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Abstract 

Background and Objectives: Diabetes mellitus (DM) is a risk factor for periodontal 

diseases and may exacerbate the progression of the pathogenesis of periodontitis.  

Advanced glycation end-products (AGEs) cause DM complications relative to levels of 

glycemic control and larger amounts accumulate in the periodontal tissues of patients 

with periodontitis and DM.  In the present study, we investigated the effects of AGEs 

on the expression of inflammation-related factors in human gingival fibroblasts (HGFs) 

in order to elucidate the impact of AGEs on DM-associated periodontitis. 

Materials and Methods: HGFs were cultured with or without AGEs.  Cell viability was 

examined, and RNA and protein fractions were isolated from AGE-treated cells.  The 

expression of IL-6, ICAM-1, and the receptor for AGE (RAGE) was investigated using 

RT-PCR, quantitative real-time PCR, and ELISA, and reactive oxygen species (ROS) 

activity was measured using a kit with 2’,7’-dichlorofluorescin diacetate.  Human 

monocytic cells (THP-1) labelled with a fluorescent reagent were co-cultured with 

HGFs treated with AGEs and IL-6 siRNA, and the adhesive activity of THP-1 cells to 

HGFs was assessed.  The expression of IL-6 and ICAM-1 was examined when HGFs 

were pretreated with recombinant human IL-6 (rhIL-6), the siRNAs of RAGE and IL-6, 
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and inhibitors of MAPK and NF-κB, and then cultured with and without AGEs.  The 

phosphorylation of MAPK and NF-κB was assessed using Western blotting. 

Results: AGEs increased the mRNA and protein expressions of RAGE, IL-6, ICAM-1 

and ROS activity in HGFs, and promoted the adhesion of THP-1 cells to HGFs, but had 

no effect on cell viability until 72 h.  rhIL-6 increased ICAM-1 expression in HGFs, 

while the siRNAs of RAGE and IL-6 inhibited AGE-induced IL6 and ICAM1 mRNA 

expression, and IL-6 siRNA depressed AGE-induced THP-1 cell adhesion.  AGEs 

increased the phosphorylation of p38 and ERK MAPKs, p65 NF-κB, and IκBα, while 

inhibitors of p38, ERK MAPKs, and NF-κB significantly decreased AGE-induced IL-6 

and ICAM-1 expression. 

Conclusions: AGEs increase IL-6 and ICAM-1 expression via the RAGE, MAPK and 

NF-κB pathways in HGFs and may exacerbate the progression of the pathogenesis of 

periodontal diseases. 
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Introduction 

Diabetes mellitus (DM) is a major risk factor for periodontal diseases and the 

prevalence of periodontitis is higher in patients with DM than in individuals without 

DM (1,2).  Epidemiological studies reported that clinical attachment loss and the risk 

of alveolar bone loss were greater in patients with uncontrolled DM than in individuals 

without DM (3,4) and periodontitis in patients with DM was sometimes associated with 

severe inflammation and the destruction of periodontal tissues (DM-associated 

periodontitis) (5-7).  DM induces inflammatory responses in kidney, blood vessels, 

retina, and nerve tissues, and induces serious complications including nephropathy, 

neuropathy, and retinopathy, which exacerbate systemic conditions (8,9).  

Hyperglycemia occurs in DM and strongly induces the glycation of proteins via the 

non-enzymatic Maillard reaction, resulting in the production of advanced glycation 

end-products (AGEs) (10).  AGEs bind to the receptor for AGE (RAGE) and increase 

the expression of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α, enhance 

oxidative stress activity in some cells (11), cross-link extracellular matrix (ECM) 

proteins such as collagen and fibronectin, accumulate on the ECM, and weaken the 

structure of the ECM and bone (12). 
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     AGEs accumulate in periodontal tissues in greater amounts in patients with DM 

than in individuals without DM (13) and are present in epithelial cells, fibroblasts, 

endothelial cells, and inflammatory cells in the periodontal tissues of patients with DM 

(14).  RAGE is also known to be expressed in the gingival tissues of patients with DM 

(15), and RAGE mRNA expression in human gingival fibroblasts (HGFs) was 

previously shown to be increased by AGEs (16).  AGEs inhibit collagen synthesis in 

HGFs (17), increase the expression of matrix metalloproteinase 1 (MMP-1) in HGFs 

(18), and decrease alkaline phosphatase activity and osteocalcin expression, but increase 

IL-1β expression in rat osteoblastic cells (19).  These findings suggest that AGEs 

aggravate inflammation, the destruction of periodontal tissues, and bone resorption in 

DM-associated periodontitis. 

     Interleukin-6 (IL-6), a pro-inflammatory cytokine, is expressed in some cells 

including fibroblasts, epithelial cells, endothelial cells, osteoclasts, lymphocytes, and 

monocytes/macrophages, and influences inflammatory diseases including rheumatoid 

arthritis and periodontal diseases (20).  IL-6 levels in the gingiva and peripheral blood 

were previously reported to be significantly higher in patients with periodontitis and 

type 2 DM than in patients with periodontitis, but without DM (21,22).  When 

peripheral blood from patients with periodontitis and type 2 DM was stimulated with 
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Porphyromonas gingivalis (P. gingivalis)-lipopolysaccharide (P.g-LPS), IL-6 levels in 

blood increased more than in that from individuals without DM (22).  Chiu et al. (23) 

recently showed that high glucose concentrations and AGEs as well as P.g-LPS 

increased IL-6 and IL-8 levels in HGFs.  IL-6 is strongly expressed in periodontitis 

and DM and appears to play a role in the associated inflammatory responses. 

     Intercellular adhesion molecule-1 (ICAM-1) is a member of the immunoglobulin 

superfamily and is expressed on the membranes of some cells including endothelial 

cells, leukocytes, epithelial cells, and fibroblasts, and its levels are increased by 

bacterial pathogens and pro-inflammatory cytokines (24,25).  ICAM-1 binds to 

lymphocyte function-associated antigen-1 (LFA-1) on leukocytes and monocytes, and 

functions in the adhesion and migration of these cells at inflammatory sites (25,26,27).  

P.g-LPS has been shown to increase ICAM-1 expression in the fibroblasts of gingival 

tissue with periodontal diseases, and soluble ICAM-1 serum levels were higher in 

periodontitis patients than in healthy individuals (28).  P. gingivalis and 

Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) increased the 

expression of ICAM-1 and IL-6 in human endothelial cells and gingival epithelial cells 

(29,30).  On the other hand, plasma ICAM-1 levels were higher in patients with type 2 

DM than in individuals with normal glucose tolerance (31), and AGEs increased the 
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gene expression of ICAM1 and RAGE in human umbilical vein endothelial cells (32).  

These findings suggest that ICAM-1 is associated with the pathogenesis of periodontitis 

and DM.  

     In order to elucidate the mechanisms responsible for the DM-induced aggravation 

of periodontal diseases, we investigated the effects of AGEs on the expression of 

inflammation-related factors, particularly IL-6 and ICAM-1, in HGFs and also 

examined the AGE signaling pathway.    

 

Materials and Methods 

AGEs and reagents 

AGEs were prepared according to the modified method of Takeuchi et al (33).  Briefly, 

50 mg/ml bovine serum albumin (BSA: Sigma-Aldrich; St. Luis, MO, USA) was mixed 

with DL-glyceraldehyde (0.1 M, Sigma-Aldrich), penicillin (100 U/ml), and 

streptomycin (100 µg/ml) in a sterile phosphate buffer (0.2 M, pH7.4) and incubated at 

37°C for 7 days.  The mixture was dialyzed against phosphate-buffered saline (PBS, 

pH7.4) to remove low-molecular-weight reactants and free glyceraldehyde.  

Non-glycated BSA as a control was prepared from the mixture without glyceraldehyde 

under the same conditions.  AGE activity was assessed by the fluorescence of AGE 
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and non-glycated BSA solutions at excitation/emission wavelengths of 370/440 nm.  

The fluorescence of the AGE solution was 45-fold stronger than that of control 

non-glycated BSA.  Dulbecco’s Modified Eagle’s Medium (DMEM), RPMI-1640 

Medium, SB203580, and U0126 were obtained from Wako Pure Chemical Industries 

(Osaka, Japan) and fetal bovine serum (FBS) was from Biowest (Nuaillé, France).  

The Cell ExplorerTM Fixable Live Cell Tracking Kit (Green Fluorescence) was from 

AAT Bioquest® (Sunnyvale, CA, USA).  Recombinant human IL-6 (rhIL-6) was 

purchased from R&D systems (Minneapolis, MN, USA).  SP600125 was from 

CALBIOCHEM (Darmstadt, Germany) and Bay11-7082 from Selleckchem (Houston, 

TX, USA).  Antibodies against RAGE (#4679), p38 (phospho-p38 MAPK antibody: 

#4631, p38 antibody: #9212),  ERK (phospho-p44/42 MAPK antibody: #4376, p44/42 

MAPK antibody: #9102), JNK (phospho-SAPK/JNK antibody: #9251, SAPK/JNK 

antibody: #9252), p65 (phospho-NF-κB p65 antibody: #3033, NF-κB p65 antibody: 

#8242), IκBα (phospho-IκBα antibody: #2859, IκBα antibody: #4814), and horseradish 

peroxidase-conjugated goat anti-rabbit IgG were obtained from Cell Signaling 

Technology (Beverly, MA, USA).  The β-actin antibody (#A2066) was obtained from 

Sigma-Aldrich. 
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Cell Culture 

The HGF cell line CRL-2014® was obtained from ATCC (Manassas, VA, USA).  

HGFs were seeded at 4800 cells/cm2 and cultured in DMEM supplemented with 10% 

FBS, penicillin, and streptomycin (growth medium) for five days and reached 

sub-confluency.  HGFs were cultured with or without 50-1000 µg/ml of BSA or AGEs 

for 24-96 h and used in the cell proliferation assay, reverse transcription-polymerase 

chain reaction (RT-PCR), quantitative real-time PCR (qRT-PCR), Western blotting, 

ELISA, and ROS assay.  In experiments using rhIL-6, sub-confluent HGFs were 

pre-cultured in DMEM-2% FBS for 24 h and then cultured with rhIL-6 (50 ng/ml) for 

24 h (qRT-PCR) and 48 h (ELISA).  In other experiment using MAPK and NF-κB 

inhibitors, HGFs were pre-cultured in DMEM-2% FBS for 24 h after sub-confluency 

and treated with MAPK inhibitors including SB203580 (30 µM), U0126 (10 µM), or 

SP600125 (10 µM) for 2 h or with an NF-κB inhibitor (Bay11-7082; 50 µM) for 24 h, 

and were then further cultured with 500 µg/ml BSA or AGEs for 24 h (qRT-PCR) and 

48 h (ELISA).  In assays on cell viability, ROS and cell adhesion, HGFs were seeded 

on a 96-welll plate (SUMITOMO BAKELITE, Tokyo, Japan) and 96-welll black plate 

(Thermo Scientific™ Nunclon™, Waltham, MA) at 4800 cells/m2, cultured in DMEM 

supplemented with 10% FBS for 5 days, and then used for cell viability, ROS and cell 
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adhesion assays, respectively.  THP-1 cells were cultured in RPMI-1640 medium 

containing 10% FBS and antibiotics and then used in cell adhesion assays with HGFs. 

 

Cell viability assay 

After sub-confluency, cell proliferation activity was examined using Cell Counting 

Kit-8 (CCK-8, DOJINDO, Kumamoto, Japan) according to the manufacturer’s 

instructions.  Briefly, cells were cultured with 500 µg/ml BSA or AGEs for 24, 48, 72, 

and 96 h, and were then incubated with 10 µl CCK-8 solution at 37°C for 2 h under a 

moist atmosphere with 5 % CO2.  The absorbance of each well was measured at 450 

nm using a microplate reader (iMark™, Bio-Rad, Hercules, CA).  The morphologies 

of cells treated with AGEs and BSA were observed using a phase contrast microscope at 

40-fold magnification. 

 

RT-PCR and quantitative real-time PCR 

Total RNA was isolated from treated cells using the RNeasy
® Mini Kit (QIAGEN, 

Hilden, Germany) and used for cDNA synthesis using the PrimeScript® II 1st strand 

cDNA Synthesis Kit (TaKaRa Bio, Otsu, Japan) according to the manufacturer's 

instructions.  In RT-PCR, cDNA was added to the PCR mixture containing each primer 
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(Table 1), dNTPs, TaKaRa Taq™ HS, and PCR buffer (TaKaRa Bio).  The PCR 

mixture was amplified for 34-40 cycles under the following conditions: denaturing at 

94°C for 1 min, annealing at 55-60°C for 1 min, and extension at 72°C for 1 min.  

PCR products were analyzed by electrophoresis on a 1.5% agarose gel containing 0.1 

µg/ml ethidium bromide.  The expression of genes including RAGE, IL6, ICAM1, 

MCP1, VEGF (vascular endothelial growth factor), and GAPDH (glyceraldehyde 

3-phosphate dehydrogenase) was investigated by RT-PCR.  In qRT-PCR, the cDNA of 

IL-6, ICAM-1, or GAPDH was added to the PCR mixture containing primers (Table 1) 

and SYBR Green Supermix® (Bio-Rad, Hercules, CA, USA).  The reaction was 

performed at 95°C for 30 s once, at 95°C for 5 s for 40 cycles, and at 60°C for 30 s 

using the CFX96
TM

 Real-Time PCR Detection System (Bio-Rad).  The relative mRNA 

levels of IL6 and ICAM1 were normalized to GAPDH mRNA. 

 

Western blotting 

HGFs were cultured with 500 µg/ml BSA or AGEs for 30 min (MAPK and NF-κB 

phosphorylation assays) and 24 h (RAGE western blot analysis), and cell lysates were 

extracted in lysis buffer including 10 mM Tris-HCl, pH 7.4, 50 mM NaCl, 5 mM EDTA, 

1 mM sodium orthovanadate, 1 % NP-40, and protease inhibitor cocktail (CompleteTM; 
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Roche Diagnosis, Berkeley, CA).  Total protein (10 µg) was electrophoretically 

separated on a denaturing 10 % polyacrylamide gel and transferred to a polyvinylidene 

difluoride membrane (Amersham Hybond-P: GE Healthcare Life Sciences, 

Buckinghamshire, UK).  The membrane was blocked with PVDF Blocking Reagent 

for CanGet Signal
®

 (TOYOBO, Osaka, Japan) at room temperature for 1.5 h and 

proteins on the membrane were reacted with rabbit antibodies (1/1000 dilution) against 

RAGE, p38 and phospho-p38, p44/42 (ERK) and phospho-ERK, SAPK/JNK (JNK) and 

phospho-JNK, p65- and phospho-p65, and IκBα and phospho-IκBα, and with a β-actin 

rabbit antibody (1/10000 dilution) at 4°C overnight, and then reacted with horseradish 

peroxidase-conjugated goat anti-rabbit IgG (Cell Signaling) at room temperature for 1.5 

h.  The reacted membrane was developed using ECL Western Blotting Detection 

Reagents (GE Healthcare Life Sciences) and exposed to Hyperfilm-ECL (GE 

Healthcare). 

 

ELISA 

The conditioned medium (supernatant) and cell lysate were collected from the culture of 

HGFs treated with AGEs or BSA for 48 h in order to examine the effects of AGEs on 

the production of IL-6 and ICAM-1.  The supernatant was mixed with protease 
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inhibitor cocktail and cell lysates were extracted with a lysis buffer including 10 mM 

Tris-HCl, pH 7.4, 50 mM NaCl, 5 mM EDTA, 1 mM sodium orthovanadate, 1 % NP-40, 

and protease inhibitor cocktail.  IL-6 in the supernatant was measured using the 

Human IL-6 ELISA kit (R&D Systems, Minneapolis, MN, USA) according to the 

manufacturer’s instructions.  ICAM-1 in cell lysates was determined using the Human 

ICAM1 ELISA kit (Biosensis, Thebarton, Australia).  Total protein amounts in cell 

lysates were measured using the Bio-Rad protein assay reagent (Bio-Rad) and ICAM-1 

levels were normalized to the total cell protein concentration. 

 

Reactive oxygen species (ROS) measurement 

Intracellular ROS levels were measured using the OxiSelectTM Intracellular ROS Assay 

kit (Cell Biolabs, San Diego, CA).  Briefly, HGFs were cultured in a 96-well black 

plate for 5 days and further incubated with 2’, 7’-dichlorofluorescin diacetate 

(DCFH-DA, 20µM) at 37°C for 1 h.  After cell washing with PBS, cells were 

stimulated with 500 µg/ml of BSA or AGEs for 6-72 h.  DCFH-DA that diffused into 

cells was de-acetylated by cellular esterases to non-fluorescent 2’7’-dichlorofluorescein 

(DCF), the fluorescence of which shows the ROS level in a cell sample.  Fluorescent 

was assessed at 480 nm/530 nm using the VarioskanTM Flash Multimode Reader 
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(Thermo Scientific™, Waltham, MA).  

 

Transfection of RAGE and IL-6 siRNAs 

HGFs were seeded at 9500 cells/cm2 and cultured in DMEM supplemented with 10% 

FBS to approximately 70% confluency.  Medium was changed to DMEM with 2% 

FBS, and HGFs were then transfected with RAGE siRNA (10µM, BIONEER, Daejeon, 

Korea), IL-6 siRNA (10µM, Sigma-Aldrich), or control siRNA (10µM, Sigma-Aldrich) 

dissolved in Opti-MEM Medium (Invitrogen, Carlsbad, CA, USA) and Lipofectamine
®

 

RNA iMAX Reagent (Invitrogen) according to the manufacturer's instructions.  After a 

24 h culture, cells were treated with 500 µg/ml BSA or AGE for 48 h.  Total RNA was 

extracted from cells transfected with each siRNA, and RAGE mRNA expression was 

confirmed by RT-PCR, and the expression of IL6 and ICAM1 mRNAs was investigated 

by qRT-PCR. 

 

Cell adhesion assay 

THP-1 cells were seeded at 1.5 x 106 cells/ml in culture medium and labelled with the 

Cell ExplorerTM Fixable Live Cell Tracking Kit (Green Fluorescence) for cell adhesion 

assay according to the manufacturer’s instruction.  Briefly, a cell suspension was 
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mixed with an equal volume of the fluorescent reagent and incubated for 30 min in a 

CO2 incubator.  After washing in PBS three times, labelled THP-1 cells were added to 

HGFs treated with AGEs or IL-6 siRNA and then co-cultured for 30 min.  Cells were 

washed with PBS three times to remove unattached THP-1 cells and observed using an 

inverted fluorescence microscope (ECLIPSE Ti-U, Nikon, Tokyo, Japan) at 

Ex/Em=490/520 nm and its NIS-Elements software (Nikon).  The fluorescence 

intensity of labeled THP-1 cells that attached to HGFs was measured using a 

fluorescence microplate reader (TECAN Infinite®    M200Pro, TECAN, Seestrasse, 

Switzerland) at Ex/Em=490/520 nm.  In experiments of HGFs transfected with IL-6 

siRNA, HGFs were transfected with IL-6 siRNA (10 µM, Sigma-Aldrich) or control 

siRNA (10 µM) and then treated with AGEs (500 µg/ml) and BSA for 24 h.  The 

fluorescence intensity of labeled THP-1 cells that adhered to the treated HGFs was 

assessed using a fluorescence microplate reader.  Cell adhesive activity was 

normalized to that of untreated (control) HGFs or HGFs treated with BSA. 

 

Statistical analysis 

All statistical analyses were performed with SPSS Statistics version 20 (IBM, Chicago, 

IL).  The significance of differences between two groups was analyzed by the 
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Student’s t-test.  Comparisons of multiple groups were performed using a one-way 

analysis of variance (ANOVA) followed by Tukey’s HSD.  P values less than 0.05 

were considered to be significant.   

 

Results 

AGEs do not affect the cell viability and morphology of HGFs cultured for 72 h 

AGEs (500 µg/ml) did not affect the cell viability of HGFs by 72 h (Fig. 1A); however, 

cell viability significantly decreased by 96 h under culture conditions with AGEs (500 

µg/ml) and BSA (500 µg/ml).  AGEs did not affect cellular morphology when cells 

were cultured with AGEs and BSA (500 µg/ml each) for 72 h (Fig. 1B). 

 

AGEs increase the expressions of RAGE, IL-6, ICAM-1 and ROS activity  

AGEs (500 µg/ml) increased the mRNA expression of RAGE, IL6 and ICAM1 for 24-48 

h, but did not markedly affect that of MCP1 and VEGF by 72 h when the mRNA 

expression of factors was investigated by RT-PCR (Fig. 2A).  AGEs dose-dependently 

(0-500 µg/ml) increased the mRNA expression of IL6 to approximately 2-fold that of 

the control (Fig. 2B) in the qRT-PCR assay, and 500 µg/ml of AGEs significantly 

increased the mRNA expression of ICAM1 by approximately 3-fold (Fig. 2C). 
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   AGEs (500 µg/ml) increased RAGE production in HGFs more than BSA for 24 h 

(Fig. 3A).  When HGFs were cultured with AGE (500 µg/ml) and BSA for 48 h, the 

production of IL-6 and ICAM-1 was significantly up-regulated by approximately 2-fold 

and 3-fold, respectively (Fig. 3B and 3C).  Furthermore, AGEs (500 µg/ml) 

significantly increased ROS activity in HGFs at 6 h in a time-dependent manner, and 

this activity was approximately 3-fold that of the control at 72 h (Fig. 3D).   

 

IL-6 increases ICAM-1 expression and RAGE and IL-6 siRNAs inhibit 

AGE-induced IL6 and ICAM1 expression in HGFs  

In order to investigate the mechanisms underlying AGE-induced IL-6 and ICAM-1 

expression, HGFs were cultured with rhIL-6 (50 ng/ml) for 24 h (qRT-PCR) and 48 h 

(ELISA).  rhIL-6 significantly increased the mRNA expression of ICAM1 by 1.9-fold 

that of the control (Fig. 4A) and the expression of ICAM-1 protein by approximately 

3-fold (rhIL-6: 1.58 ng/mg total protein) that of the control (0.52 ng/mg total protein) 

(Fig. 4B). 

     When HGFs were cultured with RAGE siRNA and then with AGEs, RAGE 

mRNA expression was inhibited (Fig. 4C) and AGE-induced IL6 and ICAM1 expression 

was significantly decreased by the knockdown of RAGE (Fig. 4D and 4E).  IL-6 
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siRNA down-regulated the expression of IL6 in HGFs stimulated by AGEs and BSA 

(Fig. 4F) and significantly decreased AGE-induced ICAM1 expression to lower levels 

than that induced by BSA (Fig. 4G). 

 

AGEs up-regulate IL-6 and ICAM-1 expression via MAPK and NF-κκκκB pathways 

The involvement of the MAPK pathway in AGE-induced IL-6 and ICAM-1 expression 

were investigated.  When HGFs were stimulated by AGEs, the phosphorylation of p38 

and ERK MAPK in cells was enhanced by AGEs, whereas that of JNK was not (Fig. 

5A).  AGEs increased the expression of IL6 mRNA and the IL-6 protein in HGFs, and 

a p38 inhibitor (SB203580) and ERK inhibitor (U0126) significantly inhibited 

AGE-induced IL-6 expression at the mRNA and protein levels (Fig. 5B and 5D).  

However, a JNK inhibitor (SP600125) did not exert a significant inhibitory effect on 

AGE-induced IL-6 expression (mRNA and protein).  In the expression of ICAM-1, 

SB203580 (p38 inhibitor) and U0126 (ERK inhibitor) clearly inhibited the 

AGE-induced expression of IACM1 mRNA and the ICAM-1 protein, whereas 

SP600125 (JNK inhibitor) had no effect (Fig. 5C and 5E).   

     When the involvement of NF-κB in AGE-induced IL-6 and ICAM-1 expression 

was investigated, AGEs were found to increase the phosphorylation of p65 and IκBα 
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more than BSA (Fig. 6A).  Bay11-7082 (NF-κB inhibitor) significantly decreased 

AGE- induced IL-6 expression at the mRNA and protein levels (Fig. 6B and 6D).  The 

NF-κB inhibitor also significantly down-regulated the expressions of ICAM1 mRNA 

and the ICAM-1 protein in HGFs stimulated by AGEs (Fig. 6C and 6E).  These results 

showed that the p38, ERK MAPK and NF-κB pathways are involved in AGE-induced 

IL-6 and ICAM-1 expression in HGFs. 

 

AGEs increase the adhesion of THP-1 cells to HGFs and IL-6 siRNA inhibits 

AGE-induced cell adhesion 

THP-1 cells adhered to HGFs when both cells were co-cultured and the adhesion of 

THP-1 cells was increased by AGEs (Fig. 7A).  AGEs (500 µg/ml) significantly 

up-regulated THP-1 cell adhesion to HGFs by approximately 1.4-fold that of BSA (Fig. 

7B).  The adhesion of THP-1 cells to HGFs significantly decreased when IL6 

expression in HGFs was inhibited by IL-6 siRNA and their adhesive level was 

approximately 58% that of AGE-stimulated adhesion (Fig. 7C). 

 

Discussion 

AGEs induce increases in inflammation and up-regulation of tissue degradation in 
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patients with DM resulting in end-organ complications such as microvascular diseases, 

nephropathy, neuropathy and retinopathy (8).  AGEs increase the expression of 

pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in some tissues (11) and 

inhibit collagen synthesis in gingival fibroblasts (17).  Sakamoto et al. (19) reported 

that AGEs increased IL-1β expression and decreased bone nodule formation, alkaline 

phosphatase activity, and osteocalcin production in osteoblastic cells from rat bone 

marrow.  AGEs and P. gingivalis-LPS exposure further increased IL-1β expression in 

osteoblastic cells (19).  AGEs and the pathogens of periodontitis are considered to 

aggravate inflammation and degrade periodontal tissues in patients with periodontitis 

and DM. 

     IL-6 levels were previously reported to be high in the periodontal tissues and 

gingival crevicular fluid of patients with periodontitis (34,35).  IL-1β and IL-6 levels 

in periodontal tissues were higher in patients with periodontitis and DM than in those 

with periodontitis, but not DM (21).  IL-6 promotes the progression of periodontitis by 

inducing the expressions of proMMP-1, VEGF, and cathepsins in HGFs (36) and 

MMP-1 in human macrophages (37) as well as osteoclast formation (38).   Sundararaji 

et al. (37) reported that a high glucose concentration (25 mM) increased IL-6 secretion 

from HGFs, and IL-6 levels from HGFs cultured in medium with high glucose 
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concentrations and LPS were higher than those in medium with high glucose 

concentrations, but no LPS.  AGEs are known to accumulate at greater amounts in the 

gingival tissues of DM patients than in those of individuals without DM (13).  The 

combination of high glucose concentrations and AGEs more strongly up-regulated IL-6 

production, while the combination of AGEs and P.g-LPS under high glucose conditions 

synergistically increased IL-8 expression in HGFs (23).  In the present study, AGEs 

increased IL-6 expression in HGFs and promoted the production of IL-6 and ROS 

activity in combination with P.g-LPS (data not shown).  In addition, the combination 

of AGEs and P.g-LPS further increased the expression of inflammation-related factors 

and inhibited the differentiation of osteoblastic cells (19).  These findings suggest that 

high glucose concentrations and AGEs induce inflammation in periodontal tissues by 

up-regulating IL-1β, IL-6 and IL-8 expression in DM, and the combination of P.g-LPS, 

hyperglycemia and AGEs may induce severe DM-associated periodontitis.   

ICAM-1 influences the conditions of periodontitis and DM through its functions 

such as intercellular adhesion, migration, and immunological actions in leukocytes, 

endothelial cells, fibroblasts, and monocytes/macrophages (25,27-29,31).  The 

expression of ICAM-1 is up-regulated by pro-inflammatory cytokines, and 

periodontopathic bacteria and their LPS in gingival fibroblasts, gingival epithelial cells, 
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and endothelial cells (28-30).  In the present study, AGEs up-regulated the expression 

of RAGE, IL-6, and ICAM-1 in HGFs, and this was similar to the findings reported by 

Matsui showing that AGEs increased RAGE and ICAM-1 expression in umbilical vein 

endothelial cells (32).  HGFs express ICAM-1 and THP-1 cells express LFA-1, which 

binds to ICAM-1 (39) and adheres to synovial fibroblasts (27).  AGEs may recruit 

inflammatory cells to sites of periodontitis because AGEs increased an adhesive activity 

of monocytes (THP-1 cells) to HGFs in the present study.  Furthermore, AGEs appear 

to influence inflammation in periodontitis and DM by binding to RAGE and regulating 

IL-6 and ICAM-1 expression in some cells in periodontal tissues because the 

knockdown of IL-6 in HGFs inhibited AGE-induced monocyte adhesion to HGFs. 

Although AGEs up-regulated IL-6 and ICAM-1 expression in HGFs, the 

relationship between IL-6 and ICAM-1 expression currently remains unclear.  IL-6 did 

not stimulate ICAM-1 expression in rat mesangial cells (40).  In contrast, IL-6 induced 

ICAM-1 expression in human intestinal epithelial cells by activating NF-κB (41), and 

ICAM-1 expression in human synovial cells was increased by IL-6 and the soluble IL-6 

receptor (sIL-6R), while an anti-ICAM-1 antibody suppressed IL-6-induced- 

osteoclastogenesis in RAW cells co-cultured with synovial cells (42).  We investigated 

the effects of IL-6 on ICAM-1 expression when HGFs were cultured with rhIL-6, and 
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rhIL-6 significantly increased the expression of ICAM1 mRNA (by approximately 

2-fold of the control) and the ICAM-1 protein (by 3-fold of the control) in HGFs.  

Furthermore, the AGE-induced up-regulation of ICAM-1 and adhesion of THP-1 cells 

to HGFs were significantly inhibited by siRNA for IL-6, suggesting that AGEs increase 

ICAM-1 expression by up-regulating of IL-6 in HGFs and may exacerbate 

inflammation in periodontal tissues. 

In the present study, AGEs increased the levels of ROS as well as IL-6 and 

ICAM-1 in HGFs.  ROS damage periodontal tissues by degrading ECM proteins, 

inducing alveolar bone loss, and aggravating periodontal tissue destruction in 

periodontitis (43,44).  AGEs increased plasminogen activator inhibitor-1 levels via 

ROS and the ERK and NF-κB pathways in human glomerular mesangial cells (45), 

up-regulated RAGE protein and intracellular ROS levels through ERK activation, 

induced mitogenesis in renal fibroblasts (46), and consequently influenced the 

pathogenesis of diabetic nephropathy.  We speculate that AGEs exacerbate the 

progression of DM- associated periodontitis by stimulating inflammatory cytokines and 

ROS in gingival fibroblasts. 

AGEs bind to RAGE on endothelial cells, epithelial cells, and fibroblasts in 

periodontal tissues (15,16), and RAGE is known to be strongly expressed in the gingiva 
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of patients with DM and periodontitis (47).  AGEs induced MMP-1 expression via 

RAGE and NF-κB in fibroblasts isolated from human gingival tissues (18), and also 

increased IL-6, MCP-1, and VCAM-1 expression and stimulated migration capacity via 

the ERK, JNK, p38 MAPK, and NF-κB pathways in adventitial fibroblasts (48).  

AGE-induced collagen synthesis in cardiac fibroblasts was down-regulated by inhibitors 

of ERK and p38 MAPK (49).  Nε-(carboxymethyl) lysine (CML) is a prevalent AGE, 

and CML-collagen induced apoptosis in human dermal fibroblasts, while inhibitors of 

ROS, p38 and JNK MAPK reduced CML-collagen-induced apoptosis in fibroblasts (50, 

51).  These findings and our results suggest that AGEs influence DM complications 

via the RAGE, MAPK, and NF-κB pathways.  Therefore, AGEs aggravate 

inflammatory responses by up-regulating IL-6 and ICAM-1 expression via the RAGE, 

MAKP, and NF-κB pathways in gingival fibroblasts and influence the pathogenesis of 

DM-associated periodontitis.  The blockade of this AGE signaling pathway has 

potential in the treatment of DM-associated periodontitis. 
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Figure legends 

Figure 1.  Effects of AGEs on cell viability and morphology of HGFs 

(A) HGFs were seeded at 4800 cells/cm2, cultured for five days, and then treated with 

fresh BSA (500 µg/ml; open column) and AGEs (500 µg/ml; closed column) every day 

for 24-96 h.  Cell proliferation activity was assessed using Cell Counting Kit-8®.  

Data are expressed as the mean±SD of three independent experiments (** P<0.01).  

(B) Cultured HGFs were observed by phase-contrast microscopy after a culture with or 

without BSA (500 µg/ml) and AGEs (500 µg/ml) for 72 h.  (Magnification x 40). 

 

Figure 2.  Effects of AGEs on the gene expression of RAGE and inflammation- 

related factors in HGFs 

(A) Sub-confluent HGFs were cultured with BSA (500 µg/ml) and AGEs (500 µg/ml) 

for 24, 48, and 72h.  Isolated RNAs were analyzed by RT-PCR using specific primers 

for RAGE, IL6, ICAM1, MCP1, VEGF, and GAPDH (Table 1).  (B) RNA samples were 

isolated from HGFs treated with BSA (0-1000 µg/ml; open column) and AGEs 

(50-1000 µg/ml; closed column) for 48 h and IL6 mRNA expression was analyzed by 

qRT-PCR.  (C) ICAM1 mRNA expression in HGFs treated with BSA (500 µg/ml; open 

column) and AGEs (500 µg/ml; closed column) for 48 h was assessed by qRT-PCR.  
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mRNA expression was normalized to that of GAPDH.  Data are expressed as the mean

±SD of three independent experiments (* P<0.05, ** P<0.01). 

 

Figure 3.  Effects of AGEs on the productions of RAGE, IL-6, and ICAM-1 and 

ROS activity in HGFs  

(A) Sub-confluent HGFs were treated with BSA (500 µg/ml) and AGEs (500 µg/ml) for 

24 h.  Cell lysates were analyzed by Western blotting using a RAGE antibody as 

described in the Materials and Methods.  The results obtained show a representative of 

three independent experiments.  (B, C) Sub-confluent HGFs were treated with BSA 

(500 µg/ml; open column) and AGEs (500 µg/ml; closed column) for 48 h.  The 

amounts of IL-6 (B) in the supernatant and ICAM-1 (C) in the cell lysate were 

measured using each ELISA as described in the Materials and Methods.  The 

production of ICAM-1 was normalized to the total cell protein amount.  (D) ROS 

activity in HGFs treated with BSA (500 µg/ml; open diamond) and AGEs (500 µg/ml; 

closed square) for 6-72 h was assessed using a ROS activity assay kit.  Data are 

expressed as the mean±SD of three independent experiments (** P<0.01).   

 

Figure 4.  Effects of rhIL-6 on ICAM-1 expression and inhibitory effects of 
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RAGE and IL-6 siRNAs on AGE-induced IL6 and ICAM1 mRNA expression in 

HGFs 

Sub-confluent HGFs were treated with rhIL-6 (50 ng/ml) for 24 h and 48 h.  (A) RNA 

was isolated from the treated cells and the mRNA expression of ICAM1 was assayed by 

qRT-PCR.  The mRNA expressions of ICAM1 was normalized to that of GAPDH.  

(B) The amount of ICAM-1 in the lysate of treated cells was measured using ELISA as 

described in the Materials and Methods.  The production of ICAM-1 was normalized 

to the total cell protein concentration.   

     HGFs were seeded at 9500 cells/cm2, cultured for one day, reached 70% 

confluency, and then treated with control siRNA (siCont.; 10µM), RAGE siRNA 

(siRAGE; 10 µM), or IL-6 siRNA (siIL6; 10µM) for 24 h as described in the Materials 

and Methods.  HGFs were cultured further with BSA (500 µg/ml; open column) and 

AGEs (500 µg/ml; closed column) for 48 h.  RNA samples in cells transfected with 

each siRNA were isolated, the expression of RAGE mRNA was analyzed by RT-PCR 

(C), and the mRNA expression of IL6 (D and F) and ICAM1 (E and G) was assessed by 

qRT-PCR.  The mRNA expression of IL6 and ICAM1 was normalized to that of 

GAPDH.  Data are expressed as the mean±SD of three independent experiments (* 

P<0.05, ** P<0.01).   
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Figure 5.  Effects of MAPK inhibitors on AGE-induced IL-6 and ICAM-1 

expression and phosphorylation of MAPK in HGFs 

(A) Sub-confluent HGFs were treated with 500 µg/ml BSA and AGEs for 30min, and 

the cell lysate were collected.  MAPK phosphorylation in the treated cell lysates was 

analyzed by Western blotting using antibodies against p38, phospho-p38, ERK, 

phospho-ERK, JNK, and phospho-JNK.  (B-E) Sub-confluent HGFs were pretreated 

with SB2013580 (30 µM), U0126 (10 µM), and SP600125 (10 µM) for 2 h and then 

cultured with BSA (500 µg/ml; open column) or AGEs (500 µg/ml; closed column) for 

24 h.  The mRNA expression of IL6 (B) and ICAM1 (C) was assayed by qRT-PCR.  

mRNA expression was normalized to that of GAPDH.  After the culture with BSA 

(open column) and AGEs (closed column) for 48 h, the amounts of IL-6 in the 

supernatant (D) and ICAM-1 in the cell lysate (E) were measured using each ELISA kit.  

Data are expressed as the mean±SD of three independent experiments (* P<0.05, ** 

P<0.01).  

  

Figure 6.  Effects of the NF-κκκκB inhibitor on AGE-induced IL-6 and ICAM-1 

expression and phosphorylation of p65 and IkBαααα in HGFs 
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(A) Sub-confluent HGFs were treated with 500 µg/ml BSA and AGEs for 30 min, and 

the cell lysate was collected.  NF-κB phosphorylation was analyzed by Western 

blotting using antibodies against p65, phospho-p65, IκBα, and phospho-IκBα.  (B-E) 

Sub-confluent HGFs were pretreated with an IKK inhibitor; Bay11-7082 (50 µM) for 24 

h, and then cultured with BSA (500 µg/ml; open column) and AGEs (500 µg/ml; closed 

column) for 24 h.  RNA samples were isolated from the treated cells and the mRNA 

expression of IL6 (B) and ICAM1 (C) was measured by qRT-PCR.  The mRNA 

expression of IL6 and ICAM1 was normalized to that of GAPDH.  The supernatant and 

cell lysate were prepared from HGFs pre-cultured with Bay11-7082 (50 µM) for 24 h 

and then cultured with BSA (500 µg/ml; open column) and AGEs (500 µg/ml; closed 

column) for 48 h, and the amounts of IL-6 in the supernatant (D) and ICAM-1 in the 

cell lysates (E) were measured using each ELISA kit.  Data are expressed as the mean

±SD of three independent experiments (* P<0.05, ** P<0.01).   

 

Figure 7.  Effects of AGEs on THP-1 cell adhesion to HGFs and inhibitory effects 

of IL-6 siRNA on AGE-induced cell adhesion 

(A) Sub-confluent HGFs were cultured with AGEs (500 µg/ml) and BSA (500 µg/ml) 

for 48 h and then co-cultured with THP-1 cells (1.5 x 106 cells/ml) labeled with a 
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fluorescent reagent for 30 min.  THP-1 cells that adhered to HGFs were observed 

using an inverted fluorescence microscopy.  Magnification 40x.  (B) The fluorescence 

intensity of labelled THP-1 cells that adhered to HGFs was determined using a 

fluorescence microplate reader at Ex/Em=490/520 nm.  Cell adhesive activity was 

normalized to that of untreated HGFs (Cont.).  (C) In transfection experiments, THP-1 

cells (1.5 x 104 cells/ml) were labeled with a fluorescent reagent and co-cultured with 

HGFs transfected with IL-6 siRNA (10 µM) for 30 min, and fluorescence intensity was 

determined using a fluorescence microplate reader.  Cell adhesive activity was 

normalized to that of HGFs treated with BSA (BSA cont.).  Data are expressed as the 

mean±SD of four independent cell samples (* P<0.05, ** P<0.01). 
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