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Abstract

The development of modern software systems often comprises multiple artifacts. However,

these artifacts often share a particular overlap in redundant or dependent information,

which needs to be kept consistent during the development of the software system. Doing

this process manually is labor-intensive and prone to errors. Consistency preservation

mechanisms allow keeping these artifacts consistent automatically. They are often based

on bidirectional transformations, which update a target model if a source model is modi�ed.

While bidirectional transformations are a well-researched topic, consistency preservation

of more than two models is yet to receive as much attention. Nevertheless, the development

of software systems often involves more than two models. Consequentially, consistency

preservation between more than two models is required, which can be achieved using

networks of bidirectional transformations.

Such transformation networks combine multiple bidirectional transformations, each

concerned with keeping two of the multiple models consistent. Since the development of

each transformation requires individual domain knowledge, they are usually developed by

several domain experts without each other in mind. Additionally, single transformations

may be reused in other networks. However, this is not considered in previous work. This

makes consistency preservation by means of networks of bidirectional transformations

prone to compatibility errors. For example, in a network of transformations, there may be

two or more concatenations of transformations that relate the same metamodels across

di�erent other metamodels. Yet, they may relate the elements in di�erent ways, which

we call an incompatibility. This can, for example, lead to a duplicate creation of the

same elements across the di�erent transformation concatenations. However, there is no

systematic knowledge about the kinds of compatibility issues that may occur in networks

of bidirectional transformations. Consequentially, it is also unclear how to systematically

prevent the occurrence of such issues and how far this is possible in the �rst place.

This thesis conducts a case study to identify which types of issues can arise during

consistency preservation through networks of bidirectional transformations. We derive a

classi�cation for these issues regarding the knowledge required to avoid them. We distin-

guish between the knowledge that the transformation may be used in a network and the

knowledge about the contents of the other transformations. For issues that transformation

developers can prevent, we propose strategies for their systematic prevention during the

transformation construction. In our case study, 90% of the issues we found could have

been prevented. The remaining issues cannot be avoided during the development of a

single transformation, as this requires knowledge about the other transformations in the

network. In consequence, this thesis helps transformation developers to systematically

avoid faults during the creation of transformations and allows network developers to spot

faults that can not be prevented when creating the transformation.
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Zusammenfassung

Die Entwicklung moderner Softwaresysteme basiert oft auf mehreren Artefakten. Diese

Artefakte teilen sich oft redundante oder abhängige Informationen, welche während der

Entwicklung des Softwaresystems konsistent gehalten werden müssen. Die manuelle

Durchführung dieses Prozesses ist arbeitsaufwendig und fehleranfällig. Konsistenzer-

haltungsmechanismen ermöglichen diese Artefakte automatisch konsistent zu halten.

Konsistenzerhaltung basiert oftmals auf bidirektionalen Transformationen, welche ein

Zielmodell aktualisieren, wenn ein Quellmodell modi�ziert wird. Während das Gebiet

der bidirektionale Transformationen stark erforscht ist, hat Konsistenzerhaltung von

mehr als zwei Modellen bisher weniger Aufmerksamkeit erhalten. Allerdings umfasst die

Entwicklung von Softwaresystemen jedoch oft mehr als zwei Modelle. Folglich benötigt

man Konsistenzerhaltung zwischen mehr als zwei Modellen, welche durch Netzwerke

bidirektionaler Transformationen erreicht werden kann.

Solche Transformationsnetzwerke kombinieren mehrere Transformationen, wobei jede

einzelne für die Konsistenzerhaltung zweier Modelle verantwortlich ist. Da die Entwick-

lung jeder Transformation individuelles Domänenwissen erfordert, werden sie in der Regel

von mehreren Domänenexperten unabhängig voneinander entwickelt. Zusätzlich können

einzelne Transformationen in anderen Netzwerken wiederverwendet werden. Dies wird

jedoch in bisherigen Arbeiten nicht berücksichtigt, macht aber die Konsistenzerhaltung

durch Netzwerke bidirektionaler Transformationen anfällig für Probleme. In einem Netz-

werk von Transformationen kann es beispielsweise zwei oder mehr Verkettungen von

Transformationen geben, die dieselben Metamodelle mit verschiedenen anderen Metamo-

dellen in Beziehung setzen. Jedoch können sie die Elemente unterschiedlich miteinander

in Beziehung setzen. Dies kann zum Beispiel zu einer doppelten Erstellung derselben

Elemente über die verschiedenen Transformationsketten führen. Es gibt jedoch kein syste-

matisches Wissen über die Problemarten, die in solchen Netzwerken auftreten können

oder ob und wie derartige Probleme systematisch verhindert werden können.

Diese Thesis führt eine Fallstudie durch, die ermitteln soll, welche Arten von Problemen

bei der Konsistenzerhaltung durch Netzwerke bidirektionaler Transformationen auftreten

können. Für diese Probleme leiten wir eine Klassi�zierung hinsichtlich des erforderlichen

Wissens für ihre Vermeidung ab. Für Probleme, die Transformationsentwickler verhindern

können, schlagen wir Strategien zur systematischen Vermeidung während ihrer Konstruk-

tion vor. In unserer Fallstudie sind 90% der gefundenen Probleme verhinderbar. Die übrigen

Probleme lassen sich während der Entwicklung einer einzelnen Transformation nicht

ohne das Wissen über weitere Transformationen im Netzwerk vermeiden. Folglich hilft

diese Thesis Transformationsentwicklern Fehler bei der Erstellung von Transformationen

systematisch zu vermeiden und ermöglicht es Netzwerkentwicklern Fehler zu erkennen,

die bei der Konstruktion der Transformation nicht verhindert werden können.
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1. Introduction

Since modern software systems can grow very complex and large-scale, their development

often comprises multiple artifacts. These artifacts might represent di�erent parts of the

software system. However, they often share a certain overlap in redundant or dependent

information. This information needs to be kept consistent during the development and

maintenance of the software system. If done manually, this process is labor-intensive and

prone to errors. This motivates the need for an automatism that replaces this process.

Consistency preservation is such an automatism that keeps artifacts consistent even when

a developer changes a single artifact. Many of these consistency preservation mechanisms

are based on model transformations. Model transformations update a target model based

on a source model. This process is usually de�ned by multiple transformations rules,

which de�ne how to map model elements from the source model to the target model. Most

of the research covers bidirectional transformations, which are transformations between

precisely two models. Thus, the majority of model consistency preservation mechanisms

mainly deal with keeping two models consistent [7].

The problem of keeping more than two models consistent, calledmulti-model consistency
preservation, is signi�cantly less researched. However, it is relevant, as more than two

models can be used in the development of a single software system. Multi-directional

transformations, which are transformations between more than two models, could be

used to enable multi-model consistency. The alternative is using networks of bidirectional

transformations, where multi-model consistency preservation is achieved by multiple

bidirectional transformations, each concerned with keeping two of the multiple models

consistent. The advantage of networks of bidirectional transformations is that they are

a �exible approach for multi-model consistency preservation, as extending a network is

straightforward and parts of the network can even be used for other networks. Networks

of transformations are especially well-suited when trying to keep existing metamodels

consistent, as pre-existing metamodels and transformations can be integrated into the

network with little to no adaption.

Networks of bidirectional transformations can be developed by multiple experts, as

their construction requires knowledge about the di�erent domains of the target and

source models [20]. The more models need to be kept consistent with each other, the

less likely it is to �nd an expert that is pro�cient in all domains [43]. Thus, this makes

consistency preservation prone to compatibility errors. Especially when the di�erent

bidirectional transformations of a network are not designed with each other in mind,

or never have been considered for multi-model consistency preservation at all. Model

transformations usually assume that their models can be modi�ed by themselves or the

user. Other transformations, however, are not considered. This makes the consistency

preservation in networks of bidirectional transformations prone to compatibility errors.

For example, in a network of transformations there may be two or more concatenations

1



1. Introduction

of transformations that relate the same metamodels across di�erent other metamodels.

However, they may relate the elements in di�erent ways, which we call an incompatibility.

This can, for example, lead to a duplicate creation of the same elements across the di�erent

transformation concatenations. It is generally unclear what kind of issues can arise during

multi-model consistency preservation through networks of bidirectional transformations.

Consequentially, it is also unclear how to systematically prevent issues that arise in

networks of bidirectional transformations. However, to make networks of bidirectional

transformations a feasible approach for multi-model consistency preservation, it is crucial

to identify these issues in order to allow their prevention during the construction of

transformations as far as possible. This means we require systematic knowledge on which

issues can arise in networks of transformations. Moreover, we need to know, on the one

hand, which issues can be prevented before combining the transformations into a network,

and on the other hand, which cannot be prevented at all and, thus, might need to be

resolved when combining the transformations in a network.

This thesis conducts a case study on networks of bidirectional transformations to explore

what types of issues arise during multi-model consistency preservation through networks

of bidirectional transformations. We combine pre-existing, independently developed

transformations into a network. Then, we use a set of small scenarios to test the consistency

preservation on issues that arise when changes to a model are propagated in the network.

We di�erentiate between mistakes, faults, and failures. The inconsistencies that arise

during the case study execution are failures. Each fault is the cause of one or many

failures and is manifested in the transformation de�nitions. It is the manifestation of a

mistake made by a transformation developer during the planning or implementation of

the transformations. From these mistakes, faults, and failures, we derive a classi�cation

for these issues concerning their avoidability with the knowledge that the transformations

can be used in a network of transformations or with detailed knowledge about the other

transformations. We propose systematic strategies on how these mistakes, faults, and

failures can be prevented during the construction of the individual transformations. We

also discuss some issues that cannot be prevented by construction and what they have

in common. These issues might need to be resolved when assembling the network by

combining the transformations. This thesis o�ers the two following envisioned bene�ts.

First, it helps transformation developers to systematically avoid faults during the creation

of the transformations as far as possible. Second, it allows network developers to spot

faults that can not be prevented when creating the transformation in order to resolve them

systematically. Previous work [22, 46] has explored issues with change propagation in

simple, linear networks of bidirectional transformations. A linear network is a network

where each metamodel is connected through bidirectional transformations with precisely

two other metamodels so that the network has a linear topology. This thesis builds on this

foundation and further analyzes more complex networks with redundant bidirectional

transformations in a comprehensive case study. This means there can be many redundant

paths in the network and cycles that are between multiple models.

2



1.1. Case Study

1.1. Case Study

In this thesis, we conduct a case study on the issues that arise during multi-model con-

sistency preservation with networks of bidirectional transformations. We base our case

study on three pre-existing metamodels, namely a PCM metamodel, a UML metamodel,

and a Java metamodel. PCM is a component-based model for performance prediction in

software architectures. With these metamodels we then build a network out of the three

pre-existing bidirectional model transformations TPCM↔UML, TUML↔Java , and TPCM↔Java .

These transformations are designed by di�erent experts and therefore, not designed with

each other in mind and without the knowledge that they are going to be used in a net-

work of transformations. We utilize a pre-de�ned set of 39 �ne-grained test cases that

provide model instances for the metamodels of the network on which the consistency

preservation is executed. A test modi�es one of the models in the network and then calls

the consistency preservation mechanism. The consistency preservation mechanism then

executes the model transformation one-by-one until the network is stable, which means

no transformation execution leads to any further changes.

We identify di�erent types of mistakes, faults, and failures than can arise during multi-

model consistency preservation through networks of bidirectional transformations. A

mistake can be, for example, the duplicate creation of a model element. A possible fault

that could cause this is the missing check if another transformation has already created the

element. This fault is located in one or more transformations. It is also the manifestation of

a mistake. In this example, the mistake could be not considering the use of a transformation

in a network of transformations. During this case study, we encounter 119 failures, which

are caused by 29 faults, which therefore, are the manifestations of 29 mistakes. Note that a

single fault can cause multiple failures. We notice the failures during the execution of the

test cases. We trace the underlying fault of failure, resolve that fault, and then match all

failures that no longer occur to that fault. We reconstruct the mistake that manifested in

the fault by analyzing which missing knowledge leads to such a fault. The time-consuming

part of this process is tracing the underlying faults of the failures and then manually

resolving that fault. We trace the faults by tracking how the initial changes made in the

network of transformations are propagated through the network. We then back-track

from the failure and analyze each transformation that had a part in the propagation chain

until we understand which fault caused the failure. We resolve the fault by manually

improving the a�ected transformations until the fault is �xed. We con�rm that the fault

is resolved by checking if the correlating failures still occur. We derive a classi�cation

for these mistakes, faults, and failures concerning their avoidability with the knowledge

that the transformations can be used in a network of transformations or with detailed

knowledge about the other transformations.

3



1. Introduction

1.2. Research Questions

Generally speaking, the case study examines which mistakes, faults, and failures arise

during multi-model consistency preservation through networks of bidirectional transfor-

mations. This serves two goals: For one, we want to �nd out how far it is possible to design

bidirectional transformations in a way so that they will work with any other carefully

designed transformation in a network of bidirectional transformations. For another, this

case study is supposed to help avoid issues when building bidirectional transformations

and networks of transformations. With this case study, we set out to answer the following

research questions:

1. What are potential faults, failures, and mistakes that commonly appear during

consistency preservation in networks of bidirectional transformations?

2. Which classi�cation can be used to categorize these faults, failures, and mistakes

with respect to their avoidability?

3. Which strategies allow the prevention of these mistakes, faults, and failures reliably

during the transformation construction and what knowledge is required to do so?

4. Which mistakes cannot be prevented during the construction of bidirectional trans-

formations? What do they have in common?

5. How do redundant transformation rules in networks of bidirectional transformations

a�ect the mistakes, faults, and failures in a network?

6. How do these results compare to the results of previous work [21, 46]?

We answer Research Question 1 by assembling a network of bidirectional transformations

step-by-step out of di�erent pre-existing transformations and checking on faults, failures,

and mistakes through running pre-existing test cases for these transformations. The test

cases create model elements in one model and then trigger the consistency preservation

mechanism, which restores consistency by creating the correlating model elements in the

other models. Since the transformations were initially designed for two models, the test

cases might result in failures since they are now used with a network of transformations.

We then identify the faults that caused the failures and the mistakes that led to the

manifestation of the faults and �x the faults in the transformations. Last, we con�rm

that the �xes resolve the failures by making sure the failures no longer occur when

rerunning the correlating tests. We answer Research Question 2 by building a classi�cation

regarding avoidability with the knowledge that the transformations can be used in a

network of transformations or with detailed knowledge about the other transformations.

We categorize the failures according to the model state, which means the models are either

missing elements, have too many elements, or have incorrect elements. Next, we categorize

the faults according to their scope, meaning if the fault is technical, transformation-internal,

or regards the transformation interaction. At last, we categorize the mistakes according to

the knowledge scope, which means which knowledge is required to avoid a mistake. This

classi�cation is meant to help to answer the following research questions but also serves
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as a catalog that assists with building new transformations that could be used in a network

of bidirectional transformations. We answer Research Question 3 by determining what

knowledge is required to be able to implement the �xes we found for the faults during the

construction of the transformations and therefore prevent the faults. We answer Research
Question 4 by listing all mistakes that can only be �xed with knowledge of the network

topology and the details of how changes are propagated in the network. This is a direct

result of the classi�cation built for Research Question 2. We answer Research Question 5 by

�nding common denominators between all faults, failures, and mistakes that are directly

linked to transitive paths in the network. By �nding di�erences and commonalities of our

results with the results of previous case studies, we answer Research Question 6. We also

classify the problems found in our case study according to the classi�cation proposed in

previous work.

1.3. Results

We observe that the most common failure class is the duplicate element creation, where two

elements are created in a model that are semantically identical. They are often caused by the

fault of not considering that, when creating an element, another transformation might have

already created a semantically identical element. This fault class is the most common fault

in this case study. These faults are manifestations of the most common mistake class, which

are mistakes due to not considering transitive consequences in general. Our observations

con�rm that it is often possible to prevent faults in a network during the construction of

transformations with minimal knowledge of the network. Even with just the knowledge

that the transformation is used in a network of bidirectional transformations, it is possible

to prevent 89.7% of all faults that we encountered. We identi�ed three strategies that

prevent di�erent network knowledge mistakes encountered in this case study during

the transformation construction. They prevent the manifestation of these mistakes in

faults. Therefore, two-thirds of the encountered faults can be prevented with these three

strategies alone. In total, only three mistakes we found cannot be prevented during the

transformation construction. For these mistakes, it is not possible to predict transitive

consequences at all. They all have one thing in common, which is the underlying cause

of not being preventable by construction: Transformations are forced to make a decision

where there is no inherently correct choice. Consequentially, di�erent transformations

in a network of transformations might make a di�erent decision as it is not clear what

option other transformations chose.

1.4. Thesis Structure

The remainder of this thesis is structured as follows. First, chapter 2 introduces the

foundations regarding the topics of consistency preservation, metamodeling, and model

transformations. It also details the notation used in this thesis and explains the di�erence

between mistakes, faults, and failures in detail. Second, chapter 3 covers the topic of

multi-model consistency preservation through networks of bidirectional transformations.
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It introduces the challenges of such networks of bidirectional transformations and de�nes

several terms that we use throughout this thesis. Third, chapter 4 presents the planning,

execution, and results of the case study in detail. It introduces all the artifacts and tools used

in the case study. Furthermore, it lists all encountered mistakes, faults, and failures. Fourth,

chapter 5 analyzes the encountered mistakes, faults, and failures that we listed in the

previous chapter. It also discusses our derived classi�cation and sorts the mistakes, faults,

and failures into their respective classes. Additionally, it reasons about the connections of

mistakes, faults, and failures. Finally, we compare the classi�cation and the analysis with

previous work. Fifth, chapter 6 discusses the lessons that can be learned from the case study

results. As a part of that, it covers the prevention strategies but also the unpreventable

mistakes. Sixth, chapter 7 discusses the internal and external threats to the validity of

this thesis and explains how we address them. Seventh, chapter 8 lists previous work that

serves as the foundation for this thesis. Moreover, it discusses general related work to

multi-model consistency preservation and networks of bidirectional transformations. Last,

chapter 9 concludes this thesis by summarizing the case study and its result. It also details

future work.
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This chapter introduces the foundations on which this thesis is based on. First, section 2.1

gives a brief introduction to the �eld of model-driven software development, which is the

general research area to which this thesis is contributing. Second, section 2.2 explains

the terminology regarding models and metamodeling. It also introduces the modeling-

relation notation used in this thesis. Third, section 2.3 introduces consistency preservation,

de�nes a basic notion of consistency, and explains the general problem of multi-model

consistency. Fourth, section 2.4 covers the concept of model transformations and introduces

the transformation-relation notation used in this thesis. Fifth, section 2.5 di�erentiates

between the terms mistake, fault, and failure, which is heavily used throughout this thesis.

It also explains how they are connected as causal chains.

2.1. Model-Driven So�ware Development

Model-driven software development applies model-driven engineering to software devel-

opment and allows abstracting from the complexity of software engineering. This can

increase the development speed through automation, increase the reusability through mod-

ularization, and improve the maintainability through redundancy avoidance. Model-driven

software development is closely related to the Object Management Group’s Model-Driven

Architecture (MDA). The core idea of model-driven techniques is to work on a higher

abstraction layer than traditional artifacts, such as code, by utilizing models of these

artifacts. Compared to classic software engineering, which might be model-based, models

become primary artifacts. For example, in model-driven software development, models

are used to automatically generate code, while software development usually only uses

models to generate an abstract view of the source code. In the context of model-driven

software development, a model is an abstract representation of the structure of a system

[40].

2.2. Metamodeling

A model is, generally speaking, a conceptual representation of something. While some

might argue that "everything is model" [3], the concept of a model is commonly de�ned

according to Stachowiak’s three properties of a model [39]: First, a model is a mapping of

the archetype it is modeling. Second, it is an abstraction or reduction of this archetype,

meaning not every detail is modeled. Third, it has a pragmatism, as it was created for a

speci�c purpose. A model can also describe other models. In this case, it is an abstract

description of a model, and therefore the model of a model. For models of models, the
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Figure 2.1.: The di�erent model concepts according to the MOF meta-levels. Each model in

a level describes the one below and instantiates the one above. The exception is

the meta-metamodel which is self-describing and therefore self-instantiating.

term metamodel is used. A metamodel can be seen as a blueprint for speci�c models.

Consequentially, any model is an instance of a metamodel. This can be taken one step

further: When a model describes metamodels, it is a meta-metamodel. To di�erentiate

between the abstraction level of the concepts mentioned above, the term metalevel is

used. A model is one metalevel above its modeled original because its abstraction level

is higher than the original. Thus, metamodels are one metalevel above their models,

and meta-metamodels are one above their metamodels [40]. While one could endlessly

de�ne meta-levels above meta-levels, it is common practice to stop at the metalevel of

meta-metamodels. Consequentially, meta-metamodels are seen as self-describing and,

therefore, also instances of themselves. The Object Management Group de�nes four meta-

levels: The instance level, the model level, the metamodel level, and the meta-metamodel

level. This is depicted in Figure 2.1. They also de�ne a meta-metamodel: The meta object
facility (MOF). Essential MOF (EMOF) is a subset of the meta object facility. It allows the

simpli�ed creation of metamodels. The uni�ed modeling language (UML), a well-known

graphical modeling language developed by the Object Management Group, is an instance

or application of the meta object facility [15].

Less formally, models can be seen as sets of elements [22]. We call these elements model

elements. Multiple model elements can conform to a common description, a model element
type. Sometimes a model element type is also referred to as the metaclass of a model

element. In this notion, a metamodel describes all possible models, which means it is the

set of all possible sets of model elements. Models can still be considered instances of their

metamodels, as the model elements are considered as instances of their types. In order to

apply this de�nition to the models we are observing, we need two additional concepts.

First and foremost, model elements can have relations with other model elements. Second,

a model element might have properties, also called attributes. Both the properties and

the relations are de�ned by model element types but might di�er in their values between

model elements of the same types. These two concepts are in accordance with the EMOF
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standard. When talking about the structure of a model, we are describing the speci�cs that

relations between elements have due to their de�nitions in the metamodel. Containment

relations are stronger relations that describe the concept of ownership. The contained

element depends on the containing element. These containment relations de�ne a partial

order in the model. Generally, every model element needs to be contained in another

model element, which forms a partial order in the model. The exception to this rule are

root elements, also called model roots, which are not contained. This partial order of

containment relations, in addition to the non-containment relations, is considered the

structure of a model.

In this thesis, we use the following notation, which is similar to the notation used by

Klare et al. [22]. A model is denoted as M , while a metamodel is denoted asM. If a

model is an instance of a metamodel, we express that as M ∈ M , as it is one of the many

possible models that the metamodel describes. A model element type T ∈ M is part of

that metamodel, while the model element t ∈ T is therefore part of the correlating model

M , denoted as t ∈ M .

2.3. Consistency Preservation

Consistency preservation describes the problem of keeping di�erent artifacts, or more

speci�cally models, of a software system consistent. These models share some amount of

overlapping information, but their representation of this overlapping information might

di�er. The de�nition of the term consistency itself depends on the speci�c models and how

strict of a consistency notion is required. There is an ongoing discussion about di�erent

consistency terminologies, especially in regard to strictness. In some cases, inconsistencies

might even be tolerated, requiring some sort of partial consistency.

To provide a framework for this thesis, let us de�ne consistency for any two metamodels

according to the following terminology, which is based on the de�nitions by Klare et al.

[22, 20]. Consistency is de�ned between two metamodels by consistency relations, which

describe the dependencies between the overlapping information of the two metamodels.

Consistency constraints are derived from these consistency relations for any pair of models

of these metamodels. Consequentially, there is a subset of all model pairs of these meta-

models, which is the set of consistent model pairs. If this set is empty, no model pair can be

consistent. Consistency restoration describes the process of restoring consistency between

two models that do not satisfy one or more consistency constraints. This requires changing

one or both models until the pair satis�es all consistency constraints. Finally, consistency

preservation is de�ned as the process of keeping models consistent by utilizing consistency

restoration as soon as one or more consistency constraints are no longer satis�ed.

Multi-model consistency preservation describes the problem of keeping more than two

models consistent. For multi-model consistency preservation, the previous de�nitions need

to be extended to allow for multiple metamodels and, thus, multiple models. Consistency

relations can now be n-ary relations, and consistency constraints might be de�ned for

multiple models. Consequentially, consistency restoration needs to be able to restore

consistency for more than two models. There are di�erent approaches to realize multi-

model consistency preservation. Some approaches tend to merge the di�erent models into
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a single underlying model. Other approaches keep the models separate and utilize model

transformations for consistency preservation [28, 29].

2.4. Model Transformations

Model transformations were famously described as the "heart and soul of model-driven

software development" [38]. According to Kleppe et al. [23], a model transformation is the

automatic generation of a target model correlating to a source model. Furthermore, they

describe a transformation de�nition as a set of transformation rules that de�ne a model

transformation rule. Each transformation rule is a description of how constructs can be

transformed from the source model to the target model. These constructs, according to

our notion of models, are either model elements, their properties, or their relations. The

transformation rules are usually written in a transformation language and then executed

by a transformation engine. This is depicted in Figure 2.2. Note that the transformation

rules are written on the metalevel of the source and target metamodels. This means they

describe the transformation of model element types. The transformation engine then

executes the transformation rules on the metalevel of the models and transforms the actual

model elements.

Consequentially, when we say a model is transformed by a transformation, we tech-

nically mean the model is transformed by the transformation engine according to the

transformation rules. We also distinguish two terms regarding model transformations:

Mapping and matching. When talking about mapping of elements, we mean that the

transformation rules map elements of the metamodels, as in model elements types, to each

other. When talking about matching of model elements, we mean pairing actual model

elements during the transformation execution. A mapping de�nes that two model element

types of the two source and target metamodels correspond to each other, while a matching

de�nes that two model elements of the two source and target models correspond to each

other. Correspondence, therefore, denotes an inter-metamodel relationship. So far, we only

discussed that a model transformation transforms source models to target models. These

transformations are unidirectional. For bidirectional transformations, both metamodels

are source and target model at the same time, as models can be transformed in both

directions. A bidirectional transformation can be broken down into two unidirectional

transformations. One is called the forward transformation, and the other is called the back-

ward transformation. Similarly, we only discussed binary transformations, meaning the

transformation de�ned between two metamodels. In addition tho binary transformations,

there are also multiary or n-ary transformations, that are de�ned between more than two

metamodels. However, for this thesis, we mainly focus on binary transformations, as they

are used in our case study in a network of transformations. There are many di�erent kinds

of transformations. Delta-based transformations are a speci�c category of transformations

that transform a set of changes to a source model to corresponding changes for a target

model. Instead of transforming the whole model every time the transformation is executed,

only the changes are transformed. We call sets of changes also change sequences. Delta-

based model transformations can be used for the consistency restoration of two models.
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Figure 2.2.: Depiction of the model transformation concept [5]. A model transformation

consists of multiple transformation rules, written in a transformation language,

which are executed by a transformation engine.

When one model is changed, the other one is updated according to the transformation

rules to keep them consistent.

In this thesis, we use the following notation. A transformation that transforms from

a source metamodelMsource to a target metamodelMtarдet is de�ned as Tsource→tarдet :

Msource 7→ Mtarдet . If the transformations is bidirectional, the transformation can trans-

form models in both direction. As a consequence, it is de�ned asTsource↔tarдet :Msource 7→

Mtarдet ∧Mtarдet 7→ Msource . When using the target model of a transformation as the

source model of another transformation, we call this chaining of transformations. We

abbreviate such chains as Tf irst→second ·Tsecond→third : M f irst 7→ Mthird .

2.5. Mistakes, Faults, and Failures

In this thesis, we avoid the terms problem and error as they are too generic and could

describe very di�erent things depending on the context. While the terms used in related

literature di�er, we use the following terminology to di�erentiate problems according to

their cause, manifestation, and impact in the context of software engineering:

1. Mistakes are a wrong judgment made by a person, for example, a developer.

2. Faults are the manifestation of the mistakes in an artifact, for example, the code.

3. Failures are how faults show themselves, for example, during code execution.

This means that when a mistake is made, it can potentially manifest itself in a fault.

Moreover, when a fault is created, it can potentially show itself through the appearance of

failures. It is important to realize that not every mistake leads to a fault, and not every fault

causes a failure. Failures usually lead to a detection of such a mistake-fault-failure chain,

which we call causal chains. The relations mentioned above are visualized in Figure 2.3.
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Figure 2.3.: UML representation of the concept of a causal chain between a mistake, a fault,

and several failures.

The fault is the part that needs to be �xed, and the mistake usually needs to be understood

to implement a precise and compact �x correctly.

As an example, in the context of this case study, a mistake could be ignoring or forgetting

a dependency between model elements while creating a transformation. The correlating

fault would be the incorrect transformation routine that, as an example, should rename

the depending element when renaming the element on which it depends. This leads to the

failure where some elements end up with invalid or illegal namespaces.

For this case study, that means that any inconsistencies that arise during the test case

execution are failures. The fault that causes such failure lies in the implementation of the

bidirectional transformations. We try to reconstruct the mistakes made by the author of

the bidirectional transformation where the fault is located, as it is the key to preventing

such faults in the future.
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Transformations

In the previous chapter, we discussed the basics of consistency preservation and introduced

the problem of multi-model consistency preservation. This chapter, however, discusses

how networks of bidirectional transformations can achieve multi-model consistency preser-

vation. It introduces the challenges of such networks of bidirectional transformations and

de�nes several terms that we use throughout this thesis. First, section 3.1 explains how

multi-model consistency preservation can be achieved using networks of bidirectional

transformations and how changes to a model are propagated in the network. It also dis-

cusses what network topologies might exist and how they in�uence change propagation

in the network. Second, section 3.2 gives two examples for issues that can occur in these

networks of bidirectional transformations: Name transformation and duplicate element

creation.

3.1. Achieving Multi-Model Consistency Preservation

As previously mentioned, multi-model consistency preservation describes the problem

of keeping more than two models consistent. Consistency in this context describes the

requirement that for any set of the models, all overlapping information is consistent. The

overlapping information could be anything from only small parts of the models to the

whole models themselves. Overlapping information can be represented in the di�erent

models very similarly or with a completely di�erent representation. There are di�erent

approaches to realize multi-model consistency preservation. Some approaches tend to

merge the di�erent models into a single underlying model. Other approaches keep the

models separate and utilize model transformations for consistency preservation [28, 29].

When keeping models consistent, consistency relations describe dependencies between

the overlapping information. They de�ne which model elements are mapped to each other.

For multiple models, these relations are n-ary relations, since a model element might be

mapped to multiple elements from di�erent models. N-ary consistency relations can be

represented through multiple binary relations by creating a binary relation for any pair of

two models in the n-ary consistency relation. This is depicted in Figure 3.1, where three

binary relations can replace the n-ary relation between three models.

This leverages the approach of achieving multi-model consistency preservation by

de�ning multiple bidirectional transformations between models, each representing a

binary consistency relation and, therefore, all together represent the n-ary consistency

relation required to de�ne the overlapping information. This approach forms networks

of bidirectional transformations by combining multiple model transformations in one
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Figure 3.1.: The n-ary relation rn between the three models MA, MB , and MC (left) can be

represented by the three binary relations r1, r2, and r3 (right).

system. These networks of bidirectional transformations can be considered as (directed)

graphs, where the models are the nodes of the graph, and the (unidirectional) binary

transformations are the edges of the graph. This means that removing all fully redundant

bidirectional transformations of the network results in the transitive reduction of the

original network. Consistency is restored by propagating changes through the network,

which means progressively executing the bidirectional transformations in a certain order

until the network reaches a stable state where no further changes are made. Assuming

the bidirectional transformations are all correctly implemented and have no side e�ects

due to their use in the network, we assume that the stable state of the network is also a

state where consistency is restored for all networks. Bidirectional transformations can

be executed multiple times as cycles in the network are not uncommon. The execution

order of the transformation a�ects how changes are propagated in the network, but in

this thesis, we are abstracting from the execution order. Finding an approach to optimize

the execution order to reduce the issues in a network of transformations is beyond the

scope of this thesis.

Note that similarly to the distinction between metamodels and models as well as trans-

formation de�nition and transformation execution, a distinction can be made for networks

of transformations. Networks of bidirectional transformations are constructed with meta-

models and transformation de�nitions. But during the consistency restoration, a network

consists of the correlating models of the metamodels, and changes are propagated due to

transformation execution.

It is important to mention that such a network does not need a bidirectional transforma-

tion from each model to each other model since transitive change propagation enables the

chaining of model transformations. This means, assuming the existence of three models

MA, MB , and MC , changes can be propagated transitively from MA to MC by chaining two

transformations TA→B : MA 7→ MB and TB→C : MB 7→ MC . This network is depicted

in Figure 3.2. Because of this transitive change propagation, the third transformation

from TA→C :MA 7→ MC can be seen as redundant in this speci�c network because the

chainTA→B ·TB→C : MA 7→ MC is equal toTA→C , which means it is technically not needed,

assuming the TA→B and TB→C cover the same transformation rules as TA→C would. This

last requirement is important, as redundancy in such a network is not a binary property.

Transformations and chains of those can be fully redundant, partly redundant, or not

redundant at all. If a chain of transformations only allows the transformation of certain

model elements, the correlating direct transformation cannot be removed from the network

without altering the functionality of the network itself. Returning to the previous example,

TA→C would be partly redundant, if the intersection between the transformation rules by
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Figure 3.2.: Network of bidirectional transformations with the models M and the transfor-

mations T . Transitive chaining of the transformations TA→B and TB→C makes

TA→C redundant.

1. Transformation-Internal 
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2. Chained Transformation-Internal 3. Redundancy-Based 

Figure 3.3.: Cycle types in networks of bidirectional transformations. First, transformation-

internal cycles consisting of the backward and forward transformations. Sec-

ond, chains of combined transformation-internal cycles. Third, redundancy-

based cycles that do not depend on bidirectionality.

TA→B and TB→C ) is only a subset of the set of transformation rules by TA→C . This subset

is the set of redundant transformation rules. This intersection can be characterized as

compatibility betweenTA→B andTB→C , which is indicative of how well these two transfor-

mations can be chained. While the previous example (see Figure 3.2) uses unidirectional

transformations, transitive chaining also works with bidirectional transformations. In that

case, changes can be propagated in both directions through the chain of transformations.

With this concept of redundancy, we can di�erentiate between two types of cycles

in networks of transformations: First, every bidirectional transformation, by de�nition,

forms a cycle between its two models. We call these kinds of cycles transformation-internal
cycles. In addition, larger cycles may also exist that consist of multiple bidirectional

transformations. These could just be multiple transformation-internal cycles chained

together linearly, which we consider as an extension of transformation-internal cycles and

call chained transformation-internal cycles. But larger cycles could also be a di�erent second

type of cycle that does not necessarily rely on the bidirectionally of its transformations.

These cycles consist of multiple bidirectional transformations that are connected in a

circular chain. Naturally, this means they rely on redundancy. Therefore we call them

redundancy-based cycles. Examples for these cycle types can be seen in Figure 3.3: The

transformation-internal cycle MA → MB → MA (1.) consists of a single bidirectional

transformation TA↔B . The chained transformation-internal cycles (2.) consist of two

bidirectional transformations and relies on their bidirectionality. The redundancy-based

cycle (3.) consists of multiple bidirectional transformations and relies on redundancy.

In general, these networks of transformations can have a very di�erent topology (see

Figure 3.4). The topology can have e�ects on the change propagation, mainly through
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1. 2. 3. 4.

Figure 3.4.: Di�erent network topologies: Star topology (1.), fully connected topology (2.),

linear topology (3.), and circular topology (4.).

cycles, redundancy, and bottlenecks. Cycles and redundancy may increase the chance

of side e�ects in the network because they increase the number of paths the change

propagation can take in the networks. Technically, a cycle produces an in�nite number

of paths, but we expect to see only a �nite number of paths since we expect the change

propagation to terminate. A bottleneck in a network of transformations is a model or

transformation which is always part of the path between two models. A bottleneck

transformation equates to a minimum cut in the network. This means the transformation

rules of the bottleneck transformation, or the overlapping information of the bottleneck

model with its neighboring models on the path, limits what information can be shared

between the two models at the beginning and the end of the path.

In Figure 3.4, we can see how the topology a�ects the number of cycles and bottlenecks.

The star topology does not have transitive cycles but has a severe bottleneck in the center.

The fully connected topology avoids bottlenecks but has a high number of transitive cycles.

It also has a large number of transformations compared to its number of models, which

increases the e�ort it takes to implement such a network. The linear topology does not

have transitive cycles but has multiple bottlenecks, as every transformation and model on

a path between two models in this topology is a bottleneck. Lastly, the circular topology

has no bottlenecks and only one large transitive cycle that includes every model in the

network.

It is important to mention that cycles and redundancy are not always avoidable in a real

system, as every pair of models only has certain overlapping information, and therefore

the transformation between them only speci�es transformation rules for this overlapping

information. This can be seen in Figure 3.5, where the network of transformations contains

a transitive cycle, but none of the transformations are redundant, as the overlapping infor-

mation of each model pair is exclusive to the pair. This also suggests that the topology of a

network is not freely choosable since it depends on the degree of overlapping information

between the di�erent models. For example, the topology of the network in Figure 3.5

cannot be altered without breaking the functionality of the network.

3.2. Issues in Networks of Transformations

With this section, we illustrate some issues that can occur in networks of bidirectional

transformations. These examples are meant to give an understanding of what kinds of
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Figure 3.5.: Overlapping information between models MA, MB , and MC on the left and a

correlating network of binary transformations on the right. Only a subset of

the information in the model is shared.

mistakes, faults, and failures we discuss in this thesis. First, we start with a basic example

regarding name transformation, which is discussed in detail. Second, we address duplicate

element creation, which is the most common failure we observed in this case study. This

failure is explained on a more abstract level but closely related to our case study.

For the �rst issue, let us assume we transform between three metamodels in a network.

For our issue, we only need to consider three element types. PCM repositories are named

elements without any naming rules. UML packages are named elements where the �rst

letter of the name is usually capitalized. Java packages are named elements with the

same naming rules as UML packages. Figure 3.6 depicts the transformation rules for

keeping the names of the three element types consistent. Between PCM and UML the

bidirectional transformation TPCM↔UML enforces that the respective names start with

lowercase and uppercase letters. This means, for example, a capitalized UML package

name is transformed to a lowercase PCM repository name. Between Java and UML the

bidirectional transformation TUML↔Java enforces that names start with a lowercase letter.

However, both Java and UML packages have the same naming scheme anyways. Between

PCM and Java, however, the bidirectional transformation TPCM↔Java does not enforce

any naming schemes, which means names are transformed as they are. The fault lies

in the fact that TPCM↔Java does not change the name, but TPCM↔UML capitalizes the �rst

letter when transforming to PCM models. Consequentially, failures can occur due to this

fault of mismatching transformation rules. There could be multiple failures that could

occur to such a fault. For example, there could be alternating loops, where TPCM↔UML

enforces a lowercase �rst letter in the repository name, followed by TPCM↔Java enforcing

an uppercase �rst letter, which then repeats. This means the change propagation is non-

terminating. Another failure that can occur due to this fault is the creation of two PCM

repositories. The transformation TPCM↔UML might create one repository with a lowercase

name, while TPCM↔Java might create one with a capitalized name.

This brings us to the second issue we want to discuss in this section. Many faults manifest

themselves in failures of duplicate element creation. This means that two elements are

created in the same model, that are semantically identical. Consequentially, only one

should have been created, as both elements represent the same conceptual entity. An

example of a fault that causes a duplication failure is the fault of not checking on the
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PCM 
Repository

UML 
Package

Java 
Package

name ?  name

(as is)

name ? ? Name name ?  name

Figure 3.6.: Depiction of the transformation rules for keeping the names of the PCM

Repositories, UML packages, and Java packages consistent. AsTPCM↔Java does

not change the name, but TPCM↔UML capitalizes the �rst letter, failures can

occur due to the fault of mismatching transformation rules.

external creation of an element by another transformation. This can be the manifestation

of the mistake of not considering the use of a transformation in a network. We di�erentiate

between two types of duplicate creation: Duplicate creation with co-existence and duplicate

creation with overwriting. Co-existence means while two semantically identical elements

were created, they both exist without interfering with each other. Both can be changed or

deleted, but depending on the access mechanism, meaning how the element is referenced or

located, either one of them will be changed without much control on which one is changed.

Overwriting means that two semantically identical elements exist, but the creation of the

second one overwrites a reference to the �rst one or a means of locating the �rst one.

This means that from the moment of the creation of the second one, the �rst one cannot

be accessed anymore. Previous changes to the �rst element are lost, and future changes

will only a�ect the second one. The big di�erence between the two types of duplicate

creation is that co-existence is more easily detected. In the best case, it can be as simple as

checking if two classes in a package have the exact same name. It is considerably harder if

there are no unique properties to identify duplicates with. Overwriting, on the other hand,

is harder to detect, as the access to the element is a�ected. Consequentially, duplicate

creation with overwriting shows itself in this case study mainly through a failure caused

by the overwriting and not through the overwriting itself.
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In this thesis, we conducted a case study on the mistakes, faults, and failures that arise dur-

ing multi-model consistency preservation with networks of bidirectional transformations.

We based our case study on three pre-existing metamodels, namely a PCM metamodel,

a UML metamodel, and a Java metamodel, as well three bidirectional transformations

between these metamodels. With this case study, we set out to answer the following six

research questions. Research Question 1 asks which mistakes, faults, and failures commonly

appear in networks of bidirectional transformations. Research Question 2 asks how these

mistakes, faults, and failures can be classi�ed with respect to their avoidability. This

also enables gaining a better understanding of their connections. Research Question 3
asks which prevention strategies can prevent these mistakes during the transformation

construction and also asks which knowledge is required to do so. Research Question 4 asks

about the existence of mistakes that cannot be prevented by transformation construction.

Research Question 5 asks about the e�ects of redundancy in networks of bidirectional

transformations. Last, Research Question 6 asks about the comparison to previous work.

To answer these questions, we conduct a case study on networks of bidirectional transfor-

mations. We identify di�erent types of mistakes, faults, and failures that can arise during

multi-model consistency preservation in networks of bidirectional transformations. This

chapter presents the planning, execution, and results of the case study in detail.

First, section 4.1 explains the context of the case study. It discusses which assumptions

were made and why they are reasonable in practical applications of consistency preserva-

tion mechanisms. Second, section 4.2 documents the artifacts and tools used in the case

study. These artifacts and tools include the consistency preservation framework, three

metamodels, six transformations, and a set of �ne-grained test cases. Third, section 4.3 de-

scribes the individual stages of constructing the network of bidirectional transformations.

Fourth, section 4.4 lists all encountered problems and how they manifest themselves in

the test cases.

4.1. Context and Assumptions

This case study investigates problems that arise during multi-model consistency preser-

vation based on networks of bidirectional transformations. There are several essential

speci�cs to the use cases of such multi-model consistency preservation, as they consid-

erably contribute to the challenge of keeping multiple models consistent. In software

engineering, amongst other industries, companies and organizations tend to keep systems

for a long time [30]. Legacy systems are, therefore, unlikely to be rebuilt for new use cases.

This suggests that it is reasonable to expect that models and transformations are not newly
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built for consistency preservation, but instead already exist as part of established systems.

Therefore we make the following assumptions:

First, we assume the metamodels are pre-existing. In many cases, metamodels are

already available or even in use. These metamodels could be explicit metamodels, such

as performance metamodels, or implicit metamodels, such as domain models in software

systems. Moreover, these metamodels could be standardized, such as the Object Manage-

ment Group’s UML [4, 33, 8]. On the opposite, these metamodels could also be highly

proprietary and speci�c to a single company or organization, for instance, models for auto-

motive electric and electronic architectures [35]. As these metamodels were designed for

di�erent tasks, they might have di�erent structures, which makes keeping them consistent

considerably harder. Second, we assume that some or all model transformations might

be pre-existing. This means they were most likely not designed with each other in mind.

Additionally, they were most likely designed by di�erent experts, as their construction

requires knowledge about the di�erent domains of the target and source models [43, 20].

The more models need to be kept consistent with each other, the less likely it is to �nd an

expert that is pro�cient in all domains. While at least many bidirectional transformations

might be designed by a single expert, it might also be the case that two models need

to be kept consistent with two independently designed unidirectional transformations,

which could mean they are not even fully compatible with each other. Third, we assume

that the amount of overlapping information might vary depending on the metamodels.

Some may have minimal overlap, while others may nearly overlap completely. As a con-

sequence, there might be some redundancy between transformations or even chains of

transformations. This also means that the possibility of transitive cycles in the network

increases. Moreover, the density of the network might be high in order to allow consistency

preservation of all overlapping information. This makes it hard to predict the topology of

such networks, as that depends highly on the metamodels that need to be kept consistent.

Lastly, we try to abstract from the execution order of individual transformations in the

network. It is reasonable to assume that strategies for �nding a deterministic execution

order might help to avoid problems during consistency preservation. However, as we want

to �nd problems in our case study, the execution order of the transformations is random,

and therefore non-deterministic.

4.2. Artifacts and Tools

The network of bidirectional transformations analyzed in this case study contains three

metamodels and three bidirectional transformations. As previously mentioned, all meta-

models and transformations are pre-existing and were mostly not designed with each

other in mind. In this section, we discuss the case study artifacts and tools in detail: The

consistency preservation framework, the metamodels, the bidirectional transformations,

and the test case set.

20



4.2. Artifacts and Tools

4.2.1. Framework

The case study is conducted with the Vitruvius framework [24]. It is an Ecore-based frame-

work for consistent system development and enables transformation-based consistency

preservation. Vitruvius works delta-based, which means that �ne-grained sequences of

atomic changes to the source model are recorded by the framework. The change sequences

are then transformed with the correlating bidirectional transformation to the resulting

change sequence for the target model. As the last step, Vitruvius applies the resulting

change sequence to the target model [24]. In the Vitruvius framework, bidirectional

transformations are written in the Reactions language [19], an imperative, domain-speci�c

language for de�ning unidirectional consistency preservation.

This means that a bidirectional transformation needs to be designed as two separate

unidirectional ones. This makes each bidirectional transformation vulnerable to internal

compatibility problems, as the transformations rules of the forward and backward trans-

formation of each bidirectional transformation might not be fully compatible. For example,

the forward transformation might cover additional element types with its transformation

rules. Consequentially, elements of this type would only be transformed in one direction.

4.2.2. Metamodels

This case study bases its network of bidirectional transformations on three metamodels:

The Palladio Component Model (PCM) [32, 2] is a model for the performance prediction of

software by using component-based software architectures. It allows modeling software

systems before actually implementing them to detect issues such as bottlenecks that impact

the software’s performance early on during the development. The PCM metamodel is EMF-

based and can, therefore, be used directly with Vitruvius. It is the �rst domain metamodel

used in our network. However, due to the transformations used in this case study, we only

use repository models. They include elements like repositories, components, operation

interfaces, operation signatures, data types, and assembly contexts.

The Uni�ed Modeling Language (UML) [4, 33, 8] de�ned by the standards consortium

called Object Management Group (OMG) is a heavily standardized language for the de-

scription and visualization of the design of a system in software engineering. UML o�ers

di�erent models for di�erent purposes. They can be divided into structural and behavioral

models. UML class models are structural models for the object-oriented architecture of

software systems. They contain information about classes, their properties, and their

relation. UML class models can be used to model code from any object-oriented language.

The Eclipse Model Development Tools (MDT) [11] o�er an EMF-based implementation

of UML. The MDT UML class metamodel is the second domain metamodel used in our

network. We only use UML class models, which contain elements like packages, types,

operations, attributes, references, multiplicities, realization, and generalization.

Java [13, 1, 14] is a widely-used object-oriented, general-purpose programming language.

It was initially developed in 1995 by James Gosling at Sun Microsystems, which is now

owned by Oracle Corporation. Java code is compiled to Java bytecode and executed on

the Java Virtual Machine. In itself, Java does not o�er an EMF-based metamodel and does

not conform to the EMOF standard. The language itself implicitly de�nes a metamodel
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PCM UML Java
TPCM? UML TUML? Java

TPCM? Java

Figure 4.1.: The three bidirectional transformations used in the network of this case study.

Each bidirectional transformation consists of two each other opposing unidi-

rectional transformations.

through its language speci�cation [14, 34]. However, in order to use Java with Vitruvius,

an explicit EMF-based metamodel is required. The Java Model Printer and Parser (JaMoPP)

[17, 16] o�ers such an EMF-compatible metamodel, and therefore we utilize it to bridge

between Vitruvius and Java code. Consequentially, the JaMoPP Java metamodel is the

third domain metamodel used in our network. However, due to the transformations used

in this case study, we mainly use the parts of the metamodel that describe the structure

of object-oriented code. To be speci�c, that means packages, compilation units, types,

�elds, method signatures with their parameters, constructors, references, generalization

relations, and realization relations.

4.2.3. Transformations

All six model transformations used in this case study, namely TPCM→UML, TUML→PCM ,

TUML→Java , TJava→UML, TPCM→Java , and TJava→PCM , are developed with and for the Vitru-

vius framework using the Reactions language. They are pre-existing, which means they

were not explicitly designed for this case study and especially not designed with the inten-

tion of combining them. While this case study analyzes networks of binary bidirectional

transformations as depicted in Figure 4.1, the six transformations used are technically

unidirectional. Two unidirectional transformations that transform the same models but in

opposite directions, can form the backward and forward transformation of the bidirec-

tional transformation [45]. In order to do so, it is important that their transformation rules

cover the same elements of the models. If this is not the case, it can cause issues during

consistency preservation. We experienced these issues with TPCM→Java , and TJava→PCM .

We formed the bidirectional transformations TPCM↔UML, TUML↔Java , and TPCM↔Java out

of pairs of of our six individual unidirectional transformations. For an overview of the

element mappings of these transformations, see Table A.1.

The unidirectional transformations between the PCM and UML metamodels were

developed together with each other in mind. Due to the fact that they were created as

preparation of a previous case study [46], they employ some patterns that make them more

�exible regarding existing model elements created by other transformations when used in

a network. The unidirectional transformations between the UML and Java models were

developed together with each other in mind as well. However, they were never intended

for use in a network of transformations. The unidirectional transformations between the

PCM and Java models were developed independently and therefore are not designed with

each other in mind. They were also not designed by the same person. The transformation

from PCM to Java is very comprehensive, while transformations from Java to PCM is
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very minimalistic. That means they only partially complete each other to a bidirectional

transformation, as the PCM to Java transformation covers more model elements. These

di�erences in the three bidirectional transformations are bene�cial for this case study, as

di�erent levels of compatibility allow us to �nd a broader set of issues.

Due to the unique characteristics in the structure of the models, the transformations

deal with di�erent problems. Both unidirectional transformations from UML and Java to

PCM require their source elements to be contained in particular compositions to map those

elements to a PCM element. For example, not every Java or UML package can be mapped

to a repository, system, or component. While the two unidirectional transformations

between the Java and UML models certainly pro�t from the similarities of the two models,

they also need to deal with the atypical structure of the Java model, where a model consists

of multiple model roots, which are packages and compilation units, due to the structure

of the metamodel. This choice of metamodel structure is most likely in�uenced by the

Java language speci�cation [14], where packages are explicitly meant to be independent

of each other, even if the namespaces suggest some sort of containment hierarchy. The

UML model conforms to the more typical tree structure where everything is contained

in a tree with a single root element. Both unidirectional transformations from PCM to

the UML and Java models need to deal with the creation, adaption, or deletion of many

target elements for one source element, as a single PCM element often maps to a large

number of UML and Java element. The reason for this is that the PCM model elements

mostly cover elements on a higher level of abstraction compared to UML and Java. As an

example of this, a single assembly context in the PCM model is mapped to a package, a

class in that package, a �eld in the class, a constructor in the class, and an initialization

statement for the �eld in the constructor.

4.2.4. Test Cases

When keeping multiple models consistent, overlapping information is made explicit with

consistency relations. While these relations de�ne consistency dependencies for single el-

ements, often, multiple elements have particular conceptual commonalities. We, therefore,

de�ne the term concepts as a set of element types which represent the same conceptual

information in their respective metamodel. Therefore, a concept represents overlapping

information, and the model element types of the concepts need to be kept consistent. As

an example, Figure 4.2 shows the assembly context concept. To be speci�c, it shows on

an instance level how the concept is depicted in each model. Note that the concept is not

just the n-ary relation between a single element of each model. It rather contains multiple

elements of each model.

The network of bidirectional transformations is used in di�erent scenarios utilizing 39

�ne-grained test cases that are part of the Vitruvius framework. These test cases were

initially designed to ensure the functionality of the bidirectional transformation between

PCM and UML. Each test case checks the consistency preservation of a pair of model

elements or model concepts (see Table 4.1). They either create a simple UML model or a

simple PCM model. As a preparation step, consistency is restored in the network, which

results in the creation of the two missing models. Then the test cases make some changes

to one of the models, which are the changes that are tested on. After that, consistency
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public class ParentStructure {
    public EncapsulatedComp assembly;
 

    public ParentStructure() {
        assembly = new EncapsulatedComp();
    }
}

public class EncapsulatedComp {

    public ParentStructure() {

    }
}

<<component>>
EncapsulatedComponent

<<component>>
ParentStructure

AssemblyContext
"assembly"

EncapsulatedComponent

assembly

1
ParentStructure

+ ParentStructure()

PCM

UML

Java

Figure 4.2.: Depiction of the assembly context concept on a model instance level. The

assembly context between two components in the PCM model represents the

same information as the UML classes and the relation between them and also

as the Java classes and the �eld that references one class from another.

preservation is executed, which calls di�erent transformations. Finally, the test cases

verify the results on correctness. Additionally, they persist all models, with the Java model

being persisted as regular Java code.

We extended the test cases to verify the Java model additionally. Since the Java and

UML metamodels are very similar, this is done by comparing the UML elements to the Java

elements. Assuming the PCM and UML models are consistent, it is su�cient only to make

this comparison to guarantee consistency across all models. It is important to mention

that these test cases, even with the Java extension, do not cover every possible scenario

and also not every possible change to every possible model element. They only represent

the common changes that one can reasonably expect to be made to those models.

4.3. Process

During the case study, the network of bidirectional transformations is constructed in-

crementally. We start with a single bidirectional transformation and extend it in four

stages to a dense network with redundancy (see Figure 4.3). During each stage, we run

the test cases and additionally inspect their persisted output manually. This ensures

�nding inconsistencies that are not being found by the test cases. Any failures are then

analyzed to trace the fault that caused the failure. We then resolve the fault. That fault is

responsible for causing any failures that now no longer occurs due to the fault being �xed.

The time-consuming part of this process is tracing the underlying faults of the failures

and then manually resolving that fault. We trace the faults by tracking how the initial

changes made in the network of transformations are propagated through the network. We

then back-track from the failure and analyze each transformation that had a part in the

propagation chain until we understand what fault caused the failure. We resolve the fault

by manually improving the a�ected transformations until the fault is �xed. We con�rm

24



4.3. Process

Test Case Group Number of Test Cases

Repository Concept 4

Interface Concept 2

System Concept 2

Composite Data Type Concept 4

Repository Component Concept 2

Assembly Context Concept 2

Parameter Concept 6

Attribute Concept 6

Signature Concept 6

Required Role Concept 3

Provided Role 2

Table 4.1.: Overview of the test case categories and the number of test cases. We used a

total of 39 test cases. The test case categories are divided into the core tests

(upper part) and the additional tests (lower part).

that the fault is resolved by checking if the correlating failures still occur. Finally, we

reconstruct the correlating mistake from the fault by analyzing what missing knowledge

leads to such a fault. The stage-wise execution allows matching the failures to a particular

state of the network. More speci�cally, it allows drawing conclusions on how the network

topology correlates to the number of failures. As a foundation, we used the network that

was used in a previous case study [46, 22]. It consists of the two metamodels PCM and UML,

as well as two unidirectional transformations between them. In this network, there are no

transitive cycles and no bottlenecks. As this network contains only a single bidirectional

transformation, which already satis�es the test cases, no failures can be observed with

this network.

The �rst stage adds the unidirectional transformation from the UML metamodel to

the Java metamodel. In this stage, we observe the �rst failures. The network still has no

transitive cycles, but the newly added transformation is a bottleneck. The second stage

adds the unidirectional transformation from the Java metamodel to the UML metamodel.

The resulting network has a linear topology. In the network, the UML metamodel is a

bottleneck for the other models in both directions (Java to PCM and PCM to Java), but no

transitive cycles exist. The third stage adds the unidirectional transformation from the PCM

metamodel to the Java metamodel. The resulting network is not linear anymore, but not

yet fully connected. It now contains the transitive cycle PCM → Java → UML→ PCM .

The UML metamodel is now only a bottleneck for change propagation from Java to PCM.

The fourth stage adds the unidirectional transformation from the Java metamodel to the

PCM metamodel and therefore completes the network. The resulting network has a fully

connected topology. There are multiple transitive cycles (for example PCM ↔ UML↔
Java ↔ PCM), but no bottlenecks. This network has a high amount of redundancy, as

every pair of incoming transformations for a metamodel have some degree of overlapping

information.
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PCM UML Java
1.

2.

3.

4.

Figure 4.3.: Incremental construction of the network of bidirectional transformations,

starting from the initial network that was already explored in previous case

studies and adding unidirectional transformations step-by-step (1-4) until we

reach the fully-connected network.

Because of the time constraints of this thesis, the last two stages were only conducted

with a subset of the test cases. This subset of 16 out of 39 test cases covers the core

concepts and model elements (see core tests in Table 4.1). Resolving the failures for all test

cases would have taken more time than available, since the troubleshooting, analysis, and

fault-removal is a very time-intensive task. This is the case because the high number of

transformations in the network leads to even simple test cases producing a high number of

change sequences that are propagated through the network. As an example, the creation

of a single element results in the transformation of 25 to 50 change sequences in our

speci�c network. Together these change sequences can include between 30 and 100 atomic

changes. This makes tracing the correlating faults of the failures a task whose complexity

does not scale well with the size and density of the network.

4.4. Encountered Mistakes, Faults, and Failures

In this section, we brie�y discuss the mistakes, faults, and failures found during the case

study and list them in causal chains to shows how mistakes lead to failures. These chains

are created by matching the faults with the failures that no longer appear once the fault

is �xed. The correlating mistake is reconstructed by analyzing the fault. A single chain

can reveal itself through multiple failures, all caused by the same fault. We divide these

problems into their respective stages of the case study and list them in the order of their

occurrence. The number of failures is determined by temporarily removing each �x

correlating to a fault one at a time after all faults of the stage were �xed and checking

how many test cases fail. For the remainder of this thesis, we refer to mistakes, faults,

and failures by number. The number references the correlating causal chain in Table 4.3,

Table 4.4, Table 4.5, and Table 4.6

First Stage In the �rst stage, �ve faults were detected that lead to 11 test case failures (see

Table 4.3). All except one fault in this stage regard the design of single transforma-

tions and not the inconsistencies between transformations. This means the faults

can be avoided with the domain knowledge on the source and target models and

careful transformation design. The last fault is a technical fault that could have been

avoided by carefully implementing the transformation and proper testing.
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Stage Added Transformation Faults Failures

1 TUML→Java 5 11

2 TJava→UML 2 7

3 TPCM→Java 12 55

3 TJava→PCM 10 46

Table 4.2.: Distribution of the faults and failures over the four stages.

Second Stage In the second stage of the case study, only two faults were detected, which

lead to seven test case failures (see Table 4.4). Both faults are technical faults located

in the transformation TJava→UML, which we added to the network for this stage. As

previously mentioned, technical faults can be avoided. The low number of faults

can be explained by the fact that this stage makes no drastic changes to the network.

While the �rst stage added a new model to the network through the addition of a

transformation, this stage only completes the bidirectional transformation between

two models that are already part of the network.

Third Stage In the third stage of the case study, 12 faults were detected, which lead to 55 test

case failures (see Table 4.5). The high number of failures can be explained through the

fact that the three Faults 8, 10, and 11 a�ect model elements that are required for even

the most simple models and therefore are part of many test cases. The high number

of faults can be explained by the fact that this is the �rst time that redundancy

through redundant paths is introduced to the network of transformations. Both

transformationsTPCM→Java andTUML→Java are responsible for creating, changing and

deleting Java elements. The transformation TPCM→Java contains some redundancy

with the chained transformations TPCM→UML and TUML→Java . This is con�rmed by

the faults that occurred at this stage. The majority of them regard the transformation

interaction and not the design of a single transformation or some technical issues.

In this stage, we observe many failures of duplication. They are the manifestations

of the mistake of not considering the external creation of an element by another

transformation.

Fourth Stage In the fourth stage of the case study, ten faults were detected, which lead to

46 test case failures (see Table 4.6). Similar to the previous stage, the high number of

failures can be explained through faults that a�ect model elements that are required

for even the most simple models and therefore are part of many test cases. In total, 32

failures are caused by Faults 20, 21, and 25 alone. This stage is unique, as most faults

are located in multiple transformations at the same time. This could be explained

through the fact that the network is now fully connected, and every transformation

in the network has two other transformations with whom it has some redundancy.

The redundancy also explains, as in the previous stage, the high number of faults.

Again, the majority of faults regard the transformation interaction, and we observe

many failures of duplication.
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When comparing the di�erent stages, we observe an increased number of failures in the

last two stages. Additionally, when tracing the faults that caused the failures, we observed

an increased number of faults. The number of faults and failures per stage can be seen in

Table 4.2. In total, 84.9% of the failures occurred in the last two stages. This makes sense,

as these two stages introduce the redundant paths to the network, and therefore create

redundancy-based cycles.
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No. Description Location Failures

1 Mistake: Incautious implementation

Fault: Incorrect UML package deletion order (parent before child)

Failure: Java child packages not deleted

TPCM→UML 1

2 Mistake: Overlooked intra-model dependency

Fault: Java child packages not renamed with parent

Failure: Invalid namespace of Java child packages

TUML→Java 2

3 Mistake: Overlooked relevant source model change

Fault: Java parameters not created on UML parameter direction change

Failure: Missing Java parameters (not created)

TUML→Java 4

4 Mistake: Overlooked relevant source model change

Fault: Java types not updated when UML multiplicity changed

Failure: Java parameter/return type is not a collection type

TUML→Java 2

5 Mistake: Overlooked intra-model dependency

Fault: Java classes not updated when compilation unit inserted or moved

Failure: UML classes located outside of their expected package

TUML→Java 2

Table 4.3.: Overview of the mistakes, faults, and failures encountered in the �rst stage of

the case study. Contains a description of the mistake-fault-failure causal chain,

the location which is the a�ected bidirectional transformations, and the number

of failures in the 39 test cases.

No. Description Location Failures

6 Mistake: Incautious implementation

Fault: Correlating UML class is deleted when Java compilation unit is removed

from its container

Failure: Java classes are missing

TJava→UML 6

7 Mistake: Overlooked edge case (incautious implementation)

Fault: Empty segment of package path not considered when renaming UML class

for Java class

Failure: Java package renamed to name of its child package

TJava→UML 1

Table 4.4.: Overview of the mistakes, faults, and failures encountered in the second stage

of the case study. Contains a description of the mistake-fault-failure causal

chain, the location which is the a�ected bidirectional transformations, and the

number of failures in the 39 test cases.
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No. Description Location Failures

8 Mistake: Overlooked di�erences in naming schemes

Fault: Java package name starting with lowercase not enforced

Failure: Duplicate Java package with di�erent spelling (co-existence)

TPCM→Java 13

9 Mistake: Overlooked relevant source model change

Fault: Java packages mistakenly created for unnamed repositories

Failure: Java packages misplaced (namespace of parent)

Note: This fault alone technically causes no failures, since �xes for other faults cover this fault as well

TPCM→Java 0

10 Mistake: Inability to predict transitive consequences

Fault: Di�erence in managing UML root models

Failure: Duplicate creation of root models (co-existence)

TPCM→UML 14

11 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of UML packages (co-existence)

TJava→UML 12

12 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of UML interfaces (co-existence)

TJava→UML 2

13 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Compilation unit not renamed due to duplicate creation (overwriting)

TPCM→Java 1

14 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Java package not properly deleted due to duplicate creation (overwriting)

TPCM↔UML
TUML↔Java

1

15 Mistake: Incautious implementation

Fault: Unescaped dots in regular expressions

Failure: UML model element names are shortened or mutilated

TPCM→Java 1

16 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of UML and Java types (overwriting)

TJava↔UML
TPCM→Java

6

17 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of Java package (co-existence)

TPCM→Java 1

18 Mistake: Overlooked di�erences in naming schemes

Fault: Java package name starting with lowercase not enforced

Failure: Duplicate creation of Java package (co-existence)

TPCM→Java 1

19 Mistake: Inability to predict transitive consequences

Fault: Di�erence in managing UML root models

Failure: Duplicate creation of UML root models (co-existence)

TPCM→Java 2

Table 4.5.: Overview of the mistakes, faults, and failures encountered in the third stage of

the case study. Contains a description of the mistake-fault-failure causal chain,

the location which is the a�ected bidirectional transformations, and the number

of failures in the 16 test cases.
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4.4. Encountered Mistakes, Faults, and Failures

No. Description Location Failures

20 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of PCM repositories (co-existence)

TPCM↔UML
TUML↔Java

14

21 Mistake: Inability to predict transitive consequences

Fault: PCM repository naming schemes not consistent

Failure: Duplicate PCM repositories with di�erent spelling (co-existence)

TUML→PCM
TJava→PCM

7

22 Mistake: Incautious implementation

Fault: Null as possible Java package name not considered

Failure: Crashes due to null as Java package name

TJava→PCM 4

23 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of PCM operation interface (co-existence)

TUML→PCM
TJava→PCM

1

24 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of PCM systems (co-existence)

TPCM↔UML
TUML↔Java

1

25 Mistake: Not considering transitive scenarios at all

Fault: Not limiting renaming to speci�c pairs of model elements

Failure: Incorrect and invalid renaming, endlessly looping name change propa-

gation

TJava→PCM 11

26 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of PCM components (co-existence)

TUML→PCM
TJava↔PCM

4

27 Mistake: Overlooked di�erences in naming schemes

Fault: Java and UML package and constructor names starting with lowercase not

enforced

Failure: Duplicate creation of PCM components with di�erent spelling (co-

existence)

TPCM→UML
TPCM→Java

1

28 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of PCM systems (co-existence)

TPCM↔Java 1

29 Mistake: Not considering transitive scenarios at all

Fault: Possibility of external creation by other transformation not considered

Failure: Duplicate creation of PCM assembly contexts and correlating elements

(co-existence and overwriting)

TPCM↔UML
TUML↔Java
TPCM↔Java

2

Table 4.6.: Overview of the mistakes, faults, and failures encountered in the fourth stage

of the case study. Contains a description of the mistake-fault-failure causal

chain, the location which is the a�ected bidirectional transformations, and the

number of failures in the 16 test cases.
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5. Result Classification and Analysis

This chapter analyzes the encountered mistakes, faults, and failures listed in the previous

chapter. We use them to derive the classi�cation regarding avoidability and sort the

mistakes, faults, and failures into their respective classes. We also reason about the

connections of mistakes, faults, and failures. Finally, we compare the classi�cation and the

analysis with previous work. For a detailed list of all mistakes, faults, and failures we refer

to Table 4.3, Table 4.4, Table 4.5, and Table 4.6. First, section 5.1 discusses the di�erent

classi�cations for the encountered mistakes, faults, and failures and, therefore, directly

addresses Research Question 2. We illustrate how these classi�cations were constructed,

and which conclusions can be drawn from the distribution of mistakes, faults, and failures

over the classes. Second, section 5.2 analyzes the causal chains of mistakes, faults, and

failures. It is meant to �nd the connections between the di�erent mistakes, faults, and

failures. Next, section 5.3 compares the results and the classi�cations of this case study

with previous work. Additionally, it classi�es the mistakes, faults, and failures according

to the classi�cations proposed by previous work. This answers Research Question 6, which

asks about the similarities and di�erences to previous work. Last, section 5.4 explains

which measurements were taken to ensure the correctness and completeness of our results.

5.1. Classification

This section discusses several classi�cations for the mistakes, faults, and failures observed

in this case study to answers Research Question 2. There are several reasons to develop

such a classi�cation. First, we are trying to understand what kind of mistakes, faults, and

failures arise during multi-model consistency preservation through networks bidirectional

transformations. Second, we want to understand how these di�erent types of mistakes,

faults, and failures are connected. Third, we need this classi�cation to answer Research
Question 3 regarding the prevention by constructions, Research Question 4 regarding the

unpreventable mistakes, and Research Question 5 regarding the e�ects of redundancy in

networks of bidirectional transformations. We propose a high-level categorization and

detailed classes for mistakes, faults, and failures separately. For all classi�cations, we

discuss how they were constructed, and which conclusions can be drawn from them. We

also list the number of failures for each category and class. In this section, we �rst classify

the failures regarding the model state and analyze their distribution over the three models.

Second, we classify the faults regarding their scope and inspect in which transformations

they are commonly located. Third, we classify the mistakes by the knowledge required to

prevent them and analyze which mistakes can be prevented in the �rst place.
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5. Result Classi�cation and Analysis

Model Failures Failures by Fault

PCM 42 9

UML 59 11

Java 50 14

All 119 29

Table 5.1.: Distribution of the failures over the three models. Note that a single failure can

occur in multiple models at once due to the change propagation. Failures by

fault counts all failures caused by a fault as a single occurrence.

5.1.1. Classification of Failures

During this case study, a total of 119 failures were detected. While most of these failures

only appear in one model, a few appeared in multiple models during a single test execution.

As seen in Table 5.1, the most failures appeared in the UML model, while the least failures

appeared in the PCM model. When counting all failures caused by the same fault as a

single occurrence, the Java model shows the most occurrences.

To construct a classi�cation for the failures, we look at the model state after a failure

occurs, which describes how the failure a�ected the models in the network. Naturally,

we can derive three categories, which are listed in Table 5.2. Either there were too

many elements, too few elements, or the elements have incorrect properties. These three

categories can be divided further into classes by looking at how the model state is reached.

The category of too many elements contains the two classes: Duplicate element creation

and missing element deletion. Duplicate element creation means the element is created

twice by di�erent transformations. This includes in this case study, as mentioned as in

section 4.4, primarily duplicate creation with co-existence, and duplicate creation with

overwriting. The latter mainly shows itself through other failures. The class of missing

deletions summarizes all failures where the element was either not deleted at all or just

partly deleted. The model state category of incorrect elements contains the encountered

classes of incorrectly named elements, misplaced elements, and elements with the wrong

type. The class of incorrect names summarizes all name-related problems, such as renaming

the wrong elements, enforcing an incorrect naming scheme, or empty names. The class of

misplaced elements contains all failures where either a model element was misplaced in the

model structure or a root element was persisted in the wrong location. As a third option,

both could be the case at the same time. The class of wrong element type groups failures

where an element created by a transformation was not of the expected element type. As

an example, it could be an instance of the wrong subclass, like an interface method instead

of a class method. The model state category of too few elements contains the classes of

unwanted deletions of elements and missing creation of elements. Unwanted deletion

means an element was deleted that was not supposed to be deleted. Missing creation is the

opposite of that, as it means the element was supposed to be created but was not created.

Table 5.2 shows that most of the failures in this case study are duplicate element creations.

In total, 68.9% of all failures are duplicate element creations. Even when counting all

failures of a single fault as one occurrence, duplicate creation accounts for half of the
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5.1. Classi�cation

Model State Failures Failure Class Failures Failures by Fault

Too Many Elements 84

Duplicate Creation 82 16

Missing Deletion 2 2

Incorrect Elements 25

Incorrect Name 20 6

Misplaced Elements 3 2

Wrong Element Type 2 1

Too Few Elements 10

Unwanted Deletion 6 1

Missing Creation 4 1

Table 5.2.: Distribution of the failures over the failure classes. Failures by fault counts all

failures caused by a fault as a single occurrence.

occurrences. The second most occurring class is incorrect naming, which accounts for

16.8% of all failures and 20.7% when counting failures of a fault as one occurrence. This

could be explained by the importance of names in these models. As not all models use

unique identi�cation numbers, elements are often located by their name and containment.

For example, because Java models contain multiple root elements, compilation units are

identi�ed like this. The remaining classes only account for a small percentage of the

failures.

The previously mentioned failure classes are only those we encountered. In this case

study, there are potentially many more. We identi�ed three additional classes by adding

opposites and similar classes of the existing classes. Table 5.3 shows the completed

classi�cation. The class of unwanted creation is the opposite of missing creation. It

describes the case where an element is created and inserted into one of the models but

should not exist at all. This could potentially appear when the matching by a transformation

is accidentally used by the correlating backward transformation to create an element that

should not exist. The class of duplicate deletion is the opposite of duplicate creation.

It describes the case where a transformation is trying to delete an element that does

not exist anymore. The class of incorrect (non-name) properties completes the class of

incorrect names. It describes the case where a property of a model element is incorrect.

This case excludes names. We argue that the separation of incorrect name properties and

incorrect non-name properties makes sense because names are frequently used for element

identi�cation and therefore play a particular role during the consistency preservation.

Identifying naming-related failures is essential because identi�cation-related properties

seem to be often caused by di�erent faults, which are also manifestations of di�erent

mistakes. Still, both classes could be merged into the sole class of incorrect properties.

We argue that these classes are complete for metamodels as those used in our case study.

This means, more speci�cally, metamodels according to the essential meta object facility

(EMOF) [15]. This is based on the following assumptions: When considering how a model

can be changed, we can argue changes are either element additions, element deletions, or

element adaptions, meaning a property or relations changes. According to EMOF, there
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5. Result Classi�cation and Analysis

Model State Failure Class

Too Many Elements

Duplicate Creation

Missing Deletion

Unwanted Creation

Incorrect Elements

Incorrect Name

Incorrect (Non-Name) Property

Misplaced Elements

Wrong Element Type

Too Few Elements

Duplicate Deletion

Unwanted Deletion

Missing Creation

Table 5.3.: Extended classi�cation of the failures. The failure classes can be grouped

according to the model state. The added classes are unwanted creation, incorrect

(non-name) property, and duplicate deletion.

are packages, classes, and data types. These are the model elements we are categorizing

according to the model state. Too many model elements can only occur for three reasons:

A missing deletion, an unwanted creation, or a duplicate creation. Technically, duplicate

creation is a special case of unwanted creation. Too few model elements, again, can

only occur for three reasons: A missing creation, an unwanted deletion, or a duplicate

deletion. As before, a duplicate deletion is technically a special case of unwanted deletion.

If there are incorrect model elements, there is only a limited number of aspects that can

be incorrect, namely those de�ned by EMOF. First, properties can be incorrect, which

we covered with two classes, one for names and one for other properties. The latter also

covers non-containment relations, which can be seen as properties. Misplaced elements

cover incorrect containment relations. Second, the class of wrong element types, which is

the case when a model element is contained where it would be expected, but it technically

has the wrong type. To summarize this argument, we covered combinations of all types of

changes and all aspects de�ned by EMOF.

5.1.2. Classification of Faults

During this case study, 29 faults were discovered by analyzing the underlying cause of the

mistakes. As previously mentioned, multiple failures can be caused by one fault. While

we utilized these faults in Table 5.1 and Table 5.2 to count failures as singular occurrences,

namely failures by fault, we did not look at the faults themselves. Some faults, for example

Faults 8, 9, and 10, are only located in a single transformation. Others, such as Fault 20
and 21, are located in multiple transformations at once. An extreme case of multiple

locations is Fault 29, which appears in every single unidirectional transformation. It

is the missing existence check for assembly context elements and correlating elements.

To be speci�c, these elements may only be created if no other transformation created a

semantically identical element yet in the same model. In this case study, only the faults

36



5.1. Classi�cation

Bidir. Transformation Faults

TPCM↔UML 14

TUML↔Java 15

TPCM↔Java 22

Table 5.4.: Distribution of the 29 faults over the model transformations. Note that a fault

can be located in multiple transformations at once.

Fault Scope Faults Fault Class Faults

Technical 5 Technical Fault 5

Transformation-Internal 6

Missing Change Propagation 4

Unwanted Change Propagation 2

Transformation Interaction 18

Creation Con�ict 12

Naming Con�ict 4

Root Element Management 2

Table 5.5.: Distribution of the faults over the fault classes.

regarding transformation interaction are located in multiple transformations at once.

Transformation interaction means the fault is based on how chained transformations

propagate changes through networks of bidirectional transformations. The distribution

of the faults over the di�erent transformations is listed in Table 5.4. It shows that the

bidirectional transformation between PCM and Java contains most of the faults. 22 of

the 29 faults are located in this bidirectional transformation. For this transformation,

both unidirectional transformations that form the backward and forward transformations

were written by di�erent people without each other in mind. Thus, these unidirectional

transformations are not entirely compatible. Over the bidirectional transformations the

faults appear to be evenly distributed in both unidirectional transformations, therefore we

limit Table 5.4 to the bidirectional transformations.

To classify the faults, we �rst separate the technical faults from the non-technical faults.

Technical faults are faults that are introduced during the implementation of transfor-

mations. These faults are not connected to misunderstanding how elements should be

transformed from the source to the target model. Instead, they stem from the incorrect

usage of the transformation de�nition language, which is the Reactions language in this

case study. These faults are the counterpart of programming errors in classical software

engineering. While technical faults are less interesting in regards to issues in networks of

bidirectional transformations, they are still important to acknowledge as they show the

importance of careful implementation, especially in regard to unexpected edge cases. In

this case study, 5 out of 29 faults are technical faults.

The remaining 24 faults can be divided further based on their scope into transformation-

internal faults and faults regarding transformation interaction. Transformation-internal
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5. Result Classi�cation and Analysis

faults can be explained in the scope of a transformation, which means the fault is inde-

pendent of other transformations and can, therefore, be �xed without touching any other

transformation. In this case study, we found transformation-internal faults where a change

in the source model was not propagated to the target model and transformation-internal

where a change in the source model was erroneously propagated to the target model.

Transformation interaction faults can only be explained at the network level because multi-

ple transformations are con�icting. It is essential to mention that this includes interactions

of the two unidirectional transformations that form a bidirectional transformation. In

this case study, this includes creation con�icts between transformations, naming con�icts

between transformations, and mismatching root element management between transfor-

mations. As an example, a creation con�ict fault is not checking for external creation

by another transformation during the element creation. An example of a mismatching

root element fault is when one transformation assumes the root element has a �xed lo-

cation, while another transformation asks the user for the location and then tracks it

by matching it with a correlating source element. These di�erences in the root element

management lead to failures. An example of a naming con�ict fault is not enforcing the

correct naming scheme when transforming from a source element to a target element. All

three examples can cause failures of duplicate model element creation. This separation

between transformation-internal and interaction-related faults is con�rmed by the fact

that the faults classi�ed as faults regarding transformation interaction are the only ones

that are located in multiple transformations at once. In contrast, all faults classi�ed as

transformation-internal in this case study, are only located in a single transformation. Out

of the 24 non-technical faults, only six are transformation-internal faults, and the other 18

are faults regarding transformation interaction. This classi�cation shows that the majority

of faults in this case study regard the interaction of transformations. It also shows that

creation con�icts between transformations, namely duplicate element creation, are the

most common faults that appeared. To be more speci�c, the fault of duplicate element

creation is the manifestation of not considering the possibility of the external creation of a

model element by another transformation. These creation con�icts account for 41,3% of

all faults. This illustrates the importance of avoiding these creation con�icts by design.

5.1.3. Classification of Mistakes

Since we are interested in the prevention of mistakes during the construction of the

transformations, we classify the mistakes according to the knowledge scope that is required

to prevent them or to �x the correlating faults in the transformations. This classi�cation

is depicted in Table 5.6. Similarly to the classi�cation of faults (see Table 5.5), the mistakes

can be divided into technical and non-technical mistakes. Technical mistakes require

no knowledge about the models or the transformations to prevent them. They might

require some knowledge of the transformation speci�cation language, but besides that, any

person with some programming experience could be able to spot and �x the correlating

faults. Five out of the 29 mistakes are technical mistakes, which are classi�ed as incautious

implementation. They directly correlate to the �ve technical faults. The remaining 24

mistakes can be further classi�ed: Mistakes that require knowledge of a single bidirectional

transformation and mistakes that require knowledge of the network of bidirectional
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5.1. Classi�cation

Mistake Knowledge Mistakes Mistake Class Mistakes

Technical 5 Incautious Implementation 5

Transformation 8

Unconsidered Source Model Change 3

Unconsidered Naming Scheme 3

Unconsidered Intra-Model Dependency 2

Network 16

Not Considering Transitive Consequences 13

Inability to Predict Transitive Consequences 3

Table 5.6.: Distribution of the mistakes over the mistake classes.

transformations. Knowledge of the bidirectional transformation means knowing the

structure and the use of the models and knowing how to transform between the models.

Knowledge of the network of bidirectional transformations means at least knowing about

the possibility of a network of bidirectional transformations but might also contain detailed

knowledge about how the network is constructed and how changes are propagated in the

network. This case study encountered eight mistakes that only require transformation

knowledge and 16 mistakes that require network knowledge.

The eight mistakes that require transformation knowledge can be classi�ed into the

following three classes. First, unconsidered source model changes, which means a change

to the source model was not transformed into a change to the target model. Second,

unconsidered naming schemes, which are mistakes where the naming schemes of the

source and target elements are not considered when transforming names between two

mapped elements. Last, unconsidered intra-model dependency, which means a change

to one element should be accompanied by a change to another element, as the second

element depends in some way on the �rst. For the class of intra-model dependencies,

however, it is essential to mention that this should not be the responsibility of the model

transformation, but instead of the model itself. Nevertheless, we count it here as a class,

since in our case study, the transformation failed to achieve what was expected of it.

The 16 mistakes that require some sort of network knowledge can be classi�ed into

the following two mistake classes. The �rst one is the class of not considering transitive

consequences, which contains 13 of the 16 mistakes. The second one, containing the other

four mistakes, is the class of the inability to predict the transitive consequences. This

categorization shows that 55.2% of all mistakes and 66.7% of all non-technical mistakes

require some sort of network knowledge. This highlights the importance of considering

networks of transformations and transitive change propagation during the construction

of any model transformation.

While every mistake encountered in this case study can be �xed later on, not every

mistake can be prevented during the construction of the transformations. Using the cat-

egorization regarding the knowledge, we can derive information about if and how the

mistakes can be prevented. All technical mistakes can be prevented by de�nition. The only

requirement for that is technical knowledge, such as being pro�cient in the language used

to design the transformations. Moreover, all encountered mistakes regarding transforma-
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5. Result Classi�cation and Analysis

tion knowledge can also be prevented, assuming the availability of expertise regarding

the source and target domain. Out of the 16 encountered mistakes regarding network

knowledge, only three cannot be prevented during the construction of the transforma-

tions. The other mistakes can be prevented, as they only require the knowledge that the

transformation is going to be used in a network of transformations. With this knowledge,

precautions can be made that avoid these mistakes. The three unpreventable mistakes

are Mistake 10 and 18 as well as Mistake 21. Even when knowing that the transformations

are supposed to be used in a network of transformations, preventing would both require

detailed knowledge about the network structure as well as insight in the interaction of

the transformations and the change propagation. These issues are discussed in detail in

section 6.2. To summarize, this means 18.8% of the mistakes of this case study that require

network knowledge are not preventable, but only 10.3% of all encountered mistakes in

this case study are not preventable.

5.2. Analysing the Causal Chain

The previous section proposed classi�cations for mistakes, faults, and failures. This section

analyzes their correlation and the correlation of their high-level categories, namely the

mistake knowledge scope, the fault scope, and the failure model state. During the case

study, we encountered failures caused by faults that are manifestations of mistakes. These

causal chains o�er insight into the connections between mistakes, faults, and failures.

We extracted the connections from the encountered problems (see section 4.4) for the

categories introduced in the previous sections. These connections are listed in Table 5.7.

Each column, therefore, matches one of the classi�cation tables. In the following, we

summarize the di�erent categories of each column. The mistake column, which is taken

from Table 5.6, represents the knowledge that led to the mistake. It also is the knowledge

required to �x and, if possible, prevent the mistake and the fault that caused it. "Technical

knowledge" means the required knowledge regards the tools and the framework, such as

the transformation language. "Transformation knowledge" means only knowledge about

the source and target model and how to transform between them is required. "Network

knowledge" means at least the knowledge of the possibility of a network of transformation

with transitive change propagation is required. However, this can also include detailed

knowledge about the network topology and how changes are propagated in the network.

The fault column, which is taken from Table 5.5, contains the scope in which the fault

manifests itself. "Technical" means the fault would have been avoided if the same func-

tionality of the transformations would have been implemented correctly. "Transformation-

internal" means the fault a�ects only the internal behavior of a single transformation. In

contrast, "Transformation interaction" means the fault a�ects how di�erent transforma-

tions interact in the network. The failure column, which is taken from Table 5.2, shows

what in what model states the failure results in. The possible states are too many elements

in the models, too few elements in the models, and elements with incorrect properties.

As expected, mistakes based on the lack of technical knowledge only manifest themselves

in technical faults. These faults, however, can cause any failure. This correlation is not

as interesting for networks of bidirectional transformations or multi-model consistency
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Mistake (Knowledge) Fault (Scope) Failure (Model Elements)

Technical Technical Too Few

Transformation Transformation-Internal Incorrect

Network Transformation Interaction Too Many

Table 5.7.: Depiction of the connections between the mistake, fault, and failure categories

abstracted from the failure chains listed in section 4.4. The failure chains are

extracted from the case study by �nding the causing faults of failures and then

inferring the mistake that manifest in the fault.

preservation in general. However, it is noteworthy that despite the reduced complexity

of the domain-speci�c language used for the transformation de�nition, technical issues

still arise frequently. When analyzing the technical mistakes and faults in detail, it is

apparent that about half of them regard edge cases, such as edge case values for attributes.

This is similar to the transformation-internal faults and can be explained with the fact

that the transitive scenario produces model states that are not expected or not intended.

An example of this are elements that were not intended or expected to exist without a

name being set. This is the case for technical faults Fault 7 and Fault 22 a well as the

transformation-internal Fault 9.

Interestingly enough, the connection for the other two categories of mistakes and faults

is not as linear (see bottom left of Table 5.7). This means that most mistakes based on

transformation knowledge manifest themselves in transformation-internal faults and most

mistakes based on network knowledge themselves in faults regarding the transformation

interaction. However, this is not always the case. For one, mistakes based on transformation

knowledge can lead to faults regarding the transformation interaction. This occurred in

our case study in three causal chains: Causal Chain 8, Causal Chain 18, and Causal Chain
27 . Semantically, such a chain means that while preventing the mistake by construction

only requires knowledge about the bidirectional transformation and consequentially its

source and target domain, the scope of the fault is the transformation interaction. This

can be described as amplifying the mistake through the complexity of the transitive

scenario. For another, mistakes based on network knowledge can manifest themselves in

transformation-internal faults. This occurred in Causal Chain 25. Semantically, it means

that while the fault is limited to the internals of a single transformation, preventing the

mistake by construction still requires some knowledge of the network of transformations

and transitive change propagation. In the case of Causal Chain 25, it is su�cient to know

that the transformation is used in a network of bidirectional transformations.

The correlation between the fault scope and the failure model state is less informative.

All fault categories can potentially lead to any failure. Generally, there is no pattern to

be found for the correlation of the fault categories and the failure categories. Similar

to the correlation of the categories in Table 5.7, we also analyzed the correlation of the

classes introduced in the previous sections. This o�ers a less abstract view on the causal

chains. These �ne-grained class correlations are listed in Table 5.8. They lead to the

same conclusions and, therefore, con�rm the previous results. An additional connection

that can be seen in Table 5.7 is the tendency of mistakes relating to network knowledge
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Mistake Class Fault Class Failure Class

Incautious Implementation Technical Fault Unwanted Deletion

Missing Creation

Unconsidered Source Model Change Missing Change Propagation Misplaced Elements

Unconsidered Intra-Model Dependency Unwanted Change Propagation Incorrect Name

Unconsidered Naming Scheme Wrong Element Type

Element Creation Con�ict

Not Considering Trans. Consequences Element Naming Con�ict Missing Deletion

Inability to Predict Trans. Consequences Root Element Management Duplicate Creation

Table 5.8.: Connections between the mistake, fault, and failure classes abstracted from the

failure chains listed in section 4.4. The classes are grouped by their respective

categories (see Table 5.7).

causing failures that create too many elements rather than too few elements and the

tendency of mistakes relating to transformation knowledge to cause failures that result in

incorrect model elements. However, these two tendencies might also just be the result of

over-interpretation.

5.3. Comparison with Previous Work

This thesis builds on a previous case study, whose results are published by Syma [46] and

Klare et al. [22]. They conduct a similar case study regarding networks of bidirectional

transformations. The previous case study uses the same framework for consistency

preservation, and their network uses the same models. However, they only build a network

with linear topology using the transformations TPCM↔UML and TUML↔Java . This means

their network only contains transformation-internal cycles and no redundancy-based

cycles. It also does not contain any redundancy. In the linear network, the UML model is

a bottleneck and therefore de�nes what changes can be propagated between PCM and

Java. As an example, implementation details of methods cannot be shared between PCM

and Java because UML only models the signatures of operations. The linear network is

identical to the network of this case study at the second stage (see section 4.3). For a more

detailed description of all contributions made by these publications, see chapter 8.

This section compares the results and classi�cations of our case study with the previous

case study. Additionally, we classify the observed mistakes, faults, and failures according

to the classi�cations proposed by Klare et al. Therefore, this section directly addresses

Research Question 6, which asks about the di�erences compared to previous work. We

compare our case studies to validate both their results and our results. We mainly reference

Klare et al. [22], as this work builds on Syma [46] and o�ers a more comprehensive

classi�cation.

Klare et al. propose the concept of three consistency speci�cation levels at which a

consistency preservation mechanism can be conceptually de�ned. These three levels are:

1. Global: Knowledge about the n-ary relations between all models in a network.

2. Modularization: Separation into binary consistency relations between model pairs.
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Failure Type by Klare et al. Failures Failures by Fault

Duplication 82 16

Inconsistent Termination 26 12

Non-Termination 11 1

Table 5.9.: Distribution of the failures observed in this case study over the failure types

identi�ed by Klare et al. [22]

3. Operationalization: Transitive change propagation or con�uence of information in

the network.

Our case study proposes categories for the knowledge scope of mistakes (see Table 5.6),

which di�er from the consistency speci�cation levels as the categories are only meant for

classifying mistakes and faults. The consistency speci�cation levels by Klare et al. are

meant as conceptual levels for the entire process of specifying consistency between more

than two models.

Klare et al. identify di�erent failure types that classify failures depending on how

the failure leads to the termination of consistency preservation. These failure types are

resulting in a inconsistent termination (deterministic or non-deterministic), non-termination
(diverging or alternating loops), and duplication (instantiation or insertion). In this thesis, we

categorized the failures according to the model state after the termination of the consistency

preservation. We identi�ed the categories too many elements, too few elements, and

incorrect elements (see Table 5.3). We listed the failures observed in this case study

grouped by type according to the failure types by Klare et al. in Table 5.9. Most of the

failures fall into the failure type duplication, as this is basically the same class as duplicate

creation in our failure classi�cation (see Table 5.2). All of them are multiple instantiations.

We encounter non-termination only once with Failure 25, which results in a diverging

loop. However, during the development of some �xes for the encountered faults, we

produced non-termination a few times ourselves. The low number of non-terminations

can be explained by the fact that networks of bidirectional transformations are susceptible

to small deviations, and therefore, most loops lead to the change propagation crashing

after a few iterations. All other failures encountered in this case study fall into the class of

inconsistent termination, with some being deterministic and some being indeterministic.

Klare et al. identify four di�erent fault types based on the state of the consistency spec-

i�cation. They identi�ed the types missing consistency constraint, additional consistency
constraint, contradicting consistency constraint, and missing element matching. This thesis

identi�ed six fault classes in Table 5.5. Comparing them to the fault types by Klare et al. is

not entirely possible, as they classify faults on di�erent levels. Our classi�cation for faults

is on a conceptual level closer to the failures, while their classi�cation is closer to the mis-

takes. However, with this in mind, we can still describe some connections between the two

classi�cations. In our classi�cation, we explicitly listed technical faults. In the case study

of Klare et al., technical faults are not listed as they operate under the assumption that

each transformation is on its own correctly implemented. Our category of transformation-

internal faults contains two classes: Missing change propagation and unwanted change
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Fault Type by Klare et al. Faults Fault Class

Missing Element Matching 14 Creation Con�ict, Root Management

Contradicting Consistency Constraint 4 Naming Con�ict

Missing Consistency Constraint 4 Missing Change Propagation

Additional Consistency Constraint 2 Unwanted Change Propagation

Table 5.10.: Distribution of the faults encountered in this case study over the fault types

identi�ed by Klare et al. [22]. The corresponding fault classes from Table 5.5

are listed as well.

propagation. Missing change propagation can be connected to the fault type of missing

constraints. Klare et al. Similarly, unwanted change propagation can be connected to the

fault type of additional constraints. This is the case because the consistency constraints

according to the de�nition of Klare et al. translate to the requirements that are ful�lled by

the change propagation of a transformation. Our category of transformation-interaction

related faults contains three classes: Naming con�icts, creation con�icts, and root element

management. Naming con�icts are contradicting constraints, as for a naming con�ict fault,

the constraints regarding name transformations of two transformations are contradicting.

Both creation con�ict faults and root element management faults can be seen as faults

of the fault type missing matching by Klare et al. In both cases, an additional matching

would �x the fault. For the creation con�ict fault, the matching is missing between the

source element for the element to be created and the con�icting element of the element to

be created. For the root management fault, the matching is missing for the di�erent root

elements. We listed faults according to the fault types by Klare et al. in Table 5.10. By far,

the most failures fall into the fault type missing element matching, as this fault type is

the one that contains the faults that did not check on the existence of elements that could

have been created externally. These faults were the most common ones in this case study.

Note that the �ve technical faults are not listed.

As already mentioned, Klare et al. identify di�erent mistake types based on the three

consistency speci�cation levels. On the global level, they di�erentiate between incomplete

and incorrect system knowledge. For the modularization level, they di�erentiate between

incomplete and contradicting modular knowledge. For the operationalization knowledge,

they only list unknown connection of modular speci�cations. Comparing our fault classes

to the fault types by Klare et al. is even more di�cult than for the faults. While both

our and their mistake classi�cation are based on the knowledge regarding the mistake,

the classi�cation by Klare et al. is, again, based on more assumptions. Our classi�cation

is based on bidirectional transformations and, therefore, not meant for n-ary relations,

while the global level de�ned by Klare et al. explicitly captures these n-ary consistency

relations. Furthermore, the modularization level depends on the global level and therefore

represents the same relations, but this time decomposed as binary relations. With these

di�erences in mind, we can make some connections between the two classi�cations. In

our classi�cation, we explicitly listed technical mistakes. In the case study of Klare et

al., technical mistakes are similar to technical faults, not listed as they operate under the

assumption that each transformation is on its own correctly implemented. However, they
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Level Mistake Type by Klare et al. Mistakes

1

Incomplete System Knowledge 0

Incorrect System Knowledge 0

2

Incomplete Modular Knowledge 0

Contradicting Modular Knowledge 3

3 Unknown Connection of Modular Speci�cations 13

Table 5.11.: Distribution of the mistakes encountered in this case study over the mistake

types identi�ed by Klare et al. [22].

even base their classi�cation on the assumption that a bidirectional transformations is

non-con�icting, which means the transformation rules are correctly designed. We did

not make these assumptions, and therefore we included the transformation knowledge

mistakes. Consequentially, these mistakes cannot be classi�ed according to Klare et

al. The remaining mistake category is the category of network knowledge mistakes. It

contains two mistake classes: Not being able to predict transitive consequences and not

considering transitive consequences at all. The mistakes of not considering transitive

consequences at all regards the operationalization level and, thus, can be connected to

the mistake type of unknown connection of modular knowledge. The mistakes of not

being able to predict transitive consequences mean there must be some problem on the

modularization level and, therefore, can be connected to the mistake type of contradicting

modular knowledge. This distribution of the mistakes encountered in our case study

according to the classi�cation by Klare et al. is depicted in Table 5.11. It shows that most

of the mistakes that were not excluded by de�nition fall into the third level, which is the

operationalization level. They are classi�ed as mistakes due to the unknown connection of

modular Speci�cations. Three mistakes, however, fall into the modularization level. These

are the three unpreventable mistakes. Consequentially, these results suggest that we can

expect the majority of mistakes to be made on the operationalization level.

To summarize, we now discuss the main di�erences between the results of this thesis

and the case study results of Klare et al. [22]. While Klare et al. take a broader look

at issues in networks of bidirectional transformations, this thesis mainly looks at issues

at the scope of the operationalization level. Both classi�cations share similarities, espe-

cially for the fault classi�cations. A big di�erence is that Klare et al. exclude technical

mistakes and faults by de�nition. However, there is not much insight gained from these

technical-implementational mistakes and faults. Additionally, Klare et al. also exclude

transformation-internal faults by de�nition, as they base their work on the assumption

that each bidirectional transformation is itself correctly designed. We were able to classify

all mistakes, faults, and failures that were not excluded by de�nition into the classi�cation

by Klare et al. This means we are not able to �nd mistakes, faults, or failures that we

could not classify according to the classi�cations by Klare et al. Consequentially, we can

con�rm that their case study proposes a complete and correct classi�cation which ful�lls

its purpose. Similarly, their results also con�rm our classi�cation due to the similarity of

both classi�cations. The most signi�cant di�erence lies in the classi�cation of failures, as
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Termination Type

Endless Creation LoopLoop with Missing Element Property Changing Loop

Incorrect Property,
Misplaced Elements,

Wrong Element Type,
Multiple Insertion

Multiple Instantiation,
Unwanted Creation,

Missing Deletion

Too Few Elements Incorrect Elements Too Many Elements 

Inconsistent 
Termination

Non-
Termination

Unwanted Deletion,
Missing Creation,
Duplicate Deletion

Model State

Figure 5.1.: Hybrid failure classi�cation based on both the termination type and the model

state. It combines our classi�cation in Table 5.3 with the classi�cation proposed

by Klare et al.

diverging properties are used for the classi�cation. Klare et al. classify failures according

to how the change propagation terminates, meaning which type of termination, while

this thesis classi�es them according to the resulting models and the di�erences in their

elements after the termination. We argue that either one of the dimensions alone is not

enough. Klare et al. distinguish in the classi�cation of failures between termination that

results in an inconsistent state and termination that results in duplications. However,

we argue that duplications in models a subset of the class inconsistent state, as there are

either multiple elements that should represent the same element or multiple references the

represent the same relation. Since termination with duplications is part of the category of

termination that results in an inconsistent state, these categories can be combined, leaving

only the two categories of non-termination and termination with an inconsistent state.

This reduced classi�cation is not very meaningful, as the results of our case study suggest

that the majority of failures would fall into the category of inconsistent termination. In our

case study, 108 out of 119 failures, which is 90.7%, are failures of inconsistent termination,

while only 11 out of 119 failures are failures of non-termination. Consequentially, we

argue that the termination type alone is not enough to classify failures. This thesis, on the

other hand, only classi�es failures according to the model state, which is also not enough

on its own. As an example, Table 5.8 shows little information about which types of faults

lead to which types of failures. Consequentially, this motivates the need to combine both

the termination type and the model state in one classi�cation.

Therefore, we propose a two-dimensional classi�cation that combines the aspects of

both. This classi�cation is depicted in Figure 5.1. It contains two dimensions, namely the

termination type and the model state. The model state, on the one hand, di�erentiates

between the categories too many elements, too few elements, and incorrect elements. The

termination type, on the other hand, di�erentiates between the two categories of inconsis-

tent termination and non-termination. All classes can be categorized according to these

two dimensions. Note that the categories called inconsistent-termination and duplication

are now one category. Similarly, the classes of incorrect naming and incorrect non-name

properties are now merged into a single class called "incorrect property". Additionally,

we identi�ed endless creation as an additional class for non-termination with too many
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Too Few Elements Incorrect Elements Too Many Elements

Inconsistent Termination 4 14 84

Non-Termination 0 11 0

Table 5.12.: Distribution of the failures over the hybrid classi�cation that combines the

model state (columns) and the termination type (rows).

elements, even though this case did not occur during the case study. These additional

classes may need to be con�rmed with an additional case study.

We classi�ed all failures encountered in this case study according to this new classi�ca-

tion. The distribution is depicted in Table 5.12. It shows that the majority of failures are

terminating with inconsistencies and also cause a model state with too many elements.

Consequentially, it is essential to provide prevention strategies for failures of the class

that combines both of these characteristics.

5.4. Measurements

We use the same metrics as Klare et al. [22] to reason about the validity of our results

and our analysis. The �rst measures how many failures of the encountered failures were

successfully categorized:

Identi f ied Failure Ratio =
cateдorized f ailures

total f ailures

The second measures how many failures could be resolved through �xing the correlating

faults:

Resolved Failure Ratio =
resolved f ailures

total f ailures

In an ideal case both measurements are Identi f iedFailureRatio = ResolvedFailureRatio =
1, as this means all identi�ed failure are resolved. Because of the time constraints of this

thesis, we only used the 16 core tests instead of all 39 tests for the last two stages (see

Table 4.1). It is essential to mention that these unused test cases produce additional failures

that we, therefore, did not encounter in our case study. In total, we encountered 119 failures,

29 faults, and 29 mistakes. For all four stages, we measured Identi f iedFailureRatio =
ResolvedFailureRatio = 1 since all detected failures were classi�ed and resolved through

�xing the correlating faults. We were able to trace the correlating mistake-fault-failure

chains for all encountered failures in this case study. All encountered mistakes, faults,

and failures could be classi�ed successfully. All encountered faults could be �xed, which

results in all correlating failures no longer appearing. The comparison of our classi�cation

with previous work indicates that the classi�cation is complete and correct. Moreover,

we were also able to validate further the classi�cation proposed by Klare et al. [22], as all

non-implementational mistakes, faults, and failures could be classi�ed.
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While the previous chapter analyzed the results of the case study, this chapter discusses

the lessons that can be learned from the case study results. Thus, this chapter is meant

to assist in avoiding issues when building bidirectional transformations for networks of

transformations. First, section 6.1 answers Research Question 3, which asks about the pre-

vention of mistakes, by discussing strategies that allow the prevention of mistakes reliably

during the construction of the transformations. Second, section 6.2 answers Research
Question 4, which asks about unpreventable mistakes and faults, by discussing all three

encountered unpreventable mistakes that cannot be prevented during the construction

of bidirectional transformations and their correlating faults. It also explains what these

mistakes have in common and what transformation and network developers should keep in

mind. Third, section 6.3 discusses additional challenges that we did not directly encounter

during our case study. However, we identi�ed them as potential sources for mistakes

when it comes to transformation design. We do not solve these challenges. However, we

discuss these challenges to highlight the di�culties that come with them. Last, section 6.4

answers Research Question 5, which asks about the e�ects of redundancy by discussing

the di�erent e�ects of redundancy in the network observed during this case study. More

speci�cally, we discuss how redundancy a�ects the mistakes, faults, and failures in a

network of bidirectional transformations.

6.1. Prevention Strategies

Research Question 3 asks which strategies reliably allow the prevention of mistakes, faults,

and failures by construction. It also asks about the knowledge required to do so. In this

section, we answer the given question with a particular focus on the network knowledge

mistake by proposing prevention strategies for speci�c types of mistakes. These strategies

contain patterns that instruct the transformation developer on how to solve the speci�c

problem. First of all, if we prevent a mistake of a causal chain, it will not lead to a

manifestation of a fault and therefore, no failures will be caused. Therefore it is enough

to prevent the mistake since it also prevents the fault. We divided the mistakes into

three categories: Technical mistakes, transformation knowledge mistakes, and network

knowledge mistakes. Technical mistakes can be prevented by carefully implementing

a transformation design and utilizing methods that are known from classical software

testing, such as unit tests and code reviews. We, therefore, do not discuss the prevention

of these mistakes any further. Transformation knowledge mistakes can be prevented by

carefully designing the transformation rules, as it only requires knowledge about the

domains of the source and target model. Similar methods as for the technical mistakes can

be employed. Transformation knowledge mistakes regard more the topic of transformation
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construction and less the topic of multi-model consistency preservation. Therefore, we do

not discuss the prevention of these mistakes any further. The last category of mistakes

are mistakes based on network knowledge. We enable the prevention of these mistakes

by introducing three strategies to avoid problems as early as during the transformation

construction. All three strategies were derived from the �xes that were used to correct the

faults encountered in this case study and from the knowledge we derived on the correlating

mistakes. For each strategy, we discuss the underlying problem, how this problem can be

avoided with the strategy, what needs to be considered to implement the pattern and what

knowledge is required to do so. First, we discuss preventive naming scheme enforcement

to avoid failures due to inconsistent naming schemes. Second, we introduce the create-

on-rename-pattern, which deals with the edge cases caused by the change propagation

of unnamed model elements. Third, we discuss the �nd-or-create pattern, which enables

dealing with the external creation of model elements when checking if a correlating model

element already exists.

These three prevention strategies cover the �xes for 19 of the 29 faults. This means

one of the strategies matches the �x or is a di�erent �x. The preventive naming scheme

enforcement covers four faults that are all naming scheme related. The create-on-rename

pattern covers three faults which are related to the propagation of unnamed elements. The

�nd-or-create pattern covers 12 faults, which are all due to not considering the external

creation of model elements. Consequentially, 19 of the 29 mistakes could have been

prevented with these three strategies alone. More importantly, these strategies prevent

all but three network knowledge mistakes. Combined with the previously discussed

preventability of technical mistakes and transformation knowledge mistakes, 26 out of 29

mistakes can be reliably prevented during the transformation construction.

6.1.1. Preventive Naming Scheme Enforcement

To prevent failures due to naming scheme inconsistencies during the transformation

construction, we propose the pattern preventive naming scheme enforcement. Preventive

naming scheme enforcement describes always enforcing a naming scheme, even if it

would not be explicitly required. As an example, let us assume we want to transform

from the metamodelMsource to the metamodelMtarдet , as they share a certain amount of

overlapping information. Therefore we are constructing a unidirectional transformation

Tsource→tarдet : Msource 7→ Mtarдet . Let S ∈ Msource and T ∈ Mtarдet be model element

types with S mapped to T . When si ∈ S is created, Tsource→tarдet is responsible for creating

the correlating element ti ∈ T . Let us consider the mapping for a pair of matched named

elements (s, t) with s ∈ S and t ∈ T .

First, let us assume that elements of type T require a name that starts with a cap-

ital letter. As a consequence, the transformation Tsource→tarдet is required to enforce

t .name = s .name .toFirstUpper to keep the pair (s, t) consistent. Naturally we imple-

ment the transformation Tsource→tarдet according to this naming scheme. This means it

capitalizes the names of these elements. Second, let us consider another case. In this

case, both elements of the types T and S require a name with capital �rst letters. As a

consequence, the transformation Tsource→tarдet could enforce t .name = s .name to keep

the pair (s, t) consistent. When implementing Tsource→tarдet there are now di�erent op-
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tions. One might be inclined to implement this name mapping as previously stated, with

t .name = s .name , because the name of s should already be capitalized. For Tsource→tarдet

this means when element (s) is renamed, t should be renamed to the new name of s . The

problem is, assumptions like these break in networks of bidirectional transformations,

as unintended states appear through the side e�ects in the network. Let us imagine an

unintended state leads to the name of (s) being temporarily in lowercase. As a consequence,

this would lead to t having the same lowercase name, even though the transformation

designer explicitly considered the naming scheme. When following the pattern of pre-

ventive naming scheme enforcement, we would instead implement the mapping for this

second case between s and t as t .name = s .name .toFirstUpper , which means we enforce

the capitalization, even though we assume that source name is already capitalized. This

way, the target element is renamed as expected (with a capital �rst letter), even if the

source element is not named as expected. It helps to avoid naming scheme inconsistencies

due to unexpected or unintended states.

The knowledge required to implement this pattern in a bidirectional transformation is

only the domain knowledge of the source and target metamodels and how to transform

between them. The reason for this is that each transformation only needs to enforce the

naming schemes of the source elements. We illustrate this pattern for names, as they are

commonly a�ected by failures in networks of transformations (see Table 5.2) due to their

importance in models and because we encountered this problem in the case study with

element names. However, this pattern can be generalized for any property of a model

element where the property is transformed from or to another model element with certain

constraints.

6.1.2. Create-on-Rename Pattern

During the case study, we identi�ed edge cases, like edge case values of attributes, as a

source for mistakes. Furthermore, names are often a�ected by failures (see Table 5.2). A

common failure that a�ects names and is based on edge cases is the creation of unnamed

elements. Unnamed elements are elements where the element type de�nes a name attribute,

but the element itself has no value set for this attribute. We explicitly exclude elements

whose type does not de�ne a name attribute, meaning elements that cannot be named. For

some models, unnamed elements might be unusual but valid, therefore unexpected. For

other models, unnamed elements might invalid and, therefore, unintended. We observed

unexpected or unintended model states to be a common cause for failures. Transformations

might not be built with unexpected or unintended model state in mind and, therefore,

further propagate inconsistencies in the network if that is the case. As an example, consider

a model M1 where elements are always created with a name. When transforming to that

model M1 from another model M2, where unnamed elements are considered valid, the

transformation creates unnamed model elements for the model M1 that it usually would

not contain. This means the model M1 has an unexpected state. When we now transform

from M1 to any other model, the transformation designer might expect the elements to be

always named, as is usually the case. Because the assumption is now broken, this can lead

to failures.
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We, therefore, propose the create-on-rename pattern that prevents these issues by con-

struction. The pattern prescribes only to create target elements for source elements if the

source element is named. To be speci�c, when a source element is renamed, a correlating

target element is created if the source element was previously unnamed. When a target

element is created, the source model is not changed at all. As an example, Java packages

should never be created without a name, as the containing Java model would not be

semantically correct and it leads to failures. This means when transforming from any

model to Java, packages should be created only when the correlating source element is

renamed, which implements the create-on-rename pattern. During our case study, we

encountered such an issue with Fault 9, where an unnamed PCM repository led to the

creation of unnamed Java packages.

This pattern should be used in transformations where elements of the target model

have a name attribute that should always be set. If that is the case, the pattern should be

applied in the transformation to every transformation rule regarding element creation,

where the element types de�ne name attributes. We argue that this pattern is more likely

the case when names are used to identify model elements. If that is not the case, for

example because unique identi�ers are used, unnamed elements in the model might be

considered as valid. This pattern can be implemented without any additional knowledge,

as all knowledge required for this pattern needs to be already available to design the

transformation itself.

6.1.3. Find-or-Create Pattern

The most common failure during this case study was duplicate creation, which accounts

for 68.9% of all failures. Consequentially, it is crucial to prevent these failures by avoiding

the mistakes that lead to them during the construction of the individual transformations.

Most of these failures we caused by the fault of not checking on external creation by

other transformations when creating elements. In order to prevent this, we propose the

�nd-or-create pattern. We see this pattern as the logical extension of the transformation-

internal existence checks proposed Syma [46] for dense networks. The existence checks

by Syma are only meant for tracking element creation in a single bidirectional trans-

formation and, therefore, not su�cient to prevent duplicate creation between multiple

bidirectional transformations. As an example, let us assume we want to transform from

the metamodel Msource to the metamodel Mtarдet , as they share a certain amount of

overlapping information. Therefore we are constructing a bidirectional transformation

Tsource→tarдet : Msource 7→ Mtarдet . Let S ∈ Msource and t ∈ Mtarдet be model element

types with S mapped to T . When s ∈ S is created, Tsource→tarдet is responsible for creating

the correlating element t ∈ T . If Tsource→tarдet contains the aforementioned fault, it is only

going to check if it already previously created an element of type T that matches s . If this

is not the case, t is created and matched with s .
This breaks as soon as more than one transformation transforms changes toMtarдet .

Lets assume we use Tsource→tarдet in a network with second transformation Tother→tarдet :

Mother 7→ Mtarдet for the modelMother . Let O ∈ Mother be a model element type with O
mapped to T . When Tother→tarдet is executed before Tsource→tarдet it leads to the following

events: First, the creation of o ∈ O leads to the creation of t1 ∈ T by Tother→tarдet . Second,
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Figure 6.1.: Duplicate creation of two semantically identical elements in model Mtarдet due

to the missing check on external creation.

s is created and is matched with o. This means s could be created by a transformation

betweenMother andMsource . The transformation Tsource→tarдet now checks if it already

previously created an element of typeT that matches s . Since this is not the case, it creates

t2 ∈ T . However, because of the transitive matchings from t1 to s , from s to o, and from

o to t2, it is semantically identical to t1. These matchings are visualized in Figure 6.1. As

a result, two duplicated elements of T exist, one matching s and one matching o, while

there should be only one that matches both. If t1 is contained in the model through a

single-element containment, it is overwritten by t2. If t1 is contained inMtarдet through a

multi-element containment, both duplicate elements are co-existent.

This can be �xed by ensuring that every transformation checks if any other transfor-

mation already created a matching element before creating a new one. The di�culty for

preventing this during the transformation construction hereby lies in the fact that the

transformations do not know of each other’s existence, as they were created independently

without each other in mind. Luckily, the only network knowledge required to prevent

these faults is the fact that the transformation could be used in a network of bidirectional

transformations. We identify a pattern that prevents these faults by construction. We

call this pattern the �nd-or-create pattern. This pattern is depicted in Algorithm 1. Note

thatmatches() checks if two elements are matched, while shouldMatch() checks for two

elements if their element types are mapped and, more importantly, if they represent

the same concept. This is, for example, the case when an element has exactly the same

properties as the element to be created. Moreover, match() matches two elements for

the transformation and is therefore used to restore a matching, while create() creates an

instance of an element type.

The knowledge required to implement the �nd-or-create pattern in a bidirectional

transformation is only the knowledge required to design the bidirectional transformation

and additionally the knowledge that this transformation might be used in a network of

bidirectional transformations, which motivates the problem of external creation. Thus, the

main challenge is to implement this pattern for speci�c metamodels. Especially locating
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Algorithm 1 Find-Or-Create Pattern for Tsource→tarдet :Msource 7→ Mtarдet

T ∈ Mtarдet , S ∈ Msource , s ∈ S
if @t ∈ T :matches(s, t) then
if ∃t ∈ T : shouldMatch(s, t) then
match(s, t)

else
t ← create(T )

potential matches to check if there is an element that should match is not always straight

forward.

When trying to identify potential matches, two problems arise: First, the problem of

aggregating all model elements of the desired element type. As other transformations

create potential matches, they might not be known to the implementing transformations.

If the target model does not o�er access to all elements of a particular type, they might

need to be located, in the worst case by traversing the whole model structure. Second, the

problem of identifying the potential match. Given a set of model elements with the same

type as the element to be created, which one represents the element the transformation

is about to create? To identify a potential match, it must be semantically identical to the

element that is about to be created. At best, unique identi�ers can be used. If that is not

the case, the model structure, as in containments, or a set of properties can be utilized. We

identi�ed four di�erent approaches for identifying potential matches, all of which solve

the two problems mentioned above.

locate via direct containment First, locate via direct containment. Because containment

structures play an important role in many models, it is often a viable solution to

utilize them for the identi�cation of matches. When the parent element of the

element to be created is known, it is trivial to use the containment, which would

have been used to add the newly created element to locate potential matches. If

the containment in the target model is a single element containment, the potential

match can be directly retrieved. If it is a multiary containment, an identi�er, name,

or a combination of properties might be used to identify the right target element.

As an example, when trying to locate potential matches of a PCM component in a

UML model, the containing UML package is known, as it is needed to insert a newly

created class. This means one can locate the potentially matching class by name

among all the classes contained in the UML package.

locate via correlating containment This is a variation to the previous solution for cases

where the parent element of the element to be created is not known. If the parent

elements of both the source and the target element are mapped, it is possible to

take the parent of the source element and retrieve its correlating counterpart in the

target model. This target model parent element can be used to identify a potential

match with the containment relation. Again, either directly, if it is a single element

containment or with an identi�er, if it is a multiary containment. As an example,

when trying to �nd a potentially matching Java interface for a UML interface, one

can retrieve the correlating Java package of the containing UML package and then
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locate the potentially matching interfaces through the contained compilations units

and further by their contained interfaces. An interface is a match when its name

equals the name of the UML package.

locate via model traversal If it is not possible to directly or indirectly locate the container

of the element to be created, a potential match can be found by traversing the whole

source model. Models are often designed in tree-like containment structures like

a directed cyclic graph. However, this approach requires one or more properties

that can be used to identify a match, such as a unique identi�er or name. As an

example, this approach can be used when trying to locate a potentially matching

UML package for a Java package. As Java packages are, in the model used in this

case study, root elements and are not in a containment hierarchy, it is not possible

to locate a parent element of the UML package to be created. However, since all

elements of the UML model are contained under one root element, this structure can

be easily traversed. The names of the traversed UML packages are compared to the

Java package namespace in order to locate a matching UML package. This means

that the namespace of the Java package must be a concatenation of the names of the

UML packages from the root to the potential match.

locate via all instances if all of the previous approaches are not applicable, an alternative

is explicitly tracking all instances of a model element. This is usually the case for root

model elements. This approach locates potential matches by �ltering all instances of

the target element type by unique properties such as name or identi�er. To access all

instances of a model element type, it might be required to maintain a set of instances,

for example, by matching the instances with their correlating metaclass. As an

example, this approach is required when trying to locate a potentially matching Java

package for a correlating UML package. Java packages are individual root elements

and, therefore, not directly contained by another element. To access all existing Java

packages, they are hence matched with the package metaclass when created. These

matchings grants access to all instances, even if the model does not allow it. When

iterating the list of all instances, the package namespaces are used to �nd a potential

match.

All of these approaches are only applicable if some conditions are met. All four approaches

require the model element type to have some unique properties that allow identifying a

potential match. This can be a unique identi�er or any combination of properties that are,

all together, unique for each element. If there is no such identi�er or set of identi�ers, it is

still possible to use non-unique properties. However, in this case, there is no guarantee

that the right element is matched, as multiple elements might satisfy these properties.

The �rst approach, locate via direct containment, also requires a containment reference to

be known that would be used to insert the element to be created. The second approach,

locate via direct containment, requires that such containment reference exists and that the

parent elements of the source and target elements are matched. The third approach, locate
via model traversal, requires the model to be traversable. The fourth approach, locate via
all instances, requires some way to access all instances of a model element type. If the

conditions of multiple of these approaches are met by properties of the source and target
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metamodels, it is up to the transformation designer to pick what approach to use. We

recommend considering these approaches in the order of their listing, as they become less

and less clean by a design standpoint in ascending order. Additionally, the computational

complexity of the two latter approaches is worse compared to the �rst two, as the third

might require traversing the whole model to exclude the existence of a potential match,

and the fourth approach requires checking all instances of a model element type. This

makes the latter two approaches less feasible for models with a large number of elements.

When designing a transformation language, one might consider including language

constructs that support the �nd-or-create patterns. Languages that separate the checking

of patterns (matching) and the restoration of consistency (actions) should support the

�nd-or-create patterns with the matching syntax. The Reactions language of the Vitru-

vius is such a language that distinguishes between matchings and actions. We, therefore,

propose to extend the Reactions language to support the �nd-or-create pattern natively.

This would reduce the time overhead for the transformation designer during the transfor-

mation construction and make the transformation de�nitions more concise. Additionally,

supporting the �nd-or-create pattern with the transformation language might help the

transformation designers to consider the scenario of external model element creation.

6.2. Unpreventable Mistakes

Out of all 29 mistakes in this case study only three cannot be prevented by construction:

These mistakes are Mistake 10 and 18 as well as Mistake 21. This section addresses Research
Question 4, which asks about the existence of mistakes that cannot be prevented during

the construction of bidirectional transformations. We answer Research Question 4 by

discussing all three unpreventable mistakes and the faults in which they are manifested, as

well as by explaining what all three mistakes have in common. Even when knowing that

the transformations are supposed to be used in a network of transformations, preventing

these failures would still both require detailed knowledge about the network structure as

well as insight in the interaction of the transformations and the change propagation. It

is essential to prevent failures in a network during the construction of transformations,

as this is the only way to ensure that any network that contains the transformations is

able to restore consistency correctly. Since this means we want to prevent failures before

assembling the network by combining the transformations, we do not know any details

about the network itself. Consequentially, the prevention of any failures by construction

can only rely on the knowledge about the two domains of the transformations: The

source and the target model. While it is fair to assume the use of the transformation in a

network, anything beyond that needs to be considered as unknown. As a result, mistakes

like the three previously mentioned ones cannot be prevented during transformation

construction, as this would require the developer of a single transformation to know about

the others. However, they can be �xed later when assembling the network of bidirectional

transformations. In the following we discuss Mistake 10 and 18 as well as Mistake 21 in

detail. Mistake 10 and 18 are mistakes that manifested themselves in faults of mismatching

root management. Mistake 21 manifested itself in faults of mismatching naming schemes.

In this section, we discuss both types of unpreventable mistakes that we encountered
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PCM UML Java
1. create UML root 
element & package

3. create duplicate
UML root element 

2. create Java package 

0. user creates repository

?

Figure 6.2.: Mismatching root element management that results in a duplicate creation

failure. The UML root element is created twice: First by TPCM→UML and a

second time by TJava→UML.

in this thesis. We then explain what these mistakes have in common and what we can

takeaway from these mistakes.

6.2.1. Mismatching Root Element Management

Both Mistake 10 and 18 manifest themselves in a very similar fault, namely a di�erence

in managing UML root elements. The UML metamodel utilizes a root element called

model that contains all other elements in a tree. Usually a model contains packages which

then contain types. For clarity, we use the term root element instead of model to avoid

confusing it with the source or target models of a transformation. The problem lies in

managing these root elements. Every transformation that transforms into UML models

needs to �nd out whether a UML root element already exists. If this is not the case, it

needs to be created to apply any further changes to the UML model. In order to �nd out

whether the model exists, a transformation usually assumes the name and location of the

root element. Some transformations might expect it to be at a location correlating to a

�xed path. Other transformations might use dynamic names and locations depending

on the information contained by the source model of the transformation. Lastly, the

transformation could also require the user to specify the name and location of the root

element. After the creation of the root element, transformations with source models that

also utilize root elements can map these root elements and keep restoring consistency

through this. Transformations that cannot map an element to the UML root element need

other mechanisms for consistency preservation. One possibility is to manage a global list

of all UML root elements known to the transformation. In the worst case, this would mean

asking the user for the UML model every time changes are propagated to UML.

Even with user input that is as expected, deviating ways of managing UML root elements

can lead to issues during consistency preservation. In our case study, this was caused

by the transformations TPCM→UML and TJava→UML. TPCM→UML always asks the user for

the name and location of the root element. If such a root element does not exist, a new

root element is created and used. TJava→UML remembers a root element by mapping it

to a speci�c tag. This means the transformation �rst checks if it already created a root

element. If such a root element does not exist either, a new one is created which will then

be remembered. This di�erence means that in the case study network, TPCM→UML might

be executed �rst, which then creates a root element. When TJava→UML is executed, no

root element is mapped to the tag and therefore a second root element is created. This
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PCM UML Java
1. create UML root 
element & package

3. map root element
to model tag

2. create Java package 

0. user creates repository

Figure 6.3.: Mismatching root element management that does not result in a duplicate

creation failure. The execution TUML→Java before TJava→UML prevents the

duplicate creation failure although the fault exists.

is depicted in Figure 6.2. During this case study, this very fault led only sometimes to a

failure depending on the execution order. When the backward transformation TUML→Java

was executed before the forward transformation TJava→UML, the mapping to the tag for

the newly created root element was created, and the failure did not occur. The execution

order where the failure does not occur is illustrated in Figure 6.3. This means TPCM→UML

and TJava→UML are both deeply incompatible even though both transformations on their

own are working as intended and are designed under reasonable assumptions. While

this problem is easy to �x by adapting all transformations with UML as the target model

in a way that they manage root elements, in the same way, it is not possible to prevent

this issue during the construction of a transformation on its own without knowing the

topology of the network and additionally how each relevant transformation manages root

elements.

6.2.2. Mismatching Naming Scheme

Mistake 21 is also a mistake that cannot be prevented during the independent construction

of the transformations. The fault correlating to this mistake is the inconsistency of naming

schemes regarding PCM repositories. TPCM↔UML maps a repository to UML package while

TPCM↔Java maps a repository to Java package. Each pair mapped by these transformations

are supposed to have consistent naming. Consistent for these relations does not mean

equal, as di�erent naming schemes apply to PCM repositories, UML packages, and Java

packages. Both Java and UML packages are generally named with the �rst letter lowercase,

which is enforced by the transformations. The PCM metamodel allows repositories to be

named with the �rst letter being upper- and lowercase. This means no naming scheme

is enforced. At �rst glance, this seems like an issue that can be easily prevented during

the transformation construction. Always using a lowercase �rst letter when transforming

from repositories to UML or Java packages and always using an uppercase �rst letter

the other way round is a reasonable expectation for the transformations, as during the

construction of a transformation the creator is expected to have knowledge of both the

source and target domain. However, this is not enough to avoid failures in a network of

transformations.

Fault 21 sometimes leads to failures, depending on the execution order in the network.

Figure 6.4 shows how such a failure arises. Initially, a PCM repository with a lowercase
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PCM Repository 
"testRepo"

UML Package 
"testRepo"

Java Package
"testRepo"

1. create

(Name ?  name)

2. create

(name ?  name)

PCM Repository 
"TestRepo"

3. create

(name ?  Name)

?

0. user creates repository

Figure 6.4.: Mismatching naming scheme expectations that result in a duplicate creation

failure. Two repositories are created instead of one due toTJava↔PCM expecting

one with a name with a lowercase �rst letter.

name is created by a user. First, this change is propagated by TPCM↔UML, which creates

a UML package with the same name, as it already is lowercase. For a name with an

uppercase �rst letter, the name would have been converted. Second, this new change is

then propagated by TUML↔Java , which creates a Java package with the same name as the

UML package. Third, TJava↔PCM propagates this change back to the PCM model. Just as

the previous transformation did, it checks if a correlating target element already exists.

In contrary to the previous transformations is that a correlating target element exists.

Because no element is directly mapped, it checks if a PCM repository exists, that matches

the name of the Java package. However, because it expects a repository with an uppercase

�rst letter, no matching repository is found. Consequentially, the transformation created a

new repository with a �rst letter uppercase name. As a result, two duplicate repositories

exist.

To return to the question of prevention, this fault can not be prevented for the transfor-

mations by construction because at least one transformation restricts the naming scheme

of a metamodel even further. Consequentially, the knowledge that the transformation is

used in a network and that there is transitive change propagation, is not enough. What

is required is detailed knowledge about the network topology, what naming schemes

are employed by all models in the network and, most importantly, if they are further

restricted by transformations. Since during the construction of a transformation, there is

no guarantee which metamodels and, therefore, which naming schemes are eventually

part of the network, the transformation can only guess whether the naming scheme of

a source or target model is enforced as speci�ed or if another transformation further

restricts the naming scheme. During the construction of the network, these faults can

be �xed by de�ning what naming scheme can be expected when looking for an already

existing element. In this case study Fault 21 (as depicted in Figure 6.4) could be �xed in the

transformationTJava↔PCM by looking for existing repositories with a name that starts with

an uppercase or lowercase letter. While this �x works for this speci�c network, it does not

work anymore if we connect a new metamodelM to this network with a transformation

TPCM↔M which enforces a di�erent naming scheme, such as all uppercase. This shows

again that the issue cannot be prevented during the transformation creation.

Additionally, some pairs of naming schemes allow only de�ning a forward transfor-

mation but not the correlating backward transformation. An example of such a pair of
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naming schemes is �rst-letter-uppercase and all-upper-case. First letter uppercase can be

transformed into all uppercase, but the other way round it is not possible, as it is unclear

for every but the �rst letter whether the letter is supposed to be upper- or lowercase. This

suggests that it might be possible to de�ne a partial order for naming schemes, which is

not discussed in this thesis as it goes far beyond its scope. This topic of decomposition of

relations for multi-model consistency preservation is further discussed in [31].

6.2.3. Similarities and Takeaway

Both of these unpreventable mistakes are rooted in an underlying issue. This issue is the

cause of the mistakes not being preventable by during the transformation construction.

Both mistakes are rooted in a situation where transformations are forced to decide between

a set of options, where there is no inherently correct choice. For the mismatching root

element management, it is the choice how to manage these root elements. In this case

study, we encountered three di�erent options: A �xed name and path, dynamic names and

paths, and name and path based on user input. However, this is an open problem, which

means there might be more options. For the mismatching naming schemes, the decision is

if and how to restrict the naming scheme during the transformation. Similarly to the root

element management, there are multiple options. In general, di�erent transformations in a

network of bidirectional transformations can now make di�erent choices. If these choices

are di�erent, this may lead to failures if the di�erent choices are creating con�icts during

the change propagation in the network. However, this cannot be prevented during the

transformation construction, as there is no knowledge of how other transformations may

choose. Only when the network is being assembled, and it is clear what transformations

are part of the network, it is possible to check if all transformations made the same choice

or not and if there is a potential for con�icts.

In summary, these problems are not preventable during the construction of the transfor-

mation because the transformations are forced to decide between a set of options, where

there is no inherently correct choice. Di�erent transformations in a network can now make

di�erent choices, and during the transformation construction, it is not clear what option

other transformations chose. Even when knowing the transformations may be used in a

network, it is not possible to predict the consequences of the transitive change propagation

at all. Consequentially, transformation developers should avoid making these choices if

possible. If they need to be made, it is essential to consider how other transformations

might choose. However, that still does not prevent any faults. Network developers need

to be aware of these faults in order to spot and resolve these faults when assembling a

network by combining transformations.

6.3. Other Challenges for Multi-Model Consistency
Preservation

In this section, we discuss two topics that we identi�ed as especially challenging during

this case study. However, these topics are not directly part of the encountered mistakes,

faults, and failures. We identi�ed these topics during the development of �xes for unrelated
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faults. They are potential sources for mistakes when it comes to transformation design.

We do o�er any solutions to the problems of these topics in this thesis since this is beyond

the scope of the thesis. This thesis is meant to analyze mistakes, faults, and failures that

arise during the case study and not any potential mistakes, faults, and failures. However,

it is essential to discuss these topics to highlight the di�culties that come with them. First,

we discuss the topic of default values of attributes and how they lead to di�culties during

the speci�cation of consistency preservation. Second, we discuss how multiple model

roots are challenging during the consistency preservation process.

6.3.1. Default Values

Default values can be de�ned for attributes of model elements. They set the attribute

value at the moment the model element is created to a speci�c pre-de�ned value. For

example, named attributes can have default names. In this case study, instances of named

elements of the PCM metamodel are initialized with the default name "aName". Default

values are relatively problematic when keeping model elements consistent that both have

the same default values, or one of them has no default values at all. Problems arise when

two mapped model elements have di�erent default values, or one of the mapped model

elements has no default value. In the following, we will discuss both cases to illustrate

how, on an exemplary basis, default values can complicate consistency preservation.

However, before we discuss the two problematic cases, let us �rst look at the unprob-

lematic case where no default names are used. Figure 6.5 depicts this situation. In both

models, the names can have two states. Either they have no name, or they have a name.

If one of the names is not set, the other name needs to be not set as well. If one of the

names is set, the other name needs to be kept consistent, which means it is updated to

have the same name. This is the basic case, which is meant to illustrate how consistency

preservation gets more challenging when default names are introduced. In the following,

we discuss both problematic cases.

First, let us discuss the issues for di�erentiating default values. Let us consider the ex-

ample for default names, which means name attributes with default values. When keeping

two model elements from di�erent models consistent, the default values of the names

of the model elements might di�er. This introduces several constraints to consistency

preservation. Figure 6.6 depicts the consistency relations when keeping such elements

consistent and how they are a�ected by the potential values of the names. First of all,

when both model elements have their respective default names, they might need to be

considered consistent. This means when an element of type A with the default name "a" is

created in model M1, a correlating element of type B with the default name "b" needs to be

created in model M2 to restore consistency. Second, non-default names need to be kept

consistent. This is the case when names have been explicitly set. When, for example, an

element of type A is renamed to a custom name, the correlating element of type B needs

to renamed to that custom name as well. Problems arise when one element has a custom

name that matches the default name of another element. In this case, a decision has to

be made on how to map this name. Should it be mapped to the default name, or should

the other element with the default name be explicitly renamed? Figure 6.6 visualizes

how default names might need to be mapped to non-default names with the depicted
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(No Name) (No Name)
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Set/Reset
Name

Set/Reset
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NameA = NameB
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M1, Name of Element A M2, Name of Element B 

Figure 6.5.: State diagram that depicts consistency preservation between two elements

with no default values at all. Note that only the state of one model element is

depicted in each model. Dotted lines represent the matches that are made based

on the consistency relations for the model element types, while non-dotted

lines represent state transition for the attribute values.

consistency relations. Without any default values, the only consistency relation required

would be the one between the two non-default names. Thus, this scenario introduces

multiple edge cases to the consistency preservation that need to be considered.

Second, let us discuss the issues when one of the mapped model elements has no default

value. Let us, again, consider an example with default names. When keeping two model

elements from di�erent models consistent, one element might have a default name, while

the other one has no default name. This means the latter element is created unnamed.

This introduces several constraints to consistency preservation. Figure 6.7 depicts the

consistency relations when keeping such elements consistent and how they are a�ected

by the potential values of the names. Again, non-default names need to be kept consistent

between the two model elements. However, in this scenario, the default name needs to

be kept consistent with the non-existent name. This means when an element of type A

with the default name is created in the model M1, an unnamed element of type B needs

to be created in the model M2 and the other way around. In a network of bidirectional

transformations, this has to be considered across all transformations. For example, when

looking for the existence of a potential match before creating an element (see Algorithm

1), default names and missing names need to be matched to avoid duplicate creation

of elements with mismatching names. Even more problematic is that elements without

default names might allow removing the name, which means the element is unnamed

again. For default names, this is not always given, as the default value is often meant as a

temporary value while the value was not explicitly set yet. This is depicted in Figure 6.7,

where it is possible to transition between the two states of Element B, but only possible

to transition in one direction between the two states of Element A. This means, when

removing the name of an element of type B in M2, it might be required to rename the
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M1, Name of Element A M2, Name of Element B 

Figure 6.6.: State diagram that depicts consistency preservation between two elements

with deviating default values. Note that only the state of one model element is

depicted in each model. Dotted lines represent the matches that are made based

on the consistency relations for the model element types, while non-dotted

lines represent state transition for the attribute values.

DefaultName (No Name)

Name
(Non-Default) 

Name
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Figure 6.7.: State diagram that depicts consistency preservation between one element

with a default value and one without. Note that only the state of one model

element is depicted in each model. Dotted lines represent the matches that are

made based on the consistency relations for the model element types, while

non-dotted lines represent state transition for the attribute values.
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correlating element of type A in M1 to the value that also is the default name to keep the

two elements persistent according to the relations in Figure 6.7. Since this is technically

not a default value for the attribute, it might be hard to distinguish these two states (default

name and explicitly set to the default name). These two states are di�erent because, in

a case where the name of an element of type A in M1 has been explicitly set to a name

matching the default value, this name should not be propagated back to M2, as this would

change the element of type B from unnamed to explicitly named. This is the opposite of

the change that has been initially made to the model. To summarize, in this scenario, the

introduced constraints can be even more complicated.

6.3.2. Multiple Model Roots

Many metamodels are designed in a way that model instances start from a single root

element, and the containment structure of the modem instance form a tree. However, the

structure of a metamodel can also be completely di�erent. Some metamodels, for example,

are built in a way that one model contains multiple root elements. Between the di�erent

root elements or children of the di�erent root elements might be some relations, but

none regarding containment. Technically, these root elements can be seen as independent

models that reference each other. However, this does not a�ect the problems we are

describing in the following. In this case study, we used the metamodel for Java, in which

packages and compilation units are root elements. Consequentially, when representing a

standard Java program with this metamodel, there are many root elements, as every type

is contained in a compilation unit. Additionally, there are usually multiple packages.

This metamodel property of having multiple model roots increases the complexity of

consistency preservation. There are multiple reasons for this. During our case study,

we encountered the following di�culties regarding multiple root elements: First, when

keeping a single-root model with a multi-root model consistent, there needs to be a

mechanism to match elements from the single-root model with the elements under the

correct root element from the multi-root model. For example, when transforming UML

packages to Java packages, the UML packages that are all contained under one root element

need to be matched to the individual Java packages that each on their own are root elements.

In this case, such a mechanism would compare the Java package namespaces to the names

in the package hierarchy of the UML model. If that cannot be automatically resolved, user

input might be required. However, user input is generally considered a source for potential

inconsistencies, as there is no control over what a user does. Second, when applying the

�nd-or-create pattern (see section 6.1) for model elements that are root elements, three of

the approaches for locating a potential match for the element to be created can no longer

be used. Both approaches that use containment cannot be used, as root elements are, per

de�nition, not contained by another model element. The approach of model traversal is not

viable as well, as we are not trying to locate an element in a containment structure under a

known root element. The only approach left is tracking all instances which requires some

coordination between the di�erent transformations of a network. Thus, this approach

is not ideal when trying to employ the �nd-or-create pattern during the transformation

construction, as the network structure might not be known.
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To summarise, multiple root elements introduce additional complexity to the consistency

preservation. Because the metamodels are often pre-existing, this problem cannot be

avoided. Consequentially, the transformation designer needs to deal with these unique

properties.

6.4. Consequences of Redundancy

During this case study, we observed that redundancy in networks of bidirectional trans-

formations has e�ects on consistency preservation. Some of these e�ects were already

mentioned in previous chapters. We discuss the details of the e�ects of transitivity in this

section to answer Research Question 5, which explicitly asks how redundant bidirectional

transformations a�ect the mistakes, faults, and failures in a network. One of the key

di�erences to the case study of previous work is that in our case study, the network of

transformations contains redundant paths. As previously mentioned, for each bidirectional

transformation in our network (see Figure 4.1), the other two bidirectional transformations

form a path between the source and target models of the initial bidirectional transfor-

mation. This path and the initial transformation contain a certain amount of redundant

consistency preservation mechanisms. As an example from the case study, take the bidirec-

tional transformationTPCM↔Java . It contains transformation rules that map PCM operation

interfaces to Java interfaces. This transformation ensures that creating an operation in-

terface in a PCM model will lead to the creation of an interface in the correlating Java

model. However, when chaining the other two transformations, namely TPCM↔UML and

TUML↔Java , this chain also maps PCM operation interfaces to Java interfaces, with the

di�erences that it does it transitively via UML interfaces. This means that the path o�ers

redundant transformation rules for the model element pair of PCM operation interfaces

and Java interfaces. Essentially, all three transformations form a redundancy-based cycle

for the interface concept.

In this case study, redundancy-based cycles were introduced to the network in the third

stage with the transformation TPCM→Java and then again with adding TJava→PCM in the

fourth stage. We observed an increase in failures for the last two stages. Additionally,

when tracing the faults that caused the failures, we observed an increased number of

faults. The number of faults and failures per stage can be seen in Table 4.2. A total of

84.87% of the failures occurred in the last two stages. We argued that redundancy-based

cycles increase the number of issues during the change propagation and the severity of

the issues (as in failures per fault are increasing). However, this increased number of

faults or failures is only a consequence of the increased complexity. Consequentially we

argue that an increase in redundancy in a network through redundancy-based cycles also

results in increased vulnerability to inconsistencies and therefore requires even more

careful transformation design. This highlights the need to employ preventive strategies

for networks of bidirectional transformations, such as the three strategies introduced in

section 6.1.

We also observed that the types of faults changed with the introduction of redundancy-

based cycles. While the faults during the �rst two stages were only technical faults and

faults of missing change propagation, in the last two stages the majority of faults regard the
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transformation interaction (see Table 5.5). To be speci�c, out of the 22 faults in the last two

stages, 18 regard the transformation interaction, with 12 out of those 18 faults being faults

regarding creation con�icts due to not considering external creation. Consequentially, we

argue that redundancy-based cycles in a network lead to an increased number of creation

con�icts. However, this can be prevented by implementing the �nd-or-create pattern

during the transformation construction (see section 6.1). It can be argued that this increase

in failures is caused by the aspect of transitive change propagation, meaning the actual

increase in chained transformations and the propagation of changes through these chained

transformations. We, however, argue that the main factor, at least in our case study, is the

redundancy between transformations that is caused by redundancy-based cycles, as both

the creation con�ict faults and the root element management faults are mainly dependent

on the fact that multiple transformations in the network have the same target model while

their source models are connected through other transformations. Creation con�ict faults

and the root element management faults account for 14 of the 18 faults encountered in the

last two stages.

When trying to increase transitivity in a network, which means increasing the number

of chains of transformations or increasing the length of these chains, without increasing

redundancy in a network, it will result in a linear network (see Figure 3.4). For this

topology, external creation con�icts as we encountered them are not a problem. While

there are multiple transformations with the same target model, their source models are not

connected through other transformations, as every model is a bottleneck in this topology.

This is indicative of our argument that redundancy-based cycles are the main cause of

the increase of failures in our case study. Despite these observations, it is essential to

acknowledge that both aspects, redundancy, and transitivity, are heavily intertwined. For

example, it is generally not possible to increase the redundancy in a network without

increasing the transitivity. To summarize, we observed that redundancy, as in redundancy-

based cycles, increased the number of faults and failures. We also observed that with

the introduction of redundancy-based cycles the type of faults changed towards faults

regarding transformation interaction. According to our observations, with the increase

in redundancy, consistency preservation gets more complex and the network is more

vulnerable to issues during consistency preservation.
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In this chapter, we discuss the threats to the validity of our case study. In general, it is

essential to acknowledge that a case study, by de�nition, can only cover speci�c scenarios.

Consequentially, drawing any conclusion from a case study is threatened by the possibility

by the chosen scenarios not being representable for the space the case study is conducted in.

In our case, this means that the case study as a whole might not be representative enough

for multi-model consistency preservation with networks of bidirectional transformations.

However, this case study addresses a particular context (see section 4.1). To recapitulate this

context, we assume the metamodels are pre-existing and generally designed for di�erent

tasks. We also assume that some or all model transformations might be pre-existing and

de�ned by di�erent experts without each other in mind. Third, we assume the amount of

overlapping information might be varying depending on the metamodels. We only claim to

be able to draw conclusions on this speci�c context and under the mentioned assumptions.

The remainder of this chapter is structured in the following: First, in section 7.1, we discuss

two threats to the internal validity of this case study: The number of test cases and the

granularity of test cases. Second, in section 7.2, we discuss three threats to the external

validity of this case study: The small size of the network, the choice of metamodels, and

over�tting of the classi�cation.

7.1. Internal Validity

Regarding internal validity, a threat is the choice of our test case set. Several factors can be

discussed: The number of test cases, the granularity of test cases, and the bias regarding

the concepts tested by test cases. First, we discuss the threat regarding the number of

test cases. We utilized 39 test cases for the �rst two stages. It can be argued that more

test cases are required to make the results more representative. As previously mentioned,

we only used the 16 core test cases for the last two stages (see Table 4.1). The reason

for this was that those 16 test cases already produced so many failures, that the time

constraints of this thesis made it impossible to consider the remaining test cases for the

last two stages. However, in the �rst two stages of this case study, all 39 test cases were

used. The threat to the validity with this lies in the fact that these missing test cases could

have changed the results of the case study and therefore in�uenced the classi�cation. For

example, additional mistake-fault-failures chains that give additional information on how

di�erent types of mistakes, faults, and failures are connected could have been identi�ed.

However, because the distribution of the mistakes, faults, and failures is very distinct, we

argue that the distribution over the classes will not change. Moreover, counteract this

threat, we compared our classi�cation and analysis with previous work which suggests

that it is indeed complete and correct. We plan on using the remaining test cases for the
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last two stages as future work. Second, the granularity of the test cases might be a threat,

as the test cases are �ne-grained and mostly cover single concepts. Largescale test cases

could be able to cause di�erent failures. We also plan on doing that as future work. Third,

while the tests attempt to cover di�erent concepts of the three metamodels evenly, there

is no guarantee that they did not miss any failures. To counteract this, we additionally

checked the persisted models of the test cases manually to spot further inconsistencies.

This manual inspection was able to detect the failures regarding improper deletion.

7.2. External Validity

Regarding external validity, we identi�ed three threats to the case study: The small size of

the network, the choice of metamodels, and over�tting of the classi�cation. First, while

the network used in this case study is a dense network of bidirectional transformations,

its size is still relatively small, since it contains only three models. We assume we can

generalize from this case study on any network of bidirectional transformations. However,

we cannot guarantee this, as larger networks might bring unforeseeable challenges and

therefore result in other failures, faults, and mistakes. Nevertheless, with this case study,

we con�rmed conclusions and generalizations made in previous work [22, 46] with a

smaller, linear network. Moreover, we completed the classi�cations from the case study

argument-based. This might indicate that it is possible to draw conclusions on larger

networks of bidirectional transformations.

Second, another threat is the choice of metamodels. We utilized the same metamodels

as the previous case study [22, 46], which allows comparing the results. However, we

observed that the speci�cs of the metamodels and their overlapping information has a

direct impact on the issues that arise during consistency preservation. This raises the

question of whether the choice of metamodels a�ects the results of a case study through

their structure. Since EMOF is a widespread standard and all metamodels in our case study

conform to it, we can at least say that the general structure that a metamodel speci�es

is limited by the meta-metamodel itself. This, however, still leaves a certain degree of

freedom in the metamodel design.

Third, over�tting of the classi�cation. One can argue that our classi�cation might

be too specialized for the exact problem found during our case study. As a result, our

classi�cation could not apply to mistakes, faults, or failures of future case studies. We

counteract this, as previously mentioned, by comparing our classi�cation to the one

proposed by Klare et al. [22]. However, while this con�rms that we can classify their

problems with our classi�cation and the other way round, they used the same metamodels

and transformations, which could a�ect the type of encountered mistakes, faults, and

failures. Nevertheless, we argue that the set of possible types of mistakes, faults, and

failures is �nite as it correlates to the modeling formalism. For example, the classi�cation

according to the model state cannot be incomplete, as for EMOF models, the only options

are that there are too few, too many or incorrect elements. In order to test this hypothesis,

another case study would need to be conducted that uses other metamodels and, therefore,

also other transformations.
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This chapter lists previous work that serves as the foundation for this thesis. Moreover, it

discusses general related work to multi-model consistency preservation and networks of

bidirectional transformations. First, section 8.1 discusses the previous case study regarding

networks of transformations on which the case study conducted in this thesis is built upon.

Second, section 8.2 lists di�erent consistency preservation approaches. Third, section 8.3

discusses related related work regarding binary transformations. Fourth, section 8.4 section

discusses related related work regarding multiary transformations.

8.1. Previous Case Study

This thesis builds on a previous case study by extending its setup. Regarding the previous

case study, we refer to two publications. Klare et al. [22] analyze issues in networks of

bidirectional transformations. The authors de�ne di�erent levels of consistency de�nitions,

identify failures and mistakes in transformation networks, and discuss avoidance strategies.

They conduct a case study with a linear network of bidirectional transformations between

three metamodels. Syma [46] explores transitive combinations of binary transformations.

The thesis catalogs six failure potentials and conducts a case study to evaluate its �ndings.

Two patterns are proposed to deal with two speci�c failure potentials. It is also the

basis for the previously mentioned work by Klare et al. [22]. These two publications are

the foundation for our case study. While they conducted a similar case study with the

same metamodels, they use a simpler, linear network without redundant bidirectional

transformations. We extend their network of bidirectional transformations to include

redundancy between transformations and chains of transformations. These two previous

publications also discuss a broad range of problems, such as the change propagation order,

while we focus only on failures and mistakes during change propagation in networks of

bidirectional transformations. As we are trying to con�rm the results of previous work,

we compare our results and classi�cation to previous work in detail in section 5.3.

8.2. Consistency Preservation

There are several related publications regarding consistency preservation and consistency

restoration. In [20] Klare investigates problems in multi-model consistency preservation.

His work discusses the interoperability of independently developed binary transforma-

tions, derives patterns for non-intrusive transformation interoperability, and proposes an

approach for decomposing consistency relations. Klare identi�es, among other problems,

the following �ve challenges for multi-model consistency preservation:
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interoperability describes the property of independently developed transformations to be

combinable in a black-box manner.

compatibility describes consistency between transformations, meaning the requirement

to transformations not to contradict each other.

modularity means transformations should only depend on their source and target meta-

models, but not other metamodels or transformations.

comprehensibility describes the property that consistency relations should be as easy to

understand as possible.

evolvability means transformations should be designed to be changed without too much

e�ort.

This work by Klare is strongly related to this thesis, as it de�nes the concepts our case study

is built on and identi�es the challenges networks of transformations face. In [21], Klare et al.

argue that overlapping information is often caused by multiple metamodels representing

the same concept and therefore suggests making such duplicated concepts explicit by

adding a concept metamodel which has relations to the initial metamodels. The authors call

this the Commonalities approach. It leverages the hierarchical composition of such concept

metamodels to enable multi-model consistency preservation. In our case study, however,

we do not use this approach. Instead, duplicated concepts in overlapping information are

kept implicit, and consistency is preserved with bidirectional transformations.

Lano et al. [25] propose patterns for the composition of transformations. While we are

also trying to �nd patterns that can prevent failures and mistakes during change propaga-

tion in networks of bidirectional transformations, we are focusing primarily on �nding

the failures and mistakes. Denton et al. [9] discuss the challenges of combining models

into multi-models. Model integration and consistency preservation are such challenges.

Another contribution they make is an experimental platform for multi-modeling called

NAOMI. Macedo et al. [27] propose a classi�cation of consistency preservation approaches.

They especially discuss concerns regarding inter-model consistency, dedicated multi-model

support, and bidirectional transformations. Pepin [31] discusses the decomposition of

consistency relations in order to detect redundant information within consistency relations.

The decomposition procedure is meant to help in �nding incompatibilities in consistency

speci�cations. Meier et al. [28, 29] discuss and compare di�erent consistency preservation

approaches. All approaches are based on a Single Underlying Model (SUM), but di�er in

how they build and evolve such SUMs. Additionally, the authors present guidelines for

selecting a SUM construction approach for speci�c projects. This relates to this thesis,

as one of the approaches discussed is Vitruvius, the framework used in this case study.

However, it is not possible to conduct this case study with the other approaches, as each

approach is designed for speci�c use cases and therefore makes di�erent assumptions

on consistency preservation. As an example, some of the approaches merge the di�erent

models into one model, making networks of bidirectional transformations not applicable.
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8.3. Binary Transformations

There is extensive research regarding binary transformations [18, 41, 42, 45]. Triple Graph

Grammars (TGGs) are a special kind of graph grammar that is used for bidirectional

model-to-model transformations [37, 36, 12]. Another concept, introduced by Diskin

et al., is delta-lenses which are delta-based bidirectional transformations [10]. Stevens

[45] introduces an algebraic representation for bidirectional transformations, and focuses

mainly on lenses. As previously mentioned, the transformations in our case study are

implemented in the Reactions language [19] as part of the Vitruvius framework [24], which

allows to de�ne binary transformations.

8.4. Multiary Transformations

There is an ongoing discussion about the use of multiary versus binary bidirectional

transformations [20]. In this thesis, we only study networks of binary bidirectional trans-

formations, as we want to analyze use cases where it is not straightforward to de�ne

consistency relations for multiple models, as a transformation designer would require

expertise in each of the model domains. While this might be realistic for a few models, it

is not feasible when increasing the number of models in a network to allow large-scale

consistency preservation. QVT-R enables multiary transformations, but is, according to

Macedo et al. [26], underspeci�ed regarding the operationalization of multiary transfor-

mation. Macedo et al., however, propose an extension that solves this problem. Similarly,

Trollmann et al. [47] extend Triple Graph Grammars to support multiary transformations.

Stevens [43, 44] discusses multiary bidirectional transformations and explores how mul-

tiary consistency relations can be expressed through binary consistency relations. The

author also studies how consistency might be restored in a network of bidirectional trans-

formations. In [44], the author explicitly discusses bidirectional transformations modifying

the same model without interfering with one another, which we observed to frequently fail

during this case study. This is related to our work, as we base our multi-model approach

on networks of bidirectional transformations. Stevens also discusses the problem of the

execution order, which is a problem we are trying to abstract from in this thesis.

71





9. Conclusion and Future Work

In this last chapter, we conclude with a summary of the case study, its results, and other

contributions. Finally, we discuss possibilities for future work.

9.1. Conclusion

In this thesis, we conducted a case study on the mistakes, faults, and failures that arise

during multi-model consistency preservation with networks of bidirectional transfor-

mations and how they can be avoided. We based our case study on three pre-existing

metamodels, namely the PCM metamodel, the UML metamodel, and the Java metamodel.

We built a network out of three pre-existing bidirectional model transformations that were

not designed with each other in mind. They are the pairwise transformations between

the aforementioned metamodels. We used a pre-de�ned set of �ne-grained test cases

that �rst created a model instance for each metamodel and then made changes to one

of the model instances in the network. Next, they called the consistency preservation

mechanism that executed the model transformation one-by-one until the network is stable,

meaning no transformation execution makes any further changes. Additionally to the

automatic checks by the test cases, we also manually inspected the persisted models to

not miss any failures. The failures either occur during the test cases or are caught during

the inspection. Each fault is the cause of one or many failures and is manifested in the

transformation de�nitions. It is the manifestation of a mistake made by a transformation

developer. During this case study we found 119 failures, 29 faults, and 29 mistakes.

First, we categorized the failures according to the model state, which means the models

are either missing elements, have too many elements, or have incorrect elements. Sec-

ond, we categorized the faults according to their scope, meaning if the fault is technical,

transformation-internal, or regarding the transformation interaction. Technical faults are

faults where the transformation design is correct, but the transformation is incorrectly

implemented. Transformation-internal faults are faults where the transformation design

of a single transformation is incorrect. Faults regarding the transformation interaction are

faults where the design of multiple transformations leads to faulty interactions between

them. Third, we categorized the mistakes according to the knowledge scope, which means

what knowledge is required to avoid a mistake. We found three categories: Technical mis-

takes, transformation knowledge mistakes, and network knowledge mistakes. Technical

mistakes are mistakes based on missing technical knowledge. For example, this can be

the knowledge of the transformation language. Transformation knowledge mistakes are

mistakes where there was either missing or incorrect knowledge regarding the design of a

transformation. This can be, for instance, the domain knowledge of the source and target

metamodels. Network knowledge mistakes are mistakes that regard knowledge on the
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network of bidirectional transformations and on how changes propagate in that network.

The most common failure class is the duplicate element creation where two elements that

are semantically identical are created in a model. These failures account for 68,9% of the

failures in this case study. They are often caused by the fault of not considering that, when

creating an element, another transformation might already have created a semantically

identical element. This fault class is the most common fault in the case study making

out 41.4% of all faults. These faults are manifestations of the most common mistake class,

which are mistakes due to not considering transitive consequences at all. These mistakes

account for 44.8% of all mistakes.

Our observations con�rm that it is often possible to prevent faults in a network during

the construction of transformations with minimal knowledge of the network. Even with

just the knowledge that the transformation is used in a network of bidirectional trans-

formations, it is possible to prevent 89.7% of all faults that we encountered. We argue

that technical mistakes and mistakes regarding only knowledge of transformation can be

prevented by careful transformation design and implementation. We identi�ed three strate-

gies that prevent di�erent network knowledge mistakes encountered in this case study

during the transformation construction. They prevent the manifestation of these mistakes

in faults. Therefore, two-thirds of the encountered faults can be prevented with these

three strategies alone. In total, only three mistakes we found cannot be prevented during

the transformation construction. For these mistakes, it is not possible to predict transitive

consequences at all. They all have one thing in common, which is the underlying cause

for not being preventable by construction: Transformations are forced to decide between

a set of options where there is no inherently correct choice. Di�erent transformations in a

network can now make di�erent choices, and during the transformation construction, it is

not clear what option other transformations chose. We compared the results of our case

study to a previous case study by Klare et al. [22] and Syma [46]. They explored issues

with change propagation in simple, linear networks of bidirectional transformations while

the network in our case study is a dense network with redundant paths. This means there

may be two or more concatenations of transformations that relate the same metamodels

across di�erent other metamodels. Their classi�cation has some di�erences to ours, as

they take a broader look at issues in networks of bidirectional transformations but also

exclude some types of mistakes and faults. We can con�rm through our results that they

propose a complete and correct classi�cation that ful�lls its purpose. The other way round,

their results also con�rm the completeness of our classi�cation due to the similarity of

both classi�cations. We propose a hybrid classi�cation for failures that combines aspects

both of our and their classi�cation (see Figure 5.1).

In conclusion, we observed that the most common failure type is failures of duplicate

creation. The most common faults are faults of not checking if other model transforma-

tions already previously created a matching element when creating a model element. It

is the manifestation of not considering that transformation may be used in a network of

transformations. Almost all of the observed mistakes, faults, and, therefore also failures

can be prevented during the transformation construction. Transformation developers can

use the prevention strategies we proposed to prevent mistakes during the transformation

construction. Network designers can use the knowledge regarding the choices transforma-

tions have to make, to spot unpreventable faults when assembling the network. This thesis
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o�ers the following bene�ts. First, the three prevention strategies allow transformation

developers to systematically avoid a large number of faults during the creation of the

transformations by implementing their proposed patterns. Additionally, the classi�cation

of mistakes, faults, and failures increases the awareness of developers for those issues

and therefore helps to avoid making mistakes. Finally, network developers bene�t from

the systematic knowledge regarding how choices made by transformations lead to un-

preventable faults. This knowledge assists them in spotting and resolving faults when

assembling a network by combining transformations.

9.2. Future Work

We discuss future work in the following. We used only a subset of the test cases for the

third and fourth stages due to the time constraints of this thesis. Therefore, we plan on

using the remaining tests to �nd further mistakes, faults, and failures. Which we then

plan on using to con�rm further our classi�cations and our conclusions on networks of

bidirectional transformations. Furthermore, the set of test cases could be extended to cover

more scenarios, and therefore might allow �nding even more failures. This is intended

to be future work. Extending the network with another metamodel is also possible. This,

however, requires additional pre-existing transformations which might not be available.

Nevertheless, extending the network is a possibility for future work.

In this thesis, we abstracted from the execution order of transformations in the network.

Regarding possible future work, one might consider �nding an approach to determine an

optimal execution order of the di�erent transformations in the network. However, there is

no optimal execution order in many cases. Consequentially, it might be required to �nd a

heuristic that gives an approximate solution, for example, by trying to reduce the average

number of issues.
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A. Appendix

PCM Element UML Element Java Element

Repository Package Package

System Package Package

System Class Class

System Class CompilationUnit

RepositoryComponent Package Package

RepositoryComponent Class Class

RepositoryComponent Class Compilation Unit

RepositoryComponent Operation Constructor

OperationInterface Interface Interface

OperationInterface Interface Compilation Unit

PrimitveDataType PrimitiveDataType PrimitiveType

CompositeDataType Class Class

CompositeDataType Class Compilation Unit

CompositeDataType Generalization TypeReference

CollectionDataType Parameter OrdinaryParameter

InnerDeclaration Property Field

OperationSignature Operation InterfaceMethod

OperationSignature Parameter (Return) Method

Parameter Parameter OrdinaryParameter

RequiredRole Property Field

RequiredRole Parameter OrdinaryParameter

ProvidedRole Realization ConcreteClassi�er

AssemblyContext Property Field

AssemblyContext Operation Constructor

AssemblyContext - Classi�erImport

AssemblyContext - NewConstructorCall

- Enumeration Enumeration

- Enumeration Compilation Unit

- EnumerationLiteral EnumerationConstant

- Operation ClassMethod

Table A.1.: Incomplete list of the element mappings that describe the three transformations

TPCM↔UML, TUML↔Java , and TPCM↔Java . Each row represents an implicit n-ary

element mapping formed by the transformations. Note that this is just an

overview, for the detailed transformations rules we refer to [46, 6].
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