (2009) 241802, [0902.3802].

[208] S. N. Gninenko, A resolution of puzzles from the LSND, KARMEN, and MiniBooNE
experiments, Phys. Rev. D83 (2011) 015015, [1009.5536].

[209] E. Bertuzzo, S. Jana, P. A. N. Machado, and R. Zukanovich Funchal, Dark Neutrino
Portal to Explain MiniBooNE excess, Phys. Rev. Lett. 121 (2018), no. 24 241801,
[1807.09877].

[210] P. Ballett, S. Pascoli, and M. Ross-Lonergan, U(1)’ mediated decays of heavy sterile
neutrinos in MiniBooNE, Phys. Rev. D99 (2019) 071701, [1808.02915].

http://dx.doi.org/10.1007/JHEP07(2013)004, 10.1007/JHEP07(2013)085
http://dx.doi.org/10.1007/JHEP07(2013)004, 10.1007/JHEP07(2013)085
http://arxiv.org/abs/1303.3953
http://dx.doi.org/10.1103/PhysRevLett.117.071801
http://dx.doi.org/10.1103/PhysRevLett.117.071801
http://arxiv.org/abs/1605.01990
http://hdl.handle.net/1721.1/101327
https://docushare.icecube.wisc.edu/dsweb/Get/Document-75669/tesis.pdf
http://dx.doi.org/10.1063/1.4915569
http://arxiv.org/abs/1412.5234
http://dx.doi.org/10.1103/PhysRevD.81.092004
http://dx.doi.org/10.1103/PhysRevD.81.092004
http://arxiv.org/abs/1002.3471
http://dx.doi.org/10.1103/PhysRevD.96.072006
http://dx.doi.org/10.1103/PhysRevD.96.072006
http://arxiv.org/abs/1706.04592
http://dx.doi.org/10.1103/PhysRevLett.122.091803
http://dx.doi.org/10.1103/PhysRevLett.122.091803
http://arxiv.org/abs/1710.06488
http://dx.doi.org/10.1016/0370-2693(84)90688-9
http://dx.doi.org/10.1016/0370-2693(84)90688-9
http://dx.doi.org/10.1103/PhysRevLett.103.061802
http://dx.doi.org/10.1103/PhysRevLett.103.061802
http://arxiv.org/abs/0903.2465
http://dx.doi.org/10.1103/PhysRevD.86.052009
http://dx.doi.org/10.1103/PhysRevD.86.052009
http://arxiv.org/abs/1208.0322
http://www-boone.fnal.gov/for_physicists/data_release/numu_numubar/
http://dx.doi.org/10.1103/PhysRevLett.103.241802
http://arxiv.org/abs/0902.3802
http://dx.doi.org/10.1103/PhysRevD.83.015015
http://dx.doi.org/10.1103/PhysRevD.83.015015
http://arxiv.org/abs/1009.5536
http://dx.doi.org/10.1103/PhysRevLett.121.241801
http://dx.doi.org/10.1103/PhysRevLett.121.241801
http://arxiv.org/abs/1807.09877
http://dx.doi.org/10.1103/PhysRevD.99.071701
http://dx.doi.org/10.1103/PhysRevD.99.071701
http://arxiv.org/abs/1808.02915


116 BIBLIOGRAPHY

[211] M. Masip, P. Masjuan, and D. Meloni, Heavy neutrino decays at MiniBooNE, JHEP
01 (2013) 106, [1210.1519].

[212] G. Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, Dipole Portal to Heavy Neutral
Leptons, Phys. Rev. D98 (2018), no. 11 115015, [1803.03262].

[213] M. Dentler, I. Esteban, J. Kopp, and P. Machado, Decaying Sterile Neutrinos and
the Short Baseline Oscillation Anomalies, 1911.01427.
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