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Deutsche Zusammenfassung

Ausreißer sind Beobachtungen, die von den meisten anderen Beobachtungen abweichen.
Betrachtenwir beispielsweise Daten zu den Eruptionen des Old Faithful Geysir im Yellow-
stone-Nationalpark (Abbildung 1a). Die Dauer der Eruptionen des Geysir sind in Abbil-
dung 1b dargestellt1. Ein Ausreißer — eine extrem kurze Eruption — ist das blaue Dreieck
links in Abbildung 1b.

(a) Der Old Faithful2 (b) Histogramm (c) Streudiagramm

Abbildung 1: Eruptionen des Old Faithful Geysir.

Ausreißer können auf Defekte der Messinstrumente oder eines zugrundeliegenden Sy-
stems hinweisen. Beispielsweise ein verschlissenes Lager in einem Motor. Eine verlässli-
che Erkennung ist deshalb wichtig. Ausreißer sind allerdings selten, da sie von den mei-
sten Beobachtungen abweichen. Ohne eine repräsentative Menge an Ausreißern ist es
schwer, Methoden zu ihrer Erkennung zu entwickeln bzw. zu überprüfen, welche Typen
von Ausreißern diese erkennen. Der Typ von Ausreißern definiert sich durch besondere
Eigenschaften der betroffenen Beobachtung. Beispielsweise kann man Ausreißer als glo-
bal oder lokal bezeichnen. Beispiel 1 illustriert Ausreißer verschiedenen Typs anhand der
Daten des Old Faithful Geysir.

Beispiel 1 (Typen von Ausreißern) Die Zeit ohne Vorkommnis, die einer Eruption vor-
ausgeht, ist die Wartezeit. Abbildung 1c stellt diese Wartezeit zusammen mit der Dauer der
Eruption dar. Auch in diesem Streudiagramm ist der Ausreißer aus Abbildung 1b gut zu
erkennen. Es ist auch ein weiterer Ausreißer zu erkennen, dem eine sehr lange Wartezeit

1 Auszug aus https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/geyser.html
2 Quelle: https://pixabay.com/photos/faithful-eruption-old-faithful-3939305/
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vorausgeht (> 100 Minuten). Beide Ausreißer sind globale Ausreißer. Sie fallen bei der Be-
trachtung aller Beobachtungen auf. Lokale Ausreißer hingehen fallen in ihrer lokalen Nach-
barschaft auf. Die mit einem blauen Kreuz gekennzeichnete Eruption fällt beispielsweise auf,
wenn man die Eruptionen rechts davon, mit einer leicht längeren Eruption aber ähnlicher
Wartezeit, betrachtet.

Mit Beispiel 1 lässt sich auch erkennen, dass sowohl die verschiedenen Typen von Aus-
reißern als auch die Eigenschaft “Ausreißer” an sich nicht sehr präzise definiert sind: Es ist
unklar wie genau eine Beobachtung von anderen Beobachtungen abweichen muss, um
definitiv als Ausreißer eines Typs zu gelten oder ob man wirklich jeden Typ als Ausreißer
anerkennt. Beispielsweise ist die nötige Entfernung eines globalen oder lokalen Ausrei-
ßers zu anderen Beobachtungen subjektiv. Auch ob der lokale “Ausreißer” nicht doch eine
ganz normale Beobachtung repräsentiert, ist zumindest fraglich.

Um die Güte vonMethoden zur Erkennung von Ausreißern zu vergleichen, werden üb-
licherweise Daten herangezogen, die eine Kategorisierung in “Ausreißer” und “normale
Beobachtungen” aufweisen. Solche Daten sind aber generell eher selten und die entspre-
chenden Ausreißer haben sehr unterschiedliche und teils widersprüchliche Eigenschaf-
ten. Eine klare Klassifizierung des Typs von Ausreißern (z. B. lokal oder global) existiert
in solchen Daten ebenfalls nicht. Daher ist eine Evaluation der Qualität der Erkennung
von Ausreißern schwierig, bzw. in Bezug auf verschiedenen Typen von Ausreißern gar
nicht möglich.

Eine weitere Möglichkeit die Güte von Methoden zur Erkennung von Ausreißern zu
vergleichen, ist künstliche Daten zur Evaluation von Methoden zur Erkennung von Aus-
reißern zu generieren. Dies bietet zwei nennenswerte Vorteile: Die Daten können in be-
liebigen Mengen generiert werden und die Eigenschaften bzw. Typen von Ausreißern
können festgelegt werden.

Zentrale Forschungsfragen
Es gibt bereits einige Ansätze, Ausreißer künstlich zu generieren. Oft liegen den Ansätzen
aber unterschiedliche Annahmen über die Eigenschaften von Ausreißern zugrunde, ohne
dass die Auswirkung der Annahmen immer klar ist. Daraus leitet sich Forschungsfrage 1
dieser Arbeit ab, die wir in Kapitel 3 behandeln.

Forschungsfrage 1 Welche Methoden zur Generierung von Ausreißern gibt es und wie
werden sie genutzt?

Um zur Erkennung von Ausreißern Methoden auszuwählen, ist es von großem Vorteil
zu verstehen, welche Typen von Ausreißern von welcher Methode gut erkannt werden.
Das erlaubt es, eine geeignete Vorauswahl an Methoden zu treffen, um möglichst ver-
schiedene Typen erkennen zu können. Daraus leitet sich Forschungsfrage 2 ab, die wir in
Kapitel 4 behandeln.

Forschungsfrage 2 Lassen künstliche Daten eine differenziertere Evaluation in Bezug auf
Ausreißer verschiedenen Typs zu?
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Die bisher erwähnten Typen von Ausreißern beziehen sich immer auf einen festen
Datenraum. Bei sogenannten “versteckten” Ausreißern ist das nicht der Fall. Das sind
Ausreißer, die als solche nur in bestimmten Teilräumen zu erkennen sind. Ein Teilraum
ist jeweils eine Teilmenge der Datenattribute. Beispielsweise fällt der lokale Ausreißer
in Beispiel 1 nur im gesamten Datenraum auf. In den beiden Datenattributen für sich
betrachtet ist er nicht zu erkennen. Das heißt, in Bezug auf die einzelnen Datenattribute
ist er versteckt. Für versteckte Ausreißer ist also nicht nur die Beziehung zu anderen
Beobachtungen relevant, sondern auch die Teilräume, in denen die Ausreißer versteckt
oder erkennbar sind.

Es existieren im Prinzip keine Daten in denen versteckte Ausreißer bekannt sind und
es ist auch generell wenig über die Umstände die versteckte Ausreißer zulassen bekannt.
Beides wäre aber wichtig, umMethoden die Ausreißer mithilfe von Teilräumen erkennen,
zu evaluieren. Daraus leitet sich Forschungsfrage 3 ab, die wir in Kapitel 5 behandeln.

Forschungsfrage 3 Lässt sich der Nutzen der Evaluation mit generierten Ausreißern auch
auf Methoden übertragen, die Ausreißer mithilfe von Teilräumen erkennen?

Herangehensweise und Ergebnisse
In diesem Abschnitt gehen wir kurz auf unsere Herangehensweise an die Forschungsfra-
gen und die erreichten Ergebnisse ein.

Forschungsfrage 1
Fast alle der existierenden Ansätze zur Generierung von Ausreißern wurden mit dem Fo-
kus entwickelt, die richtigen Parameter für Methoden zur Erkennung von Ausreißern zu
finden. D. h., die Methoden zu kalibrieren. Die Parameter werden dabei so eingestellt,
dass die generierten Ausreißer optimal erkannt werden. In Kapitel 3 beschreiben wir, wie
diese Optimierung funktioniert und welche Ansätze zur Generierung künstlicher Ausrei-
ßer dazu in der Literatur existieren. Diese Ansätze haben wir dazu auf zwei voneinander
unabhängige Wege gruppiert. Zum einen über die resultierenden Eigenschaften in Bezug
auf die normalen Beobachtungen und zum andern über die Art wie die Ausreißer gene-
riert werden. Beispielsweise haben wir Ansätze gruppiert, die Ausreißer nahe an norma-
len Beobachtungen generieren. Ein weiteres Beispiel sind Ansätze die Ausreißer generie-
ren, indem von einer Verteilung eine Stichprobe gezogen wird. Beide Gruppierungen ge-
ben einen guten Überblick über die bereits existierenden Ansätze und zeigen das bereits
großes Spektrum an Ansätzen zur Generierung von Ausreißern mit unterschiedlichen Ei-
genschaften auf.

In ausführlichen Experimenten haben wir die verschiedenen Ansätze in Bezug auf die
Optimierung von Parametern mithilfe verschiedener Realweltdaten verglichen. Die Er-
gebnisse unterstreichen, dass es nicht den einen Ansatz gibt, der alle anderen Ansätze
schlägt. D. h., um durch die Optimierung von Parametern mithilfe künstlicher Ausreißer
eine gute Erkennung zu gewährleisten, sollte zumindest ungefähr bekannt sein wie sich
die zu erkennenden echten Ausreißer verhalten.
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Forschungsfrage 2

In Kapitel 4 formalisieren wir einen generischen Prozess, der es ermöglicht Daten zu
generieren, die die Evaluation von Methoden zur Erkennung von Ausreißern ermögli-
chen. Der Prozess kann so initiiert werden, das die generierten Daten, Ausreißer eines
bestimmten Typs enthalten. Vollständig künstliche Daten haben den Vorteil gegenüber
Daten, in denen nur die Ausreißer generiert werden, dass sehr genaue Information über
den Datenbestand verfügbar sind. Das ermöglicht eine aussagekräftige Interpretation der
Ergebnisse, da man dadurch das Ergebnis einer perfekten Erkennung von Ausreißern be-
stimmen kann. Mit diesem kann man die Ergebnisse der anderen Methoden vergleichen.
Dieser Vergleich kann zum Beispiel helfen, offene Potenziale der existierenden Methoden
zu entdecken. Zudem begünstigt der formalisierte Prozess, dass die generiertenDaten rea-
listisch sind. Das ermöglicht es, die Ergebnisse einer Evaluation zum Teil auch auf Daten
aus der realen Welt zu übertragen.

Um den Prozess zu demonstrieren, stellen wir in Kapitel 4 drei Instantiierungen vor.
Beispielsweise stellen wir Instantiierungen vor, für lokale oder globale Ausreißer. In einer
umfangreichen experimentellen Studie haben wir dann gängige Methoden zur Ausrei-
ßererkennung mit den vorgestellten Instantiierungen verglichen. Die Vergleiche zeigen
deutliche Unterschiede bei der Genauigkeit der Erkennung von Ausreißern in Bezug auf
unterschiedliche Typen. Zusätzlich haben wir Experimente durchgeführt, die aufzeigen,
dass die von unseren Instantiierungen generierten künstlichen Daten tatsächlich reali-
stisch sind.

Forschungsfrage 3

Um Forschungsfrage 3 anzugehen, beschäftigen wir uns in Kapitel 5 als Erstes mit der
Frage, ob versteckten Ausreißer überhaupt existieren, bzw. unter welchen Umständen.
Nurwenn versteckte Ausreißer überhaupt existieren, können sie für eine Evaluierung von
Methoden, die Ausreißer mithilfe von Teilräumen erkennen, nützlich sein. Die Frage nach
der Existenz von versteckten Ausreißern gehen wir zunächst theoretisch an. Die Aus-
sagen, die wir dabei erhalten, hängen stark von den Teilräumen ab, die den versteckten
Ausreißern zugrunde liegen. Um überhaupt klare Aussagen zu erhalten, betrachten wir
deshalb unterschiedliche Extreme der Auswahl an verschiedenen Teilräumen. Selbst mit
diesen spezifischeren Mengen an Teilräumen, benötigen wir aber sehr einschränkende
Annahmen, um Umstände, die versteckte Ausreißer zulassen theoretisch zu analysieren.
Eine dieser Annahmen ist beispielsweise, dass die Daten entsprechend einer multivariate
Gaußverteilung verteilt sind. Mithilfe der einschränkenden Annahmen können wir aber
zeigen, dass versteckte Ausreißer in verschiedenen Extremen von Teilräumen existieren
und untersuchen welchen Effekt die Korrelation der Datenattribute auf die versteckten
Ausreißer hat.

Als nächsten Schritt stellen wir ein Ansatz vor, um verstecke Ausreißer zu generieren.
Die generierten Ausreißer nutzen wir, um unsere analytischen Ergebnisse mit weniger
rigiden Annahmen zu bestätigen. Gleichzeitig stellen die generierten versteckten Ausrei-
ßern aber auch Schwachstellen von Methoden dar, die Ausreißer mithilfe von Teilräumen
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erkennen. Deshalb könnten die künstlichen versteckten Ausreißer auch sinnvoll für eine
Evaluation entsprechender Methoden eingesetzt werden.

In Bezug auf unsere analytischen Ergebnisse zeigen Experimente mit verschiedenen
Realweltdaten und Methoden zur Erkennung von Ausreißern, dass versteckte Ausreißer
prinzipiell auch in Fällen existieren, wenn die Annahmen nicht gelten. Genauso verhält
es sich mit dem Einfluss der Korrelation auf die versteckten Ausreißer.

Zusammenfassung der Ergebnisse und Ausblick
Mit meiner Dissertation beleuchte ich das Thema der Generierung von Ausreißern. In
besonderem Fokus stehen dabei die Aspekte der Evaluierung und Kalibrierung von Me-
thoden der Ausreißererkennung. Die einheitliche Beschreibung existierender Ansätze zur
Generierung von Ausreißern hilft, die auftretenden Problem, als auch bereits existieren-
de Lösungsansätze einfach nachzuvollziehen. Zusätzlich haben wir einen neuen Prozess
vorgeschlagen, der auf Basis von generierten Daten, die Evaluation von Methoden zur
Ausreißererkennung verbessert. Beziehungsweise, der Prozess ermöglicht die Evolution
in Bezug aufmanche Typen vonAusreißern erst. Die Untersuchungen zu verstecktenAus-
reißern führen zu interessanten Einsichten in Eigenschaften dieser sehr komplexen Art
von Ausreißern, beispielsweise deren Existenz. Im Vergleich zu einer rein theoretischen
Herangehensweise, konnten wir mit generierten versteckten Ausreißern die evaluierten
Szenarien für versteckte Ausreißer wesentlich realistischer gestalten. Zusätzlich stellen
die generierten künstlichen Ausreißer eine interessante Möglichkeit dar, speziell Metho-
den die Ausreißer mithilfe von Teilräumen erkennen, zu evaluieren.

Damit bietet die von mir geleistete Forschung auch einen guten Startpunkt für viele
weitere interessante Forschungsvorhaben, beispielsweise in der Entwicklung neuer An-
sätze zur Generierung von Ausreißern. Hier könnte insbesondere eine Verbindung mit
Ansätzen die auf existierenden echten Ausreißern basieren große Erfolge versprechen.
Der generelle Prozess, den wir entwickelt haben, kann um viele neue Instantiierungen
erweitert werden. Diese Erweiterung ist beispielsweise nützlich, um andere Typen von
Ausreißern abzudecken. Ein möglicher anderer Typ sind zum Beispiel Ausreißer, die nicht
alleine “ausreißen”, sondern als kleine Gruppe. Die künstliche Erstellung von versteck-
ten Ausreißern, könnte zukünftig auch zu einer verbesserten Teilraumsuche führen. Ein
iterativer Prozess, der abwechselnd versteckte Ausreißer generiert und mithilfe dieser,
bessere Teilräume findet, wäre beispielsweise eine Möglichkeit diese Art der Evaluation
direkt für eine optimale Methode zu nutzen.

In meiner Arbeit beschreibe ich systematisch den Nutzen und die Möglichkeiten der
Generierung von künstlichen Ausreißern und leiste damit einen signifikanten Beitrag für
die Erkennung echter Ausreißer. Beispielsweise ist es dank meiner Arbeit möglich, die
Evaluation von Methoden zur Erkennung von Ausreißern, differenziert in Bezug auf Aus-
reißer mir bestimmten Typen durchzuführen. Mit der entwickelten Evaluationsmethodik
können existierende Methoden zur Erkennung von Ausreißern entsprechend verglichen
werden und mögliche Anhaltspunkte für Verbesserungspotential der Methoden identifi-
ziert werden.
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Abstract
Outlier detection is an essential part of data science — an area with increasing relevance
in a plethora of domains. While there already exist numerous approaches for the de-
tection of outliers, some significant challenges remain relevant. Two prominent such
challenges are that outliers are rare and not precisely defined. They both have serious
consequences, especially on the calibration and evaluation of detection methods. This
thesis is concerned with a possible way of dealing with these challenges: the genera-
tion of outliers. It discusses existing techniques for generating outliers but specifically
also their use in tackling the mentioned challenges. In the literature, the topic of outlier
generation seems to have only little general structure so far — despite that many tech-
niques were already proposed. Thus, the first contribution of this thesis is a unified and
crisp description of the state-of-the-art in outlier generation and their usages. Given the
variety of characteristics of the generated outliers and the variety of methods designed
for the detection of real outliers, it becomes apparent that a comparison of detection per-
formance should be more distinctive than state-of-the-art comparisons are. Such a dis-
tinctive comparison is tackled in the second central contribution of this thesis: a general
process for the distinctive evaluation of outlier detection methods with generated data.
The process developed in this thesis uses entirely artificial data in which the inliers are
realistic representations of some real-world data and the outliers deviations from these
inliers with specific characteristics. The realness of the inliers allows the generalization
of performance evaluations to many other data domains. The carefully designed genera-
tion techniques for outliers allow insights on the effect of the characteristics of outliers.
So-called hidden outliers represent a special type of outliers: they also depend on a set of
selections of data attributes, i.e., a set of subspaces. Hidden outliers are only detectable
in a particular set of subspaces. In the subspaces they are hidden from, they are not de-
tectable. For outlier detection methods that make use of subspaces, hidden outliers are a
blind-spot: if they hide from the subspaces, searched for outliers. Thus, hidden outliers
are exciting to study, for the evaluation of detection methods that use subspaces in par-
ticular. The third central contribution of this thesis is a technique for the generation of
hidden outliers. An analysis of the characteristics of such instances is featured as well.
First, the concept of hidden outliers is broached theoretical for this analysis. Then the
developed technique is also used to validate the theoretical findings in more realistic con-
texts. For example, to show that hidden outliers could appear in many real-world data
sets. All in all, this dissertation gives the field of outlier generation needed structure and
shows their usefulness in tackling prominent challenges of the outlier detection problem.
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1 Introduction
Data science is a rather novel paradigmwith increasing relevance not only for researchers
but also for industry. In a nutshell, the task of solving problems using data could describe
data science (Carmichael and Marron, 2018). The broad range of problems that can or
might be solved by the help of data science has undoubtedly spurred the vast development
in this area of expertise. For example, the advances in artificial intelligence by the use of
deep neural networks (Arel et al., 2010) — in essence, a data science method. Data science
can be categorized by a few rather specific areas (Carmichael and Marron, 2018). Two
very prominent ones for the topic of this dissertation are (1) data gathering, preparation,
and exploration, and (2) data modeling. We will connect these two areas of data science
to the scope of this dissertation in the following.

Overall this thesis is concernedwith the detection of outliers (Aggarwal, 2017; Hawkins,
1980) often also called anomalies or novelties (Hodge and Austin, 2004). A common de-
scription of outliers was given by Hawkins (1980):

“An outlier is an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism.”

Figure 1.1 illustrates such data instances. It displays a histogram of the duration of erup-
tions from the Old Faithful geyser in the Yellowstone national park along with the actual
data instances (objects below the histogram)1. The triangle represents a single eruption
that had an extremely short and thus unusual duration (< 1 minute). Clearly, it qualifies
as deviating “so much […] to arouse suspicions that it was generated by a different mecha-
nism” (Hawkins, 1980).

The Faithful geyser data is merely an illustration. However, almost all applications of
data science are prone to outliers. They could result from a recording error or observations
of a different process that resulted from a change in the monitored system. A recording
error might occur due to misspellings when saving data to a database or invalid data
that comes from a defect sensor. Such errors can almost always happen and affect the
resulting analysis (see (Genschel, 2018), for example). In many cases, outliers can result
from a change in the monitored system and are of great interest to detect (Singh and
Upadhyaya, 2012): For example, in fraud detection, intrusion detection, or fault/damage
detection. In each such application, instances from the class of interest (e.g., a faulty
part) behave differently to most of the other data instances. In other words, a different
mechanism generates instances from the class of interest. Having these two origins of
outliers, the firm foundation of outliers in data science becomes apparent. Outliers that
resulted from recording errors are an essential part of the data gathering, preparation,
and exploration part. In the initial phase of any data analysis, such outliers should be
1 Data available at https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/geyser.html
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Figure 1.1: Outlier in the Faithful geyser data.

detected and possibly deleted. Outliers like the faulty parts — that are of great interest for
the domain expert — should be part of the data model. For example, by the inclusion of
an outlier detection method such that it detects if any part wears down. Note that there
is no precise distinction between recording errors and unusual observations of interest.
A defect sensor could be both, for example.

Of particular interest in this thesis are the calibration and evaluation of methods to de-
tect outliers. To “calibrate” a detection method, means to tune the method for a specific
setting by adjusting its parameters. The “evaluation” refers to a rating of the performance
of detection methods. For example, this rating can base on a comparison of the detec-
tion performance to the performance of other detection methods or a particular ideal
detection. For both calibration and evaluation, a performance measure in terms of outlier
detection is crucial. In the literature, the primary usage of artificial outliers is the calibra-
tion of outlier detection methods. The evaluation of outlier detection methods through
artificial outliers is something rather novel we propose in his thesis.

1.1 Central Challenges

The topic of outlier detection is far from solved, and many challenges remain. The follow-
ing illustrates two central challenges in outlier detection. Both challenges are relevant,
especially for the calibration and evaluation of methods to detect outliers since they af-
fect any measure of detection performance.

1.1.1 There is Few Outliers

Outliers are rare (Emmott et al., 2015, 2013; Campos et al., 2016). If at all, there are only a
few examples of the outliers in a specific data set. For the applications mentioned above,
that is also the case: Parts of any system should rarely be faulty, or fraud should rarely
happen. This scarcity of outliers poses great challenges for data science methods (Visa
and Ralescu, 2005; Tax and Duin, 2001; Wang et al., 2018). Example 1 illustrates why the
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1.1 Central Challenges

calibration and evaluation of outlier detection methods are affected by this scarcity in
particular.

Example 1 Let there be nout outliers O and a detection method that successfully detects an
outlier with some unknown probability p. An estimate for the performance of the detection
method might be p itself which would be estimated by2

p̂ =
1

nout

∑
~o∈O

1{~o is detected as outlier}. (1.1)

The variance of p̂ then is

Var(p̂) =
p(1− p)

nout
. (1.2)

Thus, the variance of p̂ increases with decreasing nout.

The essential takeaway from Example 1 is that with fewer outliers (nout), the variance of
the estimate for the performance of the detection method is higher. Thus, the estimate
that tells us if the detection method performs well is much less reliable with few outliers.
In terms of evaluation and calibration, this poses a severe problem. A detection method
that turned out to be the best using these few instances might not be a suitable detection
method with other outliers. The same holds when calibrating detection methods using
the few outliers.

1.1.2 Their Notion is Imprecise
Another issue with outliers is that they are not precisely defined (Zimek and Filzmoser,
2018). The description given by Hawkins (1980) already gives some leeway. For example,
it does not specify how different instances must be to qualify as an outlier. Think again
of the outlier in Figure 1.1: How much longer should the eruption last, such that the
eruption is no longer outlying? Besides, there exist multiple types of outliers characterized
by specific properties. For example, a common distinction is made between global and
local outliers (Breunig et al., 2000; Schubert et al., 2014; Campos et al., 2016) illustrated in
Example 2.

Example 2 The time preceding an eruption is the waiting time of this eruption. Figure 1.2
displays the combination of waiting time and duration of an eruption for the Faithful geyser.
The triangle from Figure 1.1 is clearly an outlier in this scatter plot as well. There is also
another outlier that distinguishes itself with an incredibly long-lasting waiting time (> 100
minutes). Since they both stand out in comparison to all other data instances, they usually
are characterized as global outliers. Local outliers, in contrast, stand out in their local
neighborhood. The eruption marked by a blue cross, for instance, raises the suspicion to be
different from the eruptions on its right with a slightly longer-lasting eruption but similar
waiting time. However, from a global perspective, the eruption marked by the blue cross is
rather close to the other instances.
2 For this we assume that the detection of one outlier is independent of the detection of other outliers.
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Figure 1.2: Scatter plot of the Faithful geyser data.

All this highlights the imprecise and somewhat subjective notion of what is and is not an
outlier. This imprecise notion is also a very central issue, specifically with the estimation
of detection performance. For many predictive data science methods, performance evalu-
ation takes place on some annotated data (Hastie et al., 2009). In annotated data, the class
membership (e.g., inlier or outlier) of instances is known. This holds in particular for out-
lier detection (Campos et al., 2016; Emmott et al., 2015, 2013; Goldstein and Uchida, 2016;
Domingues et al., 2018). Clearly, for outliers of a different type, other methods for outlier
detection perform well. However, a single annotation of instances can not cope with the
imprecise notion of outliers and their types. We are also not aware of any data set with
annotations concerning locality or any other specific type of outliers. We annotated the
outliers mentioned in Example 2 with our subjective interpretation of outliers. Two ge-
ologists might come to different annotations — compared to ours but maybe also among
themselves. A consequence of this is that the performance evaluation of outlier detection
methods is difficult. In particular, in terms of outliers of different types.

Artificial outliers are generated such that they are outliers in terms of a set of inliers
and represent one way to deal with the two mentioned challenges. Two properties of
generated outliers are particularly beneficial in terms of the challenges described so far.
They can usually be generated in any desired amount and thus are not rare. Since the
generating procedure is known and can be adapted, generated outliers have quite distinct
and controllable properties. Thus, generated outliers counteract the challenges described
earlier.

1.2 Central Contributions
In the literature, there exists a vast amount of different techniques to generate outliers.
However, it is not always clear what properties they share or in what aspects they might
contradict each other. These properties might be algorithmic or refer to the characteristics
of the generated outliers. For example, the technique proposed in (Tax and Duin, 2001)
tries to generate outliers rather close to inliers. The technique proposed in (Pham et al.,
2014) tries to generate outliers very far from inliers. Not always, there is a discussion of

4



1.2 Central Contributions

the relevance of such central characteristics of the generated outliers. This is the basis for
Contribution 1 that is given mostly in Chapter 33.

Contribution 1 This thesis gives a unified description of existing techniques to generate
outliers and their usages.

The central idea to most of the proposed techniques for generating outliers is to find
proper parameters for the detection of genuine (i.e., not generated) outliers. This is, cali-
brating a detection method. Such a calibration should work reasonably well if the types
of genuine outliers are at least roughly known. However, the focus of outlier detection
in the data gathering, preparation, and exploration part of data science is to identify any
instance that might be an outlier. Especially in this stage, it is usually not known what
types of outliers might be present in the data. One way to approach this could be to ap-
ply a large selection of different state-of-the-art detection methods. This approach might
enable the detection of any type of outlier. However, varying the parameters of a single
detection method can already result in a massive set of different outlier detection results.
Investigating each such result is time-consuming and difficult. A better approach would
be to apply a rather small suite of detection methods that can detect outliers from a broad
spectrum of different types well. For creating this suite of detection methods, it is essen-
tial to be able to investigate the performance of detection methods with diverse types of
outliers. This results in Contribution 2 that is described in Chapter 44.

Contribution 2 We propose a process that uses generated data to allow for the evaluation
of outlier detection methods in terms of different outlier types.

The outlier types mentioned so far, always related to a fixed set of data attributes. With
so called “hidden outliers” (Steinbuss and Böhm, 2017) this is not the case. Hidden out-
liers are outliers only in specific subsets of the data attributes, commonly referred to as
subspaces (Keller et al., 2012; Trittenbach and Böhm, 2019; Müller et al., 2011; Kriegel
et al., 2009b). For example, the local outlier described in Example 2 does only deviate
from other instances when observing both data attributes. When observing the duration
of eruption or the waiting time in isolation, the outlier is close to other instances and not
detectable as an outlier. Put differently, in terms of the one-dimensional views of the data
the outlier is hidden. Hidden outliers represent a special type of outliers that is somewhat
orthogonal to the types described so far: Hidden outliers can be of any such type in any
of the subspaces. An essential property of hidden outliers is that they can be the blind
spot of detection methods that make use of subspace — so-called Subspace Search Outlier
Detection (SSOD). Hidden outliers are usefull to evaluate SSODmethods in particular. To
illustrate, if a certain SSOD method does not allow for any hidden outliers, it probably
has a high detection performance. However, there is not much knowledge of the circum-
stances that back the existence of hidden outliers. Thus, Contribution 3 that is given in
Chapter 55 addresses hidden outliers specifically.

Contribution 3 We analyze the concept of hidden outliers and develop an algorithm to
generate them.
3 Published version: (Steinbuss and Böhm, 2020a)
4 Published version: (Steinbuss and Böhm, 2020b)
5 Published version: (Steinbuss and Böhm, 2017)
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1.3 Fundamentals
This section reviews fundamental concepts for this thesis. The first part discusses the no-
tion of objects (like outliers or inliers) we use throughout this thesis. Some additional no-
tation is specific to a particular chapter and hence, introduced when needed (e.g., hidden
outliers and subspaces). The second part of this section focuses on outlier detection itself.

1.3.1 Notion of Common Objects
Common types of objects in this dissertation are matrices, vectors, distributions, func-
tions, and general sets. Within each type, the notation is similar. This will be explained
and illustrated in the following.

Amatrix is a collection of some real-valued numbers arranged (IR) in the form of a fixed
number of rows and columns. The most common object of this type in this dissertation is
a given real-world data set X ∈ IRngenu×d. Each row in X is an instance, and each column
called an attribute. The number of instances in X is denoted ngenu and the number of
attributes (the columns of X) by d .

A vector is a collection of some real-valued numbers arranged in the form of a fixed
number of attributes. For example, the instances in X denoted ~x. The value of the ith
attribute of an instance ~x is ~x(i). i as a subscript refers to the ith instance from a set. For
example, ~xi is the ith instance fromX . This notation generalizes to other objects (like the
distributions or general sets).

Instance

Genuine

Inlier Outlier

Artificial

Inlier Outlier
(a)

Data set

Genuine Augmented Artificial
(b)

Figure 1.3: Terminology in respect to genuine or generated data.6

Themost common objects of type vector are displayed in Figure 1.3a and of type matrix
in Figure 1.3b. The real-world data set and the enclosed instances are genuine (i.e., not
generated). Generated instances are referred to by “artificial”. Any instance can either be
an inlier or outlier. A corresponding set of instances (i.e., a matrix) is denoted I or O. If
the set refers explicitly to, say, genuine outliers, a corresponding subscript is added: Ogenu.

In terms of a data set (i.e., a matrix), there are three distinctions: genuine, augmented,
and artificial. Genuine and artificial have the same meaning as with the instances. For
example, the real world data set X is genuine. Augmented data is a mixture: genuine
instances in combination with some artificial ones. For example, when adding outliers
6 Adopted from (Steinbuss and Böhm, 2020a).
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to real data that has only inliers. Note that in the literature, the synonym “synthetic”
is rather frequent when referring to artificial data sets. However, for consistency, we
usually use “artificial”.

A distribution describes the probability of values of a random variable. For example,
the distribution of inliers I describes the probability of instances being an inlier or the
one of outlier O of being an outlier.

There are many functions in this thesis. Usually, we denote these functions by plain
lowercase letters. The most common function is an outlier detection function “dect”. It
outputs either a binary signal stating if an instance is an outlier or not (Chapter 5), or a
score that indicates how outlying an instance is (Chapter 4).

A general set is usually denoted by calligraphic letters. For example a region R, which
is a subset of the whole data region Rfull. The whole data region itself is the set of all
feasible instances. In Chapter 3 Rfull = IRd or in Chapter 5 Rfull = [l, u]d for example.

1.3.2 Outlier Detection in This Thesis

This section reviews the central idea of outlier detection for this thesis. First, we describe
the data that is the basis for outlier detection. Then we will shortly describe central con-
cepts for outlier detection methods with such data.

The Data for Outlier Detection

A central identity in data — especially regarding performance — is the so-called “label
of an instance”. The label represents the target of interest. To illustrate, classification
methods partition a set of given instances into classes (Hastie et al., 2009). For example,
classifying emails into “spam” and “no spam”. Then the label is a categorical variable y
with y ∈ {spam, no spam}. With outlier detection, one usually has y ∈ {inlier, outlier}.
The methods and techniques we design and discuss in this dissertation assume that there
are no labeled examples of outliers. This is, they base on data that has either no labels
y ∈ {inlier, outlier} at all or that has no instance that has the label “outlier”. We deem
these the most vital scenarios since outliers are rare.

Nonetheless, we will also make use of existing benchmark data for outlier detection
that does come with labeled instances from both classes. Usually, this data is from the
study by Campos et al. (2016). The reason for this is the validation or demonstration of
the discussed methods and techniques. Note that the label in this data does not allow
inference on the type of the outliers. This is, instances labeled “outlier” in the data from
(Campos et al., 2016) could be of any type.

Taxonomy of Detection Methods

The usage of labels allows for the categorization of outlier detection into three areas
(Hastie et al., 2009; Chapelle et al., 2010): supervised, unsupervised and semi-supervised.
In terms of supervised outlier detection, we further differentiate between binary classifi-
cation and One-Class Classification (OCC). This categorization is visualized in Figure 1.4.
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Figure 1.4: A taxonomy of outlier detection based on the availability of labels.

The methods that require no data with labeled outliers are either unsupervised or from
OCC. Unsupervised methods assume that there are no labels for instances, while methods
from OCC assume that the available instances are inliers. However, methods designed for
OCC are usable also when there is no label available at all (i.e., the unsupervised case). See
for example (Theiler and Michael Cai, 2003). The other way around, detection methods
designed for the unsupervised case can also be used for OCC (Swersky et al., 2016).

Binary classification methods and methods for semi-supervised learning assume that
there are some labeled outliers. Thus, suchmethods are not of direct interest in this thesis.
However, binary classification remains important: In the literature the casting-task use
case for artificial outliers (cf. Section 3.7) is common. This use case enables the usage of
any binary classification method for OCC.
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The related work in this thesis has five parts. First, we review benchmarks for outlier
detection — the usual way for evaluating outlier detection methods. We do not discuss
related work for the calibration of outlier detection methods since we do not propose this
methodology in this thesis but only summarize what others have contributed to this field.
Thus, we leave a systematic review of alternative ways for calibrating outlier detection
methods to the respective literature (see, e.g., (Wang et al., 2018)). The second part deals
with data generation in general. The third part describes existing techniques to generate
outliers without any genuine instances. In contrast, the fourth part discusses the gener-
ation of additional instances — not necessarily outliers — in terms of some genuine ones.
Generating outliers in terms of a set of genuine instances is somewhat in-between parts
three and four. Since the vast majority of techniques for generating outliers are of this
kind, these techniques are the focus of Chapter 3 and not reviewed here. The fifth part of
this section deals with related work specifically for hidden outliers and subspace search.
In other words, that part is in particular relevant for our contribution in Chapter 5.1

2.1 Benchmarks for Outlier Detection
Benchmarks are large scale comparisons of the performance of different outlier detection
techniques. They are essential for this thesis since they represent the state-of-the-art in
evaluating outlier detection methods, and they summarize most of the available data sets
with annotated outliers.

In terms of evaluation, the ideal outlier detection benchmark data set should fulfill the
following requirements.

1. All instances in the data should have been assigned to the class of inliers or
outliers.

2. The outliers should have characteristics that make them suite the meaning of
outliers.

3. These characteristics should be known precisely.

The first requirement is vital for the performance measures themselves. For example, to
identify the share of outliers that were detected by a method. The next two requirements

1 The remainder of this chapter (except Sections 2.4 and 2.5) is an extraction and adaptation from (Stein-
buss and Böhm, 2020b), which is submitted for review. Adjustments are to ensure consistency for this
dissertation.

9



2 Related Work

aim at the interpretation of the detection performance results, especially in terms of out-
liers of different types. In the following, we describe howwell the current state-of-the-art
in outlier detection benchmarks copes with these requirements.

Several benchmarks especially for unsupervised outlier detection exist (Domingues
et al., 2018; Goldstein and Uchida, 2016; Campos et al., 2016; Emmott et al., 2013, 2015).
They all use real-world data, usually from classification. One of the classes in the data set
is selected and defined as the “outlier” class. Then this class is downsampled since outliers
are rare. The class defined as the “outlier” class is usually selected based on its semantic
meaning. For example, the patients that have a disease in data that records patients with
and without the disease. While this addresses the first requirement for benchmark data
given above, there remain at least two issues: (1) a semantic meaning does not necessarily
translate to the given data representation, and (2) it does not specify at all of what type
the outliers might be. Example 32 illustrates the mentioned issues.

Example 3 Think of data in which one class represents patients that suffer from a brain
tumor, and the other class represents patients without a tumor. Let us assume that the height
of each patient is the only attribute given to us. Although the patients that suffer from a
tumor are semantically meaningful as outliers, this does not translate to the height of the
patients: regarding the height, there should be no difference. Even if we have attributes in
which the two classes of patients are separable, it is still unclear how the two classes deviate
from each other. Let us assume, we have a representation of images of the whole brain that
— if applicable — includes the tumor of patients. In such data, the patients with tumors might
be local outliers since, in large parts, the brains should be similar. If we have data about
the overall well-being of the patients, on the other hand, the patients with tumors could be
global outliers.

Thus, with the described methodology, the second and third requirement is not directly
addressed. Not addressing the requirements renders the interpretation of the results from
a benchmark difficult or even impossible, concerning outliers of different types in partic-
ular.

In (Emmott et al., 2013, 2015), the issues just described are addressed to some extent
through introducing four problem dimensions. These problem dimensions should result
in a more systematic benchmark with real-world data. Sampling specific instances from
the real-world data, allows varying the four dimensions within a data set. The more
controlled versions of the data resulting from this are then useful to benchmark outlier
detection methods. The four dimension are called “point difficulty”, “relative frequency”,
“semantic variation” and “feature relevance”. Relative frequency is the characteristic of
outliers, that is addressed in other benchmarks as well: there should be only very few.
Point difficulty measures how distant an outlier is to inliers. The rationale is that an out-
lier with greater distance is less difficult to detect. Semantic variation refers to the degree
to which the outliers are spread across the instance space and not clustered. Feature im-
portance addresses the issue of attributes in which outliers are not outlying the inliers.
Clearly sampling instances according to the dimensions introduced in (Emmott et al.,

2 A conversation with Prof. Dr. Jörg Sander inspired the example .
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2013, 2015) does improve on the issues illustrated with Example 3. With carefully craft-
ing appropriate problem dimensions, themethodologymight even allow for an evaluation
in terms of some different types of outliers. Thus, this methodology fulfills also the second
requirement. However, the whole method crucially depends on the approaches to mea-
sure the dimensions in real-world data. These approaches are approximations themselves
which can interfere with the interpretation of the results. For example, to measure point
difficulty a binary classifier is proposed (Emmott et al., 2013, 2015). The rationale is that
an outlier that has a high probability of being from the “outlier” class for this classifier is
consequently easy to detect. The other way around, an outlier with a low probability is
difficult to detect. However, the classifier gives only an approximation of this probability
and thus might be wrong. Hence, this methodology does not fulfill the third requirement
given above. In turn, the entirely artificial data we propose for the evaluation of outlier
detectionmethods in Chapter 4, comes with precisely known characteristics of inliers and
outliers. Thus, there is no estimation uncertainty in the computed ground truth.

There is also a benchmark for OCC (Swersky et al., 2016). The concept is similar to the
benchmarks for unsupervised outlier detection, like (Campos et al., 2016). Two significant
differences are that there is no downsampling of the class that represents outliers and that
the assignment of classes in “outliers” and “inliers” is varied. This variation means that
for the same data set a class might the “inlier” class in one experiment and the “outlier”
class in another experiment. Thus, the issues illustrated earlier apply here as well.

2.2 Artificial Data Sets
Data generation, in general, is of high relevance for this thesis. There is much literature
on generating a data set entirely, but here we focus on ones that are relevant for outlier
detection. For broader reviews see (Zimmermann, 2019; McLachlan et al., 2019; Frasch
et al., 2011; Steinley and Henson, 2005). First, we review domain-specific data generators.
Then we review generators developed without a specific domain in mind. Lastly, we
review generation approaches that use real data as a basis.

2.2.1 Domain Specific
Many artificial data sets are specific to a domain. This is, their generation process is de-
signed with a certain application in mind, like chemical processes (Downs and Vogel,
1993), fraud detection (Barse et al., 2003) or application scoring (Kennedy, 2011). Such
artificial data is also already used in benchmarks for unsupervised outlier detection. For
example, in the benchmark (Campos et al., 2016) the data set Waveform3 is artificial. Such
data can be useful when comparing outlier detection approaches. However, domain-
specific artificial data is usually not generated for outlier detection. For instance, the
Waveform data is generated to evaluate methods for classification. Hence, if the data is
useful for the benchmark of outlier detection methods is unclear. Even if like (Downs and
Vogel, 1993; Barse et al., 2003; Kennedy, 2011), such data has a class that is semantically
meaningful as outliers, it is costly to generate such data: a domain expert must be heavily
3 http://archive.ics.uci.edu/ml/datasets/waveform+database+generator+(version+2)
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involved in its design. Novel frameworks for crafting realistic data like the one introduced
in (Mannino and Abouzied, 2019) might reduce the effort by utilizing smart visualizations
and useful suggestions for attribute values, distributions, and dependencies among them.
However, an expert must still be involved. For a broad benchmark of detection methods,
it is necessary to generate data from many data domains. This generation is difficult with
domain-specific generators. Besides, the data generators we are aware of usually feature
very different generation approaches. Hence, it is difficult to compare data from the dif-
ferent generators in a benchmark beyond what is possible with real-world data already.

2.2.2 Domain Agnostic
There also exist many artificial data generators not situated in a certain domain, most of
them for clustering (Iglesias et al., 2019; Sánchez-Monedero et al., 2013; Melnykov et al.,
2012; Maitra and Melnykov, 2010; Qiu and Joe, 2006; Pei and Zaıane, 2006; Steinley and
Henson, 2005; Waller et al., 1999; Milligan, 1985) or classification (Frasch et al., 2011;
Rachkovskij and Kussul, 1998). A major difference between the generators for clustered
data is the control of overlap (Sánchez-Monedero et al., 2013; Melnykov et al., 2012; Maitra
and Melnykov, 2010; Qiu and Joe, 2006; Steinley and Henson, 2005; Milligan, 1985). In a
nutshell, this overlap is a measure of how well separated the different clusters are from
each other. In other words, it gives the degree to which instances from clusters can be
confused with each other. How to parameterize the generators — for example, for a broad
benchmark of outlier detection algorithms — remains an open question. Next, the proba-
bility densities that we use to obtain ideal outlier detection scores are not always available.
Thus, there might be only little insights available from such data. However, in many cases,
the techniques to generate domain agnostic data are the same as the ones used to gener-
ate data from real data. For example, Gaussian mixtures are common in the generation of
domain agnostic data (Sánchez-Monedero et al., 2013; Melnykov et al., 2012; Frasch et al.,
2011; Maitra and Melnykov, 2010; Milligan, 1985) but as we will see in the next section
for generating data from real data as well. This usage of similar generation techniques
might be one reason that the separation between domain agnostic generators and ones
that generate data from real data is not precise.

2.2.3 From Real Data Sets
“Synthetic reconstruction” aims at generating data that matches the given real data. This
term is known from survey data (Wan et al., 2019) but the principle is common in other
disciplines as well (Mannino and Abouzied, 2019; Sun et al., 2018; Fazekas and Kiss, 2018;
Albuquerque et al., 2011; Waller et al., 1999). Synthetic reconstruction is also the method-
ology we follow when we generate data in Chapter 4.

Often synthetic reconstruction is needed due to a limited amount of data or due to
privacy issues with the original data (McLachlan et al., 2019). Some in principle domain
agnostic data generators mentioned earlier also allow for some adaptation to real-world
data. For example, in (Albuquerque et al., 2011) and (Iglesias et al., 2019), data generators
are proposed that can cope with user defined distributions. Another example is the use-
case example featured in (Waller et al., 1999). In their use-case example,Waller et al. (1999)
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adopt the parameters of their generation technique to real-world data. Fitting statisti-
cal distributions to generate realistic artificial data is common as well (Sun et al., 2018;
Fazekas and Kiss, 2018; Rogers et al., 2003). For example, Gaussian mixtures are useful to
model protein spots in images of electrophoresis gel (Rogers et al., 2003). Artificial data
is then generated from this model and used for evaluation purposes. Approaches like the
Generative Adversarial Network (GAN) (Goodfellow et al., 2014a) recently received much
attention for their astonishing capabilities in generating realistic artificial data. However,
they do not provide much ground truth for the generated data.

In Chapter 4 we focus on approaches like (Sun et al., 2018; Fazekas and Kiss, 2018;
Rogers et al., 2003) that fit statistical distributions to real-world data and draw samples
from these models for generating data. The reasons for this focus are manifold, and we
will cover them in detail in Section 4.4.2. In a nutshell, statistical distributions are simple
and powerful, but give us at the same time the ability to compute useful ground truth
annotations for the generated data.

2.3 Generating Outliers Without Real Data
The review for generating data in Section 2.2 focused on the techniques that exist to gen-
erate a whole data set, possibly with some classes or clusters. Here we want to focus
specifically on the aspect of generating outliers that is also featured by some techniques
and approaches already reviewed. However, we focus on techniques that do not use any
real-world data to generate outliers. Techniques that do use real-world data for generat-
ing artificial outliers are detailed in Chapter 3.

Two of the benchmarks for unsupervised outlier detection reviewed in Section 2.1 fea-
ture artificial data with outliers (Domingues et al., 2018; Emmott et al., 2015). In (Em-
mott et al., 2015), data is generated in that inliers follow a simple multivariate Gaus-
sian distribution and in (Domingues et al., 2018), inliers follow two separate Student’s
t-distributions. In both cases, outliers come from a uniform distribution surrounding the
regular instances. As stated in (Emmott et al., 2015), such simple data does necessarily
increase the possible takeaways from a benchmark in comparison to real-world data.

Generators for clustering introduced in Section 2.2.2 also feature the generation of out-
liers, usually from a uniform distribution within the instance space (Iglesias et al., 2019;
Melnykov et al., 2012;Maitra andMelnykov, 2010; Qiu and Joe, 2006; Pei and Zaıane, 2006).

In (Iglesias et al., 2019), outliers are generated not by sampling from a uniform distri-
bution, but by using the intersections of a grid. While we deem the resulting distribution
close to uniformity, this is difficult to verify, given the purely algorithmic description.
Interesting is that the proposed technique for generating outliers allows for the straight-
forward generation of outliers that are detectable in a specific subset of attributes. This
generation is close to the hidden outliers detailed in Chapter 5. However, the technique
is not useful for generating hidden outliers in real data like the technique we propose in
Chapter 5.

In (Pei and Zaıane, 2006) and (Milligan, 1985), techniques for the non-uniform genera-
tion of outliers are proposed as well. In (Pei and Zaıane, 2006), outliers are generated such
that they follow pre-specified patterns — lines, for example. In (Milligan, 1985), outliers
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are generated by sampling from a Gaussian with increased variance in comparison to the
Gaussian that inliers are samples of. The technique is interesting since it is the only one
to generate local outliers. Thus, one can generate outliers of a specific type, which is, as
motivated earlier, one of the major concerns of this thesis. The possibility of generating
outliers of a specific type is the reason we will use this generation technique for one in-
stantiation of the process for benchmarking unsupervised outlier detection described in
Chapter 4.

2.4 Generating Other Additional Instances

There also are a few approaches that generate instances but not specifically outliers. “Syn-
thetic oversampling”, for example, is one way for improving the classification of imbal-
anced data (Krawczyk, 2016). In imbalanced data, one class is underrepresented. The idea
in synthetic oversampling is to increase the sample size of the minority class by generat-
ing instances similar to the other instance from this class. When adding these generated
instances to the existing data, the class is no longer underrepresented. The most common
approach for this is the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla
et al., 2002). In essence, SMOTE interpolates between the different existing instances from
the minority class. Within this interpolation, the generation of new artificial instances
takes place. There also exist multiple adaptations to this idea (Krawczyk, 2016). However,
the idea of SMOTE and imbalanced classification requires at least a few labeled examples
from the minority class.

4“Classifier evasion” is another field inwhich instances are generated and added to data.
To illustrate classifier evasion, think of a spam filter. The idea now is that a spammer
wants to send emails that are “as close as possible” to spam, but are classified as regular
mail. However, existing approaches to find such instances (Nelson et al., 2010; Xu et al.,
2016) rely on at least one instance of spam email.

“Adversarial examples” (Szegedy et al., 2013) thatwere recently introduced in the neural
network community follow the concept of classifier evasion. An adversarial example
is an instance that is classified wrongly due to some small changes to it. The crafting
of such adversarial examples is formalizable as an optimization problem (Szegedy et al.,
2013). The optimization is on the amount of modification on an instance such that it is
classified differently. The smallest modification is optimal. Several approaches for crafting
adversarial examples focus on the case that the classifier they invade is a neural network
(Goodfellow et al., 2014b; Papernot et al., 2016). We will discuss this in greater length and
also set it into perspective with artificial outliers in Section 3.8.3.

“Protecting privacy” is another area in data analysis that relates to the topic of generat-
ing instances. The reason is that serval approaches for privacy protection add generated
instances to the data. For example, in (Kido et al., 2005), an algorithm is proposed to add
dummy instances to geolocation data of individuals in order to increase privacy. How-
ever, the objective in protecting privacy is different from the one of generating outliers:

4 The remainder of this section is an extraction of the related work section in (Steinbuss and Böhm, 2017),
previously published in the International Journal of Data Science and Analytics.
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Privacy-protection approaches attempt to add data that behaves like the original data.
Hence, the real data is hidden, while relevant information is still available.

2.5 Hidden Outliers and Subspace Search
5We are not aware of any comprehensive study of hidden outliers. However, in (Zimek
et al., 2012) the notion of “masked” outliers is described. Masked means that irrelevant
attributes within a data set can hide the outlier behavior to some extent.

Hidden outliers are, of course, related to the various methods for SSOD. In this re-
gard, there exist subspace search schemes that integrate subspaces in the outlier detection
method (Kriegel et al., 2009b; Müller et al., 2011) but also schemes that first identify sub-
spaces independent of a downstream outlier detection (Lazarevic and Kumar, 2005; Keller
et al., 2012; Trittenbach and Böhm, 2019). One goal — specifically in the second category
of schemes — is to find the combination of subspaces that allow for the best detection of
outliers overall: First, such schemes find a set of subspaces that are promising for detect-
ing various outliers. Then each subspace is searched for outliers, and the results from all
subspaces are combined. For example, High Contrast Subspaces (HiCS) is a well-known
method to find subspace independent of the outlier detection method. First, HiCS finds a
set of subspaces that each has a high contrast. This contrast is essentially a multivariate
dependency measure (Fouché and Böhm, 2019). Then in each subspace, an outlier detec-
tion method is applied. The last step is to combine the outlier detection results (a scoring
that indicates how probable an instance is an outlier) from each subspace. The maximum
score across each subspace or the average of all scores is useful for this combination (Keller
et al., 2012). Especially for the category of schemes that find subspace independent of
the outlier detection method, hidden outliers represent a new artifact for evaluation pur-
poses. If there can be many outliers hidden from a specific selection of subspaces, this
selection is likely to perform not good at detecting various outliers in the data.

5 This section is extracted and adapted from the related work section in (Steinbuss and Böhm, 2017), pre-
viously published in the International Journal of Data Science and Analytics.
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3 Generating Outliers from Genuine
Instances

Section 2.3 has featured a discussion about the few techniques for generating outliers
without real data. In this chapter, we review the vast majority of generation techniques:
ones that do rely on real data (i.e., genuine instances).1 There exists a large body of liter-
ature on such generation techniques (Steinbuss and Böhm, 2017; Wang et al., 2018; Curry
and Heywood, 2009; Gonzalez et al., 2002; Shi and Horvath, 2006; Steinwart et al., 2005;
Theiler and Michael Cai, 2003; Pham et al., 2014; Wang et al., 2009; Fan et al., 2004; Abe
et al., 2006; Hempstalk et al., 2008; Neugebauer et al., 2016; Désir et al., 2013; Bánhalmi
et al., 2007; Tax and Duin, 2001; Hastie et al., 2009). The idea is that one extends the given
data set through accurate approximations of outliers and thus obtains augmented data.
This augmented data is useful for finding the parameters of an outlier detection method
(i.e., to calibrate it).

3.1 Purpose of Surveying Generation Techniques

There are two ways to calibrate a detection method with the help of augmented data: (1)
casting an unsupervised learning task into a supervised one and (2) parameter tuning of
one-class classifiers (see Section 3.7 for details). The common ground for these two dif-
ferent ways remains somewhat unclear, mainly due to a limited general perspective. That
is, what artificial outliers are used for in general, and how existing techniques to gen-
erate them differ are currently not well formulated. The absence of a sophisticated gen-
eral perspective makes it also difficult to connect the generation of artificial outliers to
other research fields, such as generative modeling or adversarial learning. This integra-
tion, however, would be beneficial for both the generation of artificial outliers and related
fields. One obstacle to such a general perspective, however, is that the terminology used
in articles from different fields varies widely.

Possibly due to the missing general perspective, there is not much knowledge available
on the performance of generating outliers or methods calibrated with them. For example,
we are aware of only one comparison of the two ways to calibrate outlier detection meth-
ods by the usage of artificial outliers (Davenport et al., 2006). However, the comparison
is only for a few somewhat similar generation techniques. Hence, we find it somewhat
challenging to assess whether one of the two ways yields better outlier detection, irre-
spective of the generation technique used. A sizable study is also needed to investigate

1 The remainder of this chapter is almost identical to (Steinbuss and Böhm, 2020a), which is submitted for
publication. Adjustments are to ensure consistency for this dissertation.
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the hypothesis that a high-quality result using a specific generation technique is not gen-
eral. In other words, other generation techniques might be better on, say, other data sets.

3.2 Goals
In this chapter, we want to give the field of generating artificial outliers based on genuine
instances a missing general perspective. This general perspective comprises clarifying
the differences between the many diverse techniques to generate artificial outliers that
already exist but also formulating and discussing a more general problem formulation.

Having some general perspective, we also aim at a sizable study that features system-
atic comparisons in terms of the ways for calibrating detection methods and generation
techniques for artificial outliers. In particular, we want to compare (1) the performance
of the different generation techniques, (2) the difference in outlier-detection performance
of the two ways to calibrate outlier detection methods, and (3) analyze the characteristics
of the data (e.g., the number of attributes) that influence the performance of techniques
for generating artificial outliers. Another goal we have is to construct a concise set of ad-
vice that guide in the application of artificial outliers. These should simplify the usage of
artificial outliers by much and thus might further increase their usage in the detection of
real outliers.

3.3 Methods
We start this chapter by establishing a unified terminology around artificial outliers. We
then describe the two different ways to calibrate outlier detection methods with artificial
outliers. Following this, we highlight connections to other research fields and possible
synergies. Given these connections, we produce a general problem formulation for the
generation of artificial outliers and embed existing techniques into it. We describe each
existing technique, using the unified terminology introduced. All this together results in
the general perspective on the field of artificial outliers we aim at.

We then perform extensive experiments, comparing the two ways to calibrate detec-
tion methods with artificial outliers. These also allow us to analyze the performance of
the different generation techniques with many benchmark-data sets on outlier detection.
The effect of data characteristics, like the number of attributes, can be analyzed as well.
Following the careful analysis of the results of our experiments we synthesize the find-
ings obtained into a straightforward decision process that guides in the usage of artificial
outliers.

3.4 Organization of This Chapter
The remainder of this chapter is structured as follows. First, we outline the scope of this
chapter in Section 3.5. We describe the ambiguity of terminology from the literature in
Section 3.6, and describe the usages of artificial outliers in Section 3.7. We then establish
connections between the topic of generating artificial outliers with other research fields in
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Section 3.8. In Section 3.9, we offer a general problem formulation. Section 3.10 describes
the different generation techniques that presently exist. Section 3.11 outlines methods to
filter artificial outliers for ones that give better results than the set of unfiltered ones.
Section 3.12 contains the results of our extensive experimental study, and Section 3.13
presents our conclusions.

3.5 Scope of This Chapter

The study in this chapter focuses on the description, categorization, and comparison of
the various existing generation techniques for artificial outliers based on some genuine
instances. We do not propose any new generation technique but only compare the ex-
isting ones, mainly quantitatively. Beyond the detail that is necessary to this end, we do
not carry out any further investigation of the behavior of the different techniques. We
do also not actively question the value and purpose of artificial outliers in addition to
what others have already observed. In this chapter, we do not use generation techniques
to benchmark outlier-detection algorithms. Such a benchmark is the focus of Chapter 4.
Nevertheless, the study in this chapter marks an excellent starting point for anyone in-
terested in the topic of artificial outliers. We do show where the spectrum of the existing
techniques is ranging, how well the techniques perform in specific settings, and what is
currently achievable in terms of outlier-generation quality.

3.6 Ambiguous Terminology in the Literature

In the literature, many terminology differences make grasping an article difficult. In this
section, we clarify notions encountered frequently in the literature and match this notion
with ours. This matching greatly simplifies the reading of related articles.

Certain issues arise in the process of describing a data set. “Instances” are also referred
to as “examples” (Abe et al., 2006; Bánhalmi et al., 2007; Curry and Heywood, 2009), “ob-
jects” (Tax and Duin, 2001; Theiler and Michael Cai, 2003; Wang et al., 2009), “observa-
tions” (Steinwart et al., 2005; Shi and Horvath, 2006), “vectors” (Gonzalez et al., 2002),
“input/sample” (Lee et al., 2018), “data” (Wang et al., 2018), or “data points” (Dai et al.,
2017). Throughout this thesis, we prefer the term “instances”. Another issue is the nam-
ing of the different characteristics of instances. Common terms are “attributes” (Theiler
and Michael Cai, 2003; Bánhalmi et al., 2007; Hempstalk et al., 2008; Curry and Heywood,
2009; Wang et al., 2009; Désir et al., 2013; Steinbuss and Böhm, 2017), “features” (Gonza-
lez et al., 2002; Fan et al., 2004; Steinwart et al., 2005; Pham et al., 2014; Neugebauer et al.,
2016) or “dimensions” (Tax andDuin, 2001;Wang et al., 2018). We use “attribute”. Another
ambiguity is the term for the set of all possible instances. For example, when the data
set consists of d real valued attributes, the set of all possible instances is some subset of
IRd.Possible terms are “feature space” (Tax and Duin, 2001; Wang et al., 2009; Neugebauer
et al., 2016), “space” (Gonzalez et al., 2002), “domain” (Fan et al., 2004), “input space” (Dai
et al., 2017) or “region” (Steinbuss and Böhm, 2017). We use “instance space”.
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There also are ambiguities in the general field of outlier detection. Most central is
the notion of outliers itself. Aside from “outlier” (Tax and Duin, 2001; Abe et al., 2006;
Hempstalk et al., 2008; Curry and Heywood, 2009; Wang et al., 2009; Désir et al., 2013;
Neugebauer et al., 2016; Steinbuss and Böhm, 2017; Wang et al., 2018), some authors use
“anomaly” (Gonzalez et al., 2002; Theiler and Michael Cai, 2003; Fan et al., 2004; Steinwart
et al., 2005), “out-of-distribution sample” (Lee et al., 2018), “negative example” (Gonzalez
et al., 2002; Bánhalmi et al., 2007), “counter example” (Bánhalmi et al., 2007), “attack ex-
ample” (Pham et al., 2014) or “infeasible example” (Neugebauer et al., 2016). We use “out-
lier”. The term for the counterpart of outliers is ambiguous as well. While they often are
referred to as “normal” instances (Gonzalez et al., 2002;Theiler and Michael Cai, 2003; Fan
et al., 2004; Steinwart et al., 2005; Abe et al., 2006; Hempstalk et al., 2008; Pham et al.,
2014; Wang et al., 2018), other terms used include “inlier” (Steinbuss and Böhm, 2017),
“positive” instance (Bánhalmi et al., 2007) or “feasible” instance (Neugebauer et al., 2016).
We use “inlier”.

We see two notions with ambiguous terminology related to artificial outliers them-
selves. These outliers often are referred to as “artificial” outliers (Tax and Duin, 2001;
Theiler and Michael Cai, 2003; Fan et al., 2004; Steinwart et al., 2005; Abe et al., 2006;
Hempstalk et al., 2008; Curry and Heywood, 2009; Wang et al., 2009; Désir et al., 2013;
Pham et al., 2014; Neugebauer et al., 2016), and the procedure that creates them is re-
ferred to as “generation” (Tax and Duin, 2001; Gonzalez et al., 2002; Fan et al., 2004; Stein-
wart et al., 2005; Abe et al., 2006; Shi and Horvath, 2006; Bánhalmi et al., 2007; Hempstalk
et al., 2008; Curry and Heywood, 2009; Wang et al., 2009; Désir et al., 2013; Pham et al.,
2014; Neugebauer et al., 2016; Wang et al., 2018). However, in (Wang et al., 2018) “pseudo”
and in (Shi and Horvath, 2006) “synthetic” is used instead of “artificial”. Instead of “gen-
erated”, in (Steinbuss and Böhm, 2017) “placed”, and in (Lee et al., 2018; Dai et al., 2017)
“sample” is used. We use “artificial” and “generated”.

3.7 Calibration with Artificial Outliers

In this section, we describe the two ways that one can calibrate an outlier detection
method through artificial outliers, subsequently referred to as “use cases”. The joint de-
scription of these use cases is the first building block for our general perspective on arti-
ficial outliers.

We are aware of two use cases from the literature: (1) casting an unsupervised learning
task into a supervised one (Gonzalez et al., 2002; Shi and Horvath, 2006; Steinwart et al.,
2005; Theiler and Michael Cai, 2003; Pham et al., 2014; Fan et al., 2004; Abe et al., 2006;
Hempstalk et al., 2008; Neugebauer et al., 2016; Désir et al., 2013; Bánhalmi et al., 2007;
Hastie et al., 2009; El-Yaniv andNisenson, 2007), subsequently referred to as “casting task”;
and (2) hyperparameter tuning of one-class classifiers (Wang et al., 2018, 2009; Tax and
Duin, 2001; Dai et al., 2017), referred to as “one-class tuning”.
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3.7.1 Casting Task

The basis for this use case is the observation that the augmented data consists of two
fully labeled classes: genuine and artificial instances. The genuine instances result from
observations in the real world, while artificial instances result from generation. Thus,
one can apply any classifier to set the two apart. Genuine instances mostly are inliers,
and the artificial outliers have been generated so that they are outliers. The classifier thus
learns to distinguish between inliers and outliers. Next, the number of artificial outliers is
controllable. Thus, unlike “classical” supervised outlier detection, this classification does
not even have to be unbalanced.

One reason this approach is common might be that it has a theoretical basis (Hastie
et al., 2009; Hempstalk et al., 2008; Abe et al., 2006; Theiler and Michael Cai, 2003; Stein-
wart et al., 2005; El-Yaniv and Nisenson, 2007). Given some data with unknown distribu-
tion, one can use a classifier that distinguishes genuine from artificial instances, to obtain
a density estimation of the genuine instances. This density estimation allows for identify-
ing unlikely instances. Section 14.2.4 (“Unsupervised as Supervised Learning”) in (Hastie
et al., 2009) and (Steinwart et al., 2005) show this for different types of classifiers.

3.7.2 One-Class Tuning

Another use case is hyperparameter tuning for one-class classifiers (Wang et al., 2018,
2009; Tax and Duin, 2001). The training of a one-class classifier uses only instances from
one class to learn to separate new instances belonging to this class from those that do
not (Hempstalk et al., 2008). Instances not belonging to the class are deemed outliers. A
common one-class classifier belongs to the category of Support Vector Machine (SVM):
the Support Vector Data Description (SVDD) introduced in Tax and Duin (1999). It has
hyperparameters s and ν (Tax and Duin, 2001) where s is the kernel width, and ν is
an upper bound on the fraction of genuine instances classified as outlying. To choose
values for both parameters, one must optimize the error rate of the resulting one-class
classifier (Tax and Duin, 2001). However, since one-class classification is applied when
there is either no outliers or not a sufficient number of outliers, estimating this error is
difficult. Multiple techniques for the generation of artificial outliers have been developed
to estimate the error (Wang et al., 2018, 2009; Tax and Duin, 2001).

While the two use cases described are different, their outcome is the same: a cali-
brated classifier for outlier detection. In both use cases, the artificial outliers help train
the classifier. A useful generation technique yields a high detection rate on outliers, be
they genuine or artificial. To investigate the quality differences in terms of outlier detec-
tion between the two cases, we have performed experiments, see Section 3.12.7. We have
found that there are some differences, but none of the two use cases is always preferable
in terms of detection quality.
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3.8 Connection to Other Fields

The specifics of the use cases for artificial outliers given in Section 3.7 allow us now to
connect the generation of artificial outliers to other research fields. This connection is
one of the building blocks for our general perspective on artificial outliers.

We see at least three broad research fields closely connected to generating artificial
outliers based on genuine instances: generative models, design of experiments, and ad-
versarial machine learning. The first two are fields from statistics, while the last one is a
relatively new paradigm, mostly from computer science. In the following, we will discuss
the general ideas of each of these research fields and their connection to the generation
of artificial outliers.

3.8.1 Generative Models

Our source for the following discussion is mostly (Bernardo et al., 2007) that discusses the
connection between discriminative and generative models.

In machine learning, one often tries to predict a label yi that belongs to an instance ~xi.
In the remainder of this section, yi identifies ~xi as “inlier” or “outlier” (classification). The
goal then is to determine the conditional probability p(y | ~x) from a given data set X
(i.e., the distribution of y given an instance ~xi). Two frequent approaches to do so are
discriminative or generative, respectively. Discriminative models directly approximate
p(y | ~x), while generative ones first try to find the joint distribution p(y, ~x). By sampling
from this joint distribution, it is possible to generate instances. Hence, these models are
called “generative”. Specifying the joint distribution p(y, ~x) is usually done by defining
a distribution for the classes p(y) and a class-conditional distribution for the instances
p(~x | y), along with finding the best fit to the instances inX . This specification gives the
joint distribution by

p(y, ~x) = p(~x | y) · p(y) . (3.1)

We have omitted the distribution parameters that are fitted usingX for the sake of clarity.
Since y can only take two distinct values, the generative model is fully specified if

p(~x | y = inlier), p(y = inlier) =: pin, p(~x | y = outlier) and p(y = outlier) =: pout are
specified. Artificial outliers are essentially samples from p(~x | y = outlier) or at least ap-
proximations of these samples. To generate the artificial outliers, one explicitly or im-
plicitly defines p(~x | y = outlier). With the number of samples generated, pin and pout
are defined as well. Thus, when generating artificial outliers, most parts of the generative
model are also defined. The onlymissing part is the distribution of inliers p(~x | y = inlier).
Hence, if we explicitly define p(~x | y = outlier) and estimate p(~x | y = inlier) from the
data, we end up with a generative model for outlier detection. However, this is not the
only connection between artificial outliers and generative models. A generative model
can also be used to classify instances as outlier or inlier. This classification is also what
artificial outliers facilitate in the use cases casting task and one-class tuning. Interestingly,
outliers do not need to be generated for the generative model since their distribution
only needs to be defined. The issue with such an approach, however, is that estimating
p(~x | y = inlier) is not simple. The generation of outliers is often more straightforward
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than this estimation. Thus, using some artificial outliers to train or tune a classifier is
simpler or sometimes merely more effective than is specifying the generative model. The
connection between artificial outliers and generative models is goes deep. If it is simple
to, for instance, estimate p(~x | y = inlier) in some setting, one might prefer the genera-
tive model over artificial outliers.

Another insight in this context comes from pout. We find it surprising that many in-
ventors of generation techniques do not discuss its importance. Since pout is part of the
generative model, it does affect the decision of whether an instance is an outlier or not.
Recall that in the case of artificial outliers, pout is essentially given by nart. Hence, nart also
determines whether an instance is an outlier or not.

3.8.2 Design of Experiments

Our basis for the following description is (Lovric, 2011).
The “Design of Experiments” deals with modeling the dependence of a random variable

Y on some deterministic factors x(1), . . . , x(d) (i.e., attribute values). A combination of
the d deterministic factors yields an artificial instance ~a. As in the previous section, y (a
realization of Y) identifies ~a as inlier or outlier. The topic “Design of Experiments” aims
to find a set of such factor combinations D = {~a1, . . . ,~anart} that give optimal results
regarding Y. To illustrate, “optimal” can mean that our classification with regard to Y
yields a perfect accuracy. One does not need to estimate this classification fromD alone.
It is also reasonable to consider that it is learned from Z = D ∪ X (i.e., augmented
data). Hence, seeing the generation of artificial outliers as a subfield of the design of
experiments is conceivable. Although it is difficult to make the definition of “optimal”
more concrete, we approach this in Section 3.9. The design of experiments encompasses
extensive theoretical work. We believe that establishing a rigid connection of artificial
outliers to this broad field may facilitate a rather formal derivation of relevant concepts
and approaches.

o our knowledge, there exists no previous work regarding artificial outliers in the field
of design of experiments. However, some rather general techniques to a good D seem to
be applicable. One such technique is already common when generating artificial outliers
(unifBox, see Section 3.10.1) (Lovric, 2011). It relies entirely on random sampling. This
reliance makes it difficult to ensure that the whole instance space (e.g., IRd) is evenly cov-
ered. However, such behavior is often a desirable property, since it is usually not known
a priori which regions of the instance space have to be covered. The Latin hypercube de-
sign ensures that the instances spread evenly in the instance space (Santner et al., 2013).
See Definition 1.

Definition 1 (lhs) lhs is an technique to generate artificial instances using the so-called
Latin hypercube design, as follows: To generate nart instances, partition the value range of
each attribute into nart equally sized intervals. This yields a grid with (nart)

d cells. Assign
the integers 1, . . . , nart to cells so that each integer appears only once in any dimension of the
grid. Now randomly select an integer i ∈ {1, . . . , nart}. Finally, generate nart instances by
sampling uniformly within the nart cells which integer i has been assigned to.
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The only generation parameter of lhs is nart. Figure 3.1 features an illustration of the lhs
technique.

1 2 3

1

1

2

2

3

3

~a Grid

Figure 3.1: Illustration of the generation technique lhs. nart = 3 and i = 2.

In our experiments, we let the artificial instances generated with lhs compete against
the output of techniques specifically designed for the generation of outliers. In the two
use cases casting task and one-class tuning, we find that the instances generated with lhs
yield comparable outlier-detection quality.

3.8.3 Adversarial Machine Learning

The recent development of the GAN (Goodfellow et al., 2014a) has given adversarial ma-
chine learning much attention. In general, the field is concerned with the robustness
of machine learning in terms of adversarial input and countermeasures (Biggio and Roli,
2017). Such adversarial input is artificial data deemed either evasive or poisonous (Kumar
et al., 2017). Evasive instances fool a trained classifier, yielding the wrong classification
(e.g., spam email that is not classified as such). Poisonous instances, on the other hand,
prevent a classifier from being trained correctly.

In our view, the generation of adversarial input is similar to that of artificial outliers.
In essence, an outlier that is wrongly classified as an inlier can be a very useful artifi-
cial outlier, as illustrated later in Section 3.9. The fact that there is an outlier-generation
technique using GANs (Lee et al., 2018; Dai et al., 2017) (see Section 3.10.1 for details) fur-
ther emphasizes the strong connection between artificial outliers and adversarial machine
learning. The idea of GANs (Goodfellow et al., 2014a) is to have two models, a gener-
ative and a discriminative one, that compete against each other. The generating model
tries to generate instances that the discriminator model cannot tell apart from genuine
ones. The generative model is thus encouraged to generate instances as close as possible
to genuine ones. This idea is similar to a generation technique proposed in (Hempstalk
et al., 2008) (Definition 7). However, techniques to generate adversarial inputs tend to be
very specific to a classifier or task they are supposed to attack (Brendel et al., 2017). Thus,
one cannot always use them for the generation of artificial outliers.
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3.9 Problem Definition
One of the central building blocks for a general perspective on artificial outliers is a unified
problem formulation. Such a formulation — that takes into account the different use cases
for artificial outliers described in Section 3.7 — now follows. The integration of artificial
outliers within other research fields given in Section 3.8 is essential here as well since it
frames the distinctive ideas from this field.

Artificial outliers are expected to approximate instances from O. When we know O,
obtaining artificial outliers becomes trivial: We sample from the distribution that matches
our knowledge. An exemplary scenario is when we want to detect faults in a system,
and the maintainer knows the distribution of these faults. However, one usually does
not have any or has only minimal knowledge of O. To illustrate, think again about the
system maintainer. It is highly unlikely in the exemplary scenario just sketched that the
system maintainer knows the distribution of faults without having multiple faulty in-
stances. Thus, we have to rely on assumptions on outliers that allow the generation of
instances approximating ones from O. To reflect our limited or missing knowledge on O,
we make assumptions so that outliers generated are as uninformative as possible (Theiler
and Michael Cai, 2003). That is, they should disclose only very few characteristics of out-
liers and hence result in the detection of many possible types. However, at the same time,
we want to make the generated artificial outliers as interesting as possible. Definition 2
formalizes the concept of interesting artificial outliers, and Example 4 illustrates it.

Definition 2 (Ainter) A set of interesting artificial outliers Ainter = {~a1, . . . ,~anart} is a set
of instances that solve a use case for artificial outliers well.

Recall the use cases introduced earlier, casting task or one-class tuning, and consider the
following example.

Outlier 1

Outlier 2

Figure 3.2: Illustration of interesting artificial outliers.

Example 4 The use case in this example is casting task (i.e., training a classifier for outlier
detection with training data that contains only inliers). The use case is solved well if the
outlier-detection accuracy is later high. To train the classifier, we use artificial outliers. See
Figure 3.2. The green line is the best decision boundary between inliers and outliers. Outlier
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1 is far from any inlier. Such an outlier is not very useful when training the classifier. It
is rather trivial to classify it as outlying, and it might even pull the decision boundary of
the classifier away from inliers. Outlier 2, by contrast, is helpful when learning the correct
decision boundary and is thus rather interesting.

The interestingness of artificial outliers depends heavily on the specific application —
e.g., if we aim at density estimation uniformity of the outliers is desirable (Steinwart et al.,
2005; Hastie et al., 2009). If we are interested in exploring the instance space instead of just
calibrating detectionmethods, artificial outliers far away from inliers might be interesting
as well. For example, when analyzing properties of hidden outliers using generated ones,
an exhaustive generation can be useful (cf. Chapter 5). This relationship makes a precise
and general definition of interesting artificial outliers difficult. Another issue is that the
interestingness of artificial outliers also depends on the other generated instances. It
might well be that Outliers 1 and 2, in combination, lead to a better decision boundary.
Definition 2 has reflected this possibility.

However, the situation is evenmore complicated since the number of generated outliers
is of importance as well. Any additional artificial instance increases the computational
effort. Thus, we want to generate as few artificial outliers as possible. This aim leads to
the following definition.

Definition 3 (Minimal Ainter) A minimal set Ainter of artificial outliers is a set of interest-
ing ones that has a minimal number of elements nart and is still interesting.

When generating artificial outliers for a use case, one would like to have a minimal set
Ainter. However, there is a trade-off. Interesting outliers are often counter to uninforma-
tive outliers. Consider Example 4 where we suppose that outliers occur close to genuine
instances and not everywhere. With such additional assumptions, one loses some gen-
erality. One could argue that having some uninteresting artificial outliers is better than
losing this generality. However, in high-dimensional spaces in particular, including un-
interesting artificial outliers can soon become very expensive computationally (Tax and
Duin, 2001; Hempstalk et al., 2008; Steinbuss and Böhm, 2017; Davenport et al., 2006).
Hence, existing techniques make different assumptions about outliers in order to obtain
a minimal set Ainter. These assumptions will become apparent in Section 3.10 when we
describe the techniques. However, having a specific use case in mind, one must be care-
ful that the assumptions fit the use case. For instance, as mentioned before, if one wants
to perform an explorative analysis, generating instances only very close to the boundary
of inliers tends not to be good.

If artificial outliers are used, usually not only O is missing, but also I. Otherwise, a
generative model might be preferable, see Section 3.8.1. Hence, the generation is based
only on samples from I possibly mixed with some from O (i.e., on X). Of course, it is
possible that the instances from X are not sufficient to represent I. Think of the case
that there is no instance from X in parts of the instance space that inliers can lie in.
An artificial outlier in this part might then be an outlier regarding X but not regarding
I. However, an essential assumption behind all generation techniques is that there is a
sufficient number of genuine instances (ngenu) available.
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Next to the actual generation of artificial outliers, techniques also exist to filter existing
artificial outliers for interesting ones. That is, instead of generating instances at a partic-
ular location (e.g., very close to the boundary), one generates many artificial outliers with
some simple technique and tests which ones are interesting. Some of these filtering tech-
niques have been proposed together with a specific technique to generate the outliers.
However, they might also work well when the generating technique is a different one.
Thus, in the following two sections, we first describe the different techniques relevant to
generate artificial outliers and then filtering techniques.

3.10 Generating Techniques

In this section, we review the various generating techniques with context to the problem
formulation from Section 3.9. This review is another building block of our general per-
spective. We start by classifying the generation techniques in terms of how they relate
to the characteristics of X . We then describe each technique. Techniques with a similar
generating procedure are described together in order to reduce redundancy and improve
comprehension. This description results in two somewhat orthogonal classifications of
generation techniques: one based on the characteristic of X and one in terms of similar
generation procedures.

Model Dependency?

No Partly Yes

Match X?

Inverse Boundary Itself

unifBox
unifSphere

marginSample
gaussTail

distBased
boundVal

invHist
negSelect
infeasExam

boundPlace
negShift
ganGen

densAprox
surReg

skewBased
maniSamp

Figure 3.3: Classification of generating techniques.

In terms of retaining characteristics from X , we group the techniques in six groups,
see Figure 3.3. They differ in the extent of modeling the dependency on X , and how
well they match with instances from X . In terms of the dependency, they either do not
model it, do so only partly, or model all of it. Regarding the match with instances from
X , the artificial outliers can be somewhat inversely distributed, close to their boundary,
or entirely similar. In the following, we describe the existing techniques, grouped by
generation paradigms.
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3.10.1 Sampling from a Distribution
Sampling from a distribution is a common way to generate data. There also exist tech-
niques to generate outliers with such sampling. The difference among these techniques
is the distribution O from which they sample.

Uniform within a Hyper-Rectangle

Definition 4 features the most frequently used distribution (Steinbuss and Böhm, 2017;
Hastie et al., 2009; Hempstalk et al., 2008; Shi andHorvath, 2006; Abe et al., 2006; Steinwart
et al., 2005; Fan et al., 2004; Theiler and Michael Cai, 2003; Fan et al., 2001; Tax and Duin,
2001; El-Yaniv and Nisenson, 2007; Davenport et al., 2006).

Definition 4 (unifBox) OunifBox is a uniform distribution within a hyper-rectangle en-
capsulating all genuine instances. The parameters are nart and the bounds l, u ∈ IRd for the
hyper-rectangle.

Instances fromX usually determine the bounds l, u ∈ IRd. For this reason, this technique
needs them as input. In (Tax and Duin, 2001) and (Fan et al., 2004), these bounds are
chosen so that the hyper-rectangle encapsulates all genuine instances. In (Steinbuss and
Böhm, 2017) the minimum and maximum for each attribute obtained fromX are used. In
(Theiler and Michael Cai, 2003), it is mentioned that the boundary does not need to be far
beyond these boundaries. In (Abe et al., 2006), the rule that the boundary should expand
the minimum and maximum by 10% is proposed, while in (Désir et al., 2013) to expand the
boundary by 20%. In Section 3.12.4, we describe the boundaries used in our experiments.

Uniform within a Hyper-Sphere

In (Tax andDuin, 2001), a straightforward adaptation of the distribution from the unifBox
technique is proposed. The technique emphasizes generating outliers close to genuine
instances.

Definition 5 (unifSphere) OunifSphere is a uniform distribution in the minimal bounding
sphere encapsulating all genuine instances. The only generation parameter is nart.

There are various techniques to obtain or approximate the minimal bounding sphere (e.g.,
see (Larsson, 2008)). In (Tax and Duin, 2001), it is proposed to use the optimization ap-
proach also used when fitting a SVDD. Sampling uniformly from a hyper-sphere is not
simple. In (Tax and Duin, 2001), a method using transformed samples from a multivariate
Gaussian distribution is proposed to this end.

Manifold Sampling

The generation technique maniSamp (Davenport et al., 2006) also uses hyper-spheres.
Similar to unifSphere, the aim is to generate instances close to genuine ones. More
specifically, they want to generate instances within the manifold in which the genuine
instances lie. To model this manifold, they use multiple hyper-spheres. The sampling
distribution O is formalized in Definition 6.
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Definition 6 (maniSamp) For each ~xi ∈ X , let d
k

i be the average distance to its k nearest
neighbors. Then the sampling distribution OmaniSamp is the union of the hyper-spheres with
center ~xi and radius d

k

i for i ∈
{
1, . . . , ngenu

}
. The parameters are nart and k.

Using Density Estimation

In (Hempstalk et al., 2008) a reformulation of the casting task use case is approached so
that the set of artificial outliers is close to minimal. For this objective, they find that
the ideal distribution of artificial outliers should be the distribution of inliers. However,
since the distribution of inliers usually is not known, they propose to estimate it with any
density-estimation technique (see Definition 7).

Definition 7 (densAprox) OdensAprox is the result of density estimation on genuine in-
stances. The parameters are nart and the density-estimation technique.

In (Hempstalk et al., 2008), it is stated that any density-estimation technique can be used
in principle, as long as it is possible to draw samples from the density estimate. In the
experiments of (Hempstalk et al., 2008), two variants of density estimation are used. In
both cases, they assume a specific distribution and estimate its parameters fromX . These
distributions are as follows:

• A multivariate Gaussian distribution having a covariance matrix with only
diagonal elements. That is, attributes are independent.2

• A product of d Gaussian mixtures, one for each attribute.

Outside of a Confidence Interval

In (Pham et al., 2014), it is found that outlier instances should be very different from inliers.
Thus, in (Pham et al., 2014), it is proposed to generate outliers far from most genuine
instances by using the distribution from Definition 8.

µ̂(i) µ̂(i) + 3 · σ̂(i)µ̂(i) − 3 · σ̂(i)

D
en
si
ty

Figure 3.4: Illustration of D(i) from gaussTail technique.

2 This actually results in the same generation process Abe et al. (2006) proposes for the marginSample
technique.
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Definition 8 (gaussTail) Let µ̂(i) and σ̂(i) be the mean and standard deviation estimated
from attribute i in X . The distribution D(i) has density zero for any value

x(i) ∈
[
µ̂(i) − 3 · σ̂(i), µ̂(i) + 3 · σ̂(i)

]
︸ ︷︷ ︸

=: Rzero

. (3.2)

Then OgaussTail is the product of D(i) for all attributes. The only parameter is nart.

In (Pham et al., 2014), the form of the density outside the interval Rzero is not discussed.
In our experiments, we assume D(i) to be a Gaussian with the density for x(i) ∈ Rzero set
to zero. See Figure 3.4.

Inverse Histogram

In (Désir et al., 2013), it is proposed that the distribution of outliers should be exactly
complementary to the distribution of instances. In other words, they propose to use the
distribution from Definition 9.

Definition 9 (invHist) Let Hin be the normalized histogram of inliers. Then OinvHist has
probability density function 1−Hin. The parameters are nart and the histogram-estimation
technique.

In (Désir et al., 2013), details on how to compute the normalized histogram are not dis-
cussed. They say that the instance-space boundary (i.e., minimum and maximum of each
attribute) should be increased by 20%.

Generative Adversarial Networks

In (Dai et al., 2017) and (Lee et al., 2018) it is proposed to use a GAN (Goodfellow et al.,
2014a) to generate artificial outliers. The generator from a trained GAN architecture is an
implicit generative model (Dai et al., 2017). Hence, it can generate instances that are sim-
ilar to the instances it was trained with (the genuine ones) but does not provide a closed-
form of their density. The generator aims at maximizing the similarity of generated and
genuine instances. Hence, using the generator to generate outliers is not straightforward.
To achieve the generation of outliers, in (Dai et al., 2017) and (Lee et al., 2018), the same
strategy is proposed. A penalty term is added to the objective function of the generator.
This penalty encourages a generation of instances further away from genuine ones. Since
both formulations are based on the same idea (Lee et al., 2018), Definition 10 features the
formulation from Dai et al. (2017). We deem it more illustrative for our purpose.

Definition 10 (ganGen) LetZ be the distribution of the prior input noise for the generator
function gen : supp(Z) → IR. Let disc : IR → [0, 1] be the discriminator function outputting
the probability that an instance is not generated and dens(·) an estimate of the density func-
tion of genuine instances. OganGen is then the distribution of instances sampled from gen(Z)
optimized according to

min
gen

E~a∼gen(Z)
[
log(dens(~a)) 1{dens(~a)>ε}

]
+ E~a∼gen(Z)[log(1− disc(~a))]︸ ︷︷ ︸

Original GAN (Goodfellow et al., 2014a)

. (3.3)
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The parameters are nart, ε, the network structure for the GAN architecture, and the density
estimation technique from which dens(·) resulted.

Thefirst term in Equation (3.3) intuitively punishes the generator for generating instances
that have a very high density (> ε) according to dens(·). Hence, the generation of in-
stances takes place in regions of the instance space with rather low density.

3.10.2 Shifting Genuine Instances

Techniques in this category modify attribute values of genuine instances to generate out-
liers. The techniques infeasExam, skewBased, and surReg add random noise to genuine
instances. Both boundPlace and negShift shift genuine instances so that they move
away from other genuine ones.

Plain Gaussian Noise

In (Neugebauer et al., 2016), it is proposed to alter instances with Gaussian noise and
then filter the resulting instances for those far from inliers (i.e., having a certain distance
to them). Only in the first iteration are inliers altered; then, only the resulting artificial
outliers are. See infeasExam in Algorithm 1. The technique requires not just genuine
instances but genuine inliers.

Algorithm 1 infeasExam.
Input: nart, ~µ, Σ, α, ε
1: for i ∈

{
1, . . . , ngenu

}
do

2: ~r = Sample from Gaussian with ~µ and Σ
3: ~ai = ~xi +~r · α
4: di = distance of ~ai to closest inlier
5: if di ≥ ε then
6: Add ~ai to artificial outliers Oart
7: end if
8: end for
9: repeat

10: Randomly choose ~ai from Oart
11: ~r = Sample from Gaussian with ~µ and Σ
12: ~oi = ~a+~r · α
13: di = distance of ~oi to closest inlier
14: if di ≥ ε then
15: Add ~oi to artificial outliers Oart
16: end if
17: until |Oart| = nart
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Scaled Gaussian Noise

In (Deng and Xu, 2007), a so-called skewness-based generation technique for artificial
outliers is proposed. The technique uses noise added to genuine instances. Similar to
the case in Algorithm 1, this noise is Gaussian; a parameter α scales it. However, the
technique in (Deng and Xu, 2007) does not make use of any filtering or several iterations.
See Definition 11.

Definition 11 (skewBased) Let σ̂(i) be the standard deviation estimated for Attribute i ∈
{1, . . . , d}, and let each r(i) be a random value drawn from a standard normal distribution.
Further, let

v(i) :=
σ̂(i)∑d
j=1 σ̂

(j)
, ζ(i) :=

r(i)∑d
j=1 r

(j)
. (3.4)

An outlier ~oskewBased is then generated by

~oskewBased = ~x+ α · (v(1) · ζ(1), . . . , v(d) · ζ(d)), (3.5)

where ~x is a randomly drawn genuine instance. The parameters are nart and α.

Uniform Noise

In (Steinbuss and Böhm, 2017) we propose another technique to generate outliers.3 The
rationale is to adjust the tightness of artificial outliers around inliers. The technique adds
uniform noise parameterized with ε ∈ [0, 1] to genuine instances. If ε = 1, the generation
will result in samples from a uniform distribution. If ε = 0, there will be samples of
genuine instances. See Definition 12.

Definition 12 (surReg) Let ~x be a randomly drawn instance fromX . W.l.o.g., ~x ∈ [l, u]d.
Further, let r(i) i ∈ {1, . . . , d} be random values drawn uniformly from the range ε·(x(i)−l)
to ε · (u− x(i)). Then an outlier ~osurReg is generated by

~osurReg = ~x+ (r(i), . . . , r(d)). (3.6)

This procedure is repeated until nart outliers are generated. The parameters are nart and ε.

Our experiments in Section 5.6 indicate that 0.1 can be a good value for ε in particular if
there are many attributes. Note that for the surReg technique, the data set must have the
bounds [0, 1] for every attribute.

Using Boundary Instances

In (Bánhalmi et al., 2007) and (Wang et al., 2018), a similar idea to generate artificial out-
liers very tightly around the boundary of genuine instances is presented. The idea is to
have a two-stage process. In the first stage, one finds boundary instances (i.e., instances
that surround all other genuine instances). They are then used in the second stage to shift
3 The technique is detailed more closely in Chapter 5 but outlined here for completeness as well.
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genuine instances away from others. See Figure 3.5 for an illustration of the technique
proposed in (Bánhalmi et al., 2007). The techniques proposed in (Bánhalmi et al., 2007)
and (Wang et al., 2018) differ in the following respects:

1. How boundary instances are found.

2. Which instances are shifted.

3. The magnitude and direction of the shift.

Artifical Outlier

Boundary Instance Separation

Figure 3.5: Illustration of boundPlace technique (Bánhalmi et al., 2007).

In (Bánhalmi et al., 2007), it is proposed to determine boundary instances with Algo-
rithm 2. The idea is that an instance is on the boundary if it is linearly separable from
its k-nearest neighbors. A hard margin SVM is thus fitted to separate the instance under
consideration from its k-nearest neighbors. If it finds such a separation, the instance is
deemed on the boundary.

Algorithm 2 Boundary detection (Bánhalmi et al., 2007).
Input: k
1: for ~x ∈ X do
2: N = k-nearest neighbors of ~x in X
3: ei =

~ni−~x
‖~ni−~x‖ ∀ i ∈ {1, . . . , k} , ~ni ∈ N

4: Separate ei from origin with hard margin SVM
5: if Separation succeeds then
6: ~x is boundary instances
7: Save v~x =

∑k
i=1 αi · ei

8: end if
9: end for

Thevector v~x in Algorithm 2 is used to compute the shift direction of genuine instances,
see Definition 13. The αis result from fitting the SVM. They weight the contribution of ei
to the final separation.4

4 See (Bánhalmi et al., 2007) for two refinements of this technique that increase the maximally possible nart.
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Definition 13 (boundPlace) Let B be the set of boundary instances found with Algo-
rithm 2, with V as the set of the vectors v~x saved for each boundary instance found in Algo-
rithm 2. For an instance ~x ∈ X \ B, let ~b ∈ B be the closest boundary instance to ~x with
v~x ∈ V . Let ∆ := ~b− ~x. Further,

ω =
vT~x · (−∆)

‖v~x‖ · ‖∆‖
and κ =

θ

θ · γ + ω
, (3.7)

where θ and γ are parameters. The instance ~x is then shifted by

~oboundPlace = ~x+∆ ·
(
1 +

κ

‖∆‖

)
. (3.8)

Then ~oboundPlace is an artificial outlier generated with the boundPlace technique, if it is
deemed a boundary instance. This procedure is repeated for every ~x ∈ X\B. The parameters
are k, θ and γ.

In (Wang et al., 2018) different instantiations for Items 1 to 3 are proposed. To detect
boundary instances, the technique from (Wang et al., 2018) relies on Algorithm 3, the
Border-Edge Pattern Selection (BEPS) algorithm (Li andMaguire, 2011). Like Algorithm 2,
BEPS also relies on the k-nearest neighbors to decide whether an instance ~x is on the
boundary or not. However, instead of checking for linear separability using a hardmargin
SVM, it uses a technical condition on the vectors from a neighbor to the instance ~x (vi).
See (Li and Maguire, 2011; Wang et al., 2018) for details.

Algorithm 3 BEPS algorithm as given in (Wang et al., 2018).
Input: None
1: k = d5 log10

(
ngenu

)
e, τ = 0.1

2: for ~x ∈ X do
3: N = k-nearest neighbors of ~x
4: vi =

~x−~ni

‖~x−~ni‖ ∀ i ∈ {1, . . . , k} , ~ni ∈ N

5: Calculate ϕ =
∑k

i=1 vi
6: θi = vTi · ϕ ∀ i ∈ {1, . . . , k}
7: l = 1

k

∑k
i=1 1{θi≥0}

8: if l ≥ 1− τ then
9: ~x is boundary instances

10: Save ϕ
11: end if
12: end for

Definition 14 (negShift) LetB be the boundary instances found with Algorithm 3. Fur-
ther,

κ =
1

|B| · k
∑
~b∈B

k∑
i=1

|~b− ~ni|, (3.9)
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where ~ni is the i-th neighbor of an instance~b ∈ Bounds. ~b is then shifted by

~onegShift = ~b+
ϕ

|ϕ|
· κ, (3.10)

where ϕ comes from Algorithm 3. This procedure is repeated for every ~b ∈ B. There is no
parameter.

The κ value determines how far a boundary instance should be shifted. This shift uses
the distance of each boundary instance to its k-nearest neighbors. Shifting a boundary
instance in the direction of ϕ then generates an artificial outlier.

3.10.3 Sampling Instance Values
Techniques from this category generate outliers similar to the ones in Section 3.10.2. They
do so by directly using genuine instances. However, instead of creating new attribute
values, the current techniques recombine existing values of genuine instances to form
artificial outliers.

From the Marginals

Several articles propose to use marginal sampling to generate outliers (Shi and Horvath,
2006; Theiler and Michael Cai, 2003; Abe et al., 2006; Hastie et al., 2009).

Definition 15 (marginSample) Let I(i) be the distribution of attribute i. Then

OmarginSample = I(1) · · · · · I(d). (3.11)

That is, one can generate outliers from OmarginSample by sampling a value from each attribute
independently. The only parameter is nart.

From Definition 15, it follows that OmarginSample and I have the same marginal distribu-
tions. However, in OmarginSample, the attributes are mutually independent, while in I, they
are often not. Definition 15 gives the distribution outliers are generated with explicitly.
Thus, marginSample is closely related to the techniques sampling from a distribution (cf.
Section 3.10.1).

In Sparse Regions

In (Fan et al., 2001, 2004) the distribution-based generation technique is introduced. Our
foundation for the following summary is our understanding of the respective publications
which do not come with an open implementation. The idea is to generate outliers close to
genuine instances while generating more in sparse regions of the instance space. In (Fan
et al., 2004), it is speculated that “sparse regions are characterized by infrequent values of
individual features”. Based on this speculation, in (Fan et al., 2001, 2004) Algorithm 4 is
proposed for the generation of outliers.
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Algorithm 4 distBased.
Input: Number of runs
1: for i ∈ {1, . . . , d} do
2: Φ = unique values for attribute i
3: φ∗ = most frequent value of attribute i
4: nφ∗ = number of instances with φ
5: for φ ∈ Φ do
6: nφ = number of instances with φ
7: for j ∈ {nφ, . . . , nφ∗} do
8: Choose ~x ∈ X randomly
9: Choose r ∈ Φ \ (φ ∪ x(i)) randomly

10: ~o = ~x with value r for attribute i
11: end for
12: end for
13: end for

In Algorithm 4, random instances are drawn from X for each possible value of each
attribute. The number of instances sampled is anti-proportional to the frequency of that
value. Finally, the value of the sampled instances for an attribute is replaced with some
random value from that attribute. Algorithm 4 can be run several times to generate more
outliers.

Minimal and Maximal Value

Algorithm 5 boundVal.
Input: nart

1: for i ∈ {1, . . . , nart} do
2: Choose attribute j and l randomly
3: φ+

j , φ
+
l maximal value of attribute j or l

4: φ−
j , φ

−
l minimal value of attribute j or l

5: φ∗
j = randomly choose φ+

j or φ−
j

6: φ∗
l = randomly choose φ+

l or φ−
l

7: Choose ~x ∈ X randomly
8: ~oi = ~x with φ∗

j and φ∗
l for attribute j andml

9: end for

In (Wang et al., 2009), the boundary value technique is proposed. The idea is to gen-
erate artificial outliers so that they surround the genuine instances in each attribute (see
Algorithm 5). For each artificial outlier, the values of two5 randomly chosen attributes of
a randomly chosen genuine instance are replaced with the minimum or maximum of the
corresponding attribute. Whether a value is replaced by the minimum or maximum of
the attribute is also decided by chance.
5 If the data set has only two attributes, our implementation replaces the values of only one attribute.
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3.10.4 Real-Valued Negative Selection
The technique described next does not fit any of the previous categories. The generation
is an adaption of the Negative Selection (NS) algorithm (Forrest et al., 1994) from the
field of artificial immune systems. The idea of NS is inspired by T cells from the human
immune system. They distinguish cells that belong to the human body (self ) from ones
that do not (other ). In NS, one implements a set of detectors (resembling the T cells)
that are then used to distinguish inlier (self ) from outlier (other ) instances. However,
NS is usable only when the data set is representable in binary form, which is to say that
each attribute takes the value either 0 or 1. Thus, in (Gonzalez et al., 2002) the Real-Valued
Negative Selection (RNS) algorithm is introduced (see also González andDasgupta (2003)).
The algorithm tries to find a set of detectors that cover the real-valued instance space
not occupied by inliers. Each such detector is a hyper-sphere. Figure 3.6 serves as an
illustration. The green line is the boundary between inliers and outliers. The gray circles
are the detectors, with the black crosses as their centers.

Genuine Instances

Figure 3.6: Illustration of real-valued negative selection.

In negative selection, the detectors themselves detect the outlier instances (e.g., by
checking whether an instance falls into their vicinity). However, in (Gonzalez et al., 2002),
the usage of the centers of the detectors as artificial outliers is proposed (see Algorithm 6).
An initial set of randomly chosen detectors6 is iteratively optimized. In each iteration,
the detectors are moved away from genuine instances (medDists < r) or separated from
other detectors (medDists ≥ r) (see Definition 16).

Definition 16 (negSelect) The negSelect technique is used to generate artificial out-
liers, outlined in Algorithm 6. Here, function match(·, ·) is given by

match(~a1,~a2) = e−
‖~a1−~a2‖

2

2r2 , (3.12)

ϕ~x by

ϕ~x =

∑
~n∈N ~a− ~n

|N |
(3.13)

6 In (Gonzalez et al., 2002), it is not discussed how these are obtained. We use the unifBox technique to
this end.
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Algorithm 6 negSelect.
Input: nart, r, η0, , τ, t, k, i

+, match(·, ·)
1: A = nart random detectors with age 0
2: for i ∈ {1, . . . , i+} do
3: ηi = η

− i
τ

0

4: for ~a ∈ A do
5: N = k-nearest neighbors of ~a in X
6: D = distances of ~a to N
7: d0.5 = median of D
8: if d0.5 < r then
9: if age of ~a > t then

10: Replace ~a by new random detector
11: else
12: Increase age of ~a by one
13: ~a = ~a+ ηi · ϕ~x

14: end if
15: else
16: Set age of ~a = 0
17: ~a = ~a+ ηi · ϕ~a

18: end if
19: end for
20: end for

and ϕ~a by

ϕ~a =

∑
~a′∈A match

(
~a,~a′

)
(~a− ~a′)∑

~a′∈A match
(
~a,~a′

) . (3.14)

The parameters are A, r, η0, , τ, t, k, and i+.

The function match(·, ·) in Definition 16 determines how well two detectors match (i.e.,
cover the same instance space), while ϕ~x is the direction in which a detector is shifted to
move it away from genuine instances. The direction ϕ~a is used to move a detector away
from other detectors.

3.10.5 Discussion

We conclude this section with a summary and a general comparison of the generation
techniques presented. We have classified the techniques by their connection to the gen-
uine instances (cf. Figure 3.3) and by the type of procedure used to generate the out-
liers (Sections 3.10.1 to 3.10.4). The results of our experimental study suggest that for
the calibration of detection methods, artificial outliers similar to genuine instances (e.g.,
densAprox or skewBased) seem to be interesting (cf. Definition 2). Hence, Figure 3.3
offers a useful resource to guide the selection of a suitable generation technique.
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A comparison of techniques within a specific category like sampling from a distribu-
tion is difficult, since generation techniques tend to differ significantly also within a cat-
egory. For example, within the category just mentioned, the technique based on a simple
uniform distribution (unifBox) requires only the attribute bounds to be estimated. The
technique utilizing GANs (ganGen), in turn, requires a trained deep neural network. Dif-
ferences like this one arise throughout the surveyed techniques and make finding general
benefits or drawbacks difficult. Regardless of these difficulties, we give some general
results from comparisons in the following. The category described in Section 3.10.1 com-
prises the highest number of techniques. Their joint idea is to fit a distribution to the data
first and then generate artificial outliers by sampling from this distribution. The fitting of
the distribution can be quite resource-intensive, for instance, for the ganGen technique,
but it is easy to generate any amount of artificial outliers with sampling. As mentioned,
not all techniques require many resources to fit the distribution, however. Techniques
that generate outliers by shifting genuine instances (Section 3.10.2) or sampling instance
values (Section 3.10.3) usually require less computational effort in advance of the gener-
ation of outliers. Additionally, the direct use of genuine instances tends to yield artificial
outliers close to these genuine instances (cf. Figure 3.3). Sampling instance values (Sec-
tion 3.10.3), has similar drawbacks and benefits but is simple to perform. The negSelect
technique is the only one described in Section 3.10.4. It features a generation paradigm
that differs substantially from the procedure of other techniques. The iterative optimiza-
tion of the initial set of artificial outliers is resource-intensive but does not allow for the
straightforward generation of more artificial outliers a posteriori, unlike techniques that
sample from a distribution.

In summary, we find it difficult to say which procedure or connection to genuine in-
stances is preferable. All techniques presented incorporate ideas that can be useful in
certain aspects.

3.11 Filtering Techniques

Having described the existing generation techniques, we now turn to the techniques that
filter generated instances for interesting ones. This description is the last building block
for our general perspective on artificial outliers.

We group the filter techniques in two groups: those that use a classifier and those that
compute and use some statistics. “Artificial instances” refer to instances generated, and
“artificial outliers” to those resulting from filtering the artificial instances. Therefore, the
artificial outliers should be interesting and close to minimal (see Definitions 2 and 3).

3.11.1 Using a Classifier

In (Fan et al., 2004), an iterative technique to filter artificial instances is proposed so that
they are further from genuine ones (see Algorithm 7). In each iteration, a classifier is
trained to distinguish between the genuine instances fromX and the generated instances.
Then, the artificial instances that are classified as genuine are replaced with newly gen-
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erated instances. This process is repeated until only very few artificial instances are re-
moved in an iteration.

Algorithm 7 Filter using a classifier (Fan et al., 2004).
Input: X , Generation Technique, Classifier Model, γ∗
1: A = nart artificial instances
2: repeat
3: Train classifier with A ∪X
4: γ = 0
5: for ~a ∈ A do
6: Predict class of ~a with classifier
7: if Predicted class is genuine then
8: Replace ~a with new generated instance
9: γ = γ + 1

10: end if
11: end for
12: until γ ≤ γ∗

In (Abe et al., 2006), a filter called ensemble-based minimum margin active learning is
applied. It combines the ideas of query by committee and of ensembles. Several classi-
fiers are trained one after another, each one on a sample of the genuine and the artificial
instances. In the end, all classifiers are combined in an ensemble, yielding the final clas-
sifier. The filter is the sampling procedure that selects the instances used to train a new
ensemble member.

Definition 17 (Filter withQuery by Committee) Let C = {c1, . . . , cm} be a set of m
classifiers that have been trained one after another. Let cout(~x) be the probability that Clas-
sifier c ∈ C classifies ~x as an outlier. Analogously, cin(~x) is the probability of c classifying ~x
as inlier. Let

margin(C, ~x) =
∑
c∈ C

cout(~x)− cnorm(~x) (3.15)

and
gauss(µ, σ, ξ) =

∫ ∞

ξ

1

σ
√
2π
e

−(x−µ)2

2σ2 dx, (3.16)

where Equation (3.16) is used only to simplify Equation (3.17). Then, the filter with query
by committee is as follows: An instance ~x ∈ Z is kept with probability

gauss
(
µ =

m

2
, σ =

√
m

2
, ξ =

m+margin(C, ~x)
2

)
. (3.17)

The function margin(·, ·) computes the disagreement among the classifiers on the class
of ~x. The function gauss(·, ·, ·) transforms this disagreement into a probability and is sim-
ilar to the CDF of a Gaussian distribution. Thus, artificial instances for which there is
much disagreement among the classifiers are kept with a higher likelihood. Note that the
filtering from Definition 17 is probabilistic. That is, rerunning the filter can lead to other
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artificial outliers. A very similar idea is proposed in (Curry and Heywood, 2009). How-
ever, instead of the filtering from Definition 17, the so-called balanced block algorithm
(Curry et al., 2007) is used.

3.11.2 Using a Statistic

Instead of using a classifier to filter artificial instances, several filtering techniques make
use of a statistic computed based on the artificial and genuine instances. Definition 13 has
featured the filter introduced in (Bánhalmi et al., 2007). The statistic computed comes from
Algorithm 2, which checks whether an instance is a boundary instance. Any generated
instance that is not a boundary instance, according to Algorithm 2, is filtered out. The
filter proposed in (Neugebauer et al., 2016) has also been described already, in Algorithm 1.
The statistic computed is the distance from an artificial instance to its nearest genuine
neighbor. Only if this distance is greater than a certain threshold is the artificial instance
deemed an outlier.

In (Davenport et al., 2006), thinning is proposed. The idea is to filter artificial instances
so that the remaining ones are well spread across the whole instance space and have a
distance to each other that is as large as possible. This proposal resembles the idea behind
the lhs technique from Definition 1 (see Definition 18).

Definition 18 (Filter throughThinning) Let di,j be the Euclidean distance between two
artificial instances ~ai and ~aj . Then the filter through thinning is as follows:

1. Find i 6= j (i, j ∈ {1, . . . , nart}) for which di,j is the smallest.

2. Remove the instance from {~ai,~aj} which has a lower distance to its nearest neighbor.

The filter from Definition 18 must be applied several times to ensure evenly spread artifi-
cial outliers.

Definition 19 (Filter with Unsupervised Detection) 7 Let dect(·) be an unsupervised
outlier-detection technique; that is, given a set of instances, dect(·) determines which ones
are inlier or outlier. The filter with unsupervised detection works as follows: An artificial
instance ~a is kept if either dect(~a) = outlier or dect(~a) = inlier holds. Whether “inlier” or
“outlier” has to hold is a parameter of this filter.

Note that in Chapter 5, depending on the attribute subset, dect(·) sometimes filters artifi-
cial instances deemed an outlier and sometimes ones deemed an inlier. To obtain artificial
outliers that are rather far away from genuine instances, similarly to Algorithm 7, one
only needs to filter for artificial instances dect(·) deems outlying.

7 This filter is introduced in Chapter 5 of this thesis but described here as well for completeness.
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3.11.3 Discussion

The number of techniques to filter generated instances is much smaller than the number
of techniques to generate them. We categorize the known techniques in two groups: tech-
niques from one group, use a classifier to filter generated instances, and techniques from
the other group, specific statistics. Filter techniques that use a classifier are usually more
time-consuming since the training of the classifiers has to happen multiple times. The fil-
ter techniques that utilize statistics are usually much faster. However, the filter using un-
supervised outlier detection methods can be computationally heavy as well, depending
on the detection method used.

Whether it makes sense to use a filter technique ultimately depends on the use case and
the technique used to generate artificial outliers. The thinning filter from Definition 18,
for instance, can be quite useful in the casting task use case. It renders the artificial outliers
more uniformly distributed within the instance space, which can be advantageous for that
use case (Steinwart et al., 2005).

3.12 Experiments

So far, we have presented our general perspective on artificial outliers, including the var-
ious techniques to generate artificial outliers in Section 3.10 in particular. We now ex-
periment with them for insights that also extend to a practical level. We list three aims
behind such experiments.

Aim 1: To our knowledge, most presented generation techniques have never been com-
pared to each other systematically. We aim at precisely this comparison.

Aim 2: Section 3.7.2 has explained that the two use cases casting task and one-class
tuning are similar. Both result in outlier detection based on classification. Thus, another
aim of our experiments is to study the quality difference in the resulting detection. Since
both use cases have a foundation in classification, we refer to them by the respective
classifiers.

Aim 3: Some characteristics of certain types of artificial outliers in terms of the under-
lying data set are known. For example, consider that the outlier-detection quality with
some generation techniques decreases with an increasing number of attributes (Tax and
Duin, 2001; Hempstalk et al., 2008; Steinbuss and Böhm, 2017; Davenport et al., 2006). In
our experiments, we also analyze these characteristics more closely; for example, how
prominent such effects are.

In the remainder of this section, we first describe the workflow of our experiments.
We then describe the data sets and classifiers used and discuss the parametrization of
the generation techniques. Next, we describe the statistical tools we use to analyze our
experimental results. We then describe general outcomes from the experiments. Finally,
we analyze the results in terms of the different classifiers, the generating techniques used,
and the data-set characteristics.
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3.12.1 Workflow
Algorithm 8 is the workflow for our experiments. For each data set and each classifier,
we use the generating techniques presented in this survey for training. We then test
each classifier on all types of outliers. With types of outlier we refer to outliers generated
with some technique as well as the genuine outliers. For instance, one type of outliers is
”genuine outliers”, while another is ”artificial outliers generated with unifBox”. The label
for training or testing the classifier is whether an instance is a genuine inlier or an outlier.
To evaluate a detection method, we use the Matthews Correlation Coefficient (MCC),
which is particularly suited if the classes can be imbalanced (Boughorbel et al., 2017). This
MCC is essentially the correlation between predicted and ground-truth instance labels.
We repeat each such experiment 20 times. The code for our experiments from this chapter
are publicly available.8

Algorithm 8 Experiment workflow.
Input: A set of data sets, a set of classifiers C and a set of generation techniques9G.
1: for each X in the set of data sets do
2: for each c ∈ C do
3: I = inliers from X
4: I train = random sample of I with 70% of Is size
5: I test = I \ I train
6: Ogenu = genuine outliers from X
7: for each gen(·) ∈ G do
8: Train c with gen(I train) ∪ I train
9: for each gen(·) ∈ G do

10: Predict class of gen(I train) ∪ I test with c
11: Save Matthews correlation coefficient (MCC)
12: end for
13: Predict class of Ogenu ∪ I test with c
14: Save Matthews correlation coefficient (MCC)
15: end for
16: end for
17: end for

3.12.2 Data Sets Used
The data sets we use are a common outlier-detection-benchmark data sets. We use most
data sets proposed in (Campos et al., 2016). These are mostly classification data sets in
which one class is deemed outlying. We exclude the data sets Arrythmia and InternetAds
due to their very high number of attributes (259 and 1555). These data sets would im-
mensely increase the runtime of our experiments. We add, however, the musk2 data sets
8 Available at ipd.kit.edu/mitarbeiter/steinbussg/exp-artificial-outliers-FINAL-V3.zip.
9 We represent a generation technique in this algorithm by a function gen(·), which has only a data set as

input. Some techniques require additional inputs. See Table 3.1 for their values.
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from (Dheeru and Karra Taniskidou, 2017) with a reasonable number of attributes. This
addition leaves us with the data sets displayed in Table 3.6. As proposed in (Campos et al.,
2016), each data set is scaled so that X ∈ [0, 1]d, and duplicate instances are removed.
To reduce the run time of our experiments, we downsample data sets with more than
1000 instances to 1000 instances. We downsampled the outlier and inlier classes such
that their initial ratio remains.

3.12.3 Classifiers Used

The difference in the use cases casting task and one-class tuning from Section 3.7 is that
casting task uses a binary classifier and one-class tuning a one-class classifier. There is one
family of classifiers that exists in the binary case as well as in the one-class case, namely
the SVM. For this reason, we use SVMs in our experiments. While the one-class SVM
only needs a single class of instances (e.g., inliers) for training, the binary SVM needs
two. Both SVMs use a simple separation (e.g., linear for the binary case) to perform their
classification. Projecting the data into a kernel space generalizes the simple separation to
take any complex form (see (Hastie et al., 2009)). The binary SVM tries to find the best
separation of the two classes. One version of the one-class SVM, in turn, tries to separate
all available instances from the origin of the transformed space. This trick allows the one-
class SVM to train with instances from only a single class (see (Schölkopf et al., 2001)).

The binary, as well as the one-class SVM, have two different formulations. The binary
SVM can be formulated as C-SVM or ν-SVM (Chang and Lin, 2001). The main difference
is that they feature different parameters. While the C-SVM features a parameter C ∈
(0,∞), the ν-SVM features ν ∈ (0, 1]. In our experiments, we use both, as described later.
The one-class SVM is formulated as described above in (Schölkopf et al., 2001) and is called
ν-support classifier. In (Tax and Duin, 2001) another version, the SVDD, is formulated.
The two types, however, give identical decision functions when using the Gaussian kernel
(Lampert, 2009). We use the formulation from (Schölkopf et al., 2001) in our experiments
with this kernel.

Algorithm 9 Hyperparameter tuning.
Input: Z, νrange, srange
1: Set Errbest = inf
2: for each hyperparameter combination (ν, s) do
3: Train SVM with (ν, s)
4: ErrArt = error on artificial outliers from Z .
5: ErrGenu = error on genuine instances from Z .
6: Err = 0.5 ∗ ErrArt + 0.5 ∗ ErrGenu

7: if Errbest > Err then
8: ErrBest = Err
9: (ν∗, s∗) = (ν, s)

10: end if
11: end for
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The one-class tuning use case aims at finding optimal hyperparameters. For this search
we use the technique introduced in (Wang et al., 2018) that is displayed in Algorithm 9.
It is a grid search over hyperparameters ν and s. The values with the lowest error are
chosen as the final model. As in (Wang et al., 2018) we use νrange = {0.001, 0.05, 0.1} and
srange = {10−4, 10−3, . . . , 104}. This approach is referred to as one-class. For the binary
SVM in the casting task use case, we have implemented two techniques. One approach is
to just use a C-SVM with the default values from the respective implementation C = 1
and s = 1

d , subsequently referred to as binary. The second approach is to optimize ν and s
of a ν-SVM using Algorithm 9. We refer to this as binaryGrid. In summary, we use three
types of classifiers: binary and binaryGrid for the casting task use case and one-class for
the one-class tuning use case.

3.12.4 Generation Techniques

Table 3.1: Overview of used parameters and techniques. If applicable nart is set to ngenu.

Technique Suggested Parameter Value(s) Used Parameter Value

unifBox Increase of bounds: 0%, 10%, 20% 10%
lhs — —
unifSphere — —
maniSamp Number of nearest neighbors: 10 10
marginSample — —
boundVal — —
densAprox Single Gaussian or mixture Single Gaussian
surReg ε = 0.1 0.1
skewBased α = 2 2
negShift — —
gaussTail — —

We do not vary the parameters of the generation techniques but use their default values
if applicable. They are listed in Table 3.1. The parameter nart is always set to ngenu if
applicable in our experiments. That is, the number of genuine and artificial instances
is equal if the technique has this parameter. The bounds for the unifBox technique are
extended by 10%, as proposed in (Abe et al., 2006). We find this a good compromise
between no extension and the 20% increase proposed in (Désir et al., 2013). We perform
density estimation in the densAprox technique with a multivariate Gaussian having a
covariance matrix with only diagonal elements. For the surReg technique, we choose ε =
0.1, as suggested by our other experiments in Section 5.6. We exclude the invHist and
infeasExam techniques from our experiments since they have been explicitly proposed
for data sets with very few attributes. We have excluded boundPlace, distBased, and

45



3 Generating Outliers from Genuine Instances

negSelect, because of the enormous runtimes of our respective implementations, which
an experienced programmer from our institution has put together. A single execution
of distBased — the fastest technique of these three excluded ones — takes more than
50 seconds on a data set with 30 attributes and 650 genuine instances. These numbers
roughly represent the average size of the data sets in our experiments. We have to execute
each technique for 20 iterations, 16 data sets, and for training as well as for testing three
classifiers in combination with 11 other generation techniques (cf. Algorithm 8). With the
distBased technique, the runtime is very high because our data sets are not categorical.
Thus, counting the number of occurrences of the values of all attributes in addition to the
procedure to look up a new random value becomes very expensive. The requirement “low
runtime” also is the reason that we have not implemented nor included ganGen. Training
a GAN architecture is extremely resource-intensive.

3.12.5 Statistical Tools
A direct comparison of the MCC scores is not very useful due to the many factors influ-
encing the scores. Hence, we want to analyze our results statistically by performing an
Analysis of Variance (ANOVA) (Hartung et al., 2012). This analysis allows us to check
whether and how strongly the experimental parameters affect the MCC scores. We then
analyze these effects in more detail with a post hoc analysis (McHugh, 2011). Finally, we
use Kendall’s Tau coefficient (Hartung et al., 2012) to determine the effect of specific data
characteristics.

Analysis of Variance

From Algorithm 8, we see that there are four parameters for a specific experiment. The
classifier (c), the underlying data set (X), the generation technique the classifier is trained
with (gentrain), and the type of outliers the classifier is tested on (gentest). We refer to these
four as main factors. The ANOVA partitions the variation of a dependent variable, here
the MCC score, according to so-called sources. There are three types of sources: the main
factors just mentioned, their interactions, and the residuals. The interactions between
main factors, denoted by inter(·), are used to account for the joint effect of several main
factors, for example, if the choice of the classifier is not independent of the underlying data
set (inter(1, 4) in Table 3.2). To explain residuals, observe that the basis of the ANOVA
is regression. The residual source is the variation that cannot be accounted for using this
regression. Each source except for the residual one has a specific number of levels. A
level of a source is a particular value that it takes. For the main factor c(·) for example,
the levels are binary, binaryGrid and one-class. To perform the ANOVA, one obtains the
sum of squares attributed to the different sources from the regression model. These and
their Degrees of Freedom (DF) are used to compute the F -Value. The number of DF of
a source is given by the number of levels of the source minus one. For example, the
classifier has three levels. Hence, the number of DF for this source is 2. With the F -Value,
one can perform a statistical test, given in Hypothesis Test 1. The p-value of this test is
computed using the F distribution parameterized by the number of DF — the distribution
of the F -Value under the null hypothesis.
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Hypothesis Test 1 (ANOVA F-test) Letµi be themean of the dependent variable for level
i from a source with L levels. Then the null and alternative hypothesis of the ANOVA F-test
are

H0 : ∀ i, j ∈ {1, . . . , L} : µi = µj (3.18)

and
HA : ∃ i, j ∈ {1, . . . , L} : µi 6= µj. (3.19)

The ANOVA F -test thus checks whether the mean of at least one level is different from
the mean of the other levels. In addition to this test, one can compute the partial omega
squared (ω2

P ) values (Olejnik and Algina, 2003) using the ANOVA. The value for ω2
P gives

the importance of the respective source in explaining the variation in the MCC score. A
high ω2

P means that this source accounts for a rather large part of the variation in the
MCC score.

Post Hoc Analysis

Following an ANOVA, one usually performs a post hoc analysis (McHugh, 2011). Any
source for which the Hypothesis Test 1 is significant is analyzed in more detail. With
the ANOVA F -test, one can conclude only that the mean of at least one level differs sig-
nificantly from the mean of at least one other level. However, it usually is interesting
for which levels this is the case. Hence, for each pair of levels in a significant source,
one computes whether there is a difference or not. This procedure is the post hoc anal-
ysis. The pairwise tests in a post hoc analysis are a case of multiple testing (McHugh,
2011). Hence, p-values need to be adjusted accordingly. We use the Holm–Bonferroni
method (Holm, 1979) to this end. Usually, a simple Student’s t-test is used to compare
the means of two levels (McHugh, 2011). However, since there are many significant in-
teractions in our ANOVA result, the assumptions behind the Student’s t-test are usually
violated. Hence, we use a non-parametric alternative: the Mann–Whitney U test (Mann
and Whitney, 1947).

Hypothesis Test 2 (Mann-Whitney U Test) Let Li and Lj be the distribution function
of the dependent variable within Levels i and j of a source. Then the null and alternative
hypothesis of the Mann-Whitney U test is

H0 : Li(x) = Lj(x) ∀ x ∈ [0, 1] (3.20)

and
HA : Li(x) > Lj(x) or Li(x) < Lj(x) ∀ x ∈ [0, 1]. (3.21)

That is, one variable is stochastically larger or smaller than the other one.

A level that is stochastically greater than another indicates a preference. To illustrate,
if the one-class classifier is stochastically greater than the binary one, it usually yields
higher MCC scores. Along with the pairwise test from Hypothesis Test 2, we provide
level-wise means, medians, and density plots of the MCC score when applicable. These
measures and plots indicate the direction of the stochastic order. For greater clarity, the
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result of pairwise tests can be presented in the form of letters (Piepho, 2004). We use the
letters “a” to “z”. Every level is assigned a combination of letters, often only a single one. If
two levels share a letter, the respective test is not significant; that is, HA from Hypothesis
Test 2 cannot be accepted.

Kendall’s Tau Coefficient

When analyzing the results of our experiments in terms of the different X , we are inter-
ested in the effects of the number of instances ngenu and the number of attributes d . Hence,
we are interested in the dependency of the MCC score on ngenu or d . A common estimate
for a monotonic relationship between two random variables is Kendall’s Tau (τ ). The sit-
uation of τ = 0 indicates that there is no dependency, τ > 0 stands for a joint increase,
and τ < 0 indicates that an increase in one variable leads to a decrease in the other. We
make use of the Tau test formalized in Hypothesis Test 3 to test whether the estimated τ
is significant.

Hypothesis Test 3 (Tau Test) Let X and Y be two random variables with τ = τ0. The
null and alternative hypothesis of the tau test are

H0 : τ0 = 0 and HA : τ0 6= 0. (3.22)

Similarly to the previous test, we have to account for multiple testing. We again apply
the Holm–Bonferroni method (Holm, 1979).

3.12.6 Performing the Analysis of Variance
The factors in our experiments have many levels: c(·) has 3;X , 16; gentrain, 11; and gentest,
12. We think that this large number of levels and factors makes a full ANOVA with all
possible interactions difficult to interpret. To reduce the number of levels, we use an
aggregated type of gentest: the genuine outliers from X (Ogenu) and the median of all
generating techniques (Oart). We aggregate the result on all generation techniques since
we are not very interested in the detection quality of a single type of artificial outliers.
A low detection quality could, for example, mean simply that these outliers are easy to
detect and not offer any insights into the ability of the specific classifier to detect various
types of outliers. The results of the ANOVA are displayed in Table 3.2.

The F -Tests for each source yield a highly significant result (p-values < 6 · e−10). Thus,
at least one mean value within the different levels of each source significantly differs
from the other levels. We conclude that each source listed in Table 3.2 determines to
some extent whether the MCC score of an experiment is high or low on average. The
significance of all possible interactions means that the main factors influence each other.
For example, the choice of a classifier type has an impact on the generation technique for
outliers that results in a high MCC score on average. This finding coincides with what is
hypothesized in (Hastie et al., 2009) and (Steinwart et al., 2005). Note that the necessary
assumption for ANOVA of standard normal residuals with equal variance is not fully met
in our case. Thus, the p-values of the F -Test and the ω2

P values might not be exact. Our
subsequent post hoc analysis does, however, confirm the tests regarding the main factors.
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Table 3.2: Four-Way ANOVA from our experiments.

Source Sum of Squares DF F-Value ω2
P

1X 366.82 15 2319.90 0.62
2gentrain 265.90 10 2522.51 0.54
inter(1, 3) 191.31 15 1209.93 0.46
inter(1, 2) 182.84 150 115.63 0.45
inter(1, 2, 3) 166.33 150 105.19 0.43
3gentest 148.82 1 14117.71 0.40
inter(1, 2, 4) 124.99 300 39.52 0.35
inter(2, 4) 106.72 20 506.20 0.32
inter(2, 3) 87.96 10 834.43 0.28
inter(1, 2, 4, 3) 61.52 300 19.45 0.21
inter(1, 4) 44.32 30 140.13 0.17
inter(1, 4, 3) 18.25 30 57.71 0.07
inter(2, 4, 3) 17.54 20 83.22 0.07
4c(·) 1.26 2 59.59 0.01
inter(4, 3) 0.45 2 21.34 0.00
Residuals 211.50 20064

3.12.7 Classifier Comparison
From the ω2

P values in Table 3.2, we see that the type of classifier (c(·)) itself has a rather
small impact on the variation of the resulting MCC scores. As such, it is not vital for ex-
plaining a high or lowMCC score. Interestingly, some interactions involving the classifier
are ranked much higher, the one of classifier and gentrain, for example. Hence, it is more
important that the classifier and the generation technique for outliers fit. However, we
are interested in the exact differences between the types of classifiers. Table 3.3 features
the results of the respective pairwise Mann-Whitney U test.

Table 3.3: Comparison of different types of classifier.

c(·) Mean Median Test Result

binaryGrid 0.31 0.24 b
one-class 0.30 0.24 b
binary 0.29 0.23 a

We see that the one-class and binaryGrid classifiers have the same group letter. Hence,
there seem to be few reasons to prefer one over the other. The binary classifier is in a
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group alone, indicating a significant difference from the former two. The mean and me-
dian MCC score are lowest. However, the difference is tiny. This result differs somewhat
from the results of the small study performed in (Davenport et al., 2006). The results in
(Davenport et al., 2006) suggest that the casting tasks use case (binary/binaryGrid classi-
fier) is preferable. To further elaborate on the difference in distributions of the classifier
types, we visualize the estimated probability density of the MCC score for the different
classifier types in Figure 3.7. The figure visually supports that the differences are not sub-
stantial, but the binaryGrid or one-class classifier is more likely to result in high MCC
scores.
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Figure 3.7: Density of MCC score with different classifier types.

3.12.8 Comparison of Generation Techniques

The ω2
P values in Table 3.2 for the two factors that relate to generation techniques, gentrain

and gentest, are quite high — for gentrain in particular. Thus, they account for a large part of
the variation in theMCC score. The interpretation of the generation techniques for gentrain
and gentest differ greatly. We start with the results in terms of gentrain and then analyze the
results regarding gentest. Figure 3.8 displays the MCC score probability density regarding
the levels of gentrain and gentest.
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Figure 3.8: Density of MCC score with different generation techniques.
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Artificial Outliers for Training

The ω2
P of gentrain is the second highest in Table 3.2. Thus, certain significant differences

in detection quality appear when using different generation techniques to train the clas-
sifiers. Table 3.4 lists the results of the pairwise Mann-Whitney U tests. The techniques
boundVal and maniSamp form a group, and unifBox, lhs, unifSphere and negShift
form one as well. The elements of the second group, in particular, are conceptually quite
similar. For example, three of the four techniques spread outliers uniformly. The tech-
niques with the highest mean and median are densAprox and skewBased. Both try
to generate outliers similar to genuine instances. The densAprox technique does this
quite literally. Hence, we conclude that this is generally a useful technique for gener-
ating outliers to train classifiers. Somewhat contradictory to this conclusion, however,
is that the surReg technique, which also generates outliers similar to genuine instances,
shares the lowest mean and median with gaussTail. From Figure 3.8 we see that both
techniques often result in an MCC score close to zero. Hence, training the classifier using
artificial outliers generated by surReg or gaussTail seems to result in a rather low de-
tection quality. For the gaussTail technique, we think that this is because the generated
outliers are too far from genuine instances to be interesting (cf. Example 4). The attribute
bounds heavily influence the distribution of outliers generated by the surReg technique.
This influence might lead to uneven coverage of the instance space around genuine in-
stances. It might also be that instances generated with surReg are too close to genuine
ones to be interesting, which would explain the low MCC score when outliers generated
with surReg are used to test a classifier (cf. Table 3.5).

Table 3.4: Comparison of artificial outliers for training.

gentrain Mean Median Test Result

densAprox 0.47 0.49 b
skewBased 0.41 0.42 e
marginSample 0.39 0.34 a e
boundVal 0.37 0.35 a
maniSamp 0.37 0.33 a
negShift 0.28 0.22 d
lhs 0.26 0.21 d
unifBox 0.26 0.21 d
unifSphere 0.25 0.21 d
gaussTail 0.11 0.00 c
surReg 0.11 0.00 f
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Artificial Outliers for Testing

Since we aggregate all artificial outlier generation-techniques for the ANOVA, gentest has
only two values, Oart and Ogenu. Hence, we can conclude immediately that there is a sig-
nificant difference in themeanMCC score of the two (cf. Table 3.5). This difference implies
that there is quite a gap between the quality we assign to a detection method when we
evaluate it with the artificial outlier types presented or the labeled ground truth outliers
from the benchmark data sets. This is also clearly visible in Figure 3.8. We hypothesize
that this is mainly because most artificial outliers are much simpler to identify as such.
For example, artificial outliers generated with the unifBox technique tend to be quite far
from genuine instances and are hence trivial to classify as outlying. Thus, when using ar-
tificial outliers to assess the quality of an outlier-detection method, one should consider
how difficult the generated outliers generally are to detect. We also think that using sev-
eral types of outliers (i.e., generated with different techniques) offers much useful insight
into the performance of outlier-detection methods.

Table 3.5: Comparison of artificial outliers for testing.

gentest Mean Median Test Result

gaussTail 0.68 0.88 c
unifBox 0.65 0.84 i
lhs 0.64 0.82 d
unifSphere 0.62 0.81 d
densAprox 0.29 0.21 a
boundVal 0.29 0.28 ab
maniSamp 0.29 0.19 b
skewBased 0.28 0.09 e g
Ogenu 0.21 0.18 g
negShift 0.21 0.06 f
marginSample 0.20 0.12 e
surReg 0.05 0.00 h
Oart 0.38 0.35

Although we have aggregated the generation techniques used for testing the classifiers
when performing the ANOVA, we are nevertheless interested in the differences of the
generation techniques presented. Note that a high MCC value here means that the out-
liers generated are generally easy to detect. Table 3.5 lists the results of corresponding
pairwise Mann-Whitney U tests. We listed the mean and median of the aggregated ver-
sion Oart as references. Techniques used to test the classifiers do not group much, only
lhs and unifSphere are in one group. We also observe that the ranking of generation
techniques in Table 3.5 is to some extent inverse to the one in Table 3.4. For example,
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gaussTail is listed first in Table 3.5 but second-to-last in Table 3.4. We think that this
listing further supports our previous hypothesis on the successful generation techniques
to train a classifier. Training a classifier with outliers that are somewhat similar to the
genuine instances, and hence more difficult to detect, results in a better detection method.

3.12.9 Data Characteristics
From the ANOVA results in Table 3.2, we see that the underlying data set X is quite im-
portant to determine if the MCC score of an experiment is rather high or low on aver-
age. A more detailed analysis regarding the effect of X can be found in Table 3.6 with
the pairwise Mann-Whitney U test. Some data sets share a letter and hence do not allow
for the acceptance of the alternative hypothesis that one is stochastically larger than the
other one, but most are in different groups.

Table 3.6: Comparison of different data sets.

X ngenu d Mean Median Test Result

PageBlocks 1000 10 0.61 0.67 j
Ionosphere 351 32 0.48 0.62 g
Stamps 340 9 0.42 0.43 e
Glass 214 7 0.42 0.39 e
KDDCup99 1000 40 0.38 0.31 h
Wilt 1000 5 0.33 0.21 bc l
Cardiotocography 1000 21 0.32 0.28 d
Pima 768 8 0.29 0.21 cd
Annthyroid 1000 21 0.28 0.25 c
SpamBase 1000 57 0.23 0.18 kl
ALOI 1000 27 0.22 0.06 ab
Parkinson 195 22 0.22 0.22 k
WPBC 198 33 0.16 0.08 f i
musk2 1000 166 0.16 0.00 i
HeartDisease 270 13 0.15 0.13 a
Hepatitis 80 19 0.13 0.09 f

We hypothesize that most of the difference in detection quality is due to the distribution
of the different data sets. However, the numbers of genuine instances or attributes also
have an effect. We also think that the generation technique used to train the classifier has
a strong influence on this effect. Thus, for each level of gentrain, we estimate τ between
the MCC and the number of attributes d as well as the number of genuine instances ngenu.
For each τ we also perform a tau test. The results are displayed in Table 3.7, and those
with a significant τ (p-value < 0.05) are in bold. The p-value is abbreviated as pval.

53



3 Generating Outliers from Genuine Instances

Table 3.7: Correlation with d and ngenu.

gentrain τ̂ d pval d τ̂ ngenu pval ngenu

boundVal -0.13 0.00 0.03 0.21
densAprox 0.05 0.00 0.21 0.00
gaussTail -0.07 0.00 0.05 0.03
lhs -0.24 0.00 -0.04 0.08
maniSamp -0.01 1.00 0.17 0.00
marginSample 0.01 1.00 0.10 0.00
negShift -0.23 0.00 0.01 0.49
skewBased -0.03 0.16 0.17 0.00
surReg -0.06 0.00 0.28 0.00
unifBox -0.28 0.00 -0.04 0.07
unifSphere -0.26 0.00 -0.03 0.11

The τ regarding d tend to be negative, indicating a decreasing effect on the MCC score
for an increasing number of attributes. This relation seems to be particularly strong with
the unifBox technique. Most of the τ regarding ngenu are significant and positive. Hence,
if a higher number of instances affects the resulting MCC score at all, the effect is usually
a positive one.

3.12.10 Summary of Experiments

A core insight from our study is that there are considerable differences in the outlier-
detection quality for different generation techniques and data sets. When used to train
a classifier, the overall best performing technique has been densAprox, with a median
MCC of 0.49. The worst ones have been gaussTail and surReg, both with a median MCC
of 0. This result is comparable to those obtained by random guesses. The data sets form
only a few groups with no significant difference in terms of the overall MCC to other data
sets. However, there are significant differences between the groups. For example, with the
Ionosphere data set from the groupwith letter “g”, the medianMCC is 0.62, while it is only
0.08 with the WPBC from the group with letters “fi”. All interactions between the main
factors are significant. Thus, the choice of a generation technique in a specific scenario
is not reducible to, for example, “densAprox performs best”. Depending on the classifier
a scenario requires or on the data set given by the scenario, different techniques might
be suitable. This realization has motivated us to propose a three-step process, displayed
in Figure 3.9, in order to choose a generation technique in a specific scenario. The steps
are based on the results of our experiments. They help to make the necessary decisions
when the goal is to detect outliers with the help of artificial outliers.
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Type of Classifier

Generation Technique for Training

Generation Technique for Testing

Figure 3.9: Process to choose outlier-generation technique.

Step 1: Type of Classifier

When the ultimate goal is a method to detect outliers, any of the use cases casting tasks
and one-class tuning is applicable. In our experiments, we have found that the one-class
or binaryGrid classifier yield similar MCC scores. However, in a specific scenario, the
huge massive of binary classifiers available for the casting task can be advantageous. One
example is when the outlier-detection result should be easily interpretable. A decision
tree might then be a better fit than a one-class SVM.

Step 2: Generation Technique for Training

One can now check for outlier generating techniques that are more suitable for the clas-
sifier chosen in Step 1. The experimental results displayed in this surveymay be beneficial
for this but are not necessarily sufficient to this end. Observe, however, that this arti-
cle does not explicitly feature the result in every useful representation, to ensure that this
survey still has a reasonable length. The full results are available, however, in combina-
tion with our code. Others can also use the code to test further combinations; this may
be particularly useful when new types of classifiers become available. In addition to the
type of classifier used, the data set of the scenario is of importance. One can, for example,
check whether this data set is similar to one of the data sets from our experiments, or if
the number of attributes and genuine instances is high or low. Depending on these two
factors (classifier and data set), one can then choose the best-suited outlier-generation
technique to train the classifier.

Step 3: Generation Technique for Testing

We have seen in Section 3.12.8 that one needs to be careful when assessing the quality
of outlier detection using artificial outliers. We think that this assessment, nevertheless,
offers useful insights into the outlier-detection quality. In a real-world scenario, there
might be some knowledge of potential genuine outliers available. Consider a system ad-
ministrator who has a rough idea of the distribution of possible outliers. Suppose further
that this distribution is somewhat similar to the distribution of artificial outliers gener-
ated by the negShift technique. Detection quality in terms of artificial outliers gener-
ated with negShift is then clearly a reliable estimate for the detection quality of genuine
instances. However, if there is no such knowledge, which might be the much more likely
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case, we conclude that one of the quite general and uninformative techniques to artificial
outliers, like lhs, could be well-suited. To gain a better feel for which types of outliers
are and are not well detected, a quality assessment using a variety of the generation tech-
niques described might also be suitable. However, we leave a systematic study of this idea
to Chapter 4 because this is not straightforward at all, and it goes well beyond the scope
of this chapter.

3.13 Chapter Summary
By definition, outliers are instances that are rarely observed in reality, so it is difficult to
learn anything with them. Various techniques to generate artificial outliers have been
proposed to compensate for this shortage of data. This chapter is a survey of such tech-
niques. As a first step, we have connected the field of artificial outliers to other research
fields. This step allows us to narrow down the field of artificial outliers somewhat. The
generation techniques described next represent different ways to generate artificial out-
liers. They form separate groups, depending on the similarity of the generated instances
to genuine ones or on the general generation concept. All this fulfills our aim of having
a general perspective on artificial outliers.

Our experiments confirm the hypothesis of some authors that, for the one-class tuning
or casting task use case, artificial outliers similar to genuine instances seem to be per-
forming well. That is, the outlier detection performance is high. The experiments also
confirm that this performance heavily depends on the setting (e.g., the data set used). In
terms of the use cases themselves, our experiments suggest that there are no distinctive
differences in outlier detection performance. Analyzing the effect of some data set char-
acteristics with different generation techniques confirms that these can heavily influence
outlier-detection performance.

To this end, we have also developed a decision process, building on the results of our
experiments that guide the choice of a proper generation technique. In other words, the
process targets at finding a generation technique that yields high outlier-detection quality.

The study in this chapter has featured a great variety of techniques for the generation of
artificial outliers based on genuine instances. The experimental study we have conducted
is a basis for the decision-making process towards a well-performing outlier-generation
technique. As such, this study is likely to support individuals from diverse fields when
developing advanced techniques for the generation of artificial outliers.
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So far, we have given a structured overview of existing techniques to generate outliers.
We categorized them into a few techniques that do so without explicitly using genuine in-
stances (Section 2.3) and the majority of techniques that do use genuine instances (Chap-
ter 3). From the literature, the primary use for outliers generated with techniques from
the second category is the calibration of detection methods. The evaluation of detection
methods (i.e., comparing their performance to each other or some ideal performance) has
been done rarely with generated outliers. Nonetheless, we think generated outliers can
be extremely useful in this sense, which is the reason we address such an evaluation in
this chapter specifically. We focus on unsupervised outlier-detection methods since we
deem a comparison in terms of what types of outliers can be detected by which detec-
tion method of upmost importance in this scenario. For example, to get a suite of a few
detection methods that can detect various types of outliers well.1

Outliers tend to be rare and are not precisely defined (cf. Section 1.1). These two prop-
erties render the evaluation of detection performance, and hence comparisons of outlier-
detection methods difficult. Researchers tend to use benchmark data sets with labeled
instances to this end (Domingues et al., 2018; Goldstein and Uchida, 2016; Campos et al.,
2016; Emmott et al., 2013, 2015). Since the data sets often are from some real-world clas-
sification problems, identifying the characteristics of outliers and seeing how these char-
acteristics compare to outliers from another data set can be very difficult. Often one can
only approximate the process generating outliers or inliers. See Example 5 and Section 2.1.

Figure 4.1: Result from multidimensional scaling.

1 The remainder of this chapter is almost identical to (Steinbuss and Böhm, 2020a), which is submitted for
review. Adjustments are to ensure consistency for this dissertation.

57



4 Benchmarking Unsupervised Detection

Example 5 The WBC (Campos et al., 2016) data set comprises instances on benign and ma-
lignant (=: outliers) cancer. The Wilt (Campos et al., 2016) data set holds satellite images
of diseased trees (=: outliers) and other land cover. Figure 4.1 displays two-dimensional rep-
resentatives of both data sets obtained with multidimensional scaling (Hastie et al., 2009).
This scaling aims at keeping the pairwise distances from the original data for the lower-
dimensional representatives. The figure illustrates that the outliers from both data sets fea-
ture very different characteristics in terms of their pairwise distance (i.e., they are of a very
different type). The outliers from WBC are somewhat distant from each other and the inliers
in particular. In the Wilt data set, outliers are very close to each other and the inliers.

Clearly, an improvement to the situation described in Example 5 is achievable by using
the techniques for generating outliers described in Chapter 3. Since the generating pro-
cedure for outliers is known and can be adopted, artificial outliers have similar character-
istics. However, using augmented data (i.e., inliers are genuine and outliers artificial) for
benchmarks does not allow for precise information on the characteristics of outliers. For
example, think of the case when generating outliers from a uniform distribution. While
most of the outliers will be very different from any inlier, some outliers might be re-
markably similar to inliers. Without precise knowledge on the inliers, any measure for
the similarity of generated outliers to inliers remains an estimation. For this reason, we
focus in this chapter on the generation of entirely artificial data. Thus, we have to gen-
erate outliers and inliers. To this end, we develop and perform a benchmark with the ex-
plicit objective of the artificial data being realistic and featuring outliers with insightful
characteristics. These properties then give way to interpretations beyond pure detection
accuracy. An example is how well detection methods handle local outliers. We refer to
artificial outliers of a specific type (e.g., local ones) as “characterizable”.

4.1 Challenges for Artificial Benchmarks
Amajor issue with existing outlier detection benchmarks is the absence of precise ground
truth (cf. Section 2.1). This ground truth includes information on whether an instance is
an outlier or not. However, it should also give information on the characteristics of the
outliers. For example, information on the different types of outliers that are within the
data. Due to the known generation technique for artificial data, it is feasible to obtain a
ground truth that gives exact information on the types of outliers. However, not with all
generation techniques, precise ground truth is automatically available. Think of generat-
ing outliers with one of the rather complex generation techniques described in Chapter 3
(e.g., ganGen or negShift). The precise characteristics of such outliers can be challeng-
ing to determine — just like with genuine outliers.

Another challenge is coverage. Similar to existing benchmarks, we are interested in
comparisons of detection performance not just for a specific data domain, like the cancer
types from WBC in Example 5, but comparisons across many diverse domains. Existing
benchmarks (Domingues et al., 2018; Goldstein and Uchida, 2016; Campos et al., 2016;
Emmott et al., 2013, 2015) approach this by using many data sets from different domains.
With artificial data, coverage of several domains is challenging. Data generators for a
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specific domain are usually handcrafted and hence difficult to compare to each other. To
illustrate, in (Barse et al., 2003), data from the fraud detection domain is generated by
simulating users, while in (Downs and Vogel, 1993) data from a plant is generated by
modeling chemical processes. Artificial data generators that are domain agnostic, like
MDCGen (Iglesias et al., 2019), need to be parameterized. For example, the number of
clusters or their form needs to be specified. To our knowledge, there currently is no
widely accepted way to choose these parameters so that the resulting data sets cover
different domains sufficiently.

4.2 Contributions Towards Artificial Benchmarks

The idea central to this chapter is to use a real-world data set as a basis for generating an
artificial one. We propose to generate inliers and outliers, but differently: Artificial in-
liers follow a model of the existing real inliers. Outliers are in line with a characterizable
deviation from this model. This fundamental design decision has various ramifications:
The inliers are realistic, and repeating the process for different real-world data sets also
gives way to good coverage (i.e., consideration of different domains). On the other side,
generating outliers similar to the ones labeled as such in real-world data would not im-
prove the insights obtainable from a respective benchmark bymuch. Recall that instances
labeled as outliers in the real-world data may be of any type (cf. Example 5), which syn-
thetic reconstructions would exhibit as well. Thus, we propose to generate outliers as a
characterizable deviation from the model of inliers. In our evaluation, we use the real-
world data sets from a recent benchmark on unsupervised outlier detection (Campos et al.,
2016) to this end. They have already been used for a broad benchmark and cover different
domains. Additionally, the labels existing in such data are handy for our study: First, we
can compare the results from our artificial benchmark with the ones on real-world data.
Second, we can assess the realness of our artificial data.

To have a sophisticated ground truth, we demand that for any generated instance — be
it outlying, be it inlying — we have access to its probability density. This access allows
for the introduction of several ideal outlier scorings. For example, one is similar to the
Bayes error rate (Tumer and Ghosh, 1996) from supervised classification tasks. This rate
gives insight into the prediction error that is unavoidable. In our case, this error comes
from generated outliers indistinguishable from inliers.

Our first contribution is formalizing the generic process sketched so far. As a second
contribution, we perform an extensive benchmark featuring different characterizable de-
viations from inliers. To this end, we present and use three such instantiations of our
generic process: one for local outliers, one for outliers in the dependency structure of
attributes, and one for global outliers. Our third contribution is to validate the realness
of our artificial data through experiments. They confirm that the instantiations just men-
tioned do result in artificial data close to the corresponding real-world data set.
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4.3 Organization of This Chapter

The remainder of this chapter is structured as follows. In Section 4.4, we propose a gen-
eral process to generate realistic artificial data. In Section 4.5, we introduce three instan-
tiations of this process for our benchmark. In Section 4.6, we describe the design of our
experiments. In Section 4.7 and Section 4.8, we discuss our results and Section 4.9 con-
cludes this chapter.

4.4 The Generic Process

In this section, we formalize the generic process we propose for realistic artificial bench-
marks for unsupervised outlier detection. First, we introduce some notions, then our
requirements regarding the instantiations of our generative process. We then introduce
our ideal scorings and provide an overview of the process.

4.4.1 Special Notion

A generative modelm ∈ M is a description of a set of instances that allows for the gen-
eration of artificial instances. M is the set of all possible models, used here for purely
notational purposes. A generative model in our context is associated with the four func-
tions

fit : IRngenu×d → M, (4.1)
gen : M → IRngenu×d, (4.2)

dens : IRngenu×d ×M → IRngenu and (4.3)
modify : M → M. (4.4)

The function fit(·) creates the generative model from a set of instances and gen(·) gener-
ates instances from the generative model. Based on a generative model, dens(·, ·) returns
the density of a set of instances. The function modify(·) modifies a generative model so
that the resulting model can generate outliers that are characterizable.

In this chapter the function

dect : IRngenu×d → IRngenu (4.5)

denotes an unsupervised outlier detection method. It outputs a score, given a set of in-
stances. The scores must have a meaningful ordering in terms of outliers. For example,
with the Local Outlier Factor (LOF) (Breunig et al., 2000) a high score indicates outliers.

4.4.2 Requirements on Generation

In Section 4.2, we have argued that fitting the labeled inliers and the outliers from real-
world data is not very insightful. Hence, in this benchmark, we reconstruct only the
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inliers by fitting a generative model to them. Outliers are then generated based on a
characterizable deviation from this model.

Section 2.2.3, described already existing techniques for the artificial reconstruction of a
data set (basically fit(·) and gen(·)). To decide on a suitable one for our process, we gather
requirements that it must fulfill.

R1: Be applicable to many kinds of real-world data.

R2: Generate realistic artificial data.

R3: Feature a generation that is comprehensible.

R4: Give access to the density of generated instances.

R5: Allow for generating characterizable outliers.

R1 and R2 are essential to achieve good coverage of different data domains and R3 to
R5 for a proper interpretation of the results from a benchmark. Except for R4, the require-
ments do not allow for a rigid definition. Terms like “many kinds of real-world data”,
“realistic artificial data” or “comprehensibility” are subjective. To simplify the search for
a suitable technique in terms of R2, Section 4.7 will showcase a possible approach to as-
sess the realness of synthetic reconstructions.

We have found that statistical distributions like Gaussian mixtures usually fulfill the
requirements well — all our instantiations we describe in Section 4.5 are of this kind.
Naturally they allow for access to the density of instances (R4) and are applicable to any
real-world numeric data (R1). In Section 4.5, we will show that the ones we use also allow
for characterizable outliers (R5) and in Section 4.7 that they are reasonably realistic (R2).
Finally, models (m) that describe statistical distributions are well understood (R3).

4.4.3 Ideal Scores
Definition 20 introduces our three ideal scorings Classify (C), Inlier Density (RD), and
Overall Density (OD).

Definition 20 (Ideal Scorings) Let densin ∈ IR be the density of an instance with regard
to the distribution of inliers and densout ∈ IR the one with regard to the distribution of outliers.
Then the ideal scores for this instance are

RD = densin, (4.6)
OD = ξ · densout + (1− ξ) · densin and (4.7)

C =
ξ · densout

(1− ξ) · densin
, (4.8)

where ξ is the frequency of outliers. RD and OD give outliers lower scores, and C assigns
them higher scores.

Each scoring gives insights regarding the characteristics of the generated data. C repre-
sents an ideal classifier that knows both probability distributions — similarly to the idea of
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the Bayes error rate (Tumer and Ghosh, 1996). The nominator is proportional to the prob-
ability of an instance being an outlier and the denominator to the one being inlier. Thus, a
score higher than 1 is a prediction for outliers and a lower score for inliers. The score gives
insight regarding the possibility of distinguishing between outliers and inliers. This is
similar to the difficulty of an outlier detection problem introduced in (Emmott et al., 2015,
2013). Since C emulates a supervised scenario (where outliers and inliers are available),
detection performance achievable in an unsupervised setting might be much lower.

RD and OD are both densities. The idea is that unsupervised outlier detection is very
close to density estimation. The existence of many density-based methods for outlier de-
tection and also the firm connection of distance-based ones to density (Zimek and Filz-
moser, 2018) support this. RD is the density regarding the distribution of inliers. Hence,
any instance that is different from inliers will have a low score. OD is the overall density
of the data (i.e., regarding the outliers and inliers). The difference between RD and OD
is that highly clustered outliers will have a low score in RD but not in OD. However, OD
is much closer to the unsupervised setting in which it is tough to characterize inliers on
their own. Hence, in particular, OD can give insights into an ideal unsupervised scoring.

4.4.4 Overview of the Process
Algorithm 10 gives an overview of the benchmark process with a specific instantiation
of the generation process for artificial data (i.e., fit(·), gen(·), dect(·) and modify(·)). The
input of the algorithm is a set of real-world data sets, multiple unsupervised detection
methods, and the frequency of outliers (ξ). For each data set, the process fits a generative
model to the inliers (line 3). In line 4, the process modifies this model to obtain a model
for generating outliers. In lines 5 – 7, both models are used to create the artificial data
set. Then the densities from both models are used to compute the ideal scorings in lines 8
– 10. Following this, the process applies each detection method to the artificial data (line
12) and computes their detection performance (line 13). In line 14, the process determines
the relationship to the ideal scorings (e.g., by computing the correlation of the scorings).

4.5 Our Instantiations
Here we introduce our instantiations to the generic process, first for local outliers, then
for outliers in the dependency structure and lastly for global outliers.

4.5.1 Local Outliers
Local outliers are outlying “relative to their local neighborhoods […]” (Breunig et al.,
2000). Here we define a local neighborhood to be a cluster. More specifically, we follow
the technique from (Milligan, 1985) to generate outliers in artificial data from Gaussian
Mixtures. The fit(·) function returns the parameters of a GaussianMixture: the number of
componentsG ∈ {1, 2, 3, . . . }, themixing proportion π ∈ [0, 1]G, themean vector of each
component µi ∈ IRd and the covariance matrix of each component Σi ∈ IRd×d. The model
for generating outliers has the same parameters, but the covariance matrix is scaled with

62



4.5 Our Instantiations

Algorithm 10 Overview of our benchmark process.
Input: X , set of dect(·) and ξ ∈ [0, 1]
1: for every X do
2: I = Inliers from X
3: min = fit(I)
4: mout = modify(min)
5: S in = (1− ξ) · ngenu instances with gen(min)
6: Sout = ξ · ngenu instances with gen(mout)
7: S = S in ∪ Sout
8: densin = dens(S, min)
9: densout = dens(S, mout)

10: Compute ideal scorings
11: for every dect(·) do
12: ~sdens = dect(S)
13: Compute detection performance
14: Determine relation of ~sdens and ideals
15: end for
16: end for

α > 1 to generate the local outliers. This is, Σ̃i = αΣi where i ∈ {1, . . . , G}. Instances
generated with the increased covariancematrix are still close to inliers generated from the
cluster with the same πi. However, they will often be outlying the inliers in this cluster.
So they are local outliers.

Although in (Milligan, 1985) α = 9 is proposed, we use α = 5. This α yields outlier that
are detectable (i.e., sufficiently far away from inliers), but still close to the correspond-
ing cluster of inliers. Both properties are essential since the outliers should be local. The
value of G is chosen from the range of 1, . . . , 9 using the Bayesian Information Criterion
(BIC) (Hastie et al., 2009) and the covariance parameters are restricted2 to speed up com-
putations.

4.5.2 Dependency Outliers
Let Fi(·) be the cumulative distribution and fi(·) the probability density function of data
attribute i. If the distribution of each attribute is absolutely continuous, the full multi-
variate probability density function f(·) can be written (Aas et al., 2009) as

f(x1, . . . , xd) = f(x1) · . . . · f(xd) · c(F−1
1 (x1), . . . , F

−1
d (xd)). (4.9)

The copula c(·) provides “a way of isolating the […] dependency structure.” (Aas et al.,
2009). We use it to generate outliers that do not follow the dependency structure, which
inliers follow. Outliers in the dependency have recently attracted some attention (see
for instance (Ren et al., 2017)), and there also exist proposals for generating outliers in
this spirit (see marginSample from Definition 15). A compelling variant of modeling the
2 With the VEI model in the mclust R package.
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copula is the vine (Aas et al., 2009). In principle, the vine decomposes the multivariate
distribution into multiple bi-variate building blocks. Each bi-variate distribution can be
rather simple, but their combination allows modeling complex dependency patterns.

Here, fit(·) returns distribution estimates for each attribute and a vine copula. modify(·)
returns the distribution estimates for the attributes without any modification of the es-
timates. However, we set the vine copula to complete independence. Hence, generated
outliers will not follow any dependency. To estimate the distributions of each attribute
we use Kernel Density Estimation (KDE) (Hastie et al., 2009). To select the distribution
family3 for each bi-variate copula in the vine we make again use of the BIC (Hastie et al.,
2009).

4.5.3 Global Outliers

Generating uniform outliers has been described many times (Iglesias et al., 2019; Mel-
nykov et al., 2012; Maitra and Melnykov, 2010; Qiu and Joe, 2006; Pei and Zaıane, 2006).
Since they scatter across the whole instance space, we dub them global outliers.

The fit(·) function here has three possible forms. In one form it returns a uniform
distribution with its bounds being the minimum and maximum of each attribute. This
form is a crude and somewhat unrealistic fit to the given genuine inliers. Hence, we
also allow fit(·) to be the corresponding function from our previous two instantiations.
Thus, the other two forms return a Gaussian Mixture or a vine copula fitted to the data.
With any form of fit(·), modify(·) returns a uniform distribution. Its bounds also use the
maximum and minimum of each attribute, but the values are increased by 10%. Hence,
even when artificial inliers are from a uniform distribution, there are outliers generated.

4.6 Workflow of Experiments

In this section, we describe our experiments by first giving a broad overview. We then
introduce the real-world data sets used.

4.6.1 Overview

Our experiments were coded in the R language4 using the batchtools (Lang et al., 2017)
package for organization and parallelism5. Thus, to illustrate the workflow of our exper-
iments, we use two entities from batchtools: problems and algorithms.

A problem describes the data we use with an algorithm. Any problem is based on a
real-world data set and might replace inliers, outliers or both with artificial instances.
Thus, for each real-world data set described in Section 4.6.2, there are four problem types.

• Real: The real-world data itself
3 We choose between all families provided by the rvinecopulib R package.
4 https://www.r-project.org/
5 Our code is available at http://ipd.kit.edu/mitarbeiter/steinbussg/synth-benchmark-code-V2.zip.
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4.6 Workflow of Experiments

• ArtInliers: we synthetically reconstruct inliers, but outliers remain the ones
from the real data (i.e., genuine).

• ArtOutliers: Outliers are artificial (not necessarily reconstructing the genuine
ones), but inliers are genuine.

• Art: Outliers are artificial, and we synthetically reconstruct inliers.

For the benchmark we make use of Real and Art. We use the other problems to assess
the realness of our data.

An algorithm is a classifier (Classify) to assess the realness of our data or an outlier
detection method like LOF (Detect) for the benchmark. We now describe what we use
the two algorithms for and how.

Algorithm for Realness

The idea behind the Classify algorithm was proposed in (Sun et al., 2018), to show how
well the introduced model fits real-world data. The idea is to test how much worse the
classifier performs when trained on artificial instead of genuine data. The workflow of
the Classify algorithm requires a problem and a real-world data set and is as follows.

S1: Split the real-world data into 70% training and 30% test with unchanged class
frequencies.

S2: Apply the problem on the training data. For example, with ArtInliers replace
the inliers with a synthetic reconstruction. The Real problem leaves the training
data unchanged.

S3: Train a classifier to distinguish outliers and inliers in the possibly artificial
training data.

S4: Report the performance of the classifier evaluated on the test data.

Since we test the classifier on unseen and non-artificial data, the drop in classification
performance using artificial data can serve as an indication of the realness of the artificial
data. If the artificial data is close to the genuine data, the drop should be small.

For the classifier we used a random forest implemented by the ranger R package and
optimized its parameter using ten repetitions of 10-fold cross-validation from the caret R
package6. Since the two classes in our data are usually imbalanced, we measure classi-
fication performance with Cohen’s Kappa (Porwik et al., 2016). It lies in [-1,1] where 1
indicates perfect agreement of prediction and ground truth, 0 stands for random guess-
ing, and anything below 0 indicates a prediction worse than this.

Algorithms for the Benchmark

TheDetect algorithm performs our benchmark for unsupervised outlier detection meth-
ods. Detect used with the Real problem is just a conventional benchmark. With Art, it
6 For the grid of possible parameter values of the random forest we used the defaults from the caret R

package.
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follows our general process given in Algorithm 10. In both cases, outliers are up to 5% of
the entire data. With Real, this percentage is achieved by sampling from the given out-
liers, like in (Campos et al., 2016).

In our benchmark we compare the outlier detection methods that are competitive ac-
cording to existing benchmarks on real-world data (Domingues et al., 2018; Goldstein
and Uchida, 2016; Campos et al., 2016; Emmott et al., 2013, 2015). While (Domingues
et al., 2018; Emmott et al., 2013, 2015) recommend the isolation Forrest (Liu et al., 2008),
the benchmarks (Goldstein and Uchida, 2016; Campos et al., 2016) result in recommen-
dations for k-Nearest Neighbour Detection (kNN) (Ramaswamy et al., 2000) and the LOF
(Breunig et al., 2000). In addition to these methods we included KDE (Hastie et al., 2009)
since our ideal scores are strongly related to density.

We tried using some meaningful default parameters and not vary them extensively,
to keep our experiments comprehensible and to reduce their run time. For the isolation
Forrest, we used the parameter values proposed in its original publication (Liu et al., 2008),
i.e., ψ = 256 and t = 100. For the paremters minPts from LOF and k from kNN, we
used the values 5 and 100. While 5 is a very local choice, 100 is a rather global one.
Instead of the plain kNNwe used the Weighted k-Nearest Neighbour Detection (wkNN)
(Angiulli and Pizzuti, 2002), which yields better density estimates (Biau et al., 2011). For
the bandwidth parameter γ of KDE, we used the default rule of thumb from the np R
package.

4.6.2 Data Sets
We used most of the data sets proposed in (Campos et al., 2016). Thus we have a total of
19 different data sets. We excluded Lymphography and InternetAds due to the categorical
nature of their attributes: None of their attributes had more than ten distinct values. The
data sets Arrhythmia with 166 attributes and SpamBase with 53 attributes were excluded
to keep the run time of our experiments at a reasonable level. We also kept domain-
specific artificial data sets, as described in Section 2.2.1. Waveform is an example. Such
data is engineered for a specific real-world use case, and we deem it realistic.

As described in (Campos et al., 2016), we only kept numeric attributes in each data
set, removed duplicate values, and normalized each attribute to [0, 1]. We also excluded
any attribute with less than ten distinct values. In such cases, the attribute is most likely
categorical (e.g., gender gender represented by {0, 1}). Fitting a continuous distribution
to such attributes yields unrealistic artificial data. When we fit statistical distributions to
the data, we add some noise to the attribute values according to the procedure described
in (Nagler, 2017). This noise should improve the fitting process.

4.7 Results for Realness
First we discuss our results regarding the realness of our data. To do so, we use the Clas-
sify algorithm and the problems Real, ArtInlier and ArtOutlier. For realness, we will
not use the Art problem (i.e., entirely artificial data). The reason is that we are inter-
ested in the realistic reconstruction of inliers. Whether these remain realistic in combi-
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nation with the different types of generated outliers is of less importance. However, how
the artificial outliers impact classification performance on their own, is investigated with
ArtOutlier.

4.7.1 Generating Inliers

(a) Using artificial inliers. (b) Using artificial outliers.

Figure 4.2: Reduction in Kappa.

Figure 4.2a graphs the realness of our synthetically reconstructed inliers. The x-axis
lists the distributions that we fitted to inliers. Random is not connected to some dis-
tribution but shows the drop in classification performance when randomly guessing the
class of instances. We include it as a reference point. The y-axis shows the drop in Kappa
when we train the classifier with artificial inliers instead of genuine ones.

From Figure 4.2a, we can see that artificial inliers from every distribution yield a better
classifier than random guessing — even from the uniform distribution. Next, the Gaussian
mixtures give the best reconstruction overall, but the vine is not far from it. Since the
median is close to zero, we conclude that our reconstructed inliers are realistic.

4.7.2 Generating Outliers
Outliers should be credible and insightful deviations from the inliers. It is only for com-
pleteness that we also investigate the drop in classification performance when training
with artificial outliers. See Figure 4.2b. The left plot contains the results when we derive
the distribution of the artificial outliers from the genuine outliers and not a characteriz-
able deviation from the model of inliers. Results on the right are from artificial outliers
that we generate from our deviations introduced in Section 4.5. The left plot is very simi-
lar to Figure 4.2a: Gaussian Mixtures and Vine result in only a small drop in Kappa over-
all. However, compared to inliers, the Vine seems to perform slightly better for outliers.
We find this particularly interesting in two regards. (1) It seems to indicate that the out-
liers in the benchmark data are not extremely complex. Standard statistical distributions
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fit them reasonably well. (2) The uniform distribution is not a very good fit for the gen-
uine outliers in the benchmark data. We think that this questions the realness of artificial
data with only uniform outliers. The distributions shown in the right plot are entirely in-
dependent of the genuine outliers, which is why the drop in classification performance
is rather significant. Interestingly the uniform distribution results in the smallest drop in
Kappa. We hypothesize that this is because of the one-class nature of the respective re-
sulting classifier. Steinwart et al. (2005) discuss this for an SVM classifier. With outliers
generated from a uniform distribution, the classifier might become a well-calibrated one-
class classifier. This connection would explain its good detection performance regarding
genuine outliers.

4.8 Outlier Detection Benchmark
In the benchmark, we assess detection performance with the Area Under the Precision
Recall Curve (AUC PR). We adjust it so that random guessing has value 0. We do not use
the Receiver Operating Characteristic (ROC) curve since the data is imbalanced (only 5%
are outliers by design). With imbalance, precision-recall curves are preferable (Saito and
Rehmsmeier, 2015).

Next, we compare results from our artificial data to ones from real-world data. Then
we analyze the correlation of the ideal scorings and the scores from the different outlier
detection methods.

4.8.1 Comparison to Genuine Data

Figure 4.3: Performance of the different detection methods on synthetic and genuine data.

Figure 4.3 contains results regarding our benchmark for different instantiations and
genuine data. The y-axis gives the respective AUC PR, and the x-axis gives the distri-
bution inliers (term before “_”) or outliers (term after “_”) are samples from. The results
with entirely genuine data suggest that the Isolation Forrest or wkNN method performs
well overall — just as observed with previous benchmarks. Detection methods rank sim-
ilar when using artificial data that uses the uniform distribution to generate outliers
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(gauss_unif, vine_unif, and unif_unif). The local method “lof_5” performs worst over-
all for all three types of data with global outliers. This is expected.

The two types of artificial data that do not use the uniform distribution give a different
ranking. Both suggest the local method “lof_5” to be best overall. For the artificial data
with outliers from a Gaussian mixture, this is what we would expect. We designed the
outliers to be local ones. Nevertheless, this nicely confirms that this type of artificial data
is well suited to evaluate methods for local outlier detection. With outliers in the depen-
dency structure of the data (vine_vine) the isolation Forest, “lof_100” and “wknn_100” do
not perform well overall. Their inliers AUC PR is close to 0. Hence, local methods seem
to detect such outliers much better.

The overall AUC PR, is the highest for artificial data with uniform outliers. Every de-
tection method has a higher average AUC PR than with genuine data. This high score is
close to what is found in (Emmott et al., 2015) with simple artificial data. With the other
two forms of artificial data, this is not the case — regarding the vine in particular. How-
ever, we think, the bare value of the inliers AUC PR is not very meaningful for artificial
data. For example, with our instantiation based on Gaussian Mixtures, it depends di-
rectly on α, which can be adjusted accordingly. Instead, the ranking in terms of different
characteristics is more conclusive.

4.8.2 Analyzing Ideal Scores

Section 4.4.3 has introduced three ideal scorings. Here we analyze our benchmark results
in terms of them. First, we investigate the detection performance (AUC PR) of our ideal
scorings. Then we study the relationship of the ranking of instances from the detection
methods to the ones from the ideal scorings.

Detection Performance

(a) Detection quality. (b) Correlation.

Figure 4.4: Ideal scores.
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Figure 4.4a displays the detection quality of each of the ideal scorings. The ranking
reflects our expectations: C has the highest AUC PR, followed by RD and then OD. Thus,
the fully supervised case (C) yields better results than the case in which the distribution of
outliers is not modeled (RD), or both classes are modeled together (OD). When inliers and
outliers are from a uniform distribution, all ideal scores are the same. The reason is that in
this case the densities densout and densin only differ by a constant. Since we compute
AUC PR by varying the threshold on the scorings, the specific value for the threshold
does not affect it. So all ideal scores give the same AUC PR. When outliers come from
a uniform distribution, the AUC PR is highest overall. This high AUC PR confirms their
rather global nature.

Relationship to Detection Methods

To analyze how well the scorings from the detection methods coincide with our ideal
ones, we use Kendall’s Tau coefficient (Hartung et al., 2012) It quantifies the similarity
of the rankings with the two scorings. See Figure 4.4b. We abbreviate the scores of the
outlier detection methods with “M”.

The two ideal scorings based on density (RD and OD) have a firm positive correlation.
Hence, using the overall density as the density for inliers has little impact on the overall
ranking of instances. We find this very interesting: In the unsupervised setting, com-
puting the overall density is simple — no labels are needed. Getting an estimate of the
density of inliers is much more challenging. However, it seems that the small difference
in the overall ranking does affect outlier detection performance. This performance varies
substantially for the different rankings (cf. Figure 4.4a). The classification scoring does
not correlate much with the low-density scorings. We expected this: The classify scoring
uses the actual distributions of outliers and inliers. Thus, it can also distinguish instances
that might not be meaningful outliers. An example is artificial outliers that are incredi-
bly close to inliers. In general, the methods correlate much more with the density scoring
than with the classify scoring. In particular, KDE has a strong correlation with density
— which we expected. However, since it is not the best outlier detector (cf. Figure 4.3),
there seems to be more to outlier detection than just density estimation. While ”lof_5”
does not correlate with the density as well as the other methods, it does correlate with
the classify scoring more than some other methods. We hypothesize that this comes from
its detection capabilities with the Gaussian Mixture but also vine outliers.

4.9 Chapter Summary
Benchmarking unsupervised outlier detection methods continues to be difficult — espe-
cially in terms of outliers of different types. We have shown that the problem can be dealt
with using entirely artificial data, where outliers are characterizable deviations from in-
liers. In this chapter, we have proposed a process that yields such artificial data. Using
existing real-world data sets as the basis for the generation renders the generated data re-
alistic. The combination of realistic data and outliers as characterizable deviations allows
for high interpretability. We also propose concrete techniques for three types of outliers,
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each one exhibiting different characteristics. An extensive benchmark with state-of-the-
art unsupervised outlier detection methods confirms the usefulness of our proposed pro-
cess. Our results suggest that the relative performance of the detection methods does
indeed differ with the various types of outliers. Put differently: no method is optimal
for all types. The artificial nature of our data also allowed for the computation of some
ideal scorings. The gap between the performance of the detection methods and this ideal
scoring might be a useful indicator for improved future detection methods.

All in all, our proposed process allows for a realistic comparison of detection methods
and meaningful interpretations of results.
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5 Characteristics of Hidden Outliers
In the previous chapters, we have given an overview of existing techniques for generating
artificial outliers (Section 2.3 and Chapter 3) and described a process for the evaluation
of unsupervised outlier detection methods which uses generated data (Chapter 4). In this
chapter, we want to analyze a special type of outlier that adds a layer of complexity to
the types investigated so far: hidden outliers.1

A hidden outlier exhibits its outlier behavior only in subspaces (i.e., subsets of data
attributes) where no outlier detection takes place. Hence, whether an outlier is hidden
or not depends on the subspaces where one is looking for outliers. Figure 5.1 displays a
low-dimensional illustrative example. The outlier in the figure is hidden when looking at
each one-dimensional subspace in isolation. It can only be detected when looking at the
two-dimensional subspace.

Outlier

Figure 5.1: Example illustrating a hidden outlier.

In Section 2.1 and Chapter 4, we have discussed that the current approach to the eval-
uation of outlier detection methods is not entirely satisfactory. Throughout this thesis,
it has also become apparent that generated outliers can improve on this. This improve-
ment applies to hidden outliers as well: Generated hidden outliers are known to be out-
liers in certain subspaces, and one can quantify how well they are found. An evaluation
scheme based on generated hidden outliers would also allow differentiating between dif-
ferent types of hidden outliers (in the spirit of the process in Chapter 4). Thus, such an
evaluation scheme might be more systematic than one with the usual outlier detection
benchmark data. In terms of such an evaluation scheme, we ultimately also come up with
a risk measure that quantifies how easy it is to generate hidden outliers for an adversar-
ial attacker. Such an attacker is someone who wants to circumvent detection by carefully
manipulating the values of the corresponding instance (cf. Section 3.8.3).

However, the complete design and assessment of an evaluation scheme for SSOD with
artificial outliers is beyond the scope of this dissertation. Mainly this is due to some
aspects in a full evaluation scheme that needs to be determined by the SSOD community.
1 The remainder of this chapter is almost identical to (Steinbuss and Böhm, 2017), previously published in

the International Journal of Data Science and Analytics. Adjustments are to ensure consistency for this
dissertation.
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For example, the community needs to find a guideline on the selection of subspaces that
should be evaluated. This is, in which subspaces the hidden outliers are detectable and
in which they are not. In this thesis, our concern is the effective and comprehensive
generation of hidden outliers and their characteristics.

5.1 Challenges for Generating Hidden Outliers
Hidden outliers are inliers in certain subspaces. Thus, we cannot just use extreme val-
ues to obtain hidden outliers. Compared to Figure 5.1, the situation may also be more
complicated. For instance, when it is not just high dimensional versus low dimensional
subspace. Instead, a mix of the two is feasible as well.

The imprecise notion of outliers is another, orthogonal challenge. This imprecision
allows for diverse types of outliers. We hypothesize that different outlier types lead to
different regions where the generation of hidden outliers is possible. When designing
a general algorithm that generates hidden outliers, we cannot assume much about the
possible types of hidden outliers.

Another challenge relates to the relative size of the region where hidden outliers can
exist. In some scenarios, this region may be small, while it may be huge in others (e.g.,
close to the full instance space). Generating hidden outliers exhaustively in the feasible
region requires techniques that adapt to the size of this region. The generation should
cover a broad range of positions if the region is enormous. When the region is small, in
turn, the generation must be more fine-grained.

5.2 Contributions Towards Hidden Outliers
In this chapter, we start by deriving important characteristics of hidden outliers analyt-
ically, focusing on multivariate data following a normal distribution. One result is that
hidden outliers do exist in this setting. Another one is that correlation within subspaces
can reduce the size of the region of hidden outliers.

Another contribution of ours is a generation algorithm that generates hidden outliers.
The introduced algorithm is essentially a generation technique in combination with a
filter (cf. Chapter 3). The algorithm relies on only one mild assumption: a provided
outlier detection method defines the types of outliers. The outliers found by different
methods are likely of different types — like it is the case in our benchmark in Section 4.8.
Hence, the algorithm does not require the assumptions behind our theoretical analyses
(e.g., the normal distribution assumption). The algorithm design bases on the hypothesis
that the distance of generated hidden outliers and genuine inliers should be adaptive.
Thus, our generation technique features a parameter that allows adopting the closeness
of generated outliers to genuine instances. This adaptiveness allows for a generation that
can concentrate on a small region, close to the genuine data, or a rather large region. The
algorithm we propose does not rely on any assumption regarding the outlier detection
method used, except for a non-restrictive one: Namely, the detection method must flag
points as outliers or not. The output of any method we are aware of is transformable in
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this spirit (see (Kriegel et al., 2011)). Our algorithm also gives way to a rigid definition of
the risk of an attacker being able to hide outliers.

Finally, we have carried out various experiments. They confirm that some of our the-
oretical findings also hold in the absence of the underlying model assumptions (e.g., for
other outlier detection methods and data sets). The experiments also demonstrate that
our adaptive generation technique is much better in generating hidden outliers than a
baseline (a technique that is not adaptive). In particular, this holds for high-dimensional
data sets.

5.3 Organization of This Chapter
The remainder of this chapter is structured as follows. In Section 5.5.1, we formalize our
definition of hidden outliers. Section 5.5.3 features our analytical derivations of charac-
teristics of hidden outliers. In Section 5.5.4, we develop our algorithm to generate hidden
outliers. In Section 5.6, we validate our analytical derivations and our developed algo-
rithm.

5.4 Special Notation
The set F = {1, . . . , d} denotes the full attribute space. W.l.o.g., we assume here that
each attribute lies within [l, u] where l, u ∈ IR. An attribute subset S ⊆ F is called a
d ′-dimensional subspace projection (1 ≤ d ′ ≤ d). A set SC = {S1, . . . ,St} ⊆ P(F)2 is
a collection of t subspace projections (1 ≤ t ≤ 2d − 1). The set Rfull = {~x ∈ [l, u]d} is
the entire data space. When not stated different explicitly, for any region R, it holds that
R ⊆ Rfull. Further, we assume that there exists a function dectS(·) of the form

dectS(~x) :=

{
1 if ~x is outlier in S,
0 if ~x is inlier in S.

(5.1)

The function dectS(·) here is a generic unsupervised outlier definition with binary output
that takes subspace into account. Different outlier detection methods, which typically
result in the detection of different types of outliers, are in use. In this chapter, we rely on
the detection method to define a specific type of outliers. For this reason, we sometimes
refer to the detection methods as “outlier definitions”. Many such methods output a score
instead of a binary value. However, we assume that these scores are transformable to a
binary signal (e.g., by applying a threshold).

5.5 The Region of Hidden Outliers
In this section, we formalize the notion of hidden outliers and derive important character-
istics. Section 5.5.2 features some assumptions behind our formal results. In Section 5.5.1,
2 P(F) is the power set of F
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we define hidden outliers and other relevant concepts. In Section 5.5.3, we derive our
formal results. Section 5.5.4 features an algorithm to generate hidden outliers. This al-
gorithm also allows defining the “risk” of hidden outliers, which quantifies assessing the
probability of success of an adversarial attacker (someone that wants to circumvent de-
tection).

5.5.1 Definition
We briefly review the well known multiple view property (Müller et al., 2012) of outliers
before presenting our underlying definitions. It is crucial for the notion of hidden outliers.
The property refers to the case that an instance can be an outlier in some subspaces while
being an inlier in others. Hence, there are several subspaces, each containing outliers that
could have different meanings. For instance, think of a data set from a bank. Further, let
there be a subspace related to the family of customers and another one regarding their
employment. The outliers in the family characteristics subspace likely have a different
meaning than those in the employment subspace. Subspace outlier detectionmethods find
promising subspaces in a first step; in a second step, these methods apply a conventional
outlier detection method to each of these subspaces.

Bearing the multiple view property in mind, we define the notion of a hidden outlier
as follows:

Definition 21 (Hidden Outlier) Let two disjunct sets of subspace projections SCout and
SCin be given. Then ~o ∈ Rfull is a hidden outlier with respect to subspace collections SCout
and SCin if

dectS(~o) = 0 ∀ S ∈ SCin (5.2)
and ∃ S ∈ SCout : dectS(~o) = 1. (5.3)

The number of subspaces not in SCin is usually rather high. Testing a subspace for
outliers contained in it is expensive computationally. Thus, we focus on the case that the
hidden outliers are outlier in at least one subspace of SCout instead of any subspace not
in SCin. SCin and SCout must always be disjunct. They are disjunct because there cannot
be any instance, being an inlier and outlier in the same subspace. However, there can be
overlapping attributes in subspaces of both sets. If there is no attribute within subspaces
of both sets, the task of generating hidden outliers is rather simple. One creates an outlier
for one of the subspaces in SCout and sets the values for the remaining attributes in F
to the ones of any genuine inlier. Thus, we focus here on scenarios with such overlap.
Based on Definition 21, we now formulate a hypothesis.

Hypothesis 1 Since hidden outliers are inliers for all subspaces in SCin, hidden outliers
must be spatially close to the instances in X .

We will return to Hypothesis 1 when designing our algorithm (Section 5.5.4) and in the
experiments (Section 5.6.4).

A core issue in this study is to identify the positions/region with the following charac-
teristic: If we generate an instance there, it is a hidden outlier. We now derive this region
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Figure 5.2: Example for RSC
in , RSC

out and hidden outliers in hF and h1|d.

and present some characteristics of hidden outliers. To this end, we do not rely on any
further assumption regarding dectS(·).

Definition 22 (Rin and Rout) The region of inliers RSC
in is defined as

{~o ∈ Rfull |dectS(~o) = 0 ∀ S∈SC}. (5.4)

The region of outliers RSC
out is its complement.

Definition 22 formalizes the notion of the region fulfilling one property of hidden out-
liers: regions with positions that are inlier or outlier for each subspace in SC. This notion
is a prerequisite before defining the region of hidden outliers. See Figures 5.2a and 5.2b
for examples using the Mahalanobis distance (Kriegel et al., 2010) which is detailed in
Section 5.5.2.

Lemma 1 The region RSC
in is the intersection of the regions RS

in ∀ S ∈ SC.

Lemma 1 states that we can deriveRSC
in using only intersections ofRS

in (the inlier region
in a single subspace). Detecting outliers in one subspace is well-defined and has been
explored intensively.

Definition 23 (Region of Hidden Outliers) Let two sets of subspace projections SCout
and SCin be given. The region of hidden outliers Rhidden is the intersection of the region
RSCin

in and the region RSCout
out .

Every instance inRhidden is a hidden outlier. We see that, up to intersections, unions and
complements,Rhidden solely depends upon outlier detection in a single subspace. However,
RS

in is of arbitrary shape — depending on dectS(·). Hence, computing these intersections,
unions, and complements is arbitrarily complex.

The number of possibleSCs is huge: Having |P(F)| (= 2d−1) subspaces yields 2|P(F)|−
1 possible SCs. The number of possible combinations of two SCs to obtainRhidden is even
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larger. Thus, in the first part of this chapter we focus on two cases, SC1 = {F} (the full
space) and SC2 = {{1}, . . . , {d}} (each one-dimensional subspace).

Notation 1 (hF and h1|d) hF refers to the settingwhenSCin = {{1}, . . . , {d}} andSCout =
{F}. h1|d to the setting when vice versa SCin ={F} and SCout={{1}, . . . ,{d}}.

In setting hF , outliers are detectable in the full space, but not in any one-dimensional
projection. Setting h1|d is the opposite: Outliers are not detectable in the full space but at
least in one of the one-dimensional projections.

Example 6 In Figure 5.2c, the Mahalanobis distance is used to identify outliers. The red
crosses are hidden outliers in the settings just proposed. The square represents the bound
for instances that are inliers in both subspaces of SC = {{1}, {2}}. The circle represents
the inlier bound for points that are inliers in SC = {F} = {{1, 2}}. Hidden outliers in
setting hF are instances inside the square but outside the circle. Analogously, hidden outliers
in setting h1|d are instances outside the square but inside the circle.

In some cases we will refer to a more general form of the settings hF and h1|d: where
one collection is an arbitrary partition of F into subspaces.

When analyzing the characteristics of Rhidden, we will make use of the relative volume
of a region. More explicitly, we use it to bound the region of hidden outliers.

Definition 24 (volrel(·)) Let a regionR ⊆ IRd be given. The relative volume ofR is defined
as

volrel(R) :=
vol
(
Rfull ∩R

)
vol
(
Rfull

) . (5.5)

Lemma 2 An upper bound on volrel(Rhidden) is

min
[
volrel

(
RSCin

in

)
, volrel

(
RSCout

out

)]
. (5.6)

Thus, if the relative volume of RSCout
out or RSCin

in is very small, e.g., zero, we know that the
relative volume of Rhidden cannot be larger.

In the next step, we investigate specific scenarios with an outlier-detection method
using the Mahalanobis Distance; having such a specific outlier notion allows deriving
distinct characteristics of Rhidden.

5.5.2 Assumptions for Formal Results
We assume that X follows a Multivariate Normal Distribution (MVN) with zero mean.
Of course, Gaussian distributed instances have attribute limits −∞ and +∞. However,
we assume that l and u are so large that even outliers will most likely be contained in
the range spanned by l and u. With MVN data, the Mahalanobis distance yields the
likeliness of instance. We assume instances to be outliers if they are unlikely according
to that distance. We refer to the Mahalanobis distance of ~x in subspace S as mdistS(~x).
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quant(α, DF) gives the α-quantile of a χ2 distribution with DF Degrees of Freedom. We
can instantiate our outlier definition as follows (Kriegel et al., 2010):

dectS(~x) :=

{
1 if

[
mdistS(~x)

]2
> quant(0.975, |S|) ,

0 otherwise.
(5.7)

5.5.3 Formal Results

Motivation for Theorem 1: Figure 5.2c is a two-dimensional example illustrating hidden
outliers. The lines are outlier boundaries using the Mahalanobis distance. In this two-
dimensional case, hidden outliers can exist for both settings hF and h1|d. We wonder
whether this existence of hidden outliers extends to higher dimensionalities and more
general subspace selections. We answer this question by analyzing a more general sce-
nario. In our two exemplary settings, there are two kinds of subspace selections. We
have SC1 = {{1}, . . . , {d}} and SC2 = {F}. To generalize this, we replace SC1 with an
arbitrary partition of the attribute space.

Theorem 1 Let SC be a non-trivial (i.e., 6= F ) partition ofF into subspaces. Let the number
of dimensions of F and of each subspace in SC converge to infinity. Let each data attribute
be i.i.d. according to a standard normal distribution. Then there exists a hidden outlier that
is an outlier in at least one subspace of SC and inlier in F . There also exists a hidden outlier
that is outlier in F but inlier in each subspace of SC.

All proofs are in the appendix. We have assumed that the dimensionality goes to infinity
in order to approximate quant(·, ·) in the proof. However, Figure 5.2c shows that the
theorem holds even in a two-dimensional case. Our experiments will show that it is
likely to hold for other data sets and detection methods as well.
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e
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Uncorrelated
Correlated

Figure 5.3: Motivation for Theorem 2 and Hypothesis 2.

Motivation for Theorem 2: Next, we consider the effect of correlation on the relative
volume of RF

in . Figure 5.3 displays RF
in in a two-dimensional example. The circle is for

the case that Attributes 1 and 2 are uncorrelated, and the ellipse represents a strong cor-
relation. The volume of the ellipse is smaller than the one of the circle. Thus, a higher
correlation seems to imply a smaller relative volume of RF

in and a larger relative volume
of RF

out. Theorem 2 formalizes this for data spaces of arbitrary dimensionality.
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Theorem 2 Let subspaces S1 and S2, both of dimensionality d ′ and MVN distributed, be
given, and let the attributes in S1 be i.i.d. according to a normal distribution with zero mean
and variance σ. The covariance matrix in S1 is Σ1 and in S2 Σ2. For these matrices, it holds
that diag(Σ1) = diag(Σ2), and that Σ2 has off-diagonal elements (i.e., there is correlation).
Then we have:

volrel
(
RS1

in

)
≥ volrel

(
RS2

in

)
. (5.8)

This theorem relies on one further technical assumption spelled out in the appendix,
which also contains the proof.

Lemma 3 From RS
out = RS

in it follows that

volrel
(
RS1

out

)
≤ volrel

(
RS2

out

)
. (5.9)

Motivation for Hypothesis 2: Theorem 2 reasons on the influence of correlation on inlier
and outlier regions. In hF , the outlier region is RF

out (i.e., involves the full space). In
h1|d, the inlier region RF

in involves the full space. In both settings, the respective other
region depends on a SC consisting of only one-dimensional subspaces. Correlation does
not affect the distribution within these subspaces and hence does not affect the relative
volume. Lemma 2 states that the minimum of the relative volumes of inlier and outlier
regions is an upper bound on the relative volume of Rhidden. Thus, if one of the relative
volumes of inlier and outlier increases or decreases, this bound might do so as well.

Hypothesis 2 Correlated data leads to a smaller relative volume of Rhidden in setting h1|d
than uncorrelated data. In hF , it is larger.

If this hypothesis holds, it is more difficult to hide outliers in correlated subspaces in h1|d
and less difficult in hF . We evaluate this assumption using various data sets and outlier-
detection methods in Section 5.6.2.

5.5.4 Algorithm for Generating Hidden Outliers
So far, we have studied the characteristics ofRhidden analytically depending on certain as-
sumptions. We now propose an algorithm that generates hidden outliers for any instan-
tiation of dectS(·), subspace selections, and data set.

Our proposed algorithm is randomized. This is, a set of instances ~a ∈ Rfull is randomly
generated and then filtered for hidden ones. The baseline we propose generates the initial
instances according to a uniform distribution with domain Rfull (the unifBox technique
from Definition 4). However, inspecting such instances would not only be extremely ex-
pensive, but it also would not take into account that Rhidden can be a tiny portion of Rfull.
See Figure 5.2c. The red crosses indicate some instances in hF and h1|d. We computed
these areas by detecting outliers in each attribute in isolation as well as in the full space.
While the Region hF is rather large, h1|d is not. If Rhidden is small, an algorithm that con-
centrates on this part of the data space is desirable. However, the algorithm should also
inspect feasible positions exhaustively otherwise. A generation that is always exhaustive,
however, would leave aside Hypothesis 1. It has stated that hidden outliers are close toX .
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According to it, it is unlikely that an extreme position, an instance far fromX , is a hidden
outlier. To facilitate a generation that is adaptive in this spirit, we specify a parameter to
model the probability of generating at certain positions. In particular, instances next to
genuine ones ~x ∈ X will have a higher likelihood.

1. Input 2. Generate 3. Check

Figure 5.4: Exemplary flow of our generation algorithm.

Our algorithm consists of two steps. First, the algorithm generates random instances
within Rfull. Second, the algorithm filters the generated instances for those that are hid-
den outliers. Figure 5.4 illustrates this flow. The example resembles the scenario from
Figure 5.2. The method detecting outliers uses the Mahalanobis distance, and our data
has two attributes. In Figure 5.4, we generate hidden outliers in the hF setting. Thus,
the hidden outliers are outliers in the full space but must not be detectable in any one-
dimensional projection. The leftmost plot shows the data set that is part of the input of
the algorithm. The area framed by the dotted lines are positions where generated in-
stances will be hidden outliers. This area depends on other inputs of the algorithm (e.g.,
the detection method used in a subspace). The other two plots display the actual genera-
tion. The second plot visualizes random instances generated in the instance space (Rfull).
For the generation, we used the baseline generation technique unifBox. In the third plot,
a filtering of the generated instances followed, keeping only the desired hidden outliers
(triangles framed in orange).

In the following, we discuss the technique we propose for generating the initial in-
stances. For this, we discuss the probability distribution of instances generated with this
technique. Then we discuss the filter for hidden outliers.

Probability of Generating a Certain Instance

A straightforward technique for generating the artificial instances ~a is to generate them
only in some close surroundings of genuine instances, like many techniques described in
Chapter 3. However, we also want to consider the distance of ~a to the attribute bounds.
We deem this important to adapt the generation in-between an exhaustive generation
(unifBox) and a generation extremely close to genuine instances. To this end we in-
troduce the parameter ε ∈ [0, 1]. Figure 5.5 graphs the probability of an instance being
generated at a certain position, for a single attribute and genuine instance x. We use the
log scale for better illustration. The area of both rectangles is 1. If ε = 0 we do not allow
for any distance greater than 0 to x. Thus, the probability of generating an instance with
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value x is 1 and with any other value 0. If ε = 1, we allow for any distance as long as the
instances do not exceed the attribute bounds. We set the probability of generating a to
be constant and thus to 1

u−l
. If 0 < ε < 1, an artificial instance a between x− ε · (x− l)

and x+ ε · (u− x) is generated with a probability of 1÷ε
u−l

. Outside of these bounds, there
is no generation.

a ∈ [l, u]

ε = 1

0 < ε < 1

ε = 00

l ux
x− ε · (x− l) x+ ε · (u− x)

log 1
u−l
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Figure 5.5: Exemplary probability density of generating instances regarding a single attribute and
genuine instance x.

Definition 25 (surr) Let ~x1, . . . , ~xngenu ∈ Rfull and ε ∈ [0, 1] be given. The surrounding
region of a single instance ~xj is defined as:

surrε(~xj) :=
{
~a ∈ Rfull | ξ~xj(~a) ≤ ε

}
, (5.10)

where

ξ~x(~a) := max
i∈F

(
x(i) − a(i)

u− x(i)
,
a(i) − x(i)

x(i) − l

)
. (5.11)

The surrounding region of several instances ~x1, . . . , ~xn is defined:

surrε
(
~x1, . . . , ~xngenu

)
:=

ngenu⋃
j=1

surrε(~xj) . (5.12)

The region surrε(~x) consists of all ~a whose probability of being generated is greater
than zero. Figure 5.6 illustrates the surrounding region in an example with four genuine
instances.

The following lemma features useful characteristics of the surrounding region.

Lemma 4 If ε = 0 then

surr0(~xj) = {~xj} ∀ j ∈ 1, . . . , ngenu and (5.13)
surr0

(
~x1, . . . , ~xngenu

)
= {~x1, . . . , ~xngenu}. (5.14)

and if ε = 1 then

surr1(~xj) = surr1
(
~x1, . . . , ~xngenu

)
= Rfull ∀ j ∈ 1, . . . , ngenu. (5.15)
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Figure 5.6: Example of range distance and surrounding region.

The surrounding region can consist of solely the genuine instances themselves, the en-
tire instance space, or a middle ground between these extremes (0 < ε < 1). Generating
instances only in surrε(X) does away with the difficulties of a purely exhaustive gener-
ation. However, our technique so far features a parameter (ε), and it is unclear how to
choose its value. We will discuss this in Section 5.5.5.

Regarding the generation of instances, a surrounding region gives way to a probability
distribution from which to draw the samples, as follows:

dens(~a) ∝ 1

ngenu

ngenu∑
j=1

1{~a ∈ surrε(~xj)}. (5.16)

The function dens(·) in Equation (5.16) is themultivariate generalization of dens(·) from
Figure 5.5. Algorithm 11 describes our technique to generate instances, given dens(·). The
first step to generate nart instances with dens(·) is to randomly draw nart genuine instances
fromX . For every attribute value of each such instance, the algorithm calculates two new
values, one towards the upper attribute limit u and one towards the lower limit l. Both
are scaled by ε. The algorithm then determines randomly whether the sample takes the
value next to u or l. This results in nart random samples from dens(·).

Filtering the Generated Instances

The next step necessary to generate hidden outliers is to check if an artificial instance is
a hidden outlier or not. See Algorithm 12 for our approach to this. For a given instance,
the algorithm checks if it is an inlier in each subspace in SCin and an outlier in at least
one subspace of SCout. Thus, we can filter generated instances for hidden outliers. Armed
with this algorithm and our generation technique, it is now possible to generate hidden
outliers in surrε(X), for given a data set X , ε and nart, as long as volrel(Rhidden) > 0.
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Algorithm 11 Generate instances using the density from Equation (5.16).
Input: nart, ε, X
Output: Artificial instances ~a1, . . . ,~anart = A
1: Sample ~x1, . . . , ~xnart from X with replacement
2: for ~xj ∈ {~x1, . . . , ~xnart} do
3: for each attribute i of ~xj do
4: ∆l := Sample a value uniformly from [0, x(i)j − l]
5: ∆u := Sample a value uniformly from [0, u− x

(i)
j ]

6: Select at random if
7: a

(i)
j := x

(i)
j − ε ·∆l

8: or
9: a

(i)
j := x

(i)
j + ε ·∆u

10: end for
11: end for
12: return A

5.5.5 The Parameter of Our Technique

In the following, we will discuss more on the meaning and properties of the parameter
ε featured by our generation technique. First, we will offer an alternative interpretation
of this parameter, followed by a method to choose its value. Then we will detail the defi-
nition of the risk of hidden outliers and give the algorithmic complexity of the proposed
algorithm. The section concludes with a summary of the whole algorithm.

Interpreting the Parameter

To motivate our interpretation we revisit Figure 5.6. The region surrε(X) with the blue
surrounding is a boundary for the genuine instances. ε controls its tightness. Lemma 4
has stated that, if ε = 0, surr0(X) consists of the instance from X . Thus, dens(·) from
Equation (5.16) will reveal exact information (on attribute values and frequency) about
the genuine instances inX . If ε ≈ 0, the information encoded in dens(·)will not be exact
but still give a good approximation. However, the closer ε is to 1, the less information on
genuine instances is conveyed in dens(·). Thus, one can interpret ε as an indication of
how much information the generation technique has on the data (X).

Choosing the Parameter

Up to here, ε is an exogenous parameter, without the flexibility envisioned. Thus, we now
add one step to the algorithm. Figure 5.7 graphs the proportion of generated instances that
are hidden outliers in one example setting. The maximum is reached at ε ≈ 0.3. Hence,
in this example, 0.3 is the value that allows for the best generation of hidden outliers. We
refer to the ε that maximizes the proportion of hidden outliers as ε∗. The ε∗ value is not
just the optimum for ε but also allows for the computation of the risk of hidden outliers.
Usually, there is no knowledge of the dependency between ε and the proportion of hidden
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Algorithm 12 Filter instances for hidden outliers.

Input: SCout, SCin, A, X , dectS(·)
Output: Set of hidden outliers {~h, . . . , ~hnhidden} where nhidden ≤ nart

1: for ~aj ∈ A do
2: bin = TRUE
3: bout = FALSE
4: for t ∈ {out, in} do
5: for S ∈ SCt do
6: r := dectS(~aj)
7: if t = in and r 6= 0 then
8: bin = FALSE
9: end if

10: if t = out and r = 1 then
11: bout = TRUE
12: end if
13: end for
14: end for
15: if bin = bout = TRUE then
16: Add ~aj to set of hidden outliers
17: end if
18: end for
19: return {~h, . . . , ~hnhidden}

outliers. Because of this missing knowledge, we propose to use a genetic algorithm to
find ε∗.
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Figure 5.7: Demonstration of the connection of the proportion of hidden outliers in generated
instances and ε. Using h1|d, Arrhythmia and DBOut (see Section 5.6.1). The risk is 0.44.

The Risk of Hidden Outliers

Definition 26 (Risk of Hidden Outliers) Let X, dectS(·), SCin and SCout be given. The
risk of attacker success is the harmonic mean of ε∗ and the proportion of hidden outliers the
attacker is able to hide in the surrounding region surrε∗(X).
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This risk has domain [0, 1]. If hiding outliers is difficult, the risk of the data owner is
small. Recall our interpretation of ε as the amount of information known on the data.
ε∗ ≈ 1 means that an attacker does not need any information on X to generate hidden
outliers (except l and u). If both ε∗ and the maximal proportion of hidden outliers are
high, it is easy to generate hidden outliers, and the risk is high. If only one of them or
both are low, the risk is also low. Hence, the risk is low if an attacker either needs much
knowledge on the data or generated instances rarely are hidden outliers.

Complexity

The algorithm we propose targets at high result quality. We deem absolute runtime less
critical, as long as it is not excessive since a data owner will conduct the analysis proposed
here offline. Having said this, we nevertheless discuss the worst-case complexity of our
solution. When generating hidden outliers for a given ε, the algorithms performs

#C = nart · |SCin| · |SCout| (5.17)

calculations. Let #G be the maximal number of fitness-function evaluations by the genetic
algorithm.

Lemma 5 The worst case complexity of our algorithm is O(#C · #G).

Summary of the Algorithm

The algorithm needs four inputs: the two subspace collections (SCin, SCout, an outlier
detection method (dectS(·)) and the number of instances initially generated (nart). An
additional optional input is ε; when not supplied, the algorithm itself determines ε by
the means of a genetic algorithm (ε∗). First, the algorithm generates nart instances from
the probability distribution in Equation (5.16) (see Algorithm 11). Then these artificial
instances are filtered. Only instances that are inlier in each subspace of SCin and outlier
in at least one subspace of SCout according to dectS(·) remain. See Algorithm 12. The result
is a (possibly empty) set of hidden outliers. When not provided withε, the algorithm
repeats this procedure for different values of ε. A heuristic generates values of ε, that
targets at maximizing the share of hidden outliers in each execution.

5.6 Experiments

In Section 5.5.3, we have derived characteristics of Rhidden analytically, assuming a spe-
cific outlier detection method and underlying data distribution. In our experiments, we
investigate its behavior in terms of other outlier detection methods and data sets using
our algorithm. The experiments show the general ability of our algorithm to generate
hidden outliers and the vulnerability of different detection methods. We also study the
role of ε∗ (e.g., whether there exists a unique one).
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5.6.1 Experiment Setup
We first describe the outlier detection methods and data sets used in the experiments. In
essence, these methods define the types of outliers in each subspace, which is the reason
we refer to them here as outlier definitions. Then we describe the subspace selections we
will use. All our code and used data sets from this chapter are publicly available.3

Outlier Detection

Additionally, to the Mahalanobis distance (further denoted mdist), we investigate three
other outlier definitions. One of them, follows the DB(p, k)-Outlier (DBOut), proposed in
(Kollios et al., 2003). An instance is an outlier if at most p instances have a distance less
than k. The distance used is the euclidean metric. Hence, solely the dimensionality of a
subspace implies different magnitudes of distances (Zimek et al., 2012). These different
magnitudes are the reason we use an adaptive k for each subspace instead of a fixed one.
In particular, we set

k = 0.2 ·
√

| S |. (5.18)

The factor
√

| S | is used to scale the distances to the size of the subspace. If the subspace
is of size 1, the maximal Euclidean distance is 1 =

√
1 (the attributes are normalized such

that l = 0 and u = 1). In general, the maximal Euclidean distance between two instances
is
√

| S |. Hence, the distance of an inlier to its nearest neighbor can be at most 20% of
the maximal distance.

The last two methods we use are Angle-Based Outlier Detection (ABOD) (Kriegel et al.,
2008) and Local Outlier Probabilities (LoOP) (Kriegel et al., 2009a). ABOD uses angles to
determine the outlierness of an instance. These angles are deemed more reliable in higher
dimensions than the typical Lp-distance (Kriegel et al., 2008). In (Kriegel et al., 2008) three
different implementations of ABOD are proposed, which incorporate different trade-offs
between performance and result quality. We use the fastest implementation, FastABOD.
LoOP is an adoption of the well known LOF (Breunig et al., 2000). In comparison to LOF,
LoOP returns a score that lies in [0, 1] and implies an outlier probability instead of a score
in [0,∞]. Except for FastABOD and LoOP all methods already output a binary signal if
an instance is an outlier or not. FastABOD and LoOP output scores. Regarding LoOP a
low score indicates inliers, as for FastABOD a high score. In our experiments, we need
an automatic threshold that allows transforming that score to a binary signal. Regarding
FastABOD, we decided to use the empirical 2.5 % Quantile of the resulting scores to this
end. For LoOP we used a threshold of 0.5. We set the neighborhood size to 5.

Data sets

Two data sets we use are artificial, and 14 are real-world benchmark data sets, including
two high dimensional data sets from the UCI ML Repository (Dheeru and Karra Taniski-
dou, 2017), namely Madelon and Gisette (500 and 5,000 attributes). The remaining real-
world data sets are from (Campos et al., 2016). We always use the normed data, and with

3 http://ipd.kit.edu/mitarbeiter/steinbussg/Experiments_HideOutlier.zip
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downsampled data, we use version one. The two artificial data sets are generated by sam-
pling from a MVN, each with 500 instances and 30 attributes. In one data set, each at-
tribute is i.i.d. according to a standard normal. We refer to this data set with “MVN”. In
the second one “MVN cor.”, attributes follow a standard normal distribution as well, but
each pair of attributes has a covariance of 0.8. Thus, with “MVN cor.” attributes are cor-
related. Mostly we use the artificial data sets for the experiments studying Hypothesis 2.
To obtain comparability across data sets, each data sets has been normalized (i.e., l = 0
and u = 1).

Subspace Selection

To evaluate our theoretical findings, we have a deterministic procedure for subspace se-
lection (hF and h1|d). Only forTheorem 1we need to sample subspace partitions. However,
when evaluating the general quality of our approach, instantiations of SCin and SCout are
much less obvious. We need realistic and diverse instantiations. However, the number of
possible combinations is daunting. On the other hand, the relationship of subspace size
and the number of possible subspaces, exemplary displayed in Figure 5.8, implies the fol-
lowing: We assume that one checks typically low- and high-dimensional subspaces for
outliers (green area). Hence, it is most likely that hidden outliers occur in the subspaces
with a medium number of attributes (red area). Thus, these outlier subspaces are a natu-
ral selection. However, even with these restrictions, the number of the outlier and even
inlier subspaces can still be infeasibly large. Thus, we sample them according to the pro-
cedure in Algorithm 13.
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Figure 5.8: Number of subspaces versus subspace size (d = 10).

First candidate subspaces for SCin are sampled in Algorithm 13. With outlier detection
methods for high-dimensional spaces (FastABOD or LoOP), we use the large subspaces
as inlier subspaces (right green area). For the other outlier detection methods, we use the
smaller subspaces (left green area). Then we obtain the attributes that are contained in
the sampled inlier subspaces. From those, we sample the outlier subspaces. This sampling
guarantees that attributes from inlier and outlier subspaces overlap.
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Algorithm 13 Sample inlier and outlier subspaces.

Input: Number of subspace |SC|, F , dectS(·)
Output: Set of inlier and outlier subspaces
1: if dectS(·) is FastABOD or LoOP then
2: SCcand = {S ⊆ F : |S| ≥ d− 2}
3: else
4: SCcand = {S ⊆ F : |S| ≤ 2}
5: end if
6: SCin = Sample |SC| subspaces from SCcand
7: F̃ = Set of all attributes that are in at least one subspace of SCin
8: SCcand = {S ⊆ F̃ : |S| =

⌊
d
2

⌋
}

9: SCout = Sample |SC| from combs SCcand
10: return SCin, SCout

5.6.2 Evaluating Our Theoretical Findings

In the first experiments, we investigate the generalizability of our theoretical findings
from Section 5.5.3. The experiments approximate the scenarios described in the theorems
and hypotheses using various data sets and outlier detection methods, cf. Section 5.6.1.

Theorem 1

Theorem 1 states that hidden outliers exist when either SCin or SCout is a partition of the
full attribute space F into subspaces, and the other one is F itself. We investigate the
generalizability of this statement by varying the data distribution and the outlier detec-
tion method. For all data sets we create a number of SCs by randomly dividing F into
partitions. For each outlier detection scheme and SC we compute the maximal propor-
tion of hidden outliers regarding two selections of SCin and SCout. With the first one, SCin
equals SC and SCout = F . Vice versa in the other case, SCout equals SC and SCin = F .
We record how often the proportion of hidden outliers is not 0, i.e., one can hide outliers.
If Theorem 1 is generalizable, this should be possible. Table 5.1 lists the percentages of
runs where we have been able to hide outliers.

Table 5.1: Percentage of runs with more than zero hidden outliers.

(Values in %) mdist DBOut LoOP FastABOD

SCout = F 64.29 77.86 87.14 95.36
SCin = F 37.86 87.50 96.43 95.71

In most cases, our algorithm can generate hidden outliers. Surprisingly, regarding
mdist in particular, the success rate is rather low. This low success is in some contrast
to our formal result that states there exist hidden outliers in these cases. The other detec-
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tion methods show higher success rates. Thus, we conclude that Theorem 1 is generaliz-
able to some extent.

Hypothesis 2

Hypothesis 2 states that it is more difficult to generate inliers in correlated subspaces in
setting h1|d and less difficult in setting hF . To investigate this hypothesis, we try to hide
outliers in both settings using different outlier detection schemes. In one data set, we have
correlated attributes (MVN cor.). In another one, they are not (MVN). If Hypothesis 2
holds we should see an increase in the proportion of hidden outliers from uncorrelated
to correlated data in hF and a decrease in h1|d. Table 5.2 lists the results: the percentage
obtained in each data set, the raw difference between the two results and a relative differ-
ence. We obtain the last entry by dividing the raw difference by the maximal percentage
the detection algorithm has obtained in any of the two data sets.

Table 5.2: Difference in percentage of hidden outliers.

(Values in %) mdist DBOut LoOP FastABOD

MVN 28.14 56.54 12.96 1.12
MVN cor. 64.78 69.84 69.20 1.26
Difference 36.64 13.30 56.24 0.14
Relative 56.56 19.04 81.27 11.11

(a) hF

(Values in %) mdist DBOut LoOP FastABOD

MVN 0.84 0.62 29.08 21.50
MVN cor. 0.36 0.30 19.68 22.00
Difference -0.48 -0.32 -9.40 -0.50
Relative -57.14 -51.61 -32.32 2.27

(b) h1|d

All detectionmethods except for FastABODmeet the expectation. We find it interesting
that the magnitude of change of proportion is very different for hF and h1|d. However, the
proportion of generated hidden outliers on each data set also varies greatly. In summary,
although the extents are different, the experiments confirm the hypothesis to some extent.

5.6.3 Investigating the Optimal Parameter
The next experiments target at a crucial parameter of our generation technique. The
proposed technique uses a sampling distribution parametrized by ε. The ε that maximizes
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the proportion of hidden outliers, defined as ε∗, is important: It allows quantifying the risk
of data owners. We now investigate the dependency between ε and the proportion of
generated hidden outliers, to analyze if ε∗ usually exists (i.e., if there is a global maximum
of the dependency).
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(a) h1|d, Parkinson and LoOP. Risk: 0.21.
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(b) hF , Lymphography and mdist. Risk: 0.16.

Figure 5.9: Proportion of hidden outliers in generated instances versus ε.

Figures 5.7 and 5.9 illustrate the dependency between the proportion of hidden outliers
and ε. In both figures, there is a very distinct ε∗. However, Figure 5.9b shows that this
is not always the case. The risk is highest with 0.45 in Figure 5.7. The ε∗ as well as the
maximal proportion are relatively high. Figure 5.9b has the lowest risk with 0.12.

5.6.4 GeneralQuality
In these final experiments, we study the general ability of our algorithm to generate hid-
den outliers. We also compare our technique to a baseline that does not feature the pa-
rameter ε. We choose uniform full space sampling as this baseline, which is equivalent
to fixing ε to 1 (i.e., a purely exhaustive strategy). We will declare success if there is an
increase in the quality of generating hidden outliers, and this increase is significant (e.g.,
a factor of at least two or three). Recall that our algorithm requires data, dectS(·), SCin
and SCout as input. The subspace selection has been derived in Section 5.6.1. Regarding
the data, we look at all data sets introduced in Section 5.6.1 and sample different num-
bers of attributes and instances. However, we only downsample, upsampling would lead
to redundant data. To vary dectS(·), we use all outlier detection methods introduced in
Section 5.6.1. Additionally, we obtain candidates for ε by using a fixed sequence of values
instead of a heuristic. This way of obtaining candidates allows for further analysis of the
effect of ε and a straightforward comparison to the baseline. We summarize our results
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to highlight the effect of the number of attributes or instances, used data set or detection
method, and ε.

Number of Attributes

Figure 5.10 graphs the effect of the number of attributes. The y-axis displays the share of
hidden outliers among the artificial instances (i.e., the success of the generation). For our
technique and the baseline, the figure shows box plots of the share of hidden outliers. We
observe a significant improvement of our technique over the baseline — for high dimen-
sional data in particular. Second, for both alternatives, it seems to be more challenging to
generate hidden outliers in high dimensional data sets. Two effects cause the shape of the
left plot. One is that it is challenging to generate hidden outliers with few attributes. Any
subspace-based outlier detection scheme will most likely detect them. If we increase the
number of attributes, this effect decreases. However, the other influence is that increas-
ing the number of attributes also increases the number of subspaces searched for outliers.
So it is tough to find instances that are inliers in each subspace of SCin. In consequence,
it also is difficult to generate hidden outliers.
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Figure 5.10: Effect of the number of attributes.

Number of Instances

Figure 5.11 plots the number of instances versus the share of hidden outliers. Again,
our algorithm is better than the baseline, but with a bit less distinction. The algorithm
improves the baseline by a factor of about 5–10. In both cases, the effect of the number of
instances is not very significant. This insignificance is because the number of instances
does not change the data distribution much: dense areas remain dense and sparse areas
sparse.

Data Sets Used

Table 5.3 displays the effect of the data set. We summarize the results across all experi-
ments (i.e., with different samplings of instances and attributes). As before, our algorithm
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Our Technique Baseline
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Figure 5.11: Effect of the number of instances.

outperforms the baseline significantly. However, we see that there are drastic differences
between data sets. While generating hidden outliers is successful when using Madelon,
this is more difficult with, say, InternetAds. We speculate that different data densities
cause this effect. We have seen this effect in our experiments in Section 5.6.2 as well.

Measuring Data Set Characteristics

We now want to investigate further the difference in the proportion of successfully gen-
erated hidden outliers regarding the data sets used. Thus, we have conducted an intensive
and systematic study, as follows: We have developed some measures that we then have
correlated with the characteristics in Table 5.3. Our measures are divide into three cat-
egories that address the subspaces selected, the number of irrelevant attributes, and the
quality of outlier detection. The first category of measure addresses the correlation in sub-
spaces. As part of our formal results, we have already derived that this correlation should
affect the region of hidden outliers. In particular, we take the average of the Spearman and
Pearson correlation in both subspace collections (SCin and SCout). When a subspace has
more than two attributes, the correlation measure is the average of each pair of attributes.
Regarding the second category, one measure uses a Principal Component Analysis (PCA)
computed on each data set. Each Principal Component (PC) has a score dedicated to its
importance in explaining the data instances. If there are only a few PCs with a very high
score and many with low scores, the data set has a rather low intrinsic dimensionality. A
low intrinsic dimensionality means that only a few transformed attributes are necessary
to account for most variation within the data set. With few noisy (i.e. highly variable) at-
tributes there might also be few irrelevant attributes, which might affect our generation:
The number of irrelevant attributes could reduce the share of hidden outliers by making
it difficult to generate them. However, it might also be that it increases their proportion,
by blurring low dimensional outliers so that they are inliers in higher dimensions. This
blurring is why we have quantified the skewness of the PCA scores. If this skewness is
high, there are likely only a few PCs with a high score. All our data sets are benchmark
data sets for outlier detection. Hence, they include labels for outliers and inliers so that
one can use them to evaluate outlier detection methods (cf. Section 2.1). For the remain-
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Table 5.3: Proportion of hidden outliers regarding data set used.

Data set Our Technique (in %) Baseline (in %)

ALOI 18.12 7.08
Annthyroid 13.07 7.13
Arrhythmia 23.64 8.23
Cardiotocography 24.57 7.29
Gisette 33.10 7.72
HeartDisease 29.53 6.85
InternetAds 6.29 3.54
Ionosphere 40.65 15.13
KDDCup99 16.32 10.73
Madelon 33.84 20.03
MVN 30.08 11.17
MVN cor. 18.14 5.49
PenDigits 21.72 5.34
SpamBase 21.27 7.06
Waveform 27.08 13.28
WDBC 22.26 5.93

ing measures, we have fitted a random forest to each data set that distinguishes between
the labeled inliers and outliers. We can derive measures from this random forest fit for
two of our categories: the importance of attributes that belongs to the second category
and the quality of the inlier/outlier-classification, which is of the third category. In line
with the usual definition, the importance of an attribute is the Gini index decrease with
this attribute. If it is high, it is crucial for the classification. From the attribute impor-
tance values, we compute the mean value, variance, and skewness. Thus we measure,
how vital the attributes in general, how much this varies, and whether there only are
a few vital attributes. From the classification, we obtain accuracy, sensitivity (how well
are outliers detected), and specificity (how well are inliers detected). We then have com-
puted the correlation between all these measures and the percentage of hidden outliers
generated by our algorithm. The results are listed in Table 5.4. We have separated them
by the type of inlier subspaces: low- (up to 2 attributes) or high-dimensional (at least d-2
attributes).

We see that many measures influence the percentage of hidden outliers generated.
As expected, the correlation affects this percentage. However, the effect in the low-
dimensional setting is not very prominent. This small effect may be a result of the diverse
subspaces we average the scores from, in the low dimensional setting in particular. The
feature “importance” has an overall negative effect, although the mean is not significant
in the high dimensional setting. This negative effect makes sense: If there are only a few
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Table 5.4: Correlation of data measurements with percentage of hidden outliers.

Measure Low High

Average Pearson (Inlier) 0.32 0.30
Average Spearman (Inlier) 0.04 0.14
Average Pearson (Outlier) 0.21 0.45
Average Spearman (Outlier) -0.06 0.20
Importance Mean -0.24 0.06
Importance Variance -0.29 -0.07
Importance Skewness -0.20 -0.39
PCA Skewness 0.00 0.16
Accuracy -0.35 -0.45
Specificity -0.16 -0.42
Sensitivity -0.41 0.24

vital attributes that are well suited for outlier detection, it is more difficult to hide from
these. To illustrate, think of a data set with four attributes. The first two contain outliers
that are easily detectable (see Figure 5.1, for instance). In the other two attributes, the
outlier and inlier class are scattered randomly and are indifferent. Since outliers and in-
liers are indifferent, the subspaces likely follow a distribution that makes it difficult for
an instance to be an outlier. For example, this is the case with an independent uniform
distribution. However, hidden outliers must be outlying in certain subspaces. If this sub-
space consists of irrelevant attributes (here, the third and the fourth attribute), generating
outliers might be difficult. In the high-dimensional setting, the PCA skewness seems to
have an effect. This effect might be because the attributes that are more than the intrinsic
dimensionality allow for a generation of many hidden outliers by blurring the detection
result. Remember that in the high-dimensional setting, the inlier subspaces (SCin) have
more attributes. The accuracy has a negative effect. Clearly, the better the random forest
is in detecting outliers, the more difficult it is to hide such. Regarding specificity, the ef-
fect is the same. The better the random forest can detect inliers, the less effective is our
generation. Regarding the sensitivity, we do not see an obvious interpretation of the re-
sults. The effect is opposite for the high- and the low-dimensional settings.

To conclude, we have experimented with various measures to quantify effects that go
along with different shares of successfully generated hidden outliers. However, the main
takeaway is that there is not one single measure or a few measures in combination cor-
related with a successful generation.

Outlier Detection Method Used

To determine the effects of the method used, we aggregate the percentage of successful
runs and the average share of hidden outliers of all experiments. We have done this for
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our technique as well as for the baseline. See Table 5.5. Some detection methods are very
prone to hidden outliers, while others are not. Next, the gain in success when using our
algorithm varies among detection techniques. With mdist this gain is high, while it is
negligible with FastABOD. However, it is possible to hide outliers with all five detection
methods.

Table 5.5: Effect of the used detection method on the success in hiding outliers and their average
proportion.

(Values in %) mdist DBOut LoOP FastABOD

Our Technique 99.32 81.19 97.70 96.06
Baseline 4.46 36.49 21.81 95.78

(a) Percentage of runs with generated hidden outliers.

(Values in %) mdist DBOut LoOP FastABOD

Our Technique 7.67 30.28 30.13 26.41
Baseline 0.03 8.61 3.31 22.26

(b) Average share of hidden outliers.
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Figure 5.12: Effect of ε.

Figure 5.12 displays the proportion of hidden outliers versus ε. The value ε = 1 indi-
cates our baseline (i.e., uniform sampling). The median has a peak when ε is about 0.1.
This value results in hidden outliers generated such that they closely surround other in-
stances, which confirms Hypothesis 1. Thus, hidden outliers are spatially close to the
instances from X . The figure also confirms the superiority of our algorithm over the
baseline.

96



5.7 Chapter Summary

Summary of Experiments

The experiments have shown that in many scenarios, our algorithm can generate hidden
outliers irrespective of the data set or the detection method used. Further, our generation
technique is a significant improvement over the baseline: our technique has improved the
result by a factor of three or more in many settings.

5.7 Chapter Summary
In this chapter, we have analyzed the characteristics of hidden outliers. These are outliers
that are only detectable in certain attribute subspaces. Our analysis includes both formal
results based onmodel assumptions and a proposal for an algorithm that generates hidden
outliers in data. Regarding the first kind of contribution, we prove the existence of hidden
outliers in many scenarios and show that the extent of correlation can have a significant
effect on the ease of hiding outliers. We evaluate the generalizability of our formal results
experimentally with our algorithm. Some of these results do extend to scenarios not
covered by themodel assumptions. Further, we have shown that the generation technique
we propose improves the results of our algorithm with a reference baseline significantly.
We deem this algorithm a central aspect in a proof-of-concept for the evaluation of SSOD
methods through generated hidden outliers.
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6 Conclusions and Outlook

The reliable detection of outliers is essential, be it to clean a data set from any corruption,
understand the data better, or predict and possibly prevent faults. This thesis has analyzed
the concept of generated outliers in great depth: From the techniques to generate them
to different ways of making use of them. Unlike genuine outliers, generated outliers are
not rare and feature rather precise characteristics. Both properties help to face central
challenges in the outlier detection problem, especially in the calibration and evaluation
of detection methods.

One contribution of this thesis is a structured overview of the state-of-the-art in out-
lier generation. Of specific relevance in this regard are outliers generated in terms of
available genuine instances (i.e., real ones). Ultimately the artificial outliers are used in
combination with the genuine instances to calibrate outlier detection methods. In princi-
ple, this means finding suitable parameters. With the overview developed in this thesis,
a comparison of the workflow, goals, and characteristics of the generated outliers from
existing techniques is simple. A developed description of common problems faced when
generating outliers increases the comprehension of the topic by much. For example, the
discussion of the possible effects and uses for different distances of generated outliers to
genuine instances. In addition to this, we perform experiments that compare the differ-
ent generation techniques but also two different ways of calibrating detection methods
through artificial outliers. A key takeaway from these experiments is that no generation
technique always performs better than all others. Thus, we developed a simple decision
process that guides practitioners in the usage of artificial outliers for calibrating detec-
tion methods.

From the literature on outlier detection methods but also from our overview of gen-
eration techniques, we observe that there exist many types of outliers. Different types
of outliers feature different characteristics. Conventional approaches for evaluating and
comparing outlier detection methods can cope with different types of outliers to some
extent only. Thus, we strived for a more controlled and distinctive evaluation scheme
by using artificial data. In artificial data, outliers and inliers come from some generative
model and are thus not genuine. It is possible to generate outliers in such data with pre-
cise and controllable characteristics (i.e., types). To this end, our second contribution is a
general process for the extensive evaluation of outlier detection methods using artificial
data. In a nutshell, the process describes the generation of artificial data with realistic in-
liers and outliers of a specific type. We also present three instantiations of this process
for some common types of outliers. The process and its instantiations are useful for find-
ing a suite of well-performing outlier detection methods in terms of different types. This
suite is then useful in detecting outliers without much prior knowledge on the types of
outliers that might be present in some data set.

99



6 Conclusions and Outlook

There exist outlier detection methods that detect outliers, not in the full data space, but
a set of subspaces. Each subspace is a subset of the data attributes. Hidden outliers are,
in principle, a blind spot for methods that detect outliers by the use of subspaces. Such
outliers can be of any type mentioned before but additionally depend on the selected
subspaces. In some subspaces, hidden outliers are detectable; in others, they are not.
From the subspaces they are not detectable in, they are hidden. Our third contribution is
to extend the usage of generated outliers to the concept of hidden outliers. Of particular
interest for this are the circumstances under which hidden outliers exist at all. First, we
analyze these circumstances theoretical. This analysis requires restrictive assumptions,
which is the reason we extend the theoretical study through generated hidden outliers.
Developing and using a tailored generation technique also allows us to analyze more
general circumstances that allow for hidden outliers and characteristics of therein. For
example, the usage of generated hidden outliers confirms the hypothesis that they tend
to be spatial close to genuine inliers. Hence, our analysis of hidden outliers does not
just reveal that they exist but also highlights other factors that affect their occurrence. As
mentioned, the generated hidden outliers are blind spots in terms of a specific selection of
subspaces. Thus, the algorithm we designed to generate hidden outliers might ultimately
be useful in systematic evaluations for outlier detection methods based on subspaces.

The two central challenges for outlier detection faced in this thesis are that outliers are
rare, and their notion is not precise. Our first contribution tackles, especially the chal-
lenge that outliers are rare. The overview of existing techniques and experiments com-
paring them illustrates many ways in which the calibration of outlier detection methods
is possible without any genuine outliers. In tackling the imprecise notion of outliers, the
overview is helpful as well: That there can be different outliers with characteristics de-
fined by generation processes becomes apparent with it. This observation is the basis
for the process from our second contribution. In its distinctive and controllable way of
evaluating and comparing detection methods, the process reduces the negative effect of
the overall imprecise notion of outliers. Our third contribution tackles both challenges as
well. By generating hidden outliers, we do not just overcome the absence of labeled ex-
amples in real data but also identify key characteristics that confine the notion of hidden
outliers.

The research carried out within this dissertation does give various starting points for
future research. For instance, the overview of the state-of-the-art in generating outliers
is one starting point. From the overview and the overall issues encountered by generation
techniques, numerous challenges that require attention arise. For example, the precise
distance of generated outliers and genuine instances remains unclear. Our experiments
show that outliers generated close to genuine instances usually perform well in calibrat-
ing outlier detection methods. In the limit, when generating outliers precisely like the
genuine instances, the outliers might not be useful anymore. Thus, it seems interesting to
investigate the limits of the closeness of generated outliers and genuine instances. How-
ever, this does depend on many other factors, like the types of outliers generated. For this
reason, we deem answering this question with some generality an exciting challenge for
future research. A similar question arises from the effect of the number of artificial out-
liers generated. This number can affect the calibration of detectionmethods. However, we
are not aware of any sophisticated general guidelines for choosing it. Another direction of
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future research we deem highly profitable is the possible synergy of techniques presented
in this thesis and techniques that generate outliers using some genuine outliers. Outliers
generated with the techniques presented in this thesis could extend the variation of the
few genuine outliers. Thus, it might be that calibrating detection methods using artificial
outliers generated with and without genuine examples achieves a better generalization.

The types of outliers we propose with the three instantiations of our general process
in our second contribution are common. However, there are many more types of outliers
possible. Thus, we deem it a vital task of future research to develop more instantiations
of our process. For example, there is yet no instantiation for outliers that are outliers as a
small group and not just on their own. The development of further instantiations of our
process might lead to a broad but somewhat complete categorization of types of outliers
and thus resolve the imprecise notion of outliers ultimately. For this goal, a categorization
of available genuine outliers in terms of different types might be of great help as well.

Our evaluation of the concept of hidden outliers can also serve as the basis for further
research. For example, the factors that influence the occurrence of hidden outliers we
identified might lead to an improved technique for generating them. The effect of corre-
lation among data attributes might be useful in this spirit. Such an improved technique,
but also our current technique, could be adopted to improve schemes for subspace search
outlier detection themselves. In essence, hidden outliers represent blind spots of outlier
detection methods that use subspaces. This observation could be the basis for an iterative
scheme to find a set of subspace that is not prone to any hidden outliers: In one iteration,
outliers are generated such that they are hidden from an initial set of subspaces. In the
following step, the selection of subspaces is modified such that the hidden outliers gen-
erated in the previous step can be detected. Then the first step is repeated with the new
selection of subspaces. Repeating this process might result in a subspace selection that is
least prone to hidden outliers. However, the details of an iterative process in this spirit
are somewhat unclear — for example, how to modify the selection of subspaces. This is
the reason we leave this idea for future work.

All in all, this dissertation yields a detailed and structured overview of the topic of gen-
erated outliers and shows why such outliers are useful for the calibration and evaluation
of outlier detection methods.
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A Appendix

The appendix is almost identical to (Steinbuss and Böhm, 2017), previously published
in the International Journal of Data Science and Analytics. Adjustments are to ensure
consistency for this dissertation.

A.1 Prerequisites for Proofs
The Mahalanobis distance is defined as

mdistF(~x) =
√
(~x− ~µ)TΣ−1(~x− ~µ), (A.1)

where ~µ is the mean vector and Σ the covariance matrix. W.l.o.g. we assume that ~µ = ~0.
Since the data is MVN distributed, mdist2 is χ2

DF distributed. The degrees of freedom (DF)
are determined by the dimension of the data. We can write[

mdistF(~x)
]2

= ~xTΣ−1~x (A.2)

=
∑
i∈F

∑
j∈F

x(i) · σ(i,j)
−1 · x(j), (A.3)

where σ(i,j)
−1 denotes the entry in the jth column and ith row of the inverse of the covari-

ance matrix. If the attributes are i.i.d. according to a standard normal, this reduces to[
mdistF(~x)

]2
=
∑
i∈F

[
x(i)
]2
. (A.4)

To test an instance for outlier or inlier, we used the outlier initialization formalized in
Section 5.5.2. Although this initialization uses the 0.975 quantile, here we will use a gen-
eral α quantile. The quantile function of a χ2 distribution is not obtainable in closed form.
Thus, we will make use of an approximation. Following the central limit theorem, for
large degrees of freedom a χ2

DF distribution can be approximated by a normal distribution
with mean DF and variance

√
2 · DF). Thus,

quant(α, DF) ≈ DF+
√
2 · DF zα and (A.5)

∂ quant(α, DF)
∂ DF

≈ 1 +
zα√
2 · DF

, (A.6)

where zα is the α quantile of a standard normal distribution. We can derive that the ap-
proximation of the function quant(α, DF) is strictly monotonic increasing. For a fixed
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distance, e.g.,
[
mdistF(~x)

]2
= quant(α, DF), the Mahalanobis distance exhibits an el-

lipsoid form. I. e., having λ1, . . . , λd eigenvalues and ~v1, . . . , ~vd eigenvectors of Σ, the
ellipsoid has centroid ~µ, and axes ~v1, . . . , ~vd. Half the length of each axis is determined
by
√
λi · quant(α, DF).

Introducing subspaces in this setting is quite trivial. We assume that the full data space
is distributed according to a MVN having 0 mean and covariance matrix Σ. Hence, any
subspace S is also Gaussian. To obtain its mean and covariance matrix we only need to
drop the irrelevant attributes from each parameter of the full space distribution.

A.2 Proofs of Theorems

A.2.1 Theorem 1

In this proof we will use the normal approximation given in Equation (A.5). From at-
tributes being i.i.d. according to a standard normal distribution and partitioning SC of F
into subspaces follows[

mdistF(~x)
]2

=
∑
i∈F

[
x(i)
]2

=
∑
S∈SC

∑
i∈S

[
x(i)
]2

(A.7)

=
∑
S∈SC

[
mdistS(~x)

]2
. (A.8)

We first prove that an instance ~h1 with

h
(i)
1 =

{√
quant(α, |F|)

|S| if i ∈ S,
0 otherwise,

(A.9)

is an outlier for a S ∈ SC but an inlier for F . We know that

mdistF
(
~h1

)
= quant(α, |F|) = mdistS

(
~h1

)
. (A.10)

Since the quantile function is strictly monotonic increasing (cf. Equation (A.5)),

quant(α, |F|) > quant(α, |S|) . (A.11)

Thus, ~h1 is an inlier regarding F but an outlier in S . It is important to note that ~h1 is an
outlier only regarding subspace S and not regarding any other subspace in SC.

Moreover, an instance ~h2 defined by

h
(i)
2 =

√
quant(α, |S|)

|S|
i ∈ S, ∀ S ∈ SC (A.12)
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is an outlier for F but an inlier for all S ∈ SC. It holds that

mdistF
(
~h2

)
=
∑
S∈SC

quant(α, |S|) , (A.13)

mdistS
(
~h2

)
= quant(α, |S|) . (A.14)

Further, we know that ~h2 is an outlier in the full space if

mdistF
(
~h2

)
> quant(α, |F|) . (A.15)

We also know that |F| =
∑

S∈SC|S|. Hence, in order to show that ~h2 is a hidden outlier
as specified, we have to show

∑
S∈SC

quant(α, |S|)
!
> quant

(
α,
∑
S∈SC

|S|

)
(A.16)

∑
S∈SC

[
|S|+

√
2|S| zα

]
>
∑
S∈SC

|S|+
√

2
∑
S∈SC

|S| zα (A.17)

∑
S∈SC

√
2|S| >

√
2
∑
S∈SC

|S| (A.18)

∑
S∈SC

√
|S| >

√∑
S∈SC

|S| (A.19)

(∑
S∈SC

√
|S|

)2

>
∑
S∈SS

|S| (A.20)

∑
S1,S2∈SC

√
|S1|
√

|S2| >
∑
S∈SC

|S| (A.21)

∑
S1 6=S2∈SC

√
|S1|
√

|S2|+
∑
S∈SC

|S| >
∑
S∈SC

|S|. (A.22)

Since SC is a non-trivial partition, i.e., SC 6= {F}, the term∑
S1 6=S2∈SC

√
|S1|
√
|S2| (A.23)

is greater than 0, and the inequality holds.

A.2.2 Theorem 2
This theorem relies on an assumption not explicitly listed in the body of the article. Let
λ denote the eigenvalue of Σ1 (algebraic multiplicity of d). Further, let λ̃1, . . . , λ̃d denote
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the eigenvalues of Σ2. We introduce ζ1, . . . , ζd which satisfy λ+ ζi = λ̃i. Our assumption
is that the ζi’s are symmetrical, i. e., for any ζj > 0 there exist ζk = −ζj .

We know that, for both subspaces S1 and S2, the volume of the full instance space
vol
(
Rfull

)
is equal. Using this we can write

volrel
(
RS

in

)
∝ vol

(
RS

in

)
. (A.24)

vol
(
RS

in

)
is the volume of a d-ellipse. Let ζ1, . . . , ζd be the eigenvalues of the covariance

matrix within a subspace S . Then

volrel
(
RS

in

)
∝ 2π

d
2

d · Γ( d
2
)

√√√√quant(α, |S|)
d∏

i=1

ζi. (A.25)

We further know that
∑d

i=1 λi is equal to the sum of the trace of the corresponding covari-
ance matrix. The trace of Σ1 and Σ2 are the same. We have assumed that each attribute
in S1 is i.i.d. according to a univariate Gaussian distribution with variance σ. Hence, Σ1

is a diagonal matrix with σ in each diagonal element. Thus, λ = σ is the variance and
each of the d eigenvalues of Σ1. Σ2 has off-diagonal elements. Hence, the eigenvalues
can differ from the ones in Σ1. Using the equality of traces we infer that

∑d
i=1 ζi = 0. In

order to prove our theorem we need to show that

d∏
i=1

λ = λd ≥
d∏

i=1

λ̃i =
d∏

i=1

(λ+ ζi). (A.26)

We introduce

I>0 := {i ∈ {1, . . . , d} | ζi > 0}, (A.27)
I=0 := {i ∈ {1, . . . , d} | ζi = 0}. (A.28)

Let furtherm = |I=0|. We can infer that |I>0| = d−m
2

. Using this, we can write

d∏
i=1

(λ+ ζi) =

[ ∏
i∈I=0

λ

][ ∏
j ∈I>0

(λ+ εj)(λ− ζj)

]
(A.29)

= λm

[ ∏
j ∈I>0

(λ2 − ζ2j )

]
(A.30)

= λm
(
λ2
) d−m

2 − λm

[ ∏
j ∈I>0

ζ2j

]
(A.31)

= λd −λm
[ ∏
j ∈I>0

ζ2j

]
︸ ︷︷ ︸

≤ 0

. (A.32)
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Inserting this in Equation (A.26) directly proves the theorem. We can also infer that if
there is a ζi > 0, the statement of the theorem extends to

volrel
(
RS1

in

)
> volrel

(
RS2

in

)
. (A.33)
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