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Summary of Thesis

Department of Mathematics, Doctoral Thesis

Nonlinear transmission problems for the Laplace
operator: a functional analytic approach

by Riccardo Molinarolo

This dissertation is devoted to the study of two nonlinear nonautonomous

transmission boundary value problems for the Laplace operator in perturbed

domains.

From a geometrical point of view, two configurations will be considered:

singularly perturbed domains and regularly perturbed domains. The former

are obtained by removing from a given bounded open set a portion whose size

is proportional to a positive parameter ε close to 0, the latter are obtained

by removing a portion whose form is shaped by a suitable diffeomorphism

φε, which depends regularly on ε. Adopting a functional analytic approach,

we prove real analyticity theorems for the dependence of the solutions upon

the parameter that describes the singular or regular perturbation, and a local

uniqueness theorem for the solutions of the singularly perturbed boundary

value problem: this last, in particular, is an improvement of the uniqueness

results for families of solutions typically obtained in this framework.

iii



iv Summary of Thesis



Acknowledgements

The research of the author has been supported by HORIZON 2020 RISE

project “MATRIXASSAY” under project number 644175.

The author wishes to express his gratitude to Prof. Gennady Mishuris

for his high standard of professionalism, for his kindness and help during the

PhD program and most importantly for useful discussions and illuminating

comments on the problems studied in this dissertation from the application

point of view. The author sincerely acknowledges him.

This dissertation has been written under the scientific supervision of Prof.

Matteo Dalla Riva and Dr. Paolo Musolino, who introduced the author to the

Functional Analytic Approach and have known him since his Master project.

The author wishes to thank them sincerely for inspiring and supervising his

research activity. They have played, without any doubt, a key role in his

personal and, more importantly, scientific growth in the last three years: they

have dedicated to him their time, the most important thing a man has.

The author acknowledges the Aberystwyth University for giving him the

possibility of a PhD program, for the great environment provided and the

chance to meet great people. In particular, the author is indebted to the

Department of Mathematics.

The author gratefully acknowledges the University of Texas at Dallas and

v



vi Acknowledgements

the University of Tulsa for the great research environment and the friendly

atmosphere provided during the author’s secondment in the United States

of America. In particular, the author sincerely thanks all the staff of the

Department of Mathematics of the University of Tulsa: they have made that

experience unforgettable.



Contents

Declaration i

Summary of Thesis iii

Acknowledgements v

Introduction ix

Notation xxvii

1 Classical Potential Theory results 1

1.1 Harmonic functions and fundamental solution for the Laplace

operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Green’s Identities . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Single and double layer potential . . . . . . . . . . . . . . . . 6

1.4 Boundary value problems for harmonic functions . . . . . . . . 11

2 Existence results for the nonlinear transmission problem (1) 23

2.1 Representation Results . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Taylor expansion lemmas for F and uo0 . . . . . . . . . . . . . 33

2.3 Conversion of problem (1) into system of integral equations . . 35

vii



viii Contents

2.4 Limiting system . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Real analyticity results for integral operators . . . . . . . . . . 40

2.6 Application of the Implicit Function Theorem . . . . . . . . . 50

2.7 Real analytic representation of the family of solutions of prob-

lem (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Uniqueness result for the nonlinear transmission problem (1) 63

3.1 A first local uniqueness result for the solution (uoε , uiε) . . . . . 64

3.2 Some preliminary results on composition operators in Schauder

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 The auxiliary maps N and S . . . . . . . . . . . . . . . . . . . 87

3.4 A stronger local uniqueness result for the solution (uoε , uiε) . . . 90

3.5 Local uniqueness for the family of solutions . . . . . . . . . . . 107

4 Existence result for the nonlinear transmission problem (3)109

4.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Formulation of problem (3) in terms of integral equations . . . 122

4.3 The limiting system and existence result for problem (2) . . . 124

4.4 Application of the Implicit Function Theorem . . . . . . . . . 131

4.5 Real analytic representation of the family of solutions . . . . . 139

A Appendix 145

A.1 Real Analytic maps in Banach spaces and Implicit Function

Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Integral operators with real analytic kernel and no singularities 147

A.3 Leray-Schauder Theorem . . . . . . . . . . . . . . . . . . . . . 149

Bibliography 151



Introduction

This dissertation is devoted to the study of two nonlinear nonautonomous

transmission boundary value problems for the Laplace operator in perturbed

domains.

From a geometrical point of view, two configurations will be considered:

singularly perturbed domains and regularly perturbed domains. The former

are obtained by removing from a given bounded open set a portion whose size

is proportional to a positive parameter ε close to 0, the latter are obtained

by removing a portion whose form is shaped by a suitable diffeomorphism

φε. The main results consist in real analyticity theorems for the dependence

of the solutions upon the parameter that describes the regular or singular

perturbation, and a local uniqueness theorem for the solutions of the singularly

perturbed boundary value problem: this last in particular is a considerable

improvement of uniqueness results for the families of solutions typically

obtained in this framework.

The study of the behaviour of the solutions of boundary value problems

in domain with small holes or inclusions has attracted the attention of several

pure and applied mathematicians and it is impossible to provide a complete

list of contributions. From an application point of view, boundary value

problems in domains with small holes or inclusions can be the mathematical

ix
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model of the heat conduction in bodies with small cavities and impurities

and thus they are extensively studied in the theory of dilute composite and

porous materials (cf. Movchan, Movchan, and Poulton [65]). In particular,

transmission conditions like the ones that we have studied can be analytically

derived in the case of a thin reactive heat conducting interphase situated

between two different materials (see the works of Mishuris, Miszuris and

Öchsner [58], [59], and of Miszuris and Öchsner [62] and the references

therein). Moreover, we point out that nonlinear transmission conditions

arise also in the framework of elasto-plastic material (see e.g. Miszuris and

Öchsner [61] and Mishuris, Miszuris, Öchsner, and Piccolroaz [60]) and in the

framework of articular cartilage problems (cf. Vitucci, Argatov, and Mishuris

[77]).

We briefly note that the computational analysis of structures consisting of

components with very different lengths or dimensions (such analysis appears,

for example, in continuum mechanics, composite materials, meta-materials,

biological fluids, cellular lattice and the above mention frameworks) often

leads to numerical inaccuracy and instability. Thus, an analytic-mathematical

treatment of perturbed boundary value problems, which provides existence

and uniqueness results and possibly real analytic dependence of the solutions

upon the perturbation parameters, is extremely important in order to obtain

consistent numerical methods.

In literature, existence and uniqueness of solutions of nonlinear bound-

ary value problems have been largely investigated by means of variational

techniques (see, e.g., the monographs of Nečas [67] and of Roubíček [72] and

the references therein). Moreover, potential theoretic techniques have been

widely exploited to study nonlinear boundary value problems with transmis-

sion conditions by Berger, Warnecke, and Wendland [10], by Costabel and
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Stephan [21], by Gatica and Hsiao [34], and by Barrenechea and Gatica [9],

and that boundary integral methods have been applied also by Mityushev

and Rogosin for the analysis of transmission problems in the two dimensional

plane (cf. [63, Chap. 5]).

For regularly perturbed boundary value problems, in particular, the

dependence of the solution upon the domain perturbation has been considered:

here we mention the works of Keldysh [44], Sokolowski and Zolésio [75],

Henry [36] and references therein. On the other hand, boundary value

problems in singularly perturbed domains are usually studied by expansion

methods of Asymptotic Analysis. In particular we mention the works of

Ammari and collaborators [2, 3, 4, 5, 6, 7], Maz’ya, Movchan, and Nieves [54],

Nieves [68], Novotny and Sokołowski [69], the methods of matching inner

and outer expansions (cf., e.g., Il’in [39, 40]) and the multiscale expansion

method (as in Maz’ya, Nazarov, and Plamenenvskii [55]), and, in particular,

concerning nonlinear problems, Iguernane, Nazarov, Roche, Sokołowski, and

Szulc [38]. Moderately close holes have been also considered in the works of

Bonnaillie-Noël and Dambrine [11], Bonnaillie-Noël, Dambrine, and Lacave

[14], Bonnaillie-Noël, Dambrine, Tordeux, and Vial [15], and Dalla Riva and

Musolino [28, 29]; holes approaching to the boundary (cf. Bonnaillie-Noël,

Dalla Riva, Dambrine, and Musolino [13]), and perturbations close to the

vertex of a sector (cf. Costabel, Dalla Riva, Dauge, and Musolino [20]) have

also been considered.

Moreover, functional equation methods for the analysis of linear and

nonlinear transmission problems in domains with circular inclusions have been

applied, for example, in Castro, Kapanadze, and Pesetskaya [16], Kapanadze,

Mishuris, and Pesetskaya [41, 42], Kapanadze, Miszuris, and Pesetskaya [43].

Finally, we point out that problems with small holes or inclusions have
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been analysed also from the numerical point of view, for example in the

works of Chesnel and Claeys [17] and of Babuška, Soane, and Suri [12]. We

also mention the works of Mishuris, Miszuris and Öchsner [58], [59], and of

Miszuris and Öchsner [62], in which transmission conditions are numerically

tested with simulation based on the finite element method.

In order to explain the method of Asymptotic Analysis, the questions and

results one usually expects in this framework, we introduce a model problem.

For the sake of simplicity of the exposition and to avoid technical complexity,

we assume that the dimension of the space for the model problem is

n ≥ 3.

So, let Ω(ε) be a perturbed domain obtained from a given bounded open

set of Rn or by removing a portion whose size is proportional to a small

positive parameter ε ∈]0, ε0[, with ε0 > 0, or by removing a portion whose

form is shaped by a diffeomorphisms φε (which we think as a point in a

suitable Banach space), belonging to an appropriate family of admissible

diffeomorphism {φε}ε∈]0,ε0[, which depends real analytically on the parameter

ε. Then we are is interested in the following two cases:

C1. the parameter ε tends to 0, i.e. the hole shrinks to a point (singularly

perturbed);

C2. the family of diffeomorphisms {φε}ε∈]0,ε0[ tends, in a sense which will

be explained below, to a fixed diffeomorphism φ0 as ε→ 0+(regularly

perturbed).

Then one considers a boundary value problem (for the Laplace operator or,

in principle, also for others differential operators) for each small positive ε in
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(a) (b)

Figure 1: Singularly and regularly perturbed domains

Ω(ε) and one denotes by uε the solution of the singularly perturbed problem

and by uφε the solution of the regularly perturbed problem (see Figure 1).1

Then one can pick a point x̄ ∈ Ω(ε) and pose the following questions:

Q1. what can be said on the map ε 7→ uε(x̄) when ε > 0 is close to 0?

(corresponding to C1)

Q2. what can be said on the map ε 7→ uφε(x̄) when ε > 0 is close to 0?

(corresponding to C2)

The possible answers that one may obtain depend on the approach adopted.

By the Asymptotic Analysis, and for some specific problem, one can hope to

implement the following strategy:

1. first, one has to formulate an “ansatz” on the expected expansion. We

note that this of course is in general not an easy task. For example,

especially if a real analytic dependence of the solutions upon the pertur-

bation parameter is expected, one may try expansions of the following

types

uε(x̄) =
∑
|α|≤r

cα,1(x̄)εα +R1(ε) as ε→ 0+

1The author is indebted to Prof. Dalla Riva and Dr. Musolino for the sample of Figure
1, which has been modified, with their approval, by the author. For sake of simplicity, we
have drawn the 2-d version of the model.
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for the case C1 or

uφε(x̄) =
∑
|α|≤r

dα
(
x̄, {φε}ε∈]0,ε0[

)
εα +R2(ε) as ε→ 0+

for the case C2, where {cα(x̄)}|α|≤r and
{
dα
(
x̄, {φε}ε∈]0,ε0[

)}
|α|≤r

are

two families of coefficients (the former depends only on the fixed point x̄,

the latter on the fixed point x̄ and the family of perturbation parameter

{φε}ε∈]0,ε0[), and R1(ε) and R2(ε) are two error functions;

2. one has to compute the family of coefficients

{cα(x̄)}|α|≤r or
{
dα
(
x̄, {φε}ε∈]0,ε0[

)}
|α|≤r

;

3. finally one has to estimate the error functions R1(ε) or R2(ε).

We notice that, a priori, one cannot expect in general that the two power

series ∑
α∈N

cα(x̄)εα and
∑
α∈N

dα
(
x̄, {φε}ε∈]0,ε0[

)
εα

associated to the “ansatz” expansions converge to uε(x̄) and uφε(x̄), respec-

tively. Moreover, in some particular cases (for example if the dimension of

the space is n = 2), then one would have to add some terms in the ansatz

expansion, possibly singular at ε = 0 (for example ε log(ε) or log(ε)(−1)).

Moreover, we point out that, in particular for nonlinear problems, the

Asymptotic Approach may be hard to implement and to the best of our

knowledge, nonlinear boundary value problems in domains with small hole or

inclusion have been addressed by the techniques of Asymptotic Analysis only

in few papers.

In this dissertation instead we have adopted an approach which has
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revealed to be an extremely powerful tool to analyse perturbed nonlinear

boundary value problems: the Functional Analytic Approach. As we will

explain, this method uses analytic functions in order to describe the effect

of the perturbation’s parameters on the solutions of the problem, without

having to guess, a priori, the form of the expansion of the solution. From

this point of view, the Functional Analytic Approach can be considered as

alternative to the Asymptotic Analysis.

This method is based on functional analysis and potential theory and

exploits techniques of analytic functions theory, regularity theory, fixed point

theory, harmonic analysis, and superposition operator theory. In general,

the aim is to represent the dependence of the solution of a boundary value

problem upon the perturbations of the domains in terms of

• real analytic functions defined in a whole neighborhood of ε = 0 (these

are usually sufficient in dimension n ≥ 3, e.g, for the model problem);

• possibly singular but completely known functions of ε, such as, for

example, ε log(ε) or log(ε)(−1) (likely needed in dimension n = 2).

This method has been first applied to investigate perturbation problems

for the conformal representation, for the Schwarz problem, and for boundary

value problems for the Laplace and Poisson equations in bounded domain

with a small hole (cf. Lanza de Cristoforis [46, 47, 49, 50], Dalla Riva and

Musolino [28, 29], Preciso and Rogosin [71]). Later on the approach has been

extended to nonlinear traction problems in elastostatics (cf. Dalla Riva and

Lanza de Cristoforis [24]), to the Stokes’s flow (cf. Dalla Riva [22]) and to

the case of an infinite periodically perforated domains (cf. Dalla Riva and

Musolino [27] and Musolino [66]).

For a basic model problem, we now briefly outline the strategy of the
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Functional Analytic Approach:

S1. for each ε small and positive we consider a boundary value problem,

called (BVP)ε, defined on an ε-dependent domain Ω(ε), which tends to

a limiting configuration for ε = 0;

S2. by potential theory, using a suitable integral representation, we trans-

form (BVP)ε into equivalent integral equations defined on ∂Ω(ε);

S3. we get rid of the dependence of the domain on ε obtaining equivalent

integral equations on a fixed domain;

S4. we analyse the solutions of the integral equations around the case ε = 0

by means of the Implicit Function Theorem;

S5. using the suitable integral representation chosen, we prove real analyt-

icity properties of the solutions.

In this dissertation, by adopting the Functional Analytic Approach, we

analyse two nonlinear boundary value problems for the Laplace operator:

the first one will present a singularly perturbed domain, the second one a

regularly perturbed domain.

We now describe in details the content of each chapter.

Chapter 1. The first chapter is devoted to the presentation of classical

notion of Potential Theory, which will be widely used in the sequel. The author

does not take any credit for the results exposed in this chapter: references

can be found therein. In section 1.1 we introduce harmonic functions and

the definition of fundamental solution for the Laplace operator. Section 1.2

is devoted to the presentation of Green’s Identities, from where Potential
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Theory stems. In section 1.3, for an open subset Ω of Rn of class C1,α, we

introduce the single layer potential vΩ and the double layer potential wΩ,

and the boundary integral operators W∂Ω, W ∗
∂Ω and V∂Ω, which derive from

the analysis of the behaviour of the single and double layer potentials on

the boundary of Ω. Classical properties of those objects are presented, such

as jump formulas, regularity results and mapping properties. Moreover in

Section 1.4 we briefly present the Fredholm method for the Dirichlet and

Neumann boundary value problems for harmonic functions, which we consider

as the prototype of the nonlinear transmission problems studied in Chapters

2 and 3. Uniqueness theorems for the above mentioned problems are stated

in subsection 1.4.1. In subsection 1.4.2 we present the existence theorems

and we also analyse Fredholm operators arising in the framework of classical

Potential Theory and the kernel of important operators deriving from the

jump formulas. All this results will play a central role in the succeeding

chapters.

Chapter 2. In order to describe the results stated in the second chapter

and the problem we have analysed, we begin by presenting the geometric

framework. We fix once for all a natural number

n ≥ 3

that will be the dimension of the space Rn we are going to work in and a

parameter

α ∈]0, 1[

which we use to define the regularity of our sets and functions. We remark

that the case of dimension n = 2 requires specific techniques and it is not



xviii Introduction

treated in this dissertation (the analysis for n = 3 and for n ≥ 3 is instead

very similar).

Then, we introduce two sets Ωo and Ωi that satisfy the following conditions:

Ωo, Ωi are bounded open connected subsets of Rn of class C1,α,

their exteriors Rn \ Ωo and Rn \ Ωi are connected,

and the origin 0 of Rn belongs both to Ωo and to Ωi.

Here the superscript “o” stands for “outer domain” whereas the superscript

“i” stands for “inner domain”. We take

ε0 ≡ sup{θ ∈]0,+∞[: εΩi ⊆ Ωo, ∀ε ∈]− θ, θ[},

and we define the perforated domain Ω(ε) by setting

Ω(ε) ≡ Ωo \ εΩi

for all ε ∈]− ε0, ε0[. Then we fix three functions

F,G : ]− ε0, ε0[×∂Ωi × R→ R and f o ∈ C1,α(∂Ωo).

We mention that, in general F and G would be nonlinear functions and they

will depend on the size ε of the inclusion, and on the position on the boundary

of the inclusion ∂Ωi. This latter fact is stressed with the term nonautonomous,

in contrast with the case in which the functions F and G do not depend on

the position on the boundary of the inclusion ∂Ωi (also called autonomous

case).

Then, for ε ∈]0, ε0[, we consider the following nonlinear nonautonomous

transmission problem in the perforated domain Ω(ε) for a pair of functions
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(uo, ui) ∈ C1,α(Ω(ε))× C1,α(εΩi):



∆uo = 0 in Ω(ε),

∆ui = 0 in εΩi,

uo(x) = f o(x) ∀x ∈ ∂Ωo,

uo(x) = F
(
ε, x

ε
, ui(x)

)
∀x ∈ ε∂Ωi,

νεΩi · ∇uo(x)− νεΩi · ∇ui(x) = G
(
ε, x

ε
, ui(x)

)
∀x ∈ ε∂Ωi.

(1)

Here νεΩi denotes the outer exterior normal to εΩi. Since problem (1) is

nonlinear, one cannot, a priori, claim that it has a solution. Moreover, we

mention that a similar problem, but with homogeneous contact conditions, i.e.

the autonomous case, has been studied by Lanza de Cristoforis in [50] for a

bounded domain with a small hole and in Lanza de Cristoforis and Musolino

[52] in the periodic setting.

Chapter 2 is devoted to prove the following two main results:

R1. Possibly shrinking ε0, problem (1) has a solution (uoε , uiε) ∈ C1,α(Ω(ε))×

C1,α(εΩi) for all ε ∈]0, ε0[ (cf. Theorem 2.7.2).

R2. Possibly shrinking ε0, the map which takes ε ∈]0, ε0[ to a suitable

restrictions of the family of solutions {(uoε , uiε)}ε∈]0,ε0[ can be represented

in terms of real analytic functions (cf. Theorem 2.7.3).

Going more into details of the contents of Chapter 2, in section 2.1 we

represent harmonic functions in Ω(ε) and εΩi in terms of uo0 (unique solution

of the Dirichet problem in Ωo with boundary data f o), double layer potentials

with appropriate densities, and a suitable restriction of the fundamental

solution Sn. Section 2.2 is devoted to the proof of two Taylor expansion’s

lemmas. In section 2.3 we provide a formulation of problem (1) in terms of
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integral equations. In section 2.4 we prove existence and uniqueness results

for the integral system obtained by letting ε→ 0. Section 2.5 we present a

result on integral operators: in the framework of Pettis integral, we prove

real analyticity of the map from a suitable subspace U of a Banach space X

to a Banach space Y , which takes

w ∈ U 7→
∫ 1

0
f(τ)A(τw) dτ ∈ Y

with f ∈ L1([0, 1]) and A : U 7→ Y real analytic. Then we apply this result in

a particular case for the remainder of the Taylor expansion of F . In section

2.6 we rewrite our integral system depending on ε obtained in section 2.3

into an equation for an auxiliary map M :]− ε0, ε0[×X → Y (with X and Y

suitable Banach spaces), namely we will prove that if ε ∈]− ε0, ε0[, then

M [ε, µ] = 0 with µ ∈ X and 0 ∈ Y

if and only if the element µ solves the integral system for that specific ε (cf.

Proposition 2.6.1). Then we prove that M is real analytic (cf. Proposition

2.6.2) and the differential with respect to the variable µ ∈ X evaluated at the

point (0, µ0) (with µ0 the unique solution of the limiting system provided by

section 2.4) is an isomorphism (cf. Proposition 2.6.4). Hence we apply the

Implicit Function Theorem and find the densities as implicit functions (cf.

Theorem 2.6.5). Finally in section 2.7, using again the integral representation

provided in section 2.1, we show the existence, for ε0 small enough, of a

family of solutions {(uoε , uiε)}ε∈]0,ε0[ of problem (1) and we prove that it can

be represented in terms of real analytic functions (cf. Theorem 2.7.3).

Chapter 3. This chapter is devoted to prove uniqueness of the solutions
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provided in Chapter 2 for the problem 1. More precisely, the aim of this

chapter is to prove that each of such solutions (uoε , uiε) is locally unique, i.e.

for ε > 0 smaller than a certain ε∗ ∈]0, ε0[, any solution (vo, vi) of problem (1)

that is “close enough” to the pair (uoε , uiε) has to coincide with (uoε , uiε). We

will see that the “distance” from the solution (uoε , uiε) can be measured solely

in terms of the C1,α-norm of the trace of the rescaled function vi(ε·) on ∂Ωi.

More precisely, we will prove that there exists δ∗ > 0 such that, if ε ∈]0, ε∗],

(vo, vi) is a solution of (1), and

∥∥∥vi(ε·)− uiε(ε·)∥∥∥C1,α(∂Ωi)
< εδ∗,

then

(vo, vi) = (uoε , uiε)

(cf. Theorem 3.4.1). We emphasize that in general one cannot expect for

nonlinear boundary value problems the solution to be locally unique (see, e.g.,

[25] where it has been shown that for a “big” inclusion, i.e. for ε > 0 fixed

but not small, problem (1) may have solutions that are not locally unique).

We also observe that uniqueness results are not new in the applications of

the Functional Analytic Approach to nonlinear boundary value problems (see,

e.g., the above mentioned papers [23, 47, 50]). However, the results so far

presented concern the uniqueness of the entire family of solutions rather than

the uniqueness of a single solution for ε > 0 fixed. For our specific problem

(1), a uniqueness result for the family {(uoε , uiε)}ε∈]0,ε′[ would consist in proving

that if {(voε , viε)}ε∈]0,ε′[ is another family of solutions which satisfies a certain

“limiting condition”, for example that

lim
ε→0

ε−1
∥∥∥viε(ε·)− uiε(ε·)∥∥∥C1,α(∂Ωi)

= 0,
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then

(voε , viε) = (uoε , uiε)

for ε small enough.

One can verify that the local uniqueness of a single solution stated in

Theorem 3.4.1 implies the uniqueness of the family of solutions {(uoε , uiε)}ε∈]0,ε0[

in the sense described here above (see Corollary 3.5.1). From this point of

view, we can say that the uniqueness result presented in this Chapter 2

strengthen the uniqueness result for families which is typically obtained in

the application of the functional analytic approach.

Going more into details of the contents of Chapter 3, in section 3.1 we

prove Theorem 3.1.2, which is a weaker version of our main result Theorem

3.4.1. We mention that Theorem 3.1.2 follows from the Implicit Function

Theorem argument used to obtain the family {(uoε , uiε)}ε∈]0,ε′[. The statement

of Theorem 3.1.2 is similar to that of Theorem 3.4.1, but the assumptions are

much stronger. In particular, together with the aforementioned condition

∥∥∥vi(ε·)− uiε(ε·)∥∥∥C1,α(∂Ωi)
< εδ∗,

we have to require other two conditions, namely that

‖vo − uoε‖C1,α(∂Ωo) < εδ∗ and ‖vo(ε·)− uoε(ε·)‖C1,α(∂Ωi) < εδ∗,

in order to prove that (vo, vi) = (uoε , uiε). In our main Theorem 3.4.1 we will

see that those last two conditions can be dropped.

Section 3.2 is devoted to present some results on composition operators in

Schauder spaces which will play an important role in the proof of Theorem

3.4.1: Lemmas 3.2.5 and 3.2.6, in particular, provide uniform bounds for
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the Cm,α-norm (with m ∈ {0, 1}) of specific classes of composition operators

generated by functions A :]−ε0, ε0[×Bn−1(0, 1)×R→ R or B :]−ε0, ε0[×∂Ωi×

R→ R, respectively. In section 3.3 we introduce and analyse two auxiliary

maps N and S that, under suitable conditions, allowed us for ε small enough

to rewrite the equation M(ε, µ) = 0 with µ ∈ X into a fixed point equation,

namely

µ = N [ε, ·](−1) [S[ε, µ]] with µ ∈ X.

Finally section 3.4 is devoted to the proof of our main result Theorem 3.4.1.

Chapter 4. In order to describe the results stated in the fourth chapter

and the problem we have analysed, we begin by presenting the geometric

framework. We fix again once for all a natural number

n ≥ 2

and a parameter

α ∈]0, 1[.

Then, we introduce two sets Ωo and Ωi that satisfy the following conditions:

Ωo, Ωi are bounded open connected subsets of Rn of class C1,α,

their exteriors Rn \ Ωo and Rn \ Ωi are connected,

the origin 0 of Rn belongs both to Ωo and to Ωi,

and Ωi ⊂ Ωo.

Then we fix three functions

F1, F2 ∈ C0(∂Ωi × R× R) and f o ∈ C0,α(∂Ωo).
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We introduce a transmission problem in the pair of domains consisting of

Ωo\Ωi and Ωi. The functions F1 and F2 determine the transmission conditions

on the (inner) boundary ∂Ωi. Instead, f o plays the role of the Neumann

datum on the (outer) boundary ∂Ωo. We are now ready to introduce the

following nonlinear non-autonomous transmission boundary value problem

for a pair of functions (uo, ui) ∈ C1,α(Ωo \ Ωi)× C1,α(Ωi):



∆uo = 0 in Ωo \ Ωi,

∆ui = 0 in Ωi,

νΩo · ∇uo(x) = f o(x) ∀x ∈ ∂Ωo,

νΩi · ∇uo(x) = F1(x, uo(x), ui(x)) ∀x ∈ ∂Ωi,

νΩi · ∇ui(x) = F2(x, uo(x), ui(x)) ∀x ∈ ∂Ωi.

(2)

We note that, a priori, it is not clear why problem (2) should admit a

classical solution. We prove that under suitable conditions on F1 and F2,

problem (4.3) has at least a solution (uo, ui) ∈ C1,α(Ωo \ Ωi)× C1,α(Ωi).

Then we introduce a regularly perturbed variant of problem (2). We fix

the external domain Ωo and we assume that the boundary of the internal

domain is of the form φ(∂Ωi), where φ is a diffeomorphism of ∂Ωi into Rn

and belongs to the class

A∂Ωi ≡
{
φ ∈ C1(∂Ωi,Rn) : φ injective and dφ(y) injective for all y ∈ ∂Ωi

}
.

Clearly the canonical injection id∂Ωi of ∂Ωi into Rn belongs to the class A∂Ωi ,

and, for convenience, we set

φ0 ≡ id∂Ωi .

Then by the Jordan Leray Separation Theorem, Rn \ φ(∂Ωi) has exactly two
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open connected components for all φ ∈ A∂Ωi , and we define I[φ] to be the

unique bounded open connected component of Rn \ φ(∂Ωi). Finally we set

AΩo
∂Ωi ≡

{
φ ∈ A∂Ωi : I[φ] ⊂ Ωo

}
.

Now let φ ∈ AΩo
∂Ωi . We consider the following nonlinear non-autonomous

trasmission problem in the perforated domain Ωo \ I[φ] for a pair of functions

(uo, ui) ∈ C1,α(Ωo \ I[φ])× C1,α(I[φ]):



∆uo = 0 in Ωo \ I[φ],

∆ui = 0 in I[φ],

νΩo · ∇uo(x) = f o(x) ∀x ∈ ∂Ωo,

νI[φ] · ∇uo(x) = F1(φ(−1)(x), uo(x), ui(x)) ∀x ∈ φ(∂Ωi),

νI[φ] · ∇ui(x) = F2(φ(−1)(x), uo(x), ui(x)) ∀x ∈ φ(∂Ωi).

(3)

Going into details of the contents of Chapter 4, in section 4.1, we first

represent harmonic functions in Ωo\Ωi and Ωi in terms of single layer potentials

with appropriate densities and constants. Moreover we prove an uniqueness

result in C1,α(Ωo \ Ωi) × C1,α(Ωi) for an homogeneous linear transmission

problem and we analyse an auxiliary boundary operator arising from the

integral formulation of that problem (cf. Lemma 4.1.2 and Proposition 4.1.3).

In section 4.2 we provide a formulation of problem (3) in terms of integral

equations. Section 4.3 is devoted to prove an existence result for the integral

system obtained by choosing φ = φ0 in the integral equations obtained in

section 4.3. In particular, the limiting system is solved by means of a fixed

point theorem, namely the Leray-Schauder Theorem (cf. Proposition 4.3.3).

We observe that the limiting system is linked with the integral formulation of

problem (2): hence we obtain, under suitable conditions on the functions F1



xxvi Introduction

and F2, an existence results in C1,α(Ωo \ Ωi)× C1,α(Ωi) for problem (2) (cf.

Proposition 4.3.4). In section 4.4 we rewrite our integral system depending on

the diffeomorphism φ obtained in section 4.2 into an equation for an auxiliary

map M : AΩo
∂Ωi ×X → Y (with X and Y suitable Banach spaces), namely,

we will prove that if φ ∈ AΩo
∂Ωi , then

M [φ, µ] = 0 with µ ∈ X and 0 ∈ Y

if and only if the element µ solves the integral system for that specific φ (cf.

Proposition 4.4.1). Then by means of real analytic results for the dependence

of single and double layer potential upon the perturbation fo the support (see,

e.g., Lanza de Cristoforis and Rossi [53]), we prove that M is real analytic

(cf. Proposition 4.4.3). Moreover the differential with respect to the variable

µ ∈ X evaluated at the point (φ0, µ0) (with µ0 the solution of the limiting

system provided by section 4.3) is an isomorphism (cf. Proposition 4.4.4).

Hence we apply the Implicit Function Theorem and we find the densities

as real analytic implicit functions (cf. Theorem 4.4.5). Finally in section

4.5, using again the integral representation provided in section 4.1, we show

the existence, for φ in a neighborhood Q0 of φ0, of a family of solutions

{(uoφ, uiφ)}φ∈Q0 of problem (3) and we prove it can be represented in terms of

real analytic functions (cf. Theorem 4.5.3).



Notation

We denote by N the set of natural numbers including 0. We denote the norm

of a real normed space X by ‖ · ‖X . We denote by IX the identity operator

from X to itself and we omit the subscript X where no ambiguity can occur.

For x ∈ X and R > 0, we denote the ball in X of centre x and radius R by

BX(x,R) ≡ {y ∈ X : ‖y − x‖X < R}.

When X = Rd, d ∈ N \ {0, 1}, we simply write Bd(x,R) and when X = R

we write B(x,R). If X and Y are normed spaces we endow the product

space X × Y with the norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X + ‖y‖Y for all

(x, y) ∈ X × Y , while we use the Euclidean norm for Rd, d ∈ N \ {0, 1}.

We denote by L(X, Y ) the space of linear and continuous map of X to Y ,

equipped with its usual norm of the uniform convergence on the unit sphere

of X. If U is an open subset of X, and F : U → Y is a Fréchet-differentiable

map in U , we denote the differential of F by dF . Higher order differentials are

denoted by dmF , m ∈ N\{0, 1}. The inverse function of an invertible function

f is denoted by f (−1), while the reciprocal of a non-zero scalar function g or

the inverse of an invertible matrix A are denoted by g−1 and A−1 respectively.

Let Ω ⊆ Rn. Then Ω denotes the closure of Ω in Rn, ∂Ω denotes the boundary

of Ω, and νΩ denotes the outward unit normal to ∂Ω. For x ∈ Rd, xj denotes

xxvii



xxviii Notation

the j-th coordinate of x, |x| denotes the Euclidean modulus of x in Rd.

Let Ω be an open subset of Rn and m ∈ N \ {0}. The space of m times

continuously differentiable real-valued function on Ω is denoted by Cm(Ω,R)

or more simply by Cm(Ω) . Let r ∈ N \ {0}, f ∈ (Cm(Ω))r. The s-th

component of f is denoted by fs and the gradient of fs is denoted by ∇fs.

Let η = (η1, . . . , ηn) ∈ Nn and |η| = η1 + · · · + ηn. Then Dηf ≡ ∂|η|f
∂x
η1
1 ,...,∂xηnn

.

We retain the standard notion for the space C∞(Ω) and its subspace C∞c (Ω)

of functions with compact support.

The subspace of Cm(Ω) of those functions f such that f and its derivatives

Dηf of order |η| ≤ m can be extended with continuity to Ω is denoted Cm(Ω).

We denote by Cm
b (Ω) the space of functions of Cm(Ω) such that Dηf is

bounded for |η| ≤ m. Then the space Cm
b (Ω) equipped with the usual norm

‖f‖Cm
b

(Ω) ≡
∑
|η|≤m

sup
Ω
|Dηf |

is well known to be a Banach space.

Let f ∈ C0(Ω). Then we define its Hölder constant as

|f : Ω|α ≡ sup
{
|f(x)− f(y)|
|x− y|α

: x, y ∈ Ω, x 6= y

}
.

Then we can define the subspace of C0(Ω) of Hölder continuous function with

exponent α ∈]0, 1[ by

C0,α(Ω) ≡ {f ∈ C0(Ω) : |f : Ω|α <∞}

Similarly, the subspace of Cm(Ω) whose functions have m-th order derivatives

that are Hölder continuous with exponent α ∈]0, 1[ is denoted Cm,α(Ω). Then
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the space

Cm,α
b (Ω) ≡ Cm,α(Ω) ∩ Cm

b (Ω) ,

equipped with its usual norm

‖f‖Cm,α
b

(Ω) ≡ ‖f‖Cm
b

(Ω) +
∑
|η|=m

|Dηf : Ω|α,

is well known to be a Banach space. If Ω is bounded, then Cm,α
b (Ω) = Cm,α(Ω),

and we omit the subscript b. We denote by Cm,α
loc (Rn\Ω) the space of functions

on Rn \ Ω whose restriction to U belongs to Cm,α(U) for all open bounded

subsets U of Rn \ Ω. On Cm,α
loc (Rn \ Ω) we consider the natural structure of

Fréchet space. Finally if Ω is bounded, we set

Cm,α
harm(Ω) ≡ {u ∈ Cm,α(Ω) ∩ C2(Ω) : ∆u = 0 in Ω},

and if Ω is unbounded we set

Cm,α
harm(Ω) ≡ {u ∈ Cm,α(Ω) ∩ C2(Ω) : ∆u = 0 in Ω, u harmonic at infinity}.

We say that a bounded open subset of Rn is of class Cm,α if it is a manifold

with boundary imbedded in Rn of class Cm,α. In particular if Ω is a C1,α

subset of Rn, then ∂Ω is a C1,α sub-manifold of Rn of co-dimension 1. If

M is a Cm,α sub-manifold of Rn of dimension d ≥ 1, we define the space

Cm,α(M) by exploiting a finite local parametrization. Namely, we take a

finite open covering U1, . . . ,Uk of M and Cm,α local parametrization maps

γl : Bd(0, 1)→ Ul with l = 1, . . . , k and we say that φ ∈ Cm,α(M) if and only

if φ ◦ γl ∈ Cm,α(Bd(0, 1)) for all l = 1, . . . , k. Then for all φ ∈ Cm,α(M) we
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define

‖φ‖Cm,α(M) ≡
k∑
l=1
‖φ ◦ γl‖Cm,α(Bd(0,1)) .

One verifies that different Cm,α finite atlases define the same space Cm,α(M)

and equivalent norms on it. We retain the standard notion for the Lebesgue

spaces Lp, p ≥ 1. If ∂Ω is a C1,α sub-manifold of Rn, then we denote by dσ

the area element on ∂Ω. If Z is a subspace of L1(∂Ω), then we set

Z0 ≡
{
f ∈ Z :

∫
∂Ω
f dσ = 0

}
.



CHAPTER 1

Classical Potential Theory results

In this chapter we present a summary of the main results of classical Potential

Theory used in this thesis. We begin by introducing the notions of harmonic

functions and fundamental solution of the Laplace operator. Then we state

Green’s Identities (see section 1.2), from where the definitions of single and

double layer potential stem (see section 1.3). Finally, in section 1.4, we

briefly summarize results for the interior and exterior boundary value problem

for the Laplace equation with Dirichlet or Neumann condition. We state

uniqueness results, which follow essentially from Maximum Principle and

standard energy arguments for harmonic functions, and existence results,

which are obtained via Fredholm method. We also present key results on some

particular Fredholm operators which will play an essential role in the solution

of the transmission problems we will deal with in the next chapters. We point

out that the tools introduced to treat Dirichlet and Neumann boundary value

problems are, in a sense, the basis for the techniques that we will use to study

the transmission conditions that are the focus of this thesis. For this reason,

the existence results presented in section 1.4 have been considered by the

1
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author worth mentioning.

1.1 Harmonic functions and fundamental so-

lution for the Laplace operator

In this chapter we fix once for all

n ∈ N \ {0, 1},

which will denote the dimension of the space Rn we will work in. We start

introducing the notion of harmonic functions.

Definition 1.1.1. Let Ω be an open subset of Rn and let u ∈ C2(Ω). We

define the Laplace operator by

∆u ≡
n∑
j=1

∂2u

∂x2
j

.

Moreover, we say that u is harmonic in Ω if ∆u = 0 in Ω.

Among the numerous properties that harmonic functions satisfies, we

mention a variant of a result of Kobe that ensures that if Ω is an open subset

of Rn and if u ∈ C2
harm(Ω), then u ∈ C∞(Ω) (even a stronger result can be

proven: u is real analytic in Ω). Then we introduce the notion of fundamental

solution for the Laplace operator (see, e.g., Folland [33, Chap. 1]).

Definition 1.1.2. We say that a function f ∈ L1
loc(Rn) is a fundamental

solution for the Laplace operator ∆ in Rn if

∫
Rn
f∆φ dx = φ(0) ∀φ ∈ C∞c (Rn),
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i.e. ∆f = δ0 in the distributional sense.

Then, we have the following result (for a proof of Theorem 1.1.3 we refer

to Gilbarg and Trudinger [35, Section 2.4]).

Theorem 1.1.3. We denote by Sn the function from Rn \ {0} to R defined

by

Sn(x) =


1
sn

log |x| ∀x ∈ Rn \ {0} if n = 2,

1
(2−n)sn |x|

2−n ∀x ∈ Rn \ {0} if n ≥ 3.

where sn denotes the (n− 1)-dimensional measure of ∂Bn(0, 1). Then, Sn is

a fundamental solution of the Laplace operator in Rn.

By a simple computation one can verify that

∂

∂xj
Sn(x) = 1

sn

xj
|x|n

∀j ∈ {1, . . . , n},

∇Sn(x) = 1
sn

x

|x|n
|∇Sn(x)| ≤ 1

sn

1
|x|n−1 ,∣∣∣∣∣ ∂2Sn

∂xi∂xj

∣∣∣∣∣ ≤ 1
wn

1
|x|n

∀i, j ∈ {1, . . . , n},

for all x ∈ Rn \ {0}.

Then we consider the behaviour at infinity of an harmonic function. We

have the following characterisation (see, e.g., Folland [33, Prop. 2.74]).

Definition 1.1.4. Let Ω be an open subset of Rn such that there exists a

compact subset K of Rn with Rn \K ⊆ Ω. Let u be an harmonic function

from Ω to R. Then u is harmonic at infinity if and only if u(x) = O(|x|2−n)

as x tends to ∞. In particular, if n ≥ 3, then

lim
x→∞

u(x) = 0,
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and if n = 2, then

u(x) = o(log |x|) as x tends to ∞.

Remark 1.1.5. Classically the definition of harmonicity at infinity is done

using the notion of removable singularity and the Kelvin transform. We decide

to avoid this complication and use the above characterisation.

Notice that the condition u(x) = O(|x|2−n) as x tends to ∞ can be written

as

sup
|x|>R

|x|n−2|u(x)| < +∞

for some R > 0 such that Rn \ Ω ⊂ Bn(0, R).

1.2 Green’s Identities

This section is devoted to the presentation of the Green’s Identities and the

Green’s Representation Formula which play an important role in Potential

Theory, in the Fredholm Method and in the analysis of boundary value

problems for the Laplace operator. The Green’s Identities can be derived

from the Divergence Theorem which, roughly speaking, establishes a link

between the interior and the boundary of a region on which differential

operators act. In the following theorem we present the classical versions of

the First Green’s Identity (for a proof see, e.g., Gilbarg and Trudinger [35,

Section 2.4]).

Theorem 1.2.1 (First Green’s Identity). Let Ω be a bounded open subset

of Rn of class C1. Let u, v ∈ C2(Ω). Then the following First Green’s Identity

holds ∫
Ω
v∆u+∇u · ∇v dx =

∫
∂Ω
v (νΩ · ∇u) dσ. (1.1)
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Then interchanging u and v in (1.1) and subtracting side by side, one

obtains the Second Green’s Identity.

Theorem 1.2.2 (Second Green’s Identity). Let Ω be a bounded open

subset of Rn of class C1. Let u ∈ C2(Ω). Then the following identity holds

∫
Ω
v∆u− u∆v dx =

∫
∂Ω

(νΩ · ∇u) v − u (νΩ · ∇v) dσ.

Then using the fundamental solution Sn of the Laplace operator for the

function v, one can obtain the Third Green’s Identity (for a proof see, e.g.,

Gilbarg and Trudinger [35, Section 2.4]).

Theorem 1.2.3 (Third Green’s Identity). Let Ω be a bounded open subset

of Rn of class C1. Let u ∈ C2(Ω). Then the following Green’s Representation

Formula holds

u(x) =
∫

Ω
∆u(y)Sn(x− y) dy

+
∫
∂Ω
u(y) (νΩ(y) · ∇Sn(x− y))− (νΩ(y) · ∇u(y))Sn(x− y) dσy

(1.2)

for all x ∈ Ω.

We want to underline the importance of (1.2). In fact, if one chooses as u

a function that is harmonic in Ω, then the Third Green’s Identity actually

provides a formula for representing u in terms only of its boundary value and

the boundary value of the normal derivative of u. This result is presented in

the following corollary.

Corollary 1.2.4. Let Ω be a bounded open subset of Rn of class C1. Let
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u ∈ C2(Ω) be harmonic in Ω. Then

∫
∂Ω
u(y) (νΩ(y)·∇Sn(x−y))−(νΩ(y)·∇u(y))Sn(x−y) dσy =


u(x) if x ∈ Ω,

0 if x ∈ Rn \ Ω.

In particular, by taking u ≡ 1 on Ω, we get

∫
∂Ω
νΩ(y) · ∇Sn(x− y) dσy =


1 if x ∈ Ω,

0 if x ∈ Rn \ Ω.

Now a remark has to be done.

Remark 1.2.5. In our work we will deal with functions that exhibit a C2

regularity (actually they will be even more regular, analytic) inside the domain

of definition, but only a C1,α regularity up to the boundary. Hence, a priori,

the results of this section do not apply to our situation. A refined version

of the statements presented in this section ensure that the First and Second

Green’s Identity actually hold for functions u, v ∈ C1,α(Ω)∩C2(Ω), just adding

conditions on the integrability of the functions v∆u, ∇u · ∇v and u∆v. In

particular, in the situations we will deal with, the above mentioned conditions

will be always satisfied and so we can apply all the results of this section. For

a reference on this argument, see Dautray and Lions [30, pp. 226-229].

1.3 Single and double layer potential

In this section we present the key objects in Potential Theory: the single and

double layer potentials. The introduction of such boundary integral operators

is well motivated by the Third Green’s Identity (see also Corollary 1.2.4).

Moreover, for connection of single and double layer potentials with the theory
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of partial differential equations, we refer to Gilbarg and Trudinger [35]. In

particular, for the method of layer potentials for the Dirichlet and Neumann

problems for the Laplace operator we refer to Folland [33, Chap. 3]. See also

section 1.4.

Definition 1.3.1. Let Ω be an open bounded subset of Rn of class C1,α for

some α ∈]0, 1[. If µ ∈ L2(∂Ω), we denote by vΩ[µ] and wΩ[µ] the single and

the double layer potentials with density µ respectively given by

vΩ[µ](x) =
∫
∂Ω
Sn(x− y)µ(y) dσy ∀x ∈ Rn, (1.3)

and

wΩ[µ](x) = −
∫
∂Ω
νΩ(y) · ∇Sn(x− y)µ(y) dσy ∀x ∈ Rn. (1.4)

Then, considering (1.3) and (1.4) restricted to ∂Ω, the following boundary

integral operators arise.

Definition 1.3.2. Let Ω be an open bounded subset of Rn of class C1,α for

some α ∈]0, 1[. If µ ∈ L2(∂Ω), we denote by W∂Ω[µ] and W ∗
∂Ω[µ] the boundary

integral operators given by

W∂Ω[µ](x) = −
∫
∂Ω
νΩ(y) · ∇Sn(x− y)µ(y) dσy for a.a. x ∈ ∂Ω

and

W ∗
∂Ω[µ](x) = −

∫
∂Ω
νΩ(x) · ∇Sn(x− y)µ(y) dσy for a.a. x ∈ ∂Ω.

Moreover, we denoted by V∂Ω the operator from L2(∂Ω) to itself which takes
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µ to the function V∂Ω[µ] defined by

V∂Ω[µ] ≡ vΩ[µ]|∂Ω,

where the restriction operator is understood as a trace.

In the following Theorem 1.3.3 we summarize some of the most important

classical results on the single layer potential. They will be widely used in the

sequel. For the proof of the results stated, we refer to Cialdea [18], Miranda

[56], and Lanza [53, Thm 3.1].

Theorem 1.3.3 (Property of the single layer potential). Let Ω be an

open bounded subset of Rn of class C1,α for some α ∈]0, 1[. Then the following

statements hold.

(i) Let µ ∈ C0(∂Ω). Then the function vΩ[µ] from Rn to R is continuous in

Rn and harmonic in Rn\∂Ω. Let v+
Ω [µ] = vΩ[µ]|Ω and v−Ω [µ] = vΩ[µ]|Rn\Ω.

If n ≥ 3, then the function v−Ω [µ] is harmonic at infinity.

If n = 2, then the function v−Ω [µ] is harmonic at infinity if and only if∫
∂Ω µ dσ = 0. In that case lim

x→∞
v−Ω [µ](x) = 0.

(ii) If µ ∈ C0,α(∂Ω), then v+
Ω [µ] ∈ C1,α(Ω) and the map from C0,α(∂Ω) to

C1,α(Ω) which takes µ to v+
Ω [µ] is linear and continuous.

(iii) Let µ ∈ C0,α(∂Ω). If n ≥ 3, then the function v−Ω [µ] ∈ C1,α
b (Rn \ Ω).

If n = 2 and
∫
∂Ω µ dσ = 0, then the function v−Ω [µ] ∈ C1,α

b (Rn \ Ω).

Moreover, the map from C0,α(∂Ω) to C1,α
loc (Rn \ Ω) which takes µ to

v−Ω [µ] is linear and continuous.

(iv) If µ ∈ C0,α(∂Ω), then we have following jump relations

νΩ · ∇v±Ω [µ](x) = ∓1
2µ(x) +W ∗

∂Ω[µ](x) ∀x ∈ ∂Ω.
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(v) The operator V∂Ω from C0,α(∂Ω) to C1,α(∂Ω) is linear and continuous.

If n ≥ 3, it is an isomorphism.

(vi) The map from C0,α(∂Ω)0×R to C1,α(∂Ω) which takes (µ, ρ) to V∂Ω[µ]+ρ

is an isomorphism.

Then we have the following result for the double layer potential. As before,

we refer to Cialdea [18], Miranda [56], and Lanza [53, Thm 3.1] for a proof.

Theorem 1.3.4 (Property of double layer potential). Let Ω be an open

bounded subset of Rn of class C1,α for some α ∈]0, 1[. Then the following

statements hold.

(i) Let µ ∈ C0(∂Ω). Then the function wΩ[µ] from Rn to R is harmonic in

Rn \ ∂Ω. Moreover the restriction wΩ[µ]|Ω can be extended uniquely to

a continuous function w+
Ω [µ] of Ω to R. The restriction wΩ[µ]|Rn\Ω can

be extended uniquely to a continuous function w−Ω [µ] from Rn \ Ω to R

which is harmonic at infinity.

Finally we have the following jump relations

w±Ω [µ](x) = ±1
2µ(x) +W∂Ω[µ](x) ∀x ∈ ∂Ω.

(ii) Let µ ∈ C1,α(∂Ω). Then w+
Ω [µ] ∈ C1,α(Ω) and w−Ω [µ] ∈ C1,α

b (Rn \ Ω)

and we have

νΩ · ∇w+
Ω [µ]− νΩ · ∇w−Ω [µ] = 0 on ∂Ω.

(iii) The map from C1,α(∂Ω) to C1,α(Ω) which takes µ to w+
Ω [µ] is linear

and continuous.

The map from C1,α(∂Ω) to C1,α
b (Rn \Ω) which takes µ to w−Ω [µ] is linear

and continuous.
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We finally describe some classical results of Schauder, about regularity

and compactness properties of the boundary integral operators W∂Ω and W ∗
∂Ω.

We first point out the following well known property of Hölder spaces:

If α, β ∈]0, 1[, α < β, then C0,β(∂Ω) is compactely embedded in C0,α(∂Ω)

Then, by the weak singularity of the kernels and by mapping properties

of the operators W∂Ω and W ∗
∂Ω, we can summarize in the following form the

compactness results of Schauder. For a proof of the statements we refer to

Schauder [73, 74].

Theorem 1.3.5. Let α ∈]0, 1[ and let Ω be an open bounded subset of Rn of

class C1,α. Then the following holds.

(i) W∂Ω : L2(∂Ω) −→ L2(∂Ω) and W ∗
∂Ω : L2(∂Ω) −→ L2(∂Ω) are compact

operators, adjoint one to the other.

(ii) Let β ∈]0, 1]. Then the map which takes µ to W∂Ω[µ] is continuous from

C0(∂Ω) to C0,α(∂Ω) and from C1,β(∂Ω) to C1,α(∂Ω). The map which

takes µ to W ∗
∂Ω[µ] is continuous from C0,β(∂Ω) to C0,α(∂Ω).

(iii) The map which takes µ to W∂Ω[µ] is compact from C0(∂Ω) to itself,

from C0,α(∂Ω) to itself, and from C1,α(∂Ω) to itself. The map which

takes µ to W ∗
∂Ω[µ] is compact from C0,α(∂Ω) to itself.
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1.4 Boundary value problems for harmonic

functions

Let us consider n ∈ N \ {0, 1}, α ∈]0, 1[ and an open bounded subset Ω of Rn

of class C1,α. We set

Ω− ≡ Rn \ Ω.

Then, by a compactness argument, it can be easily seen that the number of

connected components of Ω and Ω− are finite, i.e. there exist m,m− ∈ N\{0}

such that

{Ω1, . . . ,Ωm} are the bounded connected components of Ω,

{Ω−0 ,Ω−1 , . . . ,Ω−m−} are the connected components of Ω−

with one and only one of such components unbounded,

and

Ω =
m⋃
j=1

Ωj , Ω− =
m−⋃
j=1

Ω−j .

Let us introduce the following basic boundary value problems for the Laplace

operator.

The interior Dirichlet boundary value problem. Given g ∈ C0(∂Ω),

find u ∈ C0(Ω) ∩ C2(Ω) such that

(ID)


∆u = 0 in Ω,

u = g on ∂Ω.
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The exterior Dirichlet boundary value problem. Given g ∈ C0(∂Ω),

find u ∈ C0(Ω−) ∩ C2(Ω−) such that

(ED)


∆u = 0 in Ω−,

u = g on ∂Ω.

The interior Neumann boundary value problem. Given g ∈ C0(∂Ω),

find u ∈ C1(Ω) ∩ C2(Ω) such that

(IN)


∆u = 0 in Ω,

νΩ · ∇u = g on ∂Ω.

The exterior Neumann boundary value problem. Given g ∈ C0(∂Ω),

find u ∈ C1(Ω−) ∩ C2(Ω−) such that

(EN)


∆u = 0 in Ω−,

νΩ · ∇u = g on ∂Ω.

1.4.1 Uniqueness Theorems

It is well known that uniqueness theorems for the Dirichlet and Neumann

boundary value problems described above can be deduced by classical Max-

imum Principle and by standard energy argument for harmonic functions.

More precisely the following theorems hold (see Folland [33, Prop. 3.1-3.4]).

Theorem 1.4.1 (Uniqueness for the interior boundary value prob-

lem).
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(i) The interior Dirichlet problem has at most one solution in C0(Ω) ∩

C2(Ω).

(ii) Two solutions in C1(Ω)∩C2(Ω) of the interior Neumann problem differ

by a function which is constant on each connected component of Ω.

Theorem 1.4.2 (Uniqueness for the exterior boundary value prob-

lem).

(i) The exterior Dirichlet problem has at most one solution in C0(Ω−) ∩

C2(Ω−) harmonic at infinity.

(ii) Two solutions in C1(Ω−) ∩ C2(Ω−) harmonic at infinity of the exte-

rior Neumann problem differ by a function which is constant on each

connected component of Ω−. If n ≥ 3, such a constant is 0 on the

unbounded connected component Ω−0 of Ω−.

1.4.2 Existence Theorems

In view of the Green’s Identities (see Theorems 1.2.1-1.2.3) and of the jump

relations (see Theorem 1.3.3 (v) and Theorem 1.3.4 (i)), it is natural to study

of the operators ±1
2I∂Ω +W∂Ω and ±1

2I∂Ω +W ∗
∂Ω to obtain existence result for

the Dirichlet and Neumann boundary value problems. In particular, we will

see that the Fredholm Alternative ensures the existence of solutions in L2(∂Ω)

for integral equations related to the Dirichelet and Neumann boundary value

problems with compatible data. In order to obtain classical solutions, one

needs regularization theorems and to study the mapping properties of the

operators ±1
2I∂Ω +W∂Ω and ±1

2I∂Ω +W ∗
∂Ω. A central role will be played by

the characterization of the kernels of the operators mentioned above. Hence,
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we set

ker
(
−1

2I∂Ω +W∂Ω

)
≡
{
µ ∈ L2(∂Ω) :

(
−1

2I∂Ω +W∂Ω

)
[µ] = 0

}
,

ker
(1

2I∂Ω +W∂Ω

)
≡
{
µ ∈ L2(∂Ω) :

(1
2I∂Ω +W∂Ω

)
[µ] = 0

}
,

ker
(1

2I∂Ω +W ∗
∂Ω

)
≡
{
µ ∈ L2(∂Ω) :

(1
2I∂Ω +W ∗

∂Ω

)
[µ] = 0

}
,

ker
(
−1

2I∂Ω +W ∗
∂Ω

)
≡
{
µ ∈ L2(∂Ω) :

(
−1

2I∂Ω +W ∗
∂Ω

)
[µ] = 0

}
.

We now proceed presenting the Fredholm method. The main idea consists in

searching for solutions of the form

u = w+
Ω [µ] + v+

Ω [ξ] + c on Ω,

or

u = w−Ω [µ] + v−Ω [ξ] + c on Ω−,

for some unknown functions µ, ξ ∈ L2(∂Ω) and constant c ∈ R to be de-

termined by imposing that u satisfies the boundary condition and also the

condition of harmonicity at infinity in the exterior case. In both situations

one has to deal with Fredholm integral equations of the second type, more

precisely we get:

(1
2I∂Ω +W∂Ω

)
[µ] = g corresponding to problem (ID),(

−1
2I∂Ω +W∂Ω

)
[µ] = g corresponding to problem (ED),(

−1
2I∂Ω +W ∗

∂Ω

)
[µ] = g corresponding to problem (IN),(1

2I∂Ω +W ∗
∂Ω

)
[µ] = g corresponding to problem (EN),

for suitable function µ ∈ L2(∂Ω). Then we have the following definition.
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Definition 1.4.3. We say that a bounded linear operator L from a Banach

space X to a Banach space Y is Fredholm if the following conditions hold:

(i) The null space KerL has finite dimension;

(ii) The co-kernel Y/RanL has finite dimension.

If L is a Fredholm operator, then the index of L is the integer given by

indexL ≡ dim KerL− dim (Y/RanL).

A well known result ensures that the sum of an isomophism and a compact

operator generates a Fredholm operator of index 0. Moreover, the index of a

composition of Fredholm operators is additive, i.e. if F1 and F2 are Fredholm

operators, then F = F1 ◦ F2 is a Fredholm operator of index

indexF = indexF1 + indexF2 .

Thus, by Theorem 1.3.5, one deduces the following important result.

Theorem 1.4.4. The following holds:

(i) The operators ±1
2I∂Ω + W∂Ω are Fredholm of index 0 from L2(∂Ω) to

itself, from C0(∂Ω) to itself, from C0,α(∂Ω) to itself, and from C1,α(∂Ω)

to itself.

(ii) The operators ±1
2I∂Ω + W ∗

∂Ω are Fredholm of index 0 from L2(∂Ω) to

itself and from C0,α(∂Ω) to itself.

In particular we underline that

dim ker
(
−1

2I∂Ω +W∂Ω

)
= dim ker

(
−1

2I∂Ω +W ∗
∂Ω

)
,
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dim ker
(1

2I∂Ω +W∂Ω

)
= dim ker

(1
2I∂Ω +W ∗

∂Ω

)
.

Moreover the following Schauder regularity result holds (see Miranda [56,

Chap. II, §14] and Dalla Riva and Mishuris [25, Lemma 3.3]).

Theorem 1.4.5. The following holds.

(i) If g ∈ C1,α(∂Ω) and if µ ∈ L2(∂Ω) satisfies either equation

(1
2I∂Ω +W∂Ω

)
[µ] = g or

(
−1

2I∂Ω +W∂Ω

)
[µ] = g,

then µ ∈ C1,α(∂Ω). In particular we have

ker
(1

2I∂Ω +W∂Ω

)
⊆ C1,α(∂Ω), ker

(
−1

2I∂Ω +W∂Ω

)
⊆ C1,α(∂Ω).

(ii) If g ∈ C0,α(∂Ω) and if µ ∈ L2(∂Ω) satisfies either equation

(1
2I∂Ω +W ∗

∂Ω

)
[µ] = g or

(
−1

2I∂Ω +W ∗
∂Ω

)
[µ] = g,

then µ ∈ C0,α(∂Ω). In particular we have

ker
(
−1

2I∂Ω +W ∗
∂Ω

)
⊆ C0,α(∂Ω), ker

(1
2I∂Ω +W ∗

∂Ω

)
⊆ C0,α(∂Ω).

By Fredholm Alternative Theorem in the Hilbert space L2(∂Ω), we obtain

the following.

Theorem 1.4.6. The following statements hold.

(i) Im
(

1
2I∂Ω +W∂Ω

)
⊕⊥ ker

(
1
2I∂Ω +W ∗

∂Ω

)
= L2(∂Ω) (corresponding to the

problem (ID)).
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(ii) Im
(
−1

2I∂Ω +W∂Ω
)
⊕⊥ ker

(
−1

2I∂Ω +W ∗
∂Ω

)
= L2(∂Ω) (corresponding to

the problem (ED)).

(iii) Im
(
−1

2I∂Ω +W ∗
∂Ω

)
⊕⊥ ker

(
−1

2I∂Ω +W∂Ω
)

= L2(∂Ω) (corresponding to

the problem (IN)).

(iv) Im
(

1
2I∂Ω +W ∗

∂Ω

)
⊕⊥ ker

(
1
2I∂Ω +W∂Ω

)
= L2(∂Ω) (corresponding to the

problem (EN)).

Here ⊕⊥ denotes the symbol of orthogonal direct sum and Im denotes the

image of an operator.

The next step in the Fredholm method is to understand for which boundary

data g the integral equations are solvable. We do so by mean of the following

characterization (see Folland [33, Prop. 3.34, 3.36 and 3.37]).

Theorem 1.4.7. The following statements hold.

(i) The space ker
(
−1

2I∂Ω +W∂Ω
)
has finite dimension m and it is generated

by {χ∂Ωj}mj=1.

(ii) Let n ≥ 3. Then V∂Ω induces an isomorphism of ker
(
−1

2I∂Ω +W ∗
∂Ω

)
onto ker

(
−1

2I∂Ω +W∂Ω
)
. Moreover, if µ ∈ ker

(
−1

2I∂Ω +W ∗
∂Ω

)
, then

v−Ω [µ] solves the exterior Dirichlet problem



∆u = 0 in Ω−,

u = V∂Ω[µ] on ∂Ω−,

lim
x→∞

u(x) = 0.

(iii) Let n = 2. Then V∂Ω is injective on
(
ker

(
−1

2I∂Ω +W ∗
∂Ω

))
0
and we



18 Classical Potential Theory results

have

V∂Ω

((
ker

(
−1

2I∂Ω +W ∗
∂Ω

))
0

)
⊕ < χ∂Ω >= ker

(
−1

2I∂Ω +W∂Ω

)
.

Moreover, if µ ∈
(
ker

(
−1

2I∂Ω +W ∗
∂Ω

))
0
, then v−Ω [µ] ∈ C1,α

b (Ω−) and

solves the exterior Dirichlet problem



∆u = 0 in Ω−,

u = V∂Ω[µ] on ∂Ω−.

u is harmonic at infinity.

(iv) The space ker
(

1
2I∂Ω +W∂Ω

)
has finite dimension m− and it is generated

by {χ∂Ω−j
}m−j=1 and V∂Ω induces an isomorphism of ker

(
1
2I∂Ω +W ∗

∂Ω

)
onto ker

(
1
2I∂Ω +W∂Ω

)
. Moreover, if µ ∈ ker

(
1
2I∂Ω +W ∗

∂Ω

)
, then v+

Ω [µ]

solves the interior Dirichlet problem


∆u = 0 in Ω,

u = V∂Ω[µ] on ∂Ω,

and v−Ω [µ] is constant on each Ω−j for all j = 1, . . . ,m−, and equals 0

on Ω−0 and on ∂Ω−0 .

In order to prove an existence theorem for the boundary value problems

considered, we have to relax the orthogonal condition in the decomposition of

the space L2(∂Ω). Then we have the following (see Folland [33, Cor. 3.39]).

Theorem 1.4.8. The following statements hold.

(i) Im
(

1
2I∂Ω +W∂Ω

)
⊕ ker

(
1
2I∂Ω +W∂Ω

)
= L2(∂Ω).

(ii) Im
(
−1

2I∂Ω +W∂Ω
)
⊕ ker

(
−1

2I∂Ω +W∂Ω
)

= L2(∂Ω).
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We are now ready to state existence theorems for the considered boundary

value problems (the uniqueness of the solutions has been stated in Theorems

1.4.1 and 1.4.2). For the interior and the exterior Dirichlet problem we have

the following two results (see Folland [33, Thm. 3.40 (a)-(b)]).

Theorem 1.4.9 (Interior Dirichlet problem). Let g ∈ C1,α(∂Ω). Then

there exists a unique solution u ∈ C1,α(Ω) ∩ C2(Ω) of the interior Dirichlet

problem (ID). In particular, there exists a unique ξ ∈ ker
(

1
2I∂Ω +W ∗

∂Ω

)
such

that the integral equation

(1
2I∂Ω +W∂Ω

)
[µ] + V [ξ] = g

has at least a solution µ ∈ C1,α(∂Ω).

The affine space of such solutions µ has dimension m− and we have

u = w+
Ω [µ] + v+

Ω [ξ] in Ω.

Theorem 1.4.10 (Exterior Dirichlet problem). Let g ∈ C1,α(∂Ω). Then

there exists a unique solution u ∈ C1,α(Ω−) ∩ C2(Ω−) harmonic at infinity of

the exterior Dirichlet problem (ID). Moreover, the following statements hold.

(i) Let n ≥ 3. Then there exists a unique ξ ∈ ker
(
−1

2I∂Ω +W ∗
∂Ω

)
such

that the integral equation

(
−1

2I∂Ω +W∂Ω

)
[µ] + V [ξ] = g

has at least a solution µ ∈ C1,α(∂Ω).

The affine space of such solutions µ has dimension m and we have

u = w−Ω [µ] + v−Ω [ξ] in Ω−.
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(ii) Let n = 2. Then there exists a unique ξ ∈
(
ker

(
−1

2I∂Ω +W ∗
∂Ω

))
0
and

a unique c ∈ R such that the integral equation

(
−1

2I∂Ω +W∂Ω

)
[µ] + V [ξ] + c = g

has at least a solution µ ∈ C1,α(∂Ω).

The affine space of such solutions µ has dimension m and we have

u = w−Ω [µ] + v−Ω [ξ] + c in Ω−.

For the interior and the exterior Neumann Problem we have the following

existence theorems (see Folland [33, Thm. 3.40 (c)-(d)]).

Theorem 1.4.11 (For the Interior Neumann problem). Let g ∈ C0,α(∂Ω)

satisfy the compatibility condition

∫
∂Ωj

g dσ = 0 ∀j ∈ {1, . . . ,m}.

Then the integral equation

(
−1

2I∂Ω +W ∗
∂Ω

)
[µ] = g

has at least a solution µ ∈ C0,α(∂Ω) and u = v+
Ω [µ] ∈ C1,α(Ω) and solves

the interior Neumann problem (IN). All other solutions of (IN) in C1,α(Ω)

can be obtained by adding to u an arbitrary function constant on each Ωj for

j = 1, . . . ,m. The affine space of such solutions has dimension m.

Theorem 1.4.12 (For the Exterior Neumann problem). Let g ∈ C0,α(∂Ω).

The following statements hold.
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(i) Let n ≥ 3. If the compatibility conditions

∫
∂Ω−j

g dσ = 0 ∀j ∈ {0, . . . ,m−}

are satisfied, then the integral equation

(1
2I∂Ω +W ∗

∂Ω

)
[µ] = g

has at least a solution µ ∈ C0,α(∂Ω) and u = v−Ω [µ] ∈ C1,α
b (Ω−) and

solves the exterior Neumann problem (EN) and is harmonic at infinity.

All other solutions of (EN) in C1,α
b (Ω−) and harmonic at infinity can

be obtained by adding to u an arbitrary function constant on each Ω−j
for j = 1, . . . ,m− and which equals 0 on. Ω−0 . The affine space of such

solutions has dimension m−.

(ii) Let n = 2. If the compatibility conditions

∫
∂Ω−j

g dσ = 0 ∀j ∈ {0, . . . ,m−}

are satisfied, then the integral equation

(1
2I∂Ω +W ∗

∂Ω

)
[µ] = g

has at least a solution µ ∈ C0,α(∂Ω)0 and u = v−Ω [µ] ∈ C1,α
b (Ω−) and

solves the exterior Neumann problem (EN) and is harmonic at infinity.

All other solutions of (EN) in C1,α
b (Ω−) and harmonic at infinity can

be obtained by adding to u an arbitrary function constant on each Ω−j
for j = 0, . . . ,m−. The affine space of such solutions has dimension

m− + 1.
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CHAPTER 2

Existence results for the nonlinear

transmission problem (1)

This chapter is mainly devoted to prove the existence of a specific family of

solutions of a boundary value problem for the Laplace equation with nonlinear

non-autonomous transmission conditions on the boundary of a small inclusion

of size ε. Moreover we analyse the dependence of that specific family of

solutions upon the parameter ε. The results presented in this chapter are

mainly based on a published article by the author [64].

For the sake of exposition, we recall the geometric framework of our

problem already briefly described in the Introduction.

We fix once for all a natural number

n ≥ 3

that will be the dimension of the space Rn we are going to work in and a

23
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parameter

α ∈]0, 1[

which we use to define the regularity of our sets and functions. We remark

that the case of dimension n = 2 requires specific techniques and it is not

treated in this dissertation (the analysis for n = 3 and for n ≥ 3 is instead

very similar).

Then, we introduce two sets Ωo and Ωi that satisfy the following conditions:

Ωo, Ωi are bounded open connected subsets of Rn of class C1,α,

their exteriors Rn \ Ωo and Rn \ Ωi are connected,

and the origin 0 of Rn belongs both to Ωo and to Ωi.

Here the superscript “o” stands for “outer domain” whereas the superscript

“i” stands for “inner domain”. We take

ε0 ≡ sup{θ ∈]0,+∞[: εΩi ⊆ Ωo, ∀ε ∈]− θ, θ[},

and we define the perforated domain Ω(ε) by setting

Ω(ε) ≡ Ωo \ εΩi

for all ε ∈]− ε0, ε0[. Then we fix three functions

F,G : ]− ε0, ε0[×∂Ωi × R→ R , and f o ∈ C1,α(∂Ωo) (2.1)

and, for ε ∈]0, ε0[, we consider the following nonlinear nonautonomous trans-

mission problem in the perforated domain Ω(ε) for a pair of functions
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(uo, ui) ∈ C1,α(Ω(ε))× C1,α(εΩi):



∆uo = 0 in Ω(ε),

∆ui = 0 in εΩi,

uo(x) = f o(x) ∀x ∈ ∂Ωo,

uo(x) = F
(
ε, x

ε
, ui(x)

)
∀x ∈ ε∂Ωi,

νεΩi · ∇uo(x)− νεΩi · ∇ui(x) = G
(
ε, x

ε
, ui(x)

)
∀x ∈ ε∂Ωi.

(2.2)

Here νεΩi denotes the outer exterior normal to εΩi. Since problem (2.2) is

nonlinear and degenerate for ε = 0, one cannot, a priori, claim that it has a

solution.

We briefly summarize our strategy and the contents of this chapter. We

first introduce a suitable representation of harmonic functions in Ω(ε) and

εΩi (i.e. functions which satisfy the first and the second equation of problem

(2.2)) in terms of layer potentials with unknown densities (cf. Proposition

2.1.3). Then, by an appropriate change of variables and by exploiting the

Taylor expansion of certain terms, we convert problem (2.2) into a system of

nonlinear integral equations on the boundaries of Ωo and Ωi (cf. Proposition

2.3.1). The new system is constructed in such a way that we can use the

Implicit Function Theorem to analyse its solutions around the degenerate

case when ε = 0. In such a way, we find the unknown densities as implicit

functions and we deduce that they depend real analytically on ε (cf. Theorem

2.6.5). Finally, exploiting again the suitable integral representation of the

harmonic functions in Ω(ε) and εΩi, we prove the existence of uoε and uiε and

analyse their dependence on ε (cf. Theorems 2.7.2 and 2.7.3).
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2.1 Representation Results

Let Ωh be a bounded open connected subset of Rn of class C1,α with Rn \Ωh

connected, 0 ∈ Ωh and Ωh ⊆ Ωo. Here the superscript “h” stands for “hole”.

In the sequel we will exploit the inequality

∫
∂Ωh

Sn dσ < 0 (2.3)

which follows by the fact that Sn(x) < 0 for all x ∈ Rn \ {0}. Let us define

Ω ≡ Ωo \ Ωh.

Then we have the following representation result for harmonic function

on Ω.

Lemma 2.1.1. Let ρ ∈ R \ {0}. The map from C1,α(∂Ωo)×C1,α(∂Ωh)0 ×R

to C1,α
harm(Ω) which takes (µo, µh, ξ) to the function

u[µo, µh, ξ] ≡ (w+
Ωo [µo] + w−Ωh [µh] + ρ ξ Sn)|Ω

is an isomorphism.

Proof. The map from C1,α(∂Ωo) × C1,α(∂Ωh) to C1,α
harm(Ω) which takes a

pair (φo, φi) to the unique solution u[φo, φh] of the Dirichlet problem with

boundary data φo and φh on ∂Ωo and ∂Ωh, respectively, is well known to be an

isomorphism (cf. Theorems 1.4.1 and 1.4.9). Then we consider the operator

L = (L1, L2) from C1,α(∂Ωo) × C1,α(∂Ωh)0 × R to C1,α(∂Ωo) × C1,α(∂Ωh)
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which takes (µo, µh, ξ) to

L1[µo, µh, ξ] ≡
(1

2I +W∂Ωo

)
[µo] + w−Ωh [µh]|∂Ωo + ρ ξ Sn|∂Ωo ,

L2[µo, µh, ξ] ≡
(
−1

2I +W∂Ωh

)
[µh] + w+

Ωo [µo]|∂Ωh + ρ ξ Sn|∂Ωh .

We observe that we can rewrite L as L = L̂ + L̃ where L̂ and L̃ are the

operators from C1,α(∂Ωo)×C1,α(∂Ωh)0×R to C1,α(∂Ωo)×C1,α(∂Ωh) defined

by

L̂[µo, µh, ξ] ≡
(1

2µ
o,−1

2µ
h + ρ ξ Sn|∂Ωh

)
,

L̃[µo, µh, ξ] ≡
(
W∂Ωo [µo] + w−Ωh [µh]|∂Ωo + ρ ξ Sn|∂Ωo ,W∂Ωh [µh] + w+

Ωo [µo]|∂Ωh
)
.

We observe that, for all (φo, φh) ∈ C1,α(∂Ωo)×C1,α(∂Ωh), we have L̂[µo, µh, ξ] =

(φo, φh) if and only if

µo = 2φo , ξ =
∫
∂Ωh φ

h dσ

ρ
∫
∂Ωh Sn dσ

, µh = −2fh + 2
Sn|∂Ωh∫
∂Ωh Sn dσ

∫
∂Ωh

φh dσ

(cf. (2.3)). Hence, one can exhibit a bounded inverse L̂(−1) of L̂ from

C1,α(∂Ωo)× C1,α(∂Ωh) to C1,α(∂Ωo)× C1,α(∂Ωh)0 ×R and as a consequence

one deduces that L̂ is an isomorphism. Next we observe that L̃ is compact.

In fact, by Theorem 1.3.5 (iii), the map which takes µo to W∂Ωo [µo] is com-

pact from C1,α(∂Ωo) to itself and the map which takes µh to W∂Ωh [µh] is

compact from C1,α(∂Ωh)0 to C1,α(∂Ωh). Moreover the map which takes µh

to w−Ωh [µh]|∂Ωo is compact from C1,α(∂Ωh)0 to C1,α(∂Ωo) and the map which

takes µo to w+
Ωo [µo]|∂Ωh is compact from C1,α(∂Ωo) to C1,α(∂Ωh), because

Ωh ⊂ Ω0 and the integrals involved display no singularities (cf. Theorem

A.2.1 (ii) in the Appendix with G(ψ(x), φ(y), z) = νΩo(y) · ∇Sn(x− y) and

f(y) = µo(y) and the compactness of the embedding Cm,α(∂Ωh) ⊆ Cm,β(∂Ωh)
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for m ∈ N and 0 ≤ β < α ≤ 1). Finally the map which takes ξ to ρSn|∂Ωoξ

is compact from R into C1,α(∂Ωo), because it has a finite dimensional range.

So L = L̂+ L̃ is a compact perturbation of an isomorphism and henceforth

a Fredholm operator of index 0. Accordingly, in order to prove that L is an

isomorphism, it suffices to show that it is injective. Thus we assume that

L[µo, µh, ξ] = 0 and we prove that (µo, µh, ξ) = (0, 0, 0). If L[µo, µh, ξ] = 0,

then by the jump relations of Theorem 1.3.4 (i) and by the uniqueness of the

solution of the Dirichlet problem in Ω (cf. Theorem 1.4.1 (i)) we have

(w+
Ωo [µo] + w−Ωh [µh] + ρ ξ Sn)|Ω = 0. (2.4)

Hence ∫
∂Ωh

νΩh · ∇(w+
Ωo [µo] + w−Ωh [µh] + ρ ξ Sn) dσ = 0. (2.5)

By a standard argument based on the Divergence Theorem, one shows that

∫
∂Ωh

νΩh · ∇w+
Ωo [µo] dσ = 0 (2.6)

and by the jump relation of Theorem 1.3.4 (ii) we get

∫
∂Ωh

νΩh · ∇w−Ωh [µh] dσ =
∫
∂Ωh

νΩh · ∇w+
Ωh [µh] dσ = 0. (2.7)

Finally, by the definition of the double layer potential and by Corollary 1.2.4,

we have

∫
∂Ωh

νΩh · ∇(ρSnξ) dσ = ρ ξ
∫
∂Ωh

νΩh · ∇Sn dσ = ρ ξ w+
Ωh [1](0) = ρ ξ. (2.8)
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Hence by (2.5)-(2.8), we deduce that ξ = 0. Then by (2.4) we have

(w+
Ωo [µo] + w−Ωh [µh])|Ω = 0. (2.9)

Now we consider the function µ ∈ C1,α(∂Ω) defined by

µ(x) ≡


µo(x) if x ∈ ∂Ωo,

−µh(x) if x ∈ ∂Ωh.

Equality (2.9), the jump relations of Theorem 1.3.4 (i), and the fact that

νΩ(x) = −νΩh(x) ∀x ∈ ∂Ωh,

imply that
(

1
2I +W∂Ω

)
[µ] = 0. Then, by Theorem 1.4.7 (iv), we obtain that

µo = 0 on ∂Ωo and µh is constant on ∂Ωh. Since µh ∈ C1,α(∂Ωh)0, it follows

that µh = 0 and we conclude that (µo, µh, ξ) = (0, 0, 0). Hence L is injective

and our proof is complete.

Lemma 2.1.2. The map from C1,α(∂Ωi)0×R to C1,α(∂Ωi) which takes (µ, ξ)

to the function

J [µ, ξ] ≡
(
−1

2I +W∂Ωi

)
[µ] + ξ Sn|∂Ωi

is an isomorphism.

Proof. We write

J [µ, ξ] =
(
−1

2µ+ ξ Sn|∂Ωi

)
+W∂Ωi [µ].

Then we observe that the map which takes (µ, ξ) ∈ C1,α(∂Ωi)0 × R to
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−1
2µ+ ξ Sn|∂Ωi ∈ C1,α(∂Ωi) is an isomorphism with inverse given by

h 7→
(
−2

(
h−

∫
∂Ωi h dσ∫
∂Ωi Sn dσ

Sn|∂Ωi

)
,

∫
∂Ωi h dσ∫
∂Ωi Sn dσ

)

(cf. (2.3)). Moreover, W∂Ωi is compact from C1,α(∂Ωi)0 to C1,α(∂Ωi) by

Theorem 1.3.5 (iii). Hence, J is a compact perturbation of an isomorphism and

therefore a Fredholm operator of index 0. Accordingly, to prove that it is an

isomorphism it suffices to show that it is injective. Let (µ, ξ) ∈ C1,α(∂Ωi)0×R

be such that

J [µ, ξ] =
(
−1

2I +W∂Ωi

)
[µ] + ξ Sn|∂Ωi = 0. (2.10)

Then by the jump relation of Theorem 1.3.4 (i) we have that w−Ωi [µ]|∂Ωi =

−ξ Sn|∂Ωi and, by the uniqueness of the solution of the exterior Dirichlet

problem in Ωi− (cf. Theorem 1.4.2 (i) and note that Sn and w−Ωi [µ] are both

harmonic at infinity), we deduce that

w−Ωi [µ](x) = −ξ Sn(x) ∀x ∈ Ωi−. (2.11)

Then we observe that

lim
|x|→+∞

(n−2)sn|x|n−2w−Ωi [µ](x) = 0, lim
|x|→+∞

(n−2)sn|x|n−2(−ξ Sn(x)) = −ξ

(see decay inequalities for ∇Sn after Theorem 1.1.3 and recall that here n ≥ 3).

Hence ξ = 0 by (2.11). Then,
(
−1

2I +W∂Ωi
)

[µ] = 0 by (2.10). Finally, by

Theorem 1.4.7 (i), and by the membership of µ in C1,α(∂Ωi)0, we also have

µ = 0. Hence (µ, ξ) = (0, 0) and the proof is completed.

In the sequel we denote by uo0 the unique solution in C1,α(Ωo) of the
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interior Dirichlet problem in Ωo with boundary datum f o, namely


∆uo0 = 0 in Ωo ,

uo0 = f o on ∂Ωo .

(2.12)

We mention that this is a posteriori notation, in accordance with the results

obtained in Theorem 2.7.3 (ii)-(iii).

We indicate by ∂εF and ∂ζF the partial derivative of F with respect

to the first the last argument, respectively. We shall exploit the following

assumption:

•There exists ζ i ∈ R such that F (0, ·, ζ i) = uo0(0)

and (∂ζF )(0, ·, ζ i) is constant and positive.
(2.13)

Then we have the following Proposition 2.1.3, where we represent har-

monic functions in Ω(ε) and εΩi in terms of uo0, double layer potentials with

appropriate densities, and a suitable restriction of the fundamental solution

Sn.

Proposition 2.1.3. Let ε ∈]0, ε0[. The map (U o
ε [·, ·, ·, ·], U i

ε [·, ·, ·, ·]) from

C1,α(∂Ωo)× C1,α(∂Ωi)0 × R× C1,α(∂Ωi) to C1,α
harm(Ω(ε))× C1,α

harm(εΩi) which

takes (φo, φi, ζ, ψi) to the pair of functions

(U o
ε [φo, φi, ζ, ψi], U i

ε [φo, φi, ζ, ψi])



32 Existence results for the nonlinear transmission problem (1)

defined by

U o
ε [φo, φi, ζ, ψi](x) ≡ uo0(x) + εw+

Ωo [φo](x)

+ εw−εΩi

[
φi
( ·
ε

)]
(x) + εn−1ζ Sn(x) ∀x ∈ Ω(ε),

U i
ε [φo, φi, ζ, ψi](x) ≡ εw+

εΩi

[
ψi
( ·
ε

)]
(x) + ζ i ∀x ∈ εΩi,

(2.14)

is bijective.

Proof. Let ε ∈]0, ε0[ and (vo, vi) ∈ C1,α
harm(Ωo \ εΩi) × C1,α

harm(εΩi). We prove

that there exists a unique quadruple (φo, φi, ζ, ψi) ∈ C1,α(∂Ωo)×C1,α(∂Ωi)0×

R× C1,α(∂Ωi) such that

(U o
ε [φo, φi, ζ, ψi], U i

ε [φo, φi, ζ, ψi]) = (vo, vi) . (2.15)

Indeed, (2.15) is equivalent to

w+
Ωo [φo](x) + w−εΩi

[
φi
( ·
ε

)]
(x) + εn−2ζ Sn(x) = 1

ε
(vo(x)− uo0(x)) ∀x ∈ Ω(ε),

(2.16)

w+
εΩi

[
ψi
( ·
ε

)]
(x) = 1

ε
(vi(x)− ζ i) ∀x ∈ εΩi.

(2.17)

Since 1
ε
(vo−uo0) ∈ C1,α

harm(Ωo\εΩi), the existence and uniqueness of (φo, φi, ξ) ∈

C1,α(∂Ωo)× C1,α(∂Ωi)0 × R which satisfies (2.16) follow from Lemma 2.1.1

(with ρ = εn−2). By Theorem 1.3.4 (i) and by the uniqueness of the solution

of the interior Dirichlet problem (cf. Theorem 1.4.1 (i)), equation (2.17) is

equivalent to

(1
2I +Wε∂Ωi

) [
ψi
( ·
ε

)]
= 1
ε
(vi − ζ i)|ε∂Ωi .
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By Theorems 1.4.4 (i) and 1.4.7 (iv) one verifies that 1
2I + Wε∂Ωi is an

isomorphism from C1,α(ε∂Ωi) to itself. Hence there exists a unique ψi ∈

C1,α(∂Ωi) solution of (2.17).

2.2 Taylor expansion lemmas for F and uo0

In this section we will present two results on the Taylor expansions of the

functions F and uo0, which will play a key role on the conversion of problem

(2.2) into a system of integral equations.

First we consider the Taylor expansion of the function F with remainder

in integral form. In addition, we assume that:

•For all t ∈ ∂Ωi fixed, the map from ]− ε0, ε0[×R to R

which takes (ε, ζ) to F (ε, t, ζ) is of class C2.
(2.18)

Then we have the following lemma.

Lemma 2.2.1. Let (2.18) hold true. Let a, b ∈ R. Then

F (ε, t, a+ εb) = F (0, t, a) + ε(∂εF )(0, t, a) + εb(∂ζF )(0, t, a) + ε2F̃ (ε, t, a, b),

for all (ε, t) ∈]− ε0, ε0[×∂Ωi, where

F̃ (ε, t, a, b) ≡
∫ 1

0
(1− τ){(∂2

εF )(τε, t, a+ τεb) + 2b(∂ε∂ζF )(τε, t, a+ τεb)

+ b2(∂2
ζF )(τε, t, a+ τεb)} dτ.

(2.19)

Proof. It suffices to consider the following identities:

dε(F (ε, t, a+ εb)) = ∂εF (ε, t, a+ εb) + b∂ζF (ε, t, a+ εb)
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and

d2
ε(F (ε, t, a+ εb)) = (∂2

εF )(ε, t, a+ εb) + 2b(∂ε∂ζF )(ε, t, a+ εb)

+ b2(∂2
ζF )(ε, t, a+ εb),

(2.20)

and to take the Taylor expansion of F (ε, t, a+ εb) with respect to ε and with

remainder in integral form.

Then, under assumption (2.13), we are able to prove the following technical

Lemma 2.2.2 for the Taylor expansion of the function uo0.

Lemma 2.2.2. Let (2.13) hold true. Then

uo0(εt)−F (0, t, ζ i) = ε t·∇uo0(0)+ε2 ũo(ε, t) ∀ε ∈]−ε0, ε0[ , t ∈ ∂Ωi (2.21)

with

ũo(ε, t) ≡
∫ 1

0
(1− τ)

n∑
i,j=1

ti tj (∂xi∂xjuo0)(τεt) dτ . (2.22)

Moreover, the map from ]− ε0, ε0[ to C1,α(∂Ωi) which takes ε to ũo(ε, ·) is real

analytic.

Proof. To prove (2.21) and (2.22) it suffices to take the Taylor expansion of

uo0(εt) with respect to ε and with remainder in integral form (see also (2.13)).

Then we observe that the map from ] − ε0, ε0[ to (C1,α([0, 1] × Ωi))n which

takes ε to the function ετt of the variable (τ, t) is real analytic. Moreover we

have ετt ∈ Ωo for all ε ∈]− ε0, ε0[ and all (τ, t) ∈ [0, 1]×Ωi. Then, by the real

analyticity of ∂xi∂xjuo0 in Ωo and by known results on composition operators

(cf. Valent [76, Thm. 5.2, p. 44]), one verifies that the map from

{h ∈ (C1,α([0, 1]× Ωi))n : h([0, 1]× Ωi) ⊂ Ωo}
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to C1,α([0, 1] × Ωi) which takes a function h(·, ·) to ∂xi∂xjuo0(h(·, ·)) is real

analytic. Since the sum and the pointwise product in C1,α([0, 1] × Ωi) are

bilinear and continuous, the map from ] − ε0, ε0[ to C1,α([0, 1] × Ωi) which

takes ε to the function

(1− τ)
n∑

i,j=1
ti tj (∂xi∂xjuo0)(τεt)

of the variable (τ, t) is real analytic. Then, since the map from C1,α([0, 1]×Ωi)

to C1,α(Ωi) which takes a function g(·, ·) to
∫ 1

0 g(τ, ·)d τ is linear and continuous

and since the restriction operator is linear and continuous from C1,α(Ωi) to

C1,α(∂Ωi), we conclude that the map from ]− ε0, ε0[ to C1,α(∂Ωi) that takes

ε to ũo(ε, ·) is real analytic.

2.3 Conversion of problem (1) into system of

integral equations

We are now ready to provide a formulation of problem (2.2) in terms of

integral equations. As before, let uo0 be defined by (2.12).

Proposition 2.3.1. Let assumptions (2.13) and (2.18) hold true. Let ε ∈

]0, ε0[ and (φo, φi, ζ, ψi) ∈ C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi). Then the

pair of functions

(U o
ε [φo, φi, ζ, ψi], U i

ε [φo, φi, ζ, ψi])

defined by (2.14) is a solution of (2.2) if and only if

(1
2I +W∂Ωo

)
[φo](x)− εn−1

∫
∂Ωi

νΩi(y) · ∇Sn(x− εy)φi(y) dσy

+ εn−2ζ Sn(x) = 0 ∀x ∈ ∂Ωo , (2.23)
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t · ∇uo0(0) + εũo(ε, t) +
(
−1

2I +W∂Ωi

)
[φi](t) + ζ Sn(t) + w+

Ωo [φo](εt)

= (∂εF )(0, t, ζ i) + (∂ζF )(0, t, ζ i)
(1

2I +W∂Ωi

)
[ψi](t)

+ εF̃
(
ε, t, ζ i,

(1
2I +W∂Ωi

)
[ψi](t)

)
∀t ∈ ∂Ωi, (2.24)

νΩi(t) ·
(
∇uo0(εt) + ε∇w+

Ωo [φo](εt) +∇w−Ωi [φ
i](t) + ζ∇Sn(t)−∇w+

Ωi [ψ
i](t)

)
= G

(
ε, t, ε

(1
2I +W∂Ωi

)
[ψi](t) + ζ i

)
∀t ∈ ∂Ωi . (2.25)

Proof. The assertion can be deduced by definition (2.14), by the jump relations

of Theorem 1.3.4 (i), by changing the variable x with εt in the integral

equations on ε∂Ωi and in the integrals over ε∂Ωi, by Lemma 2.2.1 with a = ζ i

and b =
(

1
2I +W∂Ωi

)
[ψi](x), and by Lemma 2.2.2.

Incidentally we observe that, by integrating (2.25) over ∂Ωi, one shows

that

ζ =
∫
∂Ωi

G
(
ε, t, ε

(1
2I +W∂Ωi

)
[ψi](t) + ζ i

)
dσt

for all ε ∈]0, ε0[ (see also Corollary 1.2.4).

2.4 Limiting system

In this section we prove an existence and uniqueness theorem for the limiting

system, i.e. for the system of integral equations obtained by letting ε→ 0+ in

(2.23), (2.24) and (2.25). It consists of the following three equations in the

unknowns (φo, φi, ζ, ψi) ∈ C1,α(∂Ωo)× C1,α(∂Ωi)0 × R× C1,α(∂Ωi):

(1
2I +W∂Ωo

)
[φo](x) = 0 ∀x ∈ ∂Ωo,

t · ∇uo0(0) +
(
−1

2I +W∂Ωi

)
[φi](t) + ζ Sn(t) + w+

Ωo [φo](0)
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= (∂εF )(0, t, ζ i) + (∂ζF )(0, t, ζ i)
(1

2I +W∂Ωi

)
[ψi](t) ∀t ∈ ∂Ωi,

νΩi(t) ·
(
∇uo0(0) +∇w−Ωi [φ

i](t) + ζ∇Sn(t)−∇w+
Ωi [ψ

i](t)
)

= G(0, t, ζ i) ∀t ∈ ∂Ωi.

(2.26)

We begin with an existence and uniqueness result for an auxiliary exterior

transmission problem.

Lemma 2.4.1. Let λ > 0. Let f1 ∈ C1,α(∂Ωi) and f2 ∈ C0,α(∂Ωi). Then

there exists a unique solution (u−, u+) ∈ C1,α(Rn \ Ωi)× C1,α(Ωi) of



∆u− = 0 in Rn \ Ωi,

∆u+ = 0 in Ωi,

u− = λu+ + f1 on ∂Ωi,

νΩi · ∇u− − νΩi · ∇u+ = f2 on ∂Ωi,

lim
x→∞

u−(x) = 0.

(2.27)

Proof. We first prove the uniqueness. By linearity it suffices to show that the

only solution with f1 = f2 = 0 is (u−, u+) = (0, 0). If f1 = f2 = 0, then by the

Divergence Theorem and by the harmonicity at infinity of u−, we compute

0 ≤
∫

Ωi
|∇u+|2 dx = −

∫
Ωi
u+∆u+ dx+

∫
∂Ωi

u+ νΩi · ∇u+ dσ

=
∫
∂Ωi

1
λ
u− νΩi · ∇u− dσ = −1

λ

∫
Rn\Ωi

|∇u−|2 dx ≤ 0.

It follows that u− and u+ are constant functions (note that λ > 0), hence the

fifth condition of (2.27) implies that u− = 0 and, in turn, the third condition

(with f1 = 0) implies that u+ = 0.

Now we show that the solution of (2.27) exists for any f1 ∈ C1,α(∂Ωi)
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and f2 ∈ C0,α(∂Ωi) fixed. To do so, we prove that there exists a (unique)

pair (φ, µ) ∈ C0,α(∂Ωi)×C0,α(∂Ωi) such that the pair of functions (u−, u+) ∈

C1,α
harm(Rn \ Ωi)× C1,α

harm(Ωi) defined by

u− ≡ λv−Ωi [φ] on Rn \ Ωi,

u+ ≡ v+
Ωi [φ+ µ] on Ωi,

is a solution of (2.27). Indeed, since v+
Ωi [φ] = v−Ωi [φ] on ∂Ωi, the third equation

of (2.27) is equivalent to

V∂Ωi [µ] = 1
λ
f1 on ∂Ωi,

and then the existence (and uniqueness) of µ ∈ C0,α(∂Ωi) follows by Theorem

1.3.3 (v). Moreover, by the jump relations for the normal derivative of the

single layer potential (see Theorem 1.3.3 (iv)), we deduce that the fourth

equation of (2.27) is equivalent to

λ
(1

2I +W ∗
∂Ω

)
[φ]−

(
−1

2I +W ∗
∂Ω

)
[φ+ µ] = f2 on ∂Ωi.

By a straightforward computation we obtain

(
1
2I + λ− 1

λ+ 1 W
∗
∂Ω

)
[φ] = 1

λ+ 1

(
f2 +

(
−1

2I +W ∗
∂Ω

)
[µ]
)

on ∂Ωi,

and the existence (and uniqueness) of φ ∈ C0,α(∂Ωi) comes from [25, Lemma

3.5] (note that
∣∣∣λ−1
λ+1

∣∣∣ < 1). Finally, we observe that

lim
x→∞

v−Ωi [φ](x) = 0

and thus u− satisfies also the last equation of (2.27).
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We now get back to the analysis of (2.26) and, in the following theorem,

we prove an existence and uniqueness result for the limiting system.

Theorem 2.4.2. Let assumptions (2.13) and (2.18) hold true. Then, the

quadruple (φo0, φi0, ζ0, ψ
i
0) ∈ C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi) is a solution

of (2.26) if and only if

φo0 = 0

and the pair of functions (u−, u+) ∈ C1,α(Rn \ Ωi)× C1,α(Ωi) defined by

u− ≡ w−Ωi [φ
i
0] + ζ0 Sn on Rn \ Ωi,

u+ ≡ w+
Ωi [ψ

i
0] on Ωi,

(2.28)

is a solution of



∆u− = 0 in Rn \ Ωi,

∆u+ = 0 in Ωi,

u−(t) = (∂ζF )(0, t, ζi)u+(t) + (∂εF )(0, t, ζi)− t · ∇uo0(0) ∀t ∈ ∂Ωi,

νΩi(t) · ∇u−(t)− νΩi(t) · ∇u+(t) = G(0, t, ζi)− νΩi(t) · ∇uo0(0) ∀t ∈ ∂Ωi,

lim
t→∞

u−(t) = 0.
(2.29)

In particular, there exist a unique solution (u−, u+) ∈ C1,α(Rn\Ωi)×C1,α(Ωi)

of (2.29) and a unique solution (φo0, φi0, ζ0, ψ
i
0) ∈ C1,α(∂Ωo) × C1,α(∂Ωi)0 ×

R× C1,α(∂Ωi) of (2.26).

Proof. By Theorem 1.4.4 (i) and by Theorem 1.4.7 (iv) the only solution of

the first equation of (2.26) is φo0 = 0. Then, by Theorem 1.3.4 (i), one verifies

that the triple (φi0, ζ0, ψ
i
0) ∈ C1,α(∂Ωi)0 × R× C1,α(∂Ωi) is a solution of the

last two equations of (2.26) if and only if the pair (u−, u+) defined by (2.28)

is a solution of (2.29). In addition, Lemma 2.4.1 implies that (2.29) has a
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unique solution (u−, u+) ∈ C1,α
harm(Rn \ Ωi)× C1,α

harm(Ωi). Then the existence

and uniqueness of (φi0, ζ0) ∈ C1,α(∂Ωi)0 × R follow by the uniqueness of the

solution of the exterior Dirichlet problem (cf. Theorem 1.4.2 (i)), by the jump

relations of Theorem 1.3.4 (i), and by Lemma 2.1.2. Finally, the existence

and uniqueness of ψi0 ∈ C1,α(∂Ωi) can be deduced by the uniqueness of the

solution of the Dirichlet problem (cf. Theorem 1.4.1 (i)), by Theorem 1.3.4

(i), by Theorem 1.4.4 (i) and by Theorem 1.4.7 (iv).

We incidentally observe that by integrating the third equation of (2.26)

over ∂Ωi we get

ζ0 =
∫
∂Ωi

G(0, t, ζ i) dσt

(cf. Corollary 1.2.4).

2.5 Real analyticity results for integral oper-

ators

In this section we prove a real analyticity result for a specific type of integral

operators. More specifically we introduce the definition of Pettis integral in

the case of maps from a bounded interval of R to a Banach space X (see,

for example, Pettis [70]) and in that framework we will prove Theorem 2.5.2

below. Then we will present an application of that result, namely Lemma

2.5.5 below.

Definition 2.5.1. Let X be a Banach space and a, b ∈ R. A function F from

]a, b[ to X is said to be Pettis integrable over ]a, b[ if there exists an element

x ∈ X such that

L[x] =
∫ b

a
L[F (τ)] dτ ∀L ∈ X ′,
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where the integral on the right hand side is the standard Lebesgue integral on

R. Then we define ∫ b

a
F (τ) dτ ≡ x.

Our aim now is to prove the following theorem (see also Appendix A.1 for

notation and definition of real analytic maps between Banach spaces).

Theorem 2.5.2. Let X, Y be Banach spaces. Let U be an open star-shaped

subset of X and let A be a real analytic map from U to Y . Let f ∈ L1([0, 1]).

Then, for all w ∈ U the integral

∫ 1

0
f(τ)A(τw) dτ (2.30)

exists in the sense of Pettis and the map from U to Y which takes w to (2.30)

is real analytic.

Proof. Since real analyticity is a local property, it suffices to prove the

statement in a neighborhood of a fixed point w∗ of U . In the first part of the

proof we introduce a suitable neighborhood.

Step 1. We begin by observing that, being U open and star-shaped, for

every τ̄ ∈ [0, 1] there exist δτ̄ ∈]0,+∞[ and an open neighborhood Uτ̄ (w∗) ⊂ U

of w∗ such that

τw ∈ U ∀(τ, w) ∈]τ̄ − δτ̄ , τ̄ + δτ̄ [×Uτ̄ (w∗). (2.31)

Then, by the compactness of [0, 1], there exist τ1, . . . , τk ∈ [0, 1] such that

[0, 1] ⊂
k⋃
j=1

]τj − δτj , τj + δτj [
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with δτj as in (2.31) for all j ∈ {1, . . . , k}. If we now define

U(w∗) ≡
k⋂
j=1

Uτj(w∗) and I(w∗) ≡
k⋃
j=1

]τj − δτj , τj + δτj [ ,

then we have that U(w∗) and I(w∗) are open, that

[0, 1] ⊂ I(w∗) , (2.32)

and that

τw ∈ U ∀(τ, w) ∈ I(w∗)× U(w∗) .

As a consequence, the map from I(w∗)× U(w∗) to U which takes (τ, w) to

τw is well defined and, being bilinear and continuous, it is also real analytic.

It follows that the map from I(w∗)×U(w∗) to Y which takes (τ, w) to A(τw)

is real analytic, being the composition of real analytic maps. By Definition

A.1.1 of real analytic maps in Appendix A.1, we deduce that, for all fixed

τ ′ ∈ I(w∗), there exist positive real numbers M(τ ′, w∗) and ρ(τ ′, w∗) and a

family of multilinear maps {aij(τ ′, w∗)}i,j∈N ⊂ Li,j(R, X;Y ) such that

‖aij(τ ′, w∗)‖Li,j(R,X;Y ) ≤M(τ ′, w∗)
(

1
ρ(τ ′, w∗)

)i+j
∀i, j ∈ N,

and such that

A(τw) =
∞∑

i,j=0
aij(τ ′, w∗)[(τ − τ ′)(i), (w − w∗)(j)]

for all (τ, w) ∈]τ ′− ρ(τ ′, w∗), τ ′+ ρ(τ ′, w∗)[×BX(w∗, ρ(τ ′, w∗)) (see also (A.1)

in Appendix A.1). Moreover, since the first i arguments of the ai,j(τ ′, w∗)’s

are real, one verifies that there are multilinear maps bi,j(τ ′, w∗) ∈ Lj(X;Y )
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such that

ai,j(τ ′, w∗)[(τ − τ ′)(i), (w − w∗)(j)] = (τ − τ ′)i bi,j(τ ′, w∗)[(w − w∗)(j)]

for all i, j ∈ N. Then we have

‖bij(τ ′, w∗)‖Lj(X;Y ) ≤M(τ ′, w∗)
(

1
ρ(τ ′, w∗)

)i+j
∀i, j ∈ N (2.33)

and

A(τw) =
∞∑

i,j=0
(τ − τ ′)i bij(τ ′, w∗)[(w − w∗)(j)] (2.34)

where the series converges absolutely and uniformly for (τ, w) in ]τ ′ −

ρ(τ ′, w∗), τ ′ + ρ(τ ′, w∗)[×BX(w∗, ρ(τ ′, w∗)). We now observe that the set

{B(τ ′, ρ(τ ′, w∗)/2) : τ ′ ∈ I(w∗)} is an open covering of [0, 1] (cf. (2.32)).

Then, by a standard compactness argument it follows that there exist

τ ′1, . . . , τ
′
h ∈ [0, 1] and disjoint intervals I1, . . . , Ih ⊂ [0, 1] such that I1 ∪

· · · ∪ Ih = [0, 1] and

Il ⊂ B

(
τ ′l ,

ρ(τ ′l , w∗)
2

)
∀l ∈ {1, . . . , h} (2.35)

(some of the Il’s might be empty). Finally, we define

ρ(w∗) ≡ min
l∈1,...,h

ρ(τ ′l , w∗) . (2.36)

In the next step of the proof we show that the statement of the theorem holds

in B
(
w∗, ρ(w∗)

2

)
. To do so, we also find convenient to set

M(w∗) ≡ max
l=1,...,h

M(τ ′l , w∗). (2.37)
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Step 2. We claim that for all w ∈ B
(
w∗, ρ(w∗)

2

)
the Pettis integral

∫ 1

0
f(τ)A(τw) dτ

is given by the sum

h∑
l=1

∞∑
i,j=0

(∫
Il

f(τ)(τ − τ ′l )i dτ
)
bij(τ ′l , w∗)[(w − w∗)(j)] . (2.38)

To prove it, we first verify that (2.38) defines an element of Y . Indeed, if

w ∈ B
(
w∗, ρ(w∗)

2

)
, then (2.33), (2.36), and (2.37) imply that

∥∥∥bij(τ ′l , w∗)[(w − w∗)(j)]
∥∥∥
Y
≤M(τ ′l , w∗)

(
1

ρ(τ ′l , w∗)

)i+j (
ρ(w∗)

2

)j

≤
(1

2

)j
M(τ ′l , w∗)

(
1

ρ(τ ′l , w∗)

)i (
ρ(w∗)
ρ(τ ′l , w∗)

)j

≤
(1

2

)j
M(w∗)

(
1

ρ(τ ′l , w∗)

)i
(2.39)

for all i, j ∈ N. Hence, by (2.35) and (2.39) we have

∥∥∥∥(∫
Il

f(τ)(τ − τ ′l )i dτ
)
bij(τ ′l , w∗)[(w − w∗)(j)]

∥∥∥∥
Y

≤ ‖f‖L1([0,1])

(
ρ(τ ′l , w∗)

2

)i ∥∥∥bij(τ ′l , w∗)[(w − w∗)(j)]
∥∥∥
Y

≤
(1

2

)i+j
‖f‖L1([0,1])M(w∗).

The last inequality readily implies the convergence in Y of the series in (2.38).

In view of Definition 2.5.1 of Pettis integral, we now consider a functional

L ∈ Y ′ and we observe that for all fixed w ∈ B
(
w∗, ρ(w∗)

2

)
the function which

takes τ ∈]0, 1[ to L[A(τw)] is continuous. Since f ∈ L1([0, 1]), it follows that
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the function which takes τ ∈]0, 1[ to

L[f(τ)A(τw)] = f(τ)L[A(τw)]

belongs to L1([0, 1]). Then, by splitting the integral on τ ∈]0, 1[ over the

partition I1,. . . ,Ih, by the uniform convergence of the series in (2.34), and by

(2.35) we obtain that

∫ 1

0
L[f(τ)A(τw)] dτ =

h∑
l=1

∫
Il

L[f(τ)A(τw)] dτ

=
h∑
l=1

∫
Il

L

[
f(τ)

∞∑
i,j=0

(τ − τ ′l )i bij(τ ′l , w∗)[(w − w∗)(j)]
]
dτ

=
h∑
l=1

∫
Il

∞∑
i,j=0

L
[
f(τ)(τ − τ ′l )i bij(τ ′l , w∗)[(w − w∗)(j)]

]
dτ

=
h∑
l=1

∫
Il

∞∑
i,j=0

f(τ)(τ − τ ′l )iL
[
bij(τ ′l , w∗)[(w − w∗)(j)]

]
dτ .

(2.40)

To verify that the Pettis integral of f(τ)A(τw) on [0, 1] is given by (2.38), it

remains to show that we can change the order of the integration over Il and

of the summation on i, j in (2.40). By a classical corollary of the Dominated

Convergence Theorem it suffices to prove that

∞∑
i,j=0

∫
Il

∣∣∣f(τ)(τ − τ ′l )iL
[
bij(τ ′l , w∗)[(w − w∗)(j)]

]∣∣∣ dτ
is a convergent series. This latter fact can be deduced by noting that, as a

consequence of (2.39), we have

∣∣∣(τ − τ ′l )iL [bij(τ ′l , w∗)[(w − w∗)(j)]
]∣∣∣

≤
(
ρ(τ ′l , w∗)

2

)i
‖L‖Y ′

(1
2

)j
M(w∗)

(
1

ρ(τ ′l , w∗)

)i
≤
(1

2

)i+j
‖L‖Y ′M(w∗)
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for all i, j ∈ N, l ∈ {1, . . . , h}, and τ ∈ Il.

Now that we know that the integral
∫ 1

0 f(τ)A(τw) dτ is given by (2.38),

the real analyticity of the map that takes w to
∫ 1
0 f(τ)A(τw) dτ is a direct

consequence of Definition A.1.1 of real analytic maps in Appendix A.1.

We now wish to apply Theorem 2.5.2 to obtain a result of real analyticity

of the map from ]− ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi) which take a pair (ε, ψi)

to the function

F̃
(
ε, t, ζ i,

(1
2I +W∂Ωi

)
[ψi](t)

)
∀t ∈ ∂Ωi

(cf. Lemma 2.2.1 and Proposition 2.3.1). This result will be crucial in section

2.6 in order to apply the Implicit Function Theorem for real analytic maps

(see Proposition 2.6.2).

We begin by introducing some notation.

Definition 2.5.3. If H is a measurable function from ] − ε0, ε0[×∂Ωi × R

to R, then we denote by NH the (nonlinear non-autonomous) superposition

operator which takes a pair (ε, v) consisting of a real number ε ∈]− ε0, ε0[ and

of a measurable function v from ∂Ωi to R to the function NH(ε, v) defined by

NH(ε, v)(t) ≡ H(ε, t, v(t)) ∀t ∈ ∂Ωi .

Here the letter “N ” stands for “Nemytskii operator”.

Remark 2.5.4. If H is a measurable function from ] − ε0, ε0[×∂Ωi × R

to R such that the superposition operator NH is real analytic from ] −

ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi), then for every (ε, v) ∈] − ε0, ε0[×C1,α(∂Ωi)

we have

dvNH(ε, v).ṽ = N(∂ζH)(ε, v)ṽ ∀ṽ ∈ C1,α(∂Ωi). (2.41)
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The same result holds replacing the domain and the target space of the operator

NH with ]− ε0, ε0[×C0,α(∂Ωi) and C0,α(∂Ωi) respectively and using functions

v, ṽ ∈ C0,α(∂Ωi) in (2.41).

The proof of Remark 2.5.4 is a straightforward modification of the cor-

responding argument of Lanza de Cristoforis [47, Prop. 6.3]. Moreover, for

examples and assumptions which imply the real analyticity of a Nemytskii

type-operator generated by a measurable function H, we refer to section 3.2

and references therein (in particular Valent [76, Chap. II]). See also Lanza De

Cristoforis [50, Section 8] for a concrete example in dimension 2 of problem

(2.2).

In the sequel we will exploit the following assumption:

•For all (ε, v) ∈]− ε0, ε0[×C1,α(∂Ωi) we have NF (ε, v) ∈ C1,α(∂Ωi).

Moreover, the superposition operator NF is real analytic from

]− ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi).

(2.42)

Then we have the following technical Lemma 2.5.5.

Lemma 2.5.5. Let assumptions (2.13), (2.18), and (2.42) hold true. Then,

the map from ] − ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi) which takes (ε, ψi) to the

function

F̃
(
ε, t, ζ i,

(1
2I +W∂Ωi

)
[ψi](t)

)
∀t ∈ ∂Ωi

is real analytic (see also (2.19)).

Proof. We plan to exploit Theorem 2.5.2. We begin by observing that, by

the definition of F̃ (cf. (2.19)) and by equalities (2.20) and (2.41), we have
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F̃
(
ε, t, ζ i,

(1
2I +W∂Ωi

)
[ψi](t)

)
=
∫ 1

0
(1− τ)

{
(∂2
εF )

(
τε, t, ζ i + τε

(1
2I +W∂Ωi

)
[ψi](t)

)
+ 2

(1
2I +W∂Ωi

)
[ψi](t) (∂ε∂ζF )

(
τε, t, ζ i + τε

(1
2I +W∂Ωi

)
[ψi](t)

)
+
((1

2I +W∂Ωi

)
[ψi]

)2
(t) (∂2

ζF )
(
τε, t, ζ i + τε

(1
2I +W∂Ωi

)
[ψi](t)

)}
dτ

=
∫ 1

0
(1− τ) d2

εNF
(
τε, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
.(1, 1)(t) dτ

+ 2
(1

2I +W∂Ωi

)
[ψi](t)

×
∫ 1

0
(1− τ) dεdvNF

(
τε, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
.(1, 1∂Ωi)(t) dτ

+
((1

2I +W∂Ωi

)
[ψi]

)2
(t)

×
∫ 1

0
(1− τ) d2

vNF
(
τε, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
.(1∂Ωi , 1∂Ωi)(t) dτ

for all (ε, t, ψi) ∈]− ε0, ε0[×∂Ωi × C1,α(∂Ωi) (cf. Remark 2.5.4). Here above

1∂Ωi denotes the constant function identically equal to 1 on ∂Ωi.

Now let A be the map from ]− ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi) which takes

a pair h = (h1, h2) to the function A(h) defined by

A(h)(t) ≡ d2
εNF

(
h1, h2 + ζ i

)
.(1, 1)(t) ∀t ∈ ∂Ωi .

By assumption (2.42) one deduces that A is real analytic and thus Theorem

2.5.2 implies that the map from ]− ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi) which takes

h to the function ∫ 1

0
(1− τ)A(τh) dτ
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is also real analytic. Then we set

h[ε, ψi] = (h1[ε, ψi], h2[ε, ψi]) ≡
(
ε, ε

(1
2I +W∂Ωi

)
[ψi]

)

for all (ε, ψi) ∈] − ε0, ε0[×C1,α(∂Ωi) and we observe that the map from the

space ]−ε0, ε0[×C1,α(∂Ωi) to itself which takes (ε, ψi) to h[ε, ψi] is real analytic

(because the first component is linear and continuous and the second one

is bilinear and continuous). Since the composition of real analytic maps is

real analytic, it follows that the map from ]− ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi)

which takes (ε, ψi) to the function

∫ 1

0
(1− τ) d2

εNF
(
τε, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
.(1, 1)(t) dτ

is real analytic. In a similar way, one can prove that the map from the space

]− ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi) which takes (ε, ψi) to the function

∫ 1

0
(1− τ) dεdvNF

(
τε, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
.(1, 1∂Ωi)(t) dτ

and the map from ] − ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi) which takes (ε, ψi) to

the function

∫ 1

0
(1− τ) d2

vNF
(
τε, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
.(1∂Ωi , 1∂Ωi)(t) dτ

are real analytic. The map from C1,α(∂Ωi) to itself which takes ψi to the

function
(

1
2I +W∂Ωi

)
[ψi] is linear and continuous, hence real analytic. Since

the product of real analytic maps is real analytic, the map from C1,α(∂Ωi)

to itself which takes ψi to the function
((

1
2I +W∂Ωi

)
[ψi]

)2
is real analytic.

Finally, since the sum of real analytic maps is real analytic, we conclude that

the map from ] − ε0, ε0[×C1,α(∂Ωi) to C1,α(∂Ωi) which takes (ε, ψi) to the
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function

F̃
(
ε, t, ζ i,

(1
2I +W∂Ωi

)
[ψi](t)

)
∀t ∈ ∂Ωi

is real analytic. The lemma is now proved.

2.6 Application of the Implicit Function The-

orem

In view of the equivalence of problem (2.2) and equations (2.23), (2.24),

and (2.25), we now introduce the auxiliary map M = (M1,M2,M3) from

]−ε0, ε0[×C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi) to C1,α(∂Ωo)×C1,α(∂Ωi)×

C0,α(∂Ωi) defined by

M1[ε, φo, φi, ζ, ψi](x) ≡
(1

2I +W∂Ωo

)
[φo](x)

− εn−1
∫
∂Ωi

νΩi(y) · ∇Sn(x− εy)φi(y) dσy + εn−2ζ Sn(x) ∀x ∈ ∂Ωo,

M2[ε, φo, φi, ζ, ψi](t) ≡ t · ∇uo0(0) + εũo(ε, t) +
(
−1

2I +W∂Ωi

)
[φi](t)

+ ζ Sn(t) + w+
Ωo [φo](εt)− (∂εF )(0, t, ζ i)− (∂ζF )(0, t, ζ i)

×
(1

2I +W∂Ωi

)
[ψi](t)− εF̃

(
ε, t, ζ i,

(1
2I +W∂Ωi

)
[ψi](t)

)
∀t ∈ ∂Ωi,

M3[ε, φo, φi, ζ, ψi](t) ≡ νΩi(t) ·
(
∇uo0(εt) + ε∇w+

Ωo [φo](εt)

+∇w−Ωi [φ
i](t) +∇Sn(t)ζ −∇w+

Ωi [ψ
i](t)

)
−G

(
ε, t, ε

(1
2I +W∂Ωi

)
[ψi](t) + ζ i

)
∀t ∈ ∂Ωi,

for all (ε, φo, φi, ζ, ψi) ∈]−ε0, ε0[×R×C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi).

Then one readily verifies the following.

Proposition 2.6.1. Let assumptions (2.13) and (2.18) hold true. Let ε ∈

]0, ε0[. Then the system consisting of equations (2.23), (2.24), and (2.25) is
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equivalent to

M [ε, φo, φi, ζ, ψi] = (0, 0, 0) . (2.43)

We now wish to apply the Implicit Function Theorem for real analytic

functions (see, for example, Deimling [31, Thm. 15.3]) to equation (2.43)

around the degenerate value ε = 0. As a first step we have to analyse the

regularity of the map M .

To prove that M is real analytic we will exploit the following assumption:

•For all (ε, v) ∈]− ε0, ε0[×C1,α(∂Ωi) we have NG(ε, v) ∈ C0,α(∂Ωi).

Moreover, the superposition operator NG is real analytic from

]− ε0, ε0[×C1,α(∂Ωi) to C0,α(∂Ωi).

(2.44)

We now show that M is real analytic.

Proposition 2.6.2. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold

true. Then, the mapM is real analytic from ]−ε0, ε0[×C1,α(∂Ωo)×C1,α(∂Ωi)0×

R× C1,α(∂Ωi) to C1,α(∂Ωo)× C1,α(∂Ωi)× C0,α(∂Ωi).

Proof. We first show that M1 is real analytic from ] − ε0, ε0[×C1,α(∂Ωo) ×

C1,α(∂Ωi)0 × R × C1,α(∂Ωi) to C1,α(∂Ωo). To do so, we analyse M1 term

by term. The map from C1,α(∂Ωo) to C1,α(∂Ωo) which takes φo to the

function
(

1
2I +W∂Ωo

)
[φo] is linear and continuous, so real analytic. The

second term can be treated in this way: one considers the integral op-

erator from ] − ε′, ε′[×L1(∂Ωi) to C1,α(∂Ωo) which takes the pair (ε, f) to∫
∂Ωi νΩi(y) · ∇Sn(· − εy)f(y) dσy. By the real analyticity of Sn on Rn\{0}, by

the fact that the integral kernel does not display singularities (see also Theorem

A.2.2 (ii) in Appendix A.2) and since C1,α(∂Ωi)0 is linearly and continuously

imbedded in L1(∂Ωi), we conclude that the map from ]− ε′, ε′[×C1,α(∂Ωi)0

to C1,α(∂Ωo) which takes the pair (ε, φi) to
∫
∂Ωi νΩi(y) · ∇Sn(· − εy)φi(y) dσy
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is real analytic. Finally, one easily verifies that the map from ]− ε′, ε′[×R to

C1,α(∂Ωo) which takes (ε, ζ) to εn−2Sn(·)ζ is real analytic.

We now analyse M2. For the first term there is nothing to say, because

it does not depend on (ε, φo, φi, ζ, ψi). For the second term, we invoke

Lemma 2.2.2. The map from C1,α(∂Ωi)0 to C1,α(∂Ωi) which takes φi to(
−1

2I +W∂Ωi
)

[φi] is linear and continuous, so real analytic. Since continuous

linear maps are real analytic, the map from R to C1,α(∂Ωi) which takes ζ

to ζ Sn(·) is real analytic. The map from ]− ε0, ε0[×C1,α(∂Ωo) to C1,α(∂Ωi)

which takes (ε, φo) to w+
Ωo [φo](ε·) can be proven to be real analytic by the

properties of integral operators with real analytic kernels (see Theorem A.2.2

(ii) in the Appendix A.2). For the sixth term there is nothing to say, because

it does not depend on (ε, φo, φi, ζ, ψi). For the seventh term, the map from

C1,α(∂Ωi) to C1,α(∂Ωi) which takes ψi to (∂ζF )(0, ·, ζ i)
(

1
2I +W∂Ωi

)
[ψi] is

linear and continuous and hence real analytic. Finally, for the eighth term,

we invoke Lemma 2.5.5.

Then we pass to consider M3. The map from ] − ε0, ε0[ to (C0,α(Ωi))n

which takes ε to the function εt of the variable t is real analytic. Moreover we

have εt ∈ Ωo for all ε ∈]− ε0, ε0[ and all t ∈ Ωi. Then, by the real analyticity

of νΩi · ∇uo0 in Ωo and by known results on composition operators (cf. Valent

[76, Thm. 5.2, p. 44]), one verifies that the map from

{h ∈ (C0,α(Ωi))n : h(Ωi) ⊂ Ωo}

to C0,α(Ωi) which takes a function h to νΩi ·∇uo0(h(·)) is real analytic. Since the

restriction operator is linear and continuous from C0,α(Ωi) to C0,α(∂Ωi), we

conclude that the map from ]−ε′, ε′[ to C0,α(∂Ωi) which takes ε to νΩi ·∇uo0(ε·)

is real analytic. Since continuous linear maps are real analytic, the map from

R to C0,α(∂Ωi) which takes ζ to νΩi · ∇Snζ is real analytic. By the properties
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of integral operators with real analytic kernels (see Theorem A.2.2 (ii) in the

Appendix A.2)) it follows that the map from ]− ε′, ε′[×C1,α(∂Ωo) to C0,α(∂Ωi)

which takes (ε, φo) to νΩi · ε∇w+
Ωo [φo](ε·) is real analytic. Since linear and

continuous map are real analytic, the map from C1,α(∂Ωi) to C0,α(∂Ωi) which

takes φi to νΩi · ∇w−Ωi [φi], the map from C1,α(∂Ωi) to C0,α(∂Ωi) which takes

ψi to νΩi ·∇w+
Ωi [ψi], and the map from C1,α(∂Ωi) to C0,α(∂Ωi) which takes ψi

to
(

1
2I +W∂Ωi

)
[ψi] are real analytic. Since product of real analytic functions

is real analytic, the map from ]− ε′, ε[×C1,α(∂Ωi) to C0,α(∂Ωi) which takes

(ε, ψi) to ε
(

1
2I +W∂Ωi

)
[ψi] + ζ i is real analytic. Finally using hypothesis

(2.44) and again the fact that the composition of real analytic functions is

real analytic, we conclude that the map from ]− ε′, ε[×C1,α(∂Ωi) to C0,α(∂Ωi)

which takes (ε, ψi) to

G
(
ε, ·, ε

(1
2I +W∂Ωi

)
[ψi](·) + ζ i

)
= NG

(
ε, ε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)

is real analytic.

The proof of the proposition is now complete.

In order to analyse problem (2.2) for ε > 0 close to 0, and thus equation

(2.43) for ε > 0 close to 0, we need to consider (2.43) at the singular value

ε = 0. Then, by the definition of M , by a straightforward computation, and

by Theorem 2.4.2, we deduce the following.

Proposition 2.6.3. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold

true. Then, equation

M [0, φo, φi, ζ, ψi] = (0, 0, 0)
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is equivalent to the limiting system (2.26) and has one and only one solution

(φo0, φi0, ζ0, ψ
i
0) ∈ C1,α(∂Ωo)× C1,α(∂Ωi)0 × R× C1,α(∂Ωi).

Finally, we have the following Lemma 2.6.4 concerning the partial differ-

ential of M with respect to (φo, φi, ζ, ψi) evaluated at (0, φo0, φi0, ζ0, ψ
i
0).

Lemma 2.6.4. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold true.

Then, the partial differential of M with respect to (φo, φi, ζ, ψi) evaluated at

(0, φo0, φi0, ζ0, ψ
i
0), which we denote by

∂(φo,φi,ζ,ψi)M [0, φo0, φi0, ζ0, ψ
i
0] , (2.45)

is an isomorphism from C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi) to C1,α(∂Ωo)×

C1,α(∂Ωi)× C0,α(∂Ωi).

Proof. By standard calculus in Banach spaces one verifies that the partial

differential (2.45) is the linear and continuous operator delivered by

∂(φo,φi,ζ,ψi)M1[0, φo0, φi0, ζ0, ψ
i
0].(φ̃o, φ̃i, ζ̃, ψ̃i)(x)

=
(1

2I +W∂Ωo

)
[φ̃o](x) ∀x ∈ ∂Ωo,

∂(φo,φi,ζ,ψi)M2[0, φo0, φi0, ζ0, ψ
i
0].(φ̃o, φ̃i, ζ̃, ψ̃i)(t)

=
(
−1

2I +W∂Ωi

)
[φ̃i](t) + ζ̃ Sn(t) + w+

Ωo [φ̃o](0)

− (∂ζF )(0, t, ζ i)
(1

2I +W∂Ωi

)
[ψ̃i](t) ∀t ∈ ∂Ωi ,

∂(φo,φi,ζ,ψi)M3[0, φo0, φi0, ζ0, ψ
i
0].(φ̃o, φ̃i, ζ̃, ψ̃i)(t)

= νΩi(t)
(
∇w−Ωi [φ̃i](t) + ζ̃∇Sn(t)−∇w+

Ωi [ψ̃i](t)
)

∀t ∈ ∂Ωi,

for all (φ̃o, φ̃i, ζ̃, ψ̃i) ∈ C1,α(∂Ωo) × C1,α(∂Ωi)0 × R × C1,α(∂Ωi). Then, to
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prove that ∂(φo,φi,ζ,ψi)M [0, φo0, φi0, ζ0, ψ
i
0] is an isomorphism of Banach spaces

it will suffice to prove that it is a bijection and then apply the Open Mapping

Theorem. So let (gi, hi, ho) ∈ C1,α(∂Ωi)× C1,α(∂Ωi)× C1,α(∂Ωo). We have

to prove that there exists a unique quadruple (φ̄o, φ̄i, ζ̄, ψ̄i) ∈ C1,α(∂Ωo) ×

C1,α(∂Ωi)0 × R× C1,α(∂Ωi) such that

∂(φo,φi,ζ,ψi)M [0, φo0, φi0, ζ0, ψ
i
0].(φ̄o, φ̄i, ζ̄, ψ̄i) = (gi, hi, ho). (2.46)

The last two equations of (2.46) written in full are

(
−1

2I +W∂Ωi

)
[φ̄i](t) + ζ̄ Sn(t)

+ w+
Ωo [φ̄o](0)− (∂ζF )(0, t, ζ i)

(1
2I +W∂Ωi

)
[ψ̄i](t) = gi(t) ,

νΩi(t) ·
(
∇w−Ωi [φ̄i](t) + ζ̄∇Sn(t)−∇w+

Ωi [ψ̄i](t)
)

= hi(t) ,

(2.47)

for all t ∈ ∂Ωi. Then, by Theorem 1.3.4 (i), one verifies that the triple

(φ̄i, ζ̄, ψ̄i) ∈ C1,α(∂Ωi)0 × R× C1,α(∂Ωi) is a solution of system (2.47) if and

only if the pair (u−, u+) defined by

u− ≡ w−Ωi [φ̄i] + ζ̄ Sn|Rn\Ωi in Rn \ Ωi,

u+ ≡ w+
Ωi [ψ̄i] in Ωi,

(2.48)
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is a solution of the transmission problem



∆u− = 0 in Rn \ Ωi,

∆u+ = 0 in Ωi,

u− = (∂ζF )(0, · , ζ i) u+ − w+
Ωo [φ̃o](0) + gi on ∂Ωi,

νΩi · ∇u− − νΩi · ∇u+ = hi on ∂Ωi,

lim
x→∞

u−(x) = 0 .

(2.49)

By assumption (2.13) and by Lemma 2.4.1, the solution (u−, u+) of problem

(2.49) exists and is unique. Then the existence and uniqueness of (φ̄i, ζ̄) ∈

C1,α(∂Ωi)0 × R follow by the first equation of (2.48), by the uniqueness of

the solution of the exterior Dirichlet problem (cf. Theorem 1.4.2 (i)), by the

jump relations of Theorem 1.3.4 (i), and by Lemma 2.1.2. The existence

and uniqueness of ψ̄i ∈ C1,α(∂Ωi) can be deduced by the second equation

of (2.48), by the uniqueness of the solution of the internal Dirichlet problem

(cf. Theorem 1.4.1 (i)), by Theorem 1.3.4 (i), by Theorem 1.4.4 (i) and by

Theorem 1.4.7 (iv). Finally, to prove that φ̄o exists and is unique we observe

that the first equation of (2.46) is

(1
2I +W∂Ωo

)
[φ̄o] = ho

and by Theorem 1.4.4 (i) and by Theorem 1.4.7 (iv) the operator 1
2I +W∂Ωo

is invertible from C1,α(∂Ωo) into itself.

We are now ready to show that there is a real analytic family of solutions

of equation (2.43).

Theorem 2.6.5. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold true.

Then there exist ε′ ∈]0, ε0[, an open neighborhood U0 of (φo0, φi0, ζ0, ψ
i
0) in
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C1,α(∂Ωo)× C1,α(∂Ωi)0 × R× C1,α(∂Ωi), and a real analytic map

(Φo[·],Φi[·], Z[·],Ψi[·]) : ]− ε′, ε′[→ U0

such that the set of zeros of M in ] − ε′, ε′[×U0 coincides with the graph of

the function (Φo[·],Φi[·], Z[·],Ψi[·]). In particular,

(Φo[0],Φi[0], Z[0],Ψi[0]) = (φo0, φi0, ζ0, ψ
i
0). (2.50)

Proof. It follows by Proposition 2.6.2, by Lemma 2.6.4, and by the Implicit

Function Theorem for real analytic maps (see Theorem A.1.2 in Appendix

A.1). The validity of (2.50) is a consequence of Proposition 2.6.3.

2.7 Real analytic representation of the family

of solutions of problem (1)

We are now ready to exhibit a family of solutions of problem (2.2) for ε

sufficiently small and describe its asymptotic behaviour in terms of real

analytic functions of ε.

Definition 2.7.1. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold

true. Let ε′ and (Φo[·],Φi[·], Z[·],Ψi[·]) be as in Theorem 2.6.5. Then, for all

ε ∈]0, ε′[ we set

uoε(x) ≡ U o
ε [Φo[ε],Φi[ε], Z[ε],Ψi[ε]](x) ∀x ∈ Ω(ε) ,

uiε(x) ≡ U i
ε [Φo[ε],Φi[ε], Z[ε],Ψi[ε]](x) ∀x ∈ εΩi ,

with U o
ε [·, ·, ·, ·] and U i

ε [·, ·, ·, ·] defined as in (2.14).
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As a consequence of Propositions 2.3.1 and 2.6.1 and of Theorem 2.6.5 we

have the following.

Theorem 2.7.2. Under assumptions (2.13), (2.18), (2.42) and (2.44), the

pair of functions

(uoε , uiε) ∈ C1,α(Ω(ε))× C1,α(εΩi)

is a solution of (2.2) for all ε ∈]0, ε′[.

We now verify that the map which takes ε to (suitable restrictions of) the

pair of functions (uoε , uiε) admits a real analytic continuation in a neighborhood

of ε = 0.

Theorem 2.7.3. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold true.

Then the following statements hold.

(i) There exists a real analytic map

U i
m : ]− ε′, ε′[→ C1,α(Ωi)

such that

uiε(εt) = ζ i + εU i
m[ε](t) ∀t ∈ Ωi

for all ε ∈]0, ε′[.

(ii) Let ΩM be a bounded open subset of Ωo \ {0} such that 0 /∈ ΩM . Let

εM ∈]0, ε′[ be such that

ΩM ∩ εΩi = ∅ ∀ε ∈]− εM , εM [ .

Then there exists a real analytic map

U o
M : ]− εM , εM [→ C1,α(ΩM)
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such that

uoε(x) = uo0(x) + εU o
M [ε](x) ∀x ∈ ΩM

for all ε ∈]0, εM [.

(iii) Let Ωm be a bounded open subset of Rn \Ωi. Let εm ∈]0, ε′[ be such that

εΩm ⊆ Ωo ∀ε ∈]− εm, εm[.

Then there exists a real analytic map

U o
m : ]− εm, εm[→ C1,α(Ωm)

such that

uoε(εt) = uo0(0) + εU o
m[ε](t) ∀t ∈ Ωm

for all ε ∈]0, εm[.

Proof. We first prove statement (i). By (2.14) and by Definition 2.7.1 we

have

uiε(x) = εw+
εΩi

[
Ψi[ε]

( ·
ε

)]
(x) + ζ i ∀x ∈ εΩi,

for all ε ∈]0, ε′[. Then, by a computation based on the theorem of change of

variable in integrals and on the homogeneity of ∇Sn we obtain that

uiε(εt) = εw+
εΩi

[
Ψi[ε]

( ·
ε

)]
(εt) + ζ i

= −ε εn−1
∫
∂Ωi

νΩi(s) · ∇Sn(εt− εs)Ψi[ε](s) dσs + ζ i

= −ε
∫
∂Ωi

νΩi(s) · ∇Sn(t− s)Ψi[ε](s) dσs + ζ i

= εw+
Ωi [Ψ

i[ε]](t) + ζ i ∀t ∈ Ωi,
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for all ε ∈]0, ε′[. Then it is natural to take

U i
m[ε] ≡ w+

Ωi [Ψ
i[ε]] ∀ε ∈]− ε′, ε′[ .

Since w+
Ωi [·] is linear and continuous from C1,α(∂Ωi) to C1,α(Ωi) (cf. Theorem

1.3.4 (iii)) and Ψi[·] is real analytic (cf. Theorem 2.6.5), we conclude that the

map U i
m is real analytic. The validity of (i) is proved.

We now proceed with statement (ii). By (2.14) and by Definition 2.7.1

we have

uoε(x) = uo0(x) + εw+
Ωo [Φo[ε]](x) + εw−εΩi

[
Φi[ε]

( ·
ε

)]
(x) + εn−1Z[ε]Sn(x)

∀x ∈ Ω(ε)

for all ε ∈]0, ε′[. Then, by changing the variable of integration over ε∂Ωi we

obtain

uoε(x) = uo0(x) + εw+
Ωo [Φo[ε]](x)− ε

∫
∂Ωi

νΩi(s) · ∇Sn(x− εs)Φi[ε](s) εn−1 dσs

+εn−1Z[ε]Sn(x) ∀x ∈ Ω(ε)

for all ε ∈]0, ε′[. Then it is natural to define

U o
M [ε](x) ≡ w+

Ωo [Φo[ε]](x)− εn−1
∫
∂Ωi

νΩi(s) · ∇Sn(x− εs)Φi[ε](s) dσs

+εn−2Z[ε]Sn(x) ∀x ∈ ΩM

for all ε ∈]− εM , εM [.

Since Φo[·] is real analytic (cf. Theorem 2.6.5), since w+
Ωo [·] is linear and

continuous from C1,α(∂Ωo) to C1,α(Ωo) (cf. Theorem 1.3.4 (iii)), and since

the restriction operator from C1,α(Ωo) to C1,α(ΩM) is linear and continuous,
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then the map from ] − εM , εM [ to C1,α(ΩM) which takes ε to w+
Ωo [Φo[ε]] is

real analytic. Then, one considers the operator from ]− εM , εM [×L1(∂Ωi) to

C1,α(ΩM) which takes the pair (ε, f) to the function

∫
∂Ωi

νΩi(s) · ∇Sn(· − εs)f(s) dσs.

By the real analyticity of Sn on Rn \ {0}, by the fact that the integral does

not display singularities (by hypothesis ΩM ∩ εΩi = ∅ for all ε ∈]− εM , εM [),

by the real analyticity of the map from ]− εM , εM [ to C1,α(∂Ωi)0 which takes ε

to Φi[ε] (cf. Theorem 2.6.5) and since C1,α(∂Ωi)0 is linearly and continuously

imbedded in L1(∂Ωi), we conclude that the map from ]− εM , εM [ to C1,α(ΩM )

which takes ε to εn−1 ∫
∂Ωi νΩi(s) · ∇Sn(· − εs)Φi[ε](s) dσs is real analytic (cf.

Theorem A.2.2 (ii) in Appendix A.2). Finally, by the real analyticity of Z[·]

(cf. Theorem 2.6.5), one verifies that the map from ]− εM , εM [ to C1,α(ΩM)

which takes ε to εn−2Z[ε]Sn is real analytic. Hence, one deduces the validity

of (ii).

Finally we prove statement (iii). By (2.14), by Definition 2.7.1, by exploit-

ing the homogeneity properties of Sn and ∇Sn, and by adding and subtracting

the term uo0(0), we obtain that

uoε(εt) =uo0(0) + uo0(εt)− uo0(0) + εw+
Ωo [Φo[ε]](εt)

− ε
∫
∂Ωi

νΩi(s) · ∇Sn(t− s)Φi[ε](s) dσs + εZ[ε]Sn(t) ∀t ∈ Ωm

for all ε ∈]0, ε′[. Then one observes that the map from ]−εm, εm[ to (C1,α(Ωm))n

which takes ε to the function εt of the variable t is real analytic. Moreover,

we have εt ∈ Ωo for all ε ∈] − εm, εm[ and all t ∈ Ωm. Then, by the real

analyticity of uo0 in Ωo and known results on composition operators (cf. Valent
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[76, Thm. 5.2, p. 44]), one verifies that the map from

{h ∈ (C1,α(Ωm))n : h(Ωm) ⊂ Ωo}

to C1,α(Ωm) which takes a function h to uo0(h(·)) is real analytic. Hence, the

map from ]−εm, εm[ to C1,α(Ωm) which takes ε to uo0(ε·)−uo0(0) is real analytic

and equal to 0 for ε = 0. This implies that the map from ] − εm, εm[\{0}

to C1,α(Ωm) which takes ε to uo0(ε·)−uo0(0)
ε

has a real analytic continuation to

]− εm, εm[. Then it is natural to define

U o
m[ε](t) ≡ u

o
0(ε·)− uo0(0)

ε
+ w+

Ωo [Φo[ε]](εt)

−
∫
∂Ωi

νΩi(s) · ∇Sn(t− s)Φi[ε](s) dσs + Z[ε]Sn(t) ∀t ∈ Ωm

for all ε ∈]− εm, εm[.

By the real analyticity of Φo[·] (cf. Theorem 2.6.5) and by the properties

of integral operators with real analytic kernels (see Theorem A.2.2 (ii) in

Appendix A.2), it follows that the map from ]− εm, εm[ to C1,α(Ωm) which

takes ε to w+
Ωo [Φo[ε]](ε·) is real analytic. Then, one considers the operator

from L1(∂Ωi) to C1,α(Ωm) which takes f to
∫
∂Ωi νΩi(s) · ∇Sn(· − s)f(s) dσs.

By the real analyticity of Sn on Rn \ {0}, by the fact that the integral does

not display singularities (by hypothesis Ωm ⊆ Rn \Ωi), by the real analyticity

of the map from ]− εm, εm[ to C1,α(∂Ωi)0 which takes ε to Φi[ε] (cf. Theorem

2.6.5) and since C1,α(∂Ωi)0 is linearly and continuously imbedded in L1(∂Ωi),

we conclude that the map from ] − εm, εm[ to C1,α(Ωm) which takes ε to∫
∂Ωi νΩi(s) · ∇Sn(· − s)Φi[ε](s) dσs is real analytic (see Theorem A.2.2 (ii) in

Appendix A.2). Finally, by the real analyticity of Z[·] (cf. Theorem 2.6.5),

the map from ]− εm, εm[ to C1,α(Ωm) which takes ε to Z[ε]Sn is real analytic.

Hence, one deduces the validity of (iii).



CHAPTER 3

Uniqueness result for the nonlinear

transmission problem (1)

In this chapter we study uniqueness properties of the family of solution

{(uoε , uiε)}ε∈]0,ε′[ of problem (2.2) (cf. Theorem 2.7.2). In particular, we first

prove a local uniqueness result (cf. Theorem 3.1.2) which is, in a sense, a

consequence of the argument based on the Implicit Function Theorem used in

Chapter 2 to prove the existence of such family of solutions. Then, thanks to

a precise analysis of the nonlinear operators involved (cf. section 3.2), we are

able to weaken the assumptions of Theorem 3.1.2 and obtain a much stronger

result (cf. Theorem 3.4.1). The results presented in this chapter are mainly

based on a submitted article by Dalla Riva, Musolino, and the author [26].
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3.1 A first local uniqueness result for the so-

lution (uoε, uiε)

In this section we prove a first local uniqueness result for the family of

solutions {(uoε , uiε)}ε∈]0,ε′[ of Theorem 2.7.2. We will denote by B0,r the ball in

the product space C1,α(∂Ωo) × C1,α(∂Ωi)0 × R × C1,α(∂Ωi) of radius r > 0

and centered in the 4-tuple (φo0, φi0, ζ0, ψ
i
0) of Proposition 2.6.3. Namely, we

set

B0,r ≡
{

(φo, φi, ζ, ψi) ∈ C1,α(∂Ωo)× C1,α(∂Ωi)0 × R× C1,α(∂Ωi) :

‖φo − φo0‖C1,α(∂Ωo) + ‖φi − φi0‖C1,α(∂Ωi) + |ζ − ζ0|+ ‖ψi − ψi0‖C1,α(∂Ωi) < r

}
(3.1)

for all r > 0. Then, for ε′ as in Theorem 2.6.5, we denote by Λ = (Λ1,Λ2)

the map from ]− ε′, ε′[×C1,α(∂Ωo)×C1,α(∂Ωi)0×R to C1,α(∂Ωo)×C1,α(∂Ωi)

defined by

Λ1[ε, φo, φi, ζ](x) ≡
(1

2I +W∂Ωo

)
[φo](x)

− εn−1
∫
∂Ωi

νΩi(y) · ∇Sn(x− εy)φi(y) dσy

+ εn−2Sn(x)ζ ∀x ∈ ∂Ωo,

Λ2[ε, φo, φi, ζ](t) ≡
(
−1

2I +W∂Ωi

)
[φi](t) + w+

Ωo [φo](εt) + Sn(t)ζ ∀t ∈ ∂Ωi,

(3.2)

for all (ε, φo, φi, ζ) ∈]− ε′, ε′[×C1,α(∂Ωo)×C1,α(∂Ωi)0×R. We now prove the

following proposition which provides a uniform bound for the operator norm

of Λ[ε, ·, ·, ·](−1).

Proposition 3.1.1. There exist ε′′ ∈]0, ε′[ and C ∈]0,+∞[ such that the
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operator Λ[ε, ·, ·, ·] from C1,α(∂Ωo)×C1,α(∂Ωi)0×R to C1,α(∂Ωo)×C1,α(∂Ωi)

is linear continuous and invertible for all ε ∈]− ε′′, ε′′[ fixed and such that

‖Λ[ε, ·, ·, ·](−1)‖L(C1,α(∂Ωo)×C1,α(∂Ωi),C1,α(∂Ωo)×C1,α(∂Ωi)0×R) ≤ C

uniformly for ε ∈]− ε′′, ε′′[.

Proof. By the mapping properties of the double layer potential (cf. Theorem
1.3.4 (iii) and Theorem 1.3.5 (ii)) and of integral operators with real analytic
kernels (cf. Theorem A.2.2 in Appendix A.2) one verifies that the map from
] − ε′, ε′[ to L(C1,α(∂Ωo) × C1,α(∂Ωi)0 × R, C1,α(∂Ωo) × C1,α(∂Ωi)) which
takes ε to Λ[ε, ·, ·, ·] is continuous. Since the set of invertible operators is
open in the space L(C1,α(∂Ωo)× C1,α(∂Ωi)0 × R, C1,α(∂Ωo)× C1,α(∂Ωi)), to
complete the proof it suffices to show that for ε = 0 the map which takes
(φo, φi, ζ) ∈ C1,α(∂Ωo)× C1,α(∂Ωi)0 × R to the pair

Λ[0, φo, φi, ζ] =
((1

2I +W∂Ωo

)
[φo],

(
−1

2I +W∂Ωi

)
[φi] + w+

Ωo [φ
o](0) + Sn|∂Ωiζ

)

belonging to C1,α(∂Ωo) × C1,α(∂Ωi) is invertible. To prove it, we verify

that it is a bijection and then we exploit the Open Mapping Theorem. So

let (ho, hi) ∈ C1,α(∂Ωo) × C1,α(∂Ωi). We claim that there exists a unique

(φo, φi, ζ) ∈ C1,α(∂Ωo)× C1,α(∂Ωi)0 × R such that

Λ[0, φo, φi, ζ] = (ho, hi). (3.3)

Indeed, by Theorem 1.4.4 (i) and Theorem 1.4.7 (iv), 1
2I +W∂Ωo is an isomor-

phism from C1,α(∂Ωo) into itself and there exists a unique φo ∈ C1,α(∂Ωo) that

satisfies the first equation of (3.3). Moreover, by Lemma 2.1.1, the map from

C1,α(∂Ωi)0×R to C1,α(∂Ωi) that takes (φi, ζ) to
(
−1

2I +W∂Ωi
)

[φi]+Sn|∂Ωiζ,

is an isomorphism. Hence, there exists a unique (φi, ζ) ∈ C1,α(∂Ωi)0×R such
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that (
−1

2I +W∂Ωi

)
[φi] + Sn|∂Ωiζ = hi − w+

Ωo [φo](0).

Accordingly, there exists a unique (φi, ζ) ∈ C1,α(∂Ωi)0 × R that satisfies the

second equation of (3.3). Thus Λ[0, ·, ·, ·] is an isomorphism from C1,α(∂Ωo)×

C1,α(∂Ωi)0 × R to C1,α(∂Ωo)× C1,α(∂Ωi) and the proof is complete.

We are now ready to state our first local uniqueness result for the solu-

tion (uoε , uiε). Theorem 3.1.2 here below is, in a sense, a consequence of an

argument based on the Implicit Function Theorem for real analytic maps

(see Theorem A.1.2 in Appendix A.1) that has been used in Chapter 2 to

prove the existence of such solution. More precisely, for ε small enough, given

(vo, vi) ∈ C1,α(Ω(ε)) × C1,α(εΩi) another solution of problem (2.2) which is

closed enough to the solution (uoε , uiε) with respect to the trace norm on ∂Ωo

and ∂Ωi (cf. conditions (3.4)-(3.6)), then we are able to estimate the distance

of the densities that describe the two pair of solutions (cf. Proposition 2.1.3)

and to prove that they coincide.

We shall see in the following section 3.4 that the statement of Theorem

3.1.2 holds under much weaker assumptions.

Theorem 3.1.2. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold true.

Let ε′ ∈]0, ε0[ be as in Theorem 2.6.5. Let {(uoε , uiε)}ε∈]0,ε′[ be as in Theorem

2.7.2. Then there exist ε∗ ∈]0, ε′[ and δ∗ ∈]0,+∞[ such that the following

property holds:

If ε ∈]0, ε∗[ and (vo, vi) ∈ C1,α(Ω(ε))× C1,α(εΩi) is a solution of problem

(2.2) with

‖vo − uoε‖C1,α(∂Ωo) ≤ εδ∗, (3.4)

‖vo(ε·)− uoε(ε·)‖C1,α(∂Ωi) ≤ εδ∗, (3.5)
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∥∥∥vi(ε·)− uiε(ε·)∥∥∥C1,α(∂Ωi)
≤ εδ∗, (3.6)

then

(vo, vi) = (uoε , uiε) .

Proof. Let U0 be the open neighborhood of (φo0, φi0, ζ0, ψ
i
0) in C1,α(∂Ωo) ×

C1,α(∂Ωi)0 × R × C1,α(∂Ωi) introduced in Theorem 2.6.5. We take K > 0

such that

B0,K ⊆ U0 .

Since (Φo[·],Φi[·], Z[·],Ψi[·]) is continuous (indeed real analytic) from ]− ε′, ε′[

to U0, then there exists ε′∗ ∈]0, ε′[ such that

(Φo[η],Φi[η], Z[η],Ψi[η]) ∈ B0,K/2 ∀η ∈]0, ε′∗[ . (3.7)

Let ε′′ be as in Proposition 3.1.1 and let

ε∗ ≡ min{ε′∗, ε′′}.

Let ε ∈]0, ε∗[ be fixed and let (vo, vi) ∈ C1,α(Ω(ε))× C1,α(εΩi) be a solution

of problem (2.2) that satisfies (3.4), (3.5), and (3.6) for a certain δ∗ ∈]0,+∞[.

We show that for δ∗ sufficiently small (vo, vi) = (uoε , uiε). By Proposition 2.1.3,

there exists a unique quadruple (φo, φi, ζ, ψi) ∈ C1,α(∂Ωo)×C1,α(∂Ωi)0×R×

C1,α(∂Ωi) such that

vo = U o
ε [φo, φi, ζ, ψi] in Ω(ε), (3.8)

vi = U i
ε [φo, φi, ζ, ψi] in εΩi. (3.9)
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By (3.6) and by (3.9), we have

δ∗ ≥
∥∥∥∥∥vi(ε·)− uiε(ε·)ε

∥∥∥∥∥
C1,α(∂Ωi)

=
∥∥∥∥∥U i

ε [φo, φi, ζ, ψi](ε·)− uiε(ε·)
ε

∥∥∥∥∥
C1,α(∂Ωi)

=

∥∥∥∥∥∥
εw+

εΩi
[
ψi
(
·
ε

)]
(ε·) + ζ i − εw+

εΩi
[
Ψi[ε]

(
·
ε

)]
(ε·)− ζ i

ε

∥∥∥∥∥∥
C1,α(∂Ωi)

=
∥∥∥w+

Ωi [ψ
i]− w+

Ωi [Ψ
i[ε]]

∥∥∥
C1,α(∂Ωi)

.

(3.10)

By the jump relation in Theorem 1.3.4 (i), we obtain

∥∥∥∥(1
2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

≤ δ∗. (3.11)

By Theorem 1.4.4 (i) and Theorem 1.4.7 (iv), the operator 1
2I + W∂Ωi is a

linear isomorphism from C1,α(∂Ωi) to itself. Then, if we denote by D the

norm of its inverse, namely we set

D ≡
∥∥∥∥∥
(1

2I +W∂Ωi

)(−1)∥∥∥∥∥
L(C1,α(∂Ωi),C1,α(∂Ωi))

,

we obtain, by (3.6) and by (3.11), that

‖ψi −Ψi[ε]‖C1,α(∂Ωi) ≤
∥∥∥∥∥
(1

2I +W∂Ωi

)(−1)∥∥∥∥∥
L(C1,α(∂Ωi),C1,α(∂Ωi))

×
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

≤ Dδ∗.

(3.12)
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By (3.4) and (3.8) we have

δ∗ ≥
∥∥∥∥vo − uoεε

∥∥∥∥
C1,α(∂Ωo)

=
∥∥∥∥∥Uoε [φo, φi, ζ, ψi]− uoε

ε

∥∥∥∥∥
C1,α(∂Ωo)

=
∥∥∥∥∥εw

+
Ωo [φo − Φo[ε]] + εw−

εΩi
[
φi
( ·
ε

)
− Φi[ε]

( ·
ε

)]
+ εn−1 (ζ − Z[ε]) Sn

ε

∥∥∥∥∥
C1,α(∂Ωo)

=
∥∥∥∥w+

Ωo [φ
o − Φo[ε]] + w−

εΩi

[
φi
( ·
ε

)
− Φi[ε]

( ·
ε

)]
+ εn−2 (ζ − Z[ε]) Sn

∥∥∥∥
C1,α(∂Ωo)

.

(3.13)

Similarly, (3.5) and (3.8) yield

δ∗ ≥
∥∥∥∥∥vo(ε·)− uoε(ε·)ε

∥∥∥∥∥
C1,α(∂Ωi)

=
∥∥∥∥∥U o

ε [φo, φi, ζ, ψi](ε·)− uoε(ε·)
ε

∥∥∥∥∥
C1,α(∂Ωi)

=
∥∥∥w−Ωi [φi − Φi[ε]

]
+ w+

Ωo [φo − Φo[ε]](ε·) + (ζ − Z[ε]) Sn
∥∥∥
C1,α(∂Ωi)

.

(3.14)

Then, by (3.13) and (3.14) and by the definition of the operator Λ in (3.2),

we deduce that

∥∥∥Λ [ε, φo − Φo[ε], φi −Ψi[ε], ζ − Z[ε]
]∥∥∥
C1,α(∂Ωo)×C1,α(∂Ωi)

≤ 2δ∗ (3.15)

(see also the jump relations for the double layer potential in Theorem 1.3.4

(i)). Now let C > 0 as in the statement of Proposition 3.1.1. Then, by the

membership of ε in ]0, ε∗[, we have

(
φo − Φo[ε], φi −Ψi[ε], ζ − Z[ε]

)
= Λ[ε, ·, ·, ·](−1)Λ

[
ε, φo − Φo[ε], φi −Ψi[ε], ζ − Z[ε]

] (3.16)
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and, by (3.15) and (3.16), we obtain

∥∥∥(φo − Φo[ε], φi −Ψi[ε], ζ − Z[ε]
)∥∥∥

C1,α(∂Ωo)×C1,α(∂Ωi)0×R

≤ ‖Λ[ε, ·, ·, ·](−1)‖L(C1,α(∂Ωo)×C1,α(∂Ωi),C1,α(∂Ωo)×C1,α(∂Ωi)0×R)

×
∥∥∥Λ [ε, φo − Φo[ε], φi −Ψi[ε], ζ − Z[ε]

]∥∥∥
C1,α(∂Ωo)×C1,α(∂Ωi)0×R

≤ 2Cδ∗ .

The latter inequality, combined with (3.12), yields

∥∥∥(φo − Φo[ε], φi −Ψi[ε], ζ − Z[ε], ψi −Ψ[ε]
)∥∥∥

C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi)

≤ (2C +D)δ∗ .

(3.17)

Hence, by (3.7) and (3.17) and by a standard computation based on the

triangle inequality one sees that

‖(φo, φi, ζ, ψi)− (φo0, φi0, ζ0, ψ
i
0)‖C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi)

≤ (2C +D)δ∗ + K

2 .

Accordingly, in order to have (φo, φi, ζ, ψi) ∈ B0,K , it suffices to take

δ∗ <
K

2(2C +D)

in inequalities (3.4), (3.5), and (3.6). Then, by the inclusion B0,K ⊆ U0 and

by Theorem 2.6.5, we deduce that for such choice of δ∗ we have

(φo, φi, ζ, ψi) =
(
Φo[ε],Ψi[ε], Z[ε],Ψ[ε]

)

and thus (vo, vi) = (uoε , uiε) (cf. Definition 2.7.1).
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3.2 Some preliminary results on composition

operators in Schauder spaces

In this section we prove some results on composition operators in Schauder

spaces which will play an important role in the proof of the main result of

this chapter, namely Theorem 3.4.1. In fact this results will be used in the

aforementioned theorem in order to obtain an uniform bound on the growth

of the nonlinear map S which will be defined in section 3.3 (cf. (3.44)-(3.46)).

Moreover we mention that results of the type presented in this section

(in particular Proposition 3.2.4 and Lemmas 3.2.5 and 3.2.6) are not new

at all: the literature of superposition operators, which include the study of

boundedness, continuity and differentiability properties in different Banach

spaces (e.g. Lebesgue space, Sobolev spaces and Schauder spaces) is vast.

For a reference, we refer to the monograph of Appell and Zabrejko [8]. In

particular for composition operators on Schauder spaces see also Valent [76,

Chap. II].

We begin with some possibly known elementary results for product of

functions in Schauder spaces (cf. Lanza [45]).

Lemma 3.2.1. Let d ∈ N \ {0}. Let Ω be an open bounded convex subset of

Rd. Then the following statements hold.

(i) ‖uv‖C0,α(Ω) ≤ ‖u‖C0,α(Ω))‖v‖C0,α(Ω) ∀u, v ∈ C0,α(Ω).

(ii) ‖uv‖C1,α(Ω) ≤ 2 ‖u‖C1,α(Ω) ‖v‖C1,α(Ω) ∀u, v ∈ C1,α(Ω).

Proof. We first prove statement (i). Let u, v ∈ C0,α(Ω). Then

‖uv‖C0,α(Ω) ≤ ‖u‖C0(Ω)‖v‖C0(Ω) + |uv : Ω|α.



72 Uniqueness result for the nonlinear transmission problem (1)

By triangle inequality we have that

|uv : Ω|α ≤ ‖u‖C0(Ω) |v : Ω|α + ‖v‖C0(Ω) |u : Ω|α.

Hence we obtain

‖uv‖C0,α(Ω) ≤ ‖u‖C0(Ω)‖v‖C0(Ω) + ‖u‖C0(Ω) |v : Ω|α + ‖v‖C0(Ω) |u : Ω|α

≤ ‖u‖C0(Ω)

{
‖v‖C0(Ω) + |v : Ω|α

}
+ ‖v‖C0(Ω) |u : Ω|α

≤ ‖u‖C0(Ω) ‖v‖C0,α(Ω) + ‖v‖C0(Ω) |u : Ω|α

≤ ‖v‖C0,α(Ω)

{
‖u‖C0(Ω) + |u : Ω|α

}
≤ ‖u‖C0,α(Ω)‖v‖C0,α(Ω),

and the proof of point (i) is complete. We now prove statement (ii). By

definition of C1,α norm and by triangle inequality we have that

‖uv‖C1,α(Ω) ≤ ‖u‖C0(Ω)‖v‖C0(Ω) +
d∑
j=1
‖∂j(uv)‖C0,α(Ω)

≤ ‖u‖C0(Ω)‖v‖C0(Ω) +
d∑
j=1
‖v ∂ju+ u ∂jv‖C0,α(Ω)

≤ ‖u‖C0(Ω)‖v‖C0(Ω) +
d∑
j=1
‖v ∂ju‖C0,α(Ω) +

d∑
j=1
‖u ∂jv‖C0,α(Ω) .

Moreover, by point (i), it follows that

‖v ∂ju‖C0,α(Ω) ≤ ‖v‖C0,α(Ω)‖∂ju‖C0,α(Ω)

‖u ∂jv‖C0,α(Ω) ≤ ‖u‖C0,α(Ω)‖∂jv‖C0,α(Ω)
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for all j ∈ {1, . . . , d}. Hence we obtain that

‖uv‖C1,α(Ω) ≤ ‖u‖C0(Ω)‖v‖C0(Ω) +
d∑
j=1
‖v‖C0,α(Ω)‖∂ju‖C0,α(Ω)

+
d∑
j=1
‖u‖C0,α(Ω)‖∂jv‖C0,α(Ω)

≤ ‖u‖C0,α(Ω)

‖v‖C0(Ω) +
d∑
j=1
‖∂jv‖C0,α(Ω)


+

d∑
j=1
‖v‖C0,α(Ω)‖∂ju‖C0,α(Ω)

≤ ‖u‖C0,α(Ω) ‖v‖C1,α(Ω) +
d∑
j=1
‖v‖C0,α(Ω)‖∂ju‖C0,α(Ω) .

Finally, using the facts that |u : Ω|α ≤ ‖u‖C1,α(Ω) and so ‖u‖C0,α(Ω) ≤

‖u‖C1,α(Ω) for all u ∈ C1,α(Ω) (see Lanza [45, Lemma 2.4]), we conclude

that

‖uv‖C1,α(Ω) ≤ ‖v‖C1,α(Ω)

‖u‖C0(Ω) + |u : Ω|α +
d∑
j=1
‖∂ju‖C0,α(Ω)


≤ ‖v‖C1,α(Ω)

{
‖u‖C1(Ω) + |u : Ω|α

}
≤ 2‖u‖C1,α(Ω) ‖v‖C1,α(Ω) .

Then, we have the following immediate consequence of Lemma 3.2.1.

Lemma 3.2.2. Let n ∈ N \ {0}. Let Ω be a bounded connected open subset

of Rn of class C1,α. Then the following statements hold.

(i) ‖uv‖C0,α(∂Ω) ≤ ‖u‖C0,α(∂Ω) ‖v‖C0,α(∂Ω) ∀u, v ∈ C0,α(∂Ω).

(ii) ‖uv‖C1,α(∂Ω) ≤ 2 ‖u‖C1,α(∂Ω) ‖v‖C1,α(∂Ω) ∀u, v ∈ C1,α(∂Ω).
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Proof. By exploiting a finite C1,α local parametrization γ1, . . . , γk for ∂Ω

(see the definition of C1,α sub-manifold of Rn in the Notation) and by using

Lemma 3.2.1 (i) for the open convex unit ball of Rn−1, we obtain that

‖uv‖C0,α(∂Ω) =
k∑
l=1
‖(uv) ◦ γl‖C0,α(Bn−1(0,1))

≤
k∑
l=1
‖u ◦ γl‖C0,α(Bn−1(0,1)) ‖v ◦ γl‖C0,α(Bn−1(0,1))

≤ ‖u‖C0,α(∂Ω)

k∑
l=1
‖v ◦ γl‖C0,α(Bn−1(0,1)) ≤ ‖u‖C0,α(∂Ω) ‖v‖C0,α(∂Ω).

Arguing in the same way and using instead Lemma 3.2.1 (ii), one can prove

the second inequality in the statement.

We now present a result on composition of a Cm,α function, with m ∈

{0, 1}, with a C1,α function.

Lemma 3.2.3. Let n, d ∈ N \ {0} and α ∈ ]0, 1]. Let Ω1 be an open bounded

convex subset of Rn and Ω2 be an open bounded convex subset of Rd. Let

v = (v1, . . . , vn) ∈ (C1,α(Ω2))n such that v(Ω2) ⊂ Ω1. Then the following

statements hold.

(i) If u ∈ C0,α(Ω1), then

‖u(v(·))‖C0,α(Ω2) ≤ ‖u‖C0,α(Ω1)

(
1 + ‖v‖α(C1,α(Ω2))n

)
.

(ii) If u ∈ C1,α(Ω1), then

‖u(v(·))‖C1,α(Ω2) ≤ (1 + nd)2‖u‖C1,α(Ω1)

(
1 + ‖v‖(C1,α(Ω2))n

)2
.
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Proof. We first prove statement (i). We observe that

|u(v(t))− u(v(t′))|
|t− t′|α

≤ |u(v(t))− u(v(t′))|
|v(t)− v(t′)|α

|v(t)− v(t′)|α
|t− t′|α

for all t, t′ ∈ Ω2 such that v(t) 6= v(t′). Then for such t, t′ ∈ Ω2 we have

|u(v(t))− u(v(t′))|
|t− t′|α

≤ ‖u‖C0,α(Ω1) ‖v‖
α
(C1,α(Ω2))n .

If instead v(t) = v(t′), then |u(v(t))− u(v(t′))| = 0 and the inequality here

above is readily verified. Hence

|u(v(·)) : Ω2|α ≤ ‖u‖C0,α(Ω1) ‖v‖
α
(C1,α(Ω2))n

and the proof of point (i) follows. We now prove statement (ii). By definition

of C1,α norm and by Lemma 3.2.1 (i) we have that

‖u(v(·))‖C1,α(Ω2) ≤ ‖u‖C0(Ω1) +
d∑
i=1

n∑
j=1
‖∂ju(v(·))‖C0,α(Ω2)‖∂ivj‖C0,α(Ω2).

Moreover, by hypothesis, u ∈ C1,α(Ω1), hence, for every j ∈ {1, . . . , n}, we

have that ∂ju ∈ C0,α(Ω1). Then, by point (i), the following estimate holds:

‖∂ju(v(·))‖C0,α(Ω2) ≤ ‖∂ju‖C0,α(Ω1)

(
1 + ‖v‖α(C0,α(Ω2))n

)
≤ ‖u‖C1,α(Ω1)

(
1 + ‖v‖α(C0,α(Ω2))n

)
.

Hence, keeping in mind that 1 + α ≤ 2, nd ≤ (nd)2 and that

(
1 + nd ‖v‖(C1,α(Ω2))n

)2
≤ (1 + nd)2

(
1 + ‖v‖(C1,α(Ω2))n

)2
,
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we conclude that

‖u(v(·))‖C1,α(Ω2) ≤ ‖u‖C0(Ω1) + nd ‖v‖(C1,α(Ω2))n
(
‖u‖C1,α(Ω1)

(
1 + ‖v‖α(C0,α(Ω2))n

))
≤ ‖u‖C1,α(Ω1)

(
1 + nd ‖v‖(C1,α(Ω2))n

(
1 + ‖v‖α(C1,α(Ω2))n

))
≤ ‖u‖C1,α(Ω1)

(
1 + nd ‖v‖(C1,α(Ω2))n

)2

≤ (1 + nd)2 ‖u‖C1,α(Ω1)

(
1 + ‖v‖(C1,α(Ω2))n

)2
.

In the sequel we will exploit Schauder spaces over suitable subsets of

∂Ω × R, with Ω an open bounded subset of Rn of class C1,α. We observe

indeed that for all open bounded intervals J of R, the product ∂Ω× J is a

compact sub-manifold (with boundary) of co-dimension 1 in Rn × R = Rn+1

and accordingly, we can define the spaces C0,α(∂Ω× J ) and C1,α(∂Ω× J )

by exploiting a finite atlas.

Then, by Lemma 3.2.3, we deduce the following Proposition 3.2.4.

Proposition 3.2.4. Let n ∈ N \ {0}. Let α ∈]0, 1]. Let Ω be a bounded

connected open subset of Rn of class C1,α. Let R > 0. Then the following

holds.

(i) There exists c0 > 0 such that

‖u(·, v(·))‖C0,α(∂Ω) ≤ c0‖u‖C0,α(∂Ω×[−R,R])
(
1 + ‖v‖αC1,α(∂Ω)

)
.

for all u ∈ C0,α(∂Ω× R) and for all v ∈ C1,α(∂Ω) such that v(∂Ω) ⊂

[−R,R].

(ii) There exists c1 > 0 such that

‖u(·, v(·))‖C1,α(∂Ω) ≤ c1‖u‖C1,α(∂Ω×[−R,R])
(
1 + ‖v‖C1,α(∂Ω)

)2
.
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for all u ∈ C1,α(∂Ω× R) and for all v ∈ C1,α(∂Ω) such that v(∂Ω) ⊂

[−R,R].

Proof. We prove only statement (ii). The proof of statement (i) can be

obtained adapting the one of point (ii) and using Lemma 3.2.3 (i) instead of

Lemma 3.2.3 (ii). More precisely, one proceeds in the same way until equation

(3.18) where the inequality provided by Lemma 3.2.3 (i) would be used.

Since ∂Ω is compact and of class C1,α, a standard argument shows that

there are a finite cover of ∂Ω consisting of open subsets U1, . . . ,Uk of ∂Ω

and for each j ∈ {1, . . . , k} a C1,α diffeomorphism γj from Bn−1(0, 1) to the

closure of Uj in ∂Ω. Then, for a fixed j ∈ {1, . . . , k} we define the functions

ũj : Bn−1(0, 1) × R → R, ṽj : Bn−1(0, 1) → R, and w̃j : Bn−1(0, 1) →

Bn−1(0, 1)× R by setting

ũj(t′, s) ≡ u(γj(t′), s) ∀(t′, s) ∈ Bn−1(0, 1)× R,

ṽj(t′) ≡ v(γj(t′)) ∀t′ ∈ Bn−1(0, 1),

w̃j(t′) ≡ (t′, ṽj(t′)) ∀t′ ∈ Bn−1(0, 1).

Since v(∂Ω) ⊂ [−R,R], it follows that w̃j(Bn−1(0, 1)) ⊂ Bn−1(0, 1)× [−R,R].

Moreover, we can see that there exists dj > 0 such that

‖w̃j‖(C1,α(Bn−1(0,1)))n ≤ dj‖ṽj‖(C1,α(Bn−1(0,1))).

Then Lemma 3.2.3 (ii) implies that there exists cj > 0 such that

‖ũj(·, ṽj(·))‖C1,α(Bn−1(0,1)) = ‖ũj(w̃j(·))‖(C1,α(Bn−1(0,1)))n

≤ cj‖ũj‖C1,α(Bn−1(0,1)×[−R,R])

(
1 + ‖w̃j‖(C1,α(Bn−1(0,1)))n

)2

≤ cj‖ũj‖C1,α(Bn−1(0,1)×[−R,R])

(
1 + dj‖ṽj‖C1,α(Bn−1(0,1))

)2
.

(3.18)
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Without loss of generality, we can now assume that the norm of C1,α(∂Ω) is

defined on the atlas {(Uj, γj)}j∈{1,...,k}. Then by (3.18) we have

‖u(·, v(·))‖C1,α(∂Ω)

=
k∑
j=1
‖u(γj(·), v(γj(·)))‖C1,α(Bn−1(0,1)) =

k∑
j=1
‖ũj(·, ṽj(·))‖C1,α(Bn−1(0,1))

≤
k∑
j=1

cj‖ũj‖C1,α(Bn−1(0,1)×[−R,R])

(
1 + dj‖ṽj‖C1,α(Bn−1(0,1))

)2
.

(3.19)

Moreover,

‖ũj‖C1,α(Bn−1(0,1)×[−R,R]) ≤ ‖u‖C1,α(∂Ω×[−R,R])

and

(
1 + dj‖ṽj‖C1,α(Bn−1(0,1))

)2
≤ (1 + dj)2

(
1 + ‖ṽj‖C1,α(Bn−1(0,1))

)2

≤ (1 + dj)2
(
1 + ‖v‖C1,α(∂Ω)

)2
.

Hence, (3.19) implies that

‖u(·, v(·))‖C1,α(∂Ω)

≤ k max{c1(1 + d1)2, . . . , ck(1 + dk)2}‖u‖C1,α(∂Ω×[−R,R])
(
1 + ‖v‖C1,α(∂Ω)

)2

and the proposition is proved.

Then we proceed with the following Lemma 3.2.5, which provides an

uniform bound for the Cm,α-norm,m ∈ {0, 1}, of a specific class of composition

operators generated by a function A from ]− ε0, ε0[×Bn−1(0, 1)× R to R.

Lemma 3.2.5. Let A be a function from ] − ε0, ε0[×Bn−1(0, 1) × R to R.

Let MA be the map which takes a pair (ε, ζ) ∈] − ε0, ε0[×R to the function
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MA(ε, ζ) defined by

MA(ε, ζ)(z) ≡ A(ε, z, ζ) ∀z ∈ Bn−1(0, 1). (3.20)

Let m ∈ {0, 1}. If MA(ε, ζ) ∈ Cm,α(Bn−1(0, 1)) for all (ε, ζ) ∈] − ε0, ε0[×R

and if the map MA is real analytic from ] − ε0, ε0[×R to Cm,α(Bn−1(0, 1)),

then for every open bounded interval J of R and every compact subset E of

]− ε0, ε0[ there exists C > 0 such that

sup
ε∈E
‖A(ε, ·, ·)‖Cm,α(Bn−1(0,1)×J ) ≤ C. (3.21)

Proof. We first prove the statement of Lemma 3.2.5 for m = 0. If MA is

real analytic from ] − ε0, ε0[×R to C0,α(Bn−1(0, 1)), then for every (ε̃, ζ̃) ∈

] − ε0, ε0[×R there exist M ∈]0,+∞[, ρ ∈]0, 1[, and a family of coefficients

{ajk}j,k∈N ⊂ C0,α(Bn−1(0, 1)) such that

‖ajk‖C0,α(Bn−1(0,1)) ≤M

(
1
ρ

)k+j

∀j, k ∈ N, (3.22)

and

MA(ε, ζ)(·) =
∞∑

j,k=0
ajk(·)(ε− ε̃)k(ζ− ζ̃)j ∀(ε, ζ) ∈]ε̃−ρ, ε̃+ρ[×]ζ̃−ρ, ζ̃+ρ[ ,

(3.23)

where ρ is less than or equal to the radius of convergence of the series in

(3.23). Now let J ⊂ R be open and bounded and E ⊂ ]− ε0, ε0[ be compact.

Since the product J × E is compact, a standard finite covering argument

shows that in order to prove (3.21) for m = 0 it suffices to find a uniform
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upper bound (independent of ε̃ and ζ̃) for the quantity

sup
ε∈[ε̃− ρ2 ,ε̃+

ρ
2 ]
‖A(ε, ·, ·)‖C0,α(Bn−1(0,1)×[ζ̃− ρ4 ,ζ̃+

ρ
4 ]).

By (3.20), (3.22), and (3.23) we have

sup
ε∈[ε̃− ρ2 ,ε̃+

ρ
2 ]
‖A(ε, ·, ·)‖C0(Bn−1(0,1)×[ζ̃− ρ4 ,ζ̃+

ρ
4 ])

≤ sup
ε∈[ε̃− ρ2 ,ε̃+

ρ
2 ]

∞∑
j,k=0
‖ajk(·)(ε− ε̃)k(· − ζ̃)j‖C0(Bn−1(0,1)×[ζ̃− ρ4 ,ζ̃+

ρ
4 ])

≤
∞∑

j,k=0
M

(
1
ρ

)j+k (
ρ

2

)k (ρ
4

)j
=

∞∑
j,k=0

M
(1

2

)k (1
4

)j
= 8

3M

(3.24)

for all l = 1, . . . ,m. Then inequality (3.24) yields an estimate of the C0 norm

of A. To complete the proof of (3.21) for m = 0 we have now to study the

Hölder constant of A(ε, ·, ·) on Bn−1(0, 1)× [ζ̃ − ρ
4 , ζ̃ + ρ

4 ]. To do so, we take

z′, z′′ ∈ Bn−1(0, 1), ζ ′, ζ ′′ ∈ [ζ̃− ρ
4 , ζ̃+ ρ

4 ], and ε ∈ [ε̃− ρ
2 , ε̃+ ρ

2 ], and we consider

the difference

|ajk(z′)(ε− ε̃)k(ζ ′ − ζ̃)j − ajk(z′′)(ε− ε̃)k(ζ ′′ − ζ̃)j|. (3.25)

For j ≥ 1 and k ≥ 0 we argue as follow: we add and subtract the term

ajk(z′′)(ε− ε̃)k(ζ ′ − ζ̃)j inside the absolute value in (3.25), we use the trian-

gle inequality to split the difference in two terms and then we exploit the

membership of ajk in C0,α(Bn−1(0, 1)) and an argument based on the Taylor

expansion at the first order for the function from [ζ̃− ρ
4 , ζ̃+ ρ

4 ] to R that takes
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ζ to (ζ − ζ̃)j. Doing so we show that (3.25) is less than or equal to

|ajk(z′)− ajk(z′′)||ε− ε̃|k|ζ ′ − ζ̃|j + |ajk(z′′)||ε− ε̃|k|(ζ ′ − ζ̃)j − (ζ ′′ − ζ̃)j|

≤ ‖ajk‖C0,α(Bn−1(0,1))|z
′ − z′′|α|ε− ε̃|k|ζ ′ − ζ̃|j

+ ‖ajk‖C0,α(Bn−1(0,1))|ε− ε̃|
k
(
j|ζ − ζ̃|j−1|ζ ′ − ζ ′′|

)
(3.26)

for a suitable ζ ∈ [ζ̃ − ρ
4 , ζ̃ + ρ

4 ]. Then by (3.22), by inequalities |ε− ε̃| ≤ ρ
2 ,

|ζ ′ − ζ̃| ≤ ρ
4 , and |ζ − ζ̃| ≤

ρ
4 , and by a straightforward computation we see

that the right hand side of (3.26) is less than or equal to

M

(
1
ρ

)j+k
|z′ − z′′|α

(
ρ

2

)k (ρ
4

)j
+M

(
1
ρ

)j+k (
ρ

2

)k
j
(
ρ

4

)j−1
|ζ ′ − ζ ′′|

= M
(1

2

)j (1
2

)j+k
|z′ − z′′|α + 4Mρ−1 j

2j
(1

2

)j+k
|ζ ′ − ζ ′′|1−α|ζ ′ − ζ ′′|α.

(3.27)

Now, since ζ ′ and ζ ′′ are taken in the interval [ζ̃− ρ
4 , ζ̃+ ρ

4 ] we have |ζ ′−ζ ′′|1−α ≤

(ρ/2)1−α and since ρ ∈]0, 1[ and α ∈]0, 1[, we deduce that |ζ ′ − ζ ′′|1−α ≤ 1.

Moreover, since j ≥ 1, we have j/2j ≤ 1 and (1/2)j < 1. It follows that the

right hand side of (3.27) is less than or equal to

M
(1

2

)j+k
|z′ − z′′|α+4Mρ−1

(1
2

)j+k
|ζ ′ − ζ ′′|α

≤ 4Mρ−1
(1

2

)j+k
(|z′ − z′′|α + |ζ ′ − ζ ′′|α)

(3.28)

(also note that ρ−1 > 1). Finally, by inequality

aα + bα ≤ 21−α2 (a2 + b2)α2 ,
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which holds for all a, b > 0, we deduce that the right hand side of (3.28) is

less than or equal to

23−α2Mρ−1
(1

2

)j+k
|(z′, ζ ′)− (z′′, ζ ′′)|α, (3.29)

where |(z′, ζ ′)− (z′′, ζ ′′)| denotes the Euclidean norm of the vector (z′, ζ ′)−

(z′′, ζ ′′) in Rn−1 × R = Rn. Then, by (3.26)–(3.29), we obtain that

|ajk(z′)(ε− ε̃)k(ζ ′ − ζ̃)j − ajk(z′′)(ε− ε̃)k(ζ ′′ − ζ̃)j|

≤ 23−α2Mρ−1
(1

2

)j+k
|(z′, ζ ′)− (z′′, ζ ′′)|α

(3.30)

for all j ≥ 1, k ≥ 0, and ε ∈ [ε̃− ρ
2 , ε̃+ ρ

2 ]. Now, for every ε ∈ [ε̃− ρ
2 , ε̃+ ρ

2 ] we

denote by ãjk,ε the function

ãjk,ε : Bn−1(0, 1)×
[
ζ̃ − ρ

4 , ζ̃ + ρ

4

]
→ R

(z, ζ) 7→ ãjk,ε(z, ζ) ≡ ajk(z)(ε− ε̃)k(ζ − ζ̃)j .
(3.31)

Then inequality (3.30) readily implies that

∣∣∣∣ãjk,ε : Bn−1(0, 1)×
[
ζ̃ − ρ

4 , ζ̃ + ρ

4

]∣∣∣∣
α
≤ 23−α2Mρ−1

(1
2

)j+k
∀j ≥ 1 , k ≥ 0 , ε ∈

[
ε̃− ρ

2 , ε̃+ ρ

2

]
,
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which in turn implies that

sup
ε∈[ε̃− ρ2 ,ε̃+

ρ
2 ]

∞∑
j=1,k=0

∣∣∣∣ãjk,ε : Bn−1(0, 1)×
[
ζ̃ − ρ

4 , ζ̃ + ρ

4

]∣∣∣∣
α

≤
∞∑

j=1,k=0
23−α2Mρ−1

(1
2

)j+k
≤ 24−α2Mρ−1.

(3.32)

We now turn to consider (3.25) in the case where j = 0 and k ≥ 0. In such

case, one verifies that the quantity in (3.25) is less than or equal to

‖a0k‖C0,α(Bn−1(0,1))|ε− ε̃|
k|z′ − z′′|α ,

which, by (3.22) and by inequality |ε− ε̃| ≤ ρ
2 , is less than or equal to

M

(
1
ρ

)k (
ρ

2

)k
|z′ − z′′|α = M

(1
2

)k
|z′ − z′′|α .

Hence, for ã0k,ε defined as in (3.31) (with j = 0) we have

∣∣∣∣ã0k,ε : Bn−1(0, 1)×
[
ζ̃ − ρ

4 , ζ̃ + ρ

4

]∣∣∣∣
α
≤M

(1
2

)k

for all k ≥ 0 and ε ∈
[
ε̃− ρ

2 , ε̃+ ρ
2

]
, which implies that

sup
ε∈[ε̃− ρ2 ,ε̃+

ρ
2 ]

∞∑
k=0

∣∣∣∣ã0k,ε : Bn−1(0, 1)×
[
ζ̃ + ρ

4 , ζ̃ + ρ

4

]∣∣∣∣
α
≤
∞∑
k=0

M
(1

2

)k
= 2M .

(3.33)
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Finally, by (3.23), (3.24), (3.32), and (3.33) we obtain

sup
ε∈[ε̃− ρ2 ,ε̃+

ρ
2 ]
‖A(ε, ·, ·)‖C0,α(Bn−1(0,1)×[ζ̃+ ρ

4 ,ζ̃+
ρ
4 ])

= sup
ε∈[ε̃− ρ2 ,ε̃+

ρ
2 ]
‖A(ε, ·, ·)‖C0(Bn−1(0,1)×[ζ̃+ ρ

4 ,ζ̃+
ρ
4 ])

+ sup
ε∈[ε̃− ρ2 ,ε̃+

ρ
2 ]

∣∣∣∣A(ε, ·, ·) : Bn−1(0, 1)×
[
ζ̃ − ρ

4 , ζ̃ + ρ

4

]∣∣∣∣
α

≤ 8
3M + sup

ε∈[ε̃− ρ2 ,ε̃+
ρ
2 ]

∞∑
j,k=0

∣∣∣∣ãjk,ε : Bn−1(0, 1)×
[
ζ̃ − ρ

4 , ζ̃ + ρ

4

]∣∣∣∣
α

= 8
3M + sup

ε∈[ε̃− ρ2 ,ε̃+
ρ
2 ]

∞∑
j=1,k=0

∣∣∣∣ãjk,ε : Bn−1(0, 1)×
[
ζ̃ − ρ

4 , ζ̃ + ρ

4

]∣∣∣∣
α

+ sup
ε∈[ε̃− ρ2 ,ε̃+

ρ
2 ]

∞∑
k=0

∣∣∣∣ã0k,ε : Bn−1(0, 1)×
[
ζ̃ − ρ

4 , ζ̃ + ρ

4

]∣∣∣∣
α

≤ 8
3M + 24−α2Mρ−1 + 2M .

We deduce that (3.21) for m = 0 holds with C = 14
3 M + 24−α2Mρ−1.

We now assume that the mapMA is real analytic from ]− ε0, ε0[×R to

C1,α(Bn−1(0, 1)) and we prove (3.21) for m = 1. To do so we will exploit the

(just proved) statement of Lemma 3.2.5 form = 0. We begin by observing that,

since the embedding of C1,α(Bn−1(0, 1)) into C0,α(Bn−1(0, 1)) is linear and

continuous, the mapMA is real analytic from ]−ε0, ε0[×R to C0,α(Bn−1(0, 1)).

Hence, by Lemma 3.2.5 for m = 0 and by the continuity of the imbedding of

C0,α(Bn−1(0, 1)× J ) into C0(Bn−1(0, 1)× J ) we deduce that

sup
ε∈E
‖A(ε, ·, ·)‖C0(Bn−1(0,1)×J ) ≤ C1 . (3.34)

Moreover, since differentials of real analytic maps are real analytic, we have

that the map M∂ζA = ∂ζMA which takes (ε, ζ) to ∂ζA(ε, ·, ζ) is real ana-

lytic from ] − ε0, ε0[×R to C1,α(Bn−1(0, 1)), and thus from ] − ε0, ε0[×R to
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C0,α(Bn−1(0, 1)). By Lemma 3.2.5 for m = 0 it follows that

sup
ε∈E
‖∂ζA(ε, ·, ·)‖C0,α(Bn−1(0,1)×J ) ≤ C2, (3.35)

for some C2 > 0. Finally, we observe that the map ∂z from C1,α(Bn−1(0, 1))

to C0,α(Bn−1(0, 1)) that takes a function f to ∂zf is linear and continuous.

Then, the mapM∂zA which takes (ε, ζ) to the function

∂zA(ε, z, ζ) ∀z ∈ Bn−1(0, 1)

is the composition ofMA and ∂z. Namely, we can write

M∂zA = ∂z ◦MA .

SinceMA is real analytic from ]−ε0, ε0[×R to C1,α(Bn−1(0, 1)), it follows that

M∂zA is real analytic from ]− ε0, ε0[×R to C0,α(Bn−1(0, 1)). Hence Lemma

3.2.5 for m = 0 implies that there exists C3 > 0 such that

sup
ε∈E
‖∂zA(ε, ·, ·)‖C0,α(Bn−1(0,1)×J ) ≤ C3 . (3.36)

Now, the validity of (3.21) for m = 1 is a consequence of (3.34), (3.35), and

(3.36).

Then, by Lemma 3.2.5, we deduce the following Lemma 3.2.6.

Lemma 3.2.6. Let B be a function from ]− ε0, ε0[×∂Ωi × R to R. Let ÑB
be the map which takes a pair (ε, ζ) ∈] − ε0, ε0[×R to the function ÑB(ε, ζ)

defined by

ÑB(ε, ζ)(t) ≡ B(ε, t, ζ) ∀t ∈ ∂Ωi .

Let m ∈ {0, 1}. If ÑB(ε, ζ) ∈ Cm,α(∂Ωi) for all (ε, ζ) ∈]− ε0, ε0[×R and the
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map ÑB is real analytic from ]− ε0, ε0[×R to Cm,α(∂Ωi), then for every open

bounded interval J of R and every compact subset E of ]− ε0, ε0[ there exists

C > 0 such that

sup
ε∈E
‖B(ε, ·, ·)‖Cm,α(∂Ωi×J ) ≤ C . (3.37)

Proof. Since ∂Ωi is a compact sub-manifold of class C1,α in Rn, there exist

a finite open covering U1, . . . , Uk of ∂Ωi and C1,α local parametrization

maps γl : Bn−1(0, 1) → Ul with l = 1, . . . , k. Moreover, we can assume

without loss of generality that the norm of Cm,α(∂Ωi) is defined on the atlas

{(Ul, γ(−1)
l )}l=1,...,k and the norm of Cm,α(∂Ωi × J ) is defined on the atlas

{(Ul ×J , (γ(−1)
l , idJ ))}l=1,...,k, where idJ is the identity map from J to itself.

Then, in order to prove (3.37) it suffices to show that

sup
ε∈E
‖B(ε, γl(·), ·)‖Cm,α(Bn−1(0,1)×J ) ≤ C ∀l ∈ {1, . . . , k} (3.38)

for some C > 0. Let l ∈ {1, . . . , k} and let A be the map from ] −

ε0, ε0[×Bn−1(0, 1)× R to R defined by

A(ε, z, ζ) = B(ε, γl(z), ζ) ∀(ε, z, ζ) ∈]− ε0, ε0[×Bn−1(0, 1)× R . (3.39)

Then, with the notation of Lemma 3.2.5, we have

MA(ε, ζ) = γ∗l
(
ÑB(ε, ζ)|Ul

)
,

where γ∗l
(
ÑB(ε, ζ)|Ul

)
is the pull back of the restriction ÑB(ε, ζ)|Ul by the

parametrization γl. Since the restriction map from Cm,α(∂Ωi) to Cm,α(Ul)

and the pullback map γ∗l from Cm,α(Ul) to Cm,α(Bn−1(0, 1)) are linear and

continuous and since NB is real analytic from ]− ε0, ε0[×R to Cm,α(∂Ωi), it

follows that the mapMA is real analytic from ]−ε0, ε0[×R to Cm,α(Bn−1(0, 1)).
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Then Lemma 3.2.5 implies that

sup
ε∈E
‖A(ε, ·, ·)‖Cm,α(Bn−1(0,1)×J ) ≤ C (3.40)

for some C > 0. Now the validity of (3.38) follows by (3.39) and (3.40). The

proof is complete.

3.3 The auxiliary maps N and S

In the proof of our main Theorem 3.4.1 we will exploit two auxiliary maps,

which we denote byN and S and are defined as follows. Let ε′ be as in Theorem

2.6.5. We denote by N = (N1, N2, N3) the map from ]− ε′, ε′[×C1,α(∂Ωo)×

C1,α(∂Ωi)0 ×R×C1,α(∂Ωi) to C1,α(∂Ωo)×C1,α(∂Ωi)×C0,α(∂Ωi) defined by

N1[ε, φo, φi, ζ, ψi](x) ≡
(1

2I +W∂Ωo

)
[φo](x)

− εn−1
∫
∂Ωi

νΩi(y) · ∇Sn(x− εy)φi(y) dσy

+ εn−2ζSn(x) ∀x ∈ ∂Ωo,

(3.41)

N2[ε, φo, φi, ζ, ψi](t) ≡
(
−1

2I +W∂Ωi

)
[φi](t)

+ ζ Sn(t) + w+
Ωo [φo](εt)

− (∂ζF )(0, t, ζ i)
(1

2I +W∂Ωi

)
[ψi](t) ∀t ∈ ∂Ωi,

(3.42)

N3[ε, φo, φi, ζ, ψi](t) ≡ νΩi(t) ·
(
ε∇w+

Ωo [φo](εt) +∇w−Ωi [φ
i](t)

+ζ∇Sn(t)−∇w+
Ωi [ψ

i](t)
)

∀t ∈ ∂Ωi,

(3.43)
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for all (ε, φo, φi, ζ, ψi) ∈] − ε′, ε′[×C1,α(∂Ωo) × C1,α(∂Ωi)0 × R × C1,α(∂Ωi)

and we denote by S = (S1, S2, S3) the map from ] − ε′, ε′[×C1,α(∂Ωi) to

C1,α(∂Ωo)× C1,α(∂Ωi)× C0,α(∂Ωi) defined by

S1[ε, ψi](x) ≡ 0 ∀x ∈ ∂Ωo, (3.44)

S2[ε, ψi](t) ≡ −t · ∇uo(0)− εuo(εt) + (∂εF )(0, t, ζ i)

+ εF̃
(
ε, t, ζ i,

(1
2I +W∂Ωi

)
[ψi](t)

)
∀t ∈ ∂Ωi, (3.45)

S3[ε, ψi](t) ≡ −νΩi(t) · ∇uo(εt)

+G
(
ε, t, ε

(1
2I +W∂Ωi

)
[ψi](t) + ζ i

)
∀t ∈ ∂Ωi, (3.46)

for all (ε, ψi) ∈]− ε′, ε′[×C1,α(∂Ωi).

For the maps N and S we have the following result.

Proposition 3.3.1. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold

true. Then there exists ε′′ ∈ ]0, ε′[ such that the following statements hold.

(i) For all fixed ε ∈] − ε′′, ε′′[ the operator N [ε, ·, ·, ·, ·] is a linear homeo-

morphism from C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi) to C1,α(∂Ωo)×

C1,α(∂Ωi)× C0,α(∂Ωi);

(ii) The map from ]− ε′′, ε′′[ to

L(C1,α(∂Ωo)×C1,α(∂Ωi)×C0,α(∂Ωi), C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi))

which takes ε to N [ε, ·, ·, ·, ·](−1) is real analytic;

(iii) Equation (2.43) is equivalent to

(φo, φi, ζ, ψi) = N [ε, ·, ·, ·, ·](−1)[S[ε, ψi]] (3.47)

for all (ε, φo, φi, ζ, ψi) ∈]−ε′′, ε′′[×C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi).
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Proof. By the definition of N (cf. (3.41)–(3.43)), by the mapping properties

of the double layer potential (cf. Theorem 1.3.4 (iii) and Theorem 1.3.5 (ii))

and of integral operators with real analytic kernels and no singularity (see

Theorem A.2.1 (ii) in Appendix A.2), by assumption (2.42) (which implies

that (∂ζF )(0, ·, ζ i) belongs to C1,α(∂Ωi)), and by standard calculus in Banach

spaces, one verifies that the map from ]− ε′, ε′[ to

L(C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi) , C1,α(∂Ωo)×C1,α(∂Ωi)×C0,α(∂Ωi))

which takes ε to N [ε, ·, ·, ·, ·] is real analytic. Then one observes that

N [0, φo, φi, ζ, ψi] = ∂(φo,φi,ζ,ψi)M [0, φo0, φi0, ζ0, ψ
i
0].(φo, φi, ζ, ψi)

and thus Lemma 2.6.4 implies that N [0, ·, ·, ·, ·] is an isomorphism from

C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi) to C1,α(∂Ωo)×C1,α(∂Ωi)×C1,α(∂Ωi).

Since the set of invertible operators is open in L(C1,α(∂Ωo)× C1,α(∂Ωi)0 ×

R× C1,α(∂Ωi), C1,α(∂Ωo)× C1,α(∂Ωi)× C0,α(∂Ωi)) and since the map which

takes a linear invertible operator to its inverse is real analytic (cf. Hille and

Phillips [37]), we deduce the validity of (i) and (ii). To prove (iii) we observe

that, by the definition of N in (3.41)–(3.43) and by the definition of S in

(3.44)–(3.46), it readily follows that (2.43) is equivalent to

N [ε, φo, φi, ζ, ψi] = S[ε, ψi] .

Then the validity of (iii) is a consequence of (i).
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3.4 A stronger local uniqueness result for the

solution (uoε, uiε)

In this section we will prove our main Theorem 3.4.1 on the local uniqueness

of the solution (uoε , uiε) provided by Theorem 2.7.2. In particular, we will

prove that the local uniqueness of the solution can be achieved weakening the

assumptions of Theorem 3.1.2: only one condition on the trace of the function

vi(ε·) on ∂Ωi is required, instead of the three conditions used in Theorem

3.1.2.

We are now ready to state and prove our main result of this chapter.

Theorem 3.4.1. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold true.

Let ε′ ∈]0, ε0[ be as in Theorem 2.6.5. Let {(uoε , uiε)}ε∈]0,ε′[ be as in Theorem

2.7.2. Then there exist ε∗ ∈]0, ε′[ and δ∗ ∈]0,+∞[ such that the following

property holds:

If ε ∈]0, ε∗[ and (vo, vi) ∈ C1,α(Ω(ε))× C1,α(εΩi) is a solution of problem

(2.2) with ∥∥∥vi(ε·)− uiε(ε·)∥∥∥C1,α(∂Ωi)
< εδ∗,

then

(vo, vi) = (uoε , uiε) .

Proof. • Step 1: Fixing ε∗.

Let ε′′ ∈ ]0, ε′[ be as in Proposition 3.3.1 and let ε′′′ ∈]0, ε′′[ be fixed. By the

compactness of [−ε′′′, ε′′′] and by the continuity of the norm in L(C1,α(∂Ωi)×

C0,α(∂Ωi)×C1,α(∂Ωo), C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi)), there exists
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a real number C1 > 0 such that

‖N [ε, ·, ·, ·, ·](−1)‖L(C1,α(∂Ωi)×C0,α(∂Ωi)×C1,α(∂Ωo),C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi))

≤ C1

(3.48)

for all ε ∈ [−ε′′′, ε′′′] (see also Proposition 3.3.1 (ii)). Let U0 be the open

neighborhood of (φo0, φi0, ζ0, ψ
i
0) in C1,α(∂Ωo) × C1,α(∂Ωi)0 × R × C1,α(∂Ωi)

introduced in Theorem 2.6.5. Then we take K > 0 such that

B0,K ⊆ U0

(see (3.1) for the definition of B0,K). Since (Φo[·],Φi[·], Z[·],Ψi[·]) is continuous

(indeed real analytic) from ]− ε′, ε′[ to U0, there exists ε∗ ∈]0, ε′′′[ such that

(Φo[η],Φi[η], Z[η],Ψi[η]) ∈ B0,K/2 ⊂ U0 ∀η ∈]0, ε∗[ . (3.49)

Moreover, we assume that

ε∗ < 1.

We will prove that the theorem holds for such choice of ε∗. We observe that

the condition ε∗ < 1 is not really needed in the proof but simplifies many

computations.

• Step 2: Planning our strategy.

We suppose that there exists a pair of functions (vo, vi) ∈ C1,α(Ω(ε)) ×

C1,α(εΩi) that is a solution of problem (2.2) for a certain ε ∈]0, ε∗[ (fixed)

and such that ∥∥∥∥∥vi(ε·)− uiε(ε·)ε

∥∥∥∥∥
C1,α(∂Ωi)

≤ δ∗ , (3.50)
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for some δ∗ ∈]0,+∞[. Then, by Proposition 2.1.3, there exists a unique

quadruple (φo, φi, ζ, ψi) ∈ C1,α(∂Ωo)× C1,α(∂Ωi)0 × R× C1,α(∂Ωi) such that

vo = U o
ε [φo, φi, ζ, ψi] in Ω(ε),

vi = U i
ε [φo, φi, ζ, ψi] in εΩi.

(3.51)

We shall show that for δ∗ small enough we have

(φo, φi, ζ, ψi) = (Φo[ε],Φi[ε], Z[ε],Ψi[ε]) . (3.52)

Indeed, if we have (3.52), then Definition 2.7.1 would imply that

(vo, vi) = (uoε , viε),

and our proof would be completed. Moreover, to prove (3.52) it suffices to

show that

(φo, φi, ζ, ψi) ∈ B0,K ⊂ U0 . (3.53)

In fact, in that case, both (ε, φo, φi, ζ, ψi) and (ε,Φo[ε],Φi[ε], Z[ε],Ψi[ε]) would

stay in the zero set of M (cf. Proposition 2.6.1 and Theorem 2.6.5) and thus

(3.53) together with (3.49) and Theorem 2.6.5 would imply (3.52).

So, our aim is now to prove that (3.53) holds true for a suitable choice of

δ∗ > 0. It will be also convenient to restrict our search to

0 < δ∗ < 1.

As for the condition ε∗ < 1, this condition on δ∗ is not really needed, but

simplifies our computations. Then to find δ∗ and prove (3.53) we will proceed

as follows. First we obtain an estimate for ψi and Ψi[ε] with a bound that
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does not depend on ε and δ∗. Then we use such estimate to show that

‖S[ε, ψi]− S[ε,Ψi[ε]]‖C1,α(∂Ωo)×C1,α(∂Ωi)×C0,α(∂Ωi)

is smaller than a constant times δ∗, with a constant that does not depend on ε

and δ∗. We will split the analysis for S1, S2, and S3 and we find convenient to

study S3 before S2. Indeed, the computations for S2 and S3 are very similar

but those for S3 are much shorter and can serve better to illustrate the tech-

niques employed. We also observe that the analysis for S2 requires the study

of other auxiliary functions T1, T2, and T3 that we will introduce. Finally, we

will exploit the estimate for ‖S[ε, ψi]− S[ε,Ψi[ε]]‖C1,α(∂Ωo)×C1,α(∂Ωi)×C0,α(∂Ωi)

to determine δ∗ and prove (3.53).

• Step 3: Estimate for ψ and Ψ[ε].

By condition (3.50), by the second equality in (3.51), by Definition 2.7.1, and

by arguing as in (3.10) and (3.12) in Theorem 3.1.2, we obtain

∥∥∥∥(1
2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

≤ δ∗ (3.54)

and

‖ψi −Ψi[ε]‖C1,α(∂Ωi) ≤
∥∥∥∥∥
(1

2I +W∂Ωi

)(−1)∥∥∥∥∥
L(C1,α(∂Ωi),C1,α(∂Ωi))

×
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

≤C2δ
∗,

(3.55)
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where

C2 ≡
∥∥∥∥∥
(1

2I +W∂Ωi

)(−1)∥∥∥∥∥
L(C1,α(∂Ωi),C1,α(∂Ωi))

.

By (3.49) we have

‖ψi0 −Ψi[η]‖C1,α(∂Ωi) ≤
K

2 ∀η ∈]0, ε∗[. (3.56)

Then, by (3.55) and (3.56), and by the triangle inequality, we see that

‖ψi‖C1,α(∂Ωi) ≤ ‖ψi0‖C1,α(∂Ωi) + ‖ψi −Ψi[ε]‖C1,α(∂Ωi) + ‖Ψi[ε]− ψi0‖C1,α(∂Ωi)

≤ ‖ψi0‖C1,α(∂Ωi) + C2 δ
∗ + K

2 ,

‖Ψi[ε]‖C1,α(∂Ωi) ≤ ‖ψi0‖C1,α(∂Ωi) + K

2 .

Then, by taking R1 ≡ ‖ψi0‖C1,α(∂Ωi) + C2 + K
2 and R2 ≡ ‖ψi0‖C1,α(∂Ωi) + K

2

(and recalling that δ∗ ∈]0, 1[), one verifies that

‖ψi‖C1,α(∂Ωi) ≤ R1 and ‖Ψi[ε]‖C1,α(∂Ωi) ≤ R2 . (3.57)

We note here that both R1 and R2 do not depend on ε and δ∗ as long they

belong to ]0, ε∗[ and ]0, 1[, respectively.

• Step 4: Estimate for S1.

We now pass to estimate the norm

‖S[ε, ψi]− S[ε,Ψi[ε]]‖C1,α(∂Ωo)×C1,α(∂Ωi)×C0,α(∂Ωi).

To do so we consider separately S1, S2, and S3. Since S1 = 0 (cf. definition

(3.44)), we readily obtain that

‖S1[ε, ψi]− S1[ε,Ψi[ε]]‖C1,α(∂Ωo) = 0. (3.58)
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• Step 5: Estimate for S3.

We consider S3 before S2 because its treatment is simpler and more illustrative

of the techniques used. By (3.46) and by the Mean Value Theorem in Banach

space (see, e.g., Ambrosetti and Prodi [1, Thm. 1.8]), we compute that

‖S3[ε, ψi]− S3[ε,Ψi[ε]]‖C0,α(∂Ωi)

=
∥∥∥∥G(ε, ·, ε(1

2I +W∂Ωi

)
[ψi] + ζ i

)
−G

(
ε, ·, ε

(1
2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)∥∥∥∥
C0,α(∂Ωi)

=
∥∥∥∥NG (ε, ε(1

2I +W∂Ωi

)
[ψi] + ζ i

)
−NG

(
ε, ε

(1
2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)∥∥∥∥
C0,α(∂Ωi)

≤
∥∥∥dvNG(ε, ψ̃i)

∥∥∥
L(C1,α(∂Ωi),C0,α(∂Ωi))

× ε
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C0,α(∂Ωi)

,

(3.59)

where

ψ̃i = θ
(
ε
(1

2I +W∂Ωi

)
[ψi] + ζ i

)
+ (1− θ)

(
ε
(1

2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)
,

for some θ ∈]0, 1[. Then, by the membership of ε and θ in ]0, 1[ we have

‖ψ̃i‖C1,α(∂Ωi) ≤
∥∥∥∥(1

2I +W∂Ωi

)
[ψi] + ζ i

∥∥∥∥
C1,α(∂Ωi)

+
∥∥∥∥(1

2I +W∂Ωi

)
[Ψi[ε]] + ζ i

∥∥∥∥
C1,α(∂Ωi)

and, by setting

C3 ≡
∥∥∥∥1

2I +W∂Ωi

∥∥∥∥
L(C1,α(∂Ωi),C1,α(∂Ωi))

,
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we obtain

‖ψ̃i‖C1,α(∂Ωi) ≤ C3‖ψi‖C1,α(∂Ωi) + C3‖Ψi[ε]‖C1,α(∂Ωi) + 2|ζ i| ≤ R, (3.60)

with

R ≡ C3(R1 +R2) + 2|ζ i| (3.61)

which does not depend on ε. We wish now to estimate the operator norm

∥∥∥dvNG(η, ψ̃i)
∥∥∥
L(C1,α(∂Ωi),C0,α(∂Ωi))

uniformly for η ∈]0, ε∗[. However, we cannot exploit a compactness argument

on [0, ε∗] × BC1,α(∂Ωi)(0, R), because BC1,α(∂Ωi)(0, R) is not compact in the

infinite dimension space C1,α(∂Ωi). Then we argue as follows. We observe

that, by assumption (2.44), the partial derivative ∂ζG(η, t, ζ) exists for all

(η, t, ζ) ∈]− ε0, ε0[×∂Ωi × R and, by Remark 2.5.4 and Lemma 3.2.2 (i), we

obtain that

‖dvNG(η, ψ̃i)‖L(C1,α(∂Ωi),C0,α(∂Ωi)) ≤ ‖N∂ζG(η, ψ̃i)‖C0,α(∂Ωi)

≤ ‖∂ζG(η, ·, ψ̃i(·))‖C0,α(∂Ωi)

(3.62)

for all η ∈]0, ε∗[. By Proposition 3.2.4 (i), there exists C4 > 0 such that

‖∂ζG(η, ·, ψ̃i(·))‖C0,α(∂Ωi) ≤ C4‖∂ζG(η, ·, ·)‖C0,α(∂Ω×[−R,R])
(
1 + ‖ψ̃i‖αC1,α(∂Ωi)

)
∀η ∈]0, ε∗[.

(3.63)

Moreover, by assumption (2.44) one deduces that the map ÑG defined as in

Lemma 3.2.6 (with B = G) is real analytic from ] − ε0, ε0[×R to C0,α(∂Ωi)

and, by Remark 2.5.4, one has that ∂ζÑG = Ñ∂ζG. Hence, by Lemma 3.2.6
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(with m = 0), there exists C5 > 0 (which does not depend on ε ∈]0, ε∗[ and

δ∗ ∈]0, 1[) such that

sup
η∈[−ε∗,ε∗]

‖∂ζG(η, ·, ·)‖C0,α(∂Ωi×[−R,R]) ≤ C5. (3.64)

Hence, by (3.60), (3.62), (3.63) and (3.64), we deduce that

‖dvNG(ε, ψ̃i)‖L(C1,α(∂Ωi),C0,α(∂Ωi)) ≤ C4C5 (1 +Rα). (3.65)

By (3.54), (3.59), and (3.65), and by the membership of ε in ]0, ε∗[⊂ ]0, 1[, we

obtain that

‖S3[ε, ψi]− S3[ε,Ψi[ε]]‖C0,α(∂Ωi) ≤ C4C5 (1 +Rα) δ∗. (3.66)

• Step 6: Estimate for S2.

Finally, we consider S2. By (3.45) and by the fact that ε ∈]0, 1[, we have

‖S2[ε, ψi]− S2[ε,Ψi[ε]]‖C1,α(∂Ωi)

≤ ε
∥∥∥∥F̃ (ε, ·, ζ i,(1

2I +W∂Ωi

)
[ψi]

)
−F̃

(
ε, ·, ζ i,

(1
2I +W∂Ωi

)
[Ψi[ε]]

)∥∥∥∥
C1,α(∂Ωi)

≤
∥∥∥∥ ∫ 1

0
(1− τ)

{
T1[ε, ψi,Ψi[ε]](τ, ·)

+ 2T2[ε, ψi,Ψi[ε]](τ, ·) + T3[ε, ψi,Ψi[ε]](τ, ·)
}
dτ

∥∥∥∥
C1,α(∂Ωi)

,

(3.67)

where T1[ε, ψi,Ψi[ε]], T2[ε, ψi,Ψi[ε]], and T3[ε, ψi,Ψi[ε]] are the functions from
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]0, 1[×∂Ωi to R defined by

T1[ε, ψi,Ψi[ε]](τ, t)

≡ (∂2
εF )

(
τε, t, τε

(1
2I +W∂Ωi

)
[ψi](t) + ζ i

)
− (∂2

εF )
(
τε, t, τε

(1
2I +W∂Ωi

)
[Ψi[ε]](t) + ζ i

)
, (3.68)

T2[ε, ψi,Ψi[ε]](τ, t)

≡
(1

2I +W∂Ωi

)
[ψi](t) (∂ε∂ζF )

(
τε, t, τε

(1
2I +W∂Ωi

)
[ψi](t) + ζ i

)
−
(1

2I +W∂Ωi

)
[Ψi[ε]](t)(∂ε∂ζF )

(
τε, t, τε

(1
2I +W∂Ωi

)
[Ψi[ε]](t) + ζ i

)
,

(3.69)

T3[ε, ψi,Ψi[ε]](τ, t)

≡
(1

2I +W∂Ωi

)
[ψi]2(t) (∂2

ζF )
(
τε, t, τε

(1
2I +W∂Ωi

)
[ψi](t) + ζ i

)
−
(1

2I +W∂Ωi

)
[Ψi[ε]]2(t)(∂2

ζF )
(
τε, t, τε

(1
2I +W∂Ωi

)
[Ψi[ε]](t) + ζ i

)
(3.70)

for every (τ, t) ∈]0, 1[×∂Ωi.

We now want to bound the C1,α norm with respect to the variable t ∈ ∂Ωi

of (3.68), (3.69), and (3.70) uniformly with respect to τ ∈]0, 1[. By doing

that, we will obtain an estimate for the norm

∥∥∥T1[ε, ψi,Ψi[ε]](τ, ·) + 2T2[ε, ψi,Ψi[ε]](τ, ·) + T3[ε, ψi,Ψi[ε]](τ, ·) dτ
∥∥∥
C1,α(∂Ωi)

,

henceforth a bound for (3.67).

• Step 6.1: Estimate for T1.

First we consider

T1[ε, ψi,Ψi[ε]](τ, ·).
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By the Mean Value Theorem in Banach space (see, e.g., Ambrosetti and Prodi

[1, Thm. 1.8]), we can estimate the C1,α(∂Ωi) norm of T1[ε, ψi,Ψi[ε]](τ, ·)

(cf. (3.68)) as follows:

‖T1[ε, ψi,Ψi[ε]](τ, ·)‖C1,α(∂Ωi)

=
∥∥∥∥N∂2

εF

(
τε, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
−N∂2

εF

(
τε, τε

(1
2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

≤
∥∥∥dvN∂2

εF
(τε, ψ̃i1)

∥∥∥
L(C1,α(∂Ωi),C1,α(∂Ωi))

× τε
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

(3.71)

where

ψ̃i1 = θ1

(
τε
(1

2I +W∂Ωi

)
[ψi] + ζ i

)
+(1−θ1)

(
τε
(1

2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)
,

for some θ1 ∈]0, 1[.

• Step 6.2: Estimate for T2.

We now consider

T2[ε, ψi,Ψi[ε]](τ, ·).

Adding and subtracting

(1
2I +W∂Ωi

)
[Ψi[ε]] (∂ε∂ζF )

(
τε, t, τε

(1
2I +W∂Ωi

)
[ψi](t) + ζ i

)
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in the right hand side of (3.69) and by using the triangle inequality, we obtain

‖T2[ε, ψi,Ψi[ε]](τ, ·)‖C1,α(∂Ωi)

≤
∥∥∥∥(1

2I +W∂Ωi

)
[ψi] (∂ε∂ζF )

(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
−
(1

2I +W∂Ωi

)
[Ψi[ε]] (∂ε∂ζF )

(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

+
∥∥∥∥(1

2I +W∂Ωi

)
[Ψi[ε]] (∂ε∂ζF )

(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
−
(1

2I +W∂Ωi

)
[Ψi[ε]](∂ε∂ζF )

(
τε, ·, τε

(1
2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

.

(3.72)

By Lemma 3.2.2 (ii) and by the Mean Value Theorem in Banach space (see,

e.g., Ambrosetti and Prodi [1, Thm. 1.8]), we can estimate the C1,α(∂Ωi)

norm of T2[ε, ψi,Ψi[ε]](τ, ·) (cf. (3.69) and (3.72)) as follows:

‖T2[ε, ψi,Ψi[ε]](τ, ·)‖C1,α(∂Ωi)

≤ 2
∥∥∥∥(∂ε∂ζF )

(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

×
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

+ 2
∥∥∥∥(1

2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

∥∥∥∥N∂ε∂ζF (τε, τε(1
2I +W∂Ωi

)
[ψi] + ζ i

)
−N∂ε∂ζF

(
τε, τε

(1
2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

≤ 2
∥∥∥∥(∂ε∂ζF )

(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

×
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

+ 2C3 ‖Ψi[ε]‖C1,α(∂Ωi)

∥∥∥dvN∂ε∂ζF (τε, ψ̃i2)
∥∥∥
L(C1,α(∂Ωi),C1,α(∂Ωi))

× τε
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

,

(3.73)
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where

ψ̃i,2 = θ2

(
τε
(1

2I +W∂Ωi

)
[ψi] + ζ i

)
+(1−θ2)

(
τε
(1

2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)
,

for some θ2 ∈]0, 1[.

• Step 6.3: Estimate for T3.

Finally we consider

T3[ε, ψi,Ψi[ε]](τ, ·).

Adding and subtracting the term

(1
2I +W∂Ωi

)
[Ψi[ε]]2 (∂2

ζF )
(
τε, t, τε

(1
2I +W∂Ωi

)
[ψi](t) + ζ i

)

in the right hand side of (3.70) and using the triangle inequality, we obtain

‖T3[ε, ψi,Ψi[ε]](τ, ·)‖C1,α(∂Ωi)

≤
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]2 (∂2

ζF )
(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
−
(1

2I +W∂Ωi

)
[Ψi[ε]]2 (∂2

ζF )
(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

+
∥∥∥∥(1

2I +W∂Ωi

)
[Ψi[ε]]2 (∂2

ζF )
(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
−
(1

2I +W∂Ωi

)
[Ψi[ε]]2(∂2

ζF )
(
τε, ·, τε

(1
2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

.

(3.74)

By Lemma 3.2.2 (ii) and by the Mean Value Theorem in Banach space (see,

e.g., Ambrosetti and Prodi [1, Thm. 1.8]), we can estimate the C1,α(∂Ωi)
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norm of T3[ε, ψi,Ψi[ε]](τ, ·) (cf. (3.70) and (3.74)) as follows:

‖T3[ε, ψi,Ψi[ε]](τ, ·)‖C1,α(∂Ωi)

≤ 2
∥∥∥∥(∂2

ζF )
(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

×
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]2 −

(1
2I +W∂Ωi

)
[Ψi[ε]]2

∥∥∥∥
C1,α(∂Ωi)

+ 2
∥∥∥∥(1

2I +W∂Ωi

)
[Ψi[ε]]2

∥∥∥∥
C1,α(∂Ωi)

×
∥∥∥∥N∂2

ζ
F

(
τε, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)
−N∂2

ζ
F

(
τε, τε

(1
2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

≤ 4
∥∥∥∥(∂2

ζF )
(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

×
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

×
∥∥∥∥(1

2I +W∂Ωi

)
[ψi] +

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

+ 4C2
3 ‖Ψi[ε]‖2

C1,α(∂Ωi)

∥∥∥dvN∂2
ζ
F (τε, ψ̃i3)

∥∥∥
L(C1,α(∂Ωi),C1,α(∂Ωi))

× τε
∥∥∥∥(1

2I +W∂Ωi

)
[ψi]−

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

,

(3.75)

where

ψ̃i3 = θ3

(
τε
(1

2I +W∂Ωi

)
[ψi] + ζ i

)
+(1−θ3)

(
τε
(1

2I +W∂Ωi

)
[Ψi[ε]] + ζ i

)
,

for some θ3 ∈]0, 1[. Let R be as in (3.61). By the same argument used to

prove (3.60), one verifies the inequalities

‖ψ̃i1‖C1,α(∂Ωi) ≤ R, ‖ψ̃i2‖C1,α(∂Ωi) ≤ R, ‖ψ̃i3‖C1,α(∂Ωi) ≤ R. (3.76)
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By assumption (2.42), the partial derivatives ∂ζ∂2
εF (η, t, ζ), ∂ζ∂ε∂ζF (η, t, ζ)

and ∂ζ∂2
ζF (η, t, ζ) exist for all (η, t, ζ) ∈]− ε0, ε0[×∂Ωi × R and by Remark

2.5.4 and Lemma 3.2.2 (ii), we obtain

‖dvN∂2
εF

(τη, ψ̃i1)‖L(C1,α(∂Ωi),C1,α(∂Ωi)) ≤ 2‖N∂ζ∂2
εF

(τη, ψ̃i1)‖C1,α(∂Ωi)

= 2 ‖∂ζ∂2
εF (τη, ·, ψ̃i1(·))‖C1,α(∂Ωi) ,

‖dvN∂ε∂ζF (τη, ψ̃i2)‖L(C1,α(∂Ωi),C1,α(∂Ωi)) ≤ 2‖N∂ζ∂ε∂ζF (τη, ψ̃i2)‖C1,α(∂Ωi)

= 2 ‖∂ζ∂ε∂ζF (τη, ·, ψ̃i2(·))‖C1,α(∂Ωi) ,

‖dvN∂2
ζ
F (τη, ψ̃i3)‖L(C1,α(∂Ωi),C1,α(∂Ωi)) ≤ ‖N∂ζ∂2

ζ
F (τη, ψ̃i3)‖C1,α(∂Ωi)

= 2‖∂ζ∂2
ζF (τη, ·, ψ̃i3(·))‖C1,α(∂Ωi) ,

(3.77)

for all η ∈]0, ε∗[. By Proposition 3.2.4 (ii), there exists C6 > 0 such that

‖∂ζ∂2
εF (τη, ·, ψ̃i1(·))‖C1,α(∂Ωi)

≤ C6‖∂ζ∂2
εF (τη, ·, ·)‖C1,α(∂Ω×[−R,R])

(
1 + ‖ψ̃i1‖C1,α(∂Ωi)

)2
,

‖∂ζ∂ε∂ζF (τη, ·, ψ̃i2(·))‖C1,α(∂Ωi)

≤ C6‖∂ζ∂ε∂ζF (τη, ·, ·)‖C1,α(∂Ωi×[−R,R])
(
1 + ‖ψ̃i2‖C1,α(∂Ωi)

)2
,

‖∂ζ∂2
ζF (τη, ·, ψ̃i3(·))‖C1,α(∂Ωi)

≤ C6‖∂ζ∂2
ζF (τη, ·, ·)‖C1,α(∂Ωi×[−R,R])

(
1 + ‖ψ̃i3‖C1,α(∂Ωi)

)2
,

(3.78)

for all η ∈]0, ε∗[. Now, by assumption (2.42) one deduces that the map ÑF
defined as in Lemma 3.2.6 (with B = F ) is real analytic from ]− ε0, ε0[×R to

C1,α(∂Ωi). Then one verifies that also the maps

∂2
ε ∂ζÑF = Ñ∂2

ε ∂ζF
, ∂ε∂

2
ζ ÑF = Ñ∂ε∂2

ζ
F , ∂3

ζ ÑF = Ñ∂3F ,

∂ε∂ζÑF = Ñ∂ε∂ζF , ∂2
ζ ÑF = Ñ∂2

ζ
F
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are real analytic from ]− ε0, ε0[×R to C1,α(∂Ωi). Hence, Lemma 3.2.6 (with

m = 1) implies that there exists C7 > 0 such that

sup
η∈[−ε∗,ε∗]

‖∂ζ∂2
εF (τη, ·, ·)‖C1,α(∂Ω×[−R,R]) ≤ C7,

sup
η∈[−ε∗,ε∗]

‖∂ζ∂ε∂ζF (τη, ·, ·)‖C1,α(∂Ω×[−R,R]) ≤ C7,

sup
η∈[−ε∗,ε∗]

‖∂ζ∂2
ζF (τη, ·, ·)‖C1,α(∂Ω×[−R,R]) ≤ C7,

sup
η∈[−ε∗,ε∗]

‖∂ε∂ζF (τη, ·, ·)‖C1,α(∂Ω×[ζi−C3R,ζi+C3R]) ≤ C7,

sup
η∈[−ε∗,ε∗]

‖∂2
ζF (τη, ·, ·)‖C1,α(∂Ω×[ζi−C3R,ζi+C3R]) ≤ C7.

(3.79)

Thus, by (3.76), (3.77), (3.78), and (3.79), and by the membership of ε ∈]0, ε∗[

and δ∗ ∈]0, 1[, we have

‖dvN∂2
εF

(τε, ψ̃i1)‖L(C1,α(∂Ωi),C1,α(∂Ωi)) ≤ 2C6C7 (1 +R)2 ,

‖dvN∂ε∂ζF (τε, ψ̃i2)‖L(C1,α(∂Ωi),C1,α(∂Ωi)) ≤ 2C6C7 (1 +R)2 ,

‖dvN∂2
ζ
F (τε, ψ̃i3)‖L(C1,α(∂Ωi),C1,α(∂Ωi)) ≤ 2C6C7 (1 +R)2 ,

(3.80)

uniformly with respect to τ ∈]0, 1[.

We can now bound the C1,α norms with respect to the variable t ∈ ∂Ωi

of (3.68), (3.69), and (3.70) uniformly with respect to τ ∈]0, 1[. Indeed, by

(3.54), (3.71) and (3.80), we obtain

‖T1[ε, ψi,Ψi[ε]](τ, ·)‖C1,α(∂Ωi) ≤ 2C6C7 (1 +R)2δ∗ (3.81)
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for all τ ∈]0, 1[. By Proposition 3.2.4 (ii), by (3.57) and (3.79), we obtain

∥∥∥∥(∂ε∂ζF )
(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

≤ C6C7

(
1 +

∥∥∥∥τε(1
2I +W∂Ωi

)
[ψi] + ζ i

∥∥∥∥
C1,α(∂Ωi)

)2

≤ C6C7
(
1 + C3R1 + |ζ i|

)2
,∥∥∥∥(∂2

ζF )
(
τε, ·, τε

(1
2I +W∂Ωi

)
[ψi] + ζ i

)∥∥∥∥
C1,α(∂Ωi)

≤ C6C7

(
1 +

∥∥∥∥τε(1
2I +W∂Ωi

)
[ψi] + ζ i

∥∥∥∥
C1,α(∂Ωi)

)2

≤ C6C7
(
1 + C3R1 + |ζ i|

)2
,

(3.82)

for all τ ∈]0, 1[. Hence, in view of (3.57), (3.80) and (3.82) and by (3.73) and

(3.75) we have

‖T2[ε, ψi,Ψi[ε]](τ, ·)‖C1,α(∂Ωi)

≤
{

2C6C7
(
1 + C3R1 + |ζ i|

)2
+ 4C3C6C7R2(1 +R)2

}
δ∗ ,

‖T3[ε, ψi,Ψi[ε]](τ, ·)‖C1,α(∂Ωi)

≤
{

4C6C7
(
1 + C3R1 + |ζ i|

)2
R + 8C2

3C6C7R
2
2(1 +R)2

}
δ∗ ,

(3.83)

for all τ ∈]0, 1[, where to obtain the inequality for T3[ε, ψi,Ψi[ε]](τ, ·) we have

also used that

∥∥∥∥(1
2I +W∂Ωi

)
[ψi] +

(1
2I +W∂Ωi

)
[Ψi[ε]]

∥∥∥∥
C1,α(∂Ωi)

≤ C3(R1 +R2) ≤ R

(cf. (3.61)). Moreover, since the boundedness provided in (3.81) and (3.83) is

uniform with respect to τ ∈]0, 1[, one verifies that the following inequality
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holds:
∥∥∥∥∫ 1

0
(1− τ)

{
T1[ε, ψi,Ψi[ε]](τ, ·) + 2T2[ε, ψi,Ψi[ε]](τ, ·)

+T3[ε, ψi,Ψi[ε]](τ, ·)
}
dτ
∥∥∥
C1,α(∂Ωi)

≤
∫ 1

0
(1− τ)‖T1[ε, ψi,Ψi[ε]](τ, ·)

+ 2T2[ε, ψi,Ψi[ε]](τ, ·) + T3[ε, ψi,Ψi[ε]](τ, ·)‖C1,α(∂Ωi) dτ

≤
{

2C6C7 (1 +R)2 + 4C6C7
(
1 + C3R1 + |ζ i|

)2
+ 8C3C6C7R2(1 +R)2

+ 4C6C7
(
1 + C3R1 + |ζ i|

)2
R + 8C2

3C6C7R
2
2(1 +R)2

}
δ∗ .

(3.84)

Then, by (3.67) and (3.84) we obtain

‖S2[ε, ψiε]− S2[ε,Ψi[ε]]‖C1,α(∂Ωi)

≤
{

2C6C7 (1 +R)2 + 4C6C7
(
1 + C3R1 + |ζ i|

)2
+ 8C3C6C7R2(1 +R)2

+ 4C6C7
(
1 + C3R1 + |ζ i|

)2
R + 8C2

3C6C7R
2
2(1 +R)2

}
δ∗

(3.85)

(also recall that ε ∈]0, 1[).

• Step 7: Conclusion for S.

Finally, by (3.58), (3.66) and (3.85), we have

‖S[ε, ψiε]− S[ε,Ψi[ε]]‖C1,α(∂Ωi)×C0,α(∂Ωi)×C1,α(∂Ωo) ≤ C8 δ
∗,

with

C8 ≡ C4C5 (1 +Rα) + 2C6C7 (1 +R)2 + 4C6C7
(
1 + C3R1 + |ζ i|

)2

+ 8C3C6C7R2(1 +R)2 + 4C6C7
(
1 + C3R1 + |ζ i|

)2
R + 8C2

3C6C7R
2
2(1 +R)2.
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• Step 8: Estimate for (3.53) and determination of δ∗.

By (3.47) and (3.48) we conclude that the norm of the difference between

(φo, φi, ζ, ψi) and

(Φo[ε],Φi[ε], Z[ε],Ψi[ε])

in the space C1,α(∂Ωo) × C1,α(∂Ωi)0 × R × C1,α(∂Ωi) is less than C1C8 δ
∗.

Then, by (3.49) and by the triangle inequality we obtain

‖(φo, φi, ζ, ψi)−(φo0, φi0, ζ0, ψ
i
0)‖C1,α(∂Ωo)×C1,α(∂Ωi)0×R×C1,α(∂Ωi) ≤ C1C8 δ

∗+K

2 .

Thus, in order to have (φo, φi, ζ, ψi) ∈ B0,K , it suffices to take

δ∗ <
K

2C1C8

in inequality (3.50). Then, for such choice of δ∗, (3.53) holds and the theorem

is proved.

3.5 Local uniqueness for the family of solu-

tions

As a consequence of Theorem 3.4.1, we can derive the following local unique-

ness result for the family {(uoε , uiε)}ε∈]0,ε′[.

Corollary 3.5.1. Let assumptions (2.13), (2.18), (2.42) and (2.44) hold

true. Let ε′ ∈]0, ε0[ be as in Theorem 2.6.5. Let {(uoε , uiε)}ε∈]0,ε′[ be as in

Theorem 2.7.2. Let {(voε , viε)}ε∈]0,ε′[ be a family of functions such that (voε , viε) ∈

C1,α(Ω(ε))× C1,α(εΩi) is a solution of problem (2.2) for all ε ∈]0, ε′[. If

lim
ε→0+

ε−1
∥∥∥viε(ε·)− uiε(ε·)∥∥∥C1,α(∂Ωi)

= 0, (3.86)
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then there exists ε∗ ∈]0, ε′[ such that

(voε , viε) = (uoε , uiε) ∀ε ∈]0, ε∗[ .

Proof. Let ε∗ and δ∗ be as in Theorem 3.4.1. By (3.86) there is ε∗ ∈]0, ε∗[

such that ∥∥∥viε(ε·)− uiε(ε·)∥∥∥C1,α(∂Ωi)
≤ εδ∗ ∀ε ∈]0, ε∗[.

Then the statement follows by Theorem 3.4.1.



CHAPTER 4

Existence result for the nonlinear

transmission problem (3)

This chapter is mainly devoted to prove the existence of a specific family of

solutions of a boundary value problem for the Laplace equation with nonlinear

non-autonomous transmission conditions on the boundary of an inclusion

shaped by a parameter φ belonging to a suitable class of diffeomorphism.

Moreover, we analyse the dependence of that specific family of solutions upon

the perturbation parameter φ.

We recall the geometric framework of our problem already briefly described

in the Introduction. We fix once for all a natural number

n ≥ 2

that will be the dimension of the space Rn we are going to work in and a

parameter

α ∈]0, 1[

109
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which we use to define the regularity of our sets and functions.

Then, we introduce two sets Ωo and Ωi that satisfy the following conditions:

Ωo, Ωi are bounded open connected subsets of Rn of class C1,α,

their exteriors Rn \ Ωo and Rn \ Ωi are connected,

the origin 0 of Rn belongs both to Ωo and to Ωi,

and Ωi ⊂ Ωo.

(4.1)

Then we fix three functions

F1, F2 ∈ C0(∂Ωi × R× R) and f o ∈ C0,α(∂Ωo). (4.2)

We want to introduce a transmission problem in the pair of domains

consisting of Ωo \ Ωi and Ωi. The functions F1 and F2 determine the trans-

mission conditions on the (inner) boundary ∂Ωi. Instead, f o plays the role

of the Neumann datum on the (outer) boundary ∂Ωo. We are now ready to

introduce the following nonlinear transmission boundary value problem for a

pair of functions (uo, ui) ∈ C1,α(Ωo \ Ωi)× C1,α(Ωi):



∆uo = 0 in Ωo \ Ωi,

∆ui = 0 in Ωi,

νΩo · ∇uo(x) = f o(x) ∀x ∈ ∂Ωo,

νΩi · ∇uo(x) = F1(x, uo(x), ui(x)) ∀x ∈ ∂Ωi,

νΩi · ∇ui(x) = F2(x, uo(x), ui(x)) ∀x ∈ ∂Ωi,

(4.3)

Since problem (4.3) is nonlinear, a priori, it is not clear why it should

admit a classical solution. We prove that under suitable conditions on F1 and

F2, problem (4.3) has at least a solution (uo, ui) ∈ C1,α(Ωo \ Ωi)× C1,α(Ωi).
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Then we introduce a “perturbed” variant of problem (4.3). We fix the

external domain Ωo and we assume that the boundary of the internal domain

is of the form φ(∂Ωi), where φ is a diffeomorphism of ∂Ωi into Rn and belongs

to the class

A∂Ωi ≡
{
φ ∈ C1(∂Ωi,Rn) : φ injective, dφ(y) injective for all y ∈ ∂Ωi

}
.

(4.4)

Clearly the identity function on ∂Ωi belongs to the class A∂Ωi , and, for

convenience, we set

φ0 ≡ id∂Ωi . (4.5)

Then by the Jordan Leray Separation Theorem (cf. Deimling [31, Thm. 5.2]),

Rn \ φ(∂Ωi) has exactly two open connected components for all φ ∈ A∂Ωi ,

and we define I[φ] to be the unique bounded open connected component of

Rn \ φ(∂Ωi). Finally we set

AΩo
∂Ωi ≡

{
φ ∈ A∂Ωi : I[φ] ⊂ Ωo

}
.

Clearly, by assumption (4.1), φ0 ∈ AΩo
∂Ωi .

Now let φ ∈ AΩo
∂Ωi . We consider the following nonlinear non-autonomous

trasmission problem in the perforated domain Ωo \ I[φ] for a pair of functions

(uo, ui) ∈ C1,α(Ωo \ I[φ])× C1,α(I[φ]):



∆uo = 0 in Ωo \ I[φ],

∆ui = 0 in I[φ],

νΩo · ∇uo(x) = f o(x) ∀x ∈ ∂Ωo,

νI[φ] · ∇uo(x) = F1(φ(−1)(x), uo(x), ui(x)) ∀x ∈ φ(∂Ωi),

νI[φ] · ∇ui(x) = F2(φ(−1)(x), uo(x), ui(x)) ∀x ∈ φ(∂Ωi).

(4.6)
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4.1 Preliminary results

We start this section with the following representation result for harmonic

functions in a domain with an inclusion in terms of single layer potentials

plus constants.

Lemma 4.1.1. Let Ω be an open bounded connected subset of Rn of class

C1,α, such that Ω ⊆ Ωo. Then the map (U o
Ω[·, ·, ·, ·, ·], U i

Ω[·, ·, ·, ·, ·]) from

C0,α(∂Ωo)0 × C0,α(∂Ω)× C0,α(∂Ω)0 × R2 to C1,α
harm(Ωo \ Ω)× C1,α

harm(Ω) which

takes a quintuple (µo, µi, ηi, ρo, ρi) to the pair of functions

(U o
Ω[µo, µi, ηi, ρo, ρi], U i

Ω[µo, µi, ηi, ρo, ρi])

defined by

U o
Ω[µo, µi, ηi, ρo, ρi] = (v+

Ωo [µo] + v−Ω [µi] + ρo)|Ωo\Ω

U i
Ω[µo, µi, ηi, ρo, ρi] = v+

Ω [ηi] + ρi
(4.7)

is bijective.

Proof. The map is well defined. Indeed, by the harmonicity and regularity

properties of single layer potentials (cf. Theorem 1.3.3 (i)-(ii)), we know that

∆U o
Ω[µo, µi, ηi, ρo, ρi] = 0 on Ωo \ Ω,

∆U i
Ω[µo, µi, ηi, ρo, ρi] = 0 on Ω,

(U o
Ω[µo, µi, ηi, ρo, ρi], U i

Ω[µo, µi, ηi, ρo, ρi]) ∈ C1,α(Ωo \ Ω)× C1,α(Ω),

for all (µo, µi, ηi, ρo, ρi) ∈ C0,α(∂Ωo)0 × C0,α(∂Ω)× C0,α(∂Ω)0 × R2. We now

show it is bijective. We take a pair of functions (ho, hi) ∈ C1,α
harm(Ωo \ Ω) ×

C1,α
harm(Ω) and we prove that there exists a unique quintuple (µo, µi, ηi, ρo, ρi) ∈
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C0,α(∂Ωo)0 × C0,α(∂Ω)× C0,α(∂Ω)0 × R2 such that

(U o
Ω[µo, µi, ηi, ρo, ρi], U i

Ω[µo, µi, ηi, ρo, ρi]) = (ho, hi). (4.8)

By the uniqueness of the classical solution of the Dirichlet boundary value

problem, the second equation in (4.8) is equivalent to

V∂Ω[ηi] + ρi = hi|∂Ω (4.9)

(notice that, by hi ∈ C1,α
harm(Ω), we have hi|∂Ω ∈ C1,α(∂Ω) ⊂ C0,α(∂Ω)). By

Theorem 1.3.3 (vi), there exists a unique pair (ηi, ρi) ∈ C0,α(∂Ω)0 × R such

that (4.9) holds. Then we are left to show that there exists a unique triple

(µo, µi, ρo) ∈ C0,α(∂Ωo)0 × C0,α(∂Ω)× R such that

(v+
Ωo [µo] + v−Ωi [µ

i] + ρo)|Ωo\Ω = ho. (4.10)

By the jump relation for single layer potential (cf. Theorem 1.3.3 (iv)) and

by the uniqueness of the classical solution of the Neumann-Dirichlet mixed

boundary value problem (cf. Evans [32, Problems 6.6 pag. 366]), equation

(4.10) is equivalent to the following system of integral equations:

V∂Ωo [µo] + v−Ω [µi]|∂Ωo + ρo = ho|∂Ωo ,(1
2I +W ∗

∂Ω

)
[µi] + νΩ · ∇v+

Ωo [µo]|∂Ω = νΩ · ∇ho|∂Ω,
(4.11)

(notice that, by h0 ∈ C1,α
harm(Ω), we get ho|∂Ωo ∈ C1,α(∂Ω) ⊂ C0,α(∂Ω) and

νΩ · ∇ho|∂Ω ∈ C0,α(∂Ω)). Then we observe that by Theorem 1.3.3 (vi), the

map from C0,α(∂Ωo)0×C0,α(∂Ω)×R to C0,α(∂Ωo)×C0,α(∂Ω) which takes a
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triple (µo, µi, ρo) to the pair of functions

(
V∂Ωo [µo] + ρo,

1
2µ

i
)

is an isomorphism. Moreover, by the properties of integral equations with

real analytic kernel and no singularities (cf. Theorem A.2.2 (ii) in Appendix

A.2) and by Theorem 1.3.5 (iii), the map from C0,α(∂Ωo)0 ×C0,α(∂Ω)×R to

C0,α(∂Ωo)× C0,α(∂Ω) which takes a triple (µo, µi.ρo) to the pair of functions

(v−Ω [µi]|∂Ωo ,W
∗
∂Ω[µi] + νΩ · ∇v+

Ωo [µo]|∂Ω) is compact. Hence, the map from

C0,α(∂Ωo)0 × C0,α(∂Ω) × R to C0,α(∂Ωo) × C0,α(∂Ω) which takes a triple

(µo, µi, ρo) to the pair of functions

(
V∂Ωo [µo] + v−Ω [µi]|∂Ωo + ρo,

(1
2I +W ∗

∂Ω

)
[µi] + νΩ · ∇v+

Ωo [µo]|∂Ω

)

is a compact perturbation of an isomorphism and therefore it is a Fredholm

operator of index 0. Thus, to complete the proof, it suffices to show that

(4.11) with (ho|∂Ωo , νΩ · ∇ho|∂Ω) = (0, 0) implies (µo, µi, ρo) = (0, 0, 0). If

(
V∂Ωo [µo] + v−Ω [µi]|∂Ωo + ρo,

(1
2I +W ∗

∂Ω

)
[µi] + νΩ · ∇v+

Ωo [µo]|∂Ω

)
= (0, 0),

(4.12)

then by the jump relation for the single layer potential (cf. Theorem 1.3.3

(iv)) and by the uniqueness of the classical solution of Neumann-Dirichlet

mixed boundary value problem (cf. Evans [32, Problems 6.6 pag. 366]), one

deduces that

(v+
Ωo [µo] + v−Ω [µi] + ρo)|Ωo\Ω = 0.

Moreover, by the continuity of vΩ[µi] in Rn, we have that

(v+
Ωo [µo] + v−Ω [µi] + ρo)|∂Ω = (v+

Ωo [µo] + v+
Ω [µi] + ρo)|∂Ω = 0.
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Then by the uniqueness of the classical solution of Dirichlet boundary value

problem in Ω (cf. Theorem 1.4.1 (i)) we deduce that

(v+
Ωo [µo] + v+

Ω [µi] + ρo)|Ω = 0. (4.13)

Then by the jump relation for single layer potential (cf. Theorem 1.3.3 (iv)),

adding and subtracting the term νΩ ·∇(v+
Ωo [µo]+ρo)|∂Ω and taking into account

(4.13), we get

µi = νΩ · ∇v−Ω [µi]|∂Ω − νΩ · ∇v+
Ω [µi]|∂Ω

= νΩ · ∇(v+
Ωo [µo] + v−Ω [µi] + ρo)|∂Ω − νΩ · ∇(v+

Ωo [µo] + v+
Ω [µi] + ρo)|∂Ω = 0.

Thus, by (4.12), we obtain VΩo [µo] + ρo = 0 on ∂Ωo, which implies (µo, ρo) =

(0, 0) (cf. Theorem 1.3.3 (vi)). Hence (µo, µi, ρo) = (0, 0, 0) and the proof is

complete.

To represent the boundary condition of a linearised version of problem

(4.3), we find convenient to introduce a matrix function

A(·) =

A11(·) A12(·)

A21(·) A22(·)

 : ∂Ωi →M2(R).

We set

Ã ≡

 A11 A12

−A21 −A22

 .

We will exploit the following conditions on the matrix A:
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• A ∈M2(C0,α(∂Ωi));

• For every (ξ1, ξ2) ∈ R2, (ξ1, ξ2)T Ã(ξ1, ξ2) ≥ 0 on ∂Ωi;

• If (c1, c2) ∈ R2 and A(x)(c1, c2) = 0 for all x ∈ ∂Ωi,

then (c1, c2) = (0, 0).

(4.14)

We remark that in literature the third condition in (4.14) is often replaced

by a condition on the invertibility of the matrix A, namely

• There exist a point x ∈ ∂Ωi such that A(x) is invertible. (4.15)

We point out that the matrix A(x) =

 x2
1 x1

−x1 −1

 with x = (x1, . . . , xn) ∈

∂Ωi satisfies the third condition in (4.14) but not condition (4.15).

Then we can prove the following result on the uniqueness of the solution

of a homogeneous A-linearly dependent transmission problem. We mention

that we will apply this results in the Proposition 4.1.3 below and in section

4.4 in Proposition 4.4.4.

Lemma 4.1.2. Let A be as in (4.14). Then the unique solution in C1,α(Ωo \

Ωi)× C1,α(Ωi) of problem



∆uo = 0 in Ωo \ Ωi,

∆ui = 0 in Ωi,

νΩo · ∇uo(x) = 0 ∀x ∈ ∂Ωo,

νΩi · ∇uo(x)− A11(x)u0(x)− A12(x)ui(x) = 0 ∀x ∈ ∂Ωi,

νΩi · ∇ui(x)− A21(x)u0(x)− A22(x)ui(x) = 0 ∀x ∈ ∂Ωi,

(4.16)
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is (uo, ui) = (0, 0).

Proof. Clearly the pair of functions (uo, ui) = (0, 0) is a solution of problem

(4.16). Then we prove it is the unique one in the product space C1,α(Ωo \

Ωi)×C1,α(Ωi) by an energy argument. By the Divergence Theorem, we have

0 ≤
∫

Ωo\Ωi
|∇uo(x)|2 dx+

∫
Ωi
|∇ui(x)|2 dx

≤
∫
∂Ωo

(νΩo · ∇uo(x))uo(x) dσx −
∫
∂Ωi

(νΩi · ∇uo(x))uo(x) dσx

+
∫
∂Ωi

(νΩi · ∇ui(x))ui(x) dσx

≤ −


∫
∂Ωi

(uo(x), ui(x))T
 A11(x) A12(x)

−A21(x) −A22(x)

 (uo(x), ui(x)) dσx

 ≤ 0,

where the last inequality holds thanks to the second assumption in (4.14).

Then, we obtain

∫
Ωo\Ωi

|∇uo(x)|2 dx = 0 and
∫

Ωi
|∇ui(x)|2 dx = 0.

Hence uo and ui are constant, i.e. there exists (c1, c2) ∈ R2 such that

uo(x) = c1 ∀x ∈ Ωo \ Ωi and ui(x) = c2 ∀x ∈ Ωi.

Then, by the forth and fifth equations in (4.16), we obtain A(x)(c1, c2) = 0 for

all x ∈ ∂Ωi, which, by the third assumption in (4.14), implies (c1, c2) = (0, 0).

The proof is completed.

In the following proposition, we investigate an auxiliary boundary operator

which we will exploit in the integral formulation of our problem.

Proposition 4.1.3. Let A be as in (4.14). Let JA be the map from L2(∂Ωo)0×

L2(∂Ωi) × L2(∂Ωi)0 × R2 to L2(∂Ωo) × (L2(∂Ωi))2 which takes a quintuple
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(µo, µi, ηi, ρo, ρi) to the triple JA[µo, µi, ηi, ρo, ρi] defined by

JA,1[µo, µi, ηi, ρo, ρi] ≡
(
−1

2I +W ∗
∂Ωo

)
[µo] + νΩo · ∇v−Ωi [µ

i]|∂Ωo on ∂Ωo,

JA,2[µo, µi, ηi, ρo, ρi] ≡
(1

2I +W ∗
∂Ωi

)
[µi] + νΩi · ∇v+

Ωo [µo]|∂Ωi

− (A11, A12)T · (v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi) on ∂Ωi,

JA,3[µo, µi, ηi, ρo, ρi] ≡
(
−1

2I +W ∗
∂Ωi

)
[ηi]

− (A21, A22)T · (v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi) on ∂Ωi.

(4.17)

Then the following statements hold.

(i) JA is a linear isomorphism from L2(∂Ωo)0 × L2(∂Ωi)× L2(∂Ωi)0 × R2

to L2(∂Ωo)× (L2(∂Ωi))2.

(i) JA is a linear isomorphism from C0(∂Ωo)0 × C0(∂Ωi)× C0(∂Ωi)0 × R2

to C0(∂Ωo)× (C0(∂Ωi))2.

(ii) JA is a linear isomorphism from C0,α(∂Ωo)0×C0,α(∂Ωi)×C0,α(∂Ωi)0×R2

to C0,α(∂Ωo)× (C0,α(∂Ωi))2.

Proof. We first prove (i). We write JA in the form

JA = J̃+
A ◦ J̃A ◦ J̃−A ,

where J̃−A is the inclusion of L2(∂Ωo)0×L2(∂Ωi)×L2(∂Ωi)0×R2 into L2(∂Ωo)×

(L2(∂Ωi))2 × R2, J̃A is the map from L2(∂Ωo) × (L2(∂Ωi))2 × R2 into itself

which takes a quintuple (µo, µi, ηi, ρo, ρi) to the quintuple J̃A[µo, µi, ηi, ρo, ρi]
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defined by

J̃A,1[µo, µi, ηi, ρo, ρi] ≡
(
−1

2I +W ∗
∂Ωo

)
[µo] + νΩo · ∇v−Ωi [µ

i]|∂Ωo

J̃A,2[µo, µi, ηi, ρo, ρi] ≡
(1

2I +W ∗
∂Ωi

)
[µi] + νΩi · ∇v+

Ωo [µo]|∂Ωi

− (A11, A12)T · (v+
Ωo [µo]|∂Ωi + V∂Ωi [µi], V∂Ωi [ηi])

J̃A,3[µo, µi, ηi, ρo, ρi] ≡
(
−1

2I +W ∗
∂Ωi

)
[ηi]

− (A21, A22)T · (v+
Ωo [µo]|∂Ωi + V∂Ωi [µi], V∂Ωi [ηi])

J̃A,4[µo, µi, ηi, ρo, ρi] ≡ ρo

J̃A,5[µo, µi, ηi, ρo, ρi] ≡ ρi

and J̃+
A is the map from L2(∂Ωo)× (L2(∂Ωi))2×R2 into L2(∂Ωo)× (L2(∂Ωi))2

which takes a quintuple (f, g1, g2, c1, c2) to the triple J̃+
A [f, g1, g2, c1, c2] defined

by

J̃+
A [f, g1, g2, c1, c2] = (f, g1 − (A11, A12)T · (c1, c2), g2 − (A21, A22)T · (c1, c2)).

Then we observe that J̃−A is Fredholm of index −2, because

Ker J̃−A = {0} and Coker J̃−A = Span {(1, 0, 0, 0, 0), (0, 0, 1, 0, 0)},

and that J̃+
A is a Fredholm operator of index 2, because

Coker J̃+
A = {0} and Ker J̃+

A = Span {(0, A11, A21, 1, 0), (0, A12, A22, 0, 1)}.

Next, we observe that the map from L2(∂Ωo)×(L2(∂Ωi))2×R2 into itself which

takes a quintuple (µo, µi, ηi, ρo, ρi) to the quintuple (−1
2µ

o, 1
2µ

i,−1
2η

i, ρo, ρi)

is an isomorphism. Moreover, by mapping properties of integral operator
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with real analytic kernel and no singularity (cf. Theorem A.2.1 (ii) in the

Appendix), by Theorem 1.3.5 (i), by the compactness of the operators V∂Ωi

from L2(∂Ωi) into itself (see Costabel [19, Thm. 1]), and by the bilinearity

and continuity of the product in L2(∂Ωi), we deduce that the map from

L2(∂Ωo)× (L2(∂Ωi))2 × R2 into itself which takes quintuple (µo, µi, ηi, ρo, ρi)

to the quintuple J̃CA [µo, µi, ηi, ρo, ρi] defined by

J̃CA,1[µo, µi, ηi, ρo, ρi] ≡ W ∗
∂Ωo [µo] + νΩo · ∇v−Ωi [µ

i]|∂Ωo

J̃CA,2[µo, µi, ηi, ρo, ρi] ≡ W ∗
∂Ωi [µi] + νΩi · ∇v+

Ωo [µo]|∂Ωi

− (A11, A12)T · (v+
Ωo [µo]|∂Ωi + V∂Ωi [µi], V∂Ωi [ηi])

J̃CA,3[µo, µi, ηi, ρo, ρi] ≡ W ∗
∂Ωi [ηi]

− (A21, A22)T · (v+
Ωo [µo]|∂Ωi + V∂Ωi [µi], V∂Ωi [ηi])

J̃CA,4[µo, µi, ηi, ρo, ρi] ≡ 0

J̃CA,5[µo, µi, ηi, ρo, ρi] ≡ 0

is compact. Hence, we conclude that J̃A is a compact perturbation of an

isomorphism and therefore it is Fredholm of index 0. Since the index of a com-

position of Fredholm operators, is the sum of the indexes of the components,

we deduce that JA is a Fredholm operator of index 0. Therefore, in order to

complete the proof of point (i), it suffices to prove that JA is injective. Thus,

we now assume that (µo, µi, ηi, ρo, ρi) ∈ L2(∂Ωo)0 × L2(∂Ωi)× L2(∂Ωi)0 ×R2

and that

JA[µo, µi, ηi, ρo, ρi] = (0, 0, 0). (4.18)

Since the integral operators which appear on the definition of JA (cf. (4.17))

display weak singularities, then a standard argument based on iterated kernels

implies that (µo, µi, ηi) ∈ C0(∂Ωo)0 × C0(∂Ωi) × C0(∂Ωi)0. Then mapping

properties of integral operator with real analytic kernel and no singularity (cf.



4.1 Preliminary results 121

Theorem A.2.1 (ii) in the Appendix) and by classical known regularity result

in potential theory (cf. Miranda [57, Chap. II, §14]), we know that

νΩo · ∇v−Ωi [µ
i]|∂Ωo ∈ C0,α(∂Ωo),

v+
Ωo [µo]|∂Ωi , νΩi · ∇v+

Ωo [µo]|∂Ωi , V∂Ωi [ηi], V∂Ωi [µi] ∈ C0,α(∂Ωi).

Hence, by (4.18) and by the membership of A ∈ M2(C0,α(∂Ωi)) (cf. first

condition in (4.14)), we obtain that

(
−1

2I +W ∗
∂Ωo

)
[µo] ∈ C0,α(∂Ωo)

and (1
2I +W ∗

∂Ωi

)
[µi],

(
−1

2I +W ∗
∂Ωi

)
[ηi] ∈ C0,α(∂Ωi).

Then Theorem 1.4.5 (ii) implies that (µo, µi, ηi) belongs to C0,α(∂Ωo)0 ×

C0,α(∂Ωi)× C0,α(∂Ωi)0. By the jump relations (cf. Theorem 1.3.3 (iv)), by

Lemma 4.1.1, and by equation (4.18), we deduce that the pair of functions

(U o
Ωi [µo, µi, ηi, ρo, ρi], U i

Ωi [µo, µi, ηi, ρo, ρi])

defined by (4.7) is a solution of the boundary value problem (4.16). Then by

Lemma 4.1.2, we have that

(U o
Ωi [µo, µi, ηi, ρo, ρi], U i

Ωi [µo, µi, ηi, ρo, ρi]) = (0, 0),

which implies that (µo, µi, ηi, ρo, ρi) = (0, 0, 0, 0, 0), by the uniqueness of the

representation provided by Lemma 4.1.1.

In order to prove (ii), it suffices to observe that JA is continuous from

C0(∂Ωo)0×C0(∂Ωi)×C0(∂Ωi)0×R2 to C0(∂Ωo)× (C0(∂Ωi))2 and that, since
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the integral operators which appear on the definition of JA (cf. (4.17)) display

weak singularities, then, by a standard argument based on iterated kernels,

we obtain that

JA[µo, µi, ηi, ρo, ρi] ∈ C0(∂Ωo)× (C0(∂Ωi))2

implies (µo, µi, ηi) ∈ C0(∂Ωo)0×C0(∂Ωi)×C0(∂Ωi)0 for all (µo, µi, ηi, ρo, ρi) ∈

L2(∂Ωo)0 × L2(∂Ωi) × L2(∂Ωi)0 × R2 (similarly to what we have done for

(4.18)).

Finally (iii) can be proven in a similar way to point (ii). The proof is

completed.

4.2 Formulation of problem (3) in terms of

integral equations

We are now ready to convert the nonlinear transmission problem (4.6) into

a system of integral equations. We observe that, by using a suitable change

of variable, the integral system is defined on a fixed set ∂Ωo × (∂Ωi)2, which

does not depend on the perturbation parameter φ.

Proposition 4.2.1. Let (φ, µo, µi, ηi, ρo, ρi) ∈ AΩo
∂Ωi×C0,α(∂Ωo)0×C0,α(∂Ωi)×

C0,α(∂Ωi)0 × R2. Then the pair of functions

(U o
I[φ][µo, µi ◦ φ(−1), ηi ◦ φ(−1), ρo, ρi], U i

I[φ][µo, µi ◦ φ(−1), ηi ◦ φ(−1), ρo, ρi]),

where (U o
I[φ][·, ·, ·, ·, ·], U i

I[φ][·, ·, ·, ·, ·]) are defined by (4.7), is a solution of prob-
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lem (4.6) if and only if

(
−1

2I +W ∗∂Ωo

)
[µo](x) + νΩo(x) · ∇v−I[φ][µ

i ◦ φ(−1)](x) = fo(x) ∀x ∈ ∂Ωo,(1
2I +W ∗∂I[φ]

)
[µi ◦ φ(−1)](φ(t)) + νI[φ](φ(t)) · ∇v+

Ωo [µ
o](φ(t))

= F1
(
t, v+

Ωo [µ
o](φ(t)) + V∂I[φ][µi ◦ φ(−1)](φ(t)) + ρo, V∂I[φ][ηi ◦ φ(−1)](φ(t)) + ρi

)
∀t ∈ ∂Ωi,(
−1

2I +W ∗∂I[φ]

)
[ηi ◦ φ(−1)](φ(t))

= F2
(
t, v+

Ωo [µ
o](φ(t)) + V∂I[φ][µi ◦ φ(−1)](φ(t)) + ρo, V∂I[φ][ηi ◦ φ(−1)](φ(t)) + ρi

)
∀t ∈ ∂Ωi.

(4.19)

Proof. We first observe that, by the regularity of φ ∈ AΩo
∂Ωi , if

(µo, µi, ηi, ρo, ρi) ∈ C0,α(∂Ωo)0 × C0,α(∂Ωi)× C0,α(∂Ωi)0 × R2,

then

(µo, µi ◦ φ(−1), ηi ◦ φ(−1), ρo, ρi) ∈ C0,α(∂Ωo)0 × C0,α(∂Ωi)× C0,α(∂Ωi)0 × R2.

Moreover, by the definition of AΩo
∂Ωi and I[φ] we have that ∂I[φ] = φ(∂Ωi) and

I[φ] ⊆ Ωo. Hence we can apply Lemma 4.1.1 with Ω = I[φ]. Then by jump

relations (cf. Theorem 1.3.3 (iv)) and by a change of variable on φ(Ωi), we

obtain that the pair of functions

U o
I[φ][µo, µi ◦ φ(−1), ηi ◦ φ(−1), ρo, ρi] = (v+

Ωo [µo] + v−I[φ][µ
i ◦ φ(−1)] + ρo)|Ωo\I[φ],

U i
I[φ][µo, µi ◦ φ(−1), ηi ◦ φ(−1), ρo, ρi] = v+

I[φ][η
i ◦ φ(−1)] + ρi,

is a solution of problem (4.6) if and only if (4.19) is satisfied.
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4.3 The limiting system and existence result

for problem (2)

In this section we prove an existence theorem for the unperturbed transmission

problem (4.3). In doing that we analyse the limiting system, i.e. the system

of integral equation obtained by choosing φ = φ0 in (4.19). It consists of the

following three equations that for the sake of exposition we present as a three

component vector field on ∂Ωo × ∂Ωi × ∂Ωi.


(
−1

2I +W ∗
∂Ωo
)

[µo] + νΩo · ∇v−Ωi [µi]|∂Ωo(
1
2I +W ∗

∂Ωi
)

[µi] + νΩi · ∇v+
Ωo [µo]|∂Ωi(

−1
2I +W ∗

∂Ωi
)

[ηi]



=


f o

NF1(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)

NF2(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)



(4.20)

Then, using the operator JA introduced in Proposition 4.1.3, we can prove

the following result for the transmission problem (4.3).

Proposition 4.3.1. Let A be as in (4.14). Let (µo, µi, ηi, ρo, ρi) ∈ C0,α(∂Ωo)0×

C0,α(∂Ωi) × C0,α(∂Ωi)0 × R2. Let (U o
Ωi [·, ·, ·, ·, ·], U i

Ωi [·, ·, ·, ·, ·]) be defined by

(4.7). Let JA be as in Proposition 4.1.3. Then

(U o
Ωi [µo, µi, ηi, ρo, ρi], U i

Ωi [µo, µi, ηi, ρo, ρi])
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is a solution of problem (4.3) if and only if



µo

µi

ηi

ρo

ρi


= J

(−1)
A




f o

NF1(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)

NF2(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)



−


0 0 0

0 A11 A12

0 A21 A22




0

v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo

V∂Ωi [ηi] + ρi



 .

(4.21)

Proof. By Lemma 4.1.1 and by the jump relation of Theorem 1.3.3 (iv), we

know that if (µo, µi, ηi, ρo, ρi) ∈ C0,α(∂Ωo)0 × C0,α(∂Ωi) × C0,α(∂Ωi)0 × R2

then (U o
Ωi [µo, µi, ηi, ρo, ρi], U i

Ωi [µo, µi, ηi, ρo, ρi]) defined by (4.7) is a solution

of problem (4.3) if an only if (4.20) holds. Then, by subtracting on both sides

of (4.20) the term


0 0 0

0 A11 A12

0 A21 A22




0

v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo

V∂Ωi [ηi] + ρi

 ∈ C0,α(∂Ωo)× (C0,α(∂Ωi))2

and by the invertibility of JA from C0,α(∂Ωo)0×C0,α(∂Ωi)×C0,α(∂Ωi)0×R2

to C0,α(∂Ωo)× (C0,α(∂Ωi))2 provided by Proposition 4.1.3 (iii), the validity

of the statement follows.

We now introduce an auxiliary map. If A is as in (4.14) and JA is as

in Proposition 4.1.3, we denote by TA operator from C0(∂Ωo)0 × C0(∂Ωi)×
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C0(∂Ωi)0 × R2 to C0(∂Ωo)× (C0(∂Ωi))2 defined by

TA(µo, µi, ηi, ρo, ρi) ≡J (−1)
A




f o

NF1(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)

NF2(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)



−


0 0 0

0 A11 A12

0 A21 A22




0

v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo

V∂Ωi [ηi] + ρi



 .
(4.22)

We study continuity and compactness properties of TA in the following

proposition.

Proposition 4.3.2. Let A be as in (4.14). Let TA be as in (4.22). Then

TA is a continuous operator from C0(∂Ωo)0 × C0(∂Ωi) × C0(∂Ωi)0 × R2 to

C0(∂Ωo)× (C0(∂Ωi))2 and maps bounded sets into sets of compact closure.

Proof. By the properties of integral operator with real analytic kernel and

no singularities (cf. Theorem A.2.1 (ii) in the Appendix) and by the com-

pactness of the embedding of C0,α(∂Ωi) into C0(∂Ωi), v+
Ωo [·]|∂Ωi is compact

from C0(∂Ωo)0 into C0(∂Ωi). By mapping properties of single layer potential

(cf. Miranda [57, Chap. II, §14, III]) and by the compactness of the embedding

of C0,α(∂Ωi) into C0(∂Ωi), V∂Ωi is compact from C0(∂Ωi) into itself. Hence,

by the bilinear continuity of the product of continuous functions, the map

from C0(∂Ωo)0 × C0(∂Ωi)× C0(∂Ωi)0 × R2 to C0(∂Ωo)× (C0(∂Ωi))2 which

takes the quintuple (µo, µi, ηi, ρo, ρi) to the triple


0 0 0

0 A11 A12

0 A21 A22




0

v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo

V∂Ωi [ηi] + ρi
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is continuous and maps bounded sets into sets with compact closure. Moreover,

by assumption (4.2), one readily verifies that the operators NF1 and NF2 are

continuous from (C0(∂Ωi))2 into C0(∂Ωi). Hence the map from C0(∂Ωo)0 ×

C0(∂Ωi) × C0(∂Ωi)0 to C0(∂Ωo) × (C0(∂Ωi))2 which takes the quintuple

(µo, µi, ηi, ρo, ρi) to the triple


f 0

NF1(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)

NF2(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)


is continuous and maps bounded sets into sets of compact closure. Finally, by

Proposition 4.1.3 (ii), the operator JA is an isomorphism from C0(∂Ωo)0 ×

C0(∂Ωi) × C0(∂Ωi)0 × R2 to C0(∂Ωo) × (C0(∂Ωi))2 and, accordingly, TA is

continuous and maps bounded sets into sets of compact closure.

In the sequel we will assume the following growth condition on the pair of

function F1 and F2 with respect to the matrix function A defined as in (4.14):

•There exist two constants CF ∈]0,+∞[ and δ ∈]0, 1[ such that∣∣∣∣∣∣∣
F1(x, ζ1, ζ2)

F2(x, ζ1, ζ2)

− A(x)

ζ1

ζ2


∣∣∣∣∣∣∣ ≤ CF (1 + |ζ1|+ |ζ2|)δ

for all (x, ζ1, ζ2) ∈ ∂Ωi × R2.

(4.23)

Then, by Leray Schauder Theorem (cf. Theorem A.3.1 in Appendix A.3), we

can prove the following existence result in C0(∂Ωo)0×C0(∂Ωi)×C0(∂Ωi)0×R2

for the nonlinear system (4.21). We notice that this result implies also

existence of solution for the limiting system (4.20).

Proposition 4.3.3. Let A be as in (4.14). Let F1, F2 satisfy assumption

(4.23). Let JA be as in Proposition 4.1.3. Then the nonlinear system (4.21) has
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at least a solution (µo0, µi0, ηi0, ρo0, ρi0) ∈ C0(∂Ωo)0 × C0(∂Ωi)× C0(∂Ωi)0 × R2.

Proof. We plan to apply the Leray-Schauder Theorem to the operator TA
defined by (4.22) in the Banach space C0(∂Ωo)0 × C0(∂Ωi)× C0(∂Ωi)0 × R2.

By Proposition 4.3.2 we already know that TA is a continuous operator from

C0(∂Ωo)0 × C0(∂Ωi) × C0(∂Ωi)0 × R2 to C0(∂Ωo) × (C0(∂Ωi))2 and maps

bounded sets into sets of compact closure. So in order to apply Leray-Schuder

Theorem, we are left to show that if λ ∈ [0, 1] and if

(µo, µi, ηi, ρo, ρi) = λTA(µo, µi, ηi, ρo, ρi) (4.24)

with (µo, µi, ηi, ρo, ρi) ∈ C0(∂Ωo)0×C0(∂Ωi)×C0(∂Ωi)0×R2, then there exists

a constant C ∈]0,+∞[ (which does not depend on λ and (µo, µi, ηi, ρo, ρi)),

such that

‖(µo, µi, ηi, ρo, ρi)‖C0(∂Ωo)×(C0(∂Ωi))2×R2 ≤ C. (4.25)

By (4.24) and since |λ| ≤ 1, we deduce that

‖(µo, µi, ηi, ρo, ρi)‖C0(∂Ωo)×(C0(∂Ωi))2×R2

≤‖TA(µo, µi, ηi, ρo, ρi)‖C0(∂Ωo)×(C0(∂Ωi))2

(4.26)

By the growth condition (4.23), one can show that

∥∥∥∥∥∥∥
NF1(hi1, hi2)

NF2(hi1, hi2)

− A
hi1
hi2


∥∥∥∥∥∥∥

(C0(∂Ωi))2

≤ CF (1 + ‖hi1‖C0(∂Ωi) + ‖hi2‖C0(∂Ωi))δ

(4.27)

for all pair of functions (hi1, hi2) ∈ (C0(∂Ωi))2. Hence, by (4.26) and by

the definition of TA in (4.22), we deduce that there exist two constants

C1, C2 ∈]0,+∞[, which depend only on the operator norm of J (−1)
A from

C0(∂Ωo)× (C0(∂Ωi))2 to C0(∂Ωo)0 ×C0(∂Ωi)×C0(∂Ωi)0 ×R2 (cf. Theorem
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4.1.3 (ii)), on ‖f o‖∂Ωo , on the constant CF ∈]0,+∞[ provided by the growth

condition (4.23) (cf. (4.27)), on the norm of the bounded linear operator

v+
Ωo [·]|∂Ωi from C0(∂Ωo) to C0(∂Ωi), and on the norm of the bounded linear

operator V∂Ωi from C0(∂Ωi) into itself, such that

‖(µo, µi, ηi, ρo, ρi)‖C0(∂Ωo)×(C0(∂Ωi))2×R2

≤ C1(C2 + ‖(µo, µi, ηi, ρo, ρi)‖C0(∂Ωo)×(C0(∂Ωi))2×R2)δ.

(4.28)

Then by a straightforward calculation, one shows that (4.28) implies the

validity of inequality (4.25) with

C = max{1, C1(C2 + 1)
1

1−δ }.

Hence, by the Leray-Schauder Theorem there exists at least one solution

(µo0, µi0, ηi0, ρo0, ρi0) ∈ C0(∂Ωo)0 × C0(∂Ωi)× C0(∂Ωi)0 × R2 of the equation

(µo, µi, ηi, ρo, ρi) = TA(µo, µi, ηi, ρo, ρi),

i.e. a solution in C0(∂Ωo)0×C0(∂Ωi)×C0(∂Ωi)0×R2 of the nonlinear system

(4.21).

In the sequel we will exploit a continuity condition on the superposition

operators generated by F1 and F2, namely

•The superposition operators NF1 and NF2

are continuous from (C0,α(∂Ωi))2 into C0,α(∂Ωi).
(4.29)

For conditions on F1 and F2 which imply the validity of assumption 4.34,

we refer to Valent [76, Chap. II]. Then we can prove a regularity result for
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the fixed point provided by Proposition 4.3.3, and, in particular, an existence

result for problem (4.3).

Proposition 4.3.4. Let A be as in (4.14). Let assumptions (4.23) and (4.29)

hold. Then the nonlinear system (4.21) is equivalent to the limiting system

4.20 and has at least a solution

(µo0, µi0, ηi0, ρo0, ρi0) ∈ C0,α(∂Ωo)0 × C0,α(∂Ωi)× C0,α(∂Ωi)0 × R2.

In particular, problem (4.3) has at least a solution (uo0, ui0) ∈ C1,α(Ωo \ Ωi)×

C1,α(Ωi) given by

(uo0, ui0) ≡ (U o
Ωi [µo0, µi0, ηi0, ρo0, ρi0], U i

Ωi [µo0, µi0, ηi0, ρo0, ρi0]) (4.30)

where (U o
Ωi [·, ·, ·, ·, ·], U i

Ωi [·, ·, ·, ·, ·]) are defined by (4.7).

Proof. Let TA be as in (4.22). By Proposition 4.3.3, there exists

(µo0, µi0, ηi0, ρo0, ρi0) ∈ C0(∂Ωo)0 × C0(∂Ωi)× C0(∂Ωi)0 × R2

such that

(µo0, µi0, ηi0, ρo0, ρi0) = TA(µo0, µi0, ηi0, ρo0, ρi0).

By the mapping properties of integral operators with real analytic kernel

and no singularities (cf. Theorem A.2.1 (ii) in the Appendix)), v+
Ωo [µo0]|∂Ωi

belongs to C0,α(∂Ωi). By classical results in potential theory (cf. Miranda

[57, Chap. II, §14, III]), V∂Ωi [µi0] and V∂Ωi [ηi0] belong to C0,α(∂Ωi). Then, by

condition (4.29) and by the membership of A ∈ M2(C0,α(∂Ωi)), we obtain
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that


f o

NF1(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)

NF2(v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo, V∂Ωi [ηi] + ρi)



−


0 0 0

0 A11 A12

0 A21 A22




0

v+
Ωo [µo]|∂Ωi + V∂Ωi [µi] + ρo

V∂Ωi [ηi] + ρi)


belongs to the product space C0,α(∂Ωo) × (C0,α(∂Ωi))2. Finally, by the

invertibility of the operator JA from C0,α(∂Ωo)0×C0,α(∂Ωi)×C0,α(∂Ωi)0×R2

to C0,α(∂Ωo)× (C0,α(∂Ωi))2, we obtain that (µo0, µi0, ηi0, ρo0, ρi0) ∈ C0,α(∂Ωo)0×

C0,α(∂Ωi) × C0,α(∂Ωi)0 × R2 and that (4.21) is equivalent to the limiting

system (4.20). In particular, by Proposition 4.3.1 we deduce that the pair of

functions given by (4.30) is a solution of problem (4.3) (cf. the definition of

TA in (4.22)).

4.4 Application of the Implicit Function The-

orem

In view of Proposition 4.2.1 and the equivalence of problem (4.6) with the inte-
gral equations (4.19), we introduce the auxiliary mapM = (M1,M2,M3) from
AΩo
∂Ωi×C0,α(∂Ωo)0×C0,α(∂Ωi)×C0,α(∂Ωi)0×R2 to C0,α(∂Ωo)× (C0,α(∂Ωi))2
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defined by

M1[φ, µo, µi, ηi, ρo, ρi](x) ≡
(
−1

2I +W ∗∂Ωo

)
[µo](x)

+ νΩo(x) · ∇v−I[φ][µ
i ◦ φ(−1)](x)− fo(x) ∀x ∈ ∂Ωo,

M2[φ, µo, µi, ηi, ρo, ρi](t)

≡
(1

2I +W ∗∂I[φ]

)
[µi ◦ φ(−1)](φ(t)) + νI[φ](φ(t)) · ∇v+

Ωo [µ
o](φ(t))

− F1
(
t, v+

Ωo [µ
o](φ(t)) + V∂I[φ][µi ◦ φ(−1)](φ(t)) + ρo, V∂I[φ][ηi ◦ φ(−1)](φ(t)) + ρi

)
∀t ∈ ∂Ωi,

M3[φ, µo, µi, ηi, ρo, ρi](t) ≡
(
−1

2I +W ∗∂I[φ]

)
[ηi ◦ φ(−1)](φ(t))

− F2
(
t, v+

Ωo [µ
o](φ(t)) + V∂I[φ][µi ◦ φ(−1)](φ(t)) + ρo, V∂I[φ][ηi ◦ φ(−1)](φ(t)) + ρi

)
∀t ∈ ∂Ωi,

(4.31)

for all (φ, µo, µi, ηi, ρo, ρi) ∈ AΩo
∂Ωi×C0,α(∂Ωo)0×C0,α(∂Ωi)×C0,α(∂Ωi)0×R2.

Then, by the definition of M , we can deduce the following result.

Proposition 4.4.1. Let A be as in (4.14). Let assumptions (4.23) and (4.29)

hold. Let

(φ, µo, µi, ηi, ρo, ρi) ∈ AΩo
∂Ωi × C0,α(∂Ωo)0 × C0,α(∂Ωi)× C0,α(∂Ωi)0 × R2.

Then the pair of functions

(U o
I[φ][µo, µi ◦ φ(−1), ηi ◦ φ(−1), ρo, ρi], U i

I[φ][µo, µi ◦ φ(−1), ηi ◦ φ(−1), ρo, ρi]),

where (U o
I[φ][·, ·, ·, ·, ·], U i

I[φ][·, ·, ·, ·, ·]) are defined by (4.7), is a solution of prob-

lem (4.6) if and only if

M [φ, µo, µi, ηi, ρo, ρi] = (0, 0, 0). (4.32)
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In particular,

M [φ0, µ
o, µi, ηi, ρo, ρi] = (0, 0, 0) (4.33)

is equivalent to the limiting system (4.20) and has a solution (µo0, µi0, ηi0, ρo0, ρi0) ∈

C0,α(∂Ωo)0 × C0,α(∂Ωi)× C0,α(∂Ωi)0 × R2.

Proof. The statement follows by Proposition 4.2.1 and by the definition of M

(cf. (4.19) and (4.31)). Finally by the definition of φ0 (cf. (4.5)) , we obtain

that, for all (µo, µi, ηi, ρo, ρi) ∈ C0,α(∂Ωo)0 × C0,α(∂Ωi) × C0,α(∂Ωi)0 × R2,

equation (4.33) is equivalent to (4.20) and the existence of (µo0, µi0, ηi0, ρo0, ρi0) ∈

C0,α(∂Ωo)0×C0,α(∂Ωi)×C0,α(∂Ωi)0×R2 solution of (4.33) follows by Propo-

sition 4.3.3.

By Proposition 4.4.1, the study of problem (4.6) is reduced to that of

equation (4.32). We now wish to apply the Implicit Function Theorem (cf.

Theorem A.1.2 in Appendix A.1) to equation (4.32) around the limiting value

φ0. As a first step we have to analyse the regularity of the mapM . In order to

do that, we will need the following straightforward variant of a result proven

by Lanza De Cristoforis and Rossi [53, Lemma 3.3].

Lemma 4.4.2. Let φ ∈ AΩo
∂Ωi. Then there exists a unique element σ̃n[φ] ∈

C0,α(∂Ωi) such that

∫
φ(∂Ωi)

f(y) dσy =
∫
∂Ωi

f(φ(s)) σ̃n[φ](s) dσs ∀f ∈ L1(φ(∂Ωi))

Moreover the map from A∂Ωi to C0,α(∂Ωi) which takes φ to σ̃n[φ] and the map

from A∂Ωi to C0,α(∂Ωi) which takes φ to (νI[φ] ◦ φ) σ̃n[φ] are real analytic.
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In the sequel we will exploit the following:

•The superposition operators NF1 and NF2

are real analytic from (C0,α(∂Ωi))2 into C0,α(∂Ωi).
(4.34)

For conditions on F1 and F2 which imply the validity of assumption (4.34),

we refer to Valent [76, Chap. II]. We now show that M is real analytic.

Proposition 4.4.3. Let assumption (4.34) holds. Then the map M is real

analytic from AΩo
∂Ωi×C0,α(∂Ωo)0×C0,α(∂Ωi)×C0,α(∂Ωi)0×R2 to C0,α(∂Ωo)×

(C0,α(∂Ωi))2.

Proof. We analyse separately M1, M2 and M3. The map from C0,α(∂Ωo) into

itself which takes µo to
(
−1

2I +W ∗
∂Ωo
)

[µo] is linear and continuous, so real

analytic. The map from AΩo
∂Ωi × C0,α(∂Ωi) to C0,α(∂Ωo) which takes (φ, µi)

to the function of the variable x defined by

νΩo · ∇v−I[φ][µ
i ◦ φ(−1)](x) = νΩo · ∇

(∫
∂Ωi

Sn(x− φ(t))µi(t) σ̃n[φ](t) dσt
)

=
(∫

∂Ωi
(νΩo · ∇Sn(x− φ(t)))µi(t) σ̃n[φ](t) dσt

)

can be proven to be real analytic by observing that if φ ∈ AΩo
∂Ωi then x−φ(t) 6=

0 for all (x, t) ∈ ∂Ωo × ∂Ωi and by the properties of integral operators with

real analytic kernels and no singularities (see Theorem A.2.1 (ii) in Appendix

A.2). Finally f o does not depend on (φ, µo, µi, ηi, ρo, ρi).

We now analyse M2. The map from AΩo
∂Ωi ×C0,α(∂Ωi) to C0,α(∂Ωi) which

takes (φ, µi) to the function of the variable t defined by

(1
2I +W ∗

∂I[φ]

)
[µi ◦ φ(−1)](φ(t)) = 1

2µ
i +W ∗

∂I[φ][µi ◦ φ(−1)](φ(t))

= 1
2µ

i +
∫
∂Ωi

(νI[φ](φ(t))) · ∇Sn(φ(t)− φ(s)))µi(s) σ̃n[φ](s) dσs
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is real analytic by a real analyticity result of dependence of single and double

layer potentials upon perturbation of the support and of the density (see

Lanza de Cristoforis and Rossi [53, Thm. 3.12] and Lanza de Cristoforis [48,

Prop. 7]). The map from AΩo
∂Ωi × C0,α(∂Ωo) to C0,α(∂Ωi) which takes (φ, µo)

to the function of the variable t defined by

νI[φ](φ(t)) · ∇v+
Ωo [µo](φ(t)) =

∫
∂Ωo

(νI[φ](φ(t)) · ∇Sn(φ(t)− y))µo(y) dσy

can be proven to be real analytic by observing that if φ ∈ AΩo
∂Ωi then φ(t)−y 6=

0 for all (y, t) ∈ ∂Ωo × ∂Ωi and by the properties of integral operators with

real analytic kernels and no singularities (see Theorem A.2.1 (ii) in Appendix

A.2). For the third term of M2 we proceed in this way. The map from

AΩo
∂Ωi × C0,α(∂Ωo) to C0,α(∂Ωi) which takes (φ, µo) to the function of the

variable t defined by

v+
Ωo [µo](φ(t)) =

∫
∂Ωo

Sn(φ(t)− y)µo(y) dσy

can be proven to be real analytic by observing that if φ ∈ AΩo
∂Ωi then φ(t)−y 6=

0 for all (y, t) ∈ ∂Ωo × ∂Ωi and by the properties of integral operators with

real analytic kernels and no singularities (see Theorem A.2.1 (ii) in Appendix

A.2). The map from AΩo
∂Ωi × C0,α(∂Ωi) to C0,α(∂Ωi) which takes (φ, µo) to

the function of the variable t defined by

V∂I[φ][µi ◦ φ(−1)](φ(t)) =
∫
φ(∂Ωi)

Sn(φ(t)− y)µi ◦ φ(−1)(y) dσy

is real analytic by a result of real analytic dependence of single and double
layer potentials upon perturbation of the support and of the density (see Lanza
de Cristoforis and Rossi [53, Thm. 3.12] and Lanza de Cristoforis [48, Prop. 7]).



136 Existence result for the nonlinear transmission problem (3)

Similarly one can treat the term V∂I[φ][ηi ◦ φ(−1)](φ(·)). Hence, by the real
analyticity of the composition of real analytic maps and by assumption (4.29),
we conclude that the map fromAΩo

∂Ωi×C0,α(∂Ωo)0×C0,α(∂Ωi)×C0,α(∂Ωi)0×R2

to C0,α(∂Ωi) which takes a quintuple (φ, µo, µi, ηi, ρo, ρi) to the function

NF1

(
v+

Ωo [µ
o](φ(·))|∂Ωi + V∂I[φ][µi ◦ φ(−1)](φ(·)) + ρo, V∂I[φ][ηi ◦ φ(−1)](φ(·)) + ρi

)

is real analytic.

Finally, we observe that M3 can be treated in a similar way to M2. The

proof is complete.

In the sequel it will be convenient to consider F1 and F2 as two components

of a vector field on ∂Ωi × R× R. Namely, we denote by F the function from

∂Ωi × R× R to R2 defined by

F (t, ζ1, ζ2) = (F1(t, ζ1, ζ2), F2(t, ζ1, ζ2)) ∀(t, ζ1, ζ2) ∈ ∂Ωi × R2. (4.35)

Clearly, we can extend the definition of the superposition operator in a natural

way, i.e. by setting

NF : (C0,α(∂Ωi))2 → (C0,α(∂Ωi))2, NF ≡ (NF1 ,NF2). (4.36)

Now let (µo0, µi0, ηi0, ρo0, ρi0) ∈ C0(∂Ωo)0 × C0(∂Ωi) × C0(∂Ωi)0 × R2 be as in

Proposition 4.3.3. By standard calculus in Banach space, we have the following

formula regarding the first order differential of NF :

dNF (v+
Ωo [µo0]|∂Ωi + V∂Ωi [µi0] + ρo0, V∂Ωi [ηi0] + ρi0).(h1, h2) = ANF ,0

h1

h2
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for all (h1, h2) ∈ (C0,α(∂Ωi))2 where

ANF ,0 ≡

N∂ζ1F1(α1
0, α

2
0) N∂ζ2F1(α1

0, α
2
0)

N∂ζ1F2(α1
0, α

2
0) N∂ζ2F2(α1

0, α
2
0)

 (4.37)

and α1
0 and α2

0 are functions from ∂Ωi to R defined by

α1
0 ≡ v+

Ωo [µo0]|∂Ωi + V∂Ωi [µi0] + ρo0,

α2
0 ≡ V∂Ωi [ηi0] + ρi0.

Then, we will require the following assumption:

•The matrix ANF ,0 given by (4.37) associated to the linear form

dNF (v+
Ωo [µo0]|∂Ωi + V∂Ωi [µi0] + ρo0, V∂Ωi [ηi0] + ρi0) satisfies assumption (4.14).

(4.38)

In particular, we notice that assumption (4.34) implies the validity of the

first of the three conditions of (4.14) for the matrix ANF ,0.

In order to apply the Implicit Function Theorem (cf. Theorem A.1.2 in

Appendix A.1) to equation (4.32) we need to prove the invertibility of the

partial differential of M . We do so, in the following proposition.

Proposition 4.4.4. Let A be as in (4.14). Let assumptions (4.23), (4.34) and

(4.38) hold. Then the partial differential of M with respect to (µo, µi, ηi, ρo, ρi)

evaluated at the point (φ0, µ
o
0, µ

i
0, η

i
0, ρ

o
0, ρ

i
0), which we denote by

∂(µo,µi,ηi,ρo,ρi)M [φ0, µ
o
0, µ

i
0, η

i
0, ρ

o
0, ρ

i
0], (4.39)

is an isomorphism from C0,α(∂Ωo)0×C0,α(∂Ωi)×C0,α(∂Ωi)0×R2 to C0,α(∂Ωo)×

(C0,α(∂Ωi))2.
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Proof. By standard calculus in Banach spaces, one verifies that the partial

differential (4.39) is the linear and continuous operator delivered by

∂(µo,µi,ηi,ρo,ρi)M1[φ0, µ
o
0, µ

i
0, η

i
0, ρ

o
0, ρ

i
0].(µ̃o, µ̃i, η̃i, ρ̃o, ρ̃i)(x)

=
(
−1

2I +W ∗
Ωo

)
[µ̃o](x) + νΩo · ∇v−Ωi [µ̃

i](x) ∀x ∈ ∂Ωo,

∂(µo,µi,ηi,ρo,ρi)M2[φ0, µ
o
0, µ

i
0, η

i
0, ρ

o
0, ρ

i
0].(µ̃o, µ̃i, η̃i, ρ̃o, ρ̃i)(t)

=
(1

2I +W ∗
Ωi

)
[µ̃i](t) + νΩi · ∇v+

Ωo [µo](t)

− ∂ζ1F1
(
t, v+

Ωo [µo0](t) + VΩi [µi0](t) + ρo0, VΩi [ηi0](t) + ρi0
)

×
(
v+

Ωo [µ̃o](t) + VΩi [µ̃i](t) + ρ̃o
)

− ∂ζ2F1
(
t, v+

Ωo [µo0](t) + VΩi [µi0](t) + ρo0, VΩi [ηi0](t) + ρi0
)

×
(
VΩi [η̃i](t) + ρ̃i

)
∀t ∈ ∂Ωi,

∂(µo,µi,ηi,ρo,ρi)M3[φ0, µ
o
0, µ

i
0, η

i
0, ρ

o
0, ρ

i
0].(µ̃o, µ̃i, η̃i, ρ̃o, ρ̃i)(t)

=
(
−1

2I +W ∗
Ωi

)
[η̃i](t)

− ∂ζ1F2
(
t, v+

Ωo [µo0](t) + VΩi [µi0](t) + ρo0, VΩi [ηi0](t) + ρi0
)

×
(
v+

Ωo [µ̃o](t) + VΩi [µ̃i](t) + ρ̃o
)

− ∂ζ2F2
(
t, v+

Ωo [µo0](t) + VΩi [µi0](t) + ρo0, VΩi [ηi0](t) + ρi0
)

×
(
VΩi [η̃i](t) + ρ̃i

)
∀t ∈ ∂Ωi,

for all (µ̃o, µ̃i, η̃i, ρ̃o, ρ̃i) ∈ C0,α(∂Ωo)0 × C0,α(∂Ωi)× C0,α(∂Ωi)0 × R2. Then,

by Proposition 4.1.3 (cf. (4.17)) and by assumption (4.38), we conclude that

∂(µo,µi,ηi,ρo,ρi)M [φ0, µ
o
0, µ

i
0, η

i
0, ρ

o
0, ρ

i
0] is an isomorphism of Banach spaces.

Finally, by the Implicit Function Theorem (cf. Theorem A.1.2 in Appendix

A.1), we can prove a real analytic dependence result for the densities that

represent the solution of problem (4.6) upon the perturbation of the inner

domain Ωi given by the diffeomorphism φ.
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Theorem 4.4.5. Let A be as in (4.14). Let assumptions (4.23), (4.34) and

(4.38) hold. Let

(µo0, µi0, ηi0, ρo0, ρi0) ∈ C0(∂Ωo)0 × C0(∂Ωi)× C0(∂Ωi)0 × R2

be as in Proposition 4.3.3. Then, there exist two open neighborhoods Q0 of φ0

in AΩo
∂Ωi and U0 of (µo0, µi0, ηi0, ρo0, ρi0) in C0(∂Ωo)0×C0(∂Ωi)×C0(∂Ωi)0×R2,

and a real analytic map

(M o[·],M i[·], N i[·], Ro[·], Ri[·]) : Q0 → U0

such that the set of zeros of M in Q0×U0 coincided with graph of the function

(M o[·],M i[·], N i[·], Ro[·], Ri[·]). In particular we have

(M o[φ0],M i[φ0], N i[φ0], Ro[φ0], Ri[φ0]) = (µo0, µi0, ηi0, ρo0, ρi0). (4.40)

Proof. It follows by Proposition 4.4.4, by Proposition 4.4.3 and by the Implicit

Function Theorem for real analytic functions. The validity of (4.40) is a

consequence of Propositions 4.3.4 and 4.4.1.

4.5 Real analytic representation of the family

of solutions

We are now ready to exhibit a family of solutions of problem (4.6) and to

show its dependence upon the perturbation parameter φ. We begin with the

following definition.

Definition 4.5.1. Let Q0 and (M o[·],M i[·], N i[·], Ro[·], Ri[·]) be as in Theo-



140 Existence result for the nonlinear transmission problem (3)

rem 4.4.5. Then, for each φ ∈ Q0 we set

uoφ(x) = UoI[φ][M
o[φ],M i[φ] ◦ φ(−1), N i[φ] ◦ φ(−1), Ro[φ], Ri[φ]](x) ∀x ∈ Ωo \ I[φ],

uiφ(x) = U iI[φ][M
o[φ],M i[φ] ◦ φ(−1), N i[φ] ◦ φ(−1), Ro[φ], Ri[φ]](x) ∀x ∈ I[φ],

where (U o
I[φ][·, ·, ·, ·, ·], U i

I[φ][·, ·, ·, ·, ·]) are defined by (4.7).

By Proposition 4.4.1, Theorem 4.4.5 and Definition 4.5.1 we deduce

that the pair (uoφ, uiφ) is a solution of problem (4.6) for all φ ∈ Q0 and by

Proposition 4.3.4 we deduce that the pair (uoφ0 , u
i
φ0) is a solution of problem

(4.3) . Namely, the following holds.

Theorem 4.5.2. Let A be as in (4.14). Let assumptions (4.23), (4.34) and

(4.38) hold. Let Q0 be as in Theorem 4.4.5 and let (uoφ, uiφ) be as in Definition

4.5.1. Then, for all φ ∈ Q0

(uoφ, uiφ) ∈ C1,α(Ωo \ I[φ])× C1,α(I[φ])

is a solution of problem (4.6). In particular

(uoφ0 , u
i
φ0) = (uo0, ui0)

is a solution of problem (4.3).

We are now ready to prove our main result of this chapter, where we show

that suitable restrictions of the functions uoφ and uiφ depend real analytically

on the parameter φ which determines the domain perturbation.

Theorem 4.5.3. Let A be as in (4.14). Let assumptions (4.23), (4.34) and

(4.38) hold. Let Q0 be as in Theorem 4.4.5. The following statements hold.

(i) Let Ωint be a bounded open subset of Ωo. Let Qint ⊆ Q0 be an open
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neighborhood of φ0 such that

Ωint ⊆ I[φ] ∀φ ∈ Qint.

Then there exists a real analytic map U i
int from Qint to C1,α(Ωint) such

that

uiφ(x) = U i
int[φ](x) ∀x ∈ Ωint.

(ii) Let Ωext be a bounded open subset of Ωo. Let Qext ⊆ Q0 be an open

neighborhood of φ0 such that

Ωext ⊆ Ωo \ I[φ] ∀φ ∈ Qext.

Then there exists a real analytic map U o
ext from Qext to C1,α(Ωext) such

that

uoφ(x) = U o
ext[φ](x) ∀x ∈ Ωext.

Proof. We first prove (i). By Definition 4.5.1 and by (4.7), we have

uiφ(x) = U i
I[φ][M o[φ],M i[φ] ◦ φ(−1), N i[φ] ◦ φ(−1), Ro[φ], Ri[φ]](x)

= v+
I[φ][N

i[φ] ◦ φ(−1)](x) +Ri[φ]

=
∫
φ(∂Ωi)

Sn(x− y)
(
N i[φ] ◦ φ(−1)

)
(y) dσy +Ri[φ]

=
∫
∂Ωi

Sn(x− φ(s))N i[φ](s) σ̃n[φ](s) dσs +Ri[φ] ∀x ∈ I[φ]

for all φ ∈ Q0. Then it is natural to define

U i
int[φ](·) ≡

∫
∂Ωi

Sn(· − φ(s))N i[φ](s) σ̃n[φ](s) dσs +Ri[φ] ∀φ ∈ Qint.

By assumption Qint ⊆ Q0 and Theorem 4.4.5, we know that the map from
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Qint to R which takes φ to Ri[φ] is real analytic. Moreover, by the real

analyticity of N i[·] (cf. Theorem 4.4.5) and by the properties of integral

operators with real analytic kernels and no singularities (cf. Theorem A.2.1

(i) in Appendix A.2), one can prove that the map from Qint to C1,α(Ωint)

which takes φ to the function

∫
∂Ωi

Sn(· − φ(s))N i[φ](s) σ̃n[φ](s) dσs

is real analytic. Hence, one deduces the validity of (i).

We now prove (ii). By Definition 4.5.1 and by (4.7), we have

uoφ(x) = U o
I[φ][M o[φ],M i[φ] ◦ φ(−1), N i[φ] ◦ φ(−1), Ro[φ], Ri[φ]](x)

= v+
Ωo [M o[φ]](x) + v−I[φ][M

i[φ] ◦ φ(−1)](x) +Ro[φ]

= v+
Ωo [M o[φ]](x) +

∫
φ(∂Ωi)

Sn(x− y)
(
M i[φ] ◦ φ(−1)

)
(y) dσy +Ro[φ]

= v+
Ωo [M o[φ]](x) +

∫
∂Ωi

Sn(x− φ(s))M i[φ](s) σ̃n[φ](s) dσs +Ro[φ]

for all x ∈ Ωo \ I[φ] and for all φ ∈ Q0. Then it is natural to define

U o
ext[φ](·) ≡ v+

Ωo [M o[φ]](·) +
∫
∂Ωi

Sn(· − φ(s))M i[φ](s) σ̃n[φ](s) dσs +Ro[φ]

for all φ ∈ Qext. Since M o[·] is real analytic (cf. Theorem 4.4.5), since v+
Ωo [·]

is linear and continuous from C0,α(∂Ωo) to C1,α(Ωo) (cf. Theorem 1.3.3 (ii)),

and since the restriction operator from C1,α(Ωo) to C1,α(Ωext) is linear and

continuous (cf. hypothesis Ωext ⊆ Ωo \ I[φ] for all φ ∈ Qext), then the map

from Qext to C1,α(Ωext) which takes φ to v+
Ωo [M o[φ]]|Ωext

is real analytic. By

the assumption Qext ⊆ Q0 and by Theorem 4.4.5, we know that the map

from Qext to R which takes φ to Ri[φ] is real analytic. Finally, by the real

analyticity of M i[·] (cf. Theorem 4.4.5) and by the properties of integral
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operators with real analytic kernels and no singularities (cf. Theorem A.2.1

(i) in Appendix A.2), one can prove that the map from Qext to C1,α(Ωext)

which takes φ to the function

∫
∂Ωi

Sn(· − φ(s))M i[φ](s) σ̃n[φ](s) dσs

is real analytic. Hence, one deduces the validity of (ii).
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APPENDIX A

Implicit Function Theorem, integral

operators with real analytic kernels

and Leray Schauder Theorem

A.1 Real Analytic maps in Banach spaces and

the Implicit Function Theorem

In this section we recall the definition of real analytic map acting between

Banach spaces. Moreover we present the classical Implicit Function Theorem,

in the framework of real analytic maps between Banach spaces.

We will denote by X ′ the space of continuous linear functionals from

X to R, namely X ′ = L(X,R). Moreover, if N ∈ N \ {0}, X1, . . . ,

XN are Banach spaces, and i1, . . . , iN are positive natural numbers, then

Li1,...,iN (X1, . . . , XN ;X) will denote the space of continuous multilinear maps

145
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from X i1
1 × · · · ×X iN

N to X endowed with the norm

‖a‖Li1,...,iN (X1,...,XN ;X) = sup
Q
‖a[x1,1, . . . , x1,i1 , . . . , xN,1, . . . , xN,iN ]‖X

where

Q = {(x1,1, . . . , x1,i1 , . . . , xN,1, . . . , xN,iN ) ∈ X i1
1 × · · · ×X

iN
N :

‖x1,1‖X1 ≤ 1, . . . , ‖xi,i1‖X1 ≤ 1, . . . , ‖xN,1‖XN ≤ 1, . . . , ‖xN,iN‖XN ≤ 1}.

Finally, to shorten our notation, we set

[x(i1)
1 , . . . , x

(iN )
N ] = [x1, . . . , x1︸ ︷︷ ︸

i1−times

, . . . , xN , . . . , xN︸ ︷︷ ︸
iN−times

] . (A.1)

We now recall the definition of real analytic maps from a Banach space

X to a Banach space Y (see, for example, Deimling [31]).

Definition A.1.1. Let X, Y be real Banach spaces. Let U be an open subset

of X. We say that a function f from U to Y is real analytic if for every

x ∈ U there are ρ,M ∈]0,+∞[ and multilinear maps aj(x) ∈ Lj(X, Y ), with

j ∈ N, such that

‖aj(x)‖Lj(X,Y ) ≤M

(
1
ρ

)j
∀j ∈ N

and

f(y) =
+∞∑
j=0

aj(x)[(y − x)j] ∀y ∈ BX(x, ρ).

Then we have the following well known result for real analytic functions

in Banach spaces: the Implicit Function Theorem. For a proof, see Deimling

[31, Thm. 15.3].
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Theorem A.1.2 (Implicit Function Theorem). Let X, Y, Z be real Banach

spaces. Let W be an open subset of X × Y and (x0, y0) ∈ W . Let F from

W to Z be a real analytic function and F (x0, y0) = 0. Let the differential

∂yF (x0, y0) of the map F (x0, ·) at y = y0 be a homeomorphisms of Y onto Z.

Then there exists an open neighborhood U of x0 in X and an open neighborhood

V of y0 in Y such that U × V ⊂ W and an real analytic map φ of U to V

such that the zeros set of F in U × V coincides with the graph of φ in U ,

namely

{(x, y) ∈ U × V : F (x, y) = 0} = {(x, φ(x)) : x ∈ U}.

A.2 Integral operators with real analytic ker-

nel and no singularities

In this section we recall some results on integral operators with real analytic

kernel and no singularities. The proof of the first result, which implies all the

others theorems presented in this section, can be found in Lanza de Cristoforis

and Musolino [51, Prop. 4.1].

Theorem A.2.1. Let h1, h2 ∈ N \ {0}. Let m ∈ N, α ∈]0, 1]. Let Y be a

topological space. LetM be a σ-algebra of Y containing the Borel sets of Y .

Let µ be a measure onM. Let Z be a Banach space. Let W be a non-empty

open subset of Rh1 × Rh2 × Z. Let G be a real analytic map from W to R.

Then the following statements holds.

(i) Let n ∈ N \ {0}. Let Ω1 be a bounded open connected subset of Rn. Let

Ω1 be regular in the sense of Whitney. Let

F̃ ≡
{

(ψ, φ, z) ∈ Cm,α(Ω1,Rh1)× C0
b (Y,Rh2)× Z :

ψ(Ω1)× φ(Y )× {z} ⊆ W
}
.
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Then the map H̃G from F̃ × L1(Y ) to Cm,α(Ω1) defined by

H̃G[ψ, φ, z, f ](t) ≡
∫
Y
G(ψ(t), φ(y), z)f(y) dσy ∀t ∈ Ω1,

for all (ψ, φ, z, f) ∈ F̃ × L1(Y ), is real analytic.

(ii) Let n ∈ N \ {0, 1}. Let Ω1 be a bounded open connected subset of Rn of

class Cmax{1,m},α. Let

F# ≡
{

(ψ, φ, z) ∈ Cm,α(∂Ω1,Rh1)× C0
b (Y,Rh2)× Z :

ψ(∂Ω1)× φ(Y )× {z} ⊆ W
}
.

Then the map H#
G from F# × L1(Y ) to Cm,α(∂Ω1) defined by

H#
G [ψ, φ, z, f ](t) ≡

∫
Y
G(ψ(t), φ(y), z)f(y) dσy ∀t ∈ ∂Ω1,

for all (ψ, φ, z, f) ∈ F# × L1(Y ), is real analytic.

Then, from the previous Theorem one can deduce the following results

widely used in our work.

Theorem A.2.2. Let n ∈ N \ {0}, α ∈]0, 1[. Let Ω,Ω1 be bounded open

connected subset of Rn of class C1,α.

(i) Let W be an open subset of Rn. Let J1, J2 be open intervals of R such

that {
ε1x− ε2y : ε1 ∈ J1, ε2 ∈ J2, x ∈ Ω1, y ∈ ∂Ω

}
⊆ W.

If G is an analytic function from W to R and m ∈ N, then the map

from J1×J2×L1(∂Ω) to Cm,α(Ω1) which takes (ε1, ε2, θ) to the function

∫
∂Ω
G(ε1x− ε2y)θ(y) dσy ∀x ∈ Ω1,
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is real analytic.

(ii) Let W be an open subset of Rn. Let J1, J2 be open intervals of R such

that

{ε1x− ε2y : ε1 ∈ J1, ε2 ∈ J2, x ∈ ∂Ω1, y ∈ ∂Ω} ⊆ W.

If G is an analytic function from W to R, then the map from J1× J2×

L1(∂Ω) to C1,α(∂Ω1) which takes (ε1, ε2, θ) to the function

∫
∂Ω
G(ε1x− ε2y)θ(y) dσy ∀x ∈ ∂Ω1,

is real analytic.

(iii) Let h1 ∈ N\{0}. Let m ∈ {0, 1}. LetW be an open subset of Rh1×R×R.

Let G be an analytic function from W to R. Then the map from the set

A ≡
{

(ψ, ε) ∈ Cm,α(∂Ω1,Rh1)× R : ψ(∂Ω1)× [0, 1]× {ε} ⊆ W
}

to Cm,α(∂Ω1) which takes (ψ, ε) to the function

∫ 1

0
G(ψ(x), β, ε) dβ ∀x ∈ ∂Ω1,

is real analytic.

A.3 Leray-Schauder Theorem

In this section we recall a well known fixed point theorem which follows by the

invariance of the Leray-Schauder topological degree. For a proof see Gilbarg

and Trudinger [35, Thm. 11.3].



150 Appendix

Theorem A.3.1 (Leray-Schauder Theorem). Let X be a Banach space. Let

T be a continuous (nonlinear) operator from X to itself which maps bounded

sets to sets with a compact closure. If there exists a constant M ∈]0,+∞[

such that

‖x‖X ≤M for all (x, λ) ∈ X × [0, 1] satisfying x = λT (x),

then T has at least one fixed point x ∈ X such that

‖x‖X ≤M.
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