
Intelligent Analysis for Multi-Level
Data-Driven Prediction

Zhenpeng Li

Supervisor: Dr. Changjing Shang (Joint Primary)
Prof. Qiang Shen (Joint Primary)

Aberystwyth University

This dissertation is submitted for the degree of
Doctor of Philosophy

June 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326681677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PRIFYSGOL 

����r� 

Mandatory Layout of Declaration/Statements 

Word Count of thesis: 55916 
DECLARATION 

This work has not previously been accepted in substance for any degree and is not 
concurrently submitted in candidature for any deqree. 
Candidate name Zhenpeng Li 

Signature: 

Date �7/c/,/UJf; 

STATEMENT 1 

This thesis is the result of my own investigations, except where otherwise stated. Where 
*correction services have been used, the extent and nature of the correction is clearly marked
in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references. A bibliography is 
appended. 

I Signature: 

Date 

[*this refers to the extent to which the text has been corrected by others] 

STATEMENT 2 

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter­
library loan, and for the title and summary to be made available to outside organisations. I Signature: 

Date 

NB: Candidates on whose behalf a bar on access (hard copy) has been approved by the University 
should use the following version of Statement 2: 

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter­
library loans after expiry of a bar on access approved by Aberystwyth University. 

I Signature: 

Date 



Acknowledgements

I would like to express my sincere gratitude to my supervisors: Dr. Changjing Shang and
Prof. Qiang Shen, for their guidance and motivation.

I am extremely grateful to my family: My dear wife Linxin Li, my parents Xiangqian Li and
Xiaomin Liu, and my parents-in-law Guangxian Li and Xiaohong Li. The completion of
this Ph.D. work would not have been possible without their warm support and encouragement.

I would like to thank all my fellow researchers in the Advanced Reasoning Group, for the
stimulating discussions and helpful advice.

I would like to thank to Suresh Kumar and Asif Khan, for the warm inter-discipline discussion
and cross-cultural communication.

I would also like to express my deepest appreciation for the Department of Computer Science
and Springer Publishing, for their generous financial support.

Many thanks to all of the academic, administrative, technical staffs with the Department of
Computer Science, Aberystwyth University, for their kind assistance throughout my study.

My gratitudes also go to the anonymous reviewers, journal editors, conference organisers
with my submitted works, for their valuable input in refining my ideas.



Abstract

Prediction is one of the typical applications in the research fields of machine learning and
data mining. Traditional predictive analytics focuses on estimating class membership or
numeric value within a specific domain or region, which results in the development of
classification models and regression models. However, the restriction on isolated information
and the progress of computation technology jointly require the collection and connection
of fragmented data for further investigation. Predictive analytics is nowadays expected to
be extended its research area to seeking for relationships amongst separated data, which is
widely known as link prediction or link analysis.

In this thesis, a novel predicting system performing the tasks of instance based missing
information estimation, feature variable identification, and variable group pattern recognition
has been presented. Specifically, an advanced regression model embedded with both hard and
soft clustering techniques is novelly proposed to forecast missing feature values for objects of
interest. Also, a link based model creatively employing the concept of connected-triple, and
implemented with fuzzy logic, is invented to measure correlations between domain feature
variables from various information sources. The resulting link based model has been further
utilised as a foundation to construct an adaptative hierarchical knowledge base for describing
feature variables under consideration, facilitating both dynamic updating and immediate
query.

The adaptability and flexibility of the proposed work, together with its remarkable
initial performance in sample applications are illustrated by experimental evaluation via
datasets collected from both real-world domains and artificial production. The outcomes of
comparative studies demonstrate the efficacy of the present work and its great potential for
future use. Further suggestions on development and refinement of this research are provided
to stimulate inspiration on improving the current work.
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Chapter 1

Introduction

It is certain that we are living in a data explosion era, demonstrated by the reality that tremen-
dous volumes of information data have been being consistently generated at unprecedented
and ever increasing pace. Massive data are collected and investigated in various domains,
including commercial activities, engineering science, biomolecular research, social networks,
and security monitoring [1]. Nowadays, data are being generated at every moment, and
are collected and gathered at separate times, in diverse places, by different individuals or
organisations. Importantly, data can, and in reality does exist in various sources, including
mobile devices, public and private clouds, subscription-based services such as file sync and
share, and virtual machines, to name just a few.

Over the past two decades, as the amount of data grows, it is undoubted that they play an
increasingly significant role in different fields of daily life. It assists with decision making in
a variety of application fields tremendously [2, 3]. It helps reveal essential laws and patterns
of the objects existing in the world [4, 5]. It also provides evidence and experience for
designing and creating novel solutions to various real world problems [6–9]. However, with
the rapid growth of the available data, the success of managing and analysing the information
embedded in the data becomes ever more practically important, whilst becoming ever more
difficult in the meantime. Obviously, traditional manual knowledge discovery process is no
longer an optimal option since it is increasingly expensive in computing and time-consuming
[10]. Additionally, the conventional manner for data analysis relies significantly on the
opinions of domain experts, who should have a precise and considerable understanding
of the problem at hand. However, such opinions are often subjective [11] or inconsistent
between distinct individuals [12, 13], which may lead to opposition or controversy. More
importantly, data in its presenting format may involves a large quantities of instances and
descriptive features, which are impractical for human beings to perform manual analysis in
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Fig. 1.1 Process of knowledge discovery

most circumstances.

Hence, automatic extraction of knowledge from data based on machine learning, widely
regarded as knowledge discovery, has attracted great attention in recent years. It takes the
advantages of overcoming the above mentioned drawbacks while providing a new insight
for exploring and processing the data. Ideally, the resulting knowledge collected from such
advanced technique needs to be both human-understandable and machine-interpretable and
must represent knowledge in a manner that facilitates inferencing [14]. A general process for
knowledge discovery is shown in Fig. 1.1 [15]. Simultaneously, a new term, emerging with
the scenario of data deluge, named “data science”, has been proposed. Fundamentally, data
science is a cross-disciplinary field that uses scientific approaches, procedures, algorithms
and systems to obtain knowledge and insights from data in a wide variety of formats, either
structured or unstructured [16].
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1.1 Regression Analysis for Prediction

The emphasis on predictive analytics is particularly strong in machine learning and
knowledge discovery in databases. Predictive analytics encapsulate a large volumes of
statistical techniques applied on the historical and current facts to forecast future outcomes
or unknown events [17, 18]. Traditional predictive analytics focuses on estimating class
membership or numeric value within a specific domain or region, which results in two
different types of models: regression model and classification model. A general description
of regression model will be concluded in Section 1.1. Classification model is big topic
beyond the scope of this thesis. However, provided that no explicit information about class
labels available, which is often the case in the real world, an automatic approach to grouping
data under consideration into different categories is of great importance for investigation.
Such unsupervised analytic technique is termed as clustering. A brief introduction of
clustering analysis will be provided in Section 1.2. Nowadays, as pieces of data are scattering
everywhere in the world, and they are frequently organised or structured in a random manner,
collecting and connecting those fragmented data to search their potential relation for further
research is worth investigating. And predictive analytics also extends its antenna to the area
of finding relationships amongst the separated data, which is known as link prediction or link
analysis. This will be discussed in Section 1.3.

1.1 Regression Analysis for Prediction

Regression analysis is a popular statistical process for estimating the relationships among
variables, with the coefficients in the regression equation define the correlation between each
of the independent variables and the outcome dependent variable. Generally, the regression
models are divided into linear structure and non-linear counterpart, according to their respec-
tive combination format of model parameters. Regression analysis for prediction has been
widely applied in various fields [19–22]. A few example areas are illustrated in Fig. 1.2. The
best-known types of regression model for prediction are the following: Linear Regression
for description of linear relationship, Logistic Regression for estimation of the probability
of belonging to groups or categories, Cox Regression for modelling of survival data, and
Poisson Regression for depiction of counting processes [23].

3



1.2 Clustering Analysis for Predication

Fig. 1.2 Selection of Real-World Applications of Regression Predicting Model

Advanced Regression methods for prediction are assisted with feature selection step [24]
[25] and segmentation of regression space [26, 27]. Outlier analysis [28, 29] and missing
data treatment by imputation [30, 31] are also applied to enhance the performance of the
regression model.

1.2 Clustering Analysis for Predication

Cluster analysis is commonly applied when exploring and predicting the structure of the
data. It has always been employed in the first stage of understanding the raw information,
especially for challenging problems where prior knowledge is insufficient. The need to
acquire knowledge from excessive amount of data has been a significant driven force for
clustering analysis. Conceptually, the spirit of cluster analysis is its involving process which
divides data objects into groups in a way that the objects in the same group are more similar
to each other than to those categorised in different groups [32]. Objects or entities under
cluster analysis are usually described in terms of attribute (feature) values and relative
proximity. Opposite to the supervised learning in which a category label is needed and often
manually tagged by domain experts, clustering is unsupervised since it does not require
such label information. Clustering has been applied to a range of real-world predicting

4



1.3 Link Analysis for Prediction

problems, including information retrieval [33, 34], pattern recognition [35, 36], imaging
processing [37, 38], genetic analysis [39, 40], recommender systems [41, 42], etc. Given its
great potential in application, a vast number of research studies focusing on various aspects
of cluster analysis are carried out, such as determination of optimal cluster numbers [43],
automatic detection of initial cluster centroid [44], similarity metrics for clustering procedure
[45, 46], Aggregation of cluster ensembles [47, 48].

1.3 Link Analysis for Prediction

A wide variety of domains in the real world are relational in nature and richly structured,
accommodating a set of objects related to each other in complex ways [49]. Such data
propose new challenges of predicting potential relationships amongst these objects and deter-
mining the types or grades of the aforementioned relationships. Typically, a graph model
or a network structure is capable of reflecting common patterns of interactions between the
objects in the domain. Taking these patterns into consideration could help to provide a better
prediction.

Social Network Analysis (SNA), is originally set up to present the social structures includ-
ing objects (actors) and relationships amongst them [50]. These networks can be conveniently
represented by employing vertices and links. The links show types of relationship amongst
the vertices including kinship, friendship, collaborations, and any other interactions between
the people, namely the vertices in such a network [51]. In particular, it is widely applied in
recommendation systems for information retrieval, helping search for new friends [52] and
potential business collaborators [53–55], finding domain experts or co-authors in academic
fields [56]. Obviously, the concept of SNA models can be generalised. They are not only
restricted to the use in networks concerning human beings, but also can be utilised to depict
and analyse the structures in a wide variety of problem domains.

Link, a term used in SNA or network analysis (NA) to describe the connection between
two discussed objects in domain, could contain valuable information with regard to the
research interest. Link prediction is aimed to predict future possible links in the network. It
can also be used to predict missing links due to incomplete data. In SNA, link prediction
is one of the most salient tasks, including the discovery of missing or developing links in
a certain network [57]. Recently, link prediction has become an important and effective
technique in the study of biology, economy, and other cross-disciplines [58]. For instance, in
bioinformatics research, link prediction is adjusted to present gene expression networks [59],
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describing protein-protein interactions [60]. In politics research, link prediction is adopted to
conceptualise a policy-making process as a network of political actors [61]. In public health
care, link prediction is employed to assess factors contributing to the service, the care process
and the patient outcome [62]. In project management, link prediction is utilised to measure
the correlations amongst stakeholders, process-related values and outcome-related values
[63] In E-commerce, link prediction is equipped for providing interesting items in online
shopping [53]. Last but not the least, in the field of national defence and public security, link
prediction is assembled for terrorism and insurgency detection [64–67], money laundering
prevention [68] and abnormal telecommunication surveillance [69].

1.4 Challenges and Contributions

In general, prediction is one of the most important and chanllenging applications in the
research fields of machine learning and data mining. Traditional predictive analytics fo-
cuses on estimating class membership or numeric value within a specific domain or region,
leading to the development of classification models and regression models. Although it
has been widely demonstrated that no existing predictive model works perfectly well for
every real world problem [70, 71], improving predicting accuracy has always been ex-
pected and pursued in the research field. In this thesis, a novel predicting system aimed
at enhancing the performance of instance based missing information estimation has been
presented. Particularly, an advanced regression model embedded with both hard and soft clus-
tering techniques is novelly proposed to forecast missing feature values for objects of interest.

However, more significantly, most of the current studies work on single dataset, unable
to discover hidden information from different data sources sufficiently. The restriction of
research on isolated information, together with the progress of computation technology,
requires the collection and connection of fragmented data for further investigation. Predictive
analytics is nowadays expected to extend its antenna to seeking for relationships amongst
separated data, which is envisaged to be implemented through the approches of link analysis.
Yet, majority of the existing link based studies concentrate on predicting tasks of individual
items and records, which basically manipulate data at entity or instance level [72, 73], leav-
ing predictive analytics at higher platform (variable level) blank. Unlike previous research
that focused on identifying links between objects or entities in a specific region, in this
thesis, a novel link based model, creatively employing the concept of connected-triple, and
implemented with fuzzy logic, is invented to measure correlations between domain feature
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variables from various information sources. The proposed model is primarily data-driven,
offers a potentially effective mechanism for dealing with the problem of link prediction,
particularly when any given information contents are obtained from different data sources
where parts of the information overlap. Such link prediction problems are obviously of
general interest in many data mining applications.

In addition, although it becomes more convenient to obtain data from various sources,
thanks to the development of information technology, part of the acquired data may lack
description to themselves for a variety of reasons, such as security consideration, equipment
malfunction, ignorance from information collector, and inappropriate storage. Such deficien-
cies impede understanding and making use of information seriously, leading to considerable
restrictions in data mining and knowledge extraction. The resulting link based model can be
utilised as a foundation to construct an adaptative hierarchical knowledge base for describing
feature variables under consideration, facilitating both dynamic updating and immediate
query. The adaptability and flexibility of the proposed work, together with its remarkable
initial performance in sample applications are illustrated by experimental evaluation via
datasets collected from both real-world domains and artificial production. The outcomes
of comparative studies demonstrate the general efficacy of the present work and its great
potential for future use.

1.5 Structure of Thesis

This section outlines the structure of the remainder of this thesis. A flowchart presenting the
thesis structure is shown in Fig. 1.3. Generally, based on background knowledge provided in
Chapter 2, the thesis focuses on prediction of data at different levels: instance level, variable
level, and variable cluster level. In particular, Chapter 3 and Chapter 4 aim at prediction on
instance level, which can be summarised into a group, as presented in a dashed box. Chapter
5, chapter 6 and Chapter 7 are dedicated to prediction at variable level and variable cluster
level, which can be generalised into another group. A list of publications arising from the
work of this thesis is provided in Appendix A.
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Fig. 1.3 Structure of Thesis

Chapter 2: Background. This chapter provides the knowledge premise for the proposed
work discussed in this thesis. Primarily, an overview of popular clustering techniques which
enable identifying underlying patterns of data is conducted, with a description of their fun-
damental concepts, implementation procedures and time complexity analysis. This part
of knowledge sets up as a basis for this PhD project. A systematic study of existing link
prediction techniques is followed, including vertex-based metrics, topological-based metrics,
probabilistic-based metrics, with their general framework and technical essential depicted.
This emerging research field attracting great attention, provides inspiration and creativity for
the proposed work. Fuzzy logic allows reasoning with imprecision and uncertainty, which has
a natural appeal for the task of prediction. Additionally, the basic model of fuzzy inference
process with the state-of-the-art fuzzy inference metrics for link prediction are outlined and
discussed.

Chapter 3: Clustering Embedded Linear Regression for Prediction. This chapter presents
a novel intelligent system aiming at predicting a missing feature value (in the numeric form)
for an object being followed with interest. It gives a retrospective review on the deficiencies

8



1.5 Structure of Thesis

of the existing popular predicting approaches of the similar kind at first, and defines the
application scenario for the proposed model. Then, it concludes the conceptual framework of
the predicting system, with the implementation for each of its components clearly described
in detail. The time complexity for each of the subsystems is examined to show the efficiency
of the proposed model. A case study of its application on student academic performance
reveals its efficacy and illustrates that the proposed work has great potential for future use.
The contents of this chapter has been published in [74].

Chapter 4: Fuzzy Clustering Embedded Linear Regression for Student Academic Pre-
diction. This chapter is an extension of Chapter 3, focusing on the study of predicting
student academic performance. It refines the predicting model described in Chapter 3 by
systematically considering the influence factors which have significant effect on student
academic performance. Fuzzy clustering, a soft computing technique which enables accom-
modating both local and global information, provides an informative basis for reasoning. A
new schema encapsulating previous academic records and student normal study behaviour
is assisted to perform the estimating process. A paper proposing this refined technique has
been published in [75].

Chapter 5: Fuzzy Connected-Triple for Prediction of Inter-Variable Correlation. Iden-
tification of hidden relationships between domain attributes from different data sources is of
great practical significance and forms an emerging field in data mining. However, currently
there seldom exist any systematic methods that can effectively handle this problem, especially
when dealing with imprecisely described associations. In this chapter, a novel data-driven
approach for inter-variable correlation prediction is proposed by exploiting the concept
of connected-triples. The work is implemented with the use of fuzzy logic. Through the
exploitation of link strength measurements and fuzzy inference, the job of detecting similar or
related variables can be accomplished via examining link relation patterns within and across
different data sources. Empirical evaluation results are discussed, revealing the potential
of the proposed work in predicting interesting attribute relations, while involving simple
computation mechanisms. The initial concept of this part has been published initially in
[76], and winning the best student paper award in the 17th UK Workshop on Computational
Intelligence, with a further and more in-depth version in [77].

Chapter 6: Intelligent System for Detection of Variable Clusters. This chapter is com-
posed on the basis of Chapter 5 by further solving the real-world problem of assigning
description to dataset with uninformed feature variables. Such investigation is carried out by
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examining the underlying group patterns of such uninformed variables (within the dataset)
against its identified counterpart in existing informed sources. A reliable structure for both
of the informed and uninformed variables is required before commencing the examining
process. In particular, three types of data corpus: continuous numeric, categorical, and mixed
type of the two are investigated respectively. This chapter also works as a premise for Chapter
7.

Chapter 7: Variable Recognition and Hierarchical Knowledge Reorganisation. This
chapter focuses on two main tasks: variable identification and variable structure update,
according to different criteria. The job of variable identification is conducted when an
uninformed variable cluster is detected similar to one of its counterparts in an informed
source, whereas the task of variable structure update is performed when there exists no
similar counterpart to the examined uninformed cluster. Such update manipulation can be
regarded as a reorganisation procedure to the existing hierarchical knowledge structure. An
iterative searching process and a flexible updating scheme are given in this chapter for each
of the tasks.

Chapter 8: Conclusion. This chapter concludes the major contributions provided by the
thesis, accompanied with a discussion on directions which set up the basis for future research.

Appendices Appendix A provides the publications arising from the work presented in the
thesis, including both published papers in academic journals and conferences. Appendix B
summaries information about the benchmark datasets employed in the thesis. Appendix C
lists the acronyms used throughout the thesis.
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Chapter 2

Background

This chapter first presents the fundamental concept of data clustering, including a number of
benchmark algorithms that have been employed for various real-world problem. The second
part of this chapter includes a large-scale review of link prediction metrics existing in the
literature. A selection of modern link prediction techniques embedded with fuzzy logic for
qualitative reasoning is presented in the third part. These components jointly provide the
backgrounds and premises towards the proposed approaches that are designed to undertake
the challenging tasks discussed in this thesis, with the last section providing a summary to
this chapter.

2.1 Clustering Metrics

Data clustering is one of the basic and effective tools for understanding the structure of
information or data. It plays a foremost and crucial role in data mining, pattern recognition,
information retrieval and machine learning. Clustering aims at partitioning data into groups
such that the data in the same group are more similar to each other than to those in different
groups. Clustering is labelled an unsupervised learning technique as the measurement of
similarity or proximity is conducted without knowledge of category assignments [78]. Due
to its characteristic of knowledge free, research on algorithm selection, similarity measure,
parameter initialisation, criterion setting to assist the performance of the clustering technique
are widely conducted. However, in general, there exists no universal clustering algorithm
that performs satisfactorily on data from different sources in various application fields. There
are quantities of clustering algorithms developed in the literature. In this section, a selection
of well-known example techniques are presented.
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• k-means: It is one of the best known clustering algorithm that partitions data entities
into groups. It originates from the concept of representing each of the k clusters by
’centroid’ (mean of the members in the cluster). k-means is an iterative approach
which exploits the square error (i.e., the total distance or dissimilarity between each
data entity and the cluster centre) as a criterion function [79]. Basically, it starts with
initialising centroids randomly, followed by assign data entities to clusters in order
to minimise such square error. The criterion function works well with both compact
and separated clusters. Mathematically, given a dataset with x representing its data
instances involved, the square error e2 for a clustering π =C1, ...Ck with k clusters is
determined as:

e2(π) =
k

∑
p=1

∑
∀x∈Cp

||x− cp||2 (2.1)

where || · || denotes the Euclidean distance norm and cp depicts the centroid of the pth
cluster.

A general concept of the k-means metric is as follows:

– Select k data entities randomly as initial cluster centroids.

– Repeat:

* Assign each data entity to the cluster with the closest centroid (measured by
aforementioned distance measure or other alternatives).

* Update the centroid of each cluster by the mean (average) of all the current
data entities involved in that cluster.

Until the termination criterion is met.

Note that the common termination criteria includes: (1) no changes are made to the
centroids; (2) no improvement for the criteria function; (3) the maximum number of
iterations (refinements) is reached. k-means algorithm is applied in a variety of studies
due to its efficiency, with the time complexity of O(nkl), with n, k, l representing
the number of data entities under discussion, number of clusters needed, and number
of iterations, respectively. The drawback of k-means metric is its sensitivity to the
choice of initial cluster centroids. In real-world application, the algorithm needs to run
multiple times with different initial setups to obtain the ultimate solution which best
satisfies the selection criteria.
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• Partitioning Around Medoids (PAM): PAM is a variant of k-means, which provides
more robustness to handle noisy data or outliers [80]. Specifically, for PAM, the
medoid (centre) of a cluster is represented by one of the data instances within it,
which can be less affected by extreme values than a mean value obtained by k-means.
Primarily, it randomly selects k data entities as initial medoids to the clusters. Each of
the remaining data entities is assigned to the cluster whose medoids is most similar to
it. Then, in each of the iterations, the updated medoids for each cluster is determined
by searching for the data entity with the minimum total distance to all others in the
cluster, and all the data entities are reassigned to clusters based on their distance to
the new set of medoids. The termination criteria for PAM is similar to its execution
on k-means, However, it is worth mentioning that the computational cost of PAM is
O(n2kl), which is more expensive compared with k-means, where n, k, l represents the
same indicator as above stated.

• Hierarchical Agglomerative Clustering (HAC): HAC begins by considering each
data entity as a singleton cluster, and then iteratively merges analogous clusters until
forming a vast group. Such iterative process is capable of creating a hierarchical tree
or dendrogram, which can be cut at any level to obtain the desired data partitions. In
practice, the execution of HAC is guided by different definitions of distance between
clusters:

– single-linkage (SL): It sets the dissimilarity degree between two clusters to be
the minimum distance between all pairs of data entities, where each data entity in
the pair is taken from distinct clusters. Formally, let Cp and Cq be two different
clusters, the SL distance SLD(Cp,Cq) between them can be calculated as:

SLD(Cp,Cq) = min
∀x∈Cp,y∈Cq

d(x,y) (2.2)

where d(x,y) is the distance between data entities x,y∈X . Conventionally, d(x,y)
are measured by Manhattan distance, Euclidean distance, etc.

– Complete-Linkage (CL): It defines the dissimilarity degree between two clusters
by the greatest distance between data entities in the clusters. Similar to SLD, its
mathematical definition can be formulated as follows:

CLD(Cp,Cq) = max
∀x∈Cp,y∈Cq

d(x,y) (2.3)
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– Average-Linkage (AL): It explores the average value of all pair-wise distance
amongst data entities in two clusters as the cluster dissimilarity measure. Specifi-
cally, the average linkage based distance ALD(Cp,Cq) between two clusters Cp

and Cq can be computed as follows:

ALD(Cp,Cq) =
1

npnq
∑
∀x∈Cp

∑
∀y∈Cq

d(x,y) (2.4)

where np and nq each represents the count of data entities in Cp and Cq.

HAC provides an intuitive visualisation for the hierarchical structure of the data entities,
which can assist to perform data analysis in a systematic manner. Nevertheless, HAC
has a disadvantage in its computational complexity of cubic order, which may limit its
application on large datasets.

• ROCK ROCK (RObust Clustering using linKs) is a hierarchical clustering technique
designed for categorical data [81]. This method is based on Jaccard Coefficient [82] to
measure the similarity between a pair of data entities. Mathematically, for a pair of
data entities x,y ∈ X , their similarity degree sim(x,y) can be measured as:

sim(x,y) =
|Ax
⋂

Ay|
|Ax
⋃

Ay|
(2.5)

where Ax and Ay are sets of all attribute values for x and y, respectively. Therefore, the
similarity between x and y is measured by the proportion of their shared attribute values.
Particularly, x and y are regarded as ‘neighbours’ if their similarity degree reaches
or exceeds a specified threshold θ , i.e., sim(x,y)≥ θ . Following that, the number of
‘links’ between any pair of data entities is determined by the number of their common
‘neighbours’. Based on the definitions of ‘neighbour’ and ‘link’, an agglomerative
clustering method is applied to create the dendrogram. Initially, each data entity is
considered as a singleton cluster, then the clusters are gradually combined together
according to the their pairwise closeness degree. Fundamentally, the closeness degree
between pairs of clusters is described as the sum of the count of the links between all
pairs of data entities within the examined clusters. Similar to HAC, ROCK algorithm
also exhibits the time complexity of O(n3), where n denotes the number of entities the
dataset.

• Squeezer: Squeezer is a single-pass metric which considers a single data entity at a
time [83]. In Squeezer, each data entity is either assigned to one of the existing clusters
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if its similarity to that cluster is above a pre-set threshold θ
′
, or allocated to a new

established cluster. The basic process of Squezzer is as shown in Algorithm 1:

Algorithm 1: Squeezer
Input:
SC: A set of empty clusters: set as an empty set

1 repeat
2 Select a data entity x ∈ X randomly ;
3 if SC is empty then
4 CREATE a cluster C ∈ SC and set x as its member ;
5 end
6 else
7 Find the cluster Ci ∈ SC that is closest to x ;
8 if sim(Ci,x)≥ θ

′ then
9 SET x as a member of cluster Ci ;

10 end
11 else
12 CREATE a new cluster C

′ ∈ SC and SET x as its member ;
13 end
14 end
15 until Until no data entity remaining in X ;

Output: SC: An updated set of clusters

Squeezer does not require the number of clusters as an initial setup, whereas it asks
for a pre-defined threshold for the similarity measure. It possesses an advantage of
acceptable computational complexity with O(nkd), where n represents the number of
data entities in discussion, k denotes the number of clusters and d is termed as the
number of attribute values for each of the data entities. Yet, it is sensitive to the order
of the data entities selected each time. Hence, disparate sequences of data input may
lead to different clustering consequences.

• Spectral Clustering (SC): SC derives from graph partitioning [84, 85]. It has become
increasingly popular due to its promising performance in graph-based clustering
[86]. Given a graph whose vertex represent data entities, and each edge is weighted
in accordance with the pairwise relation between its involving vertices, the task of
looking for a good clustering of the underlying data can be transferred into finding
a nice partition of the graph. In general, this metric reduces the dimensionality of
data via the spectrum of similarity matrix at the beginning, then performs a simple
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clustering algorithm such as k-means on the transformed data. The process of SC is
described as follows:

1. Create a normalised Laplacian matrix from similarity matrix obtained from the
original dataset.

2. Perform an eigenvalue decompostion process for the Laplacian matrix resulted
from Step 1.

3. Select k eigenvectors with respect to the k largest eigenvalues to create a new
matrix U with k dimensions.

4. Perform a simple clustering algorithm to U and acquire the final clustering result.

SC requires no assumptions on shapes of clusters, and can even handle unusual form
of interwind spirals [87]. However, it is widely accepted that the performance of SC
relies heavily on the characteristics of the similarity matrix or the graph structure [88].
It is computationally expensive (with the time complexity of O(n3)) unless the graph
generated from data source is sparse [89].

2.2 Link Prediction Metrics

As described in Section 1.3, link prediction performs a significant role for the emerging
research field of social network analysis (SNA), which fundamentally outlines structures
including actors and relationships amongst them [50]. These networks can be conveniently
represented by employing vertices and links. The links show types of relationship amongst
the actor (represented by vertices) in such a network [51]. Obviously, the concept of SNA
models can be generalised and widely applied in various real-world applications. They are
not only restricted to the use in networks concerning human beings, but also can be utilised
to depict and analyse the structures in a wide variety of problem domains.

Consider a network, represented by a graph G(V,E) at a particular time t0, where V and
E each denotes a set of vertices and edges in G, respectively. The task of link prediction aims
at searching for potential links or unobserved links between vertices for a specific future
moment t1 (t1 > t0) in the current network. There exists many generic, simple and basic link
prediction metrics, which use information of vertices, topology and social theory to calculate
the similarities of vertex pairs. Moreover, learning-based link prediction methods are more
complex, but they are established on features provided by the basic metrics and external
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information. In this section, a systematic review of link prediction metrics is presented.

2.2.1 Vertex-based Metrics

Computing the similarity between a pair of vertices in a network is an intuitive scheme for
solving the link prediction problem. It is natural to believe that the more similar the pair is,
the more likely that there exists a link connecting them, and vice versa. This is consistent
with the fact that people are prone to establish relationships with others who possess the
common religious belief, share similar interests, or hold the same educational background.
Such likelihood can be measured by similarity metrics. Particularly, a pair of vertices (x,y)
in G is assigned a score representing the similarity degree between x and y. A higher score
indicates that x and y are likely to be linked sometime in future, whereas a lower score implies
that x and y are less probable to be connected. Therefore, the task of predicting disappearing
or unobserved links in a network is accomplished by ranking the similarity scores amongst
vertex pairs.

In a real-world network, its involving vertices usually possess intrinsic attributes or useful
information, e.g., the personal profile in online social networks, mail name and address in
email networks, and publication record in academic networks. Such information can be
directly captured for calculating the similarity degree between the referencing vertices. As
these attribute values are in the textual format in most cases, the text-based and string-based
similarity metrics are naturally performed for the scenario [90–92]. Similarly, common
interests or behaviours shared by actors (represented by vertices in the network) can also be
utilised to measure the similarity amongst them. These features are frequently characterised
by the actions they take and usually represented as a vector. Thus the similarity between
two vertices is measured by matching their respective action vectors [93]. [94] proposed a
complement to link prediction by inferring a portion of the unobserved values to the networks
with missing information before executing similarity computation. This concept is adaptable
to various real-world networks.

In short, vertex-based metrics are mainly applied to the circumstances under which the
attributes and behaviours of the included vertices are available.
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2.2.2 Topology-based Metrics

In a simple network where vertex attribute information is unavailable, topological structure
is widely explored to search the association pattern amongst its involving vertices. An initial
systematic review on topology-based metrics is presented in [57]. And a number of metrics
of the same category were proposed since then [95]. These metrics can be categorised into
neighbour-based metrics, path-based metrics, and random-walk-based metrics, according to
their intrinsic characteristics.

2.2.2.1 Neighbour-based Metrics

In a graph network G, a neighbour vertex of a vertex x is a vertex that is connected to x
with an explicit edge. The neighbourhood of a vertex x in G is the subgraph of G induced
by all vertices connected to x, denoted as Γ(x). Inspired by the notion that the neighbours
may share close relationships between each other and the information acquired from the
neighbourhood may provide strong evidence for prediction, researchers have designed a
number of neighbour-based metrics with their improved variations for link prediction.

• Common Neighbours (CN) The CN predictor captures the idea that two strangers who
have a common friend may be introduced by that friend. It is one of the most popular
measurements applied in link prediction problems owing to its low computational
complexity [96]. For two vertices, x and y, CN is directly defined by the number of
common neighbours that both x and y have. A considerable number of the common
neighbours indicates the great possibility to establish a link between x and y. This
metric is defined in the following formula:

CN(x,y) = |Γ(x)
⋂

Γ(y)| (2.6)

• Jaccard Coefficient (JC) JC is originally proposed as a similarity metric for informa-
tion retrieval [97]. The concept of this metric has been transferred into task of link
prediction in recent studies . Mathematically, it normalises the CN score by considering
the amount of neighbours that either x or y has. The JC score is defined as:

JC(x,y) =
|Γ(x)

⋂
Γ(y)|

|Γ(x)
⋃

Γ(y)|
(2.7)

• Weighted Jaccard Coefficient (WJC) This metric is an improved version of JC by
considering the available information amongst pairs of vertices in the neighbourhood,
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with the information presented by edge weights. Basically, for the edges which are
connected to common neighbours from target vertex-pair, WJC performs a normalisa-
tion step to their edge weights [98]. It assigns greater values for vertex-pairs which
share a higher sum of weights over common neighbours relative to the total weights of
all the neighbours they have. For two distinct vertices x and y, this measure is defined
by

WJC(x,y) =

∑
z∈Γ(x)

⋂
Γ(y)

w(x,z)+w(y,z)

∑

z′∈Γ(x)
⋃

Γ(y)
w(x,z′)+w(y,z′)

(2.8)

where w(x,z), w(y,z), w(x,z
′
), w(y,z

′
) each denotes the edge weights between vertex-

pair (x,z), (y,z), (x,z
′
), (y,z

′
), respectively.

• Adamic-Adar Coefficient (AAC) The AAC metric was initially proposed for comput-
ing the similarity between two distinct webpages [99]. Nowadays, this metric attracts
more attention in social network analysis. Unlike JC and its variation forms which
only consider the direct neighbours to the target vertex, the AAC metric also takes
neighbour vertices of neighbours into account. The mathematical definition of AAC is
articulated as:

AAC(x,y) = ∑
z∈Γ(x)

⋂
Γ(y)

1
log |Γ(z)|

(2.9)

It is apparent that in AAC, common neighbours of vertex-pair (x,y) which have fewer
number of neighbours, are weighted more heavily.

• Resource Allocation (RA) RA metric is inspired by the physical process of resource
allocation [100]. Actually, it is a variant of AAC, with heavier punishment to the
contribution of the high-degree common neighbours in the network. The calculation
formula of RA is as follows:

RA(x,y) = ∑
z∈Γ(x)

⋂
Γ(y)

1
|Γ(z)|

(2.10)

• Weighted Resource Allocation (WRA) Similar to WJC, WRA extract available in-
formation amongst pairs of vertices in the network, presented by weights. Formally,
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WRA is defined as:

WRA(x,y) = ∑
z∈Γ(x)

⋂
Γ(y)

w(x,z)+w(y,z)
s(z)

(2.11)

where, w(x,z) and w(y,z) denotes the edge weights of vertex-pair (x,z) and (y,z),
respectively, and s(z) depicts the sum of weights for the vertex z associated with all of
its existing edges, such that

s(z) = ∑
a∈Γ(z)

w(z,a) (2.12)

• Preferential Attachment (PA) PA has received great attention as a metric to measure
the growth of networks [96, 101]. The PA metric suggests that new links are more
possibly to be constructed between higher-degree vertices rather than lower ones. It is
mathematically defined as:

PA(x,y) = |Γx| · |Γy| (2.13)

In Table 2.1, a comparison of the popular neighbour-based metrics for link prediction is
illustrated, with respect to normalization step, time complexity analysis and characteristic
description. It is clear that four metrics: CN, AAC, RA and PA, do not involve normali-
sation steps, which implies that the similarity degrees for vertex-pairs calculated through
these metrics only have the ranking meaning. Time complexity is a significant factor when
selecting metrics, especially for large scale networks. Assume that a network contains m
vertices, each vertex have n neighbours on average, and the network is stored in the format
of adjacent matrix, the time complexity of finding all neighbours of a vertex is O(m), and
the time complexity of calculating the intersection or union of two sets is O(n2). All the
approaches within discussion include the step of searching for neighbours of two involving
vertices, which results in time complexity of O(2m). However, the overall time expenses of
calculating the similarity between a pair of vertices with respective metrics may vary from
each other. Obviously, PA is the most efficient metric amongst all the discussed methods,
since it only needs the above mentioned step. CN, containing one more step of computing
the intersection of two neighbour sets, leads to the total time cost of O(2m+ n2). The
time complexity of JC and WJC is O(2m+n2), as it encapsulate steps of calculating both
intersection and union of two sets. For AAC, RA and WRA, besides the aforementioned
steps, they also need to search for the neighbours for each of the common neighbour vertices
to the target vertex-pair, which lead to an additional time cost of O(mn). Therefore, their
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time complexities are O((n+2)m+n2).

Table 2.1 Comparison of Neighbour-Based Metrics for Link Prediction

Metric Normalisation Time Complexity Characteristic Description

CN No O(2m+n2) (1)
JC Yes O(2m+2n2) (1)(2)

WJC Yes O(2m+2n2) (3)
AAC No O((n+2)m+n2) (4)(5)
RA No O((n+2)m+n2) (4)(6)

WRA Yes O((n+2)m+n2) (3)(4)
PA No O(2m) (1)(7)

(1) Simple and intuitive
(2) Relative to total number of neighbours
(3) Rich in edge information
(4) Consider neighbour of common neighbours
(5) Common neighbours with fewer neighbours weighted more heavily
(6) Punish high-degree common neighbours more heavily
(7) Prefer high-degree vertices

It should be noted that although there are great many neighbour-based metrics with their
variations available, proper selection of metrics according to the characteristics of networks
is necessary and essential, since quantities of experimental evaluations have demonstrated
that there exists no absolute dominating metric for various practical applications [57].

2.2.2.2 Path-based Metrics

Apart from the vertex and neighbour based metric, paths connecting two vertices in the
network can also be explored to measure the similarities between vertex-pairs. This yield a
different category of similarity measure, named as path-based metrics.

• Katz For a pair of vertices (x,y), Katz metric [102] considers the ensemble of all
paths existing between them, and it straightforwardly sums up all the weights over
the considering paths. However, it penalise the contribution of longer paths in the
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similarity computation by setting up a damp factor corresponding to the path length.
The formal equation to compute the Katz value is as follow:

katz(x,y) =
∞

∑
l=1

β
l · |pathsl

x,y| (2.14)

where l denotes the path length, β l indicates the damp factor and pathsl
x,y represents

the set of all paths from x to y with length l. β is usually set to a small value greater than
zero. A tiny value of β may lead Katz measure considering only the shorter paths heav-
ily, resulting in this path-based metric working in a similar way to the neighbour-based
counterparts. One problem with Katz metric is its cubic computational complexity,
which could be infeasible for large networks [103].

• Local Path (LP) LP metric [104] can be regarded as a special case of Katz. Unlike
the metrics that only use the information of the nearest neighbours (be they adjacent or
otherwise), it makes use of further information from local paths with a length value
of 2 and 3. Let A denote the adjacent matrix of all vertices in the discussed network,
and A2 and A3 represent the adjacent matrices based on A with a length of 2 and 3,
respectively. Here, A2 contains two vertices in the network connected through a path
with length of 2. Similarly, each element in A3 denotes two vertices in the network
connected through a path with length of 3. LP is then defined as follows:

LP = A2 +αA3 (2.15)

where α is a small number close to zero, which is being used to penalise the weight of
the paths with greater length. In the experiment, α is set to 0.01 (as with the default
value typically used when running this metric). An extended version of LP is named as
Local Weighted Path (LWP), which makes use of further information from local paths
[105]. LP metric has the cubical time complexity since it involves matrix multiplication.

• Relation Strength Similarity (RSS) This metric was originally introduced as an
asymmetric measure for weighted social networks [106]. It may also be adopted as
a symmetric measure for the various real-world problems [107] [108]. Suppose that
there are T simple paths (with no circles in paths) shorter than a path length of e from
the vertex x to y in the network, and a path with length of u (u ≤ e) from x and y is
formed with Z vertices x1, x2, ... , xZ−1, xZ , where x1 represents x and xZ represents y.
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Then, the RSS metric from x to y is defined by

RSS(x,y) =
T

∑
t=1

R∗u(x,y) (2.16)

with

R∗u(x,y) =


Z−1
∏

z=1
R(xz,xz+1) Z ≤ e+1

0 otherwise
(2.17)

where R(xz,xz+1) denotes the link strength of the two adjacent vertices xz and xz+1

within a particular path connecting x and y. The time complexity for RSS is signif-
icantly affected by the length of paths, and can be extraordinarily high in extreme cases.

• Connected-Path (CP) The CP metric further includes the uniqueness property of the
link patterns to refine the similarity estimation [109]. In particular, for a link network
G = (V,W ), a path established between two vertices x,y ∈V , named as path(x,y) or p,
is a sequence of unique vertices x,x1, ...,xn,y with edges wx,x1,wx1,x2, ...,wxn−1,xn,wxn,y ∈
W . The length of path length(p) equals |p|−1, where |p| denotes the number of ver-
tices in path p. Additionally, PAT H(x,y,r) represents the set of all paths between x and
y whose length meets the criterion of 2≤ length(p)≤ r. Thus, the similarity degree
between x and y is defined by the accumulated uniqueness measure acquired from all
paths in PAT H(x,y,r). This metric can be formally described as follows:

CP(x,y) = ∑
p∈PAT H(x,y,r)

U(p)
length(p)

(2.18)

where U(p) denotes the uniqueness of path p, which can be calculated through the
following equation:

U(path(x,y)) = ∏
z∈path(x,y),z̸=x,y

UQ(z) (2.19)

In Eq. 2.19, UQ(z) represents the uniqueness score of vertex z ∈ path(x,y), which is
computed by Eq. 2.20.

UQ(z) =
wz,z−1 +wz,z+1

∑
∀g∈V

wz,g
(2.20)
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where wz,g denotes the weight of an edge between z ∈ path(x,y) and any other vertex
g ∈ V , wz,z−1 and wz,z+1 represent the weights of the edges from z to its adjacent
vertices in path(x,y), respectively.

Note that in Eq. 2.18, the uniqueness degree of a path is normalised by its length,
which shows that the longer paths are considered to be less informative than the shorter
ones. Such insight is consistent with human logical thinking intuitively. In order to set
the CP score into a unified scale, a final step of normalisation is needed, with CPmax

(maximum estimate value between any two vertices in G) being the normalisation
factor. Hence, the similarity degree simCP(x,y) between x and y by CP metric can be
determined as:

simCP(x,y) =
CP(x,y)
CPmax

(2.21)

Similar to RSS metric, the time complexity for CP metric is also sensitive to the size
of the network. Assume that a link network involves m vertices, and each of them
is linked to n others on average, the time complexity for CP metric to generate all
pairwise similarity score is O(m2nr).

2.2.2.3 Random Walk-based Metric

Social interactions between vertices in linked graph networks can also be modelled via
random walk, which investigates transition probabilities from a single vertex to its neigh-
bours and propagates such probabilities to calculate the likelihood of a destination travelled
by a random walker from the source vertex. There exists a number of link prediction met-
rics which compute similarity degrees between vertices based on the concept of random walk.

• SimRank (SR) The well-known SimRank algorithm [110] was proposed on the basis
of the intuition that two vertices within a graph are similar if they are connected to
similar vertices in the graph. This can obviously be adapted for use in various studies.
For a pair of vertices x and y, their SR score is computed by

SR(x,y) =

γ ∑

x′∈Γ(x)
∑

y′∈Γ(y)
SR(x

′
,y
′
)

|Γ(x)||Γ(y)|
(2.22)
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where γ ∈ [0,1] is a decay factor that represents the confidence level of accepting two
non-identical vertices as similar.

The SR algorithm performs through an iterative process, with SRk(x,y) denoting the
kth iterative computation for the similarity between x and y. At initial stage, SR0(x,y)
is set to:

SR0(x,y) =

1 x = y

0 x ̸= y
(2.23)

It has been shown that the value of SRk(x,y) is not decreasing as k increases, and it
eventually converges to a stable limit [110]. In practical applications, k is usually set
to a small number to control the computational complexity.

• PageSim (PS) PS [111] was developed to capture similar web pages based on asso-
ciations implied by their hyperlinks. Fundamentally, the similarity degree between a
pair of vertices x and y is dictated by the coherence of ranking scores propagated to
them from any other vertices in V . It is noteworthy that ranking scores are explicitly
generated using the page rank scheme of the well known Google search engine [112].

Specifically, for a network G = (V,E), let PR(x) denote the PageRank score of a
vertex x ∈ V . PR(x) can be estimated from the following iterative procedure (i.e.,
PR(x) = lim

k→∞
PRk(x)):

PRk(x) = (1−β )+β ∑
z∈Γ(x)

PRk−1(z)
|Γ(z)|

(2.24)

where k is the number of iterations, and β is a decaying factor ranging between [0,1]
and usually set to 0.85 [112]. PR0(x), the initial state of PR score for vertex x in the
iteration process is set to 1 in most of the cases [113]. Having achieved this, the PR
score of x propagated from x to y ∈V can be calculated as follows:

PG(x,y) =


∑

p∈PAT H(x,y,r)

d·PR(x)
∏

z∈p,z̸=y
|Γ(z)| x ̸= y

PR(x) x = y
(2.25)

where d is a damping factor, PAT H(x,y,r) represents a set of paths from x to y with
maximum length of r. Assume that |V |= m (|V | denotes the number of vertices in V ),
let PS(x,y) be the PS score of vertex-pair (x,y), PS(x,y) is defined as:
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PS(x,y) =
m

∑
i=1

min(PG(xi,x),PG(xi,y))2

max(PG(xi,x),PG(xi,y))
(2.26)

Note that PS is a symmetric method with PS(x,y) = PS(y,x) and PS(x,y) is always in
a range of [0,1]. Moreover, each vertex in the network is most similar to itself, i.e.,
PS(x,x) = max

z∈V
PS(x,z).

The time complexity of PS is huge. Assisted with the prune technique to limit the
length of propagation, the time complexity of PS metric can be reduced to O(m2n2r)

(n denotes the average number of neighbours for each vertex in the network), which
still makes it infeasible to handle large sized networks.

• Hitting Time (HT) The basic concept of HT derives from random walks on a graph
[114]. For a pair of vertices x and y in a graph network, let HT (x,y) defines the
expected number of steps required for a random walk starting at x to reach y. The
smaller value of HT denotes that the vertices are similar to each other, thus they have
a higher opportunity of creating a link between them. Similar to RSS discussed in
2.2.2.2, the original HT is designed for directed graph network. However, a variant of
HT, named as commute time (CT), has been proposed to handle with the bi-directed
graph network by considering both H(x,y) and H(y,x). Specifically,

CT (x,y) = HT (x,y)+HT (y,x) (2.27)

The HT metric can benefit from its simple computational complexity, but its pre-
dicted value may possibly lead to high variance [57]. Particularly, one difficulty with
HT metric is that HT (x,y) could be quite a small value when y is a vertex with a
large stationary probability π(y), regardless of the identity of x. To overcome this
drawback, normalised versions of HT, denoted by NHT, is proposed by defining
NHT (x,y) = HT (x,y) ·π(y). Likewise, normalised version of CT metric, named as
NCT, can also be depicted by NCT (x,y) =CT (x,y) ·π(y)+CT (y,x) ·π(x).

Another issue with HT metric is its sensitivity to parts of the graph which are far from
the target vertex-pair. For instance, HT (x,y) (even when x and y are connected by very
short paths in the graph network) can be seriously affected by another connected vertex
z in the graph network, where z is far away from x and y with high stationary probability
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π(z). It could be difficult for a random walk to escape from the neighbourhood of z.
A feasible method to tackle this problem is to allow the random walk from x to y to
periodically reset, returning to x with a fixed probability α at each step. Based on this
method, vertices within a certain range to the target vertex-pair is considered more
heavily, while distant parts to the target vertex-pair in the graph network will be rarely
explored.

• Rooted Pagerank (RP) It has been demonstrated that the PageRank measures [112]
used for webpage ranking has inherent relationship with the HT analysis. Hence, the
pagerank score can also be treated as an indicator for link prediction. However, since
the pagerank score itself is an index for a single vertex, it requires to be modified
such that it can be utilised to represent the similarity degree between a pair of vertices.
The original concept of pagerank is designed based on a webpage network under the
following assumption: for some fixed probability α , a surfer at a webpage jumps to a
random webpage with the probability of α and goes to another webpage directed by a
hyperlink with the probability of 1−α . The importance degree of a webpage weba

is expected to be the sum of the importance degree of all the webpages that link to
weba. The term importance degree used in pagerank scheme can be transferred into
stationary distribution under the random walk strategy for networks. For the task of
link prediction, the similarity degree between a pair of vertices x and y can be measured
as the stationary probability of y in a random walk that returns to x with the probability
of 1−α in each step, and moves to a random neighbour with the probability of α .
Similar to HT, the RP metric is defined to be asymmetric originally and can be modified
into a symmetric version by summing with the counterpart in which the roles of x
and y are exchanged. Mathematically, let A be an adjacent matrix for the discussed
graph network G, I be an Identity matrix in the same size of A, D be the diagonal
degree matrix with D[i, i] = ∑

j
A[i, j] and N = D−1A be the adjacent matrix with row

summation normalised to 1, the RP score for all vertex-pairs in G can be calculated as
follows:

RP = (1−α)(I−αN)−1 (2.28)

• PropFlow (PF) PF metric [115] is a similarity measure based on information flow
[116], and can also be regarded as localised version of RP. It has the advantage of being
insensitive to the topological noise far from the target vertices. Unlike RP metric, the
process of performing PF does not require a walk restart or convergence, but simply
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employs a searching strategy with limited length l. Therefore, it is more efficient than
RP and SR metrics in computational complexity. For a pair of vertices (x,y) in a graph
network G, their PF score is proportional to the probability that a random walk starting
from x and ending at y within l steps. Equation 2.29 shows the formula of computing
PF score for (x,y) when they are directly linked.

PF(x,y) = PF(a,x)
wxy

∑
k∈Γ(x)

wxk
(2.29)

where, wxy denotes the weight of the link between vertices x and y, k represents x’s
neighbours whose length to the starting vertex is greater than that of x, a depicts the
previous vertex of x on a random walk path. Note that when x is the starting vertex,
PF(a,x) is set to be 1 by default. If x and y are not directly connected, PF metric sums
up the PF score of the all the shortest paths from vertex x to y. A pseudo code of the
PF predictor for estimating x to all the other vertices within maximum length l in a
graph network is shown in Algorithm 2.
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Algorithm 2: PropFlow Algorithm for Prediction
Input:
G = (V,W ): A graph network
x: Source vertex in G
l: Maximum length
Found: A set to store available vertices
NewSearch: A set to store vertices
OldSearch: A set to store vertices
S: A set to store a vertex with is flow score

1 INSERT x into Found ;
2 INSERT x into NewSearch ;
3 INSERT (x,1) into S ;
4 for CurrentDegree← 0 to l do
5 OldSearch← NewSearch ;
6 EMPTY NewSearch ;
7 while OldSearch is not empty do
8 REMOVE xi from OldSearch ;
9 FIND VertexInput using xi in S ;

10 SumOut put← 0 ;
11 foreach x j in neighbours of xi do
12 ADD wi j to SumOut put ;
13 end
14 Flow← 0 ;
15 foreach x j in neighbours of xi do
16 Flow←VertexInput× wi j

SumOut put ;

17 INSERT or SUM (xi,Flow) into S ;

18 end
19 if xi is not in Found then
20 INSERT xi into Found ;
21 INSERT xi into NewSearch ;

22 end
23 end
24 end

Output: PF(x,y) for all neighbours y of x under neighbourhood range within length
of l
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2.2.3 Probabilistic Metrics

The probabilistic metrics for link prediction are considered supervised models and are mostly
based on Bayesian Theory. The general concept for probabilistic metrics is to grasp the
posterior probability which denotes the chance of co-occurrence for the vertex-pairs in the
discussed domain. Generally, probabilistic metrics are time consuming and only capable of
handling networks involving thousands of entities(vertices). However, they provide valuable
insights into the network organization and modularisation, which can not be fully grasped by
the similarity-based metrics [95, 117].

2.2.3.1 Hierarchical Probabilistic Graph Metric

Studies have suggested that real-world networks may exhibit hierarchical structure, where
vertices divided into groups can be further clustered into groups of groups, and so forth over
multiple scales [50, 118, 119]. This metric infers hierarchical structure from network data
and can be used for prediction of missing links. Basically, it is proposed as a probabilistic
model for hierarchical random graphs. The learning task is to use the observed network data
to fit the most likely hierarchical structure through statistical inference: a combination of the
maximum likelihood approach and a Monte Carlo sampling algorithm.

The conceptual framework for this hierarchical probabilistic model (HPM) can be de-
tailed as follows: Let G = (V,W ) be a graph network with m vertices. A dendrogram D is
a binary tree with m leaves corresponding to the vertices of G. Each of the m−1 internal
nodes of D corresponds to the group of vertices that are descended from it. A probability pr

is associated with each internal node r. Then, given two vertices x,y ∈V , the probability pxy

that they are connected by an edge is pxy = pr, where r is the lowest common ancestor in D.
Thus, the likelihood of the hierarchical random graph can be presented as a combination of
(D,{pr}) which consists of the dendrogram D and the set of probabilities {pr}.

The learning task is to find the hierarchical random graph or graphs that best fits the
observed network data. Assume that all hierarchical graphs are apriori equally likely, by
Bayesian theorem, the probability that a given model (D,{pr}), is the correct explanation of
the data is proportional to the posterior probability or likelihood with which the model gen-
erates the observed network. The goal is to maximize such posterior probability or likelihood.

Let Er denote the count of edges in G whose endpoints have r as their lowest common
ancestor in D, and let Lr and Rr, represent the numbers of leaves in the left and right subtrees
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Fig. 2.1 Example of Hierarchical Structures for a Link Network

rooted at r, respectively. Then, the likelihood L of the hierarchical random graph consisting
D and {pr} can be calculated as:

L(D,{pr}) = ∏
r∈D

PEr
r (1− pr)

LrRr−Er (2.30)

Such likelihood measure can be maximised by a set of probabilities { p̄r}, with p̄r

calculated as :

p̄r =
Er

LrRr
(2.31)

An illustrated example for the hierarchical structure of a link network is presented in Fig.
2.1. As is shown, the example network G consists of six vertices, followed by the likelihood of
two possible dendrograms presented. The internal nodes r of each dendrogram (represented
by box) are labelled with the maximum likelihood probability p̄r. According to Eq.2.30,
the likelihoods of the two dendrograms are L(D1) = (1/3)(2/3)2 · (1/4)2(3/4)6 = 0.00165
and L(D2) = (1/9)(8/9)8 = 0.0433, respectively. It is obvious that the second dendrogram
reveals the hierarchical structure of the example network in a more acceptable manner (which
is also demonstrated by L(D2) > L(D1)), since it correctly divides the network into two
significantly connected sub-graphs at the first stage.
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The choice amongst the dendrograms are performed by a Markov Chain Monte Carlo
(MCMC) sampling approach with probabilities proportional to their likelihood. To create the
Markov chain, the approach first generates a set of transitions between possible dendrograms
through rearrangement or reconstruction. In the rearranging step, the approach chooses an
internal node of a dendrogram and then selects among various configuration of the subtree
at that vertex uniformly. Once the transition criteria is clear, the sampling process creates
a random walk. Whether a new rearrangement being accepted or not is determined by the
Metropolis-Hastings sampling rule, i.e., for a transition from a the original dendrogram D to
a reconstructed dendrogram D

′
, the transition is adopted if ∆ logL= logL(D′)− logL(D) is

non-negative, otherwise it is adopted with a probability of L(D′)/L(D).

For link prediction, a set of sample dendrograms are created at regular intervals once
the MCMC random walk reaches an equilibrium. Then, for the pair of vertices x and y
with no connection exists currently, the model computes a mean probability p(xy) of they
are being connected by averaging over the corresponding probability p(xy) for all of the
sampled dendrograms. For binary decision, a threshold can be specified. The unique nature
of the hierarchical random graph model is that it enables presenting a general view for the
network. Simultaneously, it allows sampling over the set of hierarchical structures to obtain
a consensus probability. The drawback of this metric is that it may not be that accurate
unless the MCMC sampling process converges to the stationary distribution in a limited
or reasonable number of steps. Additionally, the entire process could be very costly for
networks in large size.

2.2.3.2 Stochastic Block Metric

Stochastic block model (SBM) is one of the most general network models in which the
vertices are partitioned into groups [120, 121]. The probability for the connection of two
vertices in the network depends completely on their membership to those groups. The
stochastic block model is capable of capturing the community structure [122], role-to-role
connections [123], and group based interactions [124]. Conceptually, for a link network
G, a block model M = (P,Q) consists of a partition P dividing all the vertices in G into
distinct groups and a matrix Q involving probabilities of linkage between pairs of groups.
Arbitrarily selecting two different groups from P, named as Vα and Vβ respectively, denoting
their connecting probability by Qαβ , then, the likelihood of G based on a pair of P and Q
can be defined as follows:
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(a) A Simple Matrix of Probabilities Q (b) A Realised Network for the Model

Fig. 2.2 Example of Stochastic Block Model

L(G|P,Q) = ∏
α≤β

Q
lαβ

αβ
(1−Qαβ )

rαβ−lαβ (2.32)

where lαβ denotes the number of existing edges inter-connecting vertices in groups Vα and
Vβ , and rαβ denotes the number of vertex-pairs (x,y) with x ∈Vα and y ∈Vβ respectively.
Thus, Q∗

αβ
, the optimal value of Qαβ which maximises L(G|P,Q) is:

Q∗
αβ

=
lαβ

rαβ

(2.33)

An example of SBM is illustrated in Figure 2.2. A matrix Q in Fig. 2.2a presents the
vertices in discussion are divided into three distinct groups, each of which contains 4, 5,
6 vertices, respectively, and are represented as circles, triangles and squares according to
their membership to different groups. The value of each matrix entry Qαβ is represented by
the shade degree of grey. For instance, a circle does not link to any other circles. However,
circles link to squares with tiny probability, and link to triangles with high probability. Fig.
2.2b is a realised network of Q. It is apparent to observe that the number of links between
the circle and the triangle is much more than that between the circle and the square, which is
consistent with the contents revealed by Q.

Let Ω be the set of all possible partitions on G, by the Bayesian Theorem [125], the
reliability of an individual link between vertices x and y can be calculated as:

L(Gxy = 1|G) =
1
Z ∑

P∈Ω

∫
N
L(Gxy = 1|P,Q)L(G|P,Q)p(P,Q)dQ (2.34)
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where Z is a normalising factor, N denotes the number of distinct group pairs, L(Gxy = 1|P,Q)

is determined as Q∗
αβ

, and p(P,Q) is set to a constant value since the equation is formulated
under the assumption that no prior knowledge about the models is provided.

Note that the number of different partitions is incredibly huge, which makes it infeasible
to sum over the results of the all possible partitions in real practice. Thus, similar to HPM, a
Metropolis sampling procedure [126] is applied to assist the estimation of the link reliability.
However, the whole process still leads to expensive time cost which is only suitable for
handling small to medium sized networks [117].

In spite of its ordinary performance in time efficiency, SBM is widely applied in various
fields [127–130], as it is not only capable of undertaking the task of predicting missing links
in the network, but also provides an approach to identifying possible spurious links (the
existent links with the low reliabilities) [131].

2.3 Fuzzy Link Prediction

Fuzzy set theory enables processing with approximation, uncertainty and imprecision, where
a number of real-world problems cannot be successfully tackled by binary encoding to
model [132]. Fuzzy logic which tolerates partial truth is the premise to perform approximate
reasoning, which aims at producing conclusions from inexact assumptions while being
analogous to human logical thinking. Fuzzy systems, based on fuzzy logic, encapsulate both
the natural observation and information from domain experts’ descriptions in terms of natural
language, and generate interpretable knowledge in linguistic expressions for the transparent
insights into the behaviour of a complex system.

2.3.1 Fuzzy Inference System

Fuzzy inference system (FIS) [133–136] is a type of fuzzy systems designed to formulate
human knowledge for reasoning in a systematic manner, assisted with the information coming
from sensory measurements and fuzzy mathematical models. Such transformation introduced
by FIS vividly map human knowledge onto mathematical formulas for systematic analysis.
FIS provide a general basis which allows a wide range of applications, including decision
making, pattern discovery, event prediction, system control etc [137]. The conceptual
architecture for a typical FIS [138] is illustrated in Fig. 2.3.
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Fig. 2.3 General Architecture of FIS

As is shown in Fig. 2.3, the general architecture for a typical FIS consists of five
components, including: a fuzzifier, an inference engine, a defuzzifier, a data base and a rule
base. The functionality for each of these components are described as follows:

1 Fuzzifier: it provides an interface for transforming crisp inputs obtained from natural
data sources into fuzzy presentations. The fuzzifier enables representing crisp numeri-
cal values in the form of linguistic terms in natural language with certain membership
degree. The transformation procedure is conducted by searching through a collection
of semantic mappings that relates the input crisp value with a group of predefined
fuzzy sets.

2 Inference Engine: it performs operations on the fuzzy values passed from the fuzzifier.
These fuzzy values of individual features attempt to fire rules stored in the rule base.
The firing strength with respect to each fuzzy rule is computed by applying fuzzy
logical operators on membership values of the existing conditional antecedents. In the
case of multiple fuzzy rules being fired simultaneously, all the outputs generated by
the fired rules are required to be combined into an aggregated fuzzy set before inputing
into the defuzzifier.

3 Defuzzifier: it conducts a reverse mapping process on the aggregated fuzzy set obtained
from the inference engine, to generate a crisp value for subsequent operation. In many
real-world applications, the final output of an engineering system is required to be in
the format of real-value. In order to achieve this goal, finding a representative point
for such aggregated fuzzy set is necessary. The process to perform such task is termed
as defuzzification. And usually, centroid, bisector, maximum are adopted to be the
defuzzified value.
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4 Data Base: it stores the definitions of crisp values with respect to a number of over-
lapped concepts defined as fuzzy membership functions for each of the features
variables. In other words, it provides the evidence or regulations for converting crisp
digits into fuzzy values and the reverse procedure. It also preserves a collection of
linguistic labels which are both transparent to human users and essentially needed for
reasoning.

5 Rule Base: it contains a set of linguistic rules. Generally, two ways are available to
construct a fuzzy rule base for reasoning: (1) explict translation of domain experts’
knowledge into conditional statement; (2) generalise knowledge from observed entries
represented by feature-consequence pairs. The former approach often offers high
semantic level and satisfactory generalisation capability, whereas the latter is a data-
driven approach which fits the situation well when there is not sufficient expertise
available.

2.3.2 Fuzzy Inference for Link Prediction

Fuzzy logic and FIS have been applied in a wide variety of research and industrial fields
[139–143], due to their Intrinsic ability to incorporate human expert knowledge and granular
computing [144]. Its successful application in control systems and expert systems has been
widely revealed in corpus of literatures [145–147]. Nowadays, the empirical concept has
also been transferred into network analysis (NA), which is an emerging research field in the
recent years. However, in the study of NA, most of the works based on fuzzy logic have been
focused on network community detection [148–151]. leaving the investigation on fuzzy link
or fuzzy logic based link prediction at rather a coarse level. In this section, existing metrics
in a few number based on fuzzy model for link prediction is summarised.

2.3.2.1 Fuzzy Link Prediction Based on Clustering Analysis

• Fuzzy Link Prediction Based on Local Clustering Coefficient (FCC):
FCC is a soft metric for link prediction by exploring the concept of clique. In graph
theory, a clique represents a subset of vertices in which every pair of distinct vertices
in it are connected through a link, inducing that a subgraph formed by a clique is a
complete graph [152]. Local clustering coefficient (LCC) [153] is selected to measure
how neighbours of a vertex tend to form a clique. In SNA, it is considered that
vertices with greater LCC are likely to assist generating links between its neighbours
(currently not linked together). FCC metric [154] extends the traditional concept
of LCC which simply focused on triplets related to the target vertex by performing
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granular computation to take broader clusters into account. Basically, a softer definition
for the concept of clique has been set up as a premise to support the FCC metric, which
also provides consistency with human perception. Assume that S represents a clique, it
requires the satisfaction of the following criteria:

C1 : Most of the elements in S are closely related.

C2 : None of the elements in S are too far from any of the others.

C3 : Every element in S is better connected to the members of S than any element in
S.

For the above mentioned criteria, basic linguistic labels (i.e., most, close, far) are
defined as fuzzy terms, and the mathematical specification for each of the criteria are
formulated in [155]. Let (x,y) be a pair of vertices in the network under discussion,
FCC(x,y), the score for a predicted link connecting them is calculated by the sum of
FCC(x)+FCC(y), where FCC(x) and FCC(y) denotes the updated definition of LCC
for vertex x and y, respectively. Note that LCC for any vertex z in the network stands
for its minimum satisfaction of the criteria, it can be interpreted that:

FCC(z) = min
j
[FCC j(z)] (2.35)

where j (1 ≤ j ≤ 3) is the index for each of the selecting criteria. The pseudocode
of FCC metric for link prediction is shown in Algorithm 3. Taking both the existing
small-world phenomenon in real network [156] and computational complexity into
account, the search space for the paths is restrained to a limited area where the length
of the paths is set to a small value less than or equal to 4 in applications.
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Algorithm 3: FCC for Link Prediction
Input: SLink: A set of potential Links

1 foreach link ∈ SLink do
2 foreach vertex x connected by link do
3 FIND all paths P with length l ≤ K starting from x ;
4 COMPUTE for C1 ;
5 foreach vertex z in P do
6 FIND all paths P

′
with length l

′ ≤ K starting from z ;
7 COMPUTE for C2 ;

8 end
9 foreach vertex r /∈ P do

10 FIND all paths P
′′

with length l
′′ ≤ K starting from r ;

11 COMPUTE for C3 ;

12 end
13 end
14 SET C(x) to the minimum of C1 to C3 ;
15 COMPUTE FCClink ;

16 end
Output: FCClink for each link ∈ Slink

• Fuzzy Link Prediction Based on Cluster Overlapping (FCO):
FCO considers the overlapping degree of two clusters with regard to the target vertex-
pair [154]. Formally, for a vertex x in the network, its corresponding cluster Cl(x) is
represented as a set of vertices which can be reached from x within l steps. In particular,
for a pair of vertices (x,y) in the network, let Cl(x) and Cl(y) be their respective cluster.
The likelihood of link existed between them can be measured by the overlapping degree
of their respective clusters. The mathematical formula for calculating such overlapping
degree OD(x,y) is stated as follows:

OD(x,y) =

n
∑

p=1
close(x,y)

| ∑
s,t∈Cl(x)

w(s, t)|+ | ∑

s′ ,t ′∈Cl(y)
w(s′, t ′)|

(2.36)

where n is termed as the number of possible paths connecting x and y, w(s, t) represents
the weight of an edge between two vertices s and t in Cl(x). Similarly, w(s

′
, t
′
)
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represents the weight of an edge between two vertices s
′
and t

′
in Cl(y). In Eqn. 2.36,

close(x,y) is defined as:

close(x,y) =


1 l(x,y)< 2
w(x,z)+w(z,y)

2∗10l(x,y)−2 l(x,y) = 2
w(x,z)+w(z,e)+w(e,y)

2∗10l(x,y)−2 l(x,y) = 3

0 l(x,y)> 3

(2.37)

where l(x,y) denotes the length of the path between vertex x and y, with z, e each
depicts a vertex in path. It is worth mentioning that when the cluster for a vertex only
contains its adjacent neighbours, this metric can be simplified into a variant of JC.

2.3.2.2 Fuzzy Link Prediction Based on Order-of-Magnitude Metric (FOM)

A common disadvantage of the numerical measures previously discussed is their inability
to achieve coherent and natural interpretation via existing seemingly fine-grained scales.
Exploring a linked network with crisp valued criteria is generally considered inflexible
comparing to the use of linguistic descriptors. Particularly, a misinterpretation of a link
measure may happen if there exists an unduly high property value within a linked network.
A more accurate and natural measure is to exploit qualitative labels.

To tackle such a crucial drawback, an advanced approach has been proposed in which a
link measure is gauged in accordance with its specific FOM spaces [157, 158], an extension
of the crisp-interval Order-of-Magnitude space [159]. Let FOM(π) = (L(π),F(π)) be an
FOM space of the link measure π , and L(π) and F(π) each represents a set of qualitative
labels and a set of fuzzy sets which define such labels. Note that the development of a
qualitative reasoner usually involves aggregating a number of different link measures, with
each link measure presenting a particular feature of the discussed link. And these features
values generated by various link measure are often represented with qualitative labels of
different granularity, defined on dissimilar universes of discourse. Therefore, prior to the
aggregation process, the homogenization process performed on the traditional OM model
is similarly required to map the fuzzy-set based feature variables onto the unified scale
U = [0,1].

Assume that m distinct measures are adopted to perform link analysis, each carries a
qualitative variable, denoted as Vi (1≤ i≤ m), with a corresponding weight, denoted as Wi
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(1≤ i≤m). Following the pre-processing procedure, the aggregated outcome φ (also a fuzzy
set ranging in U = [0,1]) can be estimated through the weighted average function ϕ:

φ = ϕ(V1, ...,Vm,W1, ...,W (m)) =
V1W1 + ...+VmWm

W1 + ...+Wm
(2.38)

The membership function of φ is represented by µφ (t), where t is an ordinary weighted
average which can be computed as:

t = ϕ(x1, ...,xm,w1, ...,wm) =
x1w1 + ...+ xmwm

w1 + ...+wm
(2.39)

where xi ∈Vi and wi ∈Wi (1≤ i≤m). According to the extension principle, the membership
function of φ is:

µφ (t) = sup(min(µV1(x1)),µW1(w1)), ...,min(µVm(xm)),µWm(wm)) (2.40)

It is worth mentioning that calculating the exact membership function µϕ(t) is compu-
tationally expensive. Thus, a discrete approximation by α-cut fuzzy arithmetic is used to
perform the fuzzy set aggregation step [160]. Specifically, the α-cut of a variable Vi and its
corresponding weight Wi (1≤ i≤ m) are denoted as:

(Vi)α = {(xi,µVi(x1))|xi ∈Vi,µVi(xi)≥ α} (2.41)

(Wi)α = {(wi,µWi(w1))|wi ∈Wi,µWi(wi)≥ α} (2.42)

Note that the α-cuts are crisp intervals which can be expressed in continuous closed
form:

(Vi)α = [(ai)α ,(bi)α ] =
[

min{xi ∈Vi|µVi(xi)≥ α},max{xi ∈Vi|µVi(xi)≥ α}
]

(2.43)

(Wi)α = [(ci)α ,(di)α ] =
[

min{wi ∈Wi|µWi(wi)≥ α},max{wi ∈Wi|µWi(wi)≥ α}
]

(2.44)

where (ai)α and (ci)α denote the left endpoints of (Vi)α and (Wi)α , respectively. Similarly,
(bi)α and (di)α denote the right endpoints of (Vi)α and (Wi)α , respectively.

Thus, the α-cut of φ , denoted as (φ)α can be acquired in a way that
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(φ)α =
[

minφ(x1, ...,xm,w1, ...,wm),maxφ(x1, ...,xm,w1, ...,wm)
]

(2.45)

where ∀α ∈ (0,1], (ai)α ≤ xi ≤ (bi)α , (ci)α ≤ wi ≤ (di)α , ai,xi,bi ∈ Vi and ci,wi,di ∈Wi

(1≤ i≤ m). Owing to the monotonicity of ϕ , Eq. 2.45 can be simplified as:

(φ)α =
[

min
wi∈{(ci)α ,(di)α}

fL(w1, ...,wm), max
wi∈{(ci)α ,(di)α}

fR(w1, ...,wm)
]

(2.46)

where fL(w1, ...,wm) and fR(w1, ...,wm) representing the left and right point of the value
interval are respectively defined as:

fL(w1, ...,wm) = f ((a1)α , ...,(am)α ,w1, ...,wm) =
(a1)αw1 + ...+(am)αwm

w1 + ...+wm
(2.47)

fR(w1, ...,wm) = f ((b1)α , ...,(bm)α ,w1, ...,wm) =
(b1)αw1 + ...+(bm)αwm

w1 + ...+wm
(2.48)

It has been demonstrated that the qualitative approach consistently outperforms traditional
numerical methods over datasets in the field of terrorism detection and author collaboration
[109]. However, a current restraint for the order-of-magnitude model is its initial setup
requires expert directed specification of qualitative variables (i.e., link property measures and
their relative weights for aggregation). Despite the fact that the performance of this predicting
model is generally robust to different parameter settings [157], the automatic determination
of the underlying qualitative definition through a data-driven process is worth investigating,
when there are sufficient training data available.

2.4 Summary

This chapter has introduced a selection of clustering metrics in both forms of general partition
and hierarchical configuration at first, followed by a systematic review on link prediction
techniques. The underlying inspirations for link prediction span a wide range of areas,
including intrinsic features, topological structure, probability analytics and fuzzy logic. In
general, the contents summarised in this chapter provide the foundation for the subsequent
theoretical framework.
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Chapter 3

Clustering Embedded Linear Regression
for Prediction

Prediction is one of the most typical tasks in the research fields of machine learning and data
mining. Predicting a continuous numeric feature is generally known as regression among
related fields. Currently, regression analysis is also regarded as a mathematical approach
to differentiating influential variables from the ordinary counterparts and sorting out the
manner in which those influential variables interact with each other. Although there exists
a variety of types of regression analysing metrics, with each having its own importance on
a specific condition where they are best suited to be applied, at their core they all focus on
examining the influence of one or more independent variables on a single dependent variable.
Simple multi-variable linear regression (SMLR), one of the conventional approaches for
regression problem which requires no prior knowledge about the dependencies on feature
variables, has demonstrated its effectiveness in various application [20, 161]. However, it has
two significant deficiencies: (1) It is not capable of generating a satisfactory structure which
can model randomly distributed data or data organised in multiple regular forms. (2) It is
sensitive to noisy entities or outliers in the examined dataset. Having noticed the drawbacks
hidden behind this well-known approach, a novel predicting framework which can better
handle the above mentioned problems is proposed and discussed in this chapter.

The rest of this chapter is arranged as follows. Section 3.1 introduces the concept of
the proposed model, with a brief description of its components. Section 3.2 specifies the
implementation of the predicting model in detail. Section 3.3 shows a case study of applying
the predicting model to a real-world scenario of estimating student academic performance.
Section 3.4 summarises this chapter.
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3.1 Conceptual Framework of Predicting System

The structure of the predicting system is shown in Fig. 3.1. The system comprises four distinct
component subsystems, each of which implements the following functionalities, respectively:
partition, classification, regression and estimation. These activities are integrated together to
form the overall predicting model, whose implementation involves a 4-step computational
algorithm:

Fig. 3.1 Architecture of CELR Predicting System

1) Partition Subsystem: Partition sample data into different categories based on the
similarities of their respective attribute (feature) values. This step results in sample
data divided into a pre-defined number of groups, with data instances in the same
group being deemed more similar to those in other groups.

2) Classification Subsystem: Identify the category to which a testing instance belongs
according to the similarity of its attribute values to those of the sample data. This step
assigns the testing instance to one of the categories (groups) generated by Step 1.

3) Regression Subsystem: For the designated category obtained by Step 2, determine
the relationship between a dependent feature variable of interest and the independent
attributes based on the sample data within the target category.

4) Estimation Subsystem: For a target testing instance, calculate the predicted result on
its missing feature value according to the observed independent feature values and the
relationship fomula determined in Step 3.
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3.2 Implementation of Predicting System

This section describes the implementation of the proposed framework for prediction. Note
that the conceptual framework proposed in Section 3.1 can be implemented via various
combinations of approaches for each of the component subsystems. However, in this section,
one of the most efficient implementations is demonstrated.

3.2.1 Partition Subsystem

The aim of the partition subsystem is to divide the instances in training dataset into different
categories according to their respective attribute (feature) vector. Those training instances
with similar attributes values are partitioned into the same group. To implement such a parti-
tioning task, k-means clustering [79], one of the simplest unsupervised learning algorithms
[162] is employed. It works by grouping a set of instances in a way such that instances in the
same cluster are more similar to each other than to those in other clusters. The parameter k
(k 6 n) here, representing the number of partitions, together with the initial centroid of each
cluster, can be either given by domain experts, or generated through automatic steps [43, 163].

In the process of clustering, the Euclidean distance between each instance and the centroid
of each cluster is calculated to determine which cluster the instance belongs to. The pseudo-
code for the implementation of this simple k-means clustering is shown in Algorithm 4.
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Algorithm 4: k-means Clustering Algorithm
Input:
k: Number of clusters
C = {c1,c2, ...,ck}: k centroids of k clusters
n: Number of instances in the training dataset
S = {s1,s2, ...sn}: A training dataset of n instances

1 repeat
2 foreach si(1 6 i 6 n) ∈ S do
3 foreach c j(1 6 j 6 k) ∈C do
4 COMPUTE Euclidean distance d(si,c j) between si and c j ;
5 end
6 si→{Cluster j|argmin

c j∈C
d(si,c j)} ;

7 foreach c j(1 6 j 6 k) ∈C do
8 c j ← average of {si|si ∈Cluster j} ;
9 end

10 end
11 until none of c j in C changed;

Output: A set of Clusters

Note that if different weights are imposed upon each of the attribute variables, then the
above algorithm will need to take the weighting scheme into consideration. This is however,
straightforward due to the fact that only linear rescaling of the component contributions need
to be calculated.

The time complexity of the k-means algorithm here is O(nkl), where n is the number of
instances in the training dataset, k is the number of clusters, and l is the number of iterations
taken by the algorithm to converge. Usually, k and l are fixed in advance. So the algorithm
has a linear time complexity with respect to the size of the training dataset O(n) [162].

3.2.2 Classification Subsystem

The general objective of classification is, through supervised learning, to identify which
class a new or unseen observation belongs to, on the basis of a training dataset containing
instances whose class labels are known [164]. This is also the case for the present subsystem.
In particular, for predicting a feature value for an object, when a sample of (other) instances
are available, the task can be guided by determining the position of this object with regard to
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any clusters obtained by the above clustering method.

It is natural to believe that a group of objects with similar features values may belong to
the same category. From this observation, the K-Nearest-Neighbours (KNN) classifier [165]
is employed to perform the required classification job. KNN is chosen since it is one of the
simplest classification methods and works well when there is little or no prior knowledge
about the distribution of the domain data. For the ease of description, the clusters generated
by the K-means clustering method are termed as classes here.

K-Nearest-Neighbours (KNN) classifier [165] is employed to perform the required clas-
sification. KNN is chosen since it is one of the simplest classification methods and works
well when there is little or no prior knowledge about the distribution of the domain data. For
the ease of description, the clusters generated by the k-means clustering method are termed
as classes here.

To classify an unlabelled instance, the K-nearest instances of it are selected to vote for
which class it belongs to. The K-nearest instances refer to those classified records whose
distances to the unlabelled instance are measured to be the K shortest ones (though these
distances do not have to be equal). The simplest way to find the nearest neighbours of an
instance is to compute its Euclidean distance to all the training examples. The pseudo-code
of kNN classification is shown in Algorithm 5.

Algorithm 5: KNN Classification Algorithm
Input:
K: Number of nearest neighbours
n: Number of instances in the training dataset
S = {s1,s2, ...sn}: A training dataset of n instances
sp(sp /∈ S): Instance to be predicted

1 foreach si(1 6 i 6 n) ∈ S do
2 COMPUTE Euclidean distance d(sp,si) between sp and s j ;
3 end
4 ORDER d(sp,si),(1 6 i 6 n) from smallest to largest and CREATE a list L ;
5 ASSIGN sp to the most frequent class which the first K instances in L belong to;

Output: A clucter which sp belongs to
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The implementation of this KNN classification method is straightforward, with a test
time complexity of O(n+Kn) [166], where n is the size of the training dataset, and K is the
number of selected nearest neighbours.

3.2.3 Regression Subsystem

Regression analysis is a popular statistical process for estimating the relationships among
continuous numeric variables, which has been widely applied [20]. Assume that there is no
prior knowledge about the variable dependency available (which is usually the case when
exploring a new research field), multi-variable linear regression, a highly flexible mechanism
for examining the relationship of a collection of independent variables to a single dependent
variable [167], is an appropriate choice to perform the final prediction.

The basic idea of this linear regression model is: given a dataset {yi,xi1,xi2, ...xim},(i =
1, ...,n) of n instances, the relationship between the dependent variable yi and the m indepen-
dent variables xi j (1 6 j 6 m) is assumed to be linear. That is, the underlying relationship
amongst all the variables takes the form of

yi = α0 +α1xi1 +α2xi2 + · · ·+αmxim (3.1)

where α = [α0,α1,α2, · · · ,αm] is the so-called regression coefficient vector.
Let 1̂ denote the unit value vector (of an n dimensionality) and

X =
[
1̂ x1 x2 ... xm

]
=


1 x11 x12 ... x12

1 x21 x22 ... x22
...

...
... ...

...
1 xn1 xn2 ... xn2

 (3.2)

Then, the multi-variable linear regression to estimate the predicted dependent feature variable
is of the following equation form:

y = Xα (3.3)

where y = [yi,y2, ...yn]
T is a vector of dependent feature values for the training sample data

which is already known.

In order to determine the value of α j (0 6 j 6 m), conventional least squares (LS)
estimator is adopted here owing to its computational simplicity. The LS method minimises
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the sum of squared residuals, and leads to a closed-form expression for estimating the
unknown vector α:

α = (XT X)−1XT y (3.4)

The complexity of the LS algorithm for multi-variable linear regression is O(m2n), where
m is the number of independent variables and n is the number of instances in the training
dataset. Since m is usually fixed and known in advance, if m is much smaller than n, the
asymptotic time complexity is O(n).

3.2.4 Estimation Subsystem

This subsystem implements a straightforward, and final step of the entire computation
process of the integrated system. From the resulting parameter estimation for α , given the
independent feature vector F for a testing instance t, where F t = [ f t

1, f t
2, ..., f t

m], the dependent
feature value ep for prediction can be calculated as

ep = α0 + f t
1α1 + f t

2α2 + ...+ f t
mαm (3.5)

Thus, the predicted feature value of the target instance is obtained. Likewise, for cases
where predicting dependant feature value for a number of instances, the task can also be
implemented through this method. Simply, the time complexity of the estimation method is
O(1) for one predicted instance, and O(n) for n instances.

3.3 Case Study: Prediction on Student Academic Perfor-
mance

The prediction of students academic performance plays an important role in educational
institutions, especially for higher educational institutions such as universities and colleges.
For example, when reviewing applications from prospective students, the prediction may help
universities to find candidates who are eligible for a particular academic program and identify
those applicants who are likely to perform well in the university [168]. The prediction of
academic performance can also help students and their referees to estimate what kind of
higher educational institutions they may be qualified for and what type of academic major
may be suitable for them.
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Furthermore, the results obtained from such prediction for students already at a university
may be used for classifying students, thereby enabling the educational institution to provide
them with additional support such as customised personal assistance and tutoring resources.
The results of prediction can also be used by lecturers as well to specify the most appropriate
teaching materials and actions for each group of students to meet their needs. Thus, develop-
ing a prediction tool is very important for educational institutions.

Predicting student exam scores is a section of estimating student overall academic perfor-
mance, and is of great value to study. In general, for a typical academic module, students’
performance is usually assessed by assignments, class tests and a final exam. The integrated
overall evaluation for a student’s performance on a module is typically based on a certain
combination of the outcomes of these aspects.

Unfortunately, there are occasions that a student fails to attend an exam due to inescapable
reasons, such as physical injury or other medical situations. There may even be cases where
a number of students in the same module fail to attend the exam because of unavoidable
weather conditions or a natural disaster. Thus, if something happens like this, how to evaluate
their performance in the exam becomes a problem. Perhaps rearranging another exam could
be a way forward, but this may carry significant disadvantages, including but not being
limited to the following: (1) Unfairness - The questions in the rearranged exam may not be
precisely in line with the previous one in difficulty or complexity level, since the questions in
the two exams cannot be exactly the same, causing unfairness when ranking student in their
academic performance. (2) Costs - Once another exam needs to be organised, new exam
paper needs to be set and vetted, the calendar and the exam rooms need to be rescheduled,
and the invigilators need to be arranged and trained, increasing the workload and overheads
significantly. (3) Disruption - The rearranged exam might produce contradiction to the
designated teaching plan, especially when decisions must be made on the basis of the exam
outcomes in order for normal teaching activities to be carried on continuously. For any
of these cases, successfully predicting student exam scores and using them as evidence to
evaluate student academic performance offers great potential benefits.

Over the past decades, methods for data mining and machine learning have been applied
to commercial business analysis and prediction successfully. However, their applications in
education field is still at a coarse level. Recently, Oladokun [169] employed artificial neural
networks to predicting student academic performance in an engineering course. Chen [168]
introduced an alternative for training neural networks in an effort to predict student academic
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performance. Hidayah [170] developed a neuro fuzzy approach for classifying students
through academic performance prediction in a conventional classroom context. Fire [171]
made an attempt to predict student exam scores by analysing social network data between
students.

Previous methods for prediction have to an extent neglected intuitive results achieved by
students in given academic modules, such as assignment marks and class test marks. This
section presents a novel approach to predicting student exam scores based on CELR, and
using basic attributes which are directly related to the teaching of the academic module
concerned.

3.3.1 Data Preparation

Originally, two small datasets (SAP50A and SAP50B [172]) are used as examples and in the
form of numerical crisp scores between 0 and 100, which is one of the most popular ways
to measure student academic performance. The objective of experiment with SAP50A is to
provide evidence that the proposed method can produce acceptable result on an ideal and
representative dataset. However, the reason to select two types of training dataset for experi-
ment is that the students performance in an assessment component does not always distribute
normally, thus SAP50B, a dataset in which data are distributed rather randomly, is selected to
conduct another experiment. The distribution scores of the assignment, test and final exam in
SAP50B are shown in Fig.3.2, Fig. 3.3 and fig.3.4 [172]. It is worth mentioning that each of
the datasets consists of 50 instances, involving three conditional attributes: assignment score,
test score and final exam score, accompanied with five possible classification outcomes:
“Unsatisfactory”, “Satisfactory”, “Average”, “Good” and “Excellent”. Since partitioning
50 instances into five classes may possibly result in a class containing very few instances,
which might probably cause heavy bias to make prediction, based on experts opinion, the
five classes are merged into three, with “Satisfactory” and “Average” combined to “new
average”, and “Good” and “Excellent” combined to “new good”. For simplicity, the grades
of “Unsatisfactory”, “new average” and “new good” are denoted as C, B, A respectively.
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Fig. 3.2 Distribution of Assignment Scores

Fig. 3.3 Distribution of Test Scores
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Fig. 3.4 Distribution of Final Exam Scores

Another four datasets (grouped and named as SAP-PLUS), each containing hundreds of
instances collected from two Portuguese schools (GP and MS) about their students in Maths
and Portuguese language study, are used to test the proposed predicting system as well [173].
As with many European countries (e.g. France, Portugal), a 20-point grading scale is used to
evaluate student academic performance, where 0 is the lowest grade and 20 is the perfect
score. During the school year, students are evaluated in three periods and the last evaluation
(G3 in Table 3.1) corresponds to the final period grade. In the complete dataset, more than
30 attributes with related data to each attribute are collected. For simplicity and clarity,
continuous numeric attributes which are closely related to the student academic performance
and the study behaviour based on expert’s opinion are selected to conduct the experiment.
The selected attributes are shown in Table 3.1.

Table 3.1 Selected Attributes for Student Academic Performance

Attribute Description

study-time weekly study time (numeric)
failure-count number of failures in the past for this academic module (numeric: integer)
absence days of school absence (numeric)
G1 first period grade (numeric: from 0 to 20)
G2 second period grade (numeric: from 0 to 20)
G3 final period grade (numeric: from 0 to 20)
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Note that the values of the selected attributes are almost within the same range (in the
same order of magnitude), thus no requirement about data preprocessing is needed prior to
performing the proposed predicting model.

3.3.2 Experimental Setup

Taking Dataset SAP50A and SAP50B as example, for the task of predicting student academic
performance, its involving procedure is shown in Fig. 3.5.

Fig. 3.5 Process of CELR for Predicting Student Academic Performance

For experiments on datasets SAP50A and SAP50B, each dataset is split into subsets for
3-fold cross validation (3-FCV)[174]. The reported results are based on an average of 10
times of the 3-FCV. For partition step, in the process of K-means clustering, two different
ways to determine initial centroids are given to show the results. One is based on experts
opinion, and the other is by statistical computation, which will be discussed in Section
3.3.2.1. For experiments on SAP-PLUS, a alternatively, an automatic approach through
statistical computation is applied to generate the initial centroids the partition step. And 10
runs of 10-fold cross validation (10-FCV) are conducted to present the experimental result,
since the size of the examined datasets are much larger than SAP50A and SAP50B. In the
step of classification, the number of nearest neighbours K is odd and set from 3 to 7 over
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different runs. In reality, it has a natural appeal to assume that a group of students with similar
academic records on a module may have a similar ability amongst each other in knowledge
comprehension and application and hence, achieve similar result in the final exam. This
provides an intuitive approach to estimating the likely exam score of a student (who missed
the exam due to good reasons) using corresponding features of his/her peers of the same
intellectual ability. To validate the significance of the experimental result, paired t-tests are
carried out. The baseline for comparison is the result of running SMLR.

3.3.2.1 Methods for Partition

• Partition based on experts opinion: The classification of the grades in the experiment
for SAP50A and SAP50B is based on an interval that refers to the level of performance
given by experts as shown in Table 3.2, Table 3.3 and Table 3.4.

Table 3.2 Assignment Scores with Their Associated Level of Achievement and Grades (class)

Assignment Score Level of achivement Grade (Class)

0-15 Unsatisfactory C

16-45 average B

46-100 good A

Table 3.3 Class Test Scores with Their Associated Level of Achievement and Grades (class)

Class test Score Level of achivement Grade (Class)

0-35 Unsatisfactory C

36-65 average B

66-100 good A

Table 3.4 Exam Scores with Their Associated Level of Achievement and Grades (class)

Exam Score Level of achivement Grade (Class)

0-25 Unsatisfactory C

26-45 average B

46-100 good A

From Table 3.2 to Table 3.4, it is not difficult to identify the mid-grade point for each
kind of examination method by [Score(min)+Score(max)]/2. For instance, the mid-grade
point of grade C for student assignment is calculated as (0+15)/2= 7.5, the mid-grade
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point of grade B for student assignment is calculated as (16+45)/2 = 30.5, and the
mid-grade point of grade A for student assignment is calculated as (46+100)/2 = 73.
Similarly, the mid-grade point of each grade for class test and exam can be calculated.
Thus, a matrix M containing mid-grade points of different grades for assignment, class
test and exam is obtained, where

M =

 7.5 30.5 73
17.5 50.5 83
12.5 35.5 73

 (3.6)

Each column vector of M can be employed as a centroid for clustering in the partition
subsystem.

For data corpus SAP-PLUS, the original records of student academic grades can
be transformed into European Credit Transfer System (ECTS) Grades, according to
Erasmus grade conversion system – a European programme that enables students
exchange in 31 countries [173], The details of the transforming rule are listed in Table
3.5.

Table 3.5 ECTS Grades with Corresponding Portugal/France Grades

ECTS Grades Portugal/France Grades

Excellent (A) 16-20
Good (B) 14-15

Satisfactoty (C) 12-13
Sufficient (D) 10-11

Fail (E) 0-10

Similarity, the expertise based centroid determination method can be applied to the
datasets involved in SAP-PLUS.

• Partition based on computation: Different from applying initial centroids provided
by lecturers or domain experts for clustering in the partition subsystem, another method
to determine initial centroids based on computation is described as follows (taking
dataset SAP50A and SAP50B as example):

1) Calculate the arithmetic average avgi (1 6 i 6 n) of the assignment score ai, class
test score ti and exam score ei for each instance in the training dataset.

2) Sort the instances in the training dataset according to their arithmetic averages.

3) Divide all the instances into K clusters evenly based on their arithmetic averages
after sorting, and name the results Cluster j (1 6 j 6 K).
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4) Calculate the arithmetic averages of assignment scores avg(a)j , class test scores

avg(t)j and exam scores avg(e)j within each cluster Cluster j (1 6 j 6 K), and
assign the results to be the initial centroid of each cluster.

Analogously, for dataset corpus SAP-PLUS, such initialising steps are applied to the
previous numeric academic records. However, in Step 4), average value of features
including study behaviour indicators also needs to be calculated to form the initial
centroid.

For the experiment, in order to be consistent with the expertise based approach, the
number of clusters generated from such automatic method is determined to be equal
to the manual defined counterpart. Advanced techniques capable of determining the
number of clusters intelligently will be discussed in Section 8.

3.3.3 Experimental Result

The experimental result are illustrated by three different indicators:

1. Mean absolute error of prediction, which provides a general view for the estimating
precision.

2. Average percentage of predicted scores closest to ground truth, which comparatively
reveals the predicting accuracy amongst different methods.

3. Average percentage of estimation error within a certain numeric range, focusing on the
tolerance of an approach for its error space.

These indicators each presenting a particular feature of the metrics and are jointly considered
to disclose the general efficacy of the predicting models under examination.

In the partition subsystem of the predicting framework, basic sorting algorithm and
statistical computation are used to determine the initial centroids of each cluster. In the
process of implementing cross validation, the initial centroids for clustering are changed
each time with the alteration of training and testing dataset, which makes difference to the
fixed initial centroids given by lecturers or domain experts. For the classification subsystem,
in same with the previous experiment, odd number of nearest neighbours K is set from 3 to 7
over different runs. The above mentioned statistical indicators obtained from experimental
results are listed in Table 3.6.
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It is obvious that in Table 3.6, the CELR with 3 nearest neighbours for classification
performs best among all the listed approaches, with the smallest absolute mean error of
prediction 7.59 and 7.82 for CELR(A) and CELR(E) respectively, and the largest numbers of
predicted scores which are closest to the ground truths. The proposed method with 5 and 7
nearest neighbours for classification performs poorer than the previous one but better than
SMLR. The reason for their worse performance to 3NN classification is due to the vote for
some instances which share similarities to both classes. Similar results are also illustrated for
dataset SAP50B, which are shown in Table 3.7.

58



3.3 Case Study: Prediction on Student Academic Performance

Ta
bl

e
3.

7
C

om
pa

ri
so

n
of

St
at

is
tic

al
In

di
ca

to
rs

in
Pr

ed
ic

at
ed

E
xa

m
Sc

or
es

O
bt

ai
ne

d
by

C
E

L
R

an
d

SM
L

R
on

SA
P5

0B

In
di

ca
to

rs
C

E
L

R
(E

)
C

E
L

R
(A

)
SM

L
R

K
=

3
K
=

5
K
=

7
K
=

3
K
=

5
K
=

7

M
ea

n
ab

so
lu

te
er

ro
r

of
pr

ed
ic

tio
n

10
.2

9
±

2.
14

(v
)

12
.2

7
±

2.
03

12
.9

2
±

2.
36

10
.0

2±
1.

94
(v

)
11
.7

1
±

2.
37

(v
)

13
.0

1
±

2.
25

13
.6

1
±

2.
74

A
ve

ra
ge

pe
rc

en
ta

ge
of

pr
ed

ic
te

d
sc

or
es

cl
os

es
tt

o
gr

ou
nd

tr
ut

h
18
.7

6
±

3.
42

(v
)

13
.7

3
±

4.
24

11
.4

3
±

3.
88

20
.8

2±
4.

83
(v

)
11
.1

3
±

3.
67

12
.2

4
±

3.
34

12
.3

8
±

4.
09

A
ve

ra
ge

pe
rc

en
ta

ge
of

es
tim

at
io

n
er

ro
r

w
ith

in
10

po
in

ts
(%

)
71
.2

3±
5.

29
(v

)
60
.9

1
±

7.
58

62
.2

4
±

7.
21

69
.4

5
±

7.
28

(v
)

63
.8

9
±

8.
11

62
.5

4
±

6.
16

62
.8

2
±

7.
17

A
ve

ra
ge

pe
rc

en
ta

ge
of

es
tim

at
io

n
er

ro
r

w
ith

in
5

po
in

ts
(%

)
32
.4

5
±

5.
48

(v
)

29
.4

4
±

5.
92

28
.6

2
±

6.
25

34
.6

2±
7.

12
30

.0
5
±

8.
19

30
.8

9
±

7.
24

28
.7

8
±

8.
23

1.
(E

):
E

xp
er

td
et

er
m

in
at

io
n

of
in

iti
al

ce
nt

ro
id

s.
2.

(A
):

A
ut

om
at

ic
de

te
rm

in
at

io
n

of
in

iti
al

ce
nt

ro
id

s.
3.

K
:N

um
be

ro
fn

ea
re

st
ne

ig
hb

ou
rs

se
le

ct
ed

.
4.

T
he

be
st

re
su

lts
ar

e
hi

gh
lig

ht
ed

in
bo

ld
fa

ce
,w

ith
si

gn
(*

)/
(v

)i
nd

ic
at

es
th

at
th

e
co

rr
es

po
nd

in
g

re
su

lt
is

si
gn

ifi
ca

nt
ly

w
or

se
/b

et
te

rt
ha

n
th

at
of

SM
L

R
of

95
%

co
nfi

de
nc

e
in

te
rv

al
.

59



3.3 Case Study: Prediction on Student Academic Performance

Note that SAP50B is a different dataset from SAP50A in terms of data distribution. This
is to reflect the fact that students performance in an assessment component does not always
distribute normally. Intuitively, the performance of the proposed method to dataset SAP50B
seems not as good as it performed to dataset SAP50A. This is due to the fact that some of
the instances in SAP50B are too extreme to be fitted by regression equation, which leads
to heavy bias in estimation. However, the overall performance of the proposed method is
still better than SMLR, which demonstrate that the pre-handling of data before applying
regression model is significantly valuable.

The same training and testing steps are carried out to dataset corpus SAP-PLUS. As
mentioned in Section 3.3.1, SAP-PLUS contains four datasets from two schools, denoted
as Maths(GP), Portuguese(GP), Maths(MS) and Portuguese(MS), respectively. Note that
for the current circumstance, the predicted results are within a range of [0, 20], thus, the
indicator of average percentage of estimation error within a specific region needs to be
adjusted accordingly. Here, 3 and 1 are adopted respectively to replace the previous testing
setup of 10 and 5 for experimentation on SAP50A and SAP50B. The experimental results on
these four datasets are presented in Table 3.8 to 3.11.

Unsurprisingly, CELR again outperforms SMLR significantly with regard to most of the
statistical indicators and generates predicting results which are closer to the ground truths.
Moreover, in terms of some statistical indicators, such as Mean absolute error of prediction
and average number of estimation error within a particular range, the proposed approach
with computational method to determine initial centroids for clustering even performs better
than the method with initial centroids given by lecturers or domain experts, which shows the
advantage of computational intelligence in the proposed framework.
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3.4 Summary

3.4 Summary

This chapter has presented a new framework to predict continuous feature value which is
missing. For the typical task of predicting continuous feature values with no prior knowledge
about the predictor dependency available, linear regression analysis is universally regarded as
one of the most effective methods. CELR is an eager learning approach (constructing models
based on training instances to interpret the underlying data) [175], which improves the
performance of conventional linear regression by partitioning training data into subspaces. It
works on the assumption that all the feature variables examined as predictors are independent
from each other. The proposed work performs the predicting task by employing simple
clustering, classification and regression mechanisms within an integrated framework, which
is convenient to implement. Time complexity for each of the involved in components of the
predicting system is examined, revealing the efficiency for applying the model to various
scenarios. A case study of comparative experimental investigations on prediction of student
academic performance is carried out, demonstrating the potential of the proposed work in
producing more intuitive and interpretable results. More in-depth discussions about the
refinement of the predicting model are given in Chapter 8.
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Chapter 4

Fuzzy Embedded Clustering Linear
Regression for Prediction of Student
Academic Performance

As described in Section 3.3, the prediction of student academic performance is important
to both educational institutions and students themselves for a variety of reasons. However,
previous techniques often consider only past numeric data for prediction, whereas others
overuse different types of indicative attribute, leading to the creation of complicated predict-
ing methods whose results are difficult to interpret. In a more broad sense of addressing
the problem of predicting student academic performance, a number of proposed methods
work based on the use of large quantities of previous exam results. For example, student
performance in prior academic courses is used to predict their performance in a subsequent
course [176]. It has been shown that previous success in high school mathematics and science
has a positive correlation with the study of computer science at universities [177]. Also,
high school performance and background in mathematics is utilised to predict final exam
grades in an introductory computer science course [178]. Apart from previous academic
records, different types of other attributes, including age and gender [179], educational level
of the parents [180], emotional factors [181], social relationships [171], and even the com-
plexity measure of lecture notes [182] have been taken into consideration in the existing work.

Whilst researching into relationships between student academic performance and a wide
variety of individual attributes is meaningful and worthwhile, the overuse of different types of
indicative attribute has led to the creation of complicated score predicting methods which may
be hard to implement and whose results may be difficult to interpret. Certain types of attribute
may not be easy to obtain during the normal teaching process. Moreover, previous methods
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4.1 Structure of Predicting System

for prediction may be excessively focused on the relationship between student academic
performance and a particular type of attribute, ignoring the fact that such performance is a
synthesised consequence of many reasons. Having taken notice of this, a novel approach to
predicting student academic performance proposed will be discussed in this chapter, based on
the synthesis of just basic attributes that are related to the academic course and the students’
normal study behaviour.

The remainder of this chapter is organised as follows. Section 4.1 outlines the proposed
architecture for building the intelligent predicting system to predict student academic per-
formance. Section 4.2 describes the functionality of each component within the system,
and analyses their complexity. Section 4.3 shows the experimental evaluation, supported by
comparative studies with the real grades and other methods of prediction. Finally, Section
4.4 concludes the chapter.

4.1 Structure of Predicting System

This section presents the proposed general framework to predict student academic perfor-
mance, represented as final period grade. The structure of the proposed predicting system is
shown in Fig. 4.1. Analogous to the predicting model discussed in Chapter 3, the conceptual
framework for the novel predicting approach proposed here also comprises four distinct
component subsystems, each of which implements the following functionalities, respectively:
partition, regression, offset value generation and estimation. However, this advanced tech-
nique performs soft computation to categorise student records and make better use of global
knowledge for prediction, while taking more necessary factors (student study behaviours)
into account. These activities aforementioned are integrated together to form the overall
student final period grade predicting mechanism, whose implementation involves a 4-step
computational algorithm:

1) Partition Subsystem: Partition data of sample students (typically from previous years
on the same course, whose final period grades are available) into different categories
based on the similarities of their existing academic records (excluding their final period
grade), and obtain the membership values for each of the sample students with regard
to the partitions.

2) Regression Subsystem: Determine for each partition (category), the relationship
between the final period grade and the previous records in the academic module
concerned. Such a determination process works on each of the partitions obtained by
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4.1 Structure of Predicting System

Fig. 4.1 Architecture of Final Period Grade Predicting System

Step 1, resulting in a formula which measures the correlation amongst the final period
grade and the previous records of sample students for each of the partitions.

3) Offset Value Generating Subsystem: Generate an offset value of the predicted final
period grade for the target student according to the similarity of the student’s own
normal study behaviour and the behaviour of other students with the same or similar
previous academic records. This step performs the task of adjusting the predicted
results by considering the record of student study behaviour.

4) Estimation Subsystem: Estimate the predicted final period grade of the target student
based on the membership values obtained in Step 1, the relationship amongst final
period grade and previous academic records determined by Step 2, and the offset value
acquired from Step 3. Such an estimating process systematically considers the factors
involved in previous steps, thus providing a comprehensive predicted result.

The working details of these subsystems are explained in Section 4.2.
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4.2 Implementation of Predicting System

4.2 Implementation of Predicting System

This section describes the implementation steps for the conceptual framework outlined in
Section 4.1, with computational analysis for each of the subsystems being provided.

4.2.1 Partition Subsystem

Let an academic record list of n students be the input of the partition subsystem. In general,
each record in the list, describing a student with their previous grade and final period grade
(the grade values are in numeric form) for a given academic module, forms an instance of the
training dataset.

The aim of the partition subsystem is to divide the instances regarding a certain module
into different categories according to a formulaic synthesis of students’ academic records
over previous periods. Those students with similar previous academic records are partitioned
into the same group. Hence, the outputs of the partition subsystem are denoted as groups of
instances with similar academic records. However, in real situation, it may be difficult to
distinguish exact groups to which the instances may belong in accordance to their formulaic
synthesis of previous academic records, due to their relevance to different groups. Thus,
fuzzy c-means clustering [183, 184], which has natural appeal to handle such uncertainty, is
used to implement this subsystem. The resulting membership values for an instance to each
group will play an important role in later steps.

The initial centroid of each cluster can be preset by lecturers (as domain experts), or
generated through the following steps from the training samples:

1) Calculate the arithmetic average avgi (1 6 i 6 n) of the previous grades for each
instance in the training dataset.

2) Sort the instances in the training dataset according to their arithmetic averages.

3) Divide all the instances into K clusters evenly based on their arithmetic averages after
sorting, and name the results C j (1 6 j 6 K).

4) Calculate for each cluster C j, the arithmetic average of the academic grades over each
of the previous period, and assign the results as the initial centroid of the corresponding
cluster.

In the process of clustering, the Euclidean distance between a newly given instance and
the centroid of each cluster is calculated in order to determine which cluster the instance
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4.2 Implementation of Predicting System

belongs to. The pseudo code for the implementation of fuzzy c-means student clustering
algorithm is shown in Algorithm 6.

Algorithm 6: Fuzzy C-means Clustering of Students
Input:
K: Number of clusters
C = {c1,c2, ...,cK}: Centroids of K clusters
m: Fuzzy partition matrix exponent, m > 1
n: Number of instances in the training dataset
S = {s1,s2, ...sn}: training dataset of n student records
µi j: Degree of membership of si (1≤ i≤ n) in jth cluster (1≤ j ≤ K)

J =
n
∑

i=1

K
∑
j=1

µm
i j ||si− c j||2: Objective function

ε: Specified minimum threshold between iterations

1 COMPUTE initial cluster membership values µi j by µi j =
1

K
∑

l=1
(
||si−c j ||
||si−cl ||

)
2

m−1
, where

|| ∗ || stands for Euclidean distance ;
2 repeat

3 COMPUTE cluster centers: c j =

n
∑

i=1
µm

i j si

n
∑

i=1
µm

i j

;

4 UPDATE µi j according to: µi j =
1

K
∑

l=1
(
||si−c j ||
||si−cl ||

)
2

m−1
;

5 COMPUTE objective function J ;

6 until J improves by less than ε;

The time complexity of this algorithm is O(ndKl)[185], where n represents the number
of instances in the training dataset, d represents the dimension of the instance in the training
dataset, K represents the number of clusters, and l represents the number of iterations taken
by the algorithm to converge. Typically, K and l are fixed in advance and are usually not too
large. Therefore, the algorithm has the time complexity of the size of the training dataset
times the dimensionality of each training instance, namely O(nd).

4.2.2 Regression Subsystem

Regression analysis is a popular statistical process for estimating the relationships among
variables, which has been widely applied [20]. It is utilised here as a segment to predict
student final period grade. In particular, multi-variable linear regression, a highly flexible
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4.2 Implementation of Predicting System

mechanism for examining the relationship of a collection of independent variables with a
single dependent variable [167], is an appropriate choice to perform the prediction. This is
because different intuitive academic attributes are required to be taken into consideration to
form the required regression model, with each of them being regarded as an independent
factor in the evaluation of student academic performance.

The basic idea of the linear regression model is: given a dataset {yi,xi1,xi2, ...xim},(i =
1, ...,n) of n instances, the relationship between the dependent variable yi and the m indepen-
dent variables xi j (1 6 j 6 m) is assumed to be linear. That is, the underlying relationship
amongst all the variables takes the form of

yi = α0 +α1xi1 +α2xi2 + · · ·+αmxim (4.1)

where α0,α1,α2, · · · ,αm are termed regression coefficients.

To implement the algorithm of multi-variable linear regression for predicting student’s
final period grade, assume that there are m independent variables G1,G2, ...Gm: their val-
ues as given in the training samples are denoted as vectors. Denote these vectors as
VG1 = [G1

1,G
2
1, ...,G

n
1]

T , VG2 = [G1
2,G

2
2, ...,G

n
2]

T ,..., VGm = [G1
m,G

2
m, ...,G

n
m]

T , respectively,
where n stands for the number of instances in the training dataset. Denote the dependent
variable by VGp , with its value set encoded as the vector VGp = [G1

p,G
2
p, ...,G

n
p]

T .

Let 1̂ denote the unit value vector (of an n dimensionality) and

X =
[
1̂ VG1 VG2 ... VGm

]
=


1 G1

1 G1
2 ... G1

m

1 G2
1 G2

2 ... G2
m

...
...

...
...

...
1 Gn

1 Gn
2 ... Gn

m

 (4.2)

Then, the multi-variable linear regression to estimate the exam marks is of the following
form:

y = Xβ (4.3)

where β is an m+1 dimensional regression coefficients vector, containing β0,β1,β2, ...,βm

as sequenced elements.
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4.2 Implementation of Predicting System

In order to determine the element values of β , conventional least squares (LS) estimator
is adopted here owing to its computational simplicity. The LS method minimises the sum of
squared residuals, and leads to a closed-form expression for estimating the unknown vector
β :

β = (XT X)−1XT y (4.4)

Note that for each cluster generated by the partition subsystem, a calculation on the
corresponding regression coefficient vector β i(1≤ i≤ K) is required, where K is the number
of clusters generated by the partition subsystem. Thus, the complexity of the LS algorithm for
multi-variable linear regression is O(m2n), where m is the number of independent variables
and n is the number of instances in the training dataset. Since m is usually fixed and known
in advance, and m is typically much smaller than n for the present application, the asymptotic
time complexity of the regression subsystem can be approximated by O(n).

4.2.3 Offset Value Generating Subsystem

In practice, predicting student academic performance with only consideration of previous
records is not always enough. It is not surprising that students may achieve quite different
results in their final period even if they have had the same or similar achievements at previous
stages. This reality makes the task of reaching highly accurate prediction a challenge. Having
taken notice of this, aspects other than just the student previous academic records need to be
taken into account in order to generate better predicting results. Nowadays, it is commonly
recognised that the study behaviour has a significant impact upon student academic achieve-
ment [186–188], making it an interesting factor worth investigating.

The present subsystem is developed in an effort to optimise predicted final period grade,
by generating an offset value to the interim predicted final period grade for a given (target)
student. Suppose that there are m previous academic records available for the target (student)
instance. The computational process of this subsystem involves the following steps:

1) Calculate the Euclidean distances edi (1≤ i≤ n) between the target instance and every
instance in the training dataset by:

edi =

√
m

∑
j=1

(Gt
j−Gi

j)
2 (4.5)

where n is the number of instances in the training dataset and Gt
j is the academic record

of the target instance regarding the jth period.
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2) Find the nearest instances to the target by sorting the Euclidean distances returned by
step 1, and put them into a vector (of a varying dimensionality), named Vnearest .

3) Calculate the differences in the final period grades between each pair of the instances
in Vnearest , and find the maximum difference, denoting it by MAXd . If Vnearest contains
only one element then the difference is set to 0.

4) If the Euclidean distance between the target and a certain instance in Vnearest equals
0, copy the fuzzy membership values associated with that instance in the Vnearest as
the corresponding membership values of the target. If the Euclidean distance between
the target instance and an instance in Vnearest does not equal to 0, calculate its fuzzy
membership values to each cluster in the same way as done by the fuzzy c-means
method.

5) Preprocess the given data in response to student normal study behaviour as follows. For
a datum presented in boolean form, transform it into “0” or “1”, where “0” represents
“NO” and “1” represents “YES”. For a datum given in numeric form, normalise it to
fall within the interval of [0,1].

6) Without losing generality, suppose that there are P attributes reflecting certain aspects
of student normal study behaviour in the dataset, denoted by Al (1≤ l ≤ P), and that
there are N instances in Vnearest . For each instance in Vnearest , calculate its difference
Diffk (1≤ k ≤ N) to the target instance by the following:

Diffk =
p

∑
l=1

(At
l−As

l ) (4.6)

where As
l represents the lth attribute of the study behaviour involved in the instances

within Vnearest , and At
l represents the lth attribute of the study behaviour concerning the

target instance.

7) For each instance in Vnearest , calculate its similarity to the target instance by the
following [189]:

Simk =

P
∑

i=1
(1−|As

l −At
l|)

P
(4.7)

8) Calculate the offset value of the predicted final period grade for the target instance by:
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offset_value = MAXd ·
N

∑
k=1

(Diffk ·Simk) (4.8)

Note that although the implementation of the offset value generating subsystem includes
many steps, its time complexity is acceptable, with O(n2) to form the Vnearest , O(N) to
find the MAXd , O(P) to calculate Diffk, O(P) to compute Simk, and O(N) to calculate the
offset_value. Hence, the total time complexity is O(n2+2N+2P). Since N and P are usually
not large numbers for the present problem, the time complexity can be approximated by
O(n2).

4.2.4 Estimation Subsystem

Given the regression coefficient vectors β 1,β 2, ...,β K (where K is the number of clusters
given by the partition subsystem), and a set of fuzzy membership values Vµ = [µ1,µ2, ...,µK]

for a target student, the estimation subsystem implements a straightforward and final step
of the entire computation process. Suppose that the vector of previous grades is denoted
by VGp and that the offset_value of the target instance has been obtained (see the preceding
sub-section), the predicted final period grade Gpredicted can be calculated as

Gpredicted = (
K

∑
i=1

µiV T
Gp

β
i)+offset_value (4.9)

where V T
Gp

denotes the transpose of VGp .

Note that the task of predicting final grade for a number of students can be implemented
through the recursive application of this method. The predicted results of target students
together with information regarding their previous academic grades and records of their study
behaviours can be used to construct new training instances to enlarge the training dataset.
Simply, the time complexity of the estimation method is O(K) for one student, and O(Kn)
for n students.

4.3 Experimental Evaluation

This section presents experimental studies of the proposed approach. The work both illustrates
the implemented system in action and demonstrates its efficacy.
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4.3.1 Experimental Setup

4.3.1.1 Dataset preparation

A data corpus (SAP-PLUS) of four datasets, as stated in Section 3.3, are used as examples
to conduct the experimentation. It is worth mentioning again that in the complete dataset,
more than 30 attributes with related data to each attribute are collected. For simplicity and
clarity, attributes which are closely related to the student academic performance and the study
behaviour based on expert’s opinion are selected to conduct the experiment. The selected
attributes are shown in Table 4.1.

Table 4.1 Preprocessed Student Academic Performance Related Attributes

Attribute Description

study-time weekly study time (numeric: 1: less than 2 hours, 2: 2 to 5 hours, 3: 5 to 10 hours, or 4: more than 10 hours)

failure-count number of failures in the past for this academic module (numeric: integer)

support extra support from educational school or family or other sources (binary: 1 for “yes”, 0 for “no”)

study-aim whether or not to take higher education (binary: 1 for “yes”, 0 for “no”)

activities extra curricular activities (binary: 1 for “yes”, 0 for “no”)

absence days of school absence (numeric: from 1: few to 3: many)

health (numeric: from 1: bad to 3: good)

G1 first period grade (numeric: from 0 to 20)

G2 second period grade (numeric: from 0 to 20)

G3 final period grade (numeric: from 0 to 20)

Before implementing the system, data preprocessing is carried out. In particular, attributes
related to the normal student study behaviour, such as “study-time”, “failure-count” and
“absence” are normalised into the range between 0 and 1. For instance, for a sample dataset
with n instances, the normalised value of the data with regard to the attribute “study-time”
for the ith (1≤ i≤ n) instance, denoted by std_study-timei, is defined as follows:

std_study-timei =
study-timei− study-timemin

study-timemax− study-timemin
(4.10)

where study-timemin and study-timemin are the maximum and minimum value of the attribute
“study-time”, respectively.

4.3.1.2 Experimental method

In the experiments, each dataset is split into subsets for 10-FCV. The reported results are
based on an average of 10 times of the 10-FCV. Since the ground truth of the students final
period grades are in the form of integer, whereas the predicted final period grade are in the
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form of floating-point number, the predicted data need to be transformed back to integers
to support interpretability. Without losing fairness, when conducting the experiments and
comparing the proposed work with other techniques, in addition to the empirical study on
original estimated results, truncation, rounding, and rounding-off metrics are also investigated
according to the statistical requirement, mapping the resulting predicted data onto an integer.

Despite the fact that the main use of the proposed system is to predict the numeric grade
(in terms of integer scores) for a given target student, the method can also be applied as a
classification model to categorise a target into a specific class based on the predicted numeric
grade. According to the Erasmus grade conversion system (discussed in Section 3.3), the
grades can be transformed into European Credit Transfer System (ECTS) Grades. The details
of the transforming rule are listed in Table 3.5.

4.3.2 Results and Discussions

4.3.2.1 Prediction of numeric grades

For the analysis of the proposed approach, the predicted final period grades are compared
with the corresponding underlying ground truth. The work is also compared with the standard
multi-variable linear regression method (SMLR) as the baseline metric (specifically, best
performance of original / truncation / rounding / rounding-off results based on SMLR are
adopted as benchmark) and the clustering embedded linear-regression method (CELR)
discussed in Chapter 3. Both of these methods can be widely adopted in the field of numeric
prediction, especially when there is little knowledge of the non-linear relations between
the end result and the attributes, as it is the case for the present application. In performing
the step of partition, the number of clusters K is set to 5 in accordance with the Erasmus
grade conversion system of classifying students. For the partition subsystem of the proposed
approach (named as fuzzy clustering embedded linear clustering or FCELR), m is set to 2
and ε is set to 10−6. For CELR, the initialisation of centroids for the partition subsystem is
determined by the statistical computation approach, and the number of nearest neighbour
for classification subsystem is set to 3, as it performs best in the experimentation presented
in Section 3.3. All 4 available datasets are used here for training and testing. The resulting
statistical indicators are listed in Table 4.2, 4.3 and 4.4.
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4.3 Experimental Evaluation

From Table 4.2, it can be observed that the approximating metric for mapping a real value
into a integer (i.e., rounding-off) may lead to little variance to the original predicted result
and avoid distorting the conclusion dramatically. FCELR performs best for most of the cases
by considering the statistical factor of absolute mean error, which reveals its remarkable
advantage over the baseline approach. The experimental results given in both Table 4.3
and Table 4.4 show that the FCELR outperforms SMLR and CELR, regarding predicting
accuracy and within 1-grade error. These results jointly demonstrate that predicted final
period grades are closer to the ground truth, demonstrating the significant potential of the
proposed framework.

It is worth noting that FCELR generally performs even better than CELR, because for a
large number of sample students, their academic grades are distributed normally and continu-
ously. It is relatively more difficult for SCLR to find clear boundaries amongst the clusters.
The proposed system has fuzzy-clustering embedded, avoiding the need of stating exactly
to which category a target may belong. Instead, the academic records of each student that
are considered belonging to a certain category are associated with membership values. Such
membership values are used in computing the weight of each regression model contributing
to the predicted grade of the target student.

Another reason for the proposed to outperform both SMLR and SCLR is that it makes
better use of the attributes about the student normal study behaviour. Although these at-
tributes are also taken into account by the other two predicting models, their values on the
0-1 scale are too small to make significant contributions in these models.

Also, FCELR possesses an interesting ability thanks to the introduction of an offset value.
From a list of sample students with the same or similar previous academic records, given
their final period grades, the proposed system can generate a predicted result exceeding the
limits of these sample students. This may have helped further improve its performance.

4.3.2.2 Prediction of 5-level grades

To further analyse the results achievable FCELR, advanced universal classification techniques
such as Naive Bayes method, K-NN, neural network, support vector machines (SVM),
decision trees and random forest are also employed to classify the predicted final period
grates. Particularly, the NaiveBayes metric released with Weka software [190] is set as a
baseline model, IBk, MultilayerPerceptron, SMO, J48 and RandomForest algorithms released
with the same software package are used to represent other listed classification approaches
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4.3 Experimental Evaluation

respectively, with K being set to 3 for K-NN, and the polynomial kernel selected to implement
SMO.
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4.4 Summary

The resultant accuracies are shown in Table 4.5. For comparison, the two highest
classification accuracy are denoted in boldface. Clearly, FCELR is in general amongst
the group with the best predicting accuracy. Although ranked 3rd for its performance on
dataset Maths(GP), it yields similar predicting accuracy to SMO and J48 (ranked 1st and
2nd respectively), which is still significantly better than the given benchmark. The empirical
study against these popular classification models demonstrates the great prospect of FCELR
on prediction of student academic performance.

4.4 Summary

This chapter has proposed a novel approach to predicting student performance in academic
courses. Unlike simple clustering regression analysis which takes part of the precise sample
data into consideration, the proposed approach processes the universal data with an embedded
step of fuzzy clustering. This has an intuitive appeal in handling a large number of student
academic records which are typically normally and continuously distributed. The work
makes use of attributes that are related to observed student study behaviour, by introducing an
offset value in the predicting model. The implementation of the embedded fuzzy clustering
approach, supported by the offset value mechanism, generates better results than the existing
methods. With fuzzy representation, the approach synthesises the use of intuitive attributes
from an academic course and from student normal study behaviour. This helps make the
predicted results more readily interpretable, while involving simple computation.

83



Chapter 5

Fuzzy Connected-Triple for Prediction of
Inter-Variable Correlation

Chapter 3 and Chapter 4 have presented intelligent systems for predicting uninformed feature
values at object or instance level. From this chapter, the horizon of prediction has been
moved up to the attribute (feature) or variable level. In order to perform investigation on
attribute variables, their related feature data requires comprehensive examination. Over the
past decade, such data has been growing at an astonishing pace, with the term ‘Big Data’
becoming a hot topic in both industry and academia. In particular, data mining, a process to
discover patterns in large data sets involving methods at the intersection of machine learning,
statistics, and database systems [191], has been under vibrant investigation. As the amount
of available data grows, the success of managing and analysing the information embedded in
the data becomes ever more practically significant, whilst becoming ever more difficult in
the meantime.

Fortunately, the increasing growth of computational capability has to a certain extent,
enabled the handling of such large amount of data through a range of approaches, including
the method of social network analysis (SNA) that has been increasingly gaining popularity.
In SNA, link prediction is one of the most salient and challenging tasks. It is particularly
difficult to perform the discovery of missing or developing links in a certain network of
interest [57]. However, link prediction is very useful to help: infer the underlying complete
network (from partially observed structures) [192, 193], understand the evolution of networks
[194, 195], and predict hyper-links in heterogeneous social networks [196]. Traditionally,
most of the approaches for detecting unobserved links are based on topological information,
including neighbour-based metrics, path-based metrics and random walk-based metrics [95].
Recent studies have extended such classical metrics by adding weights to the existing links
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within a topological graph in response to the information obtained from explicitly related
sources [197]. Besides, other collections of approaches, including probabilistic methods
and algorithmic methods, have been proposed to handle different types of link prediction
problem [198]. Nevertheless, typical existing approaches (including all discussed above) are
set for a specific problem within a local scope, dealing with the information coming from a
single data source.

Addressing the task of link prediction, the use of connected-triples has an intuitive appeal.
A connected-triple is a graph representation formed by three vertices and two undirected
edges, with each edge connecting two distinct vertices out of the three via the remaining
vertex. A network constructed with such connected triples offers a potentially effective mech-
anism for link prediction, particularly when any given information content is obtained from
different data sources where parts of the information overlap. Inspired by this observation,
unlike previous research that focussed on identifying links between objects or entities in a
specific region, this chapter presents an innovative piece of work that is driven by the interests
in searching for links between variables extracted from different data/information sources,
through the introduction and exploitation of fuzzy connected-triple.

The potential underlying links between variables or entities collected from different
sources are usually hidden, not obvious or even difficult to be discovered, making the task
of link prediction from such data sources a challenge. Traditionally, this type of work has
generally been handled by human experts. Thus, designing and implementing a predicting
method which learns from human logical reasoning will be helpful to automate such pre-
diction processes, especially when facing large and diverse data sources. Practically, when
describing a link or a set of links, linguistic terms such as “Strong”, “Medium” and “Weak”
are natural adjectives to depict the link strength rather than crisp numerical values (that are
typically utilised in conventional connected-triple models). In addition, common knowledge
such as “if A has a strong link to B, and B has a strong link to C, then A may have a strong link
to C” perfectly matches human logical thinking. It is to reflect such intuitions, fuzzy logic is
adopted in the present work to serve as the basis upon which to develop a multi-source link
prediction model. Such link prediction problems are obviously of general interest in many
data mining applications.

Overall, this chapter presents two major contributions to knowledge: (1) It proposes
a novel approach to determining the correlation between attribute variables from distinct
datasets with different entity references. (2) It proposes a fuzzy link prediction model which
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5.1 Predicting System

Fig. 5.1 Predicting Framework

radically departs from conventional crisp representation of connected-triple-based link detec-
tion, resulting in models that resemble human inference and facilitate interpretability.

The rest of this chapter is arranged as follows. Section 5.1 introduces the proposed
architecture for the development of a fuzzy connected-triple system for link prediction,
describing details on model construction, link measures, and inference procedures. Section
5.2 exhibits the results of empirical evaluation, supported by comparative studies with
alternative predicting methods. Section 5.3 concludes the chapter with outlook for further
development.

5.1 Predicting System

This section presents the proposed general framework for developing a system that predicts
link strengths with data from multiple sources. It describes the system’s components and
their associated time complexity analyses.

5.1.1 Conceptual Framework

The structure of the predicting system is shown in Fig. 5.1. As can be seen, it comprises
three distinct component subsystems, each of which implements the functionality of: triple
extraction, link analysis, and fuzzy inference, respectively. These activities are integrated to
construct a required predicting model, whose implementation steps are detailed below.
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5.1 Predicting System

Fig. 5.2 Sample Datasets

5.1.2 Connected-Triple Extraction

5.1.2.1 Concept of Connected-Triple

Connected-triple modelling, first introduced to analyse global clustering coefficient [199],
is also referred to as a method for measuring network transitivity. For instance, it may
be applied to measure the extent to which a friend of someone’s friend is also the friend
of that person. Formally, a connected-triple, Triple = {VTriple,WTriple}, is a subgraph of
G(V,W ), where V represents the set of vertices in the graph and W represents the set of
edges connecting related pairs of vertices, containing three vertices VTriple = {vi,v j,vk} ⊂V
and two edges WTriple = {wi j,w jk} ⊂W , with wik being unknown as there is no direct edge
connecting vi and vk. The vertex v j connecting the other two vertices is called the centre of
the triple, and vi or vk is called an end of the triple (there being two ends per triple, of course).

5.1.2.2 Extracting Connected-Triples from Datasets

Extracting connected-triples from (the same or different) original datasets plays a fundamental
role in the present work. An example of two distinct datasets is shown in Fig. 5.2, where the
variables vC and vD co-occur in both datasets (encircled in red), whilst the variables vA and
vB only appear in Dataset 1, and vE only appears in Dataset 2. Importantly, an obvious but
crucial point is that although there exist variables co-occurring in more than one dataset, these
datasets cannot be easily merged into one since the instances in the datasets can be totally
distinct, and so can the numbers of instances in the datasets. For example, the instances x1, x2,
... , xr in Dataset 1 and the instances y1, y2, ... , xs in Dataset 2 are completely different from
each other, although they share the two aforementioned common variables. Also, Dataset 1
has r instances but Dataset 2 contains s instances, while r ̸= s.
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5.1 Predicting System

Fig. 5.3 Connected-Triples Extracted from Sample Datasets

An example of extracting connected-triples from original datasets is shown in Fig. 5.3,
with each vertex representing a variable in the sample datasets given in Fig. 5.2. For instance,
vA in Fig. 5.3 denotes the (same) variable vA in Dataset 1 of Fig. 5.2. A link (represented
in a solid line) between two distinct variables denotes that these variables are co-occurring
in at least one of the sample datasets, and therefore, indicates that they are to a certain
extent related to each other. In Fig. 5.3, four triples, Triple_i, i = 1,2,3,4, are formed
from Datasets 1 and 2 in Fig. 5.2, where VTriple_1 = {vA,vC,vE}, VTriple_2 = {vA,vD,vE},
VTriple_3 = {vB,vC,vE}, and VTriple_4 = {vB,vD,vE}. The centres of these four connected-
triples are vC and vD, respectively. The dash line between vA and vE and that between vB and
vE represent the potential links between pairs of the variables vA and vE and those of vB and
vE , respectively, which do not exist in the originally provided datasets.

5.1.2.3 Transitivity Property of Connected-Triple

An interesting but important characteristic of connected-triple is its transitivity property.
According to this property, two independent connected-triples can form a third connected-
triple. For instance, as shown in Fig. 5.4, from Triple1 = {{vA,vB,vC},{wAB,wBC}},
a new link wAC connecting vA and VC may be generated. Likewise, from Triple2 =

{{vC,vD,vE},{wCD,wDE}}, another new link wCE connecting vC and vE may also be ob-
tained. Based on the variables vA, vC, vE , and the links wAC, wCE , an extended connected-
triple Triple3 = {{vA,vC,vE}, {wAC,wCE}} (depicted with dash lines) can be computation-
ally produced.

5.1.3 Link Analysis

Having identified a new connected-triple from the source datasets, the task of determining
correlation between a pair of variables that belong to two different datasets becomes to
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5.1 Predicting System

Fig. 5.4 Transitivity of Connected Triple

predict whether there exists a (hidden) link between the two end vertices. If so, a further
question is what may be the strength on such a link. To address these issues, prerequisites
including the properties of any known links between pairs of vertices in the triple need to be
obtained in advance.

In practice, the link property is generally described by its weight, which may correspond
to a wide variety of aspects depending on the underlying application problem. For each
connection between a given pair of distinct variables, different mechanisms may therefore be
devised for estimating the strength of that connection. For instance, in a route graph or map,
the weight of a link may indicate the route distance between two linked venues. In a graph of
co-authorship, the weight of a link may denote the number of papers two authors collaborated
to publish. In a graph of webpage linkages, the weight on a link may represent the popularity
of people stepping from one to another. In the current study, a link between two vertices
signifies a certain relationship between those variables in the datasets. Thus, the weight
of a link is utilised to capture and reflect the closeness or correlation of the corresponding
variables.

5.1.3.1 Categorical Data

For a pair of variables in a dataset filled with discrete or nominal values, their relationship
can be described by the co-occurrence frequency of the variables taking on a common
value. For such data, two indices to measure link strengths can readily be adopted, namely
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Normalised Mutual Information (NMI) and Frequency of Most Popular Term-Pair (FMTP).
These strengths are detailed below, which can themselves be combined to form fused link
properties.

1) Normalised Mutual Information (NMI) Generally speaking, mutual information
is a symmetric measure to quantify the statistical information shared between two
distributions [200]. The use of this measure in the present research provides a sound
indication of the shared information between a given pair of variables. In particular,
for two discrete random variables vA and vB, the mutual information between them can
be denoted as MI(vA,vB) and computed by

MI(vA,vB) = ∑
vb∈DB

∑
va∈DA

p(va,vb) log(
p(va,vb)

p(va)p(vb)
) (5.1)

where p(va,vb) is the joint probability distribution function of vA and vB, and p(va)

and p(vb) are the marginal probability distribution functions of vA and vB, with vA

and vB defined over the domains DA and DB, respectively. Note that there is no upper
bound for MI(vA,vB). Thus, for better facilitating interpretation and comparison, a
normalised version of MI(vA,vB) that ranges from 0 to 1 is desirable while describing
the relationship strength between vA and vB.

Let H(vA) denote the entropy of vA [201], which is defined by

H(vA) =− ∑
va∈DA

p(va) log p(va) (5.2)

From this, the normalised mutual information between vA and vB [48], denoted by
NMI(VA,VB), can be computed such that

NMI(vA,vB) =
MI(vA,vB)√
H(vA)H(vB)

(5.3)

The time complexity of computing NMI is O(mnd), where d denotes the number of
instances in the dataset, and m and n represent the cardinalities of variable domains
of vA and vB, respectively. Typically, m and n are fixed to a small or medium number
in advance. From psychological viewpoint, to ensure model interpretability, the
cardinalities are normally set to a maximum value of 9. Therefore, this measurement
has the linear time complexity proportional to the size of the dataset, namely O(d).
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2) Frequency of Most Popular Term-Pair (FMPT) NMI may be a simple measurement
computationally. However, only taking it into consideration when modelling the link
strengths between distinct variables may not be sufficiently effective. In particular, the
frequency of occurrence of different terms with regard to a certain variable within a
given dataset can be rather different. This is because datasets may be rather skewed;
certain terms may have a very high occurrence frequency but one or more of the others
may have a very low frequency. This is rather common a phenomenon in real-world
problems. For example, more than 90% of the primary school pupils are guarded
by their parents and they are much less likely to be guarded by other relatives. The
statistics of blood type distribution in the UK also shows that 44% of the population
have blood type O, and only 10% have blood type B [202].

When considering any link relationship between two variables vA and vB of such
skewed datasets, suppose that V 1

A and V 1
B are the most popular terms taken by the vari-

ables vA and vB, respectively. Then, even if most of the instances have the term V 1
A for

vA and V 1
B for vB simultaneously, the NMI score of the link between vA and vB may still

be low. This is because the NMI score is significantly affected by the number of other
term-pairs and their proportion. In this case, judging the link strength between these
two distinct variables by only calculating the NMI score may seriously distort the result,
misinterpreting the closeness of the relationship between the two. This calls for the
development of the so-called frequency of the most popular term-pair measure (FMPT).

Without losing generality, assume that a given dataset includes a total of d instances,
and that vA and vB are two discrete variables describing the instances in the dataset,
each containing m and n terms, respectively. Let V i

A (1 ≤ i ≤ m) and V j
B (1 ≤ j ≤ n)

be the terms possibly taken by vA and vB, and SV i
A

and SV j
B

(1 ≤ j ≤ n) be the set of

instances which has the term V i
A for vA and V i

B for vB. The FMPT score or weight on
the link between the variable vA and vB is defined by

FMPT(vA,vB) =

max
1≤i≤m,1≤ j≤n

d(SV i
A

⋂
S

V j
B
)

d
(5.4)

where d(SV i
A

⋂
S

V j
B
) denotes the number of instances which have the term V i

A for the

variable vA and V j
B for vB simultaneously.
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Note that the FMPT score is also ranged from [0,1]. The time complexity of computing
FMPT is also O(mnd), where m, n, d are of the same meanings as previously defined.

3) Fusion of Link Properties As indicated above, both NMI and FMPT take values
from the same range [0,1]. It is therefore convenient to aggregate the results if both
are applied. The fusion of these two measurements is useful because they capture
different underlying relationship properties of the datasets in general and the variables’
terms in particular. For a certain link between two distinct discrete variables vA and vB,
given the NMI and FMPT scores, the combined weight of the link SYN(vA,vB) can be
calculated in a straightforward manner such that

SYN(vA,vB) = max(NMI(vA,vB),FMPT(vA,vB)) (5.5)

Obviously, the combined link weight has the same real value range as either of the com-
ponent weights, i.e., between 0 and 1. The complexity of this fusion step is extremely
simple, being O(2). This may be linearly generalised if there are more than 2 such
base link strengths. The benefit of adopting the maximum operator is that it takes into
consideration the most salient feature of the data while being simple in computation.

Note that the strength fusion does not have to be implemented as above, but can be done
in various alternative ways, e.g., by finding the arithmetic average of the component
strengths, if preferred. However, this does not affect the approach taken, rather than
adding a small amount of extra computational expense and so is regarded as being
beyond the scope of the current investigation.

5.1.3.2 Continuous Numeric Data

1) Absolute Pearson Correlation Coefficient (APCC) For a pair of variables with con-
tinuous data as their entities, the aforementioned measurements may not work. Instead,
statistical means to measure the bivariate correlation may be a fitted alternative. Specif-
ically, Pearson Correlation Coefficient (PCC) [203], a measure of the linear correlation
between two continuous variables, is adopted here. A simple but important factor
needs to be noted is that for traditional use of PCC, it has a value range between [−1,1].
Considering the main concern here is whether two variables have strong correlation
and if so, how strong such a relationship may hold, whether the two variables have a
negative or positive correlation is beyond the current scope. Hence, only the absolute
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value of Pearson Correlation Coefficient, APCC, is herein employed to measure the
link strength between two continuous variables. Formally, the APCC between two
variables vA and vB can be written as follows:

APCC(vA,vB) =

|
d
∑

g=1
(V g

a −VA)(V
g
b −VB)|

dσVAσVB

(5.6)

where V g
a and V g

b represents the value of vA and that of vB for the g-th instance in the
dataset, respectively; VA and VB stand for the average value of all the instances with
regard to vA and that to vB; and σVA and σVB denote the standard deviation of vA and
that of vB within the discussed dataset. The time complexity of computing APCC for
any variable pair is O(d), where d denotes the number of instances in the dataset.

2) Maximal Information Coefficient (MIC) Recently, a novel method named Maximal
Information Coefficient (MIC) to measure the correlation between two continuous
numeric variables was proposed [204]. Similar to NMI, MIC also takes value between
zero and one, and it has two main properties: Generality and equitability. Generality
means that with a sufficiently large sample size, it can capture a wide range of associa-
tions, including linear, parabolic, exponential, and periodic. More sophisticatedly, it is
capable of handling non-functional correlations such as round and eclipse. Equitability
means that MIC gives similar scores to equally noisy relationships regardless the type
of relationships. The formula for computing MIC between vA and vB is defined as
follows:

MIC(vA,vB) = max
nva ·nvb<B(n)

{ I(vA,vB)

logmin{nvA,nvB}
} (5.7)

where

I(vA,vB) = H(vA)+H(vB)−H(vA,vB)

=−
nvA

∑
i=1

p(vi
A) log p(vi

A)−
nvB

∑
j=1

p(v j
B) log p(v j

B)

+

nvA

∑
i=1

nvB

∑
j=1

p(vi
A,v

j
B) log p(vi

A,v
j
B)

(5.8)

93



5.1 Predicting System

Note that nvA and nvB are the number of bins for partitioning vA and that for vB,
respectively, and they are set to satisfying the criterion nvA ·nvB < B(n). Usually, B(n)
is set to B(n) = n0.6 in real world applications, where n is the number of instances in
the sample data [204].

5.1.3.3 Numeric-Categorical Mixed-Type Variable Pair

In real-world applications, datasets are not always arranged with same type of variables. It is
common to see datasets with mixed types of attribute value. For instance, a data table with re-
gard to personal information may contain a nominal value to represent gender and a numeric
value to denote age. Unfortunately, determining the correlation between different types of
attribute variable seems difficult. Here, a heuristic is proposed to assist approximating the
relationship between attribute variables of different types (numeric-categorical mixed type).

Basically, this method works by transforming the numeric variable in a mixed-type
variable pair into its categorical counterpart at first, and then performing corresponding
correlation measuring metric on this transformed variable pair. In order to execute such a
transformation process, a specific number of class labels for the numeric attribute variable
is required to be determined in advance. This task is carried out by performing a series of
unsupervised clustering algorithm with different a number of clusters selected each time, and
searching for the number which best segments the numeric values into categories.

The elbow method, due to its effectiveness and efficiency, is adopted to help such
transformation. It works on the assumption that adding another cluster does not generate a
remarkable improvement under a provided objective function. The objective function fimprove

representing performance improvement, is defined as:

fimprove(k) =
SSE(k−1)−SSE(k)

SSE(k−1)
(k = 2,3, ...,9) (5.9)

where SSE(k) denotes the total sum of square errors determined by selecting k as the number
of clusters. A demonstrating example of the elbow method is shown in Fig. 5.5. The number
of clusters in this case is determined as 4, which is the obvious elbow point or turning point.
For the present study, the number of clusters selected ranges between 2 to 9, which considers
both computational efficiency and consistency with human common sense. Note that the
term “mixed type feature variable pair” used in the thesis represents “numeric-categorical
mixed-type feature variable pair”, unless otherwise stated .
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Fig. 5.5 Example of Elbow Method

In particular, the simple k-means clustering method is applied to partition the numeric
data into various groups, with random initial centroids provided. The performance evaluation
is based on an average of 20 runs of the algorithm. Having determined the number of clusters,
a refined PAM approach embedded with quantile based determination of initial medoids
is ultimately conducted to categorise continuous values of a numeric variable and assign
each of them with a class label. Specifically, quantiles employed here represent a set of
values for a numeric variable which divides the examined dataset into equal sized subsets.
The initial medoids for PAM are determined as the average value of two adjacent quantiles.
The minimum and maximum value of the variable in the dataset are also adopted to help
determine the initial medoids for PAM. For instance, provided that four clusters of instances
in a dataset are required to be generated, the initial medoids for PAM to create such groups
are respectively set to the median value of the minimum and 1st quartile, and that of 1st and
2nd quartile, 2nd and 3rd quartile, 3rd quartile and the maximum value, with regard to the
discussed variable.
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5.1.4 Fuzzy Inference Model

Having determined the weights over given links within a connected-triple model, the predict-
ing system reaches its final step: logic deduction. A fuzzy inference model is employed to
implement this task, providing a flexible means to perform human-interpretable reasoning
by the use of linguistic terms rather than numeric values (although the linguistic terms still
have their underlying numerical interpretation). For the problem of link prediction, linguistic
labels such as “Strong”, “Medium” and “Weak” are natural words that are commonly used to
describe link strengths. The present work follows this practical observation, and attempts to
mine the underlying logic hidden beneath the connected-triple:

IF link1 IS (strong\medium\weak)

AND link2 IS (strong\medium\weak)

THEN link3 IS (strong\medium\weak)

where link1 and link2 represent the two known links in a certain triple, each of which connects
the triple centre to one of the two ends, and link3 represents the link to be established with a
(predicted) link strength score. Such a fuzzy system involves two key procedures as detailed
below.

5.1.4.1 Link Weight Fuzzification

To enable the capture and representation of imprecisely described link weights, and to
support the derivation of the required fuzzy inference model through data-driven learning,
fuzzification of the link strengths for each identified connected-triple is necessary. Without
losing generality, to ensure interpretability of the resulting model, a set of membership
functions used to depict link strengths is presumed to have been prescribed by domain
experts. However, for applications where there is a sufficient amount of historical data, a
clustering method may be employed to derive the required set of (potentially more objective)
linguistic terms. In this work, especially for the experimental evaluation to be presented
in the next section, the linguistic terms used are predefined by the domain experts (with
prescribed asymmetrical membership functions used to partition the underlying problem
domains), without any optimisation and are shown in Fig. 5.6.

5.1.4.2 Fuzzy Inference

In the process of performing fuzzy inference for link prediction, as with other applications of
fuzzy systems, t-norm and t-conorm operators are adopted to interpret logic connectives over
connected-triples, aggregating fuzzy values [205]. In general, for each pair of end vertices,
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Fig. 5.6 Fuzzy Membership Values of Link Weight with Respect to Different Measures

there may exist several distinct centres connecting them to form different connected-triples.
As such, each connection will lead to an intermediate inference outcome regarding the link
strength, indicating the level that that triple may contribute towards the final prediction result.
Thus, a t-conorm operator is needed to aggregate all the intermediate predicted outcomes
together.

Given a connected-triple CT , let f L
link1

and f L
link2

be the fuzzy membership values of the
link strengths, or link weights on the links link1 and link2, where linguistic terms L ∈L ,
with L representing a collection of all fuzzy sets used to express the linguistic labels (namely,
the terms “Strong”, “Medium” and “Weak” as given in the previous example). The predicted
fuzzy value of a single connected-triple can then be described as a membership function:

FPCT = [∇( f L1
link1

, f L1
link2

), ∇( f L2
link1

, f L2
link2

), · · · , ∇( f LM
link1

, f LM
link2

)] (5.10)

where ∇ denotes a certain predefined t-norm, and M represents the number of the terms
possibly used to describe the linguistic link strength.

Suppose that there are N connected-triples formed by a specific pair of end vertices with
a common corresponding centre, the predicted fuzzy value for the link strength of Plink can
be logically interpreted as the following:

FPlink = [∆( f L1
P1

CT
, f L1

P2
CT
, · · · , f L1

PN
CT
),

∆( f L2
P1

CT
, f L2

P2
CT
, · · · , f L2

PN
CT
),

...

∆( f LM
P1

CT
, f LM

P2
CT
, · · · , f LM

PN
CT
)]

(5.11)

where ∆ represents an extended version of a certain t-conorm which can take a finite number
of arguments. It aggregates those fuzzy membership values obtained from each connected-

97



5.1 Predicting System

Fig. 5.7 Two Simple Datasets Used for Illustration

triple corresponding to a pair of variables and generates a new fuzzy membership value for
the predicted link between those two variables. As the final result, what is returned is a fuzzy
value regarding that to what extent a detected link is of a certain strength with respect to
each individual predefined link weights (whose definition has been provided by the domain
experts). If however, it is desirable to provide a numerical number for the predicted link
strength an additional computational step is to defuzzify the resulting fuzzy membership
value.

5.1.5 Illustrative Link Strength Prediction

Consider two simple datasets regarding student academic performance, as shown in Fig. 5.7.
The two datasets contains 14 and 10 distinct instances, respectively, with the attributes “1st

semester grade” and “2nd semester grade” shared by both. This illustrative example is to
demonstrate that the proposed approach can predict the correlation between the variable
“Family support” in dataset 1 and the variable “Family size” in dataset 2, with an intuitively
appealing measured link strength.

For shorthand, denote the variables “Family support”, “1st semester grade”, “2nd semester
grade” and “Family size” as ‘ f sup”, “1sg”, “2sg” and “ f zise”, respectively. Then, from
the given datasets, the following two connected-triples can be directly extracted from these
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datasets, one from each:

Triple_1 = {{v f sup,v1sg,v f size},{w f sup−1sg,w1sg− f size}}

Triple_2 = {{v f sup,v2sg,v f size},{w f sup−2sg,w2sg− f size}}

From these, according to Eqn. (5.1), (5.2) and (5.3) it can be computed that:

NMI(Vf sup,V1sg) = 0.139,NMI(Vf sup,V2sg) = 0.172

NMI(Vf size,V1sg) = 0.580,NMI(Vf size,V2sg) = 0.474

Similarly, through Eqn. (5.4) it can be computed that:

FMPT(Vf sup,V1sg) = 0.429,FMPT(Vf sup,V2sg) = 0.357

FMPT(Vf size,V1sg) = 0.300,FMPT(Vf size,V2sg) = 0.300

Thus, the weights on these links can be computed by Eqn. (5.5), such that

SYN(Vf sup,V1sg) = max(0.139,0.429) = 0.429

SYN(Vf sup,V2sg) = max(0.172,0.357) = 0.357

SYN(Vf size,V1sg) = max(0.580,0.300) = 0.580

SYN(Vf size,V2sg) = max(0.474,0.300) = 0.474

Having acquired the weights for the existing links (within individual datasets), the next
step is to conduct fuzzy inference. Suppose that the fuzzy membership functions of a
synthesised link strength is provided by the domain experts in linguistic terms as specified in
Fig. 5.6. In this simple illustration, assume that the Max-Min aggregation method is taken to
compute the SYN weights. Then, for Triple_1, according to Eqn. (5.10), its weight FPCT can
be calculated such that

[min( fW (0.429), fW (0.58)),min( f M(0.429), f M(0.58)),min( f S(0.429), f S(0.58))]

= [0,0.067,0.5725]

where fW , f M, f S denote the fuzzification results of the link weights with respect to the
linguistic terms “Weak”, “Medium” and “Strong”, respectively. What this fuzzy result stands
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for is that the detected link is not “Weak” (as it is of a zero membership value with regard to
this strength label), a tiny membership for the fuzzy concept “Medium”, and a significant
membership value for the given linguistic term “Strong”. Following the same calculating
procedure, for Triple_2, its FPCT score is [0,0.42,0.3925]. Hence, with respect to Eqn. (5.11),
the predicted fuzzy value representing the strength of the link between variables “Family
support” and “Family size” is:

[max(0,0),max(0.067,0.42),max(0.5725,0.3925)] = [0,0.42,0.5725]

Finally, if a numerical strength score between the two variables is desirable (as opposite
to a fuzzy value), then by employing the centre of gravity (COG) method for defuzzification,
the predicted link score of 0.5804 can be obtained in a straightforward manner. Note that the
above illustrative example is carried out on categorical data sets. However, this method can
also be applied to numeric data sets, although the strategy to measure link strengths needs to
be adjusted accordingly, as previously stated.

5.2 Empirical Evaluation

This section presents experimental studies of the proposed approach, with comparison
against other popular link prediction techniques on different types of datasets demonstrated.
Complexity analysis is also conducted and presented to check the efficiency of the proposed
work.

5.2.1 Datasets

The experimental evaluation is conducted on both real world data from UCI benchmark data
sets [206] and on a collection of synthetic datasets. Since there is hardly any corpora of
datasets designed particularly for the current study, the data sets from UCI benchmark data
sets are split into several subsets with overlapped variables according to human knowledge.
To test the performance of the proposed approach on larger sized groups of datasets involving
more variables, six different corpora of synthetic data sets are also generated to conduct the
experiment. Table 5.1 shows a summary of the characteristics of all datasets employed.
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Table 5.1 Summary of Datasets: Link Prediction

Dataset Collection Type NDC ANIED ANVED ANVCTD

Bank C 7 6459 4 2
Mushroom C 9 912 5 2

Salary C 6 5028 6 1
Student-Por C 4 163 8 3
Student-Mat C 4 101 8 2
Connect-4 C 6 11034 7 2

Wine N 4 1256 3 1
Twitter N 7 82038 13 4

Facebook N 5 104 5 2
Urban N 13 203 12 3
News N 12 3048 7 2
Music N 11 211 11 4

Automobile M 3 106 10 2
HeartDisease M 5 100 16 2
Arrhythmia M 10 121 30 3

Internet M 7 1264 10 4
Insurance M 10 900 10 2
Covertype M 5 116345 13 3

Synthetic-1 C 22 15491 18 4
Synthetic-2 C 30 24823 20 3
Synthetic-3 N 25 21990 20 2
Synthetic-4 N 35 19926 18 4
Synthetic-5 M 15 12020 15 2
Synthetic-6 M 20 10050 20 3

1. Type: C = Categorical Data; N = Numeric Data; M = Mixed-Type Data
2. NDC: Number of Datasets in Collection
3. ANIED: Average Number of Instances in Each Dataset
4. ANVED: Average Number of Variables in Each Dataset
5. ANVCTD: Average Number of Variables Co-existing in Two Datasets
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5.2.2 Methods for Comparison

Predicting link strengths among variables observed in different data sources is a brand new
topic. As such, it is impractical to directly compare this work with any existing work with
respect to this novel problem. Instead, a set of existing link prediction methods based on
graph topology are implemented for comparison. In each of the compared methods, each
variable is regarded as a vertex in the graph, and the similarity score between two variables
is interpreted as the weight of the assumed link for the corresponding pair of vertices. In
particular, neighbour-based metrics including WJC, WRA, path-based metrics including
LWP and RSS, random walk-based metric SR are selected to perform the comparison. The
concept and formulation of these methods are described in Section 2.2.2. Specifically, for
LWP metric, the decaying factor α is set to 0.01, as with the default value typically used
when running this metric. For RSS metric, in order to guarantee that each pair of variables
have at least one path connecting them, the path length for search is set to k−1, where k
denotes the number of datasets in the corpus. For SR, the decay factor γ is set to 0.8, as being
widely used in various applications. Additionally, the number of iterations for SR is set to 20
in the present experimental evaluation.

5.2.3 Experimental Setup

In all experiments carried out, for each corpus of datasets, an n-fold cross validation [174] is
performed, where n is the number of datasets in each corpus. In particular, the n−1 folds
of data form the training instances which are split by columns into subsets with selected
variables being co-existed in two or more data subsets, whilst the testing dataset is a fold
of data with all the variables under discussion included. The following reported results are
based on an average of running 10 times n-fold cross validation.

It is important to mention that as with any real-world application, the ground truth of
the link strengths between variables is not a natural existence in these datasets. Thus, in
the following experiments, any “ground truth” is artificially computed by the testing data
using the corresponding method as outlined in Section 5.1.3. At first glance, this may sound
unintuitive but it provides a common ground for fair comparisons to be carried out.

Note that not all the approaches implemented for comparison may necessarily generate
predicted results ranging between [0,1], and that normalising these results can only provide
relative values for all the predicted links. Thus, simply obtaining normalised results may mis-
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lead the interpretation of the computed link strength. A precision measure which calculates
the percentage of correct predictions according to the portion of founded links is therefore,
employed to articulate the predicting accuracy. In particular, for all unobserved links defined
by the training datasets, their predicted link strengths are computed by each of the predict-
ing algorithms and then ranked in descending order. Simultaneously, their corresponding
"ground truth" (of the link strengths) are calculated through the testing datasets and ranked in
descending order as well. The predicating accuracy is determined by comparing the number
of the correct predictions against the scenario where a specific portion of unobserved links is
assumed.

When conducting the experiments, for simplicity and clarity, t-norm and t-conorm are
initially implemented with minimum and maximum operators, respectively. To reflect the
flexibility of the proposed approach, and also to strengthen comparative studies, another type
of operator combination, namely, algebraic product and bounded sum, are also applied to
form the Bounded Sum-Algebraic Product (BSAP) interpretation. Additionally, the Centre
of Gravity (COG) method is employed to perform in the defuzzification step.

5.2.4 Experimental Results

The experiment results are measured by predicting accuracy. That is, the number of correctly
predicted results that are disclosed by each compared method, over that of retrieved variable
pairs. In experimental running, all potential variable pairs are examined and ranked in
descending order, and the top-K percent of the disclosed variable pairs are selected to
compare against the “ground truth” (as indicated in Section 5.2.1). The predicting results
revealed in this paper is simply based on the top-ranked variable pairs within the first 50%
of them all. This is because the predicting accuracy generally retains an increasing trend
in response to the increasing ratio of predicted links. When the number of predicted links
reaches its maximum, meaning that all potential variable pairs are taken into account, the
predicting accuracy will be 1. In practice, it is the highly ranked variable pairs that are
generally more attractive and more useful.

5.2.4.1 Experimental Results for Real Data

Fig. 5.8 to Fig. 5.11 show the experimental results for the corpora of real-world datasets.
These results jointly demonstrate that the proposed approach is generally very competitive
under different circumstances. In particular, the proposed method consistently outperforms
the neighbour-based metrics (WJC, WRA) and the random walk-based metric (SimRank)
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across most corpora of datasets. Note that LWP and RSS metric can perform well for specific
corpora of datasets. This has much to do with the distribution of the variables in each dataset
within such a corpus. For instance, in the corpus of Salary datasets, most of the variables
have an explicit relation with the variable ’salary’, which is natural and makes it easy for the
LWP metric to handle. This is also the case for the corpora of Student-Por, Student-Mat and
Music datasets. In the corpus of Twitter datasets, almost each dataset is simply connected
with only one another through a few number of overlapped variables, which is suitable for
RSS, but may not fit for others such as neighbour-based metrics. However, the proposed
method is still competitive according to the predicting accuracy, regardless of the variable
distribution for each dataset corpus. This shows the robustness and adaptability of the present
approach.

Another interesting finding is that for variable pairs with the “strongest” link strength,
say, top 5% or top 10%, the proposed approach performs best among all compared methods
to identify them. Although the predicting accuracy is not sufficiently high to meet human
expectation, it is worth recognising that the task of identifying “strong" links is much more
difficult than just finding whether there is a general link [109]. Such a detection is also of
practical significance since in real-world applications, it is the identification of any variable
pair that is associated with the most “Strong” link that is generally more attractive to the users.

Note that for the two distinct implementations of the proposed approach, using either
Max-Min or BSAP interpretation, it is difficult to judge which one performs better. This may
reflect the robustness of the underlying approach, but no theoretical proof for this hypothesis
is done, which remains as active further research.

In comparison of APCC and MIC for measuring correlation between numeric variable
pairs, MIC generally outperforms APCC for each of the listed predicting models, as the pre-
dicting accuracy based on MIC metric being higher than that of APCC, which demonstrates
its advantage of capturing a variety of associations as relationship measurements.
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Fig. 5.8 Prediction Accuracy for Real-world Categorical Data
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Fig. 5.9 Prediction Accuracy for Real-world Continuous Numeric Data by APCC
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Fig. 5.10 Prediction Accuracy for Real-world Continuous Numeric Data by MIC
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Fig. 5.11 Prediction Accuracy for Real-world Numeric-Categorical Mixed-Typed Data
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5.2.4.2 Experimental Results for Synthetic Data

Another set of experimentations has been conducted on different corpora of synthetic datasets.
The experimental results are shown in Fig. 5.12. It can be seen that the predicting accuracy
for several of the compared methods declines to an extent with respect to the results shown
earlier. Due to the increasing number of datasets in the corpus, certain incorporated datasets
may not necessarily have common variables amongst them. This situation makes accurate
prediction far more difficult.

The neighbour-based metrics suffer significantly from this condition. Both WJC and
WRA lead to unsatisfactory results. This may be expected by the fact that neither of them is
able to make integrated consideration of both nearest neighbour and non-nearest neighbour
variables across different datasets. SR performs slightly better than neighbour-based metrics
on lager corpus of datasets, as it does not take just common neighbour variables into account.
The propagation of similarity scores amongst variable pairs in the entire dataset corpus could
have a positive effect on predicting accuracy for lager sized dataset corpus. Interestingly, the
performance of RSS has not been adversely much affected by the increased size of dataset
collections, since it guarantees to find routes connecting a variable pair. Conversely, the
performance of LWP drops dramatically, because it only takes paths of a length of 2 and
3 into consideration. Nevertheless, compared agains all these, the proposed approach still
performs better in most of the cases, illustrating once again the efficacy of utilising the
transitivity property over the structure of connected-triples.
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5.2 Empirical Evaluation

Table 5.2 Analysis of Time Complexity

Method Time Complexity

FCT O(k2 p2q2l f )
WJC O(k2 p2q2)
WRA O(k2 p2q2)
LWP O(k3 p3)
RSS O(k2 p2qe+1)
SR O(k2 p2q2r)

1. l: Number of linguistic terms to describe link strength
2. f : Time for defuzzification
3. e: Path length for RSS
4. r: Number of iterations for SR

5.2.5 Complexity Analysis

In addition to evaluating these methods in terms of predicting accuracy, it is important to
investigate the computational complexity that would determine their actual efficiency for
real-world applications. Suppose that a particular corpus incorporates k datasets, that each
dataset contains p variables on average, and that every two datasets share on average q
identical variables. Table 5.2 shows the time complexity to find the correlation between all
the potential variable pairs for each of the compared algorithms.

WJC and WRA are the most efficient metrics among the compared methods, SR is slightly
more expensive than WJC and WRA, with required r iterations of refinement. Generally, the
time complexity of path-based metrics is higher than that of neighbour-based methods. LWP
has the cubical time complexity since it involves matrix multiplication. The time complexity
for RSS is significantly affected by the length of paths, and can be extraordinarily high in
extreme cases.

Although the proposed approach is not the most satisfactory in terms of time complexity
due to the time expenses incurred by performing fuzzy inference, it is acceptable, especially
when compared with the path-based metrics dealing with large corpus involving many
datasets. Taking both predicting accuracy and time complexity into joint consideration, the
proposed approach is considerably competitive upon most occasions.
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5.3 Summary

This Chapter has presented a novel data-driven approach to predicting the connections
between variables that are hidden in different datasets. Techniques for measuring correlation
between domain variables of a certain corresponding type have been proposed. Assisted with
the concept of fuzzy connected-triple, the relationships between distinct variables and their
transitivity can be naturally captured, represented and reasoned through the link notation.
The use of fuzzy inference supports the link prediction process to be more consistent with
human reasoning, with the predicted results being readily interpretable. Experimental results
on different corpora of datasets have shown that the proposed approach generates more
accurate predicted outcomes, while involving relatively simple computation.
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Chapter 6

Intelligent System for Variable Cluster
Pattern Recognition

Pattern recognition, in the context of artificial intelligent, is defined as the automatic discovery
of regularities in data through computational algorithms and making use of the recognised
regularities to take actions on identifying the data into different categories [207]. Its process
can be either “supervised”, where existing patterns can be obtained from a given data source,
or “unsupervised”, where entire new patterns need to be discovered. Pattern recognition is
widely applied in various fields, with frontier research domains including computer vision
[208, 209], natural language processing [210, 211], activity detection [212, 213], bioin-
formatics [214, 215], security and privacy check [216, 217], automatic control [218, 219],
medical diagnosis [220, 221], etc. Note that part of the above mentioned study areas may
share overlaps with others.

However, till now, the study on pattern recognition mainly has focused on identifying a
particular class for an observed data, or determining the underlying patterns for groups of
items and activities, both of which are at entity or instance level. This results in the existing
work not making full use of information provided by the data source, with little investigation
into feature variables existing in the datasets. Yet, with the development of information
technology, the real-world data grows rapidly, and it becomes more convenient to obtain data
from various sources. Simultaneously, as indicated in Section 1.4, part of the acquired data
may lack description to themselves, due to a variety of reasons, such as security consideration,
equipment malfunction, ignorance from information collector, and inappropriate storage.
For instance, when participating in projects with sensitive or confidential information (e.g.,
medical science, demographic and criminal research), a dataset is sometimes provided with
its data description hidden on purpose for data security control. Another common scenario is
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that the data dictionary with respect to a specific dataset may be missing during its life of
storage, resulting in difficulty to handle those data. Such scenarios that involve no attribute
name or label information hinder the understanding of data. For easy cross-referencing, the
attribute (or feature) variables with the above mentioned characteristics are interchangeably
termed as uninformed (unknown / unspecified) variables. These terms are alternatively used
in latter sections and chapters of the thesis so as to avoid multiple times of repetition.

In this chapter, a brand new model working on feature variables is proposed on the basis
of group analysis. As an initial attempt, it is aimed to learn knowledge of unknown feature
variables from informed data sources. Essentially, to start with, for a specific research field
of interest, the model performs the task of grouping informed feature variables from various
given sources into a vast hierarchical structure, with each layer of the structure representing
clusters of variables with analogous similarity or correlation degree. Likewise, for a dataset
of the same or similar field with uninformed variables involved, the same operating procedure
is conducted over the included data, producing in groups of uninformed variables organised
in another hierarchical manner. Then, a group of uninformed variables within the constructed
hierarchy is checked against the informed variable clusters from the previous established
structure to detect its most similar counterpart. Such a modelling process can be regarded
as a type of prediction or approximation as well. This predicting model also forms as a
basis upon which to implement succeeded tasks of variable identification and knowledge
reconstruction, which will be discussed in Chapter 7.

The remainder of this chapter is arranged as follows: Section 6.1 outlines the basic
structure of the proposed model, with a brief description of its involving components. Section
6.2 describes the implementation of this novel predicting model, with distinct strategies to
handle different data types specified in detail. Section 6.3 shows the experimental evaluation
results, supported by comparative studies with other methods modified to suit the current
task of cluster recognition. Finally, Section 6.4 concludes the chapter.

6.1 Conceptual Framework of Intelligent System

The conceptual framework of the proposed intelligent feature variable cluster predicting
system is illustrated in Fig. 6.1, which contains three associative components: link extraction
subsystem, variable clustering subsystem and cluster recognition subsystem. Given a corpus
of M datasets from a source domain (grouped and highlighted with dashed circle) and a
single testing dataset from the same or similar domain with uninformed feature variables, the
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process of performing group estimation on the uninformed feature variables is accomplished
by executing each of the subsystems consecutively. The fundamental functionalities for each
of the subsystems is described as follows:

• Link Extraction Subsystem: Extract both existed and potential links between each
pair of feature variables from the domain data corpus. Determine the similarity
degree for a pair of feature variables by measuring its link weight. Appropriate link
measurement is required to be adopted according to the type of the feature variables
involved. Similar steps are also conducted to testing datasets with uninformed variables.
The conceptual structure and concrete implementation of this subsystem has been
detailed in Chapter 5.

• Variable Clustering Subsystem: For an informed data corpus, group all the feature
variables into clusters according to their similarity degree acquired from link extraction
subsystem, so that the feature variables with a higher link weight between them are
gathered together, and the variable pair with a lower link weight are separated into
different categories. Likewise, the same action is required to perform on the testing
dataset to obtain another set of clusters with uninformed variables. Generally, the
discussed subsystem generates two distinct and separate variable cluster structures,
with pairs of the involving clusters coming from each of the cluster structure being
examined in the next step.

• Cluster Recognition Subsystem: Select each of the uninformed variable clusters
from the cluster set obtained from the previous clustering step. This subsystem is
devised with an attempt to identify any uninformed cluster by comparing it to the
existing informed variable clusters. This step may result in two opposite consequences:
(1) the uninformed variable cluster is clearly or approximately identified; and (2) there
exists no informed variable cluster matching this uninformed counterpart appropriately.

The contents of the variable clustering subsystem and cluster matching subsystem (high-
lighted in the red dashed box in Fig. 6.1) are within the scope of this chapter, with the
implementation for each of the two subsystems being specified in Section 6.2. As described
above, variable cluster pattern recognition may lead to different conclusions. Hence, corre-
sponding means to handle respective circumstances are necessary. When facing scenario (1),
it is insightful and understandable to perform a further search process for determining specific
labels(names) for the uninformed variables within the cluster. However, when facing scenario
(2), such an ambitious search may lead to unreliable result. Instead, it may be sensible
to assume that the given unknown variable cluster is not presented in the current level of
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understanding of the domain feature variables. Thus, an immediate update for the existing
variable structure may offer a better option. Therefore, succeeding subsystems: variable
recognition subsystem and knowledge reorganisation subsystem are proposed accordingly to
deal with such scenarios, which will be discussed in Chapter 7.

Fig. 6.1 Conceptual Structure of Feature Variable Cluster Recognition Model

6.2 Implementation of Intelligent System

This section describes the implementation of the proposed framework for uninformed variable
cluster recognition. It specifies the system’s components and their associated time complexity
analyses.

6.2.1 Variable Clustering Subsystem

By performing the functionality of link extraction subsystem, the link pattern for a pair of
feature variables coexisting in a single dataset can be measured in a straightforward manner.
Also, the link pattern between a pair of variables which does not co-appear in a single dataset
can be inferred automatically. Thus, the link strength for all pairs of variables within a
specific corpus of datasets (each pair of variables can be either coexist or non-coexist in a
single dataset) can be obtained. Having achieved this, the next step is to construct a structure
to accommodate all the feature variables under consideration.
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Clustering analysis, being widely used at the initial stage of exploring the underlying
patterns of data, is adopted here to investigate the structural layout of the feature variables. It
aims at categorising these feature variables into different groups according to their similarity.
It is important to mention that not all of the clustering techniques are suitable for the current
circumstance, since the similarity between pairs of feature variables are not always measured
by the proximity of their respective attributes, but by link weights that are generated or
inferred from statistical calculation on the given data. Having noticed this premise, only
clustering methods built upon the connectivity-based similarity measure are considered as
appropriate options for the current situation.

Specifically, hierarchical clustering is selected to perform the task here , since it provides
the flexibility to demonstrate the hierarchical structure of the variable layout for such sce-
narios. Moreover, from practical point of view, the existing link strength can be naturally
employed as a similarity (or dissimilarity) measure during the clustering process. In general,
hierarchical clustering can be divided into two main types: agglomerative and divisive. For
the present work, agglomerative clustering implements a “bottom-up” approach which starts
from a singleton feature variable cluster (a cluster containing only one feature variable), and
continuously merges feature variable clusters into macro clusters and finally generates a
single feature variable cluster encapsulating all the variables in the data set corpus. The time
complexity for such an agglomerative clustering algorithm can be as high as O(N3), since
exhaustive scan of the N×N similarity matrix for the largest similarity has been executed in
each of the N−1 iterations, where N denotes the number of variables within the whole data
set corpus. An improved version assisted with priority-queue has been proposed to increase
its efficiency to O(N2logN) [222]. The pseudo code of this efficient agglomerative clustering
algorithm (EACA) for grouping variables is shown in Algorithm 7.
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Algorithm 7: Efficient Agglomerative Clustering Algorithm for Feature Variables
Input:
V = {v1,v2, ...,vN}: A variable set of N variables
M: A similarity matrix for all the pairs of variables

1 A← /0 ◃ Active set starts out empty

2 for i← 1 to N do
3 A←A∪{{vi}};
4 I{i}= 1 ◃ I indicates clusters available to be merged

5 P[i]← Priority queue for M[i] sorted on similarity ◃ P[i]: A priority queue

storing variables with their respective similarity degrees to vi in descending order

6 P[i].DELETE (M[i][i]) ◃ No need of self-similarity

7 end
8 T ←A ◃ Store the tree as a sequence of merges

9 while |A|> 1 do
10 k1← argmax

k:I[k]=1
P[k].max() ◃ Get index of cluster with highest similarity degree from

all available priority queues

11 k2← P[k1].max().index() ◃ Get index of cluster with highest similarity degree to

cluster that is indicated by k1

12 A← ((A\{Ck1})\{Ck2})∪{Ck1 ∪Ck2} ◃ Remove sets (clusters) Ck1 and Ck2

from A, add union set of Ck1 and Ck2 into A. Ck1 , Ck2 : Sets (clusters) of variables

regarding k1 and k2

13 T ← T ∪{Ck1 ∪Ck2} ◃ Add Ck1 ∪Ck2 as a merging step to T
14 I[k2]← 0 ;
15 P[k1]← /0;
16 for each i with I[i] = 1 and i ̸= k1 do
17 P[i].DELETE (M[i][k1]) ;
18 P[i].DELETE (M[i][k2]) ;
19 M[i][k1]← UPDATED sim value;
20 P[i].INSERT (M[i][k1]) ;
21 M[k1][i]← UPDATED sim value;
22 P[k1].INSERT (M[k1][i]) ;

23 end
24 end

Output: T
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Conversely, divisive clustering is a “top-down” method which starts with all feature
variables in a single cluster, then considering every possible way to divide the cluster into
two and choose the best decision. This step is performed recursively as the hierarchy going
down. Intuitively, the divisive clustering method can be computationally expensive, since
there exists O(2N) possibilities to split data into two clusters, where N denotes the number
of feature variables under investigation. However, heuristics can be employed to guide such
splitting step and reduce its executional complexity. Fortunately, divisive clustering can be
made much more efficient if it is unnecessary to generate a complete hierarchy all the way
down to individual variable leaves. Hence, divisive clustering is an appropriate option for
the scenario in which the presentation of preliminary hierarchical structure is merely needed.
The pseudocode of this efficient divisive clustering algorithm (EDCA) for the present task is
shown in Algorithm 8.
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Algorithm 8: Efficient Divisive Clustering Algorithm for Feature Variables
Input:
V = {v1,v2, ...,vN}: A variable set of N variables
M: A similarity matrix for all the pairs of variables
K: Number of clusters

1 T ← /0 ◃ Store the tree as a sequence of divided clusters

2 Q←V ◃ A priority queue for variable clusters with intra-cluster similarity in ascending

order

3 while Q.LENGTH()< K do
4 C ← Q.REMOVE() ;
5 T ← T ∪{C} ;
6 Cs← /0 ;
7 Cs←Cs∪{vs} ◃ vs: Variable with lowest within-cluster similarity in C
8 C ← C \{vs} ;
9 for each vi ∈ C do

10 for each v j ∈ C do
11 COMPUTE average similarity to splinter cluster, named sims

j;

12 COMPUTE average similarity to current cluster, named simc
j;

13 d j← sims
j− simc

j ;

14 end
15 FIND v j ∈ C with maximum d j, named v

′
;

16 if sims
v′
> simc

v′
then

17 Cs←Cs∪{v
′} ;

18 C ← C \{v′} ;

19 end
20 end
21 T ← T ∪{{C}}∪{{Cs}} ;
22 Q.INSERT(C);
23 Q.INSERT(Cs);

24 end
Output: T

The time complexity of this efficient divisive clustering algorithm is O(KN2). Since K is
usually determined in advance and K is not set to be a large number for most circumstances,
the time complexity of this algorithm can be simply denoted as O(N2).
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Note that the variable clustering subsystem works for both the informed data corpus and
the uninformed dataset, generating two hierarchical tree structure representing the knowledge
for the configurational layout of the variables involved for each of the data collections.

6.2.2 Cluster Recognition Subsystem

Considering a corpus of datasets meeting the presumption (every two of the included datasets
having at least one common feature variable existing in both of them), a hierarchical structure
of the feature variables involved can be acquired by executing the link extraction and variable
clustering steps. Similarly, when encountering a dataset with unspecified variables, the
same clustering approach can also be employed to generate a dendrogram representing the
hierarchy of these “uninformed” feature variables. In order to obtain particular clusters from
the cluster tree, two distinct directions of acquiring feature variable clusters are addressed
here:

1) Determination for the number of clusters. This usually results in a small quantity of
macro clusters. In many situations, macro clusters achieve more attention than the
micro ones, since macro clusters can capture more general features in common. For
agglomerative clustering, such clusters can be obtained during the final iterations of
its clustering process or by back tracking when the complete hierarchical tree has
been constructed. In addition, the efficient divisive clustering method can return a
pre-specified number of clusters automatically.

2) Threshold cut. There may be circumstances where only feature variable clusters with
low intra-variance are concerned, thus, a threshold value (typically not too high) can be
intuitively set to cut the hierarchical tree T into subtrees where each subtree represents a
particular feature variable cluster meeting the selection criterion. Performing threshold
cut may result in a rather large number of micro clusters.

Each time, one of the above mentioned selecting methods can be applied to both the
hierarchical clustering trees generated from the informed and uninformed feature variables to
obtain a set of model clusters and a set of target clusters, respectively. Having attained such
clusters, the next stage is to match them according to their similarity levels from different
identifiable aspects. To address this important issue, distinct approaches have been proposed
to perform such matching steps with respect to different types of feature variable clusters
based on their intrinsic characteristics, as presented below in Section 6.2.2.1 to Section
6.2.2.3. Note that the term “match” used here does not possess its traditional meaning of
finding the exact same pattern, but to look for the informed variable cluster which is most
similar to the target.
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6.2.2.1 Numeric Feature Variable Cluster Recognition

For single continuous numeric variable, it is natural to employ the distribution of its values
in the data set as features to describe itself. However, it is time consuming to exploit all of its
values at every point to articulate the variable, especially when the size of the dataset is large.
Thus, in order to keep the balance between accurate sampling and computation cost, a concise
pattern to sample representative variable values is proposed. Particularly, for the present
implementation, the 1st to the 9th deciles are used together with the minimum and maximum
of the variable values to describe a singleton variable. Therefore, the features of a singleton
variable can be presented as a vector, as its format shown in Fig.6.2. An example of the
feature vector of a singleton variable is shown in Fig.6.3. However, the representative feature
values for a variable can be sampled according to different criteria for different situations if
preferred.

Fig. 6.2 A Sampled Feature Vector for Numeric Variable

Fig. 6.3 Example of Feature Vector for a Singleton Variable
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For two numeric variable clusters, their similarity degree can be measured by comparing
their cores. The core for a numeric variable cluster is defined as a vector of the same type to
the feature vector for singleton variables, with each vector element containing the average
of feature vectors for all the variables within the cluster in the corresponding value field.
Namely, a variable cluster can be recognised as a hyper-variable, with the core being its
feature vector. Since the values of variables within a cluster can be in general of various
ranges, a standardisation preprocessing step is needed for all the variables in advance. A
detailed sequential stages for determining the core of a numeric variable cluster is stated as
follows:

1. Standardise all the feature variables within the cluster by 0-mean and 1-standard
deviation;

2. For each variable within the cluster, sample minimum, maximum and 1st to 9th deciles
of its variable values from its corresponding data set, form a feature vector with each
vector element containing a value in ascending order;

3. Generate a feature vector of the same size as a core for the variable cluster, fill in each
vector element with the weighted average of corresponding values in feature vectors
for all the variables within the cluster. Let V i

C be the ith element for the core vector of
Cluster C, the weighted average value for V i

C can be calculated as follows:

V i
C =

∑
v j∈C

V i
v j
·n j

∑
v j∈C

n j
(6.1)

where V i
v j

represents the ith element of the core vector for the variable v j, and n j

denotes the number of instances in the data corpus under consideration which have a
certain value for v j. The weighted average calculation has the merit of considering the
imbalance of dataset size in the examined data corpus (as a data corpus may contain
datasets with various numbers of instances).

From the above, given two numeric variable clusters: one cluster including informed
variables, the other with uninformed ones, having determined the cores for each of them, the
task of matching two clusters is simplified as finding the similarity of these two cores. In
practice, distance-based similarity measure is adopted to implement. Namely, the similarity
degree for two cluster C1 and C2 can be defined as:

sim(C1,C2) = exp(
−||VC1−VC2||

2
) (6.2)
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where VC1 and VC2 represent the core vectors for C1 and C2, respectively; and ||VC1−VC ||2

denotes the Euclidean distance between VC1 and VC2 .

6.2.2.2 Categorical Feature Variable Cluster Recognition

Apart from numeric variable clusters, it is uneasy to find such statistical information (e.g.,
deciles, quartiles, averages) for the categorical counterpart and generate a core for the cluster.
Particularly, two categorical variable clusters may each include a different number of variables
(which is also the case for matching numeric variable clusters), and categorical variables
within a cluster may have a different number of possible terms (values), and these terms
may either be nominal or ordinal. Combination of these factors makes it a great challenge
for the aggregation task. More sophisticatedly, there are often occasions that two variables
appearing from different clusters may include similar or even exactly the same variable, but
have different term labels in each of the datasets. This makes it impractical to identify them
by examining their explicit values. Having noticed the difficulties in tackling with categorical
variable clusters, the research focus has been diverted into looking for combinational term
distribution information for all the variables within the cluster. A technique aimed at matching
categorical feature variable clusters through evolutionary heuristics has been proposed here.
The general recognition procedure for variable clusters is established as follows:

1. For each variable within the model (informed) cluster Cm, find the frequency of
occurrence for all of its included variable terms, arrange these terms in descending
order according to the frequency of occurrence.

2. Create a table (matrix) for Cm, named Tm, with each row in Tm storing an in-cluster
variable with the information obtained from Step 1).

3. For the undetected (uninformed) cluster Cn, perform the same as described in Step 1
and Step 2. with the resulting table denoted by Tn.

4. Expand Tm and Tn to the equal size of Nv×Nt , where Nv represents the number of
variables for the larger sized cluster between Cm and Cn; and Nt = max{Nm

t ,Nn
t },

where Nm
t and Nn

t each denotes the number of terms for variable in Cm and Cn with the
largest number of variable terms.

5. For each row in Tm and Tn, fill in the empty element with value 0.

6. For the table of Tm and Tn with empty rows, fill in each empty row with value 0 for all
of its elements.
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7. Perform an evolutionary algorithm (EA) to shuffle the row vectors within Tn in order
to match Tm as much as possible.

An illustration of swapping row vectors in the target table is shown in Fig. 6.4. Taking
variable VA in model table as an example, its involving variable terms A1, A2, A3, A4 with
their respective frequency of occurrence in dataset is arranged in descending order to form a
variable term distribution row vector. Elements 0 in both tables are complemented according
to Step 5, as described above. It is clear that the row vectors of term distribution information
for variables vb and vy (highlighted in yellow) in the target table is expected to be swapped in
order to better match with the existing model table.

Fig. 6.4 Example of Swapping Row Vectors in Target Table

The implementation of the evolutionary heuristics in Step 7 is detailed in Algorithm 9. In
particular, the similarity degree between cluster Cm and Cn (table Tm and Tn) can be calculated
by the following formula:

sim(Cm,Cn) = sim(Tm,Tn) = exp(
−DIST(Tm,Tn)

2
) (6.3)

in which DIST(Tm,Tn) denotes the distance between Tm and Tn, and can be computed by

DIST(Tm,Tn) =

(
Nv

∑
i=1

Nt

∑
j=1

|T Fi j
m −T Fi j

n |2

Nt

) 1
2

(6.4)

where T Fi j
m and T Fi j

n each represents the frequency of occurrence for the jth term in the ith
variable within Tm and Tn, respectively.
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Algorithm 9: Evolutionary Algorithm to Shuffle Variable Term Distribution Vectors
Input:
maxIter: Maximum number of iterations
popSize: Population size of solutions
δ : Threshold to keep specific percentage best solutions from previous iteration
λ : Threshold to perform shuffle step
L: List to store best possible solutions in descending order

1 for i← 1 to popSize do
2 Randomly initialise possible solution Si for Tn;
3 L.INSERT(Si) ;

4 end
5 iter← 0 ;
6 while iter < maxIter do
7 for i← L.SIZE() ×δ +1 to L.SIZE() do
8 L

′
.INSERT(Si) ◃ L

′
: Another List to store solutions

9 end
10 while L.SIZE() < popSize do
11 for j← 1 to L

′
.SIZE() do

12 if RANDOM() > λ then
13 L

′
j.SWAP(p,q) ; ◃ swap variables with position p and q in L

′
j, p and q are

randomised in advance

14 COMPUTE sim(Tm,L
′
j) ;

15 end
16 L.INSERT(L

′
j) ;

17 end
18 end
19 L.SORT() ;
20 iter← iter+1 ;

21 end
Output: L.GETFIRST()

The time complexity for the proposed EA is O(kl2), with k and l each denoting the maxi-
mum number of iterations and the size of the population in EA prespecified for performing
the refinement steps, respectively.
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6.2.2.3 Mixed-Type Feature Variable Cluster Recognition

For pattern recognition of a mixed-type variable cluster, since the numeric feature variables
in the cluster have already been transformed into its categorical counterpart, the task can
be conducted through the same procedure as performing categorical feature variable cluster
matching. The process of approximating a numeric variable as a categorical output is
described in Section 5.1.3.3.

6.3 Experimental Evaluation

6.3.1 Data Preparation

To evaluate the performance of the proposed model, the experimental test is carried out on
nine real world data from UCI benchmark datasets [206]. Similar to the data preprocessing
steps discussed in Section 5.2.1, each dataset is separated into training part and testing part at
first. Then the training part is segmented again into subsets with overlapped variables amongst
them according to human knowledge. The details of these data corpora are summarised and
shown in Table 6.1.

Table 6.1 Summary of Datasets: Variable Cluster Recognition

Dataset Collection Type NDC ANIED ANVED ANVCTD

Wine N 4 1256 3 1
Twitter N 7 82038 13 4
News N 12 3048 7 2
Bank C 7 6459 4 2
Salary C 6 5028 6 1

Student-Por C 4 163 8 3
Automobile M 3 106 10 2

Internet M 7 1264 10 4
HeartDisease M 5 100 16 2

1. Type: C = Categorical Data; N = Numeric Data; M = Mixed-Type Data
2. NDC: Number of Datasets in Collection
3. ANIED: Average Number of Instances in Each Dataset
4. ANVED: Average Number of Variables in Each Dataset
5. ANVCTD: Average Number of Variables Co-existing in Two Datasets
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6.3.2 Experimental Setup and Results

Recall that the recognition of uninformed feature variable clusters involves two consecutive
steps: variable clustering and variable cluster identification. Although the output of the
entire predicting system is intended to be the matching result between an unspecified variable
cluster to the certain specified counterparts, the quality of the clusters generated by the
preliminary step will have a direct impact on the subsequent one. Hence, empirical studies
on both the variable clustering subsystem and the cluster recognition subsystem have been
conducted. The results are reported and discussed below.

6.3.2.1 Experimentation on Feature Variable Clustering

In order to gauge variable clustering quality, the average of Silhouette Coefficient (ASC) [223]
is adopted, due to its comprehensive consideration of both cohesion and separation degrees
of resultant clusters without referring to the ground truth. This method is applicable to the
current situation where no prior classification (group) knowledge about the examined feature
variables is available. Mathematically, the formula for calculating Silhouette Coefficient (SC)
for a single variable vi is defined as follows:

SC(vi) =
b(vi)−a(vi)

max{a(vi),b(vi)}
(6.5)

where a(vi) represents the average distance between vi to every other feature variable within
the same cluster, b(vi) denotes the smallest average distance of vi to all the feature variables
in any other cluster, of which vi is not a member. Thus, let D be a set of all the feature
variables within a data corpus with |D| denoting the number of feature variables in D, the
ASC for a set of clusters S generated by a clustering algorithm can be formulated as:

ASC(S) =
1
|D| ∑

vi∈D
SC(vi) (6.6)

It is clear from the above definition that ASC(S) ∈ [−1,1], with result asymptotic to 1
representing better performance of the clustering approach.

For EACA, the average-linkage (AL) measured by APCC is used to guide the clustering
steps. For comparison, spectral clustering, an advanced technique based on graph partitioning
which also employs connectivity-based similarity amongst data, is included as a baseline
clustering method. However, it does not provide the flexibility to generate different numbers
of clusters at one time. The number of feature variable clusters for each data corpus or dataset
is estimated by human expert according to their domain knowledge, although the exact
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number of groups (clusters) is confirmed. Thus, three adjacent integers which are most likely
to outline the categorical information of the discussed feature variables are examined, re-
spectively. Paired t-tests are carried out to validate the significance of the experimental results.

The resultant ASC for the training data corpus and that for the testing dataset are illus-
trated in Table 6.2 and Table 6.3, with each of the figures shown based on an average over 10
times of n-fold cross validation, where n denotes the number of datasets in the data corpus.

The experimental results show that each of the clustering algorithms generates the
best variable structure several times, revealing that the proposed models achieves at least
competitive performance compared to the spectral clustering approach in considering both
intra-cluster compactness and inter-variable variance. Notably, EACA generate best results
more times than the other two approaches, and EDCA performs well for the situation where
the number of clusters is not required to be large. Moreover, performing clustering algorithms
on training data corpora generally yields a smaller ASC than those performing on testing
dataset. This indicates that valuable information between pairs of variables coming from
different datasets may not be fully captured during the previous step of link prediction,
possibly because the overlapped feature variables in data corpus may not be sufficiently
informative for inferencing the correlation between variables coming from different involved
datasets.
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Table 6.2 Comparison of ASC for Different Clustering Models on Data Corpus

Data Number of EACA EDCA Spectral
Collection Clusters Clustering

Wine
2 0.234±0.012 (v) 0.264±0.027 (v) 0.212±0.014
3 0.438±0.026 (*) 0.402±0.028 (*) 0.502±0.016
4 0.274±0.021 0.231±0.034 0.020±0.008

Twitter
6 0.632±0.023 0.605±0.032 (*) 0.648±0.006
7 0.543±0.025 (v) 0.516±0.036 (v) 0.472±0.004
8 0.476±0.013 (v) 0.423±0.024 0.412±0.008

News
5 0.383±0.012 0.312±0.023 (*) 0.392±0.017
6 0.463±0.025 (*) 0.445±0.039 (*) 0.491±0.011
7 0.512±0.013 (*) 0.491±0.022 (*) 0.554±0.012

Bank
3 0.416±0.012 (v) 0.483±0.033 (v) 0.385±0.026
4 0.582±0.025 (v) 0.627±0.029 (v) 0.516±0.013
5 0.503±0.027 (v) 0.483±0.035 (v) 0.431±0.009

Salary
3 0.473±0.019 (*) 0.514±0.024 (*) 0.552±0.008
4 0.612±0.015 (*) 0.593±0.019 (*) 0.641±0.011
5 0.677±0.016 (v) 0.552±0.028 (*) 0.623±0.022

Student-Por
4 0.361±0.027 (*) 0.325±0.034 (*) 0.412±0.023
5 0.452±0.033 0.408±0.025 (*) 0.467±0.016
6 0.323±0.028 0.288±0.034 (*) 0.331±0.029

Automobile
4 0.523±0.009 (v) 0.556±0.011(v) 0.489±0.014
5 0.592±0.021 (v) 0.581±0.013 (v) 0.548±0.011
6 0.464±0.017 (v) 0.492±0.022 (v) 0.416±0.015

Internet
7 0.313±0.017 (*) 0.251±0.012 (*) 0.321±0.014
8 0.262±0.015 (v) 0.238±0.004 (v) 0.222±0.008
9 0.203±0.013 (v) 0.191±0.007 (v) 0.156±0.003

HeartDisease
5 0.453±0.021 (v) 0.405±0.018 (*) 0.423±0.016
6 0.561±0.036 (v) 0.521±0.038 0.511±0.022
7 0.433±0.029 (v) 0.411±0.036 0.402±0.032

1. Spectral clustering is set as the baseline model.
2. The best results are highlighted in boldface.
3. Sign (*) / (v) indicates that the corresponding result is significantly worse / better than that on

baseline model of 95% confidence level.
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Table 6.3 Comparison of ASC for Different Clustering Models on Testing Dataset

Data Number of EACA EDCA Spectral
Collection Clusters Clustering

Wine
2 0.287±0.014 (v) 0.304±0.021 (v) 0.264±0.018
3 0.438±0.026 (*) 0.402±0.028 (*) 0.502±0.016
4 0.313±0.024 (v) 0.284±0.027 (v) 0.263±0.011

Twitter
6 0.684±0.026 (*) 0.627±0.035 (*) 0.708±0.022
7 0.607±0.021 (v) 0.554±0.027 (v) 0.532±0.019
8 0.532±0.018 (v) 0.473±0.019 (v) 0.452±0.011

News
5 0.487±0.017 (*) 0.422±0.019 (*) 0.532±0.014
6 0.563±0.027 (*) 0.494±0.028 (*) 0.597±0.021
7 0.552±0.020 (v) 0.521±0.019 0.534±0.022

Bank
3 0.496±0.016 0.552±0.017 (v) 0.485±0.013
4 0.625±0.018 0.677±0.022 (v) 0.616±0.019
5 0.525±0.021 (v) 0.543±0.026 (v) 0.493±0.020

Salary
3 0.513±0.029 0.542±0.030 (v) 0.502±0.022
4 0.664±0.022 0.701±0.025 (v) 0.671±0.019
5 0.627±0.021 (v) 0.594±0.032 (v) 0.569±0.027

Student-Por
4 0.423±0.033 0.477±0.036 (v) 0.432±0.031
5 0.503±0.035 (*) 0.528±0.031 (*) 0.567±0.029
6 0.439±0.031 (*) 0.478±0.035 0.484±0.032

Automobile
4 0.643±0.010 (v) 0.616±0.012 (v) 0.567±0.016
5 0.713±0.018 (v) 0.668±0.017 (v) 0.646±0.014
6 0.591±0.019 (v) 0.535±0.021 0.533±0.018

Internet
7 0.431±0.022 (v) 0.374±0.020 (*) 0.402±0.019
8 0.347±0.012 (v) 0.303±0.018 (v) 0.288±0.016
9 0.272±0.015 (v) 0.241±0.016 (v) 0.203±0.009

HeartDisease
5 0.532±0.016 0.475±0.022 (*) 0.538±0.019
6 0.645±0.024 (v) 0.592±0.031 0.611±0.032
7 0.483±0.022 (v) 0.456±0.028 0.446±0.021

1. Spectral clustering is set as the baseline model.
2. The best results are highlighted in boldface.
3. Sign (*) / (v) indicates that the corresponding result is significantly worse / better than that on

baseline model of 95% confidence level.
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6.3.2.2 Experimentation on Variable Cluster Recognition

Intuitively, the correctness for cluster pattern matching should be determined by the propor-
tion their matched contents. Thus F1 score, a synthetic measurement, which encapsulates
both precision and recall assessments and takes them into balanced consideration, is em-
ployed as a criterion to evaluate the correctness of the recognition model. Mathematically,
the calculating process for F1 score can be formularised as:

F1 = 2 · precision · recall
precision+ recall

(6.7)

where precision and recall are respectively denoted as:

precision =
number o f matched variables

number o f variables in unin f ormed cluster
(6.8)

recall =
number o f matched variables

number o f variables in in f ormed cluster
(6.9)

In the present experimentation, a matching is regarded a correct identification if F1 ≥ 2
3 .

Note that for two clusters (an uninformed cluster and an informed cluster) prepared to
undergo a matching test, they are expected to be similar in intra-variance, since it will
increase the chance for the two examined clusters to be similar in a broad sense. Conversely,
in an extreme case, performing matching on a singleton variable cluster with a macro cluster
including a large number of variables is definitely not desirable. Thus, a threshold cut is
essential for both hierarchical trees (one for feature variables in the informed data corpus and
the other for feature variables in the unknown testing data) created by previous clustering
algorithm to generate pairs of clusters with similar intrinsic characteristic for matching.

As feature variable pattern recognition is a brand new topic. it is impractical to directly
compare this work with any existing work with respect to this novel problem. Instead, two
well-known matching methods based on bipartite graphs are implemented and refined for
comparison: the max flow matching algorithm (MFMA), and the Kuhn-Munkres algorithm
(KMA). These approaches have proved working well on finding maximum weighted bipartite
matching [224]. Specifically, MFMA assisted with EDCA is selected as a baseline model to
conduct the experimentation. Particularly, the variable cluster in a set of informed variable
clusters with the highest maximum weight to the uninformed target is selected as its optimum
matching. In order to create a weighted link between a variable-pair in which each of the
involved feature variables comes from a distinct cluster, a series of steps is required to
perform in advance with respect to different variable-pair types:
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1. Numeric variable pair: the link weight is measured by the similarity degree between
their respective core vector. The concrete calculation step is specified in Eqn. 6.2.

2. Categorical variable pair: the link weight is determined by the similarity of their
respective term distribution vector. The computation steps are described in Eqn. 6.3
and Eqn. 6.4.

3. Mixed-type variable pair: the numeric feature variable is transformed into its categor-
ical counterpart at first, and then the same calculation steps as handing categorical
variable pair is performed.

The experimental result can be presented as predicting accuracy, which is defined by the
percentage of the uninformed variable clusters “correctly” identified over all the unknown
clusters generated with a specific dendrogram cut. Table 6.4 to Table 6.6 provide an overview
of the evaluation result. As uninformed feature variable cluster detection is a challenging
task, it is generally the case that the predicting accuracy is worse than what might be expected
in conventional clustering or classification problems, unless the size of a cluster is extremely
small, say, just involving one singleton variable. However, it is clearly shown that the general
performance of the proposed approach is better than those achievable by both MFMA and
KMA, for each of the data types they handled. In addition to this significant observation, the
clusters generated by EACA are more likely to be “correctly” identified than those yielded
by EDCA, regardless of which matching method being used. This is possibly because
agglomerative clustering enables capturing more internal information than divisive clustering,
leading to generate more compact clusters. Moreover, it is worth mentioning that for the
current task, both MFMA and KMA are likely to match an uninformed variable cluster to
an informed counterpart of a larger size (containing more feature variables) rather than a
smaller size, due to their intuition to match as more variables as possible. A heuristic may
be employed to help guide their matching behaviour. In particular, a normalisation step
considering relative maximum matching weight rather than conventional maximum matching
weight may be another direction to improve the performance of these matching techniques.

In terms of time complexity, the cost of performing MFMA for the current task is
O(n2), where n denotes the number of feature variables in the uninformed cluster. The time
complexity of original KMA is O(n4), with a modified version to achieve an O(n3) running
time [225]. For numeric variable cluster detection, the efficiency of the compared methods
are remarkably inferior to the proposed model using core vector representation, that just has
a time complexity of O(m), where m here depicts the number of elements to form the core
vector. For the tasks of categorical and mixed-type variable cluster identification, both of the
compared approaches are computationally cheaper than the proposed evolutionary algorithm
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when handling large sized clusters, with each involving many feature variables, whilst they
suffer from worse performance on predicting accuracy.
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6.4 Summary

6.4 Summary

This chapter has proposed a predicting model to perform the novel task of pattern recognition
for groups of uninformed feature variables. With the support from collections of informed
data, such task can be accomplished via searching for similar patterns between the unin-
formed variable group to the informed counterpart. Particularly, both efficient agglomerative
and divisive clustering approaches are designed and implemented to categorise related feature
variables into groups according to their respective application scenarios. Different metrics to
handle data collections in various types (numeric, categorical and their hybrid) are presented,
with experimental evaluation demonstrating the capability of the proposed approach.

Despite such achievements, the efficacy of the proposed work may be further demon-
strated with more real-world datasets. Additionally, the link weights used in the current
hierarchical clustering model are in the format of crisp value, which are derived from the
defuzzification step discussed in Section 5.1.4.2. Note that such defuzzification process
may cause losing important information from its original fuzzy interpretation. An advanced
clustering approach which exploiting such fuzzy value directly to generate a more informa-
tive hierarchical structure is worth investigating. A prospective outlook for this part will be
discussed in Chapter 8.
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Chapter 7

Feature Variable Identification and
Hierarchical Knowledge Reorganisation

Knowledge representation is a branch of artificial intelligence dedicated to capture informa-
tion about the world in a form that a computer system can utilize to solve complex problems
[226]. Nowadays, with the development of modern technology, information data are growing
more quickly than anticipated. Making better use of data to generate new knowledge is of
great necessity in data mining. However, for traditional offline techniques, although being
capable of generating accurate results, their iteration process may not be sufficiently flexible
to catch up with the pace of data growth (need to reconstruct the model to accommodate more
information, not sufficiently flexible for update and refinement). Recently, online techniques
in data mining have increasingly played a more important role for knowledge detection, due
to their effectiveness and efficiency in providing prompt reaction to the up-to-date infor-
mation. In particular, hierarchical representation of knowledge, possessing the advantages
of being both informative and intuitive, is widely employed in various application fields,
including human resource management [227], biological taxonomy [228, 229], social media
and webpage investigation [230, 231], and knowledge graph completion [232], to name but a
few. It also enables accepting acquisition of new information and deriving novel structure
from existing framework. Thus, It offers a great potential for developing knowledge models
which allow updating knowledge on the fly.

In Chapter 6, a hierarchical representation for the knowledge about the layout of domain
feature variables was presented. This provides a systematic view on how the domain fea-
tures are organised in data collections. Simultaneously, a novel predicting model has been
proposed to perform the brand new task of identifying patterns for a group of uninformed
feature variables in such domain. This may lead to two opposite results: (1) an uninformed
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7.1 Feature Variable Identification

variable cluster is clearly or approximately detected; (2) there currently exists no informative
pattern well matching the target uninformed variable cluster. For the former situation, it is
aggressive but sensible to perform a further task of singleton variable identification. For the
latter circumstance, utilising the information acquired with the uninformed group to enlarge
and update the current knowledge structure about the domain feature variables is an advisable
option. In this chapter, specific schemes to perform each of the above mentioned tasks with
respect to an uninformed feature variable clusters will be discussed. Importantly, the work
presented in this chapter, together with the contents included in Chapter 5 and Chapter 6, are
integrated to create a massive model for feature variable prediction. The general model of
this predicting system will be provided in Section 7.3.

The remainder of this chapter is organised as follows: Section 7.1 introduces the searching
mechanism for identifying singleton feature variable in a detected uninformed variable cluster.
Section 7.2 outlines the scheme to handle an uninformed variable cluster which has not
been identified, with its implementation procedure described in detail. Section 7.3 shows
the experimental evaluation for the proposed approaches discussed in this chapter along
with a discussion of results. Section 7.4 generalises the contents discussed in Section 5,
Chapter 6 and the proposed models described in this chapter, and presents a general model
for prediction at feature variable (cluster) level. Finally, Section 7.5 concludes the chapter.

7.1 Feature Variable Identification

In order to determine whether to perform the singleton variable detection or not, a threshold
value α ∈ [0,1] is set at first. For a pair of an uninformed variable cluster CU and its closest
informed counterpart CK obtained from the variable cluster recognition subsystem (described
in Section 6.2.2), if sim(CU ,CK)≥ α , which shows that CU and CK are highly similar to each
other, and may further indicate that a singleton unknown variable vU in CU could possibly
have a similar counterpart in CK , or more ambitiously, have a copy of itself in CK . Inspired by
this observation, an iterative searching algorithm is designed to look for the counterpart of vU

in CK . Specifically, the hierarchical structure of the feature variables is usually visualized as
a dendrogram, with a leaf node corresponding to a singleton feature variable cluster, the root
denoting the entire cluster including all the feature variables in the discussed domain, and a
node in the dendrogram representing a variable cluster containing all its child nodes. The
proposed searching strategy follows the concept of binary search, which iteratively divides
the searching space into separated halves by heuristics and finally obtains the searching
result. Likewise, each time, the proposed approach works by comparing the target feature
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7.1 Feature Variable Identification

variable to both sides of the hierarchy at first, and selecting the side with the higher similarity
degree. This step is conducted repeatedly until reaching the singleton variable cluster. Then
the feature variable included in this singleton cluster is regarded as a possible matching. The
pseudo code for this searching algorithm is as follows:

Algorithm 10: Algorithm to Identify Uninformed Variable
Input:
vU : An uninformed variable to be identified
CK: Closet informed variable cluster
L: A List to store variable clusters

1 Create a singleton variable cluster C∗U for vU ;
2 C ← CK ;
3 while C.SIZE()> 1 do
4 L← C.getChildren() ;
5 for Cl in L do
6 COMPUTE sim(C∗U ,Cl) ;
7 end
8 C ← FIND Cl in L with maximum sim(C∗U ,Cl) ;

9 end
10 PICK vK from C ; ◃ C contains a single variable

Output: vK: Counterpart of vU in CK

Note that the computation of sim(C∗U ,Cl) in Algorithm. 10 considers all types of those
variable clusters involved (be they numeric variable clusters, categorical variable clusters
or mixed-type variable clusters). For each of the cluster pairs, corresponding computation
method needs to be selected accordingly. The working mechanism for this has been discussed
in Chapter 6. The average time complexity for this iterative searching algorithm is as simple
as O(log(|CK|)), where |CK| denotes the number of variables in the compared informed
variable cluster. Occasionally, more than one closet informed variable cluster may be taken
into consideration at the beginning, especially when several informed clusters have a similar
proximity to the target cluster. For this circumstance, the proposed algorithm is to run through
on each of the clusters under the consideration that may contain a variable similar to the
target feature variable. The resultant prediction is based on selecting the one with the highest
similarity degree.
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7.2 Hierarchical Knowledge Reorganisation

7.2 Hierarchical Knowledge Reorganisation

There is also the case that the similarity degree between an uninformed variable cluster to its
closest counterpart is still less than α , i.e., sim(CU ,CK)< α . Intuitively, when facing such a
scenario, it is not wise to perform iterative search for the task of variable identification, since
it is natural to believe that if two clusters of variables are not sufficiently similar, they are
unlikely to contain similar singleton variables as well. Although chances are that two clusters
may include a certain number of similar or identical variables, the portion of such variables
within the cluster may be rather too small. This leads to the task of correct identification
extremely difficult compared to handling two clusters with a significant higher similarity
degree. However, by contrast, this occasion implies that the uninformed variable cluster
may contain variables which are not incorporated in the current hierarchical structure. Also,
the information covered by the unknown variable cluster can still be utilised to enrich the
existing knowledge base. This observation supports the intuition to update and enlarge the
obtained hierarchical structure to better accommodate domain feature variables.

A pre-assumption is set up prior to performing such updating step: the hierarchical
variable structure needs to be considered as a binary tree with each cluster being a node in
the tree. Different from the traditional definition of binary tree [233, 234] which allows a
tree node to have a single child node, the tree node in the binary tree discussed here should
have either exactly two child nodes or no child node at all. Several properties can be acquired
from such an assumed tree structure.

- The top-level cluster which incorporates all the feature variables generated through the
variable clustering step (root cluster in the hierarchical structure) should be considered
as a root node for the tree.

- The singleton variable cluster should be treated as a leaf node in the tree, and have no
child cluster nodes.

- Each cluster node besides the leaf cluster node should have exact two child cluster
nodes, including all the feature variables from its child cluster nodes, but excluding
any variable from nodes other than its own child cluster nodes.

- Each cluster node besides the root cluster node should have a parent cluster node, with
the child cluster node representing a subcluster to the cluster denoted by the parent
node.

- Two cluster nodes with the same parent cluster node are considered as siblings.
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7.2 Hierarchical Knowledge Reorganisation

- The cluster nodes acquired by a specific level cut are considered as neighbours.

When consider inserting a new cluster node into an existing hierarchical structure (binary
tree), the crucial point is to determine the correct position in the tree in which the new node
to be insert into. Note that the present discussion assumes that both the cluster to be inserted
and the referential set of clusters are generated at the same cut level with respect to their own
dendrogram. This assumption is intuitive and practically imperative, otherwise it may lead
to searching in the entire hierarchical space to determine the closest cluster, which is time
consuming and perhaps misdirecting for the updating process. For an incoming cluster Cx

potentially to be inserted, since its closest counterpart in the referential hierarchy has already
been detected, named as Ca, it has a natural appeal to perform the job of cluster insertion
guided by Ca. Assumes that Ca has a parent cluster Cp, inserting Cx into Cp to make Cx and
Ca becoming siblings may seem to be an intuitive and direct choice. However, it is possibly
not an ideal option, since it violates the preset binary tree structure (Cp have three child
clusters), and it may not correctly reflect the intimacy degree of Ca to Cx and that of Ca to
other same-level clusters as well. Hence, a novel approach to overcoming such defects is
proposed.

The proposed approach performs a series of heuristics to determine the position in the
hierarchical tree into which the incoming variable cluster is to be inserted. Consider Cy,
where Cy, the neighbour cluster of Ca, and it should meet the following criteria:

• (1) sim(Cx,Ca)> sim(Cx,Cy) ;

• (2) Cy = argmax
Ci

sim(Ca,Ci) (1≤ i≤ t), where t is the number of neighbour clusters

to Ca with sim(Ca,Ci)< sim(Cx,Ca).

This means that Cy is the cluster having the greatest sim(Ca,Ci) score among all t neighbour
clusters with sim(Ca,Ci) < sim(Ca,Cx). It is therefore, the selected cluster to guide the
inserting procedure. When performing the inserting step, three different scenarios for the
relative position of Cy in the hierarchical variable clustering tree need to be taken into account
respectively.

• Scenario 1: Cy is the sibling of Ca and is the cluster with the greatest sim(Cx,Ci)(1≤
i ≤ n) among all n neighbour clusters. An illustration of this scenario is shown in
Fig. 7.1a (with the cloud denoting the root cluster, the nodes in blue representing the
original cluster, the nodes in red indicating the variable to be inserted into the hierarchy.
The same expressions are also used in Fig. 7.2a and Fig. 7.3a).
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7.2 Hierarchical Knowledge Reorganisation

– Scenario 1-1: sim(Cx,Ca)> sim(Cy,Ca). For this situation, the steps for insertion
is arranged as follows:

* Step 1: Delete Cy as a child of Cp;

* Step 2: Set Cx as a child of Cp;

* Step 3: Create a new variable cluster Cp′ , set Cp and Cy as children of Cp′ ;

* Step 4: Delete Cp as a child of Cg;

* Step 5: Set Cp and Cp′ as children of Cg.

An illustration of updated result for this scenario is shown in fig. 7.1b (The nodes
in orange represent those clusters requiring update during the process of insertion.
The same expression is used in Fig. 7.1c, Fig. 7.2b, Fig. 7.2c, Fig. 7.3b, Fig. 7.3c
as well) . It should be noted that when such updating steps are performed, the
operations of adding (removing) variables to (from) the related ancestor clusters
need to be conducted accordingly. These basic operations are also executed when
performing updating process for other scenarios.
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7.2 Hierarchical Knowledge Reorganisation

(a) Scenario-1 before update

(b) Updated Result for Scenario 1-1

(c) Updated Result for Scenario 1-2

Fig. 7.1 Updating Process for Scenario-1
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7.2 Hierarchical Knowledge Reorganisation

– Scenario 1-2: sim(Cx,Ca) ≤ sim(Cy,Ca), which indicates the similarity degree
between Cx and Ca is no greater than that of the existing siblings Cy and Ca in the
hierarchy. For this situation, it is not necessary to change the local hierarchical
structure of Cp being the parent cluster with two children clusters Ca and Cy.
However, Cx is still closer to Ca than any other cluster nodes besides Cy when
considering all the clusters (apart form Cx itself) generated by the current cut.
Thus, it is ideal to merge Ca and Cx into a single cluster at earliest stage as possible.
Having noticed this inherent characteristic embedded, creating a new cluster to
accommodate Cp and Cx is expected and required. In particular, the updating
procedure is stated as follows:

* Step 1: Delete Cp as a child of Cg;

* Step 2: Create a new variable cluster Cp′ , set Cp and Cx as children of Cp′ ;

* Step 3: Set Cp′ as a child of Cg.

A demonstration of the updated result is shown in Figure. 7.1c.

• Scenario 2: sim(Cx,Ca)> sim(Cy,Ca), where Cy is a direct child cluster to one of Ca’s
ancestors, denoted as Cg. This scenario is shown in Fig. 7.2a. Note that Cg has another
child cluster, named Cp. For this situation, two possible sub-scenarios needs to be
taken into consideration.

– Scenario 2-1: sim(Cp,Cx)> sim(Cy,Cx). For this scenario, Cp and Cx need to be
merged at first before being clustered with Cy. A brief introduction of manipulat-
ing the procedure is described as follows:

* Step 1: Delete Cp as a child of Cg;

* Step 2: Create a new variable cluster Cp′ , set Cp and Cx as children of Cp′ ;

* Step 3: Set Cp′ as a child of Cg.

An illustration of this updating process for the described scenario is shown in Fig.
7.2b.

– Scenario 2-2: sim(Cp,Cx)≤ sim(Cy,Cx). For this scenario, the original hierarchi-
cal structure needs minor but necessary revision: Cx and Cy are supposed to be
grouped at first prior to being combined with Cp. The procedure for such revision
is articulated as follows:

* Step 1: Delete Cy as a child of Cg;

* Step 2: Create a new variable cluster Cp′ , set Cx and Cy as children of Cp′ ;
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7.2 Hierarchical Knowledge Reorganisation

* Step 3: Set Cp′ as a child of Cg.

Similarly, a demonstration for such updating operation is presented in Fig. 7.2c.
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7.2 Hierarchical Knowledge Reorganisation

(a) Scenario-2 before update

(b) Updated Result for Scenario 2-1

(c) Updated Result for Scenario 2-2

Fig. 7.2 Updating Process for Scenario-2
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7.2 Hierarchical Knowledge Reorganisation

• Scenario 3: sim(Cx,Ca)> sim(Cy,Ca), where Cy has already been merged with another
cluster Cb prior to being clustered with Ca’s ancestors in the existing hierarchy. An
presentation of such scenario is revealed in Fig. 7.3a. When facing this situation, two
distinct sub-scenarios need to be taken into account.

– Scenario 3-1: sim(Cx,Cy)> sim(Cb,Cy). For this scenario, a three-step updating
process is proposed as follows:

* Step 1: Delete Cy as a child of Cp;

* Step 2: Create a new variable C ′p, set Cx and Cy as children of Cp′ ;

* Step 3: Set C ′p as a child of Cp.

An illustration of the updating process for the above scenario is shown in Fig.
7.3b.

– Scenario 3-2: sim(Cx,Cy)≤ sim(Cb,Cy). For this scenario, it is merely necessary
to merge Cx and Cp, whilst keeping the basic local structure of Cp with two
children Cy and Cb unchanged. The steps for performing the operation can be
presented as follows:

* Step 1: Delete Cp as a child to its parent Cq;

* Step 2: Create a new cluster Cp′ , set Cx and Cp as children of Cp′ ;

* Step 3: Set Cp′ as a child of Cq.

An example of updated hierarchy is demonstrated in Fig. 7.3c.
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7.2 Hierarchical Knowledge Reorganisation

(a) Scenario-3 before update

(b) Updated Result for Scenario 3-1

(c) Updated Result for Scenario 3-2

Fig. 7.3 Updating Process for Scenario-3
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It is important to point out that during the updating process, the substructure of the
inserted nodes remains unchanged, which also guarantees preserving the binary configuration
for the entire hierarchical structure. Generally, the proposed approach performs the task of
inserting a variable cluster into an existing hierarchical structure while completely preserving
its binary tree layout. Note that the updating process can be performed iteratively when a
set of undetected feature variable clusters arrives, which forms an online training procedure.
Although the inserted cluster is not generally identified clearly, the resulting hierarchical
structure provides a relatively informative view for the underlying patterns of this undetected
cluster from its sibling cluster and neighbour clusters.

7.3 Experimental Evaluation

This section presents the experimental evaluation of the proposed work for both the tasks of
singleton variable identification and hierarchical structure reorganisation.

7.3.1 Experimentation for Singleton Variable Identification

7.3.1.1 Data Preparation

To evaluate the performance of the iterative searching procedure, Algorithm 10 is tested
over three categories of datasets: numeric, categorical and mixed-type, respectively. Each
category contains four datasets, with their general information depicted in Table 7.1.
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Table 7.1 Summary of Datasets: Singleton Variable Identification

Dataset Collection Type Number of Feature Variables Number of Instances

Wine N 14 5024
Twitter N 88 564266
News N 82 40896
Urban N 146 2639
Bank C 22 45213
Salary C 25 30168

Student-Por C 28 652
Student-Mat C 28 404
Automobile M 24 318

Internet M 57 8848
HeartDisease M 70 500
Arrhythmia M 242 1210

1. Type: N = Numeric Data; C = Categorical Data; M = Mixed-Type Data

7.3.1.2 Experimental setup

In the experiments carried out, each dataset is split into two subsets in equal size. EACA
is performed on both subsets to create two hierarchical trees using human knowledge to
determine the number of clusters being generated. The test is only conducted on pairs of
variable clusters meeting the following selection criteria: (1) each of the clusters in the cluster
pair comes from a distinct hierarchical tree, (2) the similarity degree between the two clusters
involved in the cluster pair is above a specific level, with the calculation formula having been
described in Section 6.2. In the present experimental setting, the level of similarity degree
for a pair of numeric variables is set to 0.9, and is set to 0.6 for both categorical variable pairs
and mixed-type variable pairs. This setting is practically meaningful since in reality, it is
not necessary to force performing singleton variable identification if two involving variables
clusters are not sufficiently similar. For comparison, exhaustive search (ES) is adopted as a
baseline model.

7.3.1.3 Experimental Result

The experimental result is presented by searching accuracy, which is defined as the ratio
between the number of real correct matchings and maximum number of possible correct
matchings. The reported results are based on an average 30 runs of 2-FCV. From Table
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7.2, it is clear that the proposed searching algorithm performs inferior to ES on all the data
collections. This is because ES, with running time of O(N) (N represents the size of the
feature variable cluster), traversing the entire searching space, may almost guarantee to find
the correct match. This is somewhat expected, as the heuristics embedded in the proposed
approach is not sufficiently accurate. However, the advantage of the proposed iterative
searching scheme over ES is its time efficiency, with an average of O(log(N)) running time
to achieve the predicted result. This indicates that when the size of the cluster is large, a trade
off between accuracy and efficiency is worth considering.

Table 7.2 Comparison on Accuracy of Singleton Variable Identification

Dataset Collection Proposed ES

Wine 0.92±0.05 (*) 1.00±0.00
Twitter 0.78±0.07 (*) 0.96±0.01
News 0.83±0.04 (*) 1.00±0.00
Urban 0.77±0.07 (*) 1.00±0.00
Bank 0.82±0.03 (*) 1.00±0.00
Salary 0.87±0.05 (*) 1.00±0.00
Student-Por 0.94±0.02 (*) 1.00±0.00
Student-Mat 0.92±0.02 (*) 1.00±0.00
Automobile 0.84±0.04 (*) 1.00±0.00
Internet 0.78±0.05 (*) 1.00±0.00
HeartDisease 0.73±0.06 (*) 1.00±0.00
Arrhythmia 0.78±0.07 (*) 0.98±0.00

1. ES is set as the baseline model.
2. The best results are highlighted in boldface.
3. Sign (*) / (v) indicates that the corresponding result is significantly worse / better than that

on baseline model of 95% confidence level.

7.3.2 Experimentation on Hierarchical Structure Reorganisation

This section provides an artificial scenario concerning the update process of the hierarchical
knowledge structure. It is used to demonstrate the procedures of the proposed approach, for
hierarchies generated via both agglomerative and divisive clustering methods. The accuracy
of the work is validated on both real-world data obtained from UCI repository [206] and
synthetic data.
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7.3.2.1 Experimental setup

Provided that the external categorical labels are unavailable for any of the feature variables
under investigation, the ground truth of the taxonomic information for the variables is not
a natural existence in data. Having noticed of that, in experiment, any “ground truth” is
artificially computed by performing the same technique on the entire dataset as it conducts
on the training data. That is, without losing fairness, the updated hierarchical structures
are compared against those directly generated from the entire data with the same clustering
approach. The training data is obtained through the following steps:

1. Perform a hierarchical clustering algorithm with respect to feature variables on the
entire dataset.

2. Cut the resulting hierarchical tree with a specified similarity threshold, and obtain a set
of clusters with intra-similarity for each of the clusters involved above the mentioned
threshold.

3. Remove randomly a cluster from the cluster set acquired from Step 2.

4. For each of the feature variables included in the removed cluster, delete all its informa-
tion with regard to each of the instances in the entire dataset, and return the resulting
subset of the entire dataset as a training dataset for the current experiment.

Having obtained such training data, the same clustering approach conducted on the entire
dataset is adopted to perform on this training data with respect to the feature variables in-
volved, and a new hierarchical structure can be learned from this process. Following that, the
removed feature variable cluster is expected to be inserted to updating the obtained hierarchy.
This process guarantees that the inserted variable cluster includes no overlapped variables
with the existing structure.

To evaluate the proposed updating scheme, Normalised Mutual Information (NMI) is
employed as the validity index, since it causes no bias for a large number of clusters and
provides a relatively reliable conclusion. It generates scores ranging between 0 and 1,
especially, with the maximum value indicating that clustering result matches the “ground
truth” perfectly. The concept of NMI is described in Section 5.1.3. For present experiment,
let π1, π2 each be a set of feature variable clusters, their NMI can be calculated as:
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NMI(π1,π2) =

|π1|
∑

i=1

|π2|
∑
j=1

ni j log( ni jN
nim j

)√
|π1|
∑

i=1
ni log(ni

N )
|π2|
∑
j=1

m j log(m j
N )

(7.1)

where |π1| and |π2| represent the number of clusters within π1 and π2 respectively, ni and
m j each denote the number of feature variables in cluster i and j, ni j depicts the number
of feature variables agreed by clusters i and j, and N implies the total number of feature
variables under consideration.

As inserting a cluster into an existing variable cluster hierarchy is a brand new topic,
with seldom related information available in the literature, a naive insert scheme which
only considers the cluster to be inserted to its closest counterpart in the hierarchy is set as a
baseline model, named as naive insert (NI). Note that the NMI measure should not be simply
performed on two set of clusters just generated by the designated cut, since the influence
of the updating procedures (inserting steps) will not be straightforwardly revealed at cut
level, but demonstrated at a higher level of the hierarchy when macro clusters involving
both the existing micro clusters and the inserted cluster are taken into account. In the
present experiment, the best choice for the number of clusters from the macro perspective
are determined according to human knowledge.

7.3.2.2 Experimental Results

For a single dataset, the results are based on an average of r runs for each of the comparing
methods, with r herein denoting the number of variable clusters generated by a specific cut on
the entire data. Let Tt and Te each be a hierarchical variable tree generated from the training
dataset Dt and the entire dataset De, and cutα represents a specific cut for both of the trees
at the threshold of α , where α denotes the dissimilarity degree between feature variables.
Every time, a cluster generated by cutα from Te, which contains variables not included in
Dt , is selected to be inserted into Tt . This step performs successively r times for each of the
variable clusters generated form the De with cutα . Usually, in order to generate compact
clusters, α , within the range of [0,1], is set to a moderate number (i.e., α = 0.3, 0.4 or 0.5).
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Table 7.3 Comparison on NMI of Different Updating Process

Dataset α Num Proposed NI

Twitter(N) 0.3 7 0.66±0.08 (v) 0.55±0.07
Urban(N) 0.4 5 0.57±0.09 (v) 0.48±0.08
Bank(C) 0.4 4 0.70±0.06 0.72±0.08
Salary(C) 0.5 4 0.74±0.08 (v) 0.65±0.10
HeartDisease(M) 0.3 6 0.58±0.06 (v) 0.52±0.05
Arrhythmia(M) 0.5 9 0.68±0.09 (v) 0.58±0.10
Synthetic-1(C) 0.4 6 0.61±0.07 (v) 0.55±0.08
Synthetic-3(N) 0.3 8 0.72±0.05 (v) 0.66±0.07
Synthetic-5(M) 0.4 8 0.67±0.08 (v) 0.61±0.08

1. (N): Numeric data; (C) Categorical data; (M) Mixed-type data
2. Num: Number of macro clusters.
3. NI is set as the baseline model.
4. The best results are highlighted in boldface.
5. Sign (*) / (v) indicates that the corresponding result is significantly worse / better than that on baseline

model of 95% confidence level.

The experimental results on NMI measure for both of the updating procedures are re-
ported in Table 7.3. It is clear that the performance of the proposed updating process is
universally superior to that achievable using NI. This is because the proposed approach uses
more heuristics to infer the appropriate position for inserting the coming feature variable
cluster. Importantly, the proposed approach perfectly preserves the binary structure of the
hierarchical tree, presenting the underlying knowledge in a well organised and informative
manner. On the contrary, NI violates such structure each time when performing the inserting
step. As such, it conceal valuable information from the resultant structure that facilitates
comparative analyses of the similarity between two pairs of variable clusters: (1) a pair of
inserted cluster and its closest counterpart C∗, (2) C∗ and its sibling cluster in the original
hierarchy.

In terms of time complexity, NI runs O(l) steps to find the position for conducting its
inserting operation, which is slightly efficient than the proposed approach with O(2l) of
the searching time to determine the appropriate position for insertion, where l denotes the
number of clusters generated from Tt with cutα . Both methods need additional O(log(l)) of
time to update information for all ancestor clusters of the inserted cluster.
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7.4 Intelligent System for Variable Detection and Hierar-
chical Knowledge Reorganisation

This section summarises the contents described in Chapter 5, Chapter 6 and preceding
sections of this chapter to provide a comprehensive predicting model for intelligent detection
of feature variable and automatic reconstruction of feature variable hierarchical layout. This
novel predicting model is adaptable to widespread scenes in real world, particularly when
any given information content is obtained from different data sources where parts of the
information overlap, and parts of the information are isolated with missed description to them.
Actually, there currently exists no effective model to handle such situations while considering
all of these data as a whole. In general, this section outlines the general framework of
the predicting model and describes the functionality for each of the involving subsystems.
Experimental evaluation is also included to present the efficacy of the integrated system.

7.4.1 Generic Framework of Intelligent System

This subsection illustrates the generic framework of the intelligent system for feature variable
detection and hierarchical knowledge reorganisation. The system is aimed to perform the
task of variable cluster pattern recognition and subsequent jobs of variable identification
or variable structure modification. Such ultimate goals are achieved on the basis of feature
variable cluster detection. In order to perform the preliminary duty of variable cluster
pattern recognition, an intermediate system which includes three subsystems is designed,
and these subsystems are named as link extraction subsystem, variable clustering subsystem
and cluster recognition subsystem, respectively. These subsystems together with the variable
identification subsystem and hierarchical knowledge reorgansation subsystem, are integrated
to construct the general variable predicting system, undertaking the task of feature variable
detection at both singleton variable level and variable cluster level. The generic framework
of the proposed model is illustrated in Fig. 7.4. The fundamental functionalities for each of
the subsystems are as follows:
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Fig. 7.4 Conceptual Framework of Cluster Based Variable Detection and Hierarchy Reorganisation

• Link Extraction Subsystem: Extract both existing and potential links between each
pair of feature variables from the domain data corpus. Find the similarity degree for a
pair of feature variables by measuring its related link weight. This step is executed for
both the training datasets (datasets with already informed variables) and testing dataset
(dataset with uninformed or unknown variables).

• Variable Clustering Subsystem: For an existing informed data corpus, group all the
feature variables into clusters according to their similarity degree acquired from the
previous step, so that the variables with higher similarity degrees are gathered together,
and the variables with lower similarity degrees are separated into different categories.
Likewise, perform the same action to the testing dataset to obtain another set of clusters
with uninformed variables.

• Cluster Recognition Subsystem: Select an variable cluster from the uninformed
cluster set generated by previous clustering step. Attempt to identify it by matching
it to the appropriate informed variable cluster. This step may result in two opposite
consequences: (1) the uninformed variable cluster is clearly or approximately identified;
or (2) there exists no informed variable cluster matching this unknown variable cluster
suitably.
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• Variable Identification Subsystem: When criterion (1) is met, determine the subtree
rooted from the informed variable cluster with its own hierarchical structure. For a
feature variable within the uninformed variable cluster, iteratively search the obtained
subtree structure from top to bottom to find the informed counterpart.

• Hierarchical Knowledge Reorganisation Subsystem: When criterion (2) is satisfied,
insert the unidentified variable cluster into the hierarchy generated from the informed
feature variables to consolidate the size of the hierarchical structure.

7.4.2 Empirical Study of Intelligent System

7.4.2.1 Data Preparation

The empirical study is examined on both real world data from UCI benchmark data sets
[206] and on a collection of synthetic datasets. As there rarely exists any corpora of datasets
designated for the current study, for a single dataset in UCI benchmark data repository, a
series of steps is performed to generate proper data for carrying out the experimentation:

1. Split the entire dataset into a “training” set and a testing set with respect to instances.

2. Further split the “training” set into two separate parts with respect to feature variables,
remove one part from the “training” set, and treat the remained one as the real training
set.

3. Split the training set into subsets with overlapped variables according to human knowl-
edge, where the instances in each subset may not necessarily represent the same objects
or entities. These subsets are grouped together to form a training data corpus.

In the present experimentation, the ratio for the remaining feature variables is set to 0.8,
which means that the 80% of the feature variables are employed for training, and all the
variables within the entire dataset are used for testing the performance of the predicting
model.

To demonstrate the performance of the proposed predicting model on larger sized groups
of datasets including more variables, different corpora of synthetic datasets are generated as
well to conduct the experiment. Table 7.4 provides a brief review on the characteristics of all
datasets employed.
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Table 7.4 Summary of Datasets: General Predicting Model

Dataset Collection Type NDC ANIED ANVED ANVCTD

Bank C 7 6459 4 2
Salary C 6 5028 6 1

Student-Por C 4 163 8 3
Connect-4 C 6 11034 7 2

Twitter N 7 82038 13 4
Facebook N 5 104 5 2

Urban N 13 203 12 3
News N 12 3048 7 2

Automobile M 3 106 10 2
HeartDisease M 5 100 16 2
Arrhythmia M 10 121 30 3

Internet M 7 1264 10 4

Synthetic-1 C 22 15491 18 4
Synthetic-3 N 25 21990 20 2
Synthetic-5 M 15 12020 15 2

1. Type: C = Categorical Data; N = Numeric Data; M = Mixed-Type Data
2. NDC: Number of Datasets in Collection
3. ANIED: Average Number of Instances in Each Dataset
4. ANVED: Average Number of Variables in Each Dataset
5. ANVCTD: Average Number of Variables Co-existing in Two Datasets
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7.4.2.2 Experimental Setup

Note that two possible operations may be conducted from the proposed predicting model
(searching for singleton variables and updating the hierarchical structure for informed vari-
able clusters), with each being exclusively performed. Thus, both operations are required
to be examined. For investigation on performance of singleton variable identification, the
accuracy index, defined as the ratio of number of correct predictions over the total number of
predictions in searching for singleton feature variables, is employed as the indicator. The
NMI measure presented in Section 7.3 is adopted here to gauge the performance on the task
of variable hierarchy updating.

Specifically, for the proposed model, APCC is used to measure any correlation between
numeric feature variables. Both Max-Min and BSAP metrics with COG step for connected-
triple based fuzzy inference are employed to implement the link extraction subsystem, with
WJC, LWP, RSS, SR being selected to perform comparison. In implementation of the variable
clustering subsystem, EACA and EDCA are adopted to generate hierarchical structure for
variable clusters, respectively, with AL being chosen as the linkage measure. Similar to the
experimental setup introduced in Section 7.3, the cut level for cluster generation and the
number of macro clusters for best describing the taxonomic information of domain variables,
are determined with human knowledge. The threshold which guides to decide whether to
perform singleton variable identification or hierarchical structure update is set to 0.9 for a
numeric variable pair. This threshold is set to 0.6 when considering categorical variable
pair or mixed-type variable pair. Moreover, LWP with EDCA for implementation of the
framework is selected as the baseline model.

7.4.2.3 Experimental Results

In all experiments carried out, for each corpus of datasets, an n-fold cross validation [174]
is conducted at instance level, where n is the number of datasets in the corpus. The fol-
lowing results are based on an average of running 10 times n-fold cross validation. Table
7.5 reveals the performance for each of the compared approaches regarding the accuracy
of singleton variable identification. It is clear that the predicting model implemented with
connected-triple based fuzzy inference as premise consistently outperforms the neighbour-
based metrics (WJC) and the random walk-based metric (SR) across nearly all corpora of
datasets. According to the statistics shown, the qualities of FCT implemented by Max-Min
and BSAP are similar. Note that RSS and LWP metric can generate better results for specific
corpora of datasets. As described in Chapter 5, this has much to do with the distribution
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of the feature variables in each dataset within such a corpus. However, the proposed FCT
metric demonstrates its competitiveness according to predicting accuracy, regardless of the
feature variable distribution in each dataset corpus. This demonstrates the robustness and
adaptability of the proposed approach.

Table 7.6 presents the average NMI which measures the quality of variable partition
after updating the existing hierarchical structure. Again, the statistic figures show that the
predicting model embedded with FCT to measure link strength are more effective than that
employing other link inference approaches across the majority of data corpora in different
types. Particularly, it reveals that different realisations of FCT (i.e., Man-Min and BSAP)
have little variance on the performance of the general predicting system, which to a certain
extent demonstrates the robustness of the proposed framework for link prediction to multiple
implementations. In addition, according to the illustrated results, EDCA shows its advantage
of working on smaller numbers of macro groups, while EACA are likely to perform well on
partitions in a comparatively larger number.
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7.5 Summary

7.5 Summary

This chapter has provided two directions for performing further investigation on feature
variable clusters: singleton variable identification and variable hierarchy update, according to
different criteria. Both operations are based upon the general concept of binary tree structure.
Particularly, the variable hierarchy update procedure can be iteratively performed to consol-
idate the knowledge base of feature variables within a given problem domain, which may
also be exploited as a dynamic online training process, due to its light weight in computation.
The implementation for both operations has been detailed in this chapter, with experimental
evaluation being presented to demonstrate their efficacy.

Further more, from a general viewpoint, this chapter has generalised the contents dis-
cussed in Chapter 5 and Chapter 6, to present a comprehensive reasoning system which
aims at executing prediction at variable and variable cluster level. The application scenario
for the proposed predicting model has been outlined, with the functionality for each of the
involving components described. An empirical study on the proposed predicting model has
been carried out and reported, demonstrating its potential for future use.
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Chapter 8

Conclusion

This chapter presents a final summary of the research on intelligent prediction at instance
level, feature variable level and variable cluster level, as discussed in the preceding chapters.
Based on the literature review regarding the popular techniques for prediction of various types,
this thesis has provided systematic models to perform the task of instance based missing
information estimation, feature variable identification, and variable group pattern recognition.
To view from instance perspective, a hybrid model embedded with either hard or soft partition
as the premise, guides the implementation of regression analysis in an elaborate manner.
To view from feature variable perspective, hidden relationships between domain attributes
from different data sources have been investigated via a data-driven approach. An effective
hierarchical knowledge structure for feature variables has been established, being flexible
and adaptable to update and reorganisation, while facilitating queries for singleton variables.
The efficacy of the proposed framework has been experimentally validated, demonstrating its
potential in real-world applications. Besides its promising prospect in future use, this chapter
points out initial thought for the improvement and refinement of the proposed work.

8.1 Summary of Thesis

The knowledge premise for the proposed work discussed in the thesis has been provided by
Chapter 2. Fundamentally, a survey of popular clustering techniques which enable identifica-
tion of the underlying patterns of data has been extracted, with a description of their general
concepts, implementation process and computational complexity analysis. A comprehensive
study on existing link prediction techniques is presented, including a wide variety of metrics
inspired through different intuitions, with their general framework and technical essentials
described. Link prediction, being an emerging research field which attracts great attention in
recent years, have set up as a solid foundation and inspired the proposed work. Fuzzy infer-
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8.1 Summary of Thesis

ence model and state-of-the-art fuzzy link analysis are briefly introduced, as its advantage in
reasoning with imprecision and uncertainty has a natural appeal for the task of prediction. In
general, the contents included in this chapter provides the basis upon which to develop the
subsequent theoretical framework.

Chapter 3 has proposed a novel intelligent system aiming at predicting a missing feature
value (in the numeric form) for an object being followed with interest. Initially, it gives
a retrospective review on the downsides of the existing popular predicting methods of the
similar type, and provides relevant application scenario for the proposed approach. Next,
it presents the conceptual framework of the proposed predicting system, and describes the
implementation for each of its subsystems in detail, with the computational complexity
examined. This chapter further presents a significant application scenario for the proposed
model on student academic performance, showing its advantage over compared estimating
techniques, demonstrating its efficacy and effectiveness.

An alternative implementation of the proposed framework in Chapter 3 with granular
refinement has been presented in Chapter 4, still focusing on the prediction of student aca-
demic performance. It improves the working of its predecessor by systematically considering
factors with significant influence on student academic record via introducing an offset value
generating scheme to the predicting model. Importantly, fuzzy clustering, a soft comput-
ing technique which enables accommodating both local and global information within the
consideration area, takes the place of the hard clustering approach, thereby providing an
informative basis for reasoning. This facilitates generating predicted results in a more readily
interpretable manner.

Chapter 5 has started the route to perform investigation on prediction at variable level.
It proposes a brand new scenario of measuring relationship between variables from di-
verse datasets. Initially, a group of two distinct datasets with common feature variables
co-appearing in both of them is considered. Afterwards, a data corpus involving a number of
datasets with similar associative characteristics is investigated heuristically. The common
variables are regarded as a key to inferring the relationships hidden behind those examined
variables. This data-driven approach for inter-variable correlation prediction works by ex-
ploiting the concept of connected-triples and implemented with fuzzy logic, which radically
departs from its conventional crisp representation. As such, it possesses the advantage of
being consistent with human logical thinking and generate interpretable predicted result.
Through the exploitation of link strength measurements and fuzzy inference, the job of de-
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8.2 Future Work

tecting similar or related variables can be accomplished via examining link relation patterns
within and across different data sources. Empirical evaluation results have revealed the
potential of the proposed work in predicting interesting attribute relations, while involving
simple computation mechanisms.

A brand new pattern recognition method for group investigation has been proposed in
Chapter 6. In particular, It works on determining the underlying patterns for groups of unin-
formed feature variables. With the support information from specified data collection, such a
task can be accomplished via searching for similar patterns between the uninformed variable
group in relation to the informed counterpart. The link pattern prediction scheme presented
in Chapter 5, sets up as a basis to assist partitioning feature variables (both informed and
uninformed) into different groups, which is essential for the presented work at initial stage.
Different metrics to handle data collections in various types (numeric, categorical and their
mixed type) have been suggested, with experimental evaluation demonstrates the capability
of the proposed techniques.

Chapter 7 has provided two topics for conducting further investigation on feature variable
clusters: singleton variable identification and variable hierarchy update, according to different
results provided by the variable cluster pattern recognition process. Both of the operations
are built upon the basic concept of binary tree structure. Particularly, the variable hierarchy
update procedure can be iteratively performed to consolidate the knowledge base of feature
variables within the discussed domain, which can also be regarded as an online training
process due to its computational efficiency. The implementation for both of the operations are
detailed, with experimental evaluation being presented to demonstrate their efficacy. More-
over, Chapter 7 has presented a comprehensive reasoning system which aims at performing
prediction at variable and variable cluster level within one common system. The application
scenario for the proposed predicting model has been outlined, with the functionality for each
of the involving components described. Empirical study on the proposed predicting model
has been carried out, demonstrating its potential for future use.

8.2 Future Work

Despite its efficacy and great potential for future application, the proposed work so far in this
thesis is open for further investigation. This section highlights interesting directions whose
successful implementation will benefit current research significantly.
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8.2.1 On Cluster Embedded Regression Analysis

Currently, the number of clusters determined for performing a clustering algorithm is pro-
vided by human experts with domain knowledge. Advanced techniques independent of
human experts’ advice is worth applying and investigating. In Section 5.1.3.3, the elbow
method has been employed to determine the number of clusters to guide transforming the
numeric data into its categorical counterpart. Besides the elbow method, in the literature,
a number of techniques have been proposed to select the ideal k, where k stands for the
number of clusters, such as Cross-validation, Bayesian Information based approach, and
Silhouette Index based approach [43]. These methods each have their own merits and draw-
backs, carefully examining them may help select the best k to improve the predicting accuracy.

The current implementation of the predicting system involves performing a clustering
algorithm simply once to partition objects into different groups. However, theoretically,
such partitioning may continue to run until all the instances in the training dataset are
approximately fitted, with a better approximate fit. In order to solve the over fitting problem
(well fit for the training instances but generating less accurate result for the testing data), a
terminating criterion can be determined while no significant decrease is observed for the
relative regression error.

8.2.2 On Student Academic Performance

While focusing on attributes closely related to academic modules, other important perfor-
mance indicators, including practicals scores, oral presentation scores and tutor evaluation
outcomes, should be considered. To integrate these factors, improved fuzzy clustering offset
value generating techniques need to be developed. Also, their relative weighting may be
important to be taken into account too. Note that the attributes in the entire dataset are
currently chosen by human experts. An additional step to include feature selection [15]
techniques in order to make an informed, automated choice of attributes to use would be very
beneficial. In addition, how alternative clustering and classification mechanisms may perform
in replacing the current use of simple methods is also very interesting to be investigated,
although they may lose certain computational efficiency.

167



8.2 Future Work

8.2.3 On Fuzzy Connected-Triple for Inference

Whilst significantly better performance is achieved by the present implementation over a
wide range of compared methods, currently, the fuzzy membership functions used for ex-
pressing the linguistic terms are given by human experts. Automatic determination of fuzzy
membership values by the use of certain clustering method may be employed to derive the
required set of (potentially more objective) linguistic terms, if there is abundant historical data
available. Existing literatures [235–237] may provide references to guiding the refinement
from different perspectives.

Within the current implementation, while running the step of fuzzy inference, each
connected-triple has been treated equally. A better approach might be to aggregate these
connected-triples according to the importance of the individual centres of the triples, boosting
the reliability of the detected links [238]. Alternative aggregating methods (e.g., arithmetic
average and ordered weighted averaging as employed in [239] could be utilised for this). Also,
the propagation and aggregation operations developed in social trust network [13, 240, 241]
may be adapted for such use to enhance the reliability of the predicting system. Furthermore,
the current study conducts an exhaustive search for all potential variable pairs; an aided
heuristic metric for disclosing variable pairs with “strong” correlation may help to reduce the
time complexity.

For link strength measurement, metrics other than those presently employed may be
considered to further improve the modelling performance. Additionally, in the process of
estimating correlation between a numeric-categorical variable pair, the current implemen-
tation to transform a numeric attribute variable into its categorical counterpart may lead to
loss of valuable information from the original data source. Employing a more sophisticated
technique for measuring mixed-type variable pair to replace the current approach is worth
investigating. Moreover, in this work, only datasets involving categorical values, continuous
numeric values and mixed of those are tested. Developing other types of link analysis strategy
to handle more types of data (e.g., sequential data, image and visual data) is clearly desirable.

8.2.4 On Variable Cluster Pattern Recognition

Pattern recognition techniques generally aim at providing a reasonable answer for inputs by
performing the “most likely” matching of the inputs, while taking into account their statistical
variation. The current criterion set for the correct detection of uninformed variable clusters
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is based on a hard bounded threshold of predicting accuracy, alternative soft definition of
correct detection, such as “most of the attribute variables in the uninformed variable cluster
are similar to most of their counterparts found in the informed variable cluster” may interpret
the predicted result in a more comprehensible manner that is consistent with human logical
thinking. Fuzzy granular computing [155] may offer an instruction for implementing such
general concept.

The link weights used in the current hierarchical clustering model are represented in the
format of crisp value, derived from the defuzzification step as discussed in Section 5.1.4.2.
Note that such a defuzzification process may cause losing important information from its
original fuzzy interpretation, an advanced clustering approach which exploits such fuzzy
values directly to generate a more informative hierarchical structure is worth investigating.
In particular, techniques with fuzzy distance based clustering [242] or clustering on fuzzy
data [243] may provide insight to assist implementing this general concept.

Additionally, the current approach for generating feature variable clusters and comparing
them is based on the computation of their statistical distributions, more information related to
the domain questions may be acquired and included to perform a synthetic and comprehensive
investigation on data collection. Advanced techniques in semantic information retrieval [244]
and knowledge enrichment [245] may be employed for this.

8.2.5 On Hierarchical Knowledge Representation

The proposed update process for hierarchical knowledge structure can not guarantee that
the hierarchy above the cut level is appropriately arranged, since bringing new feature
variables into a cluster may change its original intra-similarity degree. A cut at a higher
level of the hierarchy could possibly lead to a set of clusters with improper intra-variance
indicated by the cut level. Thus, a further step to adjust the position of the macro clusters
in the hierarchy which are affected by the updating process would be interesting to investigate.

When considering a set of undetected feature variable clusters to be inserted into an
existing hierarchy, the order of insertion may affect the structure for the resulted hierarchical
tree. In other words, such updated hierarchy is sensitive to the sequence of cluster insertions.
It is desirable to design and implement an intelligent scheme to adapt to this scenario, so as
to create a stable structure which is robust to the sequence of insertions.
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Moreover, since there seldom exists prior knowledge about dataset corpus, it cannot be
guaranteed that a feature variable under consideration exactly belongs to a single cluster. It
might possess a certain membership in two or more variable clusters, Thus, fuzzy hierarchical
clustering technique [246, 247], which is capable of interpreting such circumstances, can
be adopted to generate soft clusters. More ambitiously, such membership values can be
further utilised to construct more hierarchical structures linked with each other, resulting in
a more complex structure such as “lattice” or “bush”, which enables accommodating more
valuable information regarding groups of variables. Last but not least, automated detecting
links between feature variable clusters coming from different hierarchical structures is very
interesting but this remains as future research.
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Appendix A

Publications Arising from Thesis

Several publications have been generated from the research carried out within the PhD project.
The resultant publications closely related to the thesis is summarised below, including both
papers for academic journals and conferences.

A.1 Journal Articles

1. Z Li, C Shang, Q Shen. Inter-variable correlation prediction with fuzzy connected-
triples. Soft Computing, (2018)22: 7059-7072.

2. Z Li, C Shang, Q Shen. Variable and variable cluster recognition amongst multiple
data sources, under review for publication, 2019.

A.2 Conference Papers

3. Z Li, C Shang, Q Shen. Fuzzy connected-triple for predicting inter-variable correlation.
Advances in Intelligent Systems and Computing: Contributions Presented at the 17th
UK Workshop on Computational Intelligence, 2017 (Best Student Paper Award).

4. Z Li, C Shang, Q Shen. Fuzzy-clustering embedded regression for predicting stu-
dent academic performance. Fuzzy Systems (FUZZ-IEEE), 2016 IEEE International
Conference on. IEEE, 2016: 344-351.

5. Z Li, C Shang, Q Shen. Intelligent prediction of student examination scores. Paper
presented at 15th UK Workshop on Computational Intelligence, 2015, Exeter, UK.
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Appendix B

Datasets Employed in Thesis

The datasets employed in the thesis are widely originated from the UCI machine learning
repository [206], which have been collected and summarised from real-world problem
scenarios and are generally public available. Other datasets are drawn from academic papers
or artificially generated. Table B.1 presents a brief description for the properties of these
employed datasets.
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Table B.1 Summary of Data Used in Thesis

Dataset Type Feature Instance

Arrhythmia M 279 3630

Automobile M 26 1040

Bank C 25 45213

Connect-4 C 42 67557

Covertype M 54 581012

Facebook N 19 500

HeartDisease M 75 1598

Insurance M 86 9000

Internet M 72 10104

Mushroom C 36 8124

Music N 54 40909

News N 84 21330

Salary C 30 30168

SAP50A M 3 50

SAP50B M 3 50

Student-Mat M 33 220

Student-Por M 33 459

Twitter N 78 966494

Synthetic-1 C 350 278838

Synthetic-2 C 540 496460

Synthetic-3 N 410 439800

Synthetic-4 N 560 358668

Synthetic-5 M 190 180000

Synthetic-6 M 340 201000

Urban N 148 2436

Wine N 13 3760

1. Type: C = Categorical Data; N = Numeric Data; M = Mixed-Type Data
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Appendix C

List of Acronyms

n-FCV n-fold cross-validation

AAC Adamic-Adar coefficient

AL Average-Linkage

APCC Absolute Pearson correlation coefficient

ASC Average of Silhouette coefficient

BSAP Bounded sum-Algebraic product

CELR Clustering embedded linear regression

CL Complete-Linkage

CN Common neighbours

COG Centre of gravity

CP Connected-Path

CT Commute time or Connected-Triple

EA Evolutionary algorithm

EACA Efficient agglomerative clustering algorithm

ECTS European credit transfer system

ES Exhaustive search
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EDCA Efficient divisive clustering algorithm

FMPT Frequency of most popular term-pair

FCC Fuzzy link prediction based on local clustering coefficient

FCELR Fuzzy clustering embedded linear clustering

FCO Fuzzy link prediction based on cluster overlapping

FCT Fuzzy connected-triple

FOM Fuzzy link prediction based on order-of-magnitude metric

FIS Fuzzy inference system

HAC Hierarchical agglomerative clustering

HPM Hierarchical probabilistic model

HT Hitting time

JC Jaccard coefficient

KMA Kuhn-Munkres algorithm

KNN K-Nearest-Neighbours

LCC Local clustering coefficient

LP Local path

LWP Local weighted path

MCMC Markov Chain Monte Carlo

MFMA Max flow matching algorithm

MI Mutual information

MIC Maximal information coefficient

NA Network analysis

NCT Normalised commute time

NHT Normalised hitting time
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NMI Normalised mutual information

OD Overlapping degree

PA Preferential attachment

PAM Partitioning around medoids

PF PropFlow

RP Rooted Pagerank

PS PageSim

RA Resource allocation

ROCK Robust clustering using links

RSS Relation strength similarity

SBM Stochastic block model

SC Spectral clustering

SL Single-Linkage

SMLR Simple multi-variable linear regression

SMO Sequential minimal optimization

SNA Social network analysis

SR SimRank

SSE Sum of square errors

SVM Support vector machines

SYN Synthetic weight

UCI University of California, Irvine

WJC Weighted Jaccard coefficient

WRA Weighted resource allocation
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