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Abstract

Prediction is one of the typical applications in the research fields of machine learning and
data mining. Traditional predictive analytics focuses on estimating class membership or
numeric value within a specific domain or region, which results in the development of
classification models and regression models. However, the restriction on isolated information
and the progress of computation technology jointly require the collection and connection
of fragmented data for further investigation. Predictive analytics is nowadays expected to
be extended its research area to seeking for relationships amongst separated data, which is
widely known as link prediction or link analysis.

In this thesis, a novel predicting system performing the tasks of instance based missing
information estimation, feature variable identification, and variable group pattern recognition
has been presented. Specifically, an advanced regression model embedded with both hard and
soft clustering techniques is novelly proposed to forecast missing feature values for objects of
interest. Also, a link based model creatively employing the concept of connected-triple, and
implemented with fuzzy logic, is invented to measure correlations between domain feature
variables from various information sources. The resulting link based model has been further
utilised as a foundation to construct an adaptative hierarchical knowledge base for describing
feature variables under consideration, facilitating both dynamic updating and immediate
query.

The adaptability and flexibility of the proposed work, together with its remarkable
initial performance in sample applications are illustrated by experimental evaluation via
datasets collected from both real-world domains and artificial production. The outcomes of
comparative studies demonstrate the efficacy of the present work and its great potential for
future use. Further suggestions on development and refinement of this research are provided
to stimulate inspiration on improving the current work.
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Chapter 1
Introduction

It is certain that we are living in a data explosion era, demonstrated by the reality that tremen-
dous volumes of information data have been being consistently generated at unprecedented
and ever increasing pace. Massive data are collected and investigated in various domains,
including commercial activities, engineering science, biomolecular research, social networks,
and security monitoring [1]. Nowadays, data are being generated at every moment, and
are collected and gathered at separate times, in diverse places, by different individuals or
organisations. Importantly, data can, and in reality does exist in various sources, including
mobile devices, public and private clouds, subscription-based services such as file sync and

share, and virtual machines, to name just a few.

Over the past two decades, as the amount of data grows, it is undoubted that they play an
increasingly significant role in different fields of daily life. It assists with decision making in
a variety of application fields tremendously [2, 3]. It helps reveal essential laws and patterns
of the objects existing in the world [4, 5]. It also provides evidence and experience for
designing and creating novel solutions to various real world problems [6-9]. However, with
the rapid growth of the available data, the success of managing and analysing the information
embedded in the data becomes ever more practically important, whilst becoming ever more
difficult in the meantime. Obviously, traditional manual knowledge discovery process is no
longer an optimal option since it is increasingly expensive in computing and time-consuming
[10]. Additionally, the conventional manner for data analysis relies significantly on the
opinions of domain experts, who should have a precise and considerable understanding
of the problem at hand. However, such opinions are often subjective [11] or inconsistent
between distinct individuals [12, 13], which may lead to opposition or controversy. More
importantly, data in its presenting format may involves a large quantities of instances and

descriptive features, which are impractical for human beings to perform manual analysis in
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most circumstances.

Hence, automatic extraction of knowledge from data based on machine learning, widely
regarded as knowledge discovery, has attracted great attention in recent years. It takes the
advantages of overcoming the above mentioned drawbacks while providing a new insight
for exploring and processing the data. Ideally, the resulting knowledge collected from such
advanced technique needs to be both human-understandable and machine-interpretable and
must represent knowledge in a manner that facilitates inferencing [14]. A general process for
knowledge discovery is shown in Fig. 1.1 [15]. Simultaneously, a new term, emerging with
the scenario of data deluge, named “data science”, has been proposed. Fundamentally, data
science is a cross-disciplinary field that uses scientific approaches, procedures, algorithms
and systems to obtain knowledge and insights from data in a wide variety of formats, either
structured or unstructured [16].



1.1 Regression Analysis for Prediction

The emphasis on predictive analytics is particularly strong in machine learning and
knowledge discovery in databases. Predictive analytics encapsulate a large volumes of
statistical techniques applied on the historical and current facts to forecast future outcomes
or unknown events [17, 18]. Traditional predictive analytics focuses on estimating class
membership or numeric value within a specific domain or region, which results in two
different types of models: regression model and classification model. A general description
of regression model will be concluded in Section 1.1. Classification model is big topic
beyond the scope of this thesis. However, provided that no explicit information about class
labels available, which is often the case in the real world, an automatic approach to grouping
data under consideration into different categories is of great importance for investigation.
Such unsupervised analytic technique is termed as clustering. A brief introduction of
clustering analysis will be provided in Section 1.2. Nowadays, as pieces of data are scattering
everywhere in the world, and they are frequently organised or structured in a random manner,
collecting and connecting those fragmented data to search their potential relation for further
research is worth investigating. And predictive analytics also extends its antenna to the area
of finding relationships amongst the separated data, which is known as link prediction or link
analysis. This will be discussed in Section 1.3.

1.1 Regression Analysis for Prediction

Regression analysis is a popular statistical process for estimating the relationships among
variables, with the coefficients in the regression equation define the correlation between each
of the independent variables and the outcome dependent variable. Generally, the regression
models are divided into linear structure and non-linear counterpart, according to their respec-
tive combination format of model parameters. Regression analysis for prediction has been
widely applied in various fields [19-22]. A few example areas are illustrated in Fig. 1.2. The
best-known types of regression model for prediction are the following: Linear Regression
for description of linear relationship, Logistic Regression for estimation of the probability
of belonging to groups or categories, Cox Regression for modelling of survival data, and
Poisson Regression for depiction of counting processes [23].
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Fig. 1.2 Selection of Real-World Applications of Regression Predicting Model

Advanced Regression methods for prediction are assisted with feature selection step [24]
[25] and segmentation of regression space [26, 27]. Outlier analysis [28, 29] and missing
data treatment by imputation [30, 31] are also applied to enhance the performance of the

regression model.

1.2 Clustering Analysis for Predication

Cluster analysis is commonly applied when exploring and predicting the structure of the
data. It has always been employed in the first stage of understanding the raw information,
especially for challenging problems where prior knowledge is insufficient. The need to
acquire knowledge from excessive amount of data has been a significant driven force for
clustering analysis. Conceptually, the spirit of cluster analysis is its involving process which
divides data objects into groups in a way that the objects in the same group are more similar
to each other than to those categorised in different groups [32]. Objects or entities under
cluster analysis are usually described in terms of attribute (feature) values and relative
proximity. Opposite to the supervised learning in which a category label is needed and often
manually tagged by domain experts, clustering is unsupervised since it does not require

such label information. Clustering has been applied to a range of real-world predicting
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problems, including information retrieval [33, 34], pattern recognition [35, 36], imaging
processing [37, 38], genetic analysis [39, 40], recommender systems [41, 42], etc. Given its
great potential in application, a vast number of research studies focusing on various aspects
of cluster analysis are carried out, such as determination of optimal cluster numbers [43],
automatic detection of initial cluster centroid [44], similarity metrics for clustering procedure
[45, 46], Aggregation of cluster ensembles [47, 48].

1.3 Link Analysis for Prediction

A wide variety of domains in the real world are relational in nature and richly structured,
accommodating a set of objects related to each other in complex ways [49]. Such data
propose new challenges of predicting potential relationships amongst these objects and deter-
mining the types or grades of the aforementioned relationships. Typically, a graph model
or a network structure is capable of reflecting common patterns of interactions between the
objects in the domain. Taking these patterns into consideration could help to provide a better

prediction.

Social Network Analysis (SNA), is originally set up to present the social structures includ-
ing objects (actors) and relationships amongst them [50]. These networks can be conveniently
represented by employing vertices and links. The links show types of relationship amongst
the vertices including kinship, friendship, collaborations, and any other interactions between
the people, namely the vertices in such a network [51]. In particular, it is widely applied in
recommendation systems for information retrieval, helping search for new friends [52] and
potential business collaborators [53-55], finding domain experts or co-authors in academic
fields [56]. Obviously, the concept of SNA models can be generalised. They are not only
restricted to the use in networks concerning human beings, but also can be utilised to depict

and analyse the structures in a wide variety of problem domains.

Link, a term used in SNA or network analysis (NA) to describe the connection between
two discussed objects in domain, could contain valuable information with regard to the
research interest. Link prediction is aimed to predict future possible links in the network. It
can also be used to predict missing links due to incomplete data. In SNA, link prediction
is one of the most salient tasks, including the discovery of missing or developing links in
a certain network [57]. Recently, link prediction has become an important and effective
technique in the study of biology, economy, and other cross-disciplines [58]. For instance, in

bioinformatics research, link prediction is adjusted to present gene expression networks [59],
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describing protein-protein interactions [60]. In politics research, link prediction is adopted to
conceptualise a policy-making process as a network of political actors [61]. In public health
care, link prediction is employed to assess factors contributing to the service, the care process
and the patient outcome [62]. In project management, link prediction is utilised to measure
the correlations amongst stakeholders, process-related values and outcome-related values
[63] In E-commerce, link prediction is equipped for providing interesting items in online
shopping [53]. Last but not the least, in the field of national defence and public security, link
prediction is assembled for terrorism and insurgency detection [64—67], money laundering

prevention [68] and abnormal telecommunication surveillance [69].

1.4 Challenges and Contributions

In general, prediction is one of the most important and chanllenging applications in the
research fields of machine learning and data mining. Traditional predictive analytics fo-
cuses on estimating class membership or numeric value within a specific domain or region,
leading to the development of classification models and regression models. Although it
has been widely demonstrated that no existing predictive model works perfectly well for
every real world problem [70, 71], improving predicting accuracy has always been ex-
pected and pursued in the research field. In this thesis, a novel predicting system aimed
at enhancing the performance of instance based missing information estimation has been
presented. Particularly, an advanced regression model embedded with both hard and soft clus-

tering techniques is novelly proposed to forecast missing feature values for objects of interest.

However, more significantly, most of the current studies work on single dataset, unable
to discover hidden information from different data sources sufficiently. The restriction of
research on isolated information, together with the progress of computation technology,
requires the collection and connection of fragmented data for further investigation. Predictive
analytics is nowadays expected to extend its antenna to seeking for relationships amongst
separated data, which is envisaged to be implemented through the approches of link analysis.
Yet, majority of the existing link based studies concentrate on predicting tasks of individual
items and records, which basically manipulate data at entity or instance level [72, 73], leav-
ing predictive analytics at higher platform (variable level) blank. Unlike previous research
that focused on identifying links between objects or entities in a specific region, in this
thesis, a novel link based model, creatively employing the concept of connected-triple, and

implemented with fuzzy logic, is invented to measure correlations between domain feature
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variables from various information sources. The proposed model is primarily data-driven,
offers a potentially effective mechanism for dealing with the problem of link prediction,
particularly when any given information contents are obtained from different data sources
where parts of the information overlap. Such link prediction problems are obviously of

general interest in many data mining applications.

In addition, although it becomes more convenient to obtain data from various sources,
thanks to the development of information technology, part of the acquired data may lack
description to themselves for a variety of reasons, such as security consideration, equipment
malfunction, ignorance from information collector, and inappropriate storage. Such deficien-
cies impede understanding and making use of information seriously, leading to considerable
restrictions in data mining and knowledge extraction. The resulting link based model can be
utilised as a foundation to construct an adaptative hierarchical knowledge base for describing
feature variables under consideration, facilitating both dynamic updating and immediate
query. The adaptability and flexibility of the proposed work, together with its remarkable
initial performance in sample applications are illustrated by experimental evaluation via
datasets collected from both real-world domains and artificial production. The outcomes
of comparative studies demonstrate the general efficacy of the present work and its great
potential for future use.

1.5 Structure of Thesis

This section outlines the structure of the remainder of this thesis. A flowchart presenting the
thesis structure is shown in Fig. 1.3. Generally, based on background knowledge provided in
Chapter 2, the thesis focuses on prediction of data at different levels: instance level, variable
level, and variable cluster level. In particular, Chapter 3 and Chapter 4 aim at prediction on
instance level, which can be summarised into a group, as presented in a dashed box. Chapter
5, chapter 6 and Chapter 7 are dedicated to prediction at variable level and variable cluster
level, which can be generalised into another group. A list of publications arising from the
work of this thesis is provided in Appendix A.
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Chapter 2: Background. This chapter provides the knowledge premise for the proposed
work discussed in this thesis. Primarily, an overview of popular clustering techniques which
enable identifying underlying patterns of data is conducted, with a description of their fun-
damental concepts, implementation procedures and time complexity analysis. This part
of knowledge sets up as a basis for this PhD project. A systematic study of existing link
prediction techniques is followed, including vertex-based metrics, topological-based metrics,
probabilistic-based metrics, with their general framework and technical essential depicted.
This emerging research field attracting great attention, provides inspiration and creativity for
the proposed work. Fuzzy logic allows reasoning with imprecision and uncertainty, which has
a natural appeal for the task of prediction. Additionally, the basic model of fuzzy inference
process with the state-of-the-art fuzzy inference metrics for link prediction are outlined and

discussed.

Chapter 3: Clustering Embedded Linear Regression for Prediction. This chapter presents
a novel intelligent system aiming at predicting a missing feature value (in the numeric form)

for an object being followed with interest. It gives a retrospective review on the deficiencies
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of the existing popular predicting approaches of the similar kind at first, and defines the
application scenario for the proposed model. Then, it concludes the conceptual framework of
the predicting system, with the implementation for each of its components clearly described
in detail. The time complexity for each of the subsystems is examined to show the efficiency
of the proposed model. A case study of its application on student academic performance
reveals its efficacy and illustrates that the proposed work has great potential for future use.

The contents of this chapter has been published in [74].

Chapter 4: Fuzzy Clustering Embedded Linear Regression for Student Academic Pre-
diction. This chapter is an extension of Chapter 3, focusing on the study of predicting
student academic performance. It refines the predicting model described in Chapter 3 by
systematically considering the influence factors which have significant effect on student
academic performance. Fuzzy clustering, a soft computing technique which enables accom-
modating both local and global information, provides an informative basis for reasoning. A
new schema encapsulating previous academic records and student normal study behaviour
is assisted to perform the estimating process. A paper proposing this refined technique has
been published in [75].

Chapter 5: Fuzzy Connected-Triple for Prediction of Inter-Variable Correlation. Iden-
tification of hidden relationships between domain attributes from different data sources is of
great practical significance and forms an emerging field in data mining. However, currently
there seldom exist any systematic methods that can effectively handle this problem, especially
when dealing with imprecisely described associations. In this chapter, a novel data-driven
approach for inter-variable correlation prediction is proposed by exploiting the concept
of connected-triples. The work is implemented with the use of fuzzy logic. Through the
exploitation of link strength measurements and fuzzy inference, the job of detecting similar or
related variables can be accomplished via examining link relation patterns within and across
different data sources. Empirical evaluation results are discussed, revealing the potential
of the proposed work in predicting interesting attribute relations, while involving simple
computation mechanisms. The initial concept of this part has been published initially in
[76], and winning the best student paper award in the 17th UK Workshop on Computational

Intelligence, with a further and more in-depth version in [77].

Chapter 6: Intelligent System for Detection of Variable Clusters. This chapter is com-
posed on the basis of Chapter 5 by further solving the real-world problem of assigning

description to dataset with uninformed feature variables. Such investigation is carried out by



1.5 Structure of Thesis

examining the underlying group patterns of such uninformed variables (within the dataset)
against its identified counterpart in existing informed sources. A reliable structure for both
of the informed and uninformed variables is required before commencing the examining
process. In particular, three types of data corpus: continuous numeric, categorical, and mixed
type of the two are investigated respectively. This chapter also works as a premise for Chapter
7.

Chapter 7: Variable Recognition and Hierarchical Knowledge Reorganisation. This
chapter focuses on two main tasks: variable identification and variable structure update,
according to different criteria. The job of variable identification is conducted when an
uninformed variable cluster is detected similar to one of its counterparts in an informed
source, whereas the task of variable structure update is performed when there exists no
similar counterpart to the examined uninformed cluster. Such update manipulation can be
regarded as a reorganisation procedure to the existing hierarchical knowledge structure. An
iterative searching process and a flexible updating scheme are given in this chapter for each
of the tasks.

Chapter 8: Conclusion. This chapter concludes the major contributions provided by the

thesis, accompanied with a discussion on directions which set up the basis for future research.

Appendices Appendix A provides the publications arising from the work presented in the
thesis, including both published papers in academic journals and conferences. Appendix B
summaries information about the benchmark datasets employed in the thesis. Appendix C

lists the acronyms used throughout the thesis.
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Chapter 2
Background

This chapter first presents the fundamental concept of data clustering, including a number of
benchmark algorithms that have been employed for various real-world problem. The second
part of this chapter includes a large-scale review of link prediction metrics existing in the
literature. A selection of modern link prediction techniques embedded with fuzzy logic for
qualitative reasoning is presented in the third part. These components jointly provide the
backgrounds and premises towards the proposed approaches that are designed to undertake
the challenging tasks discussed in this thesis, with the last section providing a summary to

this chapter.

2.1 Clustering Metrics

Data clustering is one of the basic and effective tools for understanding the structure of
information or data. It plays a foremost and crucial role in data mining, pattern recognition,
information retrieval and machine learning. Clustering aims at partitioning data into groups
such that the data in the same group are more similar to each other than to those in different
groups. Clustering is labelled an unsupervised learning technique as the measurement of
similarity or proximity is conducted without knowledge of category assignments [78]. Due
to its characteristic of knowledge free, research on algorithm selection, similarity measure,
parameter initialisation, criterion setting to assist the performance of the clustering technique
are widely conducted. However, in general, there exists no universal clustering algorithm
that performs satisfactorily on data from different sources in various application fields. There
are quantities of clustering algorithms developed in the literature. In this section, a selection
of well-known example techniques are presented.

11
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* k-means: It is one of the best known clustering algorithm that partitions data entities
into groups. It originates from the concept of representing each of the k clusters by
"centroid’ (mean of the members in the cluster). k-means is an iterative approach
which exploits the square error (i.e., the total distance or dissimilarity between each
data entity and the cluster centre) as a criterion function [79]. Basically, it starts with
initialising centroids randomly, followed by assign data entities to clusters in order
to minimise such square error. The criterion function works well with both compact
and separated clusters. Mathematically, given a dataset with x representing its data
instances involved, the square error ¢ for a clustering 7 = C, ...Cy with k clusters is
determined as:

k
2 2
(=3 Y lk—cll 2.1)
p=1VxeC,
where || - || denotes the Euclidean distance norm and ¢, depicts the centroid of the pth

cluster.

A general concept of the k-means metric is as follows:

— Select k data entities randomly as initial cluster centroids.
— Repeat:

* Assign each data entity to the cluster with the closest centroid (measured by

aforementioned distance measure or other alternatives).

+ Update the centroid of each cluster by the mean (average) of all the current

data entities involved in that cluster.

Until the termination criterion is met.

Note that the common termination criteria includes: (1) no changes are made to the
centroids; (2) no improvement for the criteria function; (3) the maximum number of
iterations (refinements) is reached. k-means algorithm is applied in a variety of studies
due to its efficiency, with the time complexity of O(nkl), with n, k, [ representing
the number of data entities under discussion, number of clusters needed, and number
of iterations, respectively. The drawback of k-means metric is its sensitivity to the
choice of initial cluster centroids. In real-world application, the algorithm needs to run
multiple times with different initial setups to obtain the ultimate solution which best

satisfies the selection criteria.

12
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* Partitioning Around Medoids (PAM): PAM is a variant of k-means, which provides
more robustness to handle noisy data or outliers [80]. Specifically, for PAM, the
medoid (centre) of a cluster is represented by one of the data instances within it,
which can be less affected by extreme values than a mean value obtained by k-means.
Primarily, it randomly selects k data entities as initial medoids to the clusters. Each of
the remaining data entities is assigned to the cluster whose medoids is most similar to
it. Then, in each of the iterations, the updated medoids for each cluster is determined
by searching for the data entity with the minimum total distance to all others in the
cluster, and all the data entities are reassigned to clusters based on their distance to
the new set of medoids. The termination criteria for PAM is similar to its execution
on k-means, However, it is worth mentioning that the computational cost of PAM is
O(n?kl), which is more expensive compared with k-means, where n, k, [ represents the

same indicator as above stated.

* Hierarchical Agglomerative Clustering (HAC): HAC begins by considering each
data entity as a singleton cluster, and then iteratively merges analogous clusters until
forming a vast group. Such iterative process is capable of creating a hierarchical tree
or dendrogram, which can be cut at any level to obtain the desired data partitions. In
practice, the execution of HAC is guided by different definitions of distance between

clusters:

— single-linkage (SL): It sets the dissimilarity degree between two clusters to be
the minimum distance between all pairs of data entities, where each data entity in
the pair is taken from distinct clusters. Formally, let C;, and C, be two different

clusters, the SL distance SLD(C,,C,) between them can be calculated as:
SLD(Cp,Cy) = in d 22
(CpCy) =, min_ . d(x.)) (2.2)

where d(x,y) is the distance between data entities x,y € X. Conventionally, d(x,y)

are measured by Manhattan distance, Euclidean distance, etc.

— Complete-Linkage (CL): It defines the dissimilarity degree between two clusters
by the greatest distance between data entities in the clusters. Similar to SLD, its

mathematical definition can be formulated as follows:

CLD(C,,Cy) = Vxe%la))/(EC d(x,y) (2.3)
pY&lyq
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— Average-Linkage (AL): It explores the average value of all pair-wise distance
amongst data entities in two clusters as the cluster dissimilarity measure. Specifi-
cally, the average linkage based distance ALD(C,,C,) between two clusters C),
and C, can be computed as follows:

1
ALD(CPva) - Z Z d(x,y) (2.4
Nphg VxeC, VyeC,

where n,, and n, each represents the count of data entities in C;, and Cy,.

HAC provides an intuitive visualisation for the hierarchical structure of the data entities,
which can assist to perform data analysis in a systematic manner. Nevertheless, HAC
has a disadvantage in its computational complexity of cubic order, which may limit its

application on large datasets.

ROCK ROCK (RObust Clustering using linKs) is a hierarchical clustering technique
designed for categorical data [81]. This method is based on Jaccard Coefficient [82] to
measure the similarity between a pair of data entities. Mathematically, for a pair of

data entities x,y € X, their similarity degree sim(x,y) can be measured as:

_ [ANA|

= 7 2.5
A,UA,| 2>

sim(x,y)
where A, and Ay, are sets of all attribute values for x and y, respectively. Therefore, the
similarity between x and y is measured by the proportion of their shared attribute values.
Particularly, x and y are regarded as ‘neighbours’ if their similarity degree reaches
or exceeds a specified threshold 6, i.e., sim(x,y) > 0. Following that, the number of
‘links’ between any pair of data entities is determined by the number of their common
‘neighbours’. Based on the definitions of ‘neighbour’ and ‘link’, an agglomerative
clustering method is applied to create the dendrogram. Initially, each data entity is
considered as a singleton cluster, then the clusters are gradually combined together
according to the their pairwise closeness degree. Fundamentally, the closeness degree
between pairs of clusters is described as the sum of the count of the links between all
pairs of data entities within the examined clusters. Similar to HAC, ROCK algorithm
also exhibits the time complexity of O(n*), where n denotes the number of entities the

dataset.

Squeezer: Squeezer is a single-pass metric which considers a single data entity at a

time [83]. In Squeezer, each data entity is either assigned to one of the existing clusters

14
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if its similarity to that cluster is above a pre-set threshold 6, or allocated to a new

established cluster. The basic process of Squezzer is as shown in Algorithm 1:

Algorithm 1: Squeezer

Input:
Sc: A set of empty clusters: set as an empty set
1 repeat
2 Select a data entity x € X randomly ;
3 if Sc is empty then
4 CREATE a cluster C € S¢ and set x as its member ;
5 end
6 else
7 Find the cluster C; € S¢ that is closest to x ;
8 if sim(C;,x) > 6’ then
9 ‘ SET x as a member of cluster C; ;
10 end
1 else
12 ‘ CREATE a new cluster C € Sc and SET x as its member ;
13 end
14 end

15 until Until no data entity remaining in X;
Output: Sc: An updated set of clusters

Squeezer does not require the number of clusters as an initial setup, whereas it asks
for a pre-defined threshold for the similarity measure. It possesses an advantage of
acceptable computational complexity with O(nkd), where n represents the number of
data entities in discussion, k denotes the number of clusters and d is termed as the
number of attribute values for each of the data entities. Yet, it is sensitive to the order
of the data entities selected each time. Hence, disparate sequences of data input may

lead to different clustering consequences.

Spectral Clustering (SC): SC derives from graph partitioning [84, 85]. It has become
increasingly popular due to its promising performance in graph-based clustering
[86]. Given a graph whose vertex represent data entities, and each edge is weighted
in accordance with the pairwise relation between its involving vertices, the task of
looking for a good clustering of the underlying data can be transferred into finding
a nice partition of the graph. In general, this metric reduces the dimensionality of

data via the spectrum of similarity matrix at the beginning, then performs a simple
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clustering algorithm such as k-means on the transformed data. The process of SC is

described as follows:

1. Create a normalised Laplacian matrix from similarity matrix obtained from the

original dataset.

2. Perform an eigenvalue decompostion process for the Laplacian matrix resulted
from Step 1.

3. Select k eigenvectors with respect to the k largest eigenvalues to create a new

matrix U with k dimensions.

4. Perform a simple clustering algorithm to U and acquire the final clustering result.

SC requires no assumptions on shapes of clusters, and can even handle unusual form
of interwind spirals [87]. However, it is widely accepted that the performance of SC
relies heavily on the characteristics of the similarity matrix or the graph structure [88].
It is computationally expensive (with the time complexity of 0(n3)) unless the graph

generated from data source is sparse [89].

2.2 Link Prediction Metrics

As described in Section 1.3, link prediction performs a significant role for the emerging
research field of social network analysis (SNA), which fundamentally outlines structures
including actors and relationships amongst them [50]. These networks can be conveniently
represented by employing vertices and links. The links show types of relationship amongst
the actor (represented by vertices) in such a network [51]. Obviously, the concept of SNA
models can be generalised and widely applied in various real-world applications. They are
not only restricted to the use in networks concerning human beings, but also can be utilised
to depict and analyse the structures in a wide variety of problem domains.

Consider a network, represented by a graph G(V, E) at a particular time #y, where V and
E each denotes a set of vertices and edges in G, respectively. The task of link prediction aims
at searching for potential links or unobserved links between vertices for a specific future
moment #; (f; > o) in the current network. There exists many generic, simple and basic link
prediction metrics, which use information of vertices, topology and social theory to calculate
the similarities of vertex pairs. Moreover, learning-based link prediction methods are more

complex, but they are established on features provided by the basic metrics and external
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information. In this section, a systematic review of link prediction metrics is presented.

2.2.1 Vertex-based Metrics

Computing the similarity between a pair of vertices in a network is an intuitive scheme for
solving the link prediction problem. It is natural to believe that the more similar the pair is,
the more likely that there exists a link connecting them, and vice versa. This is consistent
with the fact that people are prone to establish relationships with others who possess the
common religious belief, share similar interests, or hold the same educational background.
Such likelihood can be measured by similarity metrics. Particularly, a pair of vertices (x,y)
in G is assigned a score representing the similarity degree between x and y. A higher score
indicates that x and y are likely to be linked sometime in future, whereas a lower score implies
that x and y are less probable to be connected. Therefore, the task of predicting disappearing
or unobserved links in a network is accomplished by ranking the similarity scores amongst

vertex pairs.

In a real-world network, its involving vertices usually possess intrinsic attributes or useful
information, e.g., the personal profile in online social networks, mail name and address in
email networks, and publication record in academic networks. Such information can be
directly captured for calculating the similarity degree between the referencing vertices. As
these attribute values are in the textual format in most cases, the text-based and string-based
similarity metrics are naturally performed for the scenario [90-92]. Similarly, common
interests or behaviours shared by actors (represented by vertices in the network) can also be
utilised to measure the similarity amongst them. These features are frequently characterised
by the actions they take and usually represented as a vector. Thus the similarity between
two vertices is measured by matching their respective action vectors [93]. [94] proposed a
complement to link prediction by inferring a portion of the unobserved values to the networks
with missing information before executing similarity computation. This concept is adaptable

to various real-world networks.

In short, vertex-based metrics are mainly applied to the circumstances under which the

attributes and behaviours of the included vertices are available.
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2.2.2 Topology-based Metrics

In a simple network where vertex attribute information is unavailable, topological structure
is widely explored to search the association pattern amongst its involving vertices. An initial
systematic review on topology-based metrics is presented in [57]. And a number of metrics
of the same category were proposed since then [95]. These metrics can be categorised into
neighbour-based metrics, path-based metrics, and random-walk-based metrics, according to

their intrinsic characteristics.

2.2.2.1 Neighbour-based Metrics

In a graph network G, a neighbour vertex of a vertex x is a vertex that is connected to x
with an explicit edge. The neighbourhood of a vertex x in G is the subgraph of G induced
by all vertices connected to x, denoted as I'(x). Inspired by the notion that the neighbours
may share close relationships between each other and the information acquired from the
neighbourhood may provide strong evidence for prediction, researchers have designed a

number of neighbour-based metrics with their improved variations for link prediction.

* Common Neighbours (CN) The CN predictor captures the idea that two strangers who
have a common friend may be introduced by that friend. It is one of the most popular
measurements applied in link prediction problems owing to its low computational
complexity [96]. For two vertices, x and y, CN is directly defined by the number of
common neighbours that both x and y have. A considerable number of the common
neighbours indicates the great possibility to establish a link between x and y. This

metric is defined in the following formula:

CN(x,y) = [[(x)[(\T()] (2.6)

» Jaccard Coefficient (JC) JC is originally proposed as a similarity metric for informa-
tion retrieval [97]. The concept of this metric has been transferred into task of link
prediction in recent studies . Mathematically, it normalises the CN score by considering

the amount of neighbours that either x or y has. The JC score is defined as:

T NTO)]
) UT()]

» Weighted Jaccard Coefficient (WJC) This metric is an improved version of JC by

JC(x,y) = (2.7)

considering the available information amongst pairs of vertices in the neighbourhood,
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with the information presented by edge weights. Basically, for the edges which are
connected to common neighbours from target vertex-pair, WJC performs a normalisa-
tion step to their edge weights [98]. It assigns greater values for vertex-pairs which
share a higher sum of weights over common neighbours relative to the total weights of
all the neighbours they have. For two distinct vertices x and y, this measure is defined
by

Y w2)+w),z)

WICx) = Y owxd)+w,2) @9

where w(x,z), w(y,z), w(x,z ), w(y,z ) each denotes the edge weights between vertex-
pair (x,2), (¥,2), (x,2), (3,2 ), respectively.

Adamic-Adar Coefficient (AAC) The AAC metric was initially proposed for comput-
ing the similarity between two distinct webpages [99]. Nowadays, this metric attracts
more attention in social network analysis. Unlike JC and its variation forms which
only consider the direct neighbours to the target vertex, the AAC metric also takes
neighbour vertices of neighbours into account. The mathematical definition of AAC is

articulated as:

AAC(x,y)= ) 1

L (2.9)
ceronry) 10T @)

It is apparent that in AAC, common neighbours of vertex-pair (x,y) which have fewer

number of neighbours, are weighted more heavily.

Resource Allocation (RA) RA metric is inspired by the physical process of resource
allocation [100]. Actually, it is a variant of AAC, with heavier punishment to the
contribution of the high-degree common neighbours in the network. The calculation

formula of RA is as follows:

RA(x,y)= ),

z€l(x)NT(y)

2.10
T (10

Weighted Resource Allocation (WRA) Similar to WJIC, WRA extract available in-

formation amongst pairs of vertices in the network, presented by weights. Formally,
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WRA is defined as:

WRAGry) = Y M Z)S(E)W(y ) @.11)
zel(x)NT(y)

where, w(x,z) and w(y,z) denotes the edge weights of vertex-pair (x,z) and (y,z),
respectively, and s(z) depicts the sum of weights for the vertex z associated with all of

its existing edges, such that
s =Y w(z.a) (2.12)
acl(z)

* Preferential Attachment (PA) PA has received great attention as a metric to measure
the growth of networks [96, 101]. The PA metric suggests that new links are more
possibly to be constructed between higher-degree vertices rather than lower ones. It is
mathematically defined as:

PA(x,y) = [[x| - [Ty| (2.13)

In Table 2.1, a comparison of the popular neighbour-based metrics for link prediction is
illustrated, with respect to normalization step, time complexity analysis and characteristic
description. It is clear that four metrics: CN, AAC, RA and PA, do not involve normali-
sation steps, which implies that the similarity degrees for vertex-pairs calculated through
these metrics only have the ranking meaning. Time complexity is a significant factor when
selecting metrics, especially for large scale networks. Assume that a network contains m
vertices, each vertex have n neighbours on average, and the network is stored in the format
of adjacent matrix, the time complexity of finding all neighbours of a vertex is O(m), and
the time complexity of calculating the intersection or union of two sets is O(n?). All the
approaches within discussion include the step of searching for neighbours of two involving
vertices, which results in time complexity of O(2m). However, the overall time expenses of
calculating the similarity between a pair of vertices with respective metrics may vary from
each other. Obviously, PA is the most efficient metric amongst all the discussed methods,
since it only needs the above mentioned step. CN, containing one more step of computing
the intersection of two neighbour sets, leads to the total time cost of O(2m + n?). The
time complexity of JC and WIC is O(2m + nz), as it encapsulate steps of calculating both
intersection and union of two sets. For AAC, RA and WRA, besides the aforementioned
steps, they also need to search for the neighbours for each of the common neighbour vertices
to the target vertex-pair, which lead to an additional time cost of O(mn). Therefore, their
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time complexities are O((n+ 2)m 4+ n?).

Table 2.1 Comparison of Neighbour-Based Metrics for Link Prediction

Metric Normalisation Time Complexity Characteristic Description

CN No O(2m+n?) (1)
JC Yes O(2m+2n?) (1)(2)
WIC Yes 0(2m+2n?) (3)
AAC No O((n+2)m+n?) 4)(5)
RA No O((n+2)m+n?) (4)(6)
WRA Yes O((n+2)m+n?) (3)(4)
PA No O(2m) (1)(7)

() Simple and intuitive

() Relative to total number of neighbours

) Rich in edge information

@ Consider neighbour of common neighbours

) Common neighbours with fewer neighbours weighted more heavily
© Punish high-degree common neighbours more heavily

() Prefer high-degree vertices

It should be noted that although there are great many neighbour-based metrics with their
variations available, proper selection of metrics according to the characteristics of networks
is necessary and essential, since quantities of experimental evaluations have demonstrated

that there exists no absolute dominating metric for various practical applications [57].

2.2.2.2 Path-based Metrics

Apart from the vertex and neighbour based metric, paths connecting two vertices in the
network can also be explored to measure the similarities between vertex-pairs. This yield a

different category of similarity measure, named as path-based metrics.

« Katz For a pair of vertices (x,y), Katz metric [102] considers the ensemble of all
paths existing between them, and it straightforwardly sums up all the weights over

the considering paths. However, it penalise the contribution of longer paths in the
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similarity computation by setting up a damp factor corresponding to the path length.

The formal equation to compute the Katz value is as follow:

katz(x,y) =) B ]pathsi7y| (2.14)
=1

where [ denotes the path length, B/ indicates the damp factor and pathsfw represents
the set of all paths from x to y with length /. B is usually set to a small value greater than
zero. A tiny value of  may lead Katz measure considering only the shorter paths heav-
ily, resulting in this path-based metric working in a similar way to the neighbour-based
counterparts. One problem with Katz metric is its cubic computational complexity,
which could be infeasible for large networks [103].

Local Path (LP) LP metric [104] can be regarded as a special case of Katz. Unlike
the metrics that only use the information of the nearest neighbours (be they adjacent or
otherwise), it makes use of further information from local paths with a length value
of 2 and 3. Let A denote the adjacent matrix of all vertices in the discussed network,
and A% and A3 represent the adjacent matrices based on A with a length of 2 and 3,
respectively. Here, A% contains two vertices in the network connected through a path
with length of 2. Similarly, each element in A3 denotes two vertices in the network
connected through a path with length of 3. LP is then defined as follows:

LP =A%+ oA’ (2.15)

where o is a small number close to zero, which is being used to penalise the weight of
the paths with greater length. In the experiment, « is set to 0.01 (as with the default
value typically used when running this metric). An extended version of LP is named as
Local Weighted Path (LWP), which makes use of further information from local paths

[105]. LP metric has the cubical time complexity since it involves matrix multiplication.

Relation Strength Similarity (RSS) This metric was originally introduced as an
asymmetric measure for weighted social networks [106]. It may also be adopted as
a symmetric measure for the various real-world problems [107] [108]. Suppose that
there are T simple paths (with no circles in paths) shorter than a path length of e from
the vertex x to y in the network, and a path with length of u (1 < e) from x and y is

formed with Z vertices xy, x3, ... , Xxz_1, Xz, where x| represents x and xz represents y.
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Then, the RSS metric from x to y is defined by

T
RSS(x,y) = Y R;(x,y) (2.16)
=1
with
T R(wen) Z< et
Xz, X741 se
Ri(xy) =4 =1 (2.17)
0 otherwise

where R(x;,x,11) denotes the link strength of the two adjacent vertices x; and x,
within a particular path connecting x and y. The time complexity for RSS is signif-
icantly affected by the length of paths, and can be extraordinarily high in extreme cases.

Connected-Path (CP) The CP metric further includes the uniqueness property of the
link patterns to refine the similarity estimation [109]. In particular, for a link network
G = (V,W), a path established between two vertices x,y € V, named as path(x,y) or p,
is a sequence of unique vertices x, X1, ..., X,y With €dges Wy x,, Wy, xys o, Wi, 500 Wiy €
W. The length of path length(p) equals |p| — 1, where |p| denotes the number of ver-
tices in path p. Additionally, PAT H(x,y, r) represents the set of all paths between x and
y whose length meets the criterion of 2 < length(p) < r. Thus, the similarity degree
between x and y is defined by the accumulated uniqueness measure acquired from all
paths in PATH (x,y, r). This metric can be formally described as follows:

U(p)
CP(x,y) = Y —— (2.18)
PEPATH (x,y,r) length(p)

where U(p) denotes the uniqueness of path p, which can be calculated through the
following equation:

U(path(x,y)) = [T vok (2.19)

z€path(x,y),z7#x,y
In Eq. 2.19, UQ(z) represents the uniqueness score of vertex z € path(x,y), which is

computed by Eq. 2.20.

 Wor1 Wil

UQ(z) (2.20)
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where w, , denotes the weight of an edge between z € path(x,y) and any other vertex
g€V, wy, 1 and w, | represent the weights of the edges from z to its adjacent

vertices in path(x,y), respectively.

Note that in Eq. 2.18, the uniqueness degree of a path is normalised by its length,
which shows that the longer paths are considered to be less informative than the shorter
ones. Such insight is consistent with human logical thinking intuitively. In order to set
the CP score into a unified scale, a final step of normalisation is needed, with CP,,,,
(maximum estimate value between any two vertices in G) being the normalisation
factor. Hence, the similarity degree simcp(x,y) between x and y by CP metric can be

determined as:

CP(x,y)

2.21)
CPmax

simep(x,y) =
Similar to RSS metric, the time complexity for CP metric is also sensitive to the size
of the network. Assume that a link network involves m vertices, and each of them
is linked to n others on average, the time complexity for CP metric to generate all

pairwise similarity score is O(m?n").

2.2.2.3 Random Walk-based Metric

Social interactions between vertices in linked graph networks can also be modelled via
random walk, which investigates transition probabilities from a single vertex to its neigh-
bours and propagates such probabilities to calculate the likelihood of a destination travelled
by a random walker from the source vertex. There exists a number of link prediction met-

rics which compute similarity degrees between vertices based on the concept of random walk.

* SimRank (SR) The well-known SimRank algorithm [110] was proposed on the basis
of the intuition that two vertices within a graph are similar if they are connected to
similar vertices in the graph. This can obviously be adapted for use in various studies.

For a pair of vertices x and y, their SR score is computed by

Yy L L SR(x.y)
¥ el(x) y/ el(y)

SR(x,y) = IC()[I0 ()]

(2.22)
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where y € [0, 1] is a decay factor that represents the confidence level of accepting two

non-identical vertices as similar.

The SR algorithm performs through an iterative process, with SRy (x,y) denoting the
kth iterative computation for the similarity between x and y. At initial stage, SRy (x,y)
is set to:

1 x=
SRo(x,y) = Y (2.23)

0 x#y

It has been shown that the value of SRy (x,y) is not decreasing as k increases, and it
eventually converges to a stable limit [110]. In practical applications, & is usually set

to a small number to control the computational complexity.

PageSim (PS) PS [111] was developed to capture similar web pages based on asso-
ciations implied by their hyperlinks. Fundamentally, the similarity degree between a
pair of vertices x and y is dictated by the coherence of ranking scores propagated to
them from any other vertices in V. It is noteworthy that ranking scores are explicitly

generated using the page rank scheme of the well known Google search engine [112].

Specifically, for a network G = (V,E), let PR(x) denote the PageRank score of a
vertex x € V. PR(x) can be estimated from the following iterative procedure (i.e.,
PR(x) = lim PRy(x)):

k—roo

PR
PRi(x) = +B Y " 1 (2.24)

zel(x)

where k is the number of iterations, and f3 is a decaying factor ranging between [0, 1]
and usually set to 0.85 [112]. PRy(x), the initial state of PR score for vertex x in the
iteration process is set to 1 in most of the cases [113]. Having achieved this, the PR

score of x propagated from x to y € V can be calculated as follows:

d-PR(x)
Lo e YAV
PG(X,y) = { pEPATH(x)y,r) 2EP,ZFY (225)
PR(x) xX=y

where d is a damping factor, PAT H (x,y, r) represents a set of paths from x to y with
maximum length of . Assume that |V| = m (|V| denotes the number of vertices in V),
let PS(x,y) be the PS score of vertex-pair (x,y), PS(x,y) is defined as:
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i min(PG(x;,x), PG(x;,y))*
= max(PG(x;,x), PG(x;,y))

(2.26)

Note that PS is a symmetric method with PS(x,y) = PS(y,x) and PS(x,y) is always in
a range of [0, 1]. Moreover, each vertex in the network is most similar to itself, i.e.,
PS(x,x) = max PS(x,z).

zeV

The time complexity of PS is huge. Assisted with the prune technique to limit the
length of propagation, the time complexity of PS metric can be reduced to O(m?n?")
(n denotes the average number of neighbours for each vertex in the network), which

still makes it infeasible to handle large sized networks.

Hitting Time (HT) The basic concept of HT derives from random walks on a graph
[114]. For a pair of vertices x and y in a graph network, let HT (x,y) defines the
expected number of steps required for a random walk starting at x to reach y. The
smaller value of HT denotes that the vertices are similar to each other, thus they have
a higher opportunity of creating a link between them. Similar to RSS discussed in
2.2.2.2, the original HT is designed for directed graph network. However, a variant of
HT, named as commute time (CT), has been proposed to handle with the bi-directed
graph network by considering both H(x,y) and H (y,x). Specifically,

CT (x,y) =HT (x,y) + HT (y,x) (2.27)

The HT metric can benefit from its simple computational complexity, but its pre-
dicted value may possibly lead to high variance [57]. Particularly, one difficulty with
HT metric is that HT (x,y) could be quite a small value when y is a vertex with a
large stationary probability 7(y), regardless of the identity of x. To overcome this
drawback, normalised versions of HT, denoted by NHT, is proposed by defining
NHT (x,y) = HT (x,y) - n(y). Likewise, normalised version of CT metric, named as
NCT, can also be depicted by NCT (x,y) = CT (x,y) - w(y) + CT (y,x) - w(x).

Another issue with HT metric is its sensitivity to parts of the graph which are far from
the target vertex-pair. For instance, HT (x,y) (even when x and y are connected by very
short paths in the graph network) can be seriously affected by another connected vertex

zin the graph network, where z is far away from x and y with high stationary probability
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7(z). It could be difficult for a random walk to escape from the neighbourhood of z.
A feasible method to tackle this problem is to allow the random walk from x to y to
periodically reset, returning to x with a fixed probability o at each step. Based on this
method, vertices within a certain range to the target vertex-pair is considered more
heavily, while distant parts to the target vertex-pair in the graph network will be rarely

explored.

Rooted Pagerank (RP) It has been demonstrated that the PageRank measures [112]
used for webpage ranking has inherent relationship with the HT analysis. Hence, the
pagerank score can also be treated as an indicator for link prediction. However, since
the pagerank score itself is an index for a single vertex, it requires to be modified
such that it can be utilised to represent the similarity degree between a pair of vertices.
The original concept of pagerank is designed based on a webpage network under the
following assumption: for some fixed probability ¢, a surfer at a webpage jumps to a
random webpage with the probability of « and goes to another webpage directed by a
hyperlink with the probability of 1 — a. The importance degree of a webpage web,,
is expected to be the sum of the importance degree of all the webpages that link to
web,. The term importance degree used in pagerank scheme can be transferred into
stationary distribution under the random walk strategy for networks. For the task of
link prediction, the similarity degree between a pair of vertices x and y can be measured
as the stationary probability of y in a random walk that returns to x with the probability
of 1 — & in each step, and moves to a random neighbour with the probability of .
Similar to HT, the RP metric is defined to be asymmetric originally and can be modified
into a symmetric version by summing with the counterpart in which the roles of x
and y are exchanged. Mathematically, let A be an adjacent matrix for the discussed
graph network G, I be an Identity matrix in the same size of A, D be the diagonal

degree matrix with D[i,i] = L A[i, j] and N = DA be the adjacent matrix with row

j
summation normalised to 1, the RP score for all vertex-pairs in G can be calculated as
follows:

RP=(1—0a)(I—aN)! (2.28)

PropFlow (PF) PF metric [115] is a similarity measure based on information flow
[116], and can also be regarded as localised version of RP. It has the advantage of being
insensitive to the topological noise far from the target vertices. Unlike RP metric, the

process of performing PF does not require a walk restart or convergence, but simply
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employs a searching strategy with limited length /. Therefore, it is more efficient than
RP and SR metrics in computational complexity. For a pair of vertices (x,y) in a graph
network G, their PF score is proportional to the probability that a random walk starting
from x and ending at y within / steps. Equation 2.29 shows the formula of computing
PF score for (x,y) when they are directly linked.

Wxy

Z Wik
keT'(x)

PF(x,y) = PF(a,x) (2.29)

where, w,, denotes the weight of the link between vertices x and y, k represents x’s
neighbours whose length to the starting vertex is greater than that of x, a depicts the
previous vertex of x on a random walk path. Note that when x is the starting vertex,
PF(a,x) is set to be 1 by default. If x and y are not directly connected, PF metric sums
up the PF score of the all the shortest paths from vertex x to y. A pseudo code of the
PF predictor for estimating x to all the other vertices within maximum length / in a

graph network is shown in Algorithm 2.
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Algorithm 2: PropFlow Algorithm for Prediction

Input:

G = (V,W): A graph network

x: Source vertex in G

[: Maximum length

Found: A set to store available vertices
NewSearch: A set to store vertices
OldSearch: A set to store vertices

S: A set to store a vertex with is flow score

1 INSERT x into Found ;

2 INSERT x into NewSearch ;

3 INSERT (x,1) into S ;

4 for CurrentDegree <— 0 to [ do

5 OldSearch <— NewSearch ;

6 EMPTY NewSearch ;

7 while OldSearch is not empty do

8 REMOVE x; from OldSearch ;

9 FIND VertexInput using x; in S ;

10 SumOQOut put < 0 ;

1 foreach x; in neighbours of x; do

12 ‘ ADD w;; to SumQut put |

13 end

14 Flow +0;

15 foreach x; in neighbours of x; do

16 Flow < VertexInput x ﬁ’;}pm ;
17 INSERT or SUM (x;,Flow) into S ;
18 end

19 if x; is not in Found then

20 INSERT x; into Found ;
INSERT x; into NewSearch ;

22 end

21

23 end
24 end
Output: PF(x,y) for all neighbours y of x under neighbourhood range within length
of [
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2.2.3 Probabilistic Metrics

The probabilistic metrics for link prediction are considered supervised models and are mostly
based on Bayesian Theory. The general concept for probabilistic metrics is to grasp the
posterior probability which denotes the chance of co-occurrence for the vertex-pairs in the
discussed domain. Generally, probabilistic metrics are time consuming and only capable of
handling networks involving thousands of entities(vertices). However, they provide valuable
insights into the network organization and modularisation, which can not be fully grasped by

the similarity-based metrics [95, 117].

2.2.3.1 Hierarchical Probabilistic Graph Metric

Studies have suggested that real-world networks may exhibit hierarchical structure, where
vertices divided into groups can be further clustered into groups of groups, and so forth over
multiple scales [50, 118, 119]. This metric infers hierarchical structure from network data
and can be used for prediction of missing links. Basically, it is proposed as a probabilistic
model for hierarchical random graphs. The learning task is to use the observed network data
to fit the most likely hierarchical structure through statistical inference: a combination of the
maximum likelihood approach and a Monte Carlo sampling algorithm.

The conceptual framework for this hierarchical probabilistic model (HPM) can be de-
tailed as follows: Let G = (V,W) be a graph network with m vertices. A dendrogram D is
a binary tree with m leaves corresponding to the vertices of G. Each of the m — 1 internal
nodes of D corresponds to the group of vertices that are descended from it. A probability p,
is associated with each internal node r. Then, given two vertices x,y € V, the probability py,
that they are connected by an edge is pyy = p,, where r is the lowest common ancestor in D.
Thus, the likelihood of the hierarchical random graph can be presented as a combination of
(D,{p,}) which consists of the dendrogram D and the set of probabilities {p,}.

The learning task is to find the hierarchical random graph or graphs that best fits the
observed network data. Assume that all hierarchical graphs are apriori equally likely, by
Bayesian theorem, the probability that a given model (D, {p,}), is the correct explanation of
the data is proportional to the posterior probability or likelihood with which the model gen-

erates the observed network. The goal is to maximize such posterior probability or likelihood.

Let Er denote the count of edges in G whose endpoints have r as their lowest common
ancestor in D, and let Lr and Rr, represent the numbers of leaves in the left and right subtrees
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0:3 ,ﬁhﬁ@

Fig. 2.1 Example of Hierarchical Structures for a Link Network

rooted at r, respectively. Then, the likelihood £ of the hierarchical random graph consisting
D and {p,} can be calculated as:

D {p,})=[]PF(1—p,)PF (2.30)

reD

Such likelihood measure can be maximised by a set of probabilities {p,}, with p,
calculated as :

K
Pr=TRr,

An illustrated example for the hierarchical structure of a link network is presented in Fig.

(2.31)

2.1. Asis shown, the example network G consists of six vertices, followed by the likelihood of
two possible dendrograms presented. The internal nodes r of each dendrogram (represented
by box) are labelled with the maximum likelihood probability p,. According to Eq.2.30,
the likelihoods of the two dendrograms are £(Dy) = (1/3)(2/3)?-(1/4)*(3/4)® = 0.00165
and £(D,) = (1/9)(8/9)® = 0.0433, respectively. It is obvious that the second dendrogram
reveals the hierarchical structure of the example network in a more acceptable manner (which
is also demonstrated by £(D;) > L£(D;)), since it correctly divides the network into two
significantly connected sub-graphs at the first stage.
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The choice amongst the dendrograms are performed by a Markov Chain Monte Carlo
(MCMC) sampling approach with probabilities proportional to their likelihood. To create the
Markov chain, the approach first generates a set of transitions between possible dendrograms
through rearrangement or reconstruction. In the rearranging step, the approach chooses an
internal node of a dendrogram and then selects among various configuration of the subtree
at that vertex uniformly. Once the transition criteria is clear, the sampling process creates
a random walk. Whether a new rearrangement being accepted or not is determined by the
Metropolis-Hastings sampling rule, i.e., for a transition from a the original dendrogram D to
a reconstructed dendrogram D', the transition is adopted if Alog £ = log £(D') —log £(D) is
non-negative, otherwise it is adopted with a probability of £(D')/L(D).

For link prediction, a set of sample dendrograms are created at regular intervals once
the MCMC random walk reaches an equilibrium. Then, for the pair of vertices x and y
with no connection exists currently, the model computes a mean probability p(xy) of they
are being connected by averaging over the corresponding probability p(xy) for all of the
sampled dendrograms. For binary decision, a threshold can be specified. The unique nature
of the hierarchical random graph model is that it enables presenting a general view for the
network. Simultaneously, it allows sampling over the set of hierarchical structures to obtain
a consensus probability. The drawback of this metric is that it may not be that accurate
unless the MCMC sampling process converges to the stationary distribution in a limited
or reasonable number of steps. Additionally, the entire process could be very costly for

networks in large size.

2.2.3.2 Stochastic Block Metric

Stochastic block model (SBM) is one of the most general network models in which the
vertices are partitioned into groups [120, 121]. The probability for the connection of two
vertices in the network depends completely on their membership to those groups. The
stochastic block model is capable of capturing the community structure [122], role-to-role
connections [123], and group based interactions [124]. Conceptually, for a link network
G, a block model M = (P,Q) consists of a partition P dividing all the vertices in G into
distinct groups and a matrix Q involving probabilities of linkage between pairs of groups.
Arbitrarily selecting two different groups from P, named as V, and Vi respectively, denoting
their connecting probability by Qqg, then, the likelihood of G based on a pair of P and Q

can be defined as follows:
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(]

(a) A Simple Matrix of Probabilities Q (b) A Realised Network for the Model

Fig. 2.2 Example of Stochastic Block Model

L(GIP.0) = [] QA(1~ Qup)esles (2.32)

a<p
where [, denotes the number of existing edges inter-connecting vertices in groups Vy and
Vg, and rqpg denotes the number of vertex-pairs (x,y) with x € Vi and y € Vg respectively.
Thus, Q7 B> the optimal value of Q5 which maximises L(G|P, Q) is:
* laﬁ
Qup = — (2.33)
of
An example of SBM is illustrated in Figure 2.2. A matrix Q in Fig. 2.2a presents the
vertices in discussion are divided into three distinct groups, each of which contains 4, 5,
6 vertices, respectively, and are represented as circles, triangles and squares according to
their membership to different groups. The value of each matrix entry Qg is represented by
the shade degree of grey. For instance, a circle does not link to any other circles. However,
circles link to squares with tiny probability, and link to triangles with high probability. Fig.
2.2b is a realised network of Q. It is apparent to observe that the number of links between
the circle and the triangle is much more than that between the circle and the square, which is
consistent with the contents revealed by Q.

Let Q be the set of all possible partitions on G, by the Bayesian Theorem [125], the

reliability of an individual link between vertices x and y can be calculated as:

1
E(ny = 1|G) = Z Zh
Pe

| LGy =1POL@GR PO @234
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where Z is a normalising factor, N denotes the number of distinct group pairs, £(G, = 1|P, Q)
is determined as Qj; B> and p(P, Q) is set to a constant value since the equation is formulated

under the assumption that no prior knowledge about the models is provided.

Note that the number of different partitions is incredibly huge, which makes it infeasible
to sum over the results of the all possible partitions in real practice. Thus, similar to HPM, a
Metropolis sampling procedure [126] is applied to assist the estimation of the link reliability.
However, the whole process still leads to expensive time cost which is only suitable for

handling small to medium sized networks [117].

In spite of its ordinary performance in time efficiency, SBM is widely applied in various
fields [127-130], as it is not only capable of undertaking the task of predicting missing links
in the network, but also provides an approach to identifying possible spurious links (the

existent links with the low reliabilities) [131].

2.3 Fuzzy Link Prediction

Fuzzy set theory enables processing with approximation, uncertainty and imprecision, where
a number of real-world problems cannot be successfully tackled by binary encoding to
model [132]. Fuzzy logic which tolerates partial truth is the premise to perform approximate
reasoning, which aims at producing conclusions from inexact assumptions while being
analogous to human logical thinking. Fuzzy systems, based on fuzzy logic, encapsulate both
the natural observation and information from domain experts’ descriptions in terms of natural
language, and generate interpretable knowledge in linguistic expressions for the transparent
insights into the behaviour of a complex system.

2.3.1 Fuzzy Inference System

Fuzzy inference system (FIS) [133—136] is a type of fuzzy systems designed to formulate
human knowledge for reasoning in a systematic manner, assisted with the information coming
from sensory measurements and fuzzy mathematical models. Such transformation introduced
by FIS vividly map human knowledge onto mathematical formulas for systematic analysis.
FIS provide a general basis which allows a wide range of applications, including decision
making, pattern discovery, event prediction, system control etc [137]. The conceptual

architecture for a typical FIS [138] is illustrated in Fig. 2.3.
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Rule Base

Fuzzifier InEfsr X Defuzzifier

Data Base

Fig. 2.3 General Architecture of FIS

As is shown in Fig. 2.3, the general architecture for a typical FIS consists of five
components, including: a fuzzifier, an inference engine, a defuzzifier, a data base and a rule

base. The functionality for each of these components are described as follows:

1 Fuzzifier: it provides an interface for transforming crisp inputs obtained from natural
data sources into fuzzy presentations. The fuzzifier enables representing crisp numeri-
cal values in the form of linguistic terms in natural language with certain membership
degree. The transformation procedure is conducted by searching through a collection
of semantic mappings that relates the input crisp value with a group of predefined

fuzzy sets.

2 Inference Engine: it performs operations on the fuzzy values passed from the fuzzifier.
These fuzzy values of individual features attempt to fire rules stored in the rule base.
The firing strength with respect to each fuzzy rule is computed by applying fuzzy
logical operators on membership values of the existing conditional antecedents. In the
case of multiple fuzzy rules being fired simultaneously, all the outputs generated by
the fired rules are required to be combined into an aggregated fuzzy set before inputing
into the defuzzifier.

3 Defuzzifier: it conducts a reverse mapping process on the aggregated fuzzy set obtained
from the inference engine, to generate a crisp value for subsequent operation. In many
real-world applications, the final output of an engineering system is required to be in
the format of real-value. In order to achieve this goal, finding a representative point
for such aggregated fuzzy set is necessary. The process to perform such task is termed
as defuzzification. And usually, centroid, bisector, maximum are adopted to be the
defuzzified value.
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4 Data Base: it stores the definitions of crisp values with respect to a number of over-
lapped concepts defined as fuzzy membership functions for each of the features
variables. In other words, it provides the evidence or regulations for converting crisp
digits into fuzzy values and the reverse procedure. It also preserves a collection of
linguistic labels which are both transparent to human users and essentially needed for

reasoning.

5 Rule Base: it contains a set of linguistic rules. Generally, two ways are available to
construct a fuzzy rule base for reasoning: (1) explict translation of domain experts’
knowledge into conditional statement; (2) generalise knowledge from observed entries
represented by feature-consequence pairs. The former approach often offers high
semantic level and satisfactory generalisation capability, whereas the latter is a data-
driven approach which fits the situation well when there is not sufficient expertise

available.

2.3.2 Fuzzy Inference for Link Prediction

Fuzzy logic and FIS have been applied in a wide variety of research and industrial fields
[139-143], due to their Intrinsic ability to incorporate human expert knowledge and granular
computing [144]. Its successful application in control systems and expert systems has been
widely revealed in corpus of literatures [145—-147]. Nowadays, the empirical concept has
also been transferred into network analysis (NA), which is an emerging research field in the
recent years. However, in the study of NA, most of the works based on fuzzy logic have been
focused on network community detection [148—151]. leaving the investigation on fuzzy link
or fuzzy logic based link prediction at rather a coarse level. In this section, existing metrics

in a few number based on fuzzy model for link prediction is summarised.

2.3.2.1 Fuzzy Link Prediction Based on Clustering Analysis

* Fuzzy Link Prediction Based on Local Clustering Coefficient (FCC):
FCC is a soft metric for link prediction by exploring the concept of clique. In graph
theory, a clique represents a subset of vertices in which every pair of distinct vertices
in it are connected through a link, inducing that a subgraph formed by a clique is a
complete graph [152]. Local clustering coefficient (LCC) [153] is selected to measure
how neighbours of a vertex tend to form a clique. In SNA, it is considered that
vertices with greater LCC are likely to assist generating links between its neighbours
(currently not linked together). FCC metric [154] extends the traditional concept
of LCC which simply focused on triplets related to the target vertex by performing
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granular computation to take broader clusters into account. Basically, a softer definition
for the concept of clique has been set up as a premise to support the FCC metric, which
also provides consistency with human perception. Assume that S represents a clique, it
requires the satisfaction of the following criteria:

C1 : Most of the elements in § are closely related.
C, : None of the elements in S are too far from any of the others.

C3 : Every element in S is better connected to the members of S than any element in
S.

For the above mentioned criteria, basic linguistic labels (i.e., most, close, far) are
defined as fuzzy terms, and the mathematical specification for each of the criteria are
formulated in [155]. Let (x,y) be a pair of vertices in the network under discussion,
FCC(x,y), the score for a predicted link connecting them is calculated by the sum of
FCC(x)+FCC(y), where FCC(x) and FCC(y) denotes the updated definition of LCC
for vertex x and y, respectively. Note that LCC for any vertex z in the network stands
for its minimum satisfaction of the criteria, it can be interpreted that:

FCC(z) = min[FCCj(z)] (2.35)

J
where j (1 < j < 3) is the index for each of the selecting criteria. The pseudocode
of FCC metric for link prediction is shown in Algorithm 3. Taking both the existing
small-world phenomenon in real network [156] and computational complexity into
account, the search space for the paths is restrained to a limited area where the length

of the paths is set to a small value less than or equal to 4 in applications.
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Algorithm 3: FCC for Link Prediction

Input: S;;,.: A set of potential Links

1 foreach link € Sy, do

2 foreach vertex x connected by /ink do
3 FIND all paths P with length / < K starting from x ;
4 COMPUTE for C; ;
5 foreach vertex z in P do
6 FIND all paths P with length I <K starting from z ;
7 COMPUTE for C; ;
8 end
9 foreach vertex r ¢ P do
10 FIND all paths P’ with length I"<K starting from r ;
11 COMPUTE for C3 ;
12 end
13 end
14 SET C(x) to the minimum of C; to C3 ;
15 COMPUTE FCCyjpy 5

16 end
Output: FCCyyy, for each link € Spjx

* Fuzzy Link Prediction Based on Cluster Overlapping (FCO):
FCO considers the overlapping degree of two clusters with regard to the target vertex-
pair [154]. Formally, for a vertex x in the network, its corresponding cluster C* (x) is
represented as a set of vertices which can be reached from x within / steps. In particular,
for a pair of vertices (x,y) in the network, let C*(x) and C(y) be their respective cluster.
The likelihood of link existed between them can be measured by the overlapping degree
of their respective clusters. The mathematical formula for calculating such overlapping

degree OD(x,y) is stated as follows:

i close(x,y)

_ p=1
PN =y W+ L i) (230

steC!(x) s i eCl(y)

where 7 is termed as the number of possible paths connecting x and y, w(s,t) represents

the weight of an edge between two vertices s and ¢ in C!(x). Similarly, w(s )
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represents the weight of an edge between two vertices s and? inC! (y). In Eqn. 2.36,

close(x,y) is defined as:

(

1 I(x,y) <2
wlxz)+w(z.y) _
close(x,y) = wz(;lz(;lfvi)(;ze)—kw(e y) l(x’y) - (2.37)
Toeoz - lxy) =3
\O I(x,y) >3

where [(x,y) denotes the length of the path between vertex x and y, with z, e each
depicts a vertex in path. It is worth mentioning that when the cluster for a vertex only

contains its adjacent neighbours, this metric can be simplified into a variant of JC.

2.3.2.2 Fuzzy Link Prediction Based on Order-of-Magnitude Metric (FOM)

A common disadvantage of the numerical measures previously discussed is their inability
to achieve coherent and natural interpretation via existing seemingly fine-grained scales.
Exploring a linked network with crisp valued criteria is generally considered inflexible
comparing to the use of linguistic descriptors. Particularly, a misinterpretation of a link
measure may happen if there exists an unduly high property value within a linked network.

A more accurate and natural measure is to exploit qualitative labels.

To tackle such a crucial drawback, an advanced approach has been proposed in which a
link measure is gauged in accordance with its specific FOM spaces [157, 158], an extension
of the crisp-interval Order-of-Magnitude space [159]. Let FOM(n) = (L(x),F(x)) be an
FOM space of the link measure 7, and L(7r) and F () each represents a set of qualitative
labels and a set of fuzzy sets which define such labels. Note that the development of a
qualitative reasoner usually involves aggregating a number of different link measures, with
each link measure presenting a particular feature of the discussed link. And these features
values generated by various link measure are often represented with qualitative labels of
different granularity, defined on dissimilar universes of discourse. Therefore, prior to the
aggregation process, the homogenization process performed on the traditional OM model
is similarly required to map the fuzzy-set based feature variables onto the unified scale
U=][0,1].

Assume that m distinct measures are adopted to perform link analysis, each carries a

qualitative variable, denoted as V; (1 <i < m), with a corresponding weight, denoted as W;
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(1 <i < m). Following the pre-processing procedure, the aggregated outcome ¢ (also a fuzzy

set ranging in U = [0, 1]) can be estimated through the weighted average function ¢:

B Vivi+...+V,,W,

=oVi,... Vu,Wi,....W(m

(2.38)

The membership function of ¢ is represented by pg(¢), where ¢ is an ordinary weighted

average which can be computed as:

_x1w1+...+xmwm
W1+ ... +wy

= QX1 Xy Wy ey Wiy ) (2.39)

where x; € V; and w; € W; (1 <i < m). According to the extension principle, the membership

function of ¢ is:

Lo (1) = sup(min(y, (x1)), w; (W1)), ... min(y,, (Xim) ), lw,, (Wi )) (2.40)

It is worth mentioning that calculating the exact membership function () is compu-
tationally expensive. Thus, a discrete approximation by ¢-cut fuzzy arithmetic is used to
perform the fuzzy set aggregation step [160]. Specifically, the o-cut of a variable V; and its
corresponding weight W; (1 < i < m) are denoted as:

(Vi)oo = { (i, v, (x1)) [xi € Vi, v (i) > e} (2.41)

(Wi) o = { (Wi, iw;(w1)) [wi € Wi, w;, (wi) > a} (2.42)

Note that the ¢t-cuts are crisp intervals which can be expressed in continuous closed

form:

VD)o = [(@)a, (b)) al] = [min{xl' € Viluy, (x;) > oo}, max{x; € Vi, (x;) > 0‘}] (2.43)

(Wa = [(€i)as (d)a = | min{w: € Wilaw, () > o}, max{owi € Wil (wi) > @} | (2:44)

where (a;)¢ and (c;)q denote the left endpoints of (V;)y and (W;)q, respectively. Similarly,
(bi)¢ and (d;) o denote the right endpoints of (V;) and (W;), respectively.

Thus, the a-cut of ¢, denoted as (¢ ) can be acquired in a way that
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2.4 Summary

(0)o = [min(p(xl, ey Xy Wy weey Wi ), max @ (xy, ...,xm,wl,...,wm)} (2.45)

where Vo € (0, 1], (al-)a <x < (bi)ota (Ci)a <w; < (di)ot’ ai,xi,bi € V; and C,‘,W,’,di ew
(1 <i <m). Owing to the monotonicity of ¢, Eq. 2.45 can be simplified as:

= min Wlyers Win), max Wiy eeoy Wiy (2.46)
(O)a =, cqin g Jelnomm) xS0

where fr(wy,...,wn,) and fgr(wy,...,wy,) representing the left and right point of the value
interval are respectively defined as:

(@) gwi + -+ (am) aWm

(2.47)
wi+...+wy,

S, ewm) = f((@) as o, (Am) o, Wiy ooy Win) =

(bl)an + ...+ (bm>awm

TRW1s s wm) = f((D1) s oy (D) s W1 ooos Win) = Wi+ ..t Wpy

(2.48)

It has been demonstrated that the qualitative approach consistently outperforms traditional
numerical methods over datasets in the field of terrorism detection and author collaboration
[109]. However, a current restraint for the order-of-magnitude model is its initial setup
requires expert directed specification of qualitative variables (i.e., link property measures and
their relative weights for aggregation). Despite the fact that the performance of this predicting
model is generally robust to different parameter settings [157], the automatic determination
of the underlying qualitative definition through a data-driven process is worth investigating,
when there are sufficient training data available.

2.4 Summary

This chapter has introduced a selection of clustering metrics in both forms of general partition
and hierarchical configuration at first, followed by a systematic review on link prediction
techniques. The underlying inspirations for link prediction span a wide range of areas,
including intrinsic features, topological structure, probability analytics and fuzzy logic. In
general, the contents summarised in this chapter provide the foundation for the subsequent

theoretical framework.
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Chapter 3

Clustering Embedded Linear Regression
for Prediction

Prediction is one of the most typical tasks in the research fields of machine learning and data
mining. Predicting a continuous numeric feature is generally known as regression among
related fields. Currently, regression analysis is also regarded as a mathematical approach
to differentiating influential variables from the ordinary counterparts and sorting out the
manner in which those influential variables interact with each other. Although there exists
a variety of types of regression analysing metrics, with each having its own importance on
a specific condition where they are best suited to be applied, at their core they all focus on
examining the influence of one or more independent variables on a single dependent variable.
Simple multi-variable linear regression (SMLR), one of the conventional approaches for
regression problem which requires no prior knowledge about the dependencies on feature
variables, has demonstrated its effectiveness in various application [20, 161]. However, it has
two significant deficiencies: (1) It is not capable of generating a satisfactory structure which
can model randomly distributed data or data organised in multiple regular forms. (2) It is
sensitive to noisy entities or outliers in the examined dataset. Having noticed the drawbacks
hidden behind this well-known approach, a novel predicting framework which can better
handle the above mentioned problems is proposed and discussed in this chapter.

The rest of this chapter is arranged as follows. Section 3.1 introduces the concept of
the proposed model, with a brief description of its components. Section 3.2 specifies the
implementation of the predicting model in detail. Section 3.3 shows a case study of applying
the predicting model to a real-world scenario of estimating student academic performance.

Section 3.4 summarises this chapter.
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3.1 Conceptual Framework of Predicting System

3.1

Conceptual Framework of Predicting System

The structure of the predicting system is shown in Fig. 3.1. The system comprises four distinct

component subsystems, each of which implements the following functionalities, respectively:

partition, classification, regression and estimation. These activities are integrated together to

form the overall predicting model, whose implementation involves a 4-step computational

algorithm:

INPUT PREDICTING SYSTEM OUTPUT

Designated
Category
e . A

Y

2)

3)

4)

J————— I
|:L> Partition Classification Regression Estimation !
) : Subsystem Subsystem Subsystem Subsystem :E:>
| |
( - ____ &> ____________________ ﬁ o __1
i
L/

Fig. 3.1 Architecture of CELR Predicting System

Partition Subsystem: Partition sample data into different categories based on the
similarities of their respective attribute (feature) values. This step results in sample
data divided into a pre-defined number of groups, with data instances in the same
group being deemed more similar to those in other groups.

Classification Subsystem: Identify the category to which a testing instance belongs
according to the similarity of its attribute values to those of the sample data. This step

assigns the testing instance to one of the categories (groups) generated by Step 1.

Regression Subsystem: For the designated category obtained by Step 2, determine
the relationship between a dependent feature variable of interest and the independent

attributes based on the sample data within the target category.

Estimation Subsystem: For a target testing instance, calculate the predicted result on
its missing feature value according to the observed independent feature values and the

relationship fomula determined in Step 3.
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3.2 Implementation of Predicting System

This section describes the implementation of the proposed framework for prediction. Note
that the conceptual framework proposed in Section 3.1 can be implemented via various
combinations of approaches for each of the component subsystems. However, in this section,
one of the most efficient implementations is demonstrated.

3.2.1 Partition Subsystem

The aim of the partition subsystem is to divide the instances in training dataset into different
categories according to their respective attribute (feature) vector. Those training instances
with similar attributes values are partitioned into the same group. To implement such a parti-
tioning task, k-means clustering [79], one of the simplest unsupervised learning algorithms
[162] is employed. It works by grouping a set of instances in a way such that instances in the
same cluster are more similar to each other than to those in other clusters. The parameter k
(k < n) here, representing the number of partitions, together with the initial centroid of each

cluster, can be either given by domain experts, or generated through automatic steps [43, 163].
In the process of clustering, the Euclidean distance between each instance and the centroid

of each cluster is calculated to determine which cluster the instance belongs to. The pseudo-

code for the implementation of this simple k-means clustering is shown in Algorithm 4.
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3.2 Implementation of Predicting System

Algorithm 4: k-means Clustering Algorithm
Input:

k: Number of clusters
C ={c1,c2,...,cx}: k centroids of k clusters
n: Number of instances in the training dataset

S = {s1,52,...8, } A training dataset of n instances

1 repeat

2 foreach s;(1 <i<n) € Sdo

3 foreach c;(1 < j<k)€Cdo

4 ‘ COMPUTE Euclidean distance d(s;,c;) between s; and c; ;
5 end

6 si = {Cluster;|argmind(s;,c;j)} ;

c;eC

7 foreach c¢;(1 < j<k)eCdo

8 ‘ cj < average of {s;|s; € Cluster,} ;
9 end
10 end

1 until none of ¢j in C changed,
Output: A set of Clusters

Note that if different weights are imposed upon each of the attribute variables, then the
above algorithm will need to take the weighting scheme into consideration. This is however,
straightforward due to the fact that only linear rescaling of the component contributions need
to be calculated.

The time complexity of the k-means algorithm here is O(nkl), where n is the number of
instances in the training dataset, k is the number of clusters, and / is the number of iterations
taken by the algorithm to converge. Usually, k and / are fixed in advance. So the algorithm
has a linear time complexity with respect to the size of the training dataset O(n) [162].

3.2.2 Classification Subsystem

The general objective of classification is, through supervised learning, to identify which
class a new or unseen observation belongs to, on the basis of a training dataset containing
instances whose class labels are known [164]. This is also the case for the present subsystem.
In particular, for predicting a feature value for an object, when a sample of (other) instances

are available, the task can be guided by determining the position of this object with regard to
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3.2 Implementation of Predicting System

any clusters obtained by the above clustering method.

It is natural to believe that a group of objects with similar features values may belong to
the same category. From this observation, the K-Nearest-Neighbours (KNN) classifier [165]
is employed to perform the required classification job. KNN is chosen since it is one of the
simplest classification methods and works well when there is little or no prior knowledge
about the distribution of the domain data. For the ease of description, the clusters generated
by the K-means clustering method are termed as classes here.

K-Nearest-Neighbours (KNN) classifier [165] is employed to perform the required clas-
sification. KNN is chosen since it is one of the simplest classification methods and works
well when there is little or no prior knowledge about the distribution of the domain data. For
the ease of description, the clusters generated by the k-means clustering method are termed

as classes here.

To classify an unlabelled instance, the K-nearest instances of it are selected to vote for
which class it belongs to. The K-nearest instances refer to those classified records whose
distances to the unlabelled instance are measured to be the K shortest ones (though these
distances do not have to be equal). The simplest way to find the nearest neighbours of an
instance is to compute its Euclidean distance to all the training examples. The pseudo-code
of kNN classification is shown in Algorithm 5.

Algorithm 5: KNN Classification Algorithm
Input:

K: Number of nearest neighbours
n: Number of instances in the training dataset
S = {s1,82,...8, }: A training dataset of n instances

sp(sp ¢ S): Instance to be predicted

1 foreach s;(1 <i<n)ecSdo

2 ‘ COMPUTE Euclidean distance d(s,s;) between s, and s; ;

3 end

ORDER d(sp,si), (1 < i < n) from smallest to largest and CREATE a list L ;

5 ASSIGN s, to the most frequent class which the first K instances in L belong to;

-

Output: A clucter which s, belongs to
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3.2 Implementation of Predicting System

The implementation of this KNN classification method is straightforward, with a test
time complexity of O(n+ Kn) [166], where n is the size of the training dataset, and K is the
number of selected nearest neighbours.

3.2.3 Regression Subsystem

Regression analysis is a popular statistical process for estimating the relationships among
continuous numeric variables, which has been widely applied [20]. Assume that there is no
prior knowledge about the variable dependency available (which is usually the case when
exploring a new research field), multi-variable linear regression, a highly flexible mechanism
for examining the relationship of a collection of independent variables to a single dependent

variable [167], is an appropriate choice to perform the final prediction.

The basic idea of this linear regression model is: given a dataset {y;, X1, X2, ...Xim }, (i =
1,...,n) of n instances, the relationship between the dependent variable y; and the m indepen-
dent variables x;; (1 < j < m) is assumed to be linear. That is, the underlying relationship

amongst all the variables takes the form of
Yi = O+ 01xj1 + 0Xip + -+ - + OpXim (3.1

where o0 = [0, 01, O, - - - , Q] is the so-called regression coefficient vector.

Let 1 denote the unit value vector (of an n dimensionality) and

1 X11 X122 ... X12

N 1 x1 x0 ... x2
X:[l X x o xe|=| T . 3.2)

1 x0 x2 ... X2

Then, the multi-variable linear regression to estimate the predicted dependent feature variable
is of the following equation form:

y=Xo (3.3)
]T

where y = [y;,y2,...y]" is a vector of dependent feature values for the training sample data

which is already known.

In order to determine the value of a; (0 < j < m), conventional least squares (LS)
estimator is adopted here owing to its computational simplicity. The LS method minimises
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3.3 Case Study: Prediction on Student Academic Performance

the sum of squared residuals, and leads to a closed-form expression for estimating the
unknown vector o:

a=(XTx)"1xTy (3.4)

The complexity of the LS algorithm for multi-variable linear regression is O(m?”n), where
m is the number of independent variables and »n is the number of instances in the training
dataset. Since m is usually fixed and known in advance, if m is much smaller than n, the

asymptotic time complexity is O(n).

3.2.4 Estimation Subsystem

This subsystem implements a straightforward, and final step of the entire computation
process of the integrated system. From the resulting parameter estimation for o, given the
independent feature vector F for a testing instance 7, where F' = [f{, f5, ..., f5,], the dependent

feature value e, for prediction can be calculated as
ep =00+ fion+ 200+ ..+ f,0m (3.5)

Thus, the predicted feature value of the target instance is obtained. Likewise, for cases
where predicting dependant feature value for a number of instances, the task can also be
implemented through this method. Simply, the time complexity of the estimation method is
O(1) for one predicted instance, and O(n) for n instances.

3.3 Case Study: Prediction on Student Academic Perfor-

mance

The prediction of students academic performance plays an important role in educational
institutions, especially for higher educational institutions such as universities and colleges.
For example, when reviewing applications from prospective students, the prediction may help
universities to find candidates who are eligible for a particular academic program and identify
those applicants who are likely to perform well in the university [168]. The prediction of
academic performance can also help students and their referees to estimate what kind of
higher educational institutions they may be qualified for and what type of academic major
may be suitable for them.
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Furthermore, the results obtained from such prediction for students already at a university
may be used for classifying students, thereby enabling the educational institution to provide
them with additional support such as customised personal assistance and tutoring resources.
The results of prediction can also be used by lecturers as well to specify the most appropriate
teaching materials and actions for each group of students to meet their needs. Thus, develop-

ing a prediction tool is very important for educational institutions.

Predicting student exam scores is a section of estimating student overall academic perfor-
mance, and is of great value to study. In general, for a typical academic module, students’
performance is usually assessed by assignments, class tests and a final exam. The integrated
overall evaluation for a student’s performance on a module is typically based on a certain

combination of the outcomes of these aspects.

Unfortunately, there are occasions that a student fails to attend an exam due to inescapable
reasons, such as physical injury or other medical situations. There may even be cases where
a number of students in the same module fail to attend the exam because of unavoidable
weather conditions or a natural disaster. Thus, if something happens like this, how to evaluate
their performance in the exam becomes a problem. Perhaps rearranging another exam could
be a way forward, but this may carry significant disadvantages, including but not being
limited to the following: (1) Unfairness - The questions in the rearranged exam may not be
precisely in line with the previous one in difficulty or complexity level, since the questions in
the two exams cannot be exactly the same, causing unfairness when ranking student in their
academic performance. (2) Costs - Once another exam needs to be organised, new exam
paper needs to be set and vetted, the calendar and the exam rooms need to be rescheduled,
and the invigilators need to be arranged and trained, increasing the workload and overheads
significantly. (3) Disruption - The rearranged exam might produce contradiction to the
designated teaching plan, especially when decisions must be made on the basis of the exam
outcomes in order for normal teaching activities to be carried on continuously. For any
of these cases, successfully predicting student exam scores and using them as evidence to
evaluate student academic performance offers great potential benefits.

Over the past decades, methods for data mining and machine learning have been applied
to commercial business analysis and prediction successfully. However, their applications in
education field is still at a coarse level. Recently, Oladokun [169] employed artificial neural
networks to predicting student academic performance in an engineering course. Chen [168]

introduced an alternative for training neural networks in an effort to predict student academic
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performance. Hidayah [170] developed a neuro fuzzy approach for classifying students
through academic performance prediction in a conventional classroom context. Fire [171]
made an attempt to predict student exam scores by analysing social network data between
students.

Previous methods for prediction have to an extent neglected intuitive results achieved by
students in given academic modules, such as assignment marks and class test marks. This
section presents a novel approach to predicting student exam scores based on CELR, and
using basic attributes which are directly related to the teaching of the academic module
concerned.

3.3.1 Data Preparation

Originally, two small datasets (SAP50A and SAP50B [172]) are used as examples and in the
form of numerical crisp scores between 0 and 100, which is one of the most popular ways
to measure student academic performance. The objective of experiment with SAP50A is to
provide evidence that the proposed method can produce acceptable result on an ideal and
representative dataset. However, the reason to select two types of training dataset for experi-
ment is that the students performance in an assessment component does not always distribute
normally, thus SAP50B, a dataset in which data are distributed rather randomly, is selected to
conduct another experiment. The distribution scores of the assignment, test and final exam in
SAP50B are shown in Fig.3.2, Fig. 3.3 and fig.3.4 [172]. It is worth mentioning that each of
the datasets consists of 50 instances, involving three conditional attributes: assignment score,
test score and final exam score, accompanied with five possible classification outcomes:
“Unsatisfactory”, “Satisfactory”, “Average”, “Good” and “Excellent”. Since partitioning
50 instances into five classes may possibly result in a class containing very few instances,
which might probably cause heavy bias to make prediction, based on experts opinion, the
five classes are merged into three, with “Satisfactory” and “Average” combined to “new
average”, and “Good” and “Excellent” combined to “new good”. For simplicity, the grades

29 ¢

of “Unsatisfactory”, “new average” and “new good” are denoted as C, B, A respectively.
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Number of Students

Number of Students

5 12.6 24.8 36.9 49.0 61.1 73.2 85.4 97.5
6.6 18.7 30.8 429 55.1 67.2 79.3 91.4

Score (Assignment)

Fig. 3.2 Distribution of Assignment Scores

.6 12.9 25.3 37.6 50.0 62.4 747 87.1 99.4
6.8 191 3.5 438 5B6.2 68.5 80.9 93.2

Score (Test)

Fig. 3.3 Distribution of Test Scores
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6.8 19.1 315 43.8 56.2 68.5 80.9 93.2

Score (Final Exam)

Fig. 3.4 Distribution of Final Exam Scores

Another four datasets (grouped and named as SAP-PLUS), each containing hundreds of
instances collected from two Portuguese schools (GP and MS) about their students in Maths
and Portuguese language study, are used to test the proposed predicting system as well [173].
As with many European countries (e.g. France, Portugal), a 20-point grading scale is used to
evaluate student academic performance, where 0 is the lowest grade and 20 is the perfect
score. During the school year, students are evaluated in three periods and the last evaluation
(G3 in Table 3.1) corresponds to the final period grade. In the complete dataset, more than
30 attributes with related data to each attribute are collected. For simplicity and clarity,
continuous numeric attributes which are closely related to the student academic performance
and the study behaviour based on expert’s opinion are selected to conduct the experiment.
The selected attributes are shown in Table 3.1.

Table 3.1 Selected Attributes for Student Academic Performance

Attribute Description

study-time weekly study time (numeric)

failure-count number of failures in the past for this academic module (numeric: integer)
absence days of school absence (numeric)

G1 first period grade (numeric: from O to 20)

G2 second period grade (numeric: from O to 20)

G3 final period grade (numeric: from 0 to 20)
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3.3 Case Study: Prediction on Student Academic Performance

Note that the values of the selected attributes are almost within the same range (in the
same order of magnitude), thus no requirement about data preprocessing is needed prior to
performing the proposed predicting model.

3.3.2 Experimental Setup

Taking Dataset SAPSOA and SAP50B as example, for the task of predicting student academic
performance, its involving procedure is shown in Fig. 3.5.

Assignment, Class

Test and Exam Pa rtition

Scores Achieved by

All But the Target

Student in an Ste p

Academic Module

Assignment Score

and Class Test ‘ Classification

Score of the

Target Student Ste p

Regression
Step

Estimation -

Score of the

Ste p Target Student

Fig. 3.5 Process of CELR for Predicting Student Academic Performance

For experiments on datasets SAPSOA and SAP50B, each dataset is split into subsets for
3-fold cross validation (3-FCV)[174]. The reported results are based on an average of 10
times of the 3-FCV. For partition step, in the process of K-means clustering, two different
ways to determine initial centroids are given to show the results. One is based on experts
opinion, and the other is by statistical computation, which will be discussed in Section
3.3.2.1. For experiments on SAP-PLUS, a alternatively, an automatic approach through
statistical computation is applied to generate the initial centroids the partition step. And 10
runs of 10-fold cross validation (10-FCV) are conducted to present the experimental result,
since the size of the examined datasets are much larger than SAP50A and SAP50B. In the

step of classification, the number of nearest neighbours K is odd and set from 3 to 7 over
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different runs. In reality, it has a natural appeal to assume that a group of students with similar
academic records on a module may have a similar ability amongst each other in knowledge
comprehension and application and hence, achieve similar result in the final exam. This
provides an intuitive approach to estimating the likely exam score of a student (who missed
the exam due to good reasons) using corresponding features of his/her peers of the same
intellectual ability. To validate the significance of the experimental result, paired ¢-tests are

carried out. The baseline for comparison is the result of running SMLR.

3.3.2.1 Methods for Partition

* Partition based on experts opinion: The classification of the grades in the experiment
for SAP50A and SAPS50B is based on an interval that refers to the level of performance
given by experts as shown in Table 3.2, Table 3.3 and Table 3.4.

Table 3.2 Assignment Scores with Their Associated Level of Achievement and Grades (class)

Assignment Score  Level of achivement  Grade (Class)

0-15 Unsatisfactory C
16-45 average B
46-100 good A

Table 3.3 Class Test Scores with Their Associated Level of Achievement and Grades (class)

Class test Score  Level of achivement  Grade (Class)

0-35 Unsatisfactory C
36-65 average B
66-100 good A

Table 3.4 Exam Scores with Their Associated Level of Achievement and Grades (class)

Exam Score Level of achivement  Grade (Class)

0-25 Unsatisfactory C
26-45 average B
46-100 good A

From Table 3.2 to Table 3.4, it is not difficult to identify the mid-grade point for each
kind of examination method by [Score(m,-n)+Sc0re(mm)]/2. For instance, the mid-grade
point of grade C for student assignment is calculated as (0+ 15) /2 =7.5, the mid-grade
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point of grade B for student assignment is calculated as (16 +45)/2 = 30.5, and the
mid-grade point of grade A for student assignment is calculated as (46 + 100)/2 = 73.
Similarly, the mid-grade point of each grade for class test and exam can be calculated.
Thus, a matrix M containing mid-grade points of different grades for assignment, class

test and exam is obtained, where

7.5 305 73
M= 1175 50.5 83 (3.6)
12.5 355 73

Each column vector of M can be employed as a centroid for clustering in the partition
subsystem.

For data corpus SAP-PLUS, the original records of student academic grades can
be transformed into European Credit Transfer System (ECTS) Grades, according to
Erasmus grade conversion system — a European programme that enables students
exchange in 31 countries [173], The details of the transforming rule are listed in Table
3.5.

Table 3.5 ECTS Grades with Corresponding Portugal/France Grades

ECTS Grades Portugal/France Grades

Excellent (A) 16-20
Good (B) 14-15
Satisfactoty (C) 12-13
Sufficient (D) 10-11
Fail (E) 0-10

Similarity, the expertise based centroid determination method can be applied to the
datasets involved in SAP-PLUS.

Partition based on computation: Different from applying initial centroids provided
by lecturers or domain experts for clustering in the partition subsystem, another method
to determine initial centroids based on computation is described as follows (taking
dataset SAPSOA and SAP50B as example):

1) Calculate the arithmetic average avg; (1 <i < n) of the assignment score a;, class

test score #; and exam score e; for each instance in the training dataset.
2) Sort the instances in the training dataset according to their arithmetic averages.

3) Divide all the instances into K clusters evenly based on their arithmetic averages

after sorting, and name the results Cluster; (1 < j < K).
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(@)
J
within each cluster Cluster; (1 < j < K), and

4) Calculate the arithmetic averages of assignment scores avg' ', class test scores

(1) (e)
J J
assign the results to be the initial centroid of each cluster.

avg:’ and exam scores avg

Analogously, for dataset corpus SAP-PLUS, such initialising steps are applied to the
previous numeric academic records. However, in Step 4), average value of features
including study behaviour indicators also needs to be calculated to form the initial
centroid.

For the experiment, in order to be consistent with the expertise based approach, the
number of clusters generated from such automatic method is determined to be equal
to the manual defined counterpart. Advanced techniques capable of determining the
number of clusters intelligently will be discussed in Section 8.

3.3.3 Experimental Result

The experimental result are illustrated by three different indicators:

1. Mean absolute error of prediction, which provides a general view for the estimating
precision.

2. Average percentage of predicted scores closest to ground truth, which comparatively

reveals the predicting accuracy amongst different methods.

3. Average percentage of estimation error within a certain numeric range, focusing on the

tolerance of an approach for its error space.

These indicators each presenting a particular feature of the metrics and are jointly considered

to disclose the general efficacy of the predicting models under examination.

In the partition subsystem of the predicting framework, basic sorting algorithm and
statistical computation are used to determine the initial centroids of each cluster. In the
process of implementing cross validation, the initial centroids for clustering are changed
each time with the alteration of training and testing dataset, which makes difference to the
fixed initial centroids given by lecturers or domain experts. For the classification subsystem,
in same with the previous experiment, odd number of nearest neighbours K is set from 3 to 7
over different runs. The above mentioned statistical indicators obtained from experimental
results are listed in Table 3.6.
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3.3 Case Study: Prediction on Student Academic Performance

It is obvious that in Table 3.6, the CELR with 3 nearest neighbours for classification
performs best among all the listed approaches, with the smallest absolute mean error of
prediction 7.59 and 7.82 for CELR(A) and CELR(E) respectively, and the largest numbers of
predicted scores which are closest to the ground truths. The proposed method with 5 and 7
nearest neighbours for classification performs poorer than the previous one but better than
SMLR. The reason for their worse performance to 3NN classification is due to the vote for
some instances which share similarities to both classes. Similar results are also illustrated for
dataset SAP50B, which are shown in Table 3.7.
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3.3 Case Study: Prediction on Student Academic Performance

Note that SAPS0B is a different dataset from SAPS0A in terms of data distribution. This
is to reflect the fact that students performance in an assessment component does not always
distribute normally. Intuitively, the performance of the proposed method to dataset SAP50B
seems not as good as it performed to dataset SAPS0A. This is due to the fact that some of
the instances in SAP50B are too extreme to be fitted by regression equation, which leads
to heavy bias in estimation. However, the overall performance of the proposed method is
still better than SMLR, which demonstrate that the pre-handling of data before applying
regression model is significantly valuable.

The same training and testing steps are carried out to dataset corpus SAP-PLUS. As
mentioned in Section 3.3.1, SAP-PLUS contains four datasets from two schools, denoted
as Maths(GP), Portuguese(GP), Maths(MS) and Portuguese(MS), respectively. Note that
for the current circumstance, the predicted results are within a range of [0, 20], thus, the
indicator of average percentage of estimation error within a specific region needs to be
adjusted accordingly. Here, 3 and 1 are adopted respectively to replace the previous testing
setup of 10 and 5 for experimentation on SAPS0OA and SAP50B. The experimental results on
these four datasets are presented in Table 3.8 to 3.11.

Unsurprisingly, CELR again outperforms SMLR significantly with regard to most of the
statistical indicators and generates predicting results which are closer to the ground truths.
Moreover, in terms of some statistical indicators, such as Mean absolute error of prediction
and average number of estimation error within a particular range, the proposed approach
with computational method to determine initial centroids for clustering even performs better
than the method with initial centroids given by lecturers or domain experts, which shows the

advantage of computational intelligence in the proposed framework.
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3.4 Summary

3.4 Summary

This chapter has presented a new framework to predict continuous feature value which is
missing. For the typical task of predicting continuous feature values with no prior knowledge
about the predictor dependency available, linear regression analysis is universally regarded as
one of the most effective methods. CELR is an eager learning approach (constructing models
based on training instances to interpret the underlying data) [175], which improves the
performance of conventional linear regression by partitioning training data into subspaces. It
works on the assumption that all the feature variables examined as predictors are independent
from each other. The proposed work performs the predicting task by employing simple
clustering, classification and regression mechanisms within an integrated framework, which
is convenient to implement. Time complexity for each of the involved in components of the
predicting system is examined, revealing the efficiency for applying the model to various
scenarios. A case study of comparative experimental investigations on prediction of student
academic performance is carried out, demonstrating the potential of the proposed work in
producing more intuitive and interpretable results. More in-depth discussions about the

refinement of the predicting model are given in Chapter 8.
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Chapter 4

Fuzzy Embedded Clustering Linear
Regression for Prediction of Student
Academic Performance

As described in Section 3.3, the prediction of student academic performance is important
to both educational institutions and students themselves for a variety of reasons. However,
previous techniques often consider only past numeric data for prediction, whereas others
overuse different types of indicative attribute, leading to the creation of complicated predict-
ing methods whose results are difficult to interpret. In a more broad sense of addressing
the problem of predicting student academic performance, a number of proposed methods
work based on the use of large quantities of previous exam results. For example, student
performance in prior academic courses is used to predict their performance in a subsequent
course [176]. It has been shown that previous success in high school mathematics and science
has a positive correlation with the study of computer science at universities [177]. Also,
high school performance and background in mathematics is utilised to predict final exam
grades in an introductory computer science course [178]. Apart from previous academic
records, different types of other attributes, including age and gender [179], educational level
of the parents [180], emotional factors [181], social relationships [171], and even the com-

plexity measure of lecture notes [182] have been taken into consideration in the existing work.

Whilst researching into relationships between student academic performance and a wide
variety of individual attributes is meaningful and worthwhile, the overuse of different types of
indicative attribute has led to the creation of complicated score predicting methods which may
be hard to implement and whose results may be difficult to interpret. Certain types of attribute

may not be easy to obtain during the normal teaching process. Moreover, previous methods
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4.1 Structure of Predicting System

for prediction may be excessively focused on the relationship between student academic
performance and a particular type of attribute, ignoring the fact that such performance is a
synthesised consequence of many reasons. Having taken notice of this, a novel approach to
predicting student academic performance proposed will be discussed in this chapter, based on
the synthesis of just basic attributes that are related to the academic course and the students’

normal study behaviour.

The remainder of this chapter is organised as follows. Section 4.1 outlines the proposed
architecture for building the intelligent predicting system to predict student academic per-
formance. Section 4.2 describes the functionality of each component within the system,
and analyses their complexity. Section 4.3 shows the experimental evaluation, supported by
comparative studies with the real grades and other methods of prediction. Finally, Section
4.4 concludes the chapter.

4.1 Structure of Predicting System

This section presents the proposed general framework to predict student academic perfor-
mance, represented as final period grade. The structure of the proposed predicting system is
shown in Fig. 4.1. Analogous to the predicting model discussed in Chapter 3, the conceptual
framework for the novel predicting approach proposed here also comprises four distinct
component subsystems, each of which implements the following functionalities, respectively:
partition, regression, offset value generation and estimation. However, this advanced tech-
nique performs soft computation to categorise student records and make better use of global
knowledge for prediction, while taking more necessary factors (student study behaviours)
into account. These activities aforementioned are integrated together to form the overall
student final period grade predicting mechanism, whose implementation involves a 4-step

computational algorithm:

1) Partition Subsystem: Partition data of sample students (typically from previous years
on the same course, whose final period grades are available) into different categories
based on the similarities of their existing academic records (excluding their final period
grade), and obtain the membership values for each of the sample students with regard

to the partitions.

2) Regression Subsystem: Determine for each partition (category), the relationship
between the final period grade and the previous records in the academic module

concerned. Such a determination process works on each of the partitions obtained by
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Fig. 4.1 Architecture of Final Period Grade Predicting System

Step 1, resulting in a formula which measures the correlation amongst the final period
grade and the previous records of sample students for each of the partitions.

Offset Value Generating Subsystem: Generate an offset value of the predicted final
period grade for the target student according to the similarity of the student’s own
normal study behaviour and the behaviour of other students with the same or similar
previous academic records. This step performs the task of adjusting the predicted
results by considering the record of student study behaviour.

Estimation Subsystem: Estimate the predicted final period grade of the target student
based on the membership values obtained in Step 1, the relationship amongst final
period grade and previous academic records determined by Step 2, and the offset value
acquired from Step 3. Such an estimating process systematically considers the factors

involved in previous steps, thus providing a comprehensive predicted result.

The working details of these subsystems are explained in Section 4.2.
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4.2 Implementation of Predicting System

This section describes the implementation steps for the conceptual framework outlined in

Section 4.1, with computational analysis for each of the subsystems being provided.

4.2.1 Partition Subsystem

Let an academic record list of n students be the input of the partition subsystem. In general,
each record in the list, describing a student with their previous grade and final period grade
(the grade values are in numeric form) for a given academic module, forms an instance of the
training dataset.

The aim of the partition subsystem is to divide the instances regarding a certain module
into different categories according to a formulaic synthesis of students’ academic records
over previous periods. Those students with similar previous academic records are partitioned
into the same group. Hence, the outputs of the partition subsystem are denoted as groups of
instances with similar academic records. However, in real situation, it may be difficult to
distinguish exact groups to which the instances may belong in accordance to their formulaic
synthesis of previous academic records, due to their relevance to different groups. Thus,
fuzzy c-means clustering [183, 184], which has natural appeal to handle such uncertainty, is
used to implement this subsystem. The resulting membership values for an instance to each

group will play an important role in later steps.

The initial centroid of each cluster can be preset by lecturers (as domain experts), or

generated through the following steps from the training samples:

1) Calculate the arithmetic average avg; (1 < i < n) of the previous grades for each

instance in the training dataset.
2) Sort the instances in the training dataset according to their arithmetic averages.

3) Divide all the instances into K clusters evenly based on their arithmetic averages after

sorting, and name the results C; (1 < j < K).

4) Calculate for each cluster C;, the arithmetic average of the academic grades over each
of the previous period, and assign the results as the initial centroid of the corresponding

cluster.

In the process of clustering, the Euclidean distance between a newly given instance and

the centroid of each cluster is calculated in order to determine which cluster the instance
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4.2 Implementation of Predicting System

belongs to. The pseudo code for the implementation of fuzzy c-means student clustering

algorithm is shown in Algorithm 6.

Algorithm 6: Fuzzy C-means Clustering of Students
Input:

K: Number of clusters

C ={ci,c2,...,ck}: Centroids of K clusters

m: Fuzzy partition matrix exponent, m > 1

n: Number of instances in the training dataset

S = {s1,52,...5, }: training dataset of n student records

wij: Degree of membership of s; (1 < i <n)in j* cluster (1 < j <K)

n K
J= .):1 .):1 ,ui’;?||s,~ —c j||2: Objective function
i=1j=
€: Specified minimum threshold between iterations
L where

(M)mfl
E =

—

COMPUTE initial cluster membership values u;; by u;j = &

|| * || stands for Euclidean distance ;

2 repeat
X ufisi
3 COMPUTE cluster centers: ¢; = =; ;
E

1 .
K . 2 ?
[Is; CJH)H
= lsi=l

4 UPDATE p;; according to: u;; =

5 COMPUTE objective function J ;

¢ until / improves by less than &;

The time complexity of this algorithm is O(ndK1)[185], where n represents the number
of instances in the training dataset, d represents the dimension of the instance in the training
dataset, K represents the number of clusters, and [ represents the number of iterations taken
by the algorithm to converge. Typically, K and [ are fixed in advance and are usually not too
large. Therefore, the algorithm has the time complexity of the size of the training dataset

times the dimensionality of each training instance, namely O(nd).

4.2.2 Regression Subsystem

Regression analysis is a popular statistical process for estimating the relationships among
variables, which has been widely applied [20]. It is utilised here as a segment to predict

student final period grade. In particular, multi-variable linear regression, a highly flexible
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4.2 Implementation of Predicting System

mechanism for examining the relationship of a collection of independent variables with a
single dependent variable [167], is an appropriate choice to perform the prediction. This is
because different intuitive academic attributes are required to be taken into consideration to
form the required regression model, with each of them being regarded as an independent

factor in the evaluation of student academic performance.

The basic idea of the linear regression model is: given a dataset {y;, X1, X2, ...Xim }, (i =
1,...,n) of n instances, the relationship between the dependent variable y; and the m indepen-
dent variables x;; (1 < j < m) is assumed to be linear. That is, the underlying relationship

amongst all the variables takes the form of

yi = Op+ 04x;1 + 0pxjp + -+ - + CyXim 4.1)

where o, 01, 0, - - , Oy, are termed regression coefficients.

To implement the algorithm of multi-variable linear regression for predicting student’s
final period grade, assume that there are m independent variables G, G, ...G,: their val-
ues as given in the training samples are denoted as vectors. Denote these vectors as
Vg, = [Gl,G3,....GNT, Vg, = [G},G3,....GAIT ..., Vg, = [GL,, G2, ...,G"]T, respectively,
where n stands for the number of instances in the training dataset. Denote the dependent
variable by V,, with its value set encoded as the vector Vg, = [G},, Gf,, ey GZ]T.

Let 1 denote the unit value vector (of an n dimensionality) and

1 G GI .. G}
R 1 G G5 .. G
X=[1ve Vo Ve, |=|. T 4.2)

1 G G .. G

Then, the multi-variable linear regression to estimate the exam marks is of the following

form:
y=Xp 4.3)

where 3 is an m+ 1 dimensional regression coefficients vector, containing Py, B1, B2, ---, Bm

as sequenced elements.
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In order to determine the element values of 3, conventional least squares (LS) estimator
is adopted here owing to its computational simplicity. The LS method minimises the sum of
squared residuals, and leads to a closed-form expression for estimating the unknown vector
B:

B=x"x)""xTy (4.4)

Note that for each cluster generated by the partition subsystem, a calculation on the
corresponding regression coefficient vector /(1 < i < K) is required, where K is the number
of clusters generated by the partition subsystem. Thus, the complexity of the LS algorithm for
multi-variable linear regression is O(m?n), where m is the number of independent variables
and n is the number of instances in the training dataset. Since m is usually fixed and known
in advance, and m is typically much smaller than n for the present application, the asymptotic

time complexity of the regression subsystem can be approximated by O(n).

4.2.3 Offset Value Generating Subsystem

In practice, predicting student academic performance with only consideration of previous
records is not always enough. It is not surprising that students may achieve quite different
results in their final period even if they have had the same or similar achievements at previous
stages. This reality makes the task of reaching highly accurate prediction a challenge. Having
taken notice of this, aspects other than just the student previous academic records need to be
taken into account in order to generate better predicting results. Nowadays, it is commonly
recognised that the study behaviour has a significant impact upon student academic achieve-

ment [186—188], making it an interesting factor worth investigating.

The present subsystem is developed in an effort to optimise predicted final period grade,
by generating an offset value to the interim predicted final period grade for a given (target)
student. Suppose that there are m previous academic records available for the target (student)

instance. The computational process of this subsystem involves the following steps:

1) Calculate the Euclidean distances ed; (1 <i < n) between the target instance and every

instance in the training dataset by:

edi= | Y (G~ Gy (4.5)
j=1

where 7 is the number of instances in the training dataset and G’j is the academic record
of the target instance regarding the j* period.
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2)

3)

4)

5)

6)

7)

8)

Find the nearest instances to the target by sorting the Euclidean distances returned by

step 1, and put them into a vector (of a varying dimensionality), named Vj,eqrest-

Calculate the differences in the final period grades between each pair of the instances
in Vyeqrest, and find the maximum difference, denoting it by MAX. If V,,eqrese contains

only one element then the difference is set to 0.

If the Euclidean distance between the target and a certain instance in V,eqresr €quals
0, copy the fuzzy membership values associated with that instance in the V;,oq/e5 as
the corresponding membership values of the target. If the Euclidean distance between
the target instance and an instance in V.45 does not equal to 0, calculate its fuzzy
membership values to each cluster in the same way as done by the fuzzy c-means
method.

Preprocess the given data in response to student normal study behaviour as follows. For
a datum presented in boolean form, transform it into “0” or “1”, where “0” represents
“NO” and “1” represents “YES”. For a datum given in numeric form, normalise it to
fall within the interval of [0, 1].

Without losing generality, suppose that there are P attributes reflecting certain aspects
of student normal study behaviour in the dataset, denoted by A; (1 < < P), and that
there are N instances in V,,.qres:- FOr each instance in Vj,.qre5, calculate its difference
Diff, (1 <k < N) to the target instance by the following:

p
Diff, = Y (A]—A)) (4.6)
=1

lth

where Aj represents the I'" attribute of the study behaviour involved in the instances

lth

within V,,earest, and A? represents the ['"* attribute of the study behaviour concerning the

target instance.

For each instance in V4.5, calculate its similarity to the target instance by the
following [189]:

~

X (1— A7 —Aj)

Simy, = = > 4.7)

Calculate the offset value of the predicted final period grade for the target instance by:
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4.3 Experimental Evaluation

N
offset_value = MAX, - Z (Diffy, - Simy,) (4.8)

k=1
Note that although the implementation of the offset value generating subsystem includes
many steps, its time complexity is acceptable, with O(n?) to form the Vyeqresr» O(N) to
find the MAX,, O(P) to calculate Diff;, O(P) to compute Simy, and O(N) to calculate the
offset_value. Hence, the total time complexity is 0(712 +2N+2P). Since N and P are usually

not large numbers for the present problem, the time complexity can be approximated by
O(n?).

4.2.4 Estimation Subsystem

Given the regression coefficient vectors B!, 82,..., BX (where K is the number of clusters
given by the partition subsystem), and a set of fuzzy membership values V,, = [u1, i2, ..., U]
for a target student, the estimation subsystem implements a straightforward and final step
of the entire computation process. Suppose that the vector of previous grades is denoted
by Vi, and that the offser_value of the target instance has been obtained (see the preceding

sub-section), the predicted final period grade G egicrea can be calculated as

K
Gpredicted = (Z l—lngpﬁl) + offset_value 4.9)
i=1

where Vgp denotes the transpose of V.

Note that the task of predicting final grade for a number of students can be implemented
through the recursive application of this method. The predicted results of target students
together with information regarding their previous academic grades and records of their study
behaviours can be used to construct new training instances to enlarge the training dataset.
Simply, the time complexity of the estimation method is O(K) for one student, and O(Kn)
for n students.

4.3 Experimental Evaluation

This section presents experimental studies of the proposed approach. The work both illustrates

the implemented system in action and demonstrates its efficacy.
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4.3.1 Experimental Setup
4.3.1.1 Dataset preparation

A data corpus (SAP-PLUS) of four datasets, as stated in Section 3.3, are used as examples
to conduct the experimentation. It is worth mentioning again that in the complete dataset,
more than 30 attributes with related data to each attribute are collected. For simplicity and
clarity, attributes which are closely related to the student academic performance and the study
behaviour based on expert’s opinion are selected to conduct the experiment. The selected
attributes are shown in Table 4.1.

Table 4.1 Preprocessed Student Academic Performance Related Attributes

Attribute Description

study-time weekly study time (numeric: 1: less than 2 hours, 2: 2 to 5 hours, 3: 5 to 10 hours, or 4: more than 10 hours)
failure-count number of failures in the past for this academic module (numeric: integer)

support extra support from educational school or family or other sources (binary: 1 for “yes”, 0 for “no”)
study-aim whether or not to take higher education (binary: 1 for “yes”, 0 for “no”)

activities extra curricular activities (binary: 1 for “yes”, O for “no”)

absence days of school absence (numeric: from 1: few to 3: many)

health (numeric: from 1: bad to 3: good)

G1 first period grade (numeric: from O to 20)

G2 second period grade (numeric: from O to 20)

G3 final period grade (numeric: from 0 to 20)

Before implementing the system, data preprocessing is carried out. In particular, attributes
related to the normal student study behaviour, such as “study-time”, “failure-count” and
“absence” are normalised into the range between 0 and 1. For instance, for a sample dataset
with 7 instances, the normalised value of the data with regard to the attribute “study-time”
for the i (1 <i< n)instance, denoted by std_study-time;, is defined as follows:

study-time; — study-time,y,

std_study-time; = 4.10
- Y ' study-time,, x — study-time,y, ( )

where study-time,,;, and study-time,,;, are the maximum and minimum value of the attribute
“study-time”, respectively.
4.3.1.2 Experimental method

In the experiments, each dataset is split into subsets for 10-FCV. The reported results are
based on an average of 10 times of the 10-FCV. Since the ground truth of the students final

period grades are in the form of integer, whereas the predicted final period grade are in the
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form of floating-point number, the predicted data need to be transformed back to integers
to support interpretability. Without losing fairness, when conducting the experiments and
comparing the proposed work with other techniques, in addition to the empirical study on
original estimated results, truncation, rounding, and rounding-off metrics are also investigated

according to the statistical requirement, mapping the resulting predicted data onto an integer.

Despite the fact that the main use of the proposed system is to predict the numeric grade
(in terms of integer scores) for a given target student, the method can also be applied as a
classification model to categorise a target into a specific class based on the predicted numeric
grade. According to the Erasmus grade conversion system (discussed in Section 3.3), the
grades can be transformed into European Credit Transfer System (ECTS) Grades. The details
of the transforming rule are listed in Table 3.5.

4.3.2 Results and Discussions
4.3.2.1 Prediction of numeric grades

For the analysis of the proposed approach, the predicted final period grades are compared
with the corresponding underlying ground truth. The work is also compared with the standard
multi-variable linear regression method (SMLR) as the baseline metric (specifically, best
performance of original / truncation / rounding / rounding-off results based on SMLR are
adopted as benchmark) and the clustering embedded linear-regression method (CELR)
discussed in Chapter 3. Both of these methods can be widely adopted in the field of numeric
prediction, especially when there is little knowledge of the non-linear relations between
the end result and the attributes, as it is the case for the present application. In performing
the step of partition, the number of clusters K is set to 5 in accordance with the Erasmus
grade conversion system of classifying students. For the partition subsystem of the proposed
approach (named as fuzzy clustering embedded linear clustering or FCELR), m is set to 2
and € is set to 1075, For CELR, the initialisation of centroids for the partition subsystem is
determined by the statistical computation approach, and the number of nearest neighbour
for classification subsystem is set to 3, as it performs best in the experimentation presented
in Section 3.3. All 4 available datasets are used here for training and testing. The resulting
statistical indicators are listed in Table 4.2, 4.3 and 4.4.
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From Table 4.2, it can be observed that the approximating metric for mapping a real value
into a integer (i.e., rounding-off) may lead to little variance to the original predicted result
and avoid distorting the conclusion dramatically. FCELR performs best for most of the cases
by considering the statistical factor of absolute mean error, which reveals its remarkable
advantage over the baseline approach. The experimental results given in both Table 4.3
and Table 4.4 show that the FCELR outperforms SMLR and CELR, regarding predicting
accuracy and within 1-grade error. These results jointly demonstrate that predicted final
period grades are closer to the ground truth, demonstrating the significant potential of the

proposed framework.

It is worth noting that FCELR generally performs even better than CELR, because for a
large number of sample students, their academic grades are distributed normally and continu-
ously. It is relatively more difficult for SCLR to find clear boundaries amongst the clusters.
The proposed system has fuzzy-clustering embedded, avoiding the need of stating exactly
to which category a target may belong. Instead, the academic records of each student that
are considered belonging to a certain category are associated with membership values. Such
membership values are used in computing the weight of each regression model contributing
to the predicted grade of the target student.

Another reason for the proposed to outperform both SMLR and SCLR is that it makes
better use of the attributes about the student normal study behaviour. Although these at-
tributes are also taken into account by the other two predicting models, their values on the

0-1 scale are too small to make significant contributions in these models.

Also, FCELR possesses an interesting ability thanks to the introduction of an offset value.
From a list of sample students with the same or similar previous academic records, given
their final period grades, the proposed system can generate a predicted result exceeding the

limits of these sample students. This may have helped further improve its performance.

4.3.2.2 Prediction of 5-level grades

To further analyse the results achievable FCELR, advanced universal classification techniques
such as Naive Bayes method, K-NN, neural network, support vector machines (SVM),
decision trees and random forest are also employed to classify the predicted final period
grates. Particularly, the NaiveBayes metric released with Weka software [190] is set as a
baseline model, IBk, MultilayerPerceptron, SMO, J48 and RandomForest algorithms released

with the same software package are used to represent other listed classification approaches

80



4.3 Experimental Evaluation

respectively, with K being set to 3 for K-NN, and the polynomial kernel selected to implement
SMO.
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4.4 Summary

The resultant accuracies are shown in Table 4.5. For comparison, the two highest
classification accuracy are denoted in boldface. Clearly, FCELR is in general amongst
the group with the best predicting accuracy. Although ranked 3rd for its performance on
dataset Maths(GP), it yields similar predicting accuracy to SMO and J48 (ranked 1st and
2nd respectively), which is still significantly better than the given benchmark. The empirical
study against these popular classification models demonstrates the great prospect of FCELR

on prediction of student academic performance.

4.4 Summary

This chapter has proposed a novel approach to predicting student performance in academic
courses. Unlike simple clustering regression analysis which takes part of the precise sample
data into consideration, the proposed approach processes the universal data with an embedded
step of fuzzy clustering. This has an intuitive appeal in handling a large number of student
academic records which are typically normally and continuously distributed. The work
makes use of attributes that are related to observed student study behaviour, by introducing an
offset value in the predicting model. The implementation of the embedded fuzzy clustering
approach, supported by the offset value mechanism, generates better results than the existing
methods. With fuzzy representation, the approach synthesises the use of intuitive attributes
from an academic course and from student normal study behaviour. This helps make the

predicted results more readily interpretable, while involving simple computation.

83



Chapter 5

Fuzzy Connected-Triple for Prediction of
Inter-Variable Correlation

Chapter 3 and Chapter 4 have presented intelligent systems for predicting uninformed feature
values at object or instance level. From this chapter, the horizon of prediction has been
moved up to the attribute (feature) or variable level. In order to perform investigation on
attribute variables, their related feature data requires comprehensive examination. Over the
past decade, such data has been growing at an astonishing pace, with the term ‘Big Data’
becoming a hot topic in both industry and academia. In particular, data mining, a process to
discover patterns in large data sets involving methods at the intersection of machine learning,
statistics, and database systems [191], has been under vibrant investigation. As the amount
of available data grows, the success of managing and analysing the information embedded in
the data becomes ever more practically significant, whilst becoming ever more difficult in

the meantime.

Fortunately, the increasing growth of computational capability has to a certain extent,
enabled the handling of such large amount of data through a range of approaches, including
the method of social network analysis (SNA) that has been increasingly gaining popularity.
In SNA, link prediction is one of the most salient and challenging tasks. It is particularly
difficult to perform the discovery of missing or developing links in a certain network of
interest [57]. However, link prediction is very useful to help: infer the underlying complete
network (from partially observed structures) [192, 193], understand the evolution of networks
[194, 195], and predict hyper-links in heterogeneous social networks [196]. Traditionally,
most of the approaches for detecting unobserved links are based on topological information,
including neighbour-based metrics, path-based metrics and random walk-based metrics [95].

Recent studies have extended such classical metrics by adding weights to the existing links
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within a topological graph in response to the information obtained from explicitly related
sources [197]. Besides, other collections of approaches, including probabilistic methods
and algorithmic methods, have been proposed to handle different types of link prediction
problem [198]. Nevertheless, typical existing approaches (including all discussed above) are
set for a specific problem within a local scope, dealing with the information coming from a

single data source.

Addressing the task of link prediction, the use of connected-triples has an intuitive appeal.
A connected-triple is a graph representation formed by three vertices and two undirected
edges, with each edge connecting two distinct vertices out of the three via the remaining
vertex. A network constructed with such connected triples offers a potentially effective mech-
anism for link prediction, particularly when any given information content is obtained from
different data sources where parts of the information overlap. Inspired by this observation,
unlike previous research that focussed on identifying links between objects or entities in a
specific region, this chapter presents an innovative piece of work that is driven by the interests
in searching for links between variables extracted from different data/information sources,
through the introduction and exploitation of fuzzy connected-triple.

The potential underlying links between variables or entities collected from different
sources are usually hidden, not obvious or even difficult to be discovered, making the task
of link prediction from such data sources a challenge. Traditionally, this type of work has
generally been handled by human experts. Thus, designing and implementing a predicting
method which learns from human logical reasoning will be helpful to automate such pre-
diction processes, especially when facing large and diverse data sources. Practically, when
describing a link or a set of links, linguistic terms such as “Strong”, “Medium” and “Weak”
are natural adjectives to depict the link strength rather than crisp numerical values (that are
typically utilised in conventional connected-triple models). In addition, common knowledge
such as “if A has a strong link to B, and B has a strong link to C, then A may have a strong link
to C” perfectly matches human logical thinking. It is to reflect such intuitions, fuzzy logic is
adopted in the present work to serve as the basis upon which to develop a multi-source link
prediction model. Such link prediction problems are obviously of general interest in many

data mining applications.
Overall, this chapter presents two major contributions to knowledge: (1) It proposes

a novel approach to determining the correlation between attribute variables from distinct

datasets with different entity references. (2) It proposes a fuzzy link prediction model which
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Fig. 5.1 Predicting Framework

radically departs from conventional crisp representation of connected-triple-based link detec-
tion, resulting in models that resemble human inference and facilitate interpretability.

The rest of this chapter is arranged as follows. Section 5.1 introduces the proposed
architecture for the development of a fuzzy connected-triple system for link prediction,
describing details on model construction, link measures, and inference procedures. Section
5.2 exhibits the results of empirical evaluation, supported by comparative studies with
alternative predicting methods. Section 5.3 concludes the chapter with outlook for further

development.

5.1 Predicting System

This section presents the proposed general framework for developing a system that predicts
link strengths with data from multiple sources. It describes the system’s components and

their associated time complexity analyses.

5.1.1 Conceptual Framework

The structure of the predicting system is shown in Fig. 5.1. As can be seen, it comprises
three distinct component subsystems, each of which implements the functionality of: triple
extraction, link analysis, and fuzzy inference, respectively. These activities are integrated to

construct a required predicting model, whose implementation steps are detailed below.
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Fig. 5.2 Sample Datasets

5.1.2 Connected-Triple Extraction
5.1.2.1 Concept of Connected-Triple

Connected-triple modelling, first introduced to analyse global clustering coefficient [199],
is also referred to as a method for measuring network transitivity. For instance, it may
be applied to measure the extent to which a friend of someone’s friend is also the friend
of that person. Formally, a connected-triple, Triple = {Vr,ipie, Wrripie }» is @ subgraph of
G(V,W), where V represents the set of vertices in the graph and W represents the set of
edges connecting related pairs of vertices, containing three vertices Vz,; . = {vi,vj,wm}t CcVv
and two edges Wr,ipe = {wij,w jk} C W, with wj, being unknown as there is no direct edge
connecting v; and vy. The vertex v; connecting the other two vertices is called the centre of
the triple, and v; or vy is called an end of the triple (there being two ends per triple, of course).

5.1.2.2 Extracting Connected-Triples from Datasets

Extracting connected-triples from (the same or different) original datasets plays a fundamental
role in the present work. An example of two distinct datasets is shown in Fig. 5.2, where the
variables v¢ and vp co-occur in both datasets (encircled in red), whilst the variables v4 and
vp only appear in Dataset 1, and vg only appears in Dataset 2. Importantly, an obvious but
crucial point is that although there exist variables co-occurring in more than one dataset, these
datasets cannot be easily merged into one since the instances in the datasets can be totally
distinct, and so can the numbers of instances in the datasets. For example, the instances x1, x7,
..., X, in Dataset 1 and the instances yy, y», ... , x5 in Dataset 2 are completely different from
each other, although they share the two aforementioned common variables. Also, Dataset 1

has r instances but Dataset 2 contains s instances, while r # s.
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Fig. 5.3 Connected-Triples Extracted from Sample Datasets

An example of extracting connected-triples from original datasets is shown in Fig. 5.3,
with each vertex representing a variable in the sample datasets given in Fig. 5.2. For instance,
v4 in Fig. 5.3 denotes the (same) variable v4 in Dataset 1 of Fig. 5.2. A link (represented
in a solid line) between two distinct variables denotes that these variables are co-occurring
in at least one of the sample datasets, and therefore, indicates that they are to a certain
extent related to each other. In Fig. 5.3, four triples, Triple_i,i = 1,2,3,4, are formed
from Datasets 1 and 2 in Fig. 5.2, where Vr,ipie 1 = {va,vc,VE}s Viviple 2 = {va,vD,VE},
Vrvipie 3 = {vB,vc, e}, and Vryipe 4 = {vp,vp,ve}. The centres of these four connected-
triples are v¢ and vp, respectively. The dash line between v4 and vg and that between vp and
vg represent the potential links between pairs of the variables v4 and vg and those of vz and
Vg, respectively, which do not exist in the originally provided datasets.

5.1.2.3 Transitivity Property of Connected-Triple

An interesting but important characteristic of connected-triple is its transitivity property.
According to this property, two independent connected-triples can form a third connected-
triple. For instance, as shown in Fig. 5.4, from Triple; = {{va,vs,vc},{was,wac}},
a new link wyc connecting v4 and Ve may be generated. Likewise, from Triple; =
{{ve,vp,ve},{wep,wpE}}, another new link weg connecting ve and vy may also be ob-
tained. Based on the variables v4, v, vE, and the links wac, weg, an extended connected-

triple Triples = {{va,vc,ve}, {wac,wcE}} (depicted with dash lines) can be computation-
ally produced.

5.1.3 Link Analysis

Having identified a new connected-triple from the source datasets, the task of determining

correlation between a pair of variables that belong to two different datasets becomes to
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Fig. 5.4 Transitivity of Connected Triple

predict whether there exists a (hidden) link between the two end vertices. If so, a further
question is what may be the strength on such a link. To address these issues, prerequisites
including the properties of any known links between pairs of vertices in the triple need to be
obtained in advance.

In practice, the link property is generally described by its weight, which may correspond
to a wide variety of aspects depending on the underlying application problem. For each
connection between a given pair of distinct variables, different mechanisms may therefore be
devised for estimating the strength of that connection. For instance, in a route graph or map,
the weight of a link may indicate the route distance between two linked venues. In a graph of
co-authorship, the weight of a link may denote the number of papers two authors collaborated
to publish. In a graph of webpage linkages, the weight on a link may represent the popularity
of people stepping from one to another. In the current study, a link between two vertices
signifies a certain relationship between those variables in the datasets. Thus, the weight
of a link is utilised to capture and reflect the closeness or correlation of the corresponding
variables.

5.1.3.1 Categorical Data

For a pair of variables in a dataset filled with discrete or nominal values, their relationship
can be described by the co-occurrence frequency of the variables taking on a common

value. For such data, two indices to measure link strengths can readily be adopted, namely
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Normalised Mutual Information (NMI) and Frequency of Most Popular Term-Pair (FMTP).
These strengths are detailed below, which can themselves be combined to form fused link

properties.

1) Normalised Mutual Information (NMI) Generally speaking, mutual information
1S a symmetric measure to quantify the statistical information shared between two
distributions [200]. The use of this measure in the present research provides a sound
indication of the shared information between a given pair of variables. In particular,
for two discrete random variables v4 and vg, the mutual information between them can

be denoted as MI(v4,vg) and computed by

p(Va,Vb)
MI(va,vg) = a,Vp) log(———"— 5.1
(VA VB) VbEZDB V(IGZDA p(v Vb) Og(p(va)p(vb) ) ( )

where p(vq,Vp) is the joint probability distribution function of v4 and vg, and p(v,)
and p(v,) are the marginal probability distribution functions of v4 and vg, with vy
and vp defined over the domains D4 and Dp, respectively. Note that there is no upper
bound for MI(v4,vg). Thus, for better facilitating interpretation and comparison, a
normalised version of MI(v4,vp) that ranges from O to 1 is desirable while describing

the relationship strength between v4 and vp.

Let H(v4) denote the entropy of v4 [201], which is defined by

H(va) = — Z p(va)logp(va) (5.2)

va€Dy

From this, the normalised mutual information between v4 and vp [48], denoted by
NMI(V4,V3), can be computed such that

MI(VA,VB)

NMI(va,vp) = H(vq)H (vp)

(5.3)

The time complexity of computing NMI is O(mnd ), where d denotes the number of
instances in the dataset, and m and n represent the cardinalities of variable domains
of v4 and vp, respectively. Typically, m and n are fixed to a small or medium number
in advance. From psychological viewpoint, to ensure model interpretability, the
cardinalities are normally set to a maximum value of 9. Therefore, this measurement

has the linear time complexity proportional to the size of the dataset, namely O(d).
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2) Frequency of Most Popular Term-Pair (FMPT) NMI may be a simple measurement
computationally. However, only taking it into consideration when modelling the link
strengths between distinct variables may not be sufficiently effective. In particular, the
frequency of occurrence of different terms with regard to a certain variable within a
given dataset can be rather different. This is because datasets may be rather skewed;
certain terms may have a very high occurrence frequency but one or more of the others
may have a very low frequency. This is rather common a phenomenon in real-world
problems. For example, more than 90% of the primary school pupils are guarded
by their parents and they are much less likely to be guarded by other relatives. The
statistics of blood type distribution in the UK also shows that 44% of the population
have blood type O, and only 10% have blood type B [202].

When considering any link relationship between two variables v4 and vp of such
skewed datasets, suppose that VA1 and Vé are the most popular terms taken by the vari-
ables v4 and vp, respectively. Then, even if most of the instances have the term VA1 for
v4 and VB1 for vp simultaneously, the NMI score of the link between v4 and vp may still
be low. This is because the NMI score is significantly affected by the number of other
term-pairs and their proportion. In this case, judging the link strength between these
two distinct variables by only calculating the NMI score may seriously distort the result,
misinterpreting the closeness of the relationship between the two. This calls for the

development of the so-called frequency of the most popular term-pair measure (FMPT).

Without losing generality, assume that a given dataset includes a total of d instances,
and that v4 and vp are two discrete variables describing the instances in the dataset,
each containing m and n terms, respectively. Let Vfi (1 <i<m)and Vg 1<j<n)
be the terms possibly taken by v4 and vp, and SVZ and SV J (1 < j < n) be the set of
instances which has the term V, for v4 and Vj for vg. The FMPT score or weight on
the link between the variable v4 and vp is defined by

max dis . .
1<i<m,1<j<n (SV}\msvé)

d

FMPT(vp,vp) = (5.4)

where d(SVi ns. ;) denotes the number of instances which have the term V/i for the
A VB

variable v4 and Vg for vp simultaneously.

91



5.1 Predicting System

Note that the FMPT score is also ranged from [0,1]. The time complexity of computing

FMPT is also O(mnd), where m, n, d are of the same meanings as previously defined.

3) Fusion of Link Properties As indicated above, both NMI and FMPT take values
from the same range [0,1]. It is therefore convenient to aggregate the results if both
are applied. The fusion of these two measurements is useful because they capture
different underlying relationship properties of the datasets in general and the variables’
terms in particular. For a certain link between two distinct discrete variables v4 and vp,
given the NMI and FMPT scores, the combined weight of the link SYN(v4,vg) can be
calculated in a straightforward manner such that

SYN(VA, VB) = max(NMI(vA, VB),FMPT(VA s VB>) (5.5)

Obviously, the combined link weight has the same real value range as either of the com-
ponent weights, i.e., between 0 and 1. The complexity of this fusion step is extremely
simple, being O(2). This may be linearly generalised if there are more than 2 such
base link strengths. The benefit of adopting the maximum operator is that it takes into

consideration the most salient feature of the data while being simple in computation.

Note that the strength fusion does not have to be implemented as above, but can be done
in various alternative ways, e.g., by finding the arithmetic average of the component
strengths, if preferred. However, this does not affect the approach taken, rather than
adding a small amount of extra computational expense and so is regarded as being

beyond the scope of the current investigation.

5.1.3.2 Continuous Numeric Data

1) Absolute Pearson Correlation Coefficient (APCC) For a pair of variables with con-
tinuous data as their entities, the aforementioned measurements may not work. Instead,
statistical means to measure the bivariate correlation may be a fitted alternative. Specif-
ically, Pearson Correlation Coefficient (PCC) [203], a measure of the linear correlation
between two continuous variables, is adopted here. A simple but important factor
needs to be noted is that for traditional use of PCC, it has a value range between [—1, 1].
Considering the main concern here is whether two variables have strong correlation
and if so, how strong such a relationship may hold, whether the two variables have a

negative or positive correlation is beyond the current scope. Hence, only the absolute
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2)

value of Pearson Correlation Coefficient, APCC, is herein employed to measure the
link strength between two continuous variables. Formally, the APCC between two

variables v4 and vg can be written as follows:

d _ —
| r (Ve —Va)(Vy = V)|
APCC(vs,vp) = = (5.6)
dGVA Oy,

where Vg and Vf represents the value of v4 and that of vg for the g-th instance in the
dataset, respectively; V4 and Vp stand for the average value of all the instances with
regard to v4 and that to vg; and oy, and oy, denote the standard deviation of v4 and
that of vp within the discussed dataset. The time complexity of computing APCC for

any variable pair is O(d), where d denotes the number of instances in the dataset.

Maximal Information Coefficient (MIC) Recently, a novel method named Maximal
Information Coefficient (MIC) to measure the correlation between two continuous
numeric variables was proposed [204]. Similar to NMI, MIC also takes value between
zero and one, and it has two main properties: Generality and equitability. Generality
means that with a sufficiently large sample size, it can capture a wide range of associa-
tions, including linear, parabolic, exponential, and periodic. More sophisticatedly, it is
capable of handling non-functional correlations such as round and eclipse. Equitability
means that MIC gives similar scores to equally noisy relationships regardless the type
of relationships. The formula for computing MIC between v4 and vp is defined as

follows:
)i
MIC(va,vp) = max (va.ve) (5.7)
Rygny, <B(n) - logmin{n,, ,n,, }
where
I(va,vp) = H(va) +H(vg) — H(va,VB)
}’lVA l’lVB ) )
z—Zp )ogp(vy) — Y. p(vi)log p(v))
=1 (5.8)
nVA nlB

+ZZP VA7VB)10gP(VA7VB)
i=1j=1
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Note that n,, and n,, are the number of bins for partitioning v4 and that for vg,
respectively, and they are set to satisfying the criterion n,, - n,, < B(n). Usually, B(n)
is set to B(n) = n®9 in real world applications, where 7 is the number of instances in
the sample data [204].

5.1.3.3 Numeric-Categorical Mixed-Type Variable Pair

In real-world applications, datasets are not always arranged with same type of variables. It is
common to see datasets with mixed types of attribute value. For instance, a data table with re-
gard to personal information may contain a nominal value to represent gender and a numeric
value to denote age. Unfortunately, determining the correlation between different types of
attribute variable seems difficult. Here, a heuristic is proposed to assist approximating the

relationship between attribute variables of different types (numeric-categorical mixed type).

Basically, this method works by transforming the numeric variable in a mixed-type
variable pair into its categorical counterpart at first, and then performing corresponding
correlation measuring metric on this transformed variable pair. In order to execute such a
transformation process, a specific number of class labels for the numeric attribute variable
is required to be determined in advance. This task is carried out by performing a series of
unsupervised clustering algorithm with different a number of clusters selected each time, and
searching for the number which best segments the numeric values into categories.

The elbow method, due to its effectiveness and efficiency, is adopted to help such
transformation. It works on the assumption that adding another cluster does not generate a
remarkable improvement under a provided objective function. The objective function fiyprove

representing performance improvement, is defined as:

SSE(k—1) — SSE (k)

SSEG—T) (k=2,3,...,9) (5.9)

fimprove (k) =

where SSE (k) denotes the total sum of square errors determined by selecting k as the number
of clusters. A demonstrating example of the elbow method is shown in Fig. 5.5. The number
of clusters in this case is determined as 4, which is the obvious elbow point or turning point.
For the present study, the number of clusters selected ranges between 2 to 9, which considers
both computational efficiency and consistency with human common sense. Note that the
term “mixed type feature variable pair” used in the thesis represents ‘“numeric-categorical

mixed-type feature variable pair”, unless otherwise stated .
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Performance Improvement

2 3 4 5 6 7 8 9
Number of Clusters

Fig. 5.5 Example of Elbow Method

In particular, the simple k-means clustering method is applied to partition the numeric
data into various groups, with random initial centroids provided. The performance evaluation
is based on an average of 20 runs of the algorithm. Having determined the number of clusters,
a refined PAM approach embedded with quantile based determination of initial medoids
is ultimately conducted to categorise continuous values of a numeric variable and assign
each of them with a class label. Specifically, quantiles employed here represent a set of
values for a numeric variable which divides the examined dataset into equal sized subsets.
The initial medoids for PAM are determined as the average value of two adjacent quantiles.
The minimum and maximum value of the variable in the dataset are also adopted to help
determine the initial medoids for PAM. For instance, provided that four clusters of instances
in a dataset are required to be generated, the initial medoids for PAM to create such groups
are respectively set to the median value of the minimum and 1st quartile, and that of 1st and
2nd quartile, 2nd and 3rd quartile, 3rd quartile and the maximum value, with regard to the

discussed variable.
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5.1.4 Fuzzy Inference Model

Having determined the weights over given links within a connected-triple model, the predict-
ing system reaches its final step: logic deduction. A fuzzy inference model is employed to
implement this task, providing a flexible means to perform human-interpretable reasoning
by the use of linguistic terms rather than numeric values (although the linguistic terms still
have their underlying numerical interpretation). For the problem of link prediction, linguistic
labels such as “Strong”, “Medium” and “Weak” are natural words that are commonly used to
describe link strengths. The present work follows this practical observation, and attempts to

mine the underlying logic hidden beneath the connected-triple:

IF link, IS (strong\medium\weak)
AND link; IS (strong\medium\weak)
THEN links IS (strong\medium\weak)

where link| and link; represent the two known links in a certain triple, each of which connects
the triple centre to one of the two ends, and /inks represents the link to be established with a
(predicted) link strength score. Such a fuzzy system involves two key procedures as detailed

below.

5.1.4.1 Link Weight Fuzzification

To enable the capture and representation of imprecisely described link weights, and to
support the derivation of the required fuzzy inference model through data-driven learning,
fuzzification of the link strengths for each identified connected-triple is necessary. Without
losing generality, to ensure interpretability of the resulting model, a set of membership
functions used to depict link strengths is presumed to have been prescribed by domain
experts. However, for applications where there is a sufficient amount of historical data, a
clustering method may be employed to derive the required set of (potentially more objective)
linguistic terms. In this work, especially for the experimental evaluation to be presented
in the next section, the linguistic terms used are predefined by the domain experts (with
prescribed asymmetrical membership functions used to partition the underlying problem

domains), without any optimisation and are shown in Fig. 5.6.

5.1.4.2 Fuzzy Inference

In the process of performing fuzzy inference for link prediction, as with other applications of
fuzzy systems, t-norm and t-conorm operators are adopted to interpret logic connectives over

connected-triples, aggregating fuzzy values [205]. In general, for each pair of end vertices,
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Fig. 5.6 Fuzzy Membership Values of Link Weight with Respect to Different Measures

there may exist several distinct centres connecting them to form different connected-triples.
As such, each connection will lead to an intermediate inference outcome regarding the link
strength, indicating the level that that triple may contribute towards the final prediction result.
Thus, a t-conorm operator is needed to aggregate all the intermediate predicted outcomes

together.

Given a connected-triple CT, let flIanl and fﬁnkz be the fuzzy membership values of the
link strengths, or link weights on the links /ink; and link,, where linguistic terms L € .Z,
with . representing a collection of all fuzzy sets used to express the linguistic labels (namely,
the terms “Strong”, “Medium” and “Weak”™ as given in the previous example). The predicted

fuzzy value of a single connected-triple can then be described as a membership function:

FPCT = [ <flmk17flmk2) (flznk17fllnk2) T (flznkl’flmkz>] (510)

where V denotes a certain predefined ¢t-norm, and M represents the number of the terms
possibly used to describe the linguistic link strength.

Suppose that there are N connected-triples formed by a specific pair of end vertices with
a common corresponding centre, the predicted fuzzy value for the link strength of Pj;,; can
be logically interpreted as the following:

Fp,, = [A (fpl ’fP2 7T II)Z/T)’
(fl 7f2 Ty ngl )7

forie fer 5.11)
(fpl 7f ) ﬁé\/]‘;)]

where A represents an extended version of a certain #-conorm which can take a finite number

of arguments. It aggregates those fuzzy membership values obtained from each connected-
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Sampledatal Sampledata?2
1 yes B B 1 large B C
2 yes A B 2 medium B B
3 yes B A 3 small A B
4 no C C 4 small A A
5 yes B A 5 medium B B
6 no B C 6 large C C
7 yes A B 7 large C B
8 yes B B 8 small A A
9 no C B 9 small B B
10 no B B 10 medium B B
11 yes B B
12 yes C C
13 yes B A
14 no B B

Fig. 5.7 Two Simple Datasets Used for Illustration

triple corresponding to a pair of variables and generates a new fuzzy membership value for
the predicted link between those two variables. As the final result, what is returned is a fuzzy
value regarding that to what extent a detected link is of a certain strength with respect to
each individual predefined link weights (whose definition has been provided by the domain
experts). If however, it is desirable to provide a numerical number for the predicted link
strength an additional computational step is to defuzzify the resulting fuzzy membership

value.

5.1.5 Ilustrative Link Strength Prediction

Consider two simple datasets regarding student academic performance, as shown in Fig. 5.7.
The two datasets contains 14 and 10 distinct instances, respectively, with the attributes “1°
semester grade” and “2"? semester grade” shared by both. This illustrative example is to
demonstrate that the proposed approach can predict the correlation between the variable
“Family support” in dataset 1 and the variable “Family size” in dataset 2, with an intuitively

appealing measured link strength.

For shorthand, denote the variables “Family support”, “1* semester grade”, “2" semester

grade” and “Family size” as ‘fsup”, “lsg”, “2sg” and “fzise”, respectively. Then, from
the given datasets, the following two connected-triples can be directly extracted from these
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datasets, one from each:
Triple_1 = {{stupa Vlsga"'fsize}» {Wfsupflsga Wlsgffsize}}

Triple_2 = {{stupa Vasgs stize}> {Wfsupf2sga W2sgffsize}}

From these, according to Eqn. (5.1), (5.2) and (5.3) it can be computed that:

NMI(Vgup, Vise) = 0.139, NMI(Vi g, Vasg) = 0.172
NMI(Vfgize, Visg) = 0.580, NMI(Vyize, Vagg) = 0.474

Similarly, through Eqn. (5.4) it can be computed that:

FMPT(Vfgup, Visg) = 0.429, FMPT(Vyg,p, Vagg) = 0.357
FMPT(Vysize, Visg) = 0.300, FMPT(Vsize, Vasg) = 0.300

Thus, the weights on these links can be computed by Eqn. (5.5), such that
SYN(Visup, Visg) = max(0.139,0.429) = 0.429

SYN(Vgup, Vasg) = max(0.172,0.357) = 0.357
SYN(Vygize, Vigg) = max(0.580,0.300) = 0.580
SYN(Vigize, Vasg) = max(0.474,0.300) = 0.474

Having acquired the weights for the existing links (within individual datasets), the next
step is to conduct fuzzy inference. Suppose that the fuzzy membership functions of a
synthesised link strength is provided by the domain experts in linguistic terms as specified in
Fig. 5.6. In this simple illustration, assume that the Max-Min aggregation method is taken to
compute the SYN weights. Then, for Triple_1, according to Eqn. (5.10), its weight Fp.. can

be calculated such that

[min( % (0.429), fV(0.58)), min((0.429), £ (0.58)), min(£5(0.429), f5(0.58))]
= [0,0.067,0.5725]

where fV, f¥ S denote the fuzzification results of the link weights with respect to the
linguistic terms “Weak”, “Medium” and “Strong”, respectively. What this fuzzy result stands
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for is that the detected link is not “Weak™ (as it is of a zero membership value with regard to
this strength label), a tiny membership for the fuzzy concept “Medium”, and a significant
membership value for the given linguistic term “Strong”. Following the same calculating
procedure, for Triple_2, its Fp,, score is [0,0.42,0.3925]. Hence, with respect to Eqn. (5.11),
the predicted fuzzy value representing the strength of the link between variables “Family

support” and “Family size” is:

[max(0,0), max(0.067,0.42), max(0.5725,0.3925)] = [0,0.42,0.5725]

Finally, if a numerical strength score between the two variables is desirable (as opposite
to a fuzzy value), then by employing the centre of gravity (COG) method for defuzzification,
the predicted link score of 0.5804 can be obtained in a straightforward manner. Note that the
above illustrative example is carried out on categorical data sets. However, this method can
also be applied to numeric data sets, although the strategy to measure link strengths needs to

be adjusted accordingly, as previously stated.

5.2 Empirical Evaluation

This section presents experimental studies of the proposed approach, with comparison
against other popular link prediction techniques on different types of datasets demonstrated.
Complexity analysis is also conducted and presented to check the efficiency of the proposed

work.

5.2.1 Datasets

The experimental evaluation is conducted on both real world data from UCI benchmark data
sets [206] and on a collection of synthetic datasets. Since there is hardly any corpora of
datase