
Control of Many-body Quantum Systems

Aberystwyth University

Alexander James Gordon Pitchford

14 June 2019



Abstract

The scaling of effort to achieve control objectives with system size is an important consideration in

the development of many quantum devices, especially in those intended for quantum information

processing. This thesis investigates the scaling with system size of effort required to control many-

body quantum systems, and asks whether this is sufficiently favourable to enable supremacy in

quantum computation. This is tested using quantum control theory and numerical control optimi-

sation, which are well established tools for investigating the dynamics of driven quantum systems,

in a variety of theoretical models related to state-of-the-art quantum devices. Gates acting on a

chain of coupled oscillators are found to achievable in times that scale approximately linear with

chain length, where the control is over only a single oscillator. The scalability of a scheme for im-

plementing quantum gates in a many-body quantum simulator is shown to be favourable enough to

allow for them to be configured to perform quantum computations. A state measurement protocol

is proposed as part of the scheme. The scalability is validated through numerical simulation of

simulator models composed of up to 9 qubits. The reachable set of operations for systems with

quadratic Hamiltonians and infinite-dimensional Hilbert spaces is investigated. The passive op-

erations in quantum optics are proven to be unreachable for single-mode systems with ‘unstable’

Hamiltonians. Further characterisation of the reachable set is made through numerical simulation

of control optimisation. Some progress is made in extending the reachability result to n-modes. A

non-Markovian noise model is used in simulating control optimisation of a dynamical decoupling

scheme, which would be impossible to simulate with Markovian dynamics. The popular QuTiP

Python library has been extended to allow simulation of control optimisation with a range of dy-

namical models. A description of these software modules and their method of use is given. Many

of the software tools developed for the study are made available through open-source repositories.

Some outlook is given for the use of in-situ open-loop control in optimising controls in quantum

system experiments.
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Chapter 1

Introduction

1.1 Overview

This thesis asks whether control of many-body, high-dimensional quantum systems can be achieved

with acceptable scalability for quantum information processing. This is tested by applying the

theories and optimisation algorithms that have been used successfully for achieving control objec-
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Figure 1.1: The central theme of this thesis is shown in context with the four main research areas
that seek to answer it.
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CHAPTER 1. INTRODUCTION

tives on low-dimensional systems to simulations of systems of increasing size, up to the limit of

the available high-performance computing clusters, with various models of quantum systems and

control objectives. In particular the scaling of the minimum time required to perform operations

(gates) on the systems is investigated, as this is one of the limiting factors on performing a quantum

computation.

Quantum control developed out of the nuclear magnetic resonance (NMR) community, where

it was used to improve the radio frequency pulses that drive the states of the molecules under study

[1, 2], and quantum chemistry, where the objective was to drive specific chemical reactions [3, 4].

Today it is part of the core toolset used by engineers developing state-of-the-art quantum technol-

ogy [5, 6]. Experiments with actual quantum systems are typically challenging to perform, and

often require expensive equipment, as they typically need cryogenic temperatures when working

with constrained energy level systems, such ion-traps and superconducting circuits, or the vast

arrays of optical devices in quantum optics experiments. This makes simulation a vital tool for

investigating quantum systems, including the theoretical control of their dynamics.

Technological developments tend to arise from fundamental research, as technologists are al-

ways looking to new findings for opportunities. However, there is currently a strong, direct push

for the quantum phenomena to be utilised in devices that will benefit the wider society. The UK

has invested heavily in the Quantum Technology Hubs with this intention. Some of these quantum

devices are now commercial products (quantum key distribution), and many more are in prototype

stage (high precision sensors) – these are described later in this chapter. The realisation of a useful

universal quantum computer (defined later in this chapter) however remains elusive. To be useful,

a quantum computer must be composed of many elements, and hence this thesis.

The majority of research into developing quantum computers has been based on so-called spin-

computers [7, 8], which are described later in this chapter. Computers based on continuous variable

(CV) quantum systems, such as harmonic oscillators and electromagnetic field modes, also have

potential [9]. Gates acting on the mode operators of these systems in Gaussian states can be rep-

resented by symplectic matrix transformations. Strong controllability criterion have been derived

for these systems [10, 11, 12, 13]. However, the criteria may not be manifest in the system interest,

raising the question of what is possible when these criteria are not met. In one type of example

12



CHAPTER 1. INTRODUCTION

the Hamiltonians result in non-recurring dynamics, and are hence described as ‘unstable’. The

characterisation of the set of possible operations for systems with unstable Hamiltonians is ad-

dressed in Chapter 3. The first study to use control optimisation with symplectic transformations

found that the allowed gate time was crucial in achieving high fidelity [14]. Chapter 3 investigates

the scalability of implementing CV gates. The minimum time required to perform an entangling

transformation on chains of harmonic oscillators of increasing length is found through simulation

of control optimisation.

The viability of classical simulation the dynamics of many-body quantum systems is limited

by the scaling of the Hilbert space in which quantum systems are represented (except in some

specific cases where symmetries can be exploited). This scaling is with 2n for composites of

n two-state systems. Therefore, although quantum computing algorithms can be simulated on a

classical computer, the computation cost grows exponentially with system size. As the quantum

computer can solve some problems exponentially faster with greater n, then for some size of

system it will out-perform its classical counterpart, so long as the effort to set up the problem

scales only polynomially in n. Large, coupled arrays of controllable quantum systems have been

developed specifically for simulating quantum dynamics. These quantum simulators are described

later in this chapter. A scheme is proposed in Chapter 4 for upgrading these quantum simulators to

act as quantum computers. The scheme uses control optimisation to determine the parameters that

implement specific gates. The chapter focuses on demonstrating that the scheme scales no worse

than polynomially with n.

The quantum interference phenomena are what underpins most of quantum technologies being

developed. The constructive and destructive interference relies on the coherence of component

quantum systems. Interactions with the surrounding environment destroy this coherence, and it

is impossible to fully isolate a system from its environment. Consequently, understanding ex-

actly how these interactions affect system, and how to negate or even take advantage of them, has

been the focus of much research over the last decades. This research may also lead to a fuller

understanding of quantum theory, especially the ‘measurement problem’, and the non-observance

of macroscopic superpositions [15], as essentially the macroscopic world is a very big and noisy

quantum system. A noise model is therefore needed for calculating quantum dynamics. Noise

13



CHAPTER 1. INTRODUCTION

models for simulating quantum dynamics, and in particular simulation of control optimisation,

are the subject of Chapter 5. The method for calculating quantum dynamics, using hierarchical

equations of motion, that does not make the Born-Markov approximation is compared with the

Lindblad master equation, which does make this approximation. A control objective is attempted

that is impossible with the Born-Markov approximation, as it requires the return of quantum infor-

mation from the environment, which implies memory.

Many of the results presented in this thesis are found through numerical simulation. Some of

the methods are fairly detailed and technical, and so these are described separately in Chapter 2.

The main aim of the chapter is assist anyone wishing to reproduce or extend the results, and may be

skipped over by readers interested only in the physics. The codes for performing quantum control

optimisation are described, with references to the Python functions used where this is appropriate.

Some description of the computer software and systems used is also given. The software tools

developed by the author to support these methods have largely be made available in open-source

libraries. In particular, the author has made many contributions to the QuTiP project [16, 17] during

the period of this study. The codes used to produce unpublished results are not publicly available,

but they are available in private repositories for sharing with anyone wishing to collaborate.

The thesis is organised as follows. The rest of this chapter introduces the concepts and math-

ematical formulae that are used throughout the thesis. A brief outline of quantum mechanics is

given in Section 1.2. Quantum control theory is introduced in Section 1.3, with controllability of

quantum systems specifically in Section 1.4. Control function optimisation for quantum system is

described in detail in Section 1.6. The last section of this chapter, Section 1.5, gives a brief descrip-

tion of the quantum technologies, for which quantum control is either a key component, or vital in

their development. The chapters outlined above follow, each of them starting with an introduction

outlining the key developments, concepts and methods which are specific to them, and conclude

with some discussion of the findings. Finally, Chapter 6 makes some overall conclusion, and gives

some outlook for control of many-body quantum systems.
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1.2 Quantum Mechanics

In order to predict the behaviour of microscopic entities they need to be described in terms of their

wavelike properties. The properties of the wave are related to the mass and velocity in a way that

makes them insignificant for the macroscopic particles we encounter around us – the wavelength

being a tiny fraction of the length scales of interest. There are many physical interpretations of

these waves and this continues to be a subject of much discussion and controversy [15, 18]. The

equations proposed based on the premise of their existence that predict the behaviour of micro-

scopic particles are confirmed by experiment to the limit of precision. This is one the primary

objective of physics – to understand the fundamentals of nature sufficiently to predict how systems

will evolve. This theory of quantum mechanics is considered one the most successful or all time,

having withstood scrutiny for over 100 years.

A solid introduction to quantum mechanics and its mathematical description in the context of

control theory is given by Domenico D’Alessandro in his book Ref. [19]. Similarly, the popular

reference for quantum computing and information Ref. [20], also provides a detailed background

on the fundamental concepts and mathematics of quantum mechanics. These are the main sources

for the brief introduction given below. In this thesis units are chosen such that the reduced Planck

constant ~ = 1, and Boltzmann’s constant kB = 1.

A system that is considered isolated from its surroundings is called closed. The pure state of a

closed quantum system is represented by a vector |ψ〉 in a complex Hilbert spaceH. The direction

in this Hilbert space is what identifies the state, and states differing only by a difference global

phase factor are considered the same state. As the phase and magnitude can be ignored for state

identification, then 〈ψ|ψ〉 = ‖|ψ〉‖2 = 1, |ψ〉 is therefore called a normalised state vector. The

relative phase is important it determining how quantum systems will interact, due to constructive

and destructive interference, which is why the Hilbert space is complex. As any linear combination

of these states is also a solution to Schrödinger’s equation (defined shortly), then this is also a valid

quantum state, known as a superposition state.

The state of a composite system is represented by a vector on a tensor product of their Hilbert

spaces. That is, if two systems are separately defined on spaces HA and HB, then the state of

the composite system can be represented by a vector on the space HA ⊗ HB. If the state of the
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composite system can be given by a tensor product, that is |ψAB〉 = |ψA〉⊗|ψB〉, then it is a product

state and is described as separable. Otherwise it is inseparable, and described as entangled.

Systems that are not isolated from their surroundings are called open. In this case the state of

the system can become mixed. This is expanded upon below in Subsection 1.2.3. A state vector

cannot fully describe a mixed state, but it can be described by a density operator or density matrix.

This is first introduced here in terms of an ensemble of identical systems, for which the state, in

terms of measurement statistics, can also be described by a density operator

ρ :=
Nw∑
j

wj|ψj〉〈ψj| . (1.1)

Here the ensemble comprises systems in one of Nw states |ψj〉 in proportions wj (0 < wj ≤

1,
∑

j wj = 1). Hence wj is the probability that any one system is in state |ψj〉. In the special case

that all systems are in the same state, that is one wj = 1, then this is referred to as a pure ensemble

or the ensemble is said to be in a pure state, and ρ = |ψj〉〈ψj|. From this definition it follows that

ρ has the following properties:

Tr ρ = 1 (1.2a)

ρ† = ρ (1.2b)

ρ ≥ 0 . (1.2c)

That is the density operator has trace zero, is self-adjoint and positive. Any operator that has these

properties is a valid quantum state.

Another important property of the density operator is that ρ = ρ2 if and only if the system or

ensemble is in a pure state. Any ensemble state that is not pure is called a mixed state. A mixed

state can also occur as the reduced state of a subsystem of any composite system, including in the

open systems model described in Subsection 1.2.3. For states described by density matrices, they

are called separable if they can be written as sum of product states on respective spaces HA and

HB, that is

ρ(AB) =
Nw∑
j

wjρ
(A)
j ⊗ ρ

(B)
j . (1.3)
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If the density matrix is not separable, then the state is entangled.

1.2.1 Quantum system evolution

The dynamics of the state are described Schrödinger’s equation

d

dt
|ψ〉 = −iH|ψ〉 (1.4)

where H is the Hamiltonian operator, which could be time dependent, and is always self-adjoint,

i.e. H† = H . Here is implied that |ψ〉 evolves in time t. As this is a linear first order differential

equation the solution is given by

|ψ(t)〉 = U(t)|ψ(0)〉, U(0) = I , (1.5)

where |ψ(0)〉 is the initial state of the system, that is when t = 0. The propagator U(t) is a unitary

operator due to H being Hermitian. It is also called the evolution operator. Substituting Eq. (1.5)

into Eq. (1.4) shows that U(t) must evolve according to what is called the Schrödinger operator

equation

U̇(t) = −iH(t)U(t) . (1.6)

The equation of motion for a quantum system in terms of its density operator ρ is given by the

Liouville-von Neumann equation,

ρ̇ = −i[H, ρ] , (1.7)

the solution of which describes the evolution of ρ according to the Schrödinger equation,

ρ(t) = Uρ(0)U † = Ut[ρ(0)] . (1.8)

where the superoperator Ut is the map that describes the adjoint action of U on ρ from time 0 to t.
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1.2.2 Qubits

An important mathematical construct in quantum information (which will be discussed later in

Section 1.5) is the quantum bit or qubit. This is based on the concept of a quantum system with

only two states, typically denoted |0〉 and |1〉. Because it is a quantum system, then any linear

combination (with the usual normalisation), is also a valid quantum state. That is

|ψ〉 := α|0〉+ β|1〉 , (1.9)

with α, β ∈ C and |α|2 + |β|2, due to ‖|ψ〉‖2 = 1. This can also be given a geometrical represen-

tation

|ψ〉 := eiγ
(
cos( θ

2
)|0〉+ sin( θ

2
)eiφ|1〉

)
, (1.10)

where γ, θ, φ ∈ R. Any two states differing only in global phase γ are physically indistinguishable,

hence this term is typically ignored. The α of Eq. (1.9) can be made real by shifting the phase of

β, making Eq. (1.10)

|ψ〉 := cos( θ
2
)|0〉+ sin( θ

2
)eiφ|1〉 . (1.11)

This geometrical representation defines a point on what is known as the Bloch sphere, shown in

Fig. 1.2. Any point on the surface represents a pure state, with the north and south pole being the

canonical computational basis states, other surface points being superpositions in this basis, and

points inside the sphere being mixed states. Note that the definition in terms of θ/2 means that a

full rotation about any axis in the x − y plane is a given by θ = 4π, whereas a full rotation about

z-axis is given by φ = 2π.

There is much interest in physical systems that can be used to represent a qubit, because of

the usefulness of the qubit in quantum computing. Examples of these two states are spin angular

momentum of a spin-½ particle, the energetic states of a two-level atom, and the polarisation of

photons.
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Figure 1.2: The Bloch sphere is a geometrical representation of the qubit state. The angles θ and φ
are spherical coordinates on the unit sphere. The basis states are shown |0〉 uppermost
and |1〉 lowermost.

The Pauli spin matrices have a variety of applications with qubits. They are defined as

σ1 ≡ σx =

0 1

1 0

 , σ2 ≡ σy =

0 −i

i 0

 , σ3 ≡ σz =

1 0

0 −1

 , (1.12)

They act as measurement operators or observables. Defining the computation basis vectors as

|0〉 :=

1

0

 , |1〉 :=

0

1

 , (1.13)

the expectation value given by 〈ψ|σj|ψ〉, where σj is the jth component of the vector ~σ = (σx, σy, σz),

is the coordinate in the corresponding axis of the Bloch sphere. For example 〈0|σz|0〉 = 1, which

would typically correspond to the excited state of a two-level system or positive spin (spin-up)

for a spin-½ particle. With the −i pre-factor they are skew-Hermitian and form a basis for the

special unitary Lie algebra su(2), and hence exponentiate to generate the special unitary Lie group
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SU(2). When acting as a Hamiltonian on a qubit system, that is H = σj in Eq. (1.4), hence

|ψ(t)〉 = exp(−iσjt)|ψ(0)〉, then they drive rotations around the corresponding Bloch sphere axis

with period 2π.

1.2.3 Open quantum systems

All the description of quantum mechanics above assumes that the system is completely detached

from its surroundings, that is, a closed system. In reality this is practically impossible to achieve,

and so it is necessary to have to way to model the effects of interactions with the environment on

the system of interest. In this it is typical to consider a system of interest and the environment

interacting through fields. This is referred to as the study of open quantum systems, for which text-

books Refs. [21, 22] are used as reference. It is partially analogous to the study of thermodynamics

where the interactions are the flow of heat and entropy. The most interesting features of quantum

systems relate to interference phenomena, which rely on the coherence of the ensemble, and so as

well as the dissipation of heat between the system and its environment, the decoherence effects of

the system-environment interactions are also of great importance.

Typically the study of open systems works from the idea that one can model the environment as

another quantum system, such that the system and its environment together can be considered one

closed system. To do this a model for the immediate environment is chosen that is unaffected by

its own surroundings. Again borrowing from thermodynamics, the idea of a heat bath in thermal

equilibrium is given a quantum mechanical description such that any interactions with the outside

can be absorbed, and those with the system can be modelled as a stochastic process, meaning fully

randomised. The combined system then must evolve according to Schrödinger’s equation and

hence the combined system dynamics are unitary. So the system state ρS is defined on a Hilbert

spaceHS , the state of the bath ρB onHB, and the combined system state ρSB onHSB = HS⊗HB.

The evolution then is described by

ρSB(t) = UρSB(0)U † = U [ρSB(0)] , (1.14)

where U is a unitary operator (and U the superoperator) acting on the composite spaceHSB.
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Typically only the evolution of the system is of interest. Assuming the ρS starts as some pure

state, what can be said about its state at some future time t ? Of course without the environmental

interactions it would remain in a pure state. The effects of the system-environment interactions are

contained in the unitary U , but this is likely to be a huge operator and of little use. The state of the

system (its density matrix) can be recovered through use of the partial trace.

For a general description of the partial trace, let a composite Hilbert space HAB = HA ⊗HB,

then for a general operator O acting onHAB, the partial trace can be defined as [21]

TrB[O] =

dB∑
j=1

(IA ⊗ 〈bj|)O (IA ⊗ |bj〉) , (1.15)

where the |bj〉 are an orthogonal basis set forHB. It follows that

TrB[A⊗B] = Tr[B] A , (1.16)

where A,B are operators acting on the spaces HA and HB respectively, and in fact TrB is the

unique function that provides this mapping.

Due to the Tr ρ = 1 for all density operators ρ, the state of the system can be recovered as

ρS = TrB[ρSB] . (1.17)

If the evolution of the combined system thorough Eq. (1.14) results in entanglement between the

system and bath through correlations, then the ρS retrieved through Eq. (1.15) will be a mixed

state, as quantum information is lost to the bath, and hence it is known as the reduced state. This

is so even though the composite system remains in a pure state, due to the unitary evolution of

Eq. (1.14), as effectively the state of the system is mixed with that of the bath. From a physical

perspective, this means that the measurement outcome will be equivalent to that of an ensemble in

the mixed state [20].

A method of describing the evolution of the system state alone would be preferred, that is

ρS(t) = M [ρS(0)] , (1.18)
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where M is the dynamical map (or quantum channel) that describes the evolution of ρS . It turns

out that ρS will remain pure if U can be written U = US ⊗ UB, that is the evolution of system and

bath separately are unitary, and therefore M would be a unitary map. However ρS could become

a mixed state, due to correlations between the system and bath, indicating a loss of energy and

or coherence to the environment. So the map M need not be unitary, but it must have properties

to ensure that system and environment both remain in valid quantum states after its application.

These stem from the need to preserve the properties of the density operator given in Eq. (1.2):

TrM(ρ) = 1 (1.19a)

M(ρ)† = M(ρ) (1.19b)

M ⊗ Id(ρ⊗ Id) ≥ 0 . (1.19c)

where ρ is any density operator of the system. The first states that the map must preserve the trace

of ρ as 1, the second that it must ensure ρ remains self-adjoint. The last one states that positivity

must be preserved, not only for the map itself, but also any ancilla system, such as the bath. The

extension of the state to include the state of some ancilla of dimension d, which the map must act

trivially on, expressed by the identity map Id, states that the map M must be completely positive.

This is sufficient for complete positivity so long as d is at least equal to the dimension of the

system.

Because of these properties dynamical maps in this context are called completely positive, trace

preserving maps, often shortened to CPT maps (or elsewhere CPTP maps). There are many ways

of expressing CPT maps, some of which are introduced in later chapters as required. One method

is the Kraus representation, which is that every CPT map can be written in a form that ensures

complete positivity

M(ρ) =
R∑
j=1

KjρK
†
j , (1.20)

where the K are called the Kraus operators, and the following condition ensures the trace is pre-

served
R∑
j=1

K†jKj = I . (1.21)
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The Kraus rank R is the minimum number of them required to represent M , it is upper bounded

by d2 (d being the dimension of the system). The set of Kraus operators is not unique, in fact there

are infinitely many sets that are equivalent through unitary transformation. It also holds that any

set of Kraus operators where
∑
K†jKj = I produce a CPT map.

This description of open systems is used in modelling the effects of environmental noise

through electromagnetic or otherwise radiation. Many treatments of open systems assume that

the bath has no memory of its interactions with the system, and hence the effects of the bath on

the system are not related to anything from a previous time. This is referred to as the assumption

of Markovianity. It is a reasonable assumption when interaction is with some random entity of an

effectively infinite bath where the coupling is very weak, and it is widely used, including in control

theory. However, the system-bath model described above need not make this assumption. The

interactions may remain random, but could be through stronger coupling that could imply some

back-action, or rebound, out of the bath, implying the bath remembers past interactions. This

regime is therefore called non-Markovian, and is the subject of Chapter 5. The subject of Marko-

vianity has been, and continues to be, one of great debate, especially in a control setting. When the

assumption can and cannot be made, how to define it, and how to test for its presence or otherwise

remains a key area of research.

1.3 Quantum Control Theory

To be able to drive a quantum system in some desired way it must be possible have some control

over the Hamiltonian. This could be some electric field generated by a laser or a radio frequency

transmitter. Assuming that the system is subject to some constant Hamiltonian that is always

on due to internal interactions and constant external influences, these can be considered as one

drift Hamiltonian H0. The other controllable influences will be considered here as fixed control

Hamiltonians Hj adding to the drift Hamiltonian independently and scaling linearly with some

controllable amplitude. This will give rise to some combined Hamiltonian of the form

H(t) = H0 +
Nc∑
j=1

uj(t)Hj , (1.22)

23



CHAPTER 1. INTRODUCTION

where Nc is the number of controllable Hamiltonians, which are denoted Hj . The u(j) are the

amplitude functions, which can be considered as real valued without any loss of generality, so

long as H† = H . Substituting Eq. (1.22) into Eq. (1.6) gives the controlled Schrödinger operator

equation

U̇(t) = −i

(
H0 +

Nc∑
j=1

uj(t)Hj

)
U(t), U(0) = I . (1.23)

The Schrödinger’s equation, with its dynamics driven by Hamiltonians, resulting in unitary

evolution is a specific case of a more general linear differential equation

d~x

dt
= A~x , (1.24)

with solution

~x(t) = X(t)~x(0), X(0) = I . (1.25)

Here the nature of X(t) depends on the constraints put on A. As in the Schrödinger’s equation

case, there is an operator equivalent,

Ẋ(t) = A(t)X(t) . (1.26)

If A(t) is of the form

A(t) = A0 +
Nc∑
j=1

uj(t)Aj , (1.27)

then Eq. (1.26) is a that of a general bilinear control system for operator control

Ẋ(t) =

(
A0 +

Nc∑
j=1

uj(t)Aj

)
X(t), X(0) = I . (1.28)

This is introduced here because much of this study focuses on systems where the dynamics

is not driven by skew Hermitian generators, and hence the evolution is not described by unitary

operators.

For a general time-dependent dynamics generator in Eq. (1.26) the natural logarithm of evolu-
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tion operator X(t = T ) can be computed by integrating the generator, hence

X(T ) = T̂ exp

(∫ T

0

dtA(t)

)
. (1.29)

where T̂ denotes Dyson’s time ordering operator. In the Schrödinger case this is

U(T ) = T̂ exp

(
−i

∫ T

0

dtH(t)

)
(1.30)

This can be approximated by taking the product of operators evolving over a short period ∆t during

which the generator is taken to be constant:

X(T ) ≈ X(T, T −∆t) · · ·X(t+ ∆t, t) ·X(t, t−∆t) · · ·X(∆t, 0) , (1.31)

with

X(t+ ∆t, t) ≈ exp [A(t)∆t] . (1.32)

Note the order of the operations in Eq. (1.31) is important as the generators for different times will

not necessarily commute. If the control functions uj are piecewise constant, that is their value is

constant throughout the any duration of t to t+ ∆t, then Eq. (1.31) becomes exact. Using k as an

index for the piecewise constant timeslot where there are Nt timeslots, the time at the end of the

timeslots is denoted {t1, . . . , tk, . . . , tNt} and the duration of each timeslot as ∆tk (for the purpose

of this theoretical outline these can be considered equal, but they need not be). Using this notation

Eq. (1.31) for piecewise constant control functions can be written

X(T ) = XNt ·XNt−1 · · ·Xk · · ·X2 ·X1 , (1.33)

with

Xk = exp (Atk∆tk), k = 1, 2, . . . , Nt , (1.34)

being the evolution of the system during the kth timeslot. Here Atk = A(tk), with A remaining

constant up to and including t = tk+1. As so far X0 = X(0) = I it can therefore be ignored in this

evolution.
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1.4 Controllability

Clearly when designing an experiment, or some technological development, that requires control

of quantum entities, it is important to know what operations are possible. Most specifically whether

the desired operations are achievable. These could be specific transfers from one state to another or

a range of unitary gate operations to be applied to some arbitrary state. It is clear that if all unitary

operations are achievable, then all state-to-state transfers are also achievable. This situation is

known as operator controllable or fully controllable. This study focuses on whether systems are

fully-controllable or not, hence unless otherwise stated, in this thesis controllable means fully

controllable.

The mathematical tools of differential geometry have long been used by physicists in under-

standing dynamical systems. The Lie algebra and group theory can be used in determining the

controllability of systems evolving under the bilinear control of Eq. (1.28). For a mathematical

description of how this can be applied to quantum systems, see Ref. [19]. A Lie algebra can be

seen as a set of directions that can be taken in a space, and the corresponding Lie group as the set

of operations that move from one point in the space to another. If all directions are available, then

given sufficient time, all operations are possible, and hence all points are reachable. For operators

to belong to a Lie algebra they must obey the properties of a Lie bracket, which for those studied

herein are fulfilled by the usual matrix commutator [A,B] = AB−BA. A Lie algebra g is said to

generate elements of the Lie group G through the relation

G = eg . (1.35)

Due this relation, linear combinations of elements from g result in consecutive operations in G.

Hence the A0, Aj in Eq. (1.28) can be seen to be elements of a Lie algebra and the X in Eq. (1.31)

belonging to the corresponding Lie group. This allows Lie algebra and group theory to be applied

to controllability, which is expanded upon below in Subsection 1.4.1. The relationship Eq. (1.35) is

not in general surjective, however it is for the unitary U(n) and special unitary SU(n) Lie groups.

The set of operations that can be reached for a given control equation is called its reachable

set. The reachable set of Eq. (1.28) is denoted R. It is assumed that any piecewise constant
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control function, in terms of amplitude and the granularity of the time slicing, is possible. Not

all operations are necessarily reachable for a given time T , those that are reachable are in the set

R(T ). So the definition of the reachable set can be clarified as

R = ∪T≥0R(T ) . (1.36)

So if the closure of R is equal to Lie group corresponding to the Lie algebra of the generators,

then, for compact groups, the system is fully controllable. For the skew Hermitian generators in

Eq. (1.23) the group would be U(n), although SU(n) is often sufficient, as discussed below. The

study of the characterisation of the reachable set for a non-compact group, the symplectic Lie

group Sp(2n,R), is described in Chapter 3.

1.4.1 Lie algebra rank criterion

Working with the assumption that the total time T is long enough, and that the piecewise control

functions are sufficiently sliced, the Lie algebra rank criterion can determine whether the system is

fully controllable. This has been applied to general bilinear control systems long before the advent

of quantum control theory [10], as shown for compact groups in Ref. [23]. It is applicable to

quantum control of closed systems because all matrices−iH are skew-Hermitian, hence belong to

the skew-Hermitian Lie algebra u(n), which generate the (compact) special unitary group SU(n).

A full description of the Lie algebra rank criterion and its application to controllability, including a

proof, is given in [19]. An outline of the principles behind it and a description of how it is applied

is given below.

Substituting in the exponentials in to Eq. (1.33) gives

X(T ) =
k=1∏
k=Nt

exp

([
A0 +

Nc∑
j=1

u(tk)Aj

]
∆tk

)
, (1.37)

where the product here is time-ordered, as in Eq. (1.33). If the u(tk)Aj commute for all times tk
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then this would be equivalent

k=1∏
k=Nt

exp (A0∆tk)
Nc∏
j=1

exp (u(tk)Aj∆tk) .

However, for non-commuting matrices A,B, i.e. [A,B] 6= 0,

eA+B 6= eAeB , (1.38)

but for some short time ∆t, the Baker-Campbell-Hausdorff formula (truncated here as the further

nested commutator terms will have factors of increasingly higher powered ∆t)

eA∆teB∆t ≈ eA∆t+B∆t+ ∆t2

2
[A,B] . (1.39)

gives some insight into how the commutators of the drift and control Hamiltonians can influence

the dynamics of the system, by effectively adding directions that are not explicit.

The Lie algebra rank condition is fulfilled if the number of linearly independent generators

that can be made through nested commutation of the drift and control dynamics is equal to the

dimension of the Lie algebra to which they belong. When this is fulfilled the generators are said

to span the space. Each can be thought of as generating a movement in a unique direction in the

operator space of the system. In the case of the unitary dynamics of closed quantum systems the

dynamics generators are the skew Hermitian matrices iH0, iH1, . . . , iHj, . . . , iHNc from the drift

and control Hamiltonians belonging to the Lie algebra u(n), corresponding to the unitary Lie group

U(n) where n is the dimension of the quantum system, with n2 as the dimension of the Lie algebra.

For spin systems or their equivalents the generators are traceless, and hence their Lie algebra su(n)

and corresponding special unitary Lie group SU(n), have dimension n2 − 1.

The implicit generators come from nested commutators of the form

B = [A1, [A2, [. . . [Al−1, Al]]]]. (1.40)

Here the A matrices are the original dynamics generators and others formed from these nested
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commutators. The matrix B is a generator that may or may not be linearly independent. The

description of an algorithm that can be used to determine the Lie rank is given in Section 2.5.

As a simple example a control system of a two-level or spin system can be considered

H = σz + u(t)σx (1.41)

The Pauli matrices σx, σy, σz are known to provide a basis for generating all operations in a single

spin system, as they span the u(2) Lie algebra. In this example there are two explicit generators

−iH0 = −iσz and −iH1 = −iσx. The commutator of the two yields [−iσz,−iσx] = −2iσy,

hence the full basis is achieved. The number of linearly independent generators is 3, 2n2 − 1 = 3,

hence the Lie algebra rank condition is met.

1.5 Quantum technology

Initially the study around the strange behaviour of particles on the microscopic scale was motivated

by the desire to understand some unexplained phenomena such as ultraviolet catastrophe of black

body radiation and the photoelectric effect. Starting in the early twentieth century this developed

into what now know as quantum mechanics. This understanding led to the development of what

is now commonplace technology such as transistors, light emitting diodes and lasers. Richard

Feynman is credited [24] with first suggesting that the quantum mechanical effects, such as super-

position, could be used in some kind of computer to solve physics problems that are intractable

on so-called classical computers due to the number of calculations needed [25]. Since then ideas

for new technology exploiting the features of quantum mechanics have burgeoned. Many of these

have reach the point of, or are near to, commercial exploitation. This is illustrated and assisted by

the UK Government’s £270M investment in Quantum Technology Hubs in 2014.

It is essential to better understand how quantum systems can be controlled in order to exploit

these quantum phenomena for commercial and wider scientific use. In most cases this will involve

a complex system of many entities. Therefore it is important to know what tools are applicable to

aid their development, hence this thesis to addresses the question of scalability in quantum control

optimisation. Some specific areas of technological development are introduced below. Although
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quantum control is relevant to all, quantum simulators and quantum computing are the areas where

scalability is the greatest challenge.

1.5.1 Quantum communication

Codification and encryption of messages has been of huge importance in all of human history [26].

Originating with the necessity for communicating military messages without interception, this de-

veloped into the field of cryptography, and continues to be paramount to national security. The

greatest minds of the time were employed in the making and breaking of codes during the Sec-

ond World War. Today the encryption of digital information underpins national and international

commerce. With the potential of a quantum computer to crack traditional codes, and evermore

sophisticated and determined cyber-snooping and cyber-attacking, national security agencies and

businesses are intensely interested in any technology that will allow secure exchange of informa-

tion, and those that can intercept it!

Quantum cryptography broadly includes all applications of quantum effects to enable the se-

cure transmission of information. The most well known and well developed is quantum key distri-

bution, in which exchange of quantum entities is used to share an encryption key, which can then

be used to encrypt data and send via a classical communication channel. There are well known

protocols BB84 protocol [27] and E91 [28]. Devices that use BB84 or E91 protocols over fibre

optics cables are commercially available. Their effectiveness is limited by the distance over which

the photons can be sent and received with sufficient reliability – all fibre-optic cables have some

absorption probability. Quantum key distribution has also been demonstrated over over free space

[29] and even intercontinentally via satellite [30]. The development of a global network for quan-

tum key distribution is clearly of great value. The quantum networks that would support this offer

many other potential applications, such as distributed quantum computing and metrology [31], and

so quantum networks remain a key area of research interest and investment [32]. Quantum control

optimisation has been used to implement teleportation protocols in quantum networks [33].
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1.5.2 Quantum metrology

Use of quantum entanglement, superposition and squeezed states to achieve precision beyond that

of purely classical devices is known as quantum metrology. The most discussed application of this

is in the measurement of gravitational waves, where it is anticipated that quantum effects will be

used to enhance the already highly sensitive instrument at the Laser Interferometer Gravitational-

wave Observatory (LIGO) [34]. There are many other applications for high-sensitivity gravity

sensors, such exploring what is below ground for infrastructure planning, predicting subsidence

and water resource management.

The same principles can be applied to sensors of many types, including magnetic field and

rotation sensors. Rotation sensors have a wide variety of industrial applications, and particularly in

navigation and stabilisation system. High precision quantum clocks also come under the umbrella

of quantum metrology. High sensitivity imaging is also a key objective for this field. It is less

mature than quantum communication, however practical prototypes are being developed, such as

this brain scanning technology [35], and other biological applications [36].

Control has been used to optimise states used to increase phase sensitivity [37]. Squeezed states

are typically a feature of these systems. Controlling squeezing in unstable systems is investigated

in Chapter 3.

1.5.3 Quantum simulators

The idea behind quantum computing originated from considering how computers can be used

to simulate physical systems [25]. If all the interactions of the nuclei and electrons are to be

considered at the quantum level, then even modelling a small molecule requires a huge number

of calculations [38], and the problem scales exponentially with number of particles considered.

By taking some controllable quantum system and engineering the Hamiltonian it is possible to

simulate other quantum systems that may be of particular interest [39].

These controllable systems are called quantum simulators, and their proposed applications are

numerous and varied. At this time they are mostly to aid research in physics and other disciplines,

including condensed matter physics, high-energy physics and quantum chemistry [40, 39, 41].
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The much mentioned specific examples being understanding the mechanism of high temperature

superconductivity and quantum magnetism. It is speculated that if these physics questions are

addressed successfully using quantum simulators, and they develop into ever more sophisticated

devices, then the range of applications will extend to biological reactions such photosynthesis,

nitrogen fixation and drug target interfaces.

The quantum simulators discussed here of an analogue rather than the digital type, which

are quantum computers able to simulate some other quantum system by solving a general time-

dependent Schrödinger equation through gate operations [42, 43]. The digital quantum simulator

could therefore simulate any quantum dynamics, whereas the analogue version is limited to a class

of problems which the inherent Hamiltonian can be manipulated to emulate the system of study.

Large scale analogue simulators are a reality, with ever larger devices being developed. This system

simulates Ising interactions with a lattice of beryllium ions proposed for investigating quantum

magnetism [44, 45]. In this experiment two dimensional arrays of Rydberg atoms are established,

also for investigating quantum magnetism [46]. It it is a popular view that quantum supremacy will

be demonstrated on these devices before a quantum algorithm out performs a classical counterpart

[40], as discussed in the next section.

1.5.4 Quantum information and computing

Electronic digital computing is based voltage thresholds in wires, thus a particular wire or connec-

tion holds a Boolean value or either “0” or “1”. Transistors are used to effect Boolean logic oper-

ations such as NOT, OR, AND. From these building blocks computing processors are constructed

that effect arithmetic on numbers entered or stored in the binary base. Quantum computing is anal-

ogous to its digital counterpart in that a series of gates work on parallel inputs and outputs where

the values are Boolean. The two separate due to the potential, in fact requirement for any quantum

speedup, for states in process to be superpositions of “0” and “1” and maybe entangled. The gates

also must effect reversible processes, that is it must be possible to map the outputs back to unique

set of inputs. This implies that the number of inputs and outputs must be equal, and hence the

commonplace two-input-one-output digital gates cannot be replicated in a quantum computer.

To achieve these quantum features the values have to exist as the quantum state of a qubit,
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such as the energetic states of a two-level system or the directions of a quantum spin-½ system.

This provides the potential for superposition states. The gates are effected through some unitary

transformation on one or more qubits, hence why the they must be reversible processes. The

qubits are organised into quantum registers, hence they can represent numbers in binary format.

The series of gates that act on the register is called a quantum circuit. A device that that can effect a

quantum circuit is known as a quantum processor. These are the components of a digital quantum

computer.

A digital quantum computer could execute a quantum algorithm that comprises quantum cir-

cuits. A quantum algorithm implies one that can theoretically solve some problem faster than any

classical counterpart. These kind of problems are characterised by having many possible (correct

or incorrect) solutions that could be considered, but only one solution is required. By creating

superpositions between the states in the register the potential solution set can be considered as a

whole, with quantum interference effects constructively and destructively filtering for a solution.

David Deutsch describes this in the ‘many universe’ interpretation as each universe considering

one of the potential solutions, the incorrect (or sub-optimal) ones are ruled out, leaving all uni-

verses with a correct (or optimal) solution [24]. If there is only one solution, then all universes

agree, otherwise the measurement outcome is probabilistic. Problems that can be solved expo-

nentially faster on a quantum computer form the BQP complexity class. This is a small subset of

problems that can be solved by a computer, and so quantum computers will never replace clas-

sical computers. there is just this small subset of problems on which a quantum computer could

out-perform a classical computer.

The most famous quantum algorithm is Peter Shor’s algorithm for prime factoring of large

numbers [47, 48]. It is famous because it is practical and dangerous. Practical for the purpose of

demonstrating quantum computing, because the qubit register simply needs to be initialised with

the product of two prime numbers. It is dangerous because the public-private key encryption that

underpins much of current internet security relies on the assumption that factorising the product

of two large prime numbers is computationally very challenging. Public keys that could not be

cracked within any reasonable time frame using any classical algorithm could in theory be cracked

almost instantaneously by a quantum computer running Shor’s algorithm. However, to crack cur-
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rently used keys thousands of coherent qubits would be needed, which is very far from the current

technology. Also, there is a whole research devoted to preparing for this potential danger – post

quantum cryptography.

It can be proven that only a small set of quantum gates involving a maximum of 2 qubits each

is required to perform any quantum algorithm [49]. One such set of universal quantum gates is the

single qubit gates Hadamard H , phase gate T = Rz(π/4) and the two qubit controlled-NOT. In

matrix form these are

H =
1√
2

1 1

1 −1

 , T =

1 0

0 eiπ/4

 , CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.42)

So any computer able to effect these gates can be considered a universal quantum computer.

This description of quantum computing based on qubit registers is the most common. The

principles are applicable to other types of quantum system, some of which are discussed in the

next chapter. Entirely different models, not based on gates, have also been proposed. As quantum

computers are only ever expected to perform a specific small subset of computing problems with

any advantage over digital computers, then it clearly makes sense to aim for binary inputs and

outputs to allow simple logical interfaces between them.

In practice coupling to the environment leads to loss of coherence in the qubit states. Prepara-

tion of the initial state, gate application, and read out of the final state all also prone to error with

some probability. For all of these sources of error there are protection protocols. However, they

all require some additional qubits, known as ancillas, with a greater number required for higher

error probabilities. Decoherence is a function of time, and the time required for the algorithm is

a function of the gate time. Hence maximising the gate fidelity and minimising the gate time are

imperative objectives for furthering this technology. These are key objectives of quantum control,

and a central focus of this study.

Computers that run Shor’s algorithm have been built. The first claim for this was from IBM in

2001, using the 7 spins of a molecule in an NMR controlled experiment to factorise 15 into 3 and
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5 [50]. Since May 2016 IBM have provided public access to a 5 qubit quantum processor based

on superconducting transmon qubits. This they call the ‘IBM Q Experience’, and as of May 2018

it has two 5 qubit and one 16 qubit processors available to the public. As well as an online circuit

configuration interface, quantum algorithms can be constructed using a Python library called Qiskit

and submitted to the job queue via the portal. Google partnering with the University of California

Santa Barbara have also chosen to lead their quantum computer development using a similar tech-

nology. A 16 qubit processor will not demonstratively out-perform current classical computing

hardware in solving any problem. Scaling these systems to a number of coherent qubits that will

demonstrate this remains the current challenge, and is called demonstrating quantum supremacy

[51]. Google claim that a 50 qubit processor will be sufficient to show quantum supremacy with

their technology [52], although it is anticipated that the first demonstration of supremacy is likely

be through boson sampling to calculate the permanent of a large matrix [53, 54].

Such is the intensity of drive to succeed in this elusive field, and the time elapsed since its con-

ception, that a great many solutions have been proposed and developed. Ionised atoms trapped by

electromagnetic fields have been held as a forerunner [55], with qubits stored in electronic states

and interactions for multi-qubit gates through coupled motional states. Qubits represented by the

polarised states of photons are also believed to be strong candidate for success. Gates are effected

through standard linear optical equipment of beam splitters and phases shifters. They would also

work at room temperature, unlike transmon and ion trap computers. They are particularly suited to

distributed computing, quantum communication and networks, as the qubits are inherently mobile.

Qubits held in single electron transistors or nuclear spins in doped silicon offer the best intercon-

nectivity with current classical digital computers [56, 57].

Superconducting circuit qubits provide a platform where the single and two-qubit gates can be

effected with high fidelity and the preparation and readout steps can be performed reliably [58].

In 2014 the Google and Santa Barbara partnership reported fidelities with single-qubit gates of up

to 99.92% and two-qubit gate fidelity of up to 99.4% [59]. Their current challenge is scaling this

to sufficiently large qubit registers. Scalability problems are also faced by those groups trying to

build a scalable quantum computer using quantum optical devices [60]. High fidelity single qubit

and multi-qubit gates can be effected [61]. Trapping many ions is relatively easy, but the individual
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addressing to make them a registers of qubits is not. In all of these systems scalability is now the

main challenge.

It is impossible to predict which of these technologies, or others not mentioned, will succeed

and maybe come to dominate, or whether some combination provides they key. Some doubt that

quantum supremacy will ever be demonstrated [62], and that maybe the idea violates some princi-

ple yet to be discovered.

1.5.5 Quantum machine learning

With recent advances in machine learning technology, in particular the graphical processing units

that enable fast training of large data sets, applications have been finding mainstream attention.

One of the most striking was when Google’s AlphaGo beat the world champion at Go [63]. The

state-of-the-art for solving some higher dimensional space optimisation problems are these kind

of deep learning tools. Machine learning approaches have been shown to out-perform established

methods in many areas of physics research, including devising new experiments generating quan-

tum entanglement [64], quantum error correction [65], and in quantum control [66]. Reinforcement

learning is based on trailing potential solutions and learning through rewards. In deep reinforced

learning neural networks provide the learning platform to support the learning process. This deep

reinforced learning method is used by AlphaGo, and has now been used in quantum optimal control

[67, 68]. Machine learning has also be shown to work in situ to optimise Bose-Einstein condensate

production [69], where they refer to it as ‘online optimization’.

Consequently scientists and technologists look to improve upon the technology. The main

time limiting factor in systems based on neural networks is the computational resource required

to optimise the weights based on the training data. Therefore many scientists are looking at this

process to assess the potential for quantum speedups.

The training of these neural networks actually uses the same linear algebra and gradient-based,

multi-variable optimisation methods that are discussed in Subsection 1.6.2. As discussed in the

review article [70], there is much on-going work to make fully quantum machine learning tools.

Underlying components such as linear algebra and gradient based optimisation have proposed

quantum algorithms [71, 72], although all have limitations that make them currently impractical
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due to the number of qubits required. All of these algorithmic tools require a quantum computer

to run on, and so until quantum supremacy has been demonstrated, presumably with simpler algo-

rithms, quantum speedups for machine learning cannot be verified. However, the hints of recursion

here at least allow the imagining of a fully quantum computing device that optimises itself for gate

time and fidelity. Some steps towards this are the subject of Chapter 4.

1.6 Quantum control function optimisation

Determining the shape of the functions uj(t) in Eq. (1.28) to achieve some objective is the role

of control function optimisation. When equation Eq. (1.28) describes the dynamics of a quantum

system, such as in Eq. (1.23) then this is called quantum control function optimisation, or simply

quantum control optimisation. This objective could be transfer from one state to another, known as

state-to-state control, or some specific operator, known as gate synthesis. For the unitary dynamics

described above, in the state-to-state case the initial condition is set as state |ψ0〉 and the target

would be some state |ψtarget〉. In the gate synthesis case the initial condition is I and the target

Utarget. Although there are analytical methods optimising the control functions, for instance those

used in Refs. [73, 74], these are applicable only in specific cases, and this study investigates control

of many-body systems without specific symmetries, such as those used in quantum information

processing. Typically the process starts from some guess for the control functions, and then a

numerical optimisation method is used to iteratively improve upon the guess until the objective is

achieved. This is often referred to as control pulse optimisation or just pulse optimisation.

1.6.1 Cost functions

Typically an optimisation method will look to manipulate a set of variables with the aim of min-

imising some cost function. The primary objective here is to achieve the desired evolution target,

therefore some method of measuring the equivalence of the operator or state evolved under the

controls and the target is required. This is often referred to as a figure of merit or fidelity when

there is a theoretical ceiling, and hence it is a valid aim to maximise the fidelity. As it is more typ-

ical in numerical algorithms to minimise a function, rather than maximise, the aim is to minimise
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the error in fidelity, known as the fidelity error or infidelity. Therefore the first component of the

cost function is the infidelity. The fidelity will be denoted F and the fidelity error E , both are real

numbers. For the purpose of optimising controls to implement gates or state transfers all that is re-

ally needed is some measure that increases or decreases monotonically as the target is approached,

and that is equal to a known value when the target is reached. Ideally, for comparability, these

would be bounded as 0 < F < 1, 1 > E > 0 [75]. Whereas for all measures presented below it

possible to find a lower bound for E > 0, it is not always possible to find an upper bound, as will

be seen for the non-compact group investigated in Chapter 3.

Unitary fidelity

When the dynamics are that of a normalised state vector |ψ〉 in Eq. (1.4), or equivalently a unitary

operator U in Eq. (1.6), then, assuming that the target has been achieved exactly, the normalised

overlap of the final evolution and target will yield unity. That is

g = 〈ψtarget|ψ(T )〉 , g = 1 =⇒ |ψ(T )〉 = |ψtarget〉 , (1.43)

or

g = λTr {U †targetU(T )} , g = 1 =⇒ U(T ) = Utarget , (1.44)

where g ∈ C, 0 < |g| < 1. For a system of dimension d, the scaling factor λ = 1/d. If |g| = 1 then

the evolution and target differ only by a global phase. Therefore the most typical fidelity measure

for unitary systems, where global phase differences are typically ignored, is

FPSU := |g| . (1.45)

The PSU subscript here indicates the projective special unitary group, in which matrices differing

only by a phase are equivalent. If global phase differences are to be respected then the measure is

FSU := Re g . (1.46)
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In either case the infidelity is given by

E = 1−F . (1.47)

General matrix infidelity

For a general matrix evolution it is possible to define a measure of the infidelity, which will be

referred to as the trace difference infidelity, as

ETD := λ 〈X(T )−Xtarget〉F = λTr[(X(T )−Xtarget)
†(X(T )−Xtarget)] , (1.48)

where λ is some scale factor, and 〈·〉F denotes the Frobenius inner product, which is the square

of the Frobenius norm ‖·‖F. This can therefore be used when the evolution operators belong to

any subgroup of the general linear Lie group GL(n). It is chosen because it is relatively efficient

to calculate gradients, which is discussed later in this section. The application of this infidelity in

various regimes of quantum dynamics is discussed in Ref. [76]. The trace difference infidelity can

related to the unitary gate fidelity by first choosing the appropriate scale factor, which is 1
2n

for an

n× n matrix, and then

FSU =
√

1− EFD , (1.49)

for Xtarget, X(T ) ∈ U(d). There is no equivalence for ignoring global phase differences with this

measure, and hence it cannot be related to FPSU in any similar way.

Density matrix infidelity

The general matrix infidelity can also be used in optimising state-to-state transfer for ensembles or

reduced states, that is when the states are represented by density matrices. The equivalent fidelity

measure to the FSU of pure states is

FDM := Tr[
√
ρtarget · ρ(T )

√
ρtarget] . (1.50)
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Note that in some literature, including [20] the fidelity is defined as
√
FDM. However, there are

strong arguments for using the definition of Eq. (1.50), as in the context of quantum processes this

can be interpreted as the probability of success for a quantum computation [75]. A typical measure

for the infidelity of two density matrices is the trace distance

D(ρ1, ρ2) := 1
2

Tr |ρ1 − ρ2| , (1.51)

where |X| =
√
X†X . With the definition of FDM in Eq. (1.50)D(ρ1, ρ2)2 = 1−FDM(ρ1, ρ2) [20],

and so ETD(ρtarget, ρ(T )) = (D(ρtarget, ρ(T )))2. Hence a reasonable infidelity for density matrices

is

Eρ := 1
2
〈ρ(T )− ρtarget〉F , (1.52)

which is the same as the trace difference Eq. (1.48), with X = ρ, λ = 0.5.

Both the trace distance and the fidelity are widely used in quantum information science accord-

ing to Ref. [75], in which a wide variety of distance measures are discussed. As what is of primary

interest is F / 1 or E ' 0, then either is valid for optimisation purposes. The square root makes

analytic gradients difficult, so the trace difference is preferred over the trace distance when using

optimisation methods that use gradients.

Penalty functions

It may be desirable to combine the optimisation with respect to the infidelity with some other ob-

jectives that are important for some physical implementation of the control function. These would

often include favouring smoothness in the functions, or minimising the total energy required, and

very often minimising the total evolution time. These can objectives can be included in the opti-

misation procedure by adding some penalty functions to the cost function. These would be some

function of the control function parameters, which in the given examples would scale with mean

absolute gradient, integral of the absolute amplitude, total evolution time.

Although the penalty functions can be fairly straight forward to include in the cost function,

they are not always so trivial to include in the gradient calculations. This is a problem in gradient

based algorithms, which will be discussed later in this section. Recently the use of automatic
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differentiation techniques have been able to overcome this problem [77].

1.6.2 Multi-variable optimisation methods

Having defined some cost function to minimise, the next step is find some scheme of parametri-

sation for the control functions. That is, to have some discrete set of variables for an optimisation

method. The most obvious parametrisation is the piecewise constant timeslots, as this also allows

for exact calculation of the evolution using Eq. (1.33). In some experimental settings smooth con-

trol functions are advantageous, in which case other parametrisation schemes are needed. These

are discussed below in Subsection 1.6.6. In this study the piecewise constant parametrisation is

used exclusively, as analytic gradients can be computed, allowing the most efficient use of gradient

based optimisation methods, and hence it is the focus here.

The variables for the optimisation method are then the amplitudes for a specific control in a

given timeslot. They will be referred as control timeslot amplitudes. Following the notation of

Section 1.3, uj,k is the amplitude of the jth control in the kth timeslot, hence

uj(t) = uj,k, tk−1 < t ≤ tk, k = 1, 2, . . . , Nt . (1.53)

Hence this leads to Np = NcNt variables for the optimisation method (Nc being the number of

controls). For numerical methods the efficiency, and often efficacy, is improved by using the lowest

possible number of variables. However, a sufficient number are required, otherwise the problem is

over-constrained. Theoretically the minimum should be d2 for gate synthesis and 2d− 1 for state-

to-state control, as this is the number of parameters in U and |ψ〉 respectively for a d dimensional

system. However, in practice, this is difficult to predict in many-body systems, and trial-and-

error approaches are valid for finding lower numbers of parameters that work. To a multi-variable

optimisation method they would be indistinguishable, and hence they could be represented by a

vector on real-valued vector space ~α = (α1, . . . , αNp).
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Gradient based methods

Many methods use the gradient of the cost function with respect to the optimisation variables to

direct the search for optimal parameters. In a first order gradient method each iteration of the

method is to take a single step in the direction of maximum gradient. This can be visualised as

attempting to reach the top of a hill by taking each step in the steepest direction, which may be

the only option travelling by foot on a foggy day with no map. Consequently, gradient based

methods are often referred to as ‘hill-climbing’ methods. Optimisation problems can generally be

turned on their head with an appropriate minus sign, and it is more typical to frame a problem as

a minimisation. In which case the analogy would be ‘hill-descending’. However, in a theoretical

multi-dimensional parameter space there is no limit to the size of step that may be taken. Therefore

it is possible to jump directly to the solution if it can be determined in some way. In practice first-

order gradient methods are slow to converge, and it is difficult to chose an appropriate step size

[78].

Newton-Raphson method

The Newton-Raphson method for finding the roots of a function can also be applied to multi-

variable optimisation. In one dimension the root of function f(x) can be approximated by succes-

sive iterations of

xn+1 = xn −
f(xn)

f ′(xn)
, (1.54)

where f ′ is the derivative of the function. Geometrically this can be seen as xn+1 being the X-

intercept of the tangent to the function. The method is known to converge on the root quadratically

so long as the derivative is well behaved near the root. It is clear that the method can be adapted to

find stationary points by looking for the roots of the derivative, that is

xn+1 = xn −
f ′(xn)

f ′′(xn)
, (1.55)

In multiple dimensions the derivative of the function on the parameter space ∇f(~α) is known

as the gradient. In the context of the control pulse optimisation this is the derivative with respect

to each of the pulse parameters, and hence will be a vector of length Np. The matrix of second
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derivatives is called the Hessian, and will be denotedB. Note that Hessian is symmetric as ∂2f
∂αlαm

=

∂2f
∂αmαl

for a well behaved function f . The Hessian for the pulse optimisation will be a Np × Np

matrix. The iterative step for a multi-variable function optimisation is then

~αn+1 = ~αn −B−1∇f(~α) , (1.56)

whereB−1 is the inverse of the Hessian. In the large dimensional system the inverse of the Hessian

could be numerically expensive to calculate, and so the step could be solved as if for a system of

linear equations

B∆~α=∇f(~α) , (1.57)

where ∆~α = ~αn+1 − ~αn.

Due to the perceived difficulty of calculating second order derivatives of fidelity functions, or

the anticipation of excessive computational expense, the use full Newton-Raphson optimisation

method has been avoided in quantum optimal control, although some success with this method is

reported in Ref. [79]. Instead the so-called quasi-Newton methods are preferred.

Quasi-Newton methods

It may not be trivial to gain the analytic expressions the second order derivatives with respect to

all the pulse parameters, or they may just be too numerically expensive to compute. For these

situations a family of methods have been developed that make an approximation of the Hessian, or

its inverse, over successive iterations. This is known as the quasi-Newton family of methods. One

of the most widely used is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method [80]. In

variants where the full Hessian matrix (or its inverse) is not stored, rather a set of gradients from

successive iterations are stored and used to compute the iteration step, the method is called limited

memory or L-BFGS. In general BFGS is an unconstrained optimisation method, that is no bounds

are placed on the optimisation variables. Variants where bounds can be placed on the variables are

called BFGS-B, and the limited memory, bounded variants called L-BFGS-B [81].
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1.6.3 Gradient calculations

Not all optimisation methods require gradients, however those that do are generally found to con-

verge faster in quantum optimal control [78, 82]. It is possible to calculate approximate gradients

using finite difference method, that is

∂E
∂αk

≈
[
E((α1, . . . , αk + ε, . . . , αNp))− E(~α)

]
/ε , (1.58)

where ε is a ‘trial’ step-size in each direction to estimate the gradient. However, each call to an

infidelity function can be costly to compute, as each would require computation of the system

evolution as Eq. (1.33). This is particularly so for a large Hilbert space, as numerical computation

of a matrix exponential is an expensive operation for large matrices. This would typically be

compounded by there also being a large number of optimisation parameters, which in a piecewise

constant parametrisation would correspond to many propagators that require exponentiation to

calculate. Consequently, finding a method for calculating gradients that does not require repeated

calculation of the full evolution would be highly advantageous. It is also difficult to chose an

appropriate step-size ε, too small will fail to find a gradient, and too large will miss features of the

parameter landscape.

The method for calculating exact gradients used in this study was first introduced as the GRAPE

algorithm. The GRadient Ascent Pulse Engineering algorithm was first proposed as a method for

optimising the control pulse in NMR coupled spin dynamics [83]. GRAPE was compared with the

Krotov type algorithms in Ref. [78], which introduced a library developed in MATLAB called ‘DY-

NAMO’. This paper is the main source of reference for this section, as the version of the algorithm

used in this study was based upon it. For more detail on the algorithm used in this study see section

Section 2.3. The GRAPE paper proposed this method of calculating the gradients using what they

called forward and back propagation. In the original GRAPE paper these gradients were used in a

first order hill climbing method to maximise the fidelity. The DYNAMO paper and corresponding

library improved the performance of the algorithm by introducing new methods for calculating the

gradient, using the BFGS optimisation method, and other efficiencies gained through reducing the

number of matrix multiplications. The GRAPE algorithm was further enhanced by proposals in
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Ref. [76] by clarifying how to efficiently calculate the propagator gradient for the general matrix

evolution and apply this to the trace difference fidelity, hence making GRAPE generally accessible

for open system and symplectic dynamics, as will be seen later.

Propagator gradient

To calculate the gradients of the fidelity with respect to the optimisation parameters, first the prop-

agator gradient corresponding to each of the parameters must be calculated. In the piecewise

constant setting this is a propagator gradient for each control timeslot. The method for unitary

dynamics, based on the spectral theorem, given in [78] is

〈λl|
∂X

∂uj,k
|λm〉 =


−i∆t 〈λl|Hj|λm〉 e−i∆tλl if λl = λm

−i∆t 〈λl|Hj|λm〉 e
−i∆tλl−e−i∆tλm
−i∆t (λl−λm)

if λl 6= λm ,

(1.59)

here the |λi〉 are the orthonormal eigenbasis of Htk , the combined Hamiltonian in the kth timeslot,

and 〈λl| ∂X∂uj,k
|λm〉 is the propagator gradient is this basis. One of the other advantages of this

method is that it puts the timeslot Hamiltonian in its eigenbasis so that propagator Xk can be

calculated by exponentiating the diagonal elements, which is significantly less expensive than a

full matrix exponentiation. The derivation of this method is given in Appendix A of [78].

The propagator gradient for a general linear matrix can be calculated using the augmented

matrix method, as described in [76], that is

Xk
∂X
∂uj,k

0 Xk

 = exp

Atk∆t Aj∆t

0 Atk∆t

 (1.60)

where Atk is the combined dynamics generator at time tk. Here it can be seen that the propagator

is again computed as a bi-product. This is also known as the Fréchet derivative [84].

Infidelity gradients

To see how these propagator gradients can be used to calculate the exact gradient of the infidelity it

is convenient to introduce a notation borrowed from Ref. [78] for the time evolution of the system
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up to tk

X(tk) = Xk:0 := Xk ·Xk−1 · · ·X1 ·X0 (1.61)

where X0 is the initial state or operator, that is X0 = |ψ0〉 for state-to-state (X0 = ~x in general

vector evolution) or X0 = I for operator evolution. This is referred to as the forward propagation.

Also it is necessary to define what is called the co-state in Ref. [78] which comes from what is

described as backward propagation in Refs. [83, 78], but here is called onto propagation to the

target XNt+1 ≡ Xtarget,

Λ†(tk) = Λ†:k+1 :=X†targetXNtXNt−1 · · ·Xk+1

=X†Nt+1XNtXNt−1 · · ·Xk+1 .
(1.62)

This is the evolution backwards (in the Dyson time-ordering sense) from the target operator, or the

evolution onto the target, from the end of timeslot k.

In terms of these the overlap from Eq. (1.43) is

g = λTr {Λ†(tk)X(tk)} = λTr {Λ†:k+1Xk:0} ∀k , (1.63)

with λ = 1
‖Xtarget‖2

, and where Λ†:k+1 is the onto propagation defined in Eq. (1.62).

Using these definitions the fidelity gradients, as derived in Ref. [78], are

∂FPSU

∂uj,k
= λRe Tr

{
e−iφg · Λ†:k+1

(
∂Xk

∂uj,k

)
Xk−1:0

}
, (1.64)

where φg is the phase of g.

∂FSU

∂uj,k
= λRe Tr

{
Λ†:k+1

(
∂Xk

∂uj,k

)
Xk−1:0

}
, (1.65)

In both cases the infidelity gradient is

∂E
∂uj,k

= − ∂F
∂uj,k

. (1.66)
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Following the method in Ref. [76] the gradients for the trace difference infidelity, using ∆(T ) =

X(T )−Xtarget, can be calculated as

∂EFD

∂uj,k
:= −2λTr

{
∆(T )†XNt:k+1

(
∂Xk

∂uj,k

)
Xk−1:0

}
. (1.67)

These are the final components required for the GRAPE algorithm. Note the propagation oper-

ator from the timeslot k onward until final time XNt:k+1 used here is referred to as the onward

propagation.

1.6.4 GRAPE overview

All the components for the GRAPE algorithm have been defined in this section. The algorithm, as

applied in this study, is shown in the flow diagram Fig. 1.3. Further detail on some of the steps is

given here.

1. Initialisation

(a) define dynamics – specify drift and control dynamics generators

(b) specify objective – specify initial and target state or operation

(c) set cost function – choose cost (fidelity error) and corresponding gradient calculation

functions

(d) define timeslots – specify piecewise constant evolution parameters: total time T and

number of timeslots Nt

(e) guess pulse – generate an initial pulse with randomised amplitudes

(f) set term. conditions – specify termination conditions: target fidelity error Etarget, max-

imum iterations etc.

(g) initiate MVO – initiate multi-variable optimisation method: BFGS variant

2. BFGS steps

(a) calculate system evolution – solve equation of motion, e.g. Schrod̈inger
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Initialisation Steps Quasi-Newton MVO Steps

define 
dynamics

set cost
function

define 
timelsots

specify 
objective

guess 
pulse

set term. 
conditions

initiate 
MVO

calculate 
system evo.

calculate 
cost

Terminate?

calculate 
gradients

update 
Hessian

update 
opt. vars.

report
solution

Y

N

Figure 1.3: Flow diagram of the GRAPE algorithm. The Initialisation Steps are performed
once. The Quasi-Newton Multi-Variable Optimisation (MVO) Steps are repeated until
the method terminates, either having found a solution or otherwise. Further detail on
the steps is given in the main text.

(b) calculate cost – compute infidelity, and potentially penalty functions

(c) check for termination – a solution has been found or early termination (discussed fur-

ther below)

(d) calculate gradients – exact or approximate gradients with respect to the control vari-

ables

(e) update Hessian approximation – estimate second order gradients (MVO method depen-

dent)
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(f) update optimisation variables – set control parameters with values proposed by the

MVO method

The initialisation steps are completed once, the BFGS steps are repeated until some termination

has been met. A successful outcome would be when the cost function returns a value that is below

a specified target Etarget. In practice, if a target is reachable, then achieving infidelities orders of

magnitude lower is simply a case of more iterations, and so in this study, which is mainly about

whether targets in a wide range of scenarios can be reached in principle, target infidelities are set

reasonably high, e.g. 1×10−3. The BFGS method will terminate itself if it determines the function

has converged on a local minima. It does this either by finding that the norm of the gradient is

below some threshold, or that the reduction in the cost function in successive iterations is below

some threshold. It is also possible to set iteration and processing time limits for practical reasons.

1.6.5 GRAPE implementation

The GRAPE algorithm was selected for this theoretical study of various control objectives in many-

body systems for many reasons. It is well established technique that has been used to produce the

results in many publications. It is comparatively efficient to compute, especially when analytical

gradients can be used. This allowed for many different scenarios to be tested, and sufficient range

of scale in the number of interacting entities for hypotheses to be trialled. The results presented

herein are for model systems, and so the realistic modelling of physical system constraints is not

necessary, which is the motivation behind some of the other algorithms, as discussed later in this

chapter.

The GRAPE algorithm was implemented in QuTiP by the thesis author, and is used throughout

this study. QuTiP is an open source Python toolkit for simulating quantum dynamics [16, 17].

QuTiP, particularly the control modules, and the other developments within it that were made by

the thesis author specifically for this study, are described in some detail in Chapter 2. The afore-

mentioned DYNAMO library [78] is also open source. It runs within the Matlab environment,

which suits many researchers because they are experienced Matlab users. However, it can lead

to restrictions in usage, as Matlab is not free to use, and for instance it is not available on some
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high-performance computing clusters. A library called Spinach for simulating the dynamics of

spin systems in NMR experiments is developed and maintained by the Spin Dynamics group at

Southampton University [85]. This is another open-source Matlab library that contains an imple-

mentation of GRAPE, and is specifically aimed at NMR experiment optimisation.

Matlab has been the industry standard tool for numerical methods for many years. However,

as the Python libraries that offer equivalent functionally, in particular Numpy [86] and Scipy [87],

have matured, increasingly many research groups have switched to using these in preference. Also,

many students are now taught how to develop numerical methods using Python in their undergrad-

uate courses. The cost benefits are obvious, both to academic institutions and the students and

researchers, but there are also the other benefits associated with open access to source code. In

the particular case of quantum dynamics simulation, QuTiP has become something of an industry

standard. It has many thousands of users and hundreds of publications citing its use.

Although it has proven very successful in solving a wide range of quantum optimal control

problems, GRAPE does have limitations. These are mainly related to its main strength, which

is very computationally efficient convergence on a solution due to the use of analytic gradients.

The analytic gradient calculations require that total evolution time T is fixed for a particular pulse

optimisation. Due to the inherent problem of decoherence due to interaction of quantum systems

with the environment, time optimal control, in which the minimum time to achieve the target is

sought, is a common objective. This is possible with GRAPE, but only through successive optimi-

sation attempts with decreasing evolution times. Another issue is that there is nothing inherent in

GRAPE to favour control pulses that are easier to implement experimentally. In many experimen-

tal setups pulses are produced by analogue devices that generate smooth waveforms. In these cases

a parametrisation other than piecewise constant would more accurately simulate the pulse. Some

of these limitations have been addressed by penalty function adaptations to GRAPE, as mentioned

above in Subsection 1.6.1. Others have been addressed by alternative quantum optimal control

algorithms.
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1.6.6 Other QOC algorithms

Krotov-type

There are a class of methods referred to as Krotov-type, based on principles introduced in [88],

which were first formulated to facilitate the soft landing of spacecraft. They are based on the

variational principle for minimising some functional that includes the infidelity and any penalty

functions. They are also based on a fixed set of control parameters, which are typically piecewise

constant control functions. They differ from GRAPE primarily due to their update scheme, which

is that control amplitudes in a timeslot are updated sequentially, rather than concurrently as they

are in GRAPE. They are favoured over GRAPE by some research groups, including the Quantum

Dynamics and Control Group, University of Kassel. A Krotov-type algorithm for quantum control

pulse optimisation as an open-source library for Python, that uses QuTiP for computing the system

evolution, has recently been released [89].

Chopped RAndom Basis algorithm

The Chopped RAndom Basis algorithm known as CRAB [90, 91] looks to find experimentally

achievable pulses by allowing for parametrisation of pulses based on those available in the lab. For

instance, it may be possible to construct a control pulse based on the sum waveforms, such as the

modified the Fourier basis, which is typical in CRAB, given by

u(t) =

NF∑
n=1

{an sin(ωnt) + bn cos(ωnt)} (1.68)

where ωn = 2nπ
T

+ rn with rn uniformly distributed in [−0.5, 0.5]. The frequencies, based on the

number of modes NF and the randomly generated frequency offsets rn, are fixed for a particu-

lar optimisation. The optimisation variables are the coefficients, these forming the vector in the

parameter space

~α = (a1, b1, . . . , an, bn, . . . , aNF , bNF) . (1.69)

Using such a basis it is possible to specify a smoothly varying control pulse with significantly

fewer parameters than with a close approximation using a piecewise constant parametrisation.
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The algorithm does not use analytic gradients, but rather uses a simplex optimisation method

Nelder-Mead [92], which is feasible due to the small number of parameters. Nelder-Mead does

not perform well with large dimensional parameter spaces. There are many variants of the method,

but all are based on the concept of a simplex, which is a polygon in the Np dimensional parameter

space with Np + 1 vertices, i.e. in the two-dimensional hill descending example, this would be a

triangle on the map. In the optimisation method these points are the Np + 1 lowest cost function

evaluations so far. The primary step type is called a ‘reflection’, where the worst point is reflected

about the centroid of the simplex outside of its bounds. If the cost is lower, then ‘expansion’ steps

extend in the same direction while the cost is continued to be found lower, and the best point

replaces the worst point. ‘Contraction’ steps follow the same direction, but inside of the simplex,

with the assumption that a local minima is within it.

As it does not use gradients, then the penalties to the cost for maximum amplitudes, total en-

ergy, and total time can easily be added. The parameter NF allows exclusion of higher frequencies,

which may be unrealisable in an experiment. CRAB also addresses experimental constraints such

as ramping, where a control field may have to start at zero amplitude and have a maximum gradi-

ent, or specific profile, that it can achieve when heading to maximum amplitude. This is done by

specifying envelopes for the pulse.

The evolution of the system is calculated using a piecewise constant approximation to the

smooth pulse. The precision of the approximation clearly depends on the granularity of the dis-

cretisation, with it tending to exact as ∆t → 0. This means many more matrix exponentiations

than a GRAPE evolution with the equivalent number of optimisation variables. Simplex meth-

ods generally require many more steps for convergence than gradient based methods. These two

factors make CRAB significantly more computationally expensive than GRAPE for an equivalent

problem, so it is only appropriate when it is necessary to address experimental realisation.

The thesis author implemented the CRAB algorithm in QuTiP during the period of this study.

However, it is not used to produce any of the results. As actual physical realisation here is unim-

portant, hence the shape of the pulse not relevant, then the faster convergence of GRAPE make it

more suitable.
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Gradient Optimization of Analytic conTrols algorithm

Clearly, experimental realisation is a vital part of the scientific research process, and therefore the

combining the features of the CRAB algorithm that support this in quantum control experiments,

with the faster convergence of gradient based algorithms is an important aim of scientific tool

development. The Gradient Optimization of Analytic conTrols algorithm or GOAT [82] appears

to provide the advantages of physical motivated parametrisation of control functions with the fast

convergence of gradient based optimisation methods.

An outline of the algorithm, as described in [82], is given below. First reframing the bilinear

control system of Eq. (1.27) as

A(t, ~α) = A0 +
Nc∑
j=1

uj(t, ~α)Aj . (1.70)

Here the components of ~α determine the value of the control functions at time t, and are assumed

accessible to the optimiser. They are the components of a parametrisation scheme, which could be

any that is differentiable by the components, as ∂X(t)
∂α

needs to be derived for each component. The

algorithm is centred around the co-evolution of propagator gradients, described by

∂

∂t

X(t)

∂X(t)
∂~α

 =

A 0

∂A
∂~α

A

X(t)

∂X(t)
∂~α

 (1.71)

representing multiple equations of motion, one for each of the components of ~α. HereA = A(t, ~α).

The equations of motion can be solved by an ordinary differential equation (ODE) solver. The

use of numerical ODE solvers in time-dependent quantum dynamics is well established [16, 17].

Solving Eq. (1.71) to t = T gives X(T ) and the ∂X(T )
∂~α

.

As an example of this applied to cost gradient evaluation, if the A are skew Hermitian, that

is A = −iH , then the evolution is unitary, that is X(t) = U(t). In this case then the an-

alytic gradients for projective special unitary infidelity, from Eq. (1.45) EPSU := 1 − |g| with

g = λTr {U †targetU(T )} and λ = 1/‖Utarget‖2, can be calculated as

∂EPSU

∂~α
= −λRe Tr

(
e−iφgU†target ·

∂U(α̃,T)

∂α̃

)
. (1.72)
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Note that no ‘onto’ propagation (Eq. (1.62)) is required with this method.

This then provides an alternative method for calculating gradients of cost functions with respect

to parameters that drive the control system for any practical parametrisation scheme and infidelity

measure. This means that it provides all the necessary ingredients for a gradient based multi-

variable optimisation method, such as BFGS. Hence a procedure otherwise almost identical to that

for GRAPE described in Section 1.6.4 can be applied to complete the GOAT algorithm.

Ref. [82] describes how the parameter space can be mapped onto other subspaces in order to

apply constraints such as amplitude bounds and pulse ramping. It is not immediately apparent how

penalties such as total time and total energy could be applied to the cost function, but assuming that

this is possible, then it would seem that GOAT provides all the experimental setting advantages of

CRAB, but with a more computationally efficient method.

1.6.7 Local traps

In general a multi-variable optimisation method will converge on the first local minima it finds from

the initial random guess (or analytically estimated) parameter space vector. In the hill descending

analogy this could be some elevated bowl. If the global minima is the objective, which may be

degenerate, for instance in the quantum control case there may be many solutions that achieve the

target fidelity, then finding a sub-optimal minima is a failed search. For obvious reasons these

sub-optimal minima are referred to as traps. There are sophisticated methods for escaping these

traps, such as an adapted technique from simulated annealing: applying a small ‘kick’ to try and

get over the lip of the bowl and start descending downhill again. The ‘Dresssed CRAB’ or DCRAB

algorithm [93] looks to address this by adaptively changing the basis for its parametrisation when

a local minima is encountered that is outside of the target infidelity.

A commonly used, less sophisticated, method is to simply try different initial guess solutions

until the optimisation achieves its goal. With the infidelity minimisation goal the lowest possible

global minimum is zero, and so it is easy to set some target threshold. Without some understanding

of the topology of the parameter landscape it is difficult to conclude much when the goal is not

reached, even after many attempts, other than there are at least some non-global minima.

The Rabitz group at Princeton have studied the control parameter landscape extensively [94,
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95, 96, 97]. They prove that no local sub-optimal minima exist for controllable systems when

the controls are unconstrained [94]. This was refuted in [98] by counter-example, showing that

traps exist in three-level systems with a forbidden transition between the lowest two levels, know

as Λ systems. The Rabitz group position was reduced to claim “almost always trap free” in [97].

Meaning that control optimisation is trap free in almost all types of quantum system, and in par-

ticular, those systems most of interest in quantum computing – coupled qubit systems. The proof

is based on a geometric analysis of the control parameter landscape, which is shown to be convex

for systems of interest in quantum information processing.

Many studies using numerical quantum optimal control encounter traps, especially those in-

volving many-body quantum systems [99]. Any parametrisation of a control pulse introduces

some constraint, even if the there are no bounds on amplitude, as it limits the set of potential

functions. And so the debate continues, with those who are working practically to find successful

control pulses typically on side of traps being a reality. Whether the traps are encountered due

to parametrisation, or they a true traps due to the physics of the system, their potential existence

needs to be considered. Certainly it would not be valid to claim that a target is unreachable because

a quantum optimal control algorithm failed to find a solution from a single initial guess.
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Methods

The original implementation of the HEOM solver in QuTiP was developed by Dr. Neill Lambert,

RIKEN, Japan. The thesis author improved this code in terms of clarity, documentation and ef-

ficiency (quantified in this chapter). The description in Subsection 2.8.2 is of the code resulting

from their combined effort. The other methods described in this chapter were developed by the

thesis author, although often building on existing libraries, which are clearly attributed.

2.1 Introduction

This chapter gives details of the numerical and mathematical methods used to produce the results

in the later chapters. The purpose of the chapter is to give some additional description of how

some of the numerical results were produced, and provide sufficient detail for full reproducibility

of the results. A reader that is only interested in the scientific results may want to skip this chapter.

Many of this chapter’s sections, in particular Sections 2.6, 2.7 and 2.8, may make more sense if

the corresponding later chapters have been read first.

All the numerical methods described in this chapter were implemented in Python [100]. The

numerical library NumPy [86] and mathematical functions in SciPy [87] were used extensively.

The Pandas library [101] was used to read data from spreadsheet files when necessary. The com-

puter algebra system SymPy [102] was also used for some calculations. All plots were produced

using Matplotlib [103], except the 3D surface plots in Fig. 3.1 and Fig. 2.4, for which Mathemat-
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ica [104] was used, as the surface plotting was found to be superior to that in Matplotlib. Jupyter

notebooks [105] are an excellent medium for sharing numerical codes, as they combine codes with

narrative and illustrations. The codes for this study were mainly developed in Python modules

and executed through scripts, as this allows for automation, such as on a remote system, like a

high performance computing cluster. Linux Mint desktop [106] was the operating system for the

development and local execution of code.

In general Python 3.x was used, moving on from initially using Python 2.7, as recommended

by QuTiP colleagues. Many numerical libraries will freeze support for Python 2.7 in the near

future, so all scientific Python users should look to move to version 3.x if they have not already

done so. The Anaconda distribution [107] of Python is preferred by the thesis author, as it includes

the libraries typically used in scientific research. It also allows for multiple environments, where

different versions of libraries can be installed, so application specific environments can be set up

that do not risk other applications, including use of Python by system components. The NumPy

and SciPy libraries in Anaconda are compiled against the Intel Math Kernel Library (MKL) [108],

which claims to provide the best performance on Intel CPU-based systems. Instructions for setting

up an Anaconda environment for using QuTiP are available in the documentation [114].

2.2 QuTiP

QuTiP [16, 17], Quantum Toolkit in Python, is the most widely used and comprehensive software

for solving quantum dynamics. QuTiP development was started in 2011 by the Quantum Con-

densed Matter Group (QCMG) in RIKEN, Japan. The library was initially primarily developed

by Robert Johansson and Paul Nation during their postdoctoral research appointments at RIKEN.

Their motivation was to provide an open-source and open-platform library to replace the Quantum

Optics Toolbox [109] that, although still widely used at that time, had not been maintained for ten

years, and requires the Matlab software [110] to run. Matlab is widely used in scientific research,

however the cost is prohibitive to adoption by all institutions, whereas in contrast, Python is free

to use and the runtime components are available for almost any computing platform. By choosing

Python the developers of QuTiP have made numerical solving of quantum dynamics available to
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everyone who may want to, including researchers in all labs, large or small, wealthy or less so,

undergraduate students, and hobbyists.

The primary focus of QuTiP was originally in simulating open quantum systems through mas-

ter equation and Monte-Carlo solvers. The main physical systems they were looking to simulate

environment interaction effects within were quantum optics, trapped ions, superconducting cir-

cuit devices, and nanomechanical systems. As has been discussed elsewhere in this thesis, these

continue to be central in quantum physics research. The popularity in, and value to, the research

community is evident through: the number of papers citing use of QuTiP is in excess of 370; the

number of unique visitors to the website, which was 25,473 in 2016; and the number of downloads

of the conda-forge package – over fifty-thousand downloads since March 2016.

The QuTiP project has always been, and continues to be, passionately supported by its main

sponsor Dr. Franco Nori, Chief Scientist, and head of the Theoretical Quantum Physics Labora-

tory, at RIKEN, who has attracted funding and researchers to continue development and support

the library since its conception. There has always been a strong commitment to coding standards,

documentation and support, which has lead to its longevity. This is in contrast to many other

scientific software libraries for quantum dynamics, which fall into disuse, due to the well known

problems of maintaining open-source software, which typically relies on volunteers for continued

maintenance. The QuTiP library is currently predominately maintained by the author of this the-

sis, Nathan Shammah (RIKEN), Eric Giguere (Université de Sherbrooke) and Shahnawaz Ahmed

(Chalmers University, Gothenburg).

The Github development platform [111] makes collaboration on open-source projects manage-

able. This has allowed QuTiP to benefit from the many contributions of researchers, extending its

range of capabilities. The contributions are acknowledged on the QuTiP website [112], and statis-

tics relating to the contributions are accessible via the ‘Insight’ tab of the core qutip and related

repositories combined under the project [113]. The thesis author’s main contribution to QuTiP is

discussed below in Section 2.3. He made two invited visits to RIKEN during the period of this

study, six weeks in 2016 and five weeks in 2017. During these visits many technical aspects of

QuTiP were improved, in particular the installation on Microsoft Windows, which is now possible

through the Conda-forge channel described. The more scientific developments completed during
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the RIKEN visits are described in Section 2.8.

The simplest way to install QuTiP is via the Conda-forge channel, although there may be

performance benefits to ‘installing from source’, which is described in the QuTiP documentation

[114]. The installation from source means that C++ components of QuTiP are compiled specif-

ically on the local machine. It also allows for the selection of options such as using OpenMP

[115], which enables some of the QuTiP solvers to parallelise execution through multi-threading.

Installation from source is typically trivial on Unix type operating systems (which includes Linux

and MacOS). However, on Microsoft Windows, additional development packages are needed, as

the Microsoft OS does not have a C++ compiler built in as standard. These are freely available,

but can be awkward to set up. There are some runtime components of QuTiP that require a C++

compiler, these are the highest performing solvers for time-dependent Hamiltonian and Lindblad

operators. The Unix-based operating systems are therefore recommended for using QuTiP, though

all features are accessible under Microsoft Windows, and the vast majority do not need a C++

compiler.

2.3 QuTiP control

A control optimisation library was developed in Python by the author of this thesis as part of his

Masters project at Aberystwyth University. The library was provisionally named Qtrl. The mo-

tivations were similar to those behind the development of QuTiP. The Quantum Control Theory

Group under Dr. Daniel Burgarth were using the DYNAMO [78] package for numerical optimi-

sation of control in their research. The Group had limited access to Matlab licenses, which was

required for using DYNAMO, and therefore a license-free alternative provided the Group with

much greater flexibility when control optimisation simulation was needed. A particular motivation

for the license-free alternative was the opportunity to use the high-performance computing (HPC)

clusters that were available for use by the Group, thanks to the HPC-Wales (HPCW) project (now

Supercomputing Wales) [116]. These clusters did not have Matlab multiprocessing licenses.

Many aspects of Qtrl were based on DYNAMO, in particular the use of the BFGS algorithm

in performing the multi-variable cost optimisation and the exact gradient calculations. The Group

59



CHAPTER 2. METHODS

wanted to take a long-term view on the new control optimisation library, with plans to extend its

capabilities beyond that of DYNAMO, and so a customisable design was sought, and therefore

an object-oriented design was chosen. The closed system, unitary dynamics control optimisation,

which was developed for the Masters project were validated against DYNAMO examples. The

benefit of using HPC clusters was demonstrated by repeating the optimisations performed to find

minimum gate time in the ‘Spin-star’ simulation that other Group members had recently completed

[99]. The optimisations performed using DYNAMO on a desktop workstation took many weeks.

These same optimisations took a few days using Qtrl and the parallel processing available on

HPCW. A greater number of repeats were possible in the higher-dimensional systems, reducing

the instances of data points resulting from local traps.

To complete the research in this study, and support the research of colleagues, the author of this

thesis extended the Qtrl library to support optimisation using symplectic and Lindbladian dynam-

ics. These extensions are described in Section 2.6 and Section 2.8 respectively. The intention was

always to make Qtrl available to the wider quantum control research community. Qtrl was made

publicly available through merging into QuTiP in January 2015. After this merger Qtrl would

be more accurately referred to as ‘the control modules in QuTiP’ or QuTiP Control, however the

shorthand of Qtrl will continue to be used in this chapter. An invited research visit was made to

the Institute for Complex Quantum Systems, University of Ulm, in April 2015. Three weeks were

spent implementing the CRAB algorithm [90, 91], which is described in Section 1.6.6, in Qtrl.

The Qtrl library continued (and continues) to be extended and improved throughout the period of

this study. Much of this development is to improve integration with the rest of the QuTiP library

to take advantage of the dynamics solvers in control optimisation. Customisations have been made

for specific projects, including implementation of time-dependent control operators used in the

collaboration to optimise fast three-qubit gates [117]. The design also proved flexible enough for

colleague Dr. Jukka Kiukas to customise Qtrl for parameter estimation [118].

2.3.1 QuTiP control object model

The schematic in Fig. 2.1 shows how the main objects in Qtrl interact. Their individual purpose,

and how the thesis author used them in this study, are described below. Their properties and
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Figure 2.1: QuTiP Control object model. A schematic showing the base classes of the Qtrl
objects and hierarchy in which they are functionally connected.

methods and described in the code documentation [114].

OptimConfig

The OptimConfig object is used to hold configuration parameters that must be set prior to the

instantiation of the other objects. Primarily these parameters are the subclass types for the other

objects, but it is also a logical place to store user-defined properties that determine the optimisation

procedure. The thesis author used this object throughout this study to store parameters such as the

number of repeats and multiprocessing options.

Optimizer

This acts as a wrapper to the scipy.optimize functions that perform the work of the pulse opti-

misation algorithms. Using the base class, the user can specify which of the optimisation methods

are to be used. There are subclasses specifically for the BFGS and L-BFGS-B methods. There is

another subclass for using the CRAB algorithm. The object also triggers the computation of the

dynamics evolution required to compute the cost (infidelity), based on the control function param-

eters, which this object attempts to optimise. The bounds for the parameters are also set in this ob-

ject, which for piecewise constant control functions are the timeslot amplitudes. The bounds can be

set either for individual parameters or all of them. Throughout this study the thesis author used the

OptimizerLBFGSB subclass. This uses the limited-memory and bounded variable version of the the
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BFGS algorithm introduced in Section 1.6.2. Specifically the scipy.optimize.fmin_l_bfgs_b

function wraps the Fortran implementation presented in [81, 119]. This was found to be signif-

icantly more efficient than the scipy.optimize BFGS method by the thesis author during his

masters project.

Dynamics

This is mainly a container for the lists that hold the control amplitudes, dynamics generators, prop-

agators, and time evolution operators in each timeslot for the piecewise constant computation of

the evolution. It also holds the dynamics generators for the controls and any pre- or post- factor or

operation for the dynamics generator in computing the evolution step. The combining of dynam-

ics generators is also completed by this object. Different subclasses support a range of types of

quantum systems, including closed systems with unitary dynamics, systems with quadratic Hamil-

tonians that have Gaussian states and symplectic transformations. The general matrix subclass can

be used for open system dynamics with Lindbladian operators, as there is no pre- or post- factor

or operation when computing the timeslot propagator. The DynamicsUnitary subclass applies the

skew Hermitian pre-factor −i to the combined dynamics generator and contains the spectral de-

composition method used for the propagator compute. The DynamicsSymplectic subclass applies

the transformation −(·)Ω or Ω(·) (see Section 3.3) as set by user configuration.

PulseGen

There are many subclasses of pulse generators that generate different types of pulses as the initial

amplitudes for the optimisation. There is a specific subclass that is used by the CRAB algorithm to

generate the pulses based on the basis coefficients that are being optimised. Often the goal cannot

be achieved from all starting conditions, and then typically some kind of random pulse is used.

For this study the thesis author used the PulseGenRandom subclass, which produces uniformly

distributed amplitudes in each timeslots, with the range set by upper and lower bounds. Other

random pulse types were tried when control objectives were difficult to achieve, but no quantifiable

advantage was found.
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TerminationConditions

This holds all the properties that will determine when the single optimisation run terminates. Pri-

marily this is the cost (infidelity) target for a successful optimisation. Limits can be set for number

of iterations, processing time (known as ‘wall time’). Termination can also be triggered by the

gradient norm falling below some threshold, or cost reduction between steps not meeting that

threshold.

PropagatorComputer

This object computes propagators from one timeslot to the next, and also the propagator gradi-

ent, which is used in the infidelity gradient computation. These are closely linked to the type of

dynamics in use, and so each Dynamics subclass uses a default PropagatorComputer subclass.

The propagator subclass for unitary dynamics is PropCompDiag, which uses the diagonalisation

of the combined Hamiltonian in the timeslot to compute the propagator and its gradient, as de-

scribed in Section 1.6.3. The PropCompFrechet subclass can be used for a general dynamics

generator to compute the propagator and its gradient, also described in Section 1.6.3. It uses the

scipy.linalg.expm_frechet function, which is found to be more efficient than exponentiating

the augmented matrix.

FidelityComputer

The subclass of the fidelity computer determines the type of fidelity (or infidelity) to use in comput-

ing the optimisation cost, and gradient of this with respect to the optimisation variables. These are

again linked to the type of dynamics in use, and so there is a default for use with each Dynamics

subclass. The subclass for unitary dynamics is FidCompUnitary, which computes the unitary

fidelity Eq. (1.45) and gradients Eq. (1.64), or Eq. (1.46) and gradients Eq. (1.65). The trace differ-

ence infidelity is more generally applicable, for which FidCompTraceDiff can be used to compute

the infidelity Eq. (1.48) and gradients Eq. (1.67). Subclasses of FidelityComputer are the most

commonly user-developed customised Qtrl subclasses.
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TimeslotComputer

The TimeslotComputer object computes the system evolution, using the Dynamics and

PropagatorComputer object methods. It also calculates the forward propagation and onto or

onward propagation (see Section 1.6.3) that are used by the fidelity computer.

OptimResult

The result of a pulse optimisation is returned as an object with properties describing the outcome,

including the infidelity, reason for termination, performance statistics, final evolution, etc.

Stats

Performance data are optionally collected during the optimisation. This object is shared by the

other objects to provide a single location to store, calculate and report run statistics.

2.3.2 Executing a Qtrl optimisation

There are a number of ways to use the objects described above to perform a control optimisation.

QuTiP typically provides a single function call interface for its solvers, and so Qtrl also provides

this. This is the simplest way to perform a single optimisation. However, if the optimisation pro-

cedure is more involved, or the user wishes to make use of a parameter file for configuration, then

instantiating the objects directly and calling their methods is recommended. If there are many dif-

ferent scenarios to be tried, and in particular if a remote computing resource, such as a HPC cluster,

then the latter method is advised. This allows for using static code, with different parameter files

for each scenario. Consequently, the parameter file configuration method was mainly preferred in

this study. The two methods are described further below. Fully documented examples of using

Qtrl can be found as Jupyter notebooks in the QuTiP tutorials [120], and as Python scripts in the

Qtrl examples repository [121].
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Pulse optimisation functions

The simplest method for optimising a control pulse using Qtrl is to call one of the functions in

the pulseoptim module. These are fully documented in the QuTiP API documentation [114].

The pulseoptim functions automate the creation and configuration of the necessary objects, gen-

eration of initial pulses, running the optimisation and returns the result. The optimise_pulse

function can be used for all types of dynamics and algorithms (GRAPE or CRAB). It defaults to

the general matrix dynamics, with corresponding Frechet propagator and trace difference infidelity.

The optimize_pulse_unitary function is specifically for unitary dynamics, and hence uses the

default propagator and fidelity computers for unitary dynamics. There are also functions specifi-

cally for the CRAB algorithm, opt_pulse_crab and opt_pulse_crab_unitary. They have the

same functionality as the general functions, but default to the CRAB algorithm, and have argument

names that are more familiar in that application. Examples using the functions can be found in the

QuTiP tutorials [120].

The create_optimizer_objects function can be used to generate and configure all the ob-

jects without performing the actual optimisation. This allows for the objects to be additionally

configured, such as specifying the initial pulse, before calling the optimisation. This would be

more efficient when repeating runs with different starting conditions. An example of this method

is given in the QuTiP tutorial ‘Optimal control, QFT’. This method also enables use of customised

subclasses, for which ctrl_pulse_optim-example-QFT-custom_fidelity.py is an example in

[121].

Direct Qtrl object instantiation

The Qtrl objects can be instantiated (created) in the usual way for a Python object. The OptimConfig

must be instantiated first, as this is a required instantiation parameter for the other objects. As an

example, this could be

import qutip.control.optimconfig as optimconfig

cfg = optimconfig.OptimConfig()

When a Dynamics (or subclass) object is instantiated the default PropagatorComputer,
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FidelityComputer and TimeslotComputer subclass objects will be created. These can be over-

ridden, for instance if a custom fidelity called FidCompChoi was to be used, then this could be

specified by

import qutip.control.dynamics as dynamics

dyn = dynamics.DynamicsGenMat()

dyn.fidelity_computer = FidCompChoi()

The Optimizer object is typically created last, as this requires OptimConfig and Dynamics objects

at instantiation.

Each of the objects can be configured through their properties in the code, or via a con-

figuration file. The loadparams.load_parameters function will read property values from a

file in ‘ini’ format. The data types are assumed from the object property, so if these are not

defined by the class, then a default value must be set before loading from file. The script

ctrl_pulse_optim-example-Hadamard-load_params.py [121] provides a full working exam-

ple of this. There is an example from this study in the in situ optimisation code repository [122] –

see qsoconfig module.

2.4 High performance computing

The Supercomputing Wales (SCW) [116] project provides free access for researchers in the par-

ticipating Welsh universities, Aberystwyth, Bangor, Cardiff and Swansea, to high performance

computing (HPC) clusters. SCW is the successor to the HPC Wales project (HPCW). It is more

focussed on scientific research than its predecessor, which had a focus on industrial collaborations.

The SCW project brought funding for new hardware. These systems were brought online in 2018,

making 12,000 cores available to researchers.

The computing resources of HPCW were used to execute numerical codes throughout this

study. Although free, usage was limited to 160 cores (concurrent) and 2 days maximum time per

job (latterly extended to 3 days). The main cluster used had approximately 3000 cores, each Intel

Xeon CPU E5-2670, 2.60GHz, configured as nodes with 16 cores and 64GB of RAM. All systems

operated with Linux CentOS release 6.7. Job submission, scheduling and general management is
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done through the Slurm workload management system [123].

In most use cases the multiple cores were exploited by running the same codes, but with differ-

ent parameters. This is easily achieved in a single Slurm job using GNU Parallel [124]. Specific

parameters can be selected by passing an index via the command line, which can be used in a

calculation or as a list index. Each process writes its own output file, which can be collated and

analysed with other scripts. This type of usage is often referred to as ‘embarrassingly parallel’, as

it is very easy to implement, compared with multiple core processing where there is communica-

tion between processes. One use case required dynamic process spawning, for which the Python

multiprocessing module was used. It is described in Subsection 2.7.2.

2.5 Lie tree algorithm

If the columns of an l × m matrix L are vectorised elements of a Lie algebra, then the rank of

L will give the number of linearly independent elements. This mathematical tool can used in an

algorithm to determine if the Lie algebra rank condition is met for a set of generators. Note that

for a generator element that is an n× n matrix l = n2. This is also the maximum possible rank for

the matrix L. This corresponds with the maximum dimension of a subgroup of the general linear

Lie algebra.

The algorithm described below is based on the method provided in section 3.2.1 of [19].

The process flow is illustrated in Fig. 2.2 The algorithm starts with a set of generators L0 =

{A1, . . . , As}, which will for instance be the drift and control generators of a controlled quantum

system (the elements of set L are the initial elements of l in Fig. 2.2. The initial matrix L will

be constructed by vectorising each element of L0 and column stacking them. The initial rank is

calculated r = rank (L). The target rtarg for the rank is determined based on the Lie algebra type,

e.g. for u(n): rtarg = n2, for su(n): rtarg = n2 − 1, and for sp(2n,R): rtarg = n(2n+ 1). Further

detail on some of the steps is given below.

• select first A from l: start iteration of all operators in l, referred to as outer loop. Note that l

may be extended during the process.
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Figure 2.2: Flow diagram of the Lie tree algorithm.

• lB = l: a copy of the operator list is made that will be iterated over, referred to as the inner

loop.

• B == A: skip to next operator, as commutator will be 0.

• C = [A,B] calculate commutator.

• Ltrial = L+ ~c: extend the matrix L by adding column of vectorised C.

• rtrial > r: if the rank has not increased then skip to the next operator in the inner loop.

• rtrial ≥ rtarg: if the rank target has been met, then the criterion have been satisfied.
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• end of B in lB: all commutations have been tried in the inner loop.

• add C to l: extend the list of operators to test commutators for. Meaning that C will be the

A in some future outer loop iteration.

• end of A in l: all operators have been tried in the outer loop. If the target rank has not be

met, then criterion are not satisfied.

This is not the most efficient implementation of the Lie tree algorithm, as there is potential

for repeated testing of commutators. However, it is robust, and was found to be sufficiently fast

for usage in this study. The algorithm is known to perform well for small systems. However, for

larger systems it becomes increasingly difficult to distinguish whether two generators are linearly

independent. For systems with n ≥ 14 64 bit numbers were found to provide insufficient precision

to reliably determine the linear independence of generators.

Python implementation

For implementing this algorithm in Python numpy.ndarray can be used for the Lie algebra el-

ements A and L matrix. Standard Python list can be used for the sets L. The rank can be

calculated using numpy.linalg.matrix_rank. Vectorisation of the Lie algebra elements can be

done using v = A.reshape((-1, 1)) and appending a column to the L matrix using L_trial

= numpy.hstack((L, v)).

2.6 Symplectic numerics

2.6.1 Symplectic operator optimisation

The unbounded property of matrices belonging to the symplectic group Sp(2n,R) leads to addi-

tional challenges in numerical simulation of control optimisation when the target is some sym-

plectic transformation. As discussed in Section 3.5.1, recurrence is only guaranteed when the

combined Hamiltonian generator is positive(negative)-definite, which as seen throughout Chap-

ter 3 is not generally the case. This gives the potential for elements of the matrices representing
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the symplectic transformation to take extreme values, which are either too small are too large to be

represented by the data types used in most numerical libraries. For instance, the numpy.float64

data type has a maximum value limitO(10308). This may seem like a very large number, but due to

the evolution being computed as a product of exponentials, Eq. (3.17), this can often be exceeded,

especially when the allowed evolution time is large or control amplitudes are high. These extreme

values relate to intensive squeezing of modes. They result in an OverflowError when attempting

to set a NumPy array element beyond the maximum value.

The symplectic dynamics control optimisations were also found to be more prone to local

minima traps than with unitary dynamics. This is potentially due to trajectories in the control

parameter space being taken from which there is no way back. The parameter landscape was not

studied in any detail, but rather the trapping circumvented, using a combination of methods to

attempt to reach targets. As well as the brute-force method of trialling many random initial guess

pulses, pre-filtering, and tactical use of pulses with known outcomes close to the target, were

employed.

Single-mode system control optimisation

In the unstable single-mode reachable set control optimisations, the results of which are seen in

Fig. 3.1, the reachable points were found to be only a small proportion of the available space.

Intuitively, any initial guess that is far from the ‘basket’ is less likely to result in an unsuccessful

optimisation. However, the location of the reachable set is unknown prior to the start of the search.

Due to the many points in the space to be tested, it is infeasible to try a great many optimisations

from initial guesses for each target. The set of targets is defined by the singular value decompo-

sition (SVD) parameters (see Section 3.5.3): rotation angles θ, φ and squeezing parameter z. The

results presented are a subset of those attempted, 25 values for θ and φ, and 15 values for z were

used to generate 9,375 potential targets. This was repeated with a set of drift parameter c val-

ues {0.0,±0.5,±0.9,±0.99,±1.01,±1.1,±1.5}, and for each these a set of total evolution time

T values {0.1, 0.5, 1, 2, 3, 4, 5, 7, 10, 20, 50, 100}. The process for finding the reachable targets is

illustrated in Fig. 2.3. Further detail on the steps is given below.

• for each target
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Figure 2.3: Flow diagram of reachable points search.

– random controls: generate set of random control timeslot amplitudes.

– optimise control: GRAPE control pulse optimisation.

– reached: if target is reached, then move to next target.

– max attempts?: a maximum of 10 sets of random controls is tried for each target.

• for each unreached target

– reached neighbour?: any neighbour for which the target was reached, that has not be

tried yet in this process stage.

– neighbour controls: take final control pulse for reached neighbour as initial pulse.

– optimise control: GRAPE control pulse optimisation.
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– reached: if target is reached, then move to next unreached target.

• for each reached target

– unreached neighbour?: any neighbour for which the target was not reached, that has

not be tried yet in this process stage.

– bisect coords: bisect the line between the reached point and unreached neighbour.

– generate target: new target from bisection point.

– neighbour controls: take final control pulse for reached point as initial pulse for new

target.

– optimise control: GRAPE control pulse optimisation.

– max attempts?: a maximum of 4 bisection attempts is tried.

– flag boundary: the furthest reached point from the original reached point is flagged as

a boundary point.

A neighbour in the above refers to any point immediately adjacent in the orthogonal directions

in the SVD space, and any point on the immediate diagonals in the θ and φ directions. Despite the

many initial targets attempted in the space, this still does not give a clear illustration of the shape

of the reachable set, hence the bisection method used to more precisely find the boundary of the

reachable set. These boundary points give the clear illustration of the bowl or basket-like shape of

the reached sets seen in Fig. 3.1.

Two-mode system control optimisation

The SVD parameter space for two-mode symplectic is 10-dimensional. This makes an evenly dis-

tributed reachability investigation, such as that undertaken for the single-mode system, infeasible.

The main question investigated is whether squeezing is inevitable for non-neutral generators, hence

the focus on a systematic search in the squeezing dimensions. Some choice of rotation angles is

also required. As there is no a priori knowledge on what these would be, then a random selection

seems a good option to avoid bias. The typical operations in quantum options are phase shifts of

±π/n, where n is some integer, typically 1, 2, 4. And so angles chosen randomly from these would
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seem like a good option. As this approached failed to find any reachable targets, then some char-

acterisation of the reachable set was sought through analysing randomly evolved operators, and

attempting to reach targets shifted slightly from the evolved operator. For this the decomposition

into SVD parameters is required, the method for this is described in Subsection 2.6.3.

Oscillator chain control optimisation

The main challenge in optimising the controls to achieve the targets in the oscillator chain models,

as presented in Section 3.7, was the extreme values of the evolved operator matrix that were dis-

cussed at the beginning of this section. The amplitude bounds of [−10, 10], that were found to be

necessary to reach targets, could result in OverflowError, even for the initial guess pulse.

To avoid solutions that have excessive mode squeezing, then the optimisation can be completed

in a few stages. Firstly, the initial pulse for the optimisation can be chosen from a set of random

pulses based on which pulse gives the minimum initial infidelity. Sampling ten initial pulses was

found to work well. Secondly, the control optimisation can first be attempted with reduced ampli-

tude bounds. Bounds of [−3, 3] were found to be sufficiently tight in the 7 oscillator systems. If

the target infidelity is not reached with these amplitudes bounds, after some iteration limit, then

the optimisation can continue with the bounds extended. Also, an OverflowError can be handled,

and just be considered a reason for termination of an optimisation attempt. Using these methods

it was possible to optimise controls for all coupled oscillator systems attempted, which was up to

7 in length, at some total evolution time T . A maximum of 10 optimisation attempts were made

before the target was deemed unreachable the given T .

The random symplectic target, used for comparison with the square root boson swap target,

is created using a random symmetric Hamiltonian generator HR. First a matrix R with random

valued elements in the range [−1, 1] is created using numpy.random.random. The lower triangle

of this is A1, for which numpy.tril(R) is used. The lower triangle, excluding the main diagonal,

A2 is returned by numpy.tril(R, -1). Combining these as

HR = A1 + A2
T , (2.1)
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gives the Hamiltonian generator matrix. This is then used to give the random symplectic target

Starget = eΩHR . (2.2)

2.6.2 Singular value decomposition – single-mode

The bounds of the reachable set of an unstable single-mode system were the primary focus in

Section 3.5. The reachable set was described in terms of the parameters of the decomposition given

by Eq. (3.31). The decomposition for non-passives is the product of a rotation Rθ, a squeezing Z

and another rotation Rθ. For passives Z acts as I and hence the transformation is a single rotation.

Hence, any single-mode symplectic can be described by three parameters: the angle of the first

rotation θ, the squeezing level z, and the second rotation angle φ.

The reachable operations Fig. 3.1 are shown in the three-dimensional space of these singular

value decomposition (SVD) parameters. The boundary was most clearly illustrated by using con-

trol optimisation to determine if specific points in the space are reachable. For these points θ, z

and φ are clearly known values, as they were used to compose the target. It is also clear that the

symplectic transformation evolved through some control pulse is reachable. To gain some insight

into where to look for the reachable points, a sample of points reached through random control

pulses was produced. In order to plot these points in the space, the resulting transformation must

be decomposed to extract the SVD parameters.

The SciPy library provides the function scipy.linalg.svd which gives the decomposition of

A as U~sV , where U, V are unitary and ~s is a vector of the singular values. Hence, withD = diag~s,

A = UDV . The SVD is not unique, and the SciPy function acting on a symplectic will provide

U, V as orthogonal, but not necessarily rotations. It also returns the singular values in descending

order, which is the opposite of that required to match Eq. (3.31). The SciPy function returns either

S = OαZ
−1Oβ (2.3)
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or

S = RαZ
−1Rβ , (2.4)

where the O are orthogonal, but not rotations, and the R are rotations. The form of the returned

parameters can be checked, as DetR = 1 and DetO = −1. Using X = σx on the 2× 2 matrices,

which switches rows when applied from the left and columns when applied from the right, and

consequently switches the elements for a diagonal matrix, noting also that X2 = I, the SVD can

transformed through the identity

A = U1D1V1

= U1XXD1XXV1

= U2XD1XV2

= U2D2V2 .

(2.5)

The transformation applied to Eq. (2.3) or Eq. (2.4) yields

S = RθZRφ (2.6)

or

S = OθZOφ , (2.7)

respectively. So for either form of the return value there are rotation matrices from which the angle

can be extracted. In the case where the parameters are returned as Eq. (2.4), the rotation angles θ

and φ can be found using the identity

S = RαZ
−1Rβ = RθZRφ , (2.8)
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with θ = α + π/2, φ = β − π/2.

NumPy provides a function numpy.arctan2 which gives the unique angle in the range (−π, π)

based on its sine and cosine. Hence when a matrix is known to be in the form Eq. (3.29), the

rotation can angle can be found this way. The squeezing parameter z is easily extracted from

the singular values ~s. Using this method it was possible to extract the SVD parameters for all

single-mode symplectics encountered.

2.6.3 Singular value decomposition – two-mode

The SVD of the two-mode symplectic was used extensively in the numerical study of Section 3.6.

The scipy.linalg.svd can be used to decompose the two-mode symplectic as S = UZV , but as

in the single-mode case discussed above, the singular values are returned in descending order and

hence the component matrices need to be permuted so that Z is in the format of 3.59. The U, V

matrices will be orthogonal, but not necessarily rotational, either before or after the permutation.

Some combination of U row and V column sign switching will typically find a combination of

U, V where both are symplectic, which can be checked by UTΩU = Ω. Note that the row /

column sign switching was found not to work if z1 = z2, as the U, V matrices returned from the

SciPy could not be manipulated in this way to be symplectic. However, the z1 = z2 would likely

only occur in some manufactured scenario, and is most unlikely for some randomly evolved S.

Clearly it is trivial to extract the squeezing parameters z1, z2 from this decomposition. However, it

is not immediately apparent how to extract the component angles of the two-mode rotation matrix

Eq. (3.60).

If the matrices U, V are symplectic and orthogonal, then this makes them rotation matrices. So,

working on the assumption then that U = R1, V = R2 of Eq. (3.58), some attempt can be made to

extract the α, β, θ, φ for each of them. Multiplying out Eq. (3.60) leads to
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From this 8 unique equations can easily be identified:
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It should be possible to simplify these down to four equations, however, it is not immediately

apparent how to do this. Also not apparent is an analytical method to find solutions to these

equations – attempts with Mathematica and SymPy were not successful. Neither was an attempt

to numerically solve using SymPy.

It is possible to solve for the angles in these equations using a gradient based, steepest descent

method. Defining a cost function that is the sum of the residuals of these equations, and corre-

sponding gradient functions with respect to each angle, allows efficient minimisation of the cost

using the L-BFGS-B algorithm. Typically 1 to 20 random initial angle sets are needed before a

solution is found, within a cost target of 10−3.

Using the method described above, it was possible to extract the parameters α1, β1, θ1, φ1,

z1, z2, α2, β2, θ2, φ2 for all randomly evolved two-mode symplectic transformations. Eqs. (2.10)

were differentiated using sympy.diff, and then sympy.lambdify was used to generate Python

functions from the symbolic representation. The Python functions execute far more efficiently

than passing values to the SymPy symbolic representation. This made it possible to analyse the

distribution of parameters for a large sample. The two-mode symplectic SVD also made it pos-
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sible to investigate the potential to reach the so-called ‘shifted targets’, which are described in

Section 3.6.3.

2.7 In situ optimisation numerics

2.7.1 Determining control pulse parameters

There are clear advantages to using the shortest possible gate time T and minimum possible num-

ber of control pulse timeslots Nts. In terms of computational effort in classical simulation, the gate

time T is not a factor. However, for a physical realisation, this is of paramount importance for min-

imising decoherence. In both the classical simulation and in situ optimisationNts is a direct scaling

factor. Consequently, a significant amount of computational and personal effort was expended in

finding satisfactory values for specific topologies, interaction types and system sizes.

The method used was to trial optimisations for a range of Nts and T , and find the proportion

of successful operations psucc. This task was completed using the standard gate fidelity, as opti-

misations using this are much faster. Parameters found to be successful were then verified using

the local gate fidelity, and invariably psucc was equivalent with both fidelity measures. For the

smaller systems it was possible to compare the full grid of Nts and T values. For the larger systems

(n ≥ 5), only Nts ranges with specific T and vice-versa was possible. Using this method, it was

found that Nts = 12 and T = π resulted in psucc . 1 for Ising chains of all lengths, but T scaled

exponentially with system size for Heisenberg chains. These parameter sizing investigations used

nearest-neighbour gate qubits. It was later found that Nts = 48 and T = 4π were sufficient for

Ising chains and rings with separated gate qubits, but still no scaling with system size.

A further investigation was made into the optimisation parameters for Heisenberg interacting

system by visualising the ‘infidelity landscape’. The landscape is defined by the minimum infi-

delity found through optimisation with the Nts and T parameter values. The results for the 4 qubit

Heisenberg chain are shown in Fig. 2.4. The plot with the broad range of parameters shows an in-

teresting feature at T ≈ 3. For this reason the higher resolution plot was made, based on additional

optimisation results. The higher resolution plot clearly shows a region T ≈ π,Nts & 10 where the

infidelity E ≈ 0. This gave hope for finding a similar region for all lengths of Heisenberg chain,
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Figure 2.4: Surface plots of the infidelity landscape for the 4 qubit Heisenberg chain. The
axes are the number of timeslots Nts (labelled m) and allowed gate time T . The height
of the surface is the minimum infidelity found for these parameters in 20 optimisation
attempts. The plot on the left is based on a broader range of the parameters: 2 ≤
T ≤ 60,∆T = 2 and 2 ≤ Nts ≤ 60,∆Nts = 5. The plot on the right focuses on a
smaller range, but with a higher resolution: 2 ≤ T ≤ 5,∆T = 0.05 and 2 ≤ Nts ≤
20,∆Nts = 1.

but unfortunately the E ≈ 0 region for short T was not found with larger systems.

2.7.2 Numerical accuracy threshold search

A key part of the investigation into the scalability of the in situ optimisation of quantum gates

was the scaling of the required measurement precision, which is presented in Section 4.6.3. The

main relationship of interest is with system size, but a relationship with the target fidelity is also

conjectured. This required a lot of different scenarios to be considered: 25 in total, 5 different

fidelities and 5 system sizes. For each of these a threshold for the precision Anum was sought that

would result in a proportion psucc = 0.5 of successful optimisations. To gain a statistically reliable

value for psucc would take many optimisation attempts, and for the larger systems each optimisation

takes a lot of computing resource. The manual process of trialling different Anum to get closer to

psucc = 0.5 was time consuming and prone to human error, so the process was partially automated.

The aim of the automated part of the method is to produce sufficient psucc for given Anum, such

that an interpolation can be made to determine the value of Anum that gives psucc = 0.5, and the

uncertainly in the result. The values of Anum that give psucc ' 0 and psucc ' 1 are of no use in

the interpolation, and so the method seeks to perform the repeated optimisations where psucc will
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be within a useful range [plb, pub], for which [0.1, 0.95] was found to work well. For each Anum

scenario a number of repeated optimisations are performed from which psucc is calculated.

As input parameters, the method takes initial estimates for the Anum values that correspond to

these psucc range bounds. The method first looks to find Anum values that give psucc just inside the

[plb, pub] bounds. Alb is the highest Anum for which psucc < pub, and Aub is the lowest Anum for

which psucc > plb. Scenarios are attempted to locate these boundaries until there are psucc results

either side of the bound. If psucc < plb for Alb, then it is halved until there are psucc results either

side of plb. If psucc > pub for Aub, then it is doubled until there are psucc results either side of pub.

When the boundaries have been located, the method looks to find psucc values for Anum evenly

distributed between the bounds. For this stage all scenarios where Anum < Alb, except the one

closest to the bound, are excluded. Similarly, all scenarios where Anum > Aub, except the one

closest to the bound, are excluded. New scenarios are then tried for Anum where the difference

between previously tried scenarios is greatest. Note, the Anum boundaries may be extended during

this stage of the method as well. This stage continues until a predetermined maximum number of

scenarios have been tried, which completes the automated part of the method.

The method outlined above is illustrated in Fig. 2.5. This shows a simplified version of the

algorithm, shown as would be processed by a single thread. It is possible to complete some of the

steps in parallel, as described below. Further details on the steps from Fig. 2.5 are given here.

• boundary search steps

– estimate Alb and Aub: these are best estimates based on observances from tests for the

specific infidelity target.

– calc psucc: Repeated GRAPE control pulse optimisation with randomised initial pulses,

using Anum for the numerical precision. psucc is the proportion for which the optimisa-

tion is successful.

• gap filling steps

– max attempts?: a maximum number of Anum samples is set. 50 were found to be

sufficient for the interpolation method.
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boundary search steps
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Figure 2.5: Flow diagram of numerical accuracy threshold search.

– Anum = Amaxgap: If Aall is the set of all attempted Anum, with elements in ascending

order labelled Ai, i ∈ {1, 2, . . .}, and Alb = AN and Aub = AM , then the active set

is Aactive = {AN−1, . . . , AM+1}. AC = Aj for which max(Aj+1 − Aj)∀Aj ∈ Aactive,

then Amaxgap = (AC + AC+1)/2. That is, Amaxgap is the midpoint of the largest gap

between those Anum considered active.

There are clear opportunities for parallel processing in this method. Most obvious is the re-

peated optimisations for each Anum scenario. For the results presented in Fig. 4.6 the number of

repeats was between 50 and 200, depending on the system size. It is also possible to run multiple

scenarios in parallel. In the boundary search stage it only makes sense to run two scenarios in

parallel, as there are only two boundaries. In the gap-filling stage any number of scenarios could

be run in parallel. As the Anum value is determined by the method, then the multiprocessing must

be managed dynamically – that is the main process must spawn sub-processes to run the scenario
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optimisations with the given Anum value. The Python multiprocessing module is ideal for this

purpose. A process Pool can be created that calls a Python function with specific parameter values

for each process.

The interpolation method, an example of which is shown in Fig. 2.6, is based on the assumption

that the relationship between Anum and psucc is approximately linear around the psucc threshold. The

region of linearity is not necessarily [Alb, Aub] that was found during the psucc threshold search. The

bounds of the linear region are set manually – an interactive plot is used, for which there is a mode

in Matplotlib. The bounds are chosen, leaving a some of theAnum, psucc scenario results included in

the interpolation, while those outside the region are excluded. The linear fit of Anum to mpsucc + c

is performed using the numpy.polyfit function with order one. Along with the gradient m and

x-intercept c, this also gives the variances in the same, σm2, σc
2. Based on these, the threshold

precision Athresh at pthresh = 0.5 is calculated as Athresh = mpthresh + c, and the uncertainty as

εA =
√

(σmpthresh)2 + σc2.

The number of iterations Niter required for a control optimisation with Anum = Athresh is esti-

mated, using the same Numpy function, by fitting Niter = mAnum + c. The number of iterations at

the threshold is then Nthresh = mAthresh + c, with uncertainty εN =
√

(σmpthresh)2 + σc2 + (mεA)2.

It is clear from Fig. 2.6 that the additional repetitions possible with the small system led less vari-

ance in both the optimisation success proportion and number of iterations.

The codes that implement the automated search method and perform the interpolation were

developed by the thesis author. They are available in the public repository [122]. The func-

tion qsorun.run_qso_sims_numer_acc_limit performs the automated search. The the inter-

polation is made in the script numer_acc_interpolate.py, and there is a Jupyter notebook

interpolate_num_acc_thresh.ipynb that can be used for the same .

2.7.3 Large system gate optimisation

Initially it was found infeasible, with the available resources, to go beyond systems with more than

8 qubits when simulating optimisation of gates. Each optimisation would take near to the 2 day

limit, and it was not obvious how to parallelise this without making significant developments in

QuTiP control modules. However, it was found later on in the study, after a new release of SciPy (or
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Figure 2.6: Numerical accuracy and iteration interpolation. Plots illustrating (left) the inter-
polation method used to determine the numerical accuracy required to achieve a 50%
success rate for control pulse optimisation, and (right) the interpolation method used
to estimate the average number of iterations required for the optimisation. The blue
crosses are the points included in the interpolations. The black vertical bars indicate
the boundaries used to exclude points not in the linear region. The green lines show
the linear fits. The red bars show the uncertainty derived from the fit, and the purple
bar in the interpolation plot shows the combined uncertainty from both fits. The upper
plots are for a 7 qubit Ising chain (50 repetitions per scenario), and the lower plots a 3
qubit chain (200 repetitions per scenario).
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a new version of the Intel MKL in Anaconda), that the matrix exponential scipy.linalg.expm

and scipy.linalg.expm_frechet could utilise multiple cores. By allocating 4 cores to each

control optimisation it was possible to bring the average run time for a 9 qubit gate optimisation

(with infidelity target 10−3) to within two days. This is because, for large systems, the time-limiting

step is the exponentiation of the generators to compute the propagators.

When using the SciPy library in Anaconda, it is possible to allocate multiple cores to maths

functions using

import mkl

mkl.set_num_threads(num_threads)

where num_threads is the number of cores to be allocated. Note that only specific functions exe-

cute in parallel, and for even for supported functions, parallel processing is only used for matrices

over a certain size. For instance, propagator computation was only found to use multiple cores for

systems of 5 qubits or greater.

2.8 Open system dynamics simulation

2.8.1 Numerical solving of the master equation

The Lindblad master equation Eq. (5.11) or Eq. (5.13) can be solved for density operators or maps

using the QuTiP function mesolve. This takes as parameters the initial state or map operator,

along with the dynamics generator as either a Hamiltonian or a Lindbladian. The usage is very

flexible, and it fully explained in the documentation [114] and with examples in [16], so only some

key points will be explained here. A time-dependent Hamiltonian (or Lindbladian) can be passed

(for example) as [H0, [H1, h1_td], [H2, h2_td]]. Where H0, H1, H2 are Qobj (which is

essentially a matrix), and the h1_td, h2_td are functions that take t as a parameter and return

a scaling factor. The Lindblad operators are passed as a list in the c_ops parameter. These are

assumed to be √γjVj . Again, any one of these can be passed in time dependent form [V_j,

g_j_td], where g_j_td is a function that returns
√
γj(t).
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Control optimisation with Lindblad dynamics

To use the QuTiP control modules with Lindblad generators and density operator or maps, it is

necessary to pass parameters as superoperators and vectorised density matrices. QuTiP provides

functions for these in the superoperator module. The liouvillian function can be used to cre-

ate a Lindbladian superoperator from a Hamiltonian and a list of Lindblad (collapse) operators, to

give the L0 of Eq. (5.15). The same function, without collapse operators, can be used to create the

control dynamics generators Lj . A density matrix can be vectorised using operator_to_vector,

or for map optimisation, the sprepost function will give the superoperator representation of ini-

tial and target operators. For instance sprepost(identity(d), identity(d)) gives the identity

map for a system of dimension d.

Using parameters of this type for drift and control dynamics generators, and initial and

target states or maps, the qutip.control.pulseoptim function can be used to simulate control

optimisation in systems with Lindbladian dynamics. The other methods described in Subsec-

tion 2.3.2 are also valid for this use. There is an example notebook ‘Optimal Control, Lindbladian’

in the QuTiP tutorials [120] and some example scripts in Qtrl examples repository [121]. The

example script:

ctrl_pulse_optim-example-Lindbladian-compare_map_dm_evo.py

compares state and map control optimisation.

2.8.2 QuTiP implementation of the HEOM

The HEOM solver code is organised in an object oriented manner. The code can be found in

qutip.nonmarkov.heom. The base class HEOMSolver is intended as a container for any methods

common to HEOM solver types. The HSolverDL is based on the Drude-Lorentz spectral density

description of the bath correlations. Solver objects of this HSolverDL class were used in this study.

The HEOM are solved in QuTiP by numerically integrating the equation

d

dt
|ρHE〉 = LHE |ρHE〉 . (2.11)
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where |ρHE〉 is a vector made from the system and ancillary density operator elements, and LHE is a

superoperator that contains all the operations described by Eq. (5.29). For system of dimension d,

the first d2 vector elements are those of the system density matrix, as in Eq. (5.9). The d2 elements

of each ancillary density matrix follow sequentially after, in column stacking order. These ancillary

density matrix elements are all initialised as 0.

The superoperator LHE is constructed in stages. The order is unimportant, as the stages are all

additive. They are described here in the order they are done in HSolverDL.configure. Firstly the

dissipating components, which thanks to the linear form of Eq. (5.29), can be added to the LHE

one at a time. Each hierarchy component is a d2 × d2 matrix. The number and arrangement of the

hierarchy components is determined by the index lists n of Eq. (5.29).

Due to the potentially very large number of combinations arising from these lists, as discussed

in Section 5.4, limiting the number of bath states is key to minimising the number of ancillar-

ies, and hence the size of the HEOM superoperator. This is achieved using excitation number

restricted (ENR) states. For this purpose, each Matsubara term is considered a component in a

multipartite system, and the bath cutoff parameter Nc as the total number of excitation across

all components. Using this equivalence the qutip.states.enr_state_dictionaries function

can be used to generate list of ‘states’ that are used as the index lists n. The function returns a

Python dictionary of these states with an integer key and the corresponding dictionary of indexes

with the states as keys. The latter dictionary allows the ρn± ancilla to be identified. This leads to

NHE = (Nc +K)!/(Nc!K!) hierarchy elements that are the system and ancillary density matrices.

As an example, for K = 3 Matsubara terms and bath cut off Nc = 2, the index lists n would be:

0 : (0, 0, 0) 5 : (0, 2, 0)

1 : (0, 0, 1) 6 : (1, 0, 0)

2 : (0, 0, 2) 7 : (1, 0, 1)

3 : (0, 1, 0) 8 : (1, 1, 0)

4 : (0, 1, 1) 9 : (2, 0, 0)

A more detailed description of ENR states, and a demonstration of their intended purpose, can be

found in this notebook [125].

As each hierarchy component LC is a small matrix, that needs to be added into the full LHE
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matrix in a specific location, then the qutip.cy.heom.cy_pad_csr function is used to create a

matrix of size of LHE with LC in the specified location, with zeros elsewhere. This function was

developed specifically for this purpose, because it is needed so many times in the construction of

the hierarchy superoperator. The Cython package [126] is used to make a compiled code com-

ponent to maximise efficiency. LC is stored as a fast_csr_matrix, which is a QuTiP specific

version of the compressed sparse row matrix. This stores the non-zero data items in one dense

array, and row start and column indexes in others. As the data is not changed by the function, only

the indexes are updated by cy_pad_csr.

The hierarchy components that correspond to those in the first summation in Eq. (5.29) are

added to the diagonal of LHE. Each diagonal component is

LC = Ln =

(
K∑
k=0

nkγk

)
Id2 (2.12)

where the nk are the excitation numbers corresponding to this element, and γk is the Matsubara

frequency. The interaction components, which are those in the second summation in Eq. (5.29),

are added offset from the diagonal. These components, for each Matsubara term, are

Ln+
k

= −i nk Ck , Ck := ηkI⊗Q− η∗kQT ⊗ I (2.13)

Ln−k
= −iQ , Q := I⊗Q−QT ⊗ I , (2.14)

where ηk is the Matsubara coefficient, andQ is the system-bath interaction operator. The hierarchy

element index (and hence position in the matrix) for corresponding ρn±k is found using the n±k list

as a key in the ENR state index dictionary. If there is only one Matsubara term K = 1, then the

interactions are with nearest-neighbour ancillae only. Otherwise there may be interactions with

ancillae up to and including a separation of K in the hierarchy. This arrangement of the hierarchy

elements is illustrated in Fig. 2.7.

As LHE and all LC are stored as fast_csr_matrix the addition operation is quite efficient.

It was for this kind of application that Paul Nation developed the QuTiP specific version of the

CSR matrix, and associated functions, including cy_pad_csr. SciPy has a sparse matrix type
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Figure 2.7: Structure of the hierarchy. Visualisations of the dissipative part of the HEOM su-
peroperator LHE, that is, without the system Hamiltonian components LH . The axes
on the left show the non-zero elements of the matrix. The axes on the right give an
indication of the relative absolute values of the elements, with the darkness of the
blocks scaled by the log of the value. The upper axes, with K = 1 Matsubara terms,
show the nearest-neighbour only interactions. The lower axes, whereK = 3, show the
additional interactions resulting from multiple Matsubara terms. These matrices are
for a two-level system, hence the blocks of d2 = 4 elements. The matrices correspond
to Drude-Lorentz bath parameters ωc = 0.01, α = 0.5, T = 1, see Section 5.4 for
definitions.
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csr_matrix, this does a lot of additional checking that fast_csr_matrix does not. Partly because

fast_csr_matrix only supports the numpy.complex128 data type.

The system Hamiltonian is added to all diagonal components by creating the superoperator

LH = i
(
HT ⊗ Id − Id ⊗H

)
⊗ INHE

, (2.15)

using the QuTiP liouvillian and zcsr_kron functions. When it is added depends on whether H

is time-dependent. For time-independent H this LH is added to LHE at the end of the configuration

stage, and the cy_ode_rhs function is set to evaluate the RHS of Eq. (2.11) for each ODE time

step evaluation. This function is optimised for sparse matrix multiplication of dense vectors. For

H = H(t), the LH is composed as

LH(t) = LH0 +

Ntd∑
j=1

uj(t)LHj , (2.16)

where LH0 is the constant component, and the LHj are the time-dependent components, of LH , the

uj(t) are scalar functions, and Ntd is the number of time-dependent components. LH0 and the LHj
are calculated from the components of the system Hamiltonian as per Eq. (2.15). The components

are recombined as per Eq. (2.16) each time the RHS of Eq. (2.11) is evaluated. Hence, the HEOM

solver can be used to investigate controlled dynamics with a non-Markovian noise model.

Optimisation of dynamical decoupling sequences

The optimisation of dynamical decoupling (DD) sequences was completed using a set of control

optimisation modules currently in development stage. They are publicly available through the

thesis authors fork of qutip [127] in the qoc branch. The motivation behind the development

of these modules is to be able to utilise the wide variety of dynamics solvers in QuTiP, such

as the HEOM solver in this case. The structure is much the same as Qtrl, except that there is

no assumption of piecewise constant control functions, nor constant system dynamics generators

generally. Hence they are more suitable for implementing algorithms such as CRAB and GOAT,

although the main advantage will be to easily compare control optimisations using different noise
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models.

The optimisation of dynamical decoupling (DD) sequences is performed using the same L-

BFGS-B implementation mentioned in Subsection 2.3.1. The optimisation variables in this case

being the time intervals between DD pulses. It is not immediately apparent how exact infidelity

gradients with respect to these variables can be calculated. Consequently, the gradients are approxi-

mated by the scipy.optimize.fmin_l_bfgs_b function itself. Use of approximate gradients also

makes it trivial to add a cost penalty function.

It was found that the optimisation method tended to allow variable values that pushed some

pulse start times beyond the evolution end time tf . Once this happened in some iteration step, they

did not tend to return during the optimisation process. This is likely due to the periodic form of

the evolution of |ρ12(t)| when DD pulses are applied. It is not possible to disallow this through

the bounds in the L-BFGS-B algorithm, as they can only be set for individual variables, and so a

penalty function was used to avoid this happening. Taking tp to be the end time of the last pulse,

the penalty is calculated as

fp(tp) =


0 tp ≤ tf

w(tp − tf ) tp > tf

, (2.17)

where w is some weighting, which was set at w = 0.1. The total optimisation cost then being

Epure + fp. This was found to constrain the pulse times to within the evolution time window.
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Symplectic operator control

The research in Section 3.5 was completed in collaboration with Uther Shackerley-Bennett, Marco

G. Genoni, Alessio Serafini and Daniel K. Burgarth. The results were published in [128]. The

research in Section 3.6 was completed in collaboration with Uther Shackerley-Bennett and Daniel

K. Burgarth. The research in Section 3.7 was completed in collaboration with Daniel K. Burgarth.

Marco G. Genoni proposed the idea for using the isomorphism of SU(1, 1) and Sp(2,R), and

then using result from Ref. [12], in investigating the reachable operations of single-mode systems.

The thesis author worked independently on a basis for visualisation of the single-mode reachable

set. Uther Shackerley-Bennett translated the proof from Ref. [12], formalised the mathematics of

the singular value decomposition and framed the proof in that basis. The thesis author developed

the code for the numerical optimisation, and performed all the simulations and analysis thereof.

Uther Shackerley-Bennett proposed the measure of squeezing for a n-mode symplectic operator

and provided the example two-mode neutral and non-neutral systems. The thesis author developed

the code for, and completed the numerical simulations and analysis of, the two-mode systems. The

thesis author completed the numerical investigation of the minimum gate time in the oscillator

chain model. Alessio Serafini and Daniel K. Burgarth supervised the research work of Uther

Shackerley-Bennett and the thesis author respectively.
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3.1 Introduction

Quantum computing with continuous variable (CV) systems was proposed by Lloyd and Braun-

stein [9], analogous to classical analogue computing in the same way that qubit-based quantum

computers are analogous to digital classical computers. For universal quantum computing some

non-linear gates are required, however a useful set gates are provided by symplectic transforma-

tions acting on the quadrature operators, as described below. The gates include the CV equivalent

of the Clifford Group, meaning that error correction codes and teleportation protocols can be im-

plemented solely using these gates [129].

Simulation of control optimisation with CV systems was first attempted by Wu et al., as re-

ported in Ref. [14]. The authors proved that the control parameter space is smooth and free of

traps. They also found that it was important to have control over interactions between system

components. The symplectic group Sp(2n,R) is non-compact, meaning that the Lie algebra con-

trollability criterion is not directly applicable. Controllability criterion have been given [10, 11,

12, 13], some of which are described later in this chapter. Previous control optimisation study has

concentrated on systems where the controllability criterion is met. The reachable operations for

systems where the criteria are not met are investigated herewithin.

Genoni et al. proposed a fully controllable model for a coupled oscillator based on the cri-

terion the authors present in Ref. [13]. Investigating the limits on controllability in this model

is where this study began for the thesis author. The characterisation of the reachable set of the

single-mode system was embarked upon to better understand the importance of positive-definite

dynamics generators. This coupled oscillator model is used to investigate scalability in optimisa-

tion of symplectic transformations, specifically, minimum times required to perform gates in CV

systems of increasing size, hence addressing the thesis question in relation to this type of quantum

system.

The codes used in Ref. [14] are not publicly accessible, therefore the control modules in QuTiP

were extended by the thesis author to support the numerical part of this study. These are described

in Chapter 2, including some of the challenges of working numerically with symplectic operator

evolution discussed in Section 2.6.

This chapter is organised as follows. Section 3.2 gives some background on continuous variable
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systems, which are also called ‘infinite dimensional’, for the reason given therein. Section 3.3 gives

the mathematical description of symplectic transformations, and Section 3.4 explains how control

optimisation is performed with them. The reachable sets of operations on unstable single-mode

systems is investigated in Section 3.5. Some attempt to extend this result to multi-mode systems is

described in Section 3.6. The scalability investigation is described in Section 3.7. Some discussion

of the results and outlook is given in Section 3.8

3.2 Infinite dimensional systems

Some quantum systems have a finite number of basis states. A prime example being those that can

represent the qubit in quantum information, which is some two state system. For instance the up

and down states of a spin-½ system or the energetic states of a two level atom. When the basis

states are set of orthogonal wavefunctions that describe the probability of finding a particle at a

given position x there is typically an infinite number of them, each with increasingly quantised

energy levels, with no theoretical ceiling. One example of this is the quantum harmonic oscillator

(QHO), which will be the focus of this chapter. Other examples, for which there are analytical

solutions, are the particle-in-a-box and the hydrogen atom. As there are an infinite number of basis

states, then the Hilbert space in which they can be represented is infinite dimensional. Hence the

term infinite dimensional systems.

The Hamiltonian of the particle in a QHO is

Ĥ =
p2

2m
+

1

2
mω2x2 (3.1)

where m is the mass of the particle, ω is the angular frequency of the system, x̂ = x is the position

operator and p̂ = −i ∂
∂x

is the momentum operator. The solutions to the Schrödinger operator

equation Ĥ|ψ〉 = E|ψ〉 for this are

〈x|ψ〉 =
1√
2nn!

·
(mω
π

)1/4

· e−
1
2
mωx2 · Hn(

√
mωx), n = 0, 1, 2, . . . (3.2)
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where Hn are the Hermite polynomials

Hn(u) = (−1)n eu
2 dn

dun

(
e−u

2
)
. (3.3)

The corresponding eigenvalues are

En = ω

(
n+

1

2

)
(3.4)

where n = 0, 1, 2, . . . produces the quantised energy levels and the infinite set of eigenfunctions

of the Hamiltonian. These solutions are studied by all physics undergraduates and hence there

derivation can be found in many text books. It should be remembered here that any superposition

of quantum states is also a valid quantum state. Meaning simply that the linear combination of

any of these wavefunctions, with normalised scale factors, is also a solution to the Schrödinger

equation with the QHO Hamiltonian.

For this study the shape of the wavefunction is unimportant, it is sufficient that they are orthog-

onal. Consequently they can represented as set of orthogonal basis vectors on a Hilbert space. In

the Dirac notation these are |0〉, |1〉, . . . , |n〉, . . ., collectively known as the Fock basis.

These operators decrease (â) or increase (â†) the quantised energy level

â =

√
mω

2

(
x̂+

i

mω
p̂

)
, â† =

√
mω

2

(
x̂− i

mω
p̂

)
(3.5)

consequently they are called the lowering and raising operators, or the annihilation and creation

operators, respectively. The position and momentum operators can be expressed in terms of them

x̂ =

√
1

2mω

(
â† + â

)
, p̂ = i

√
1

2mω

(
â† − â

)
(3.6)

Commutation relations can be derived from [x̂, p̂] = i

[â, â†] = 1 . (3.7)
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Combined these give the Hamiltonian in this form

Ĥ = ω

(
â†â+

1

2

)
(3.8)

The number operator N̂ = â†â is the energy operator of the system in terms of the number of

quanta, i.e. N̂ |n〉 = n|n〉 where |n〉 is the energy eigenstate of the system.

In the quantum field theory used in quantum optics the annihilation and creation operators

remove or add a photon to the field. The quadrature operators, defined as

q̂ =
1√
2

(
â† + â

)
, p̂ =

i√
2

(
â† − â

)
(3.9)

where q̂, p̂ are the dimensionless equivalent of x̂, p̂ in Eq. (3.6), and are the real and imaginary

components of the field amplitude respectively. The Hamiltonian of the field can be expressed as

Ĥ = ω
(
q̂2 + p̂2

)
(3.10)

The number operator N̂ relates to the number of photons in the field.

Due to the similarity of form q̂ is referred to as position-like and p̂ as momentum-like. The

Hamiltonians Eq. (3.8) and Eq. (3.10) are equivalent. Hence QHO systems and quantum fields can

be studied as equivalent systems.

Although care must be taken, there are methods to work analytically with infinite dimensional

systems. Numerically, however, it is impossible to perform computations that include the entire

Fock basis, as this would require infinite size vectors and matrix operators. When working numer-

ically with the Fock basis a cutoff point must be chosen, making an assumption that the oscillators

will never reach energies beyond the cutoff. It is typically considered a safe assumption, taking

into account a certain temperature ceiling. A model using such a cutoff is described in Chapter 5.

It can be seen that the ground state wavefunction n = 0 (also known as the vacuum state) is

Gaussian in the position operator x̂, as the Hermite polynomial for n = 0 is H0 = 1, and hence

Eq. (3.6) is Gaussian in x̂ for n = 0. It can also be shown that it is Gaussian in the momentum

operator p̂. There are other state classes, notably the thermal states and the coherent states, that are
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also Gaussian. These three are an important set of states for QHO systems, and important herein

because they are preserved during symplectic transformation [130].

In the Gaussian states the quadrature operators of a single mode can be completely described by

two parameters, their mean and variance. As these can be calculated from quadratic components

only, Hamiltonians that are no more than quadratic in these operators preserve the Gaussian nature

of these states. For this reason, these quadratic systems, although infinite dimensional, can be

treated exactly analytically and numerically.

This Gaussian formalism has been used widely as a research tool as it can describe many

classes of system – quantised light fields [131], the motional degrees of freedom of trapped

ions [132], opto- and nano-mechanical oscillators [133] and superconducting Josephson junctions

[134]. These systems offer the components of emerging quantum technologies, such as entangle-

ment generation, squeezing, cooling and quantum communication protocols [130, 135].

3.3 Symplectic transformations

For n mode systems with quadratic Hamiltonians, evolution in the Heisenberg picture can be con-

structed using a vector of the quadrature operators

~r = (q̂1, p̂1, . . . , q̂n, p̂n)T . (3.11)

As the subscripts refer to separate modes, then the quadrature operators obey these commutation

relations [r̂l, r̂m] = iδlm. The Hamiltonian can then be defined as

Ĥ =
1

2

∑
l,m

Hlmr̂lr̂m (3.12)

It can be seen that here Ĥ will be at most quadratic in the quadrature operators. The 2n × 2n

matrix H is real and symmetric, which ensures the bilinearity of Ĥ . The hat notation is retained

for Ĥ , the Hamiltonian operator to distinguish it from H , the Hamiltonian generating matrix.

The real symplectic non-compact Lie group Sp(2n,R) is the set of 2n × 2n matrices S such
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that

SΩSᵀ = Ω, where Ω :=
n⊕
i=1

 0 1

−1 0

 . (3.13)

All symplectic matrices have determinant 1. Symplectic matrices resulting from the Hamiltonian

generating matrices, as described below, have only real elements, and hence this chapter is only

concerned with real symplectic matrices. The group has dimension n(2n+1). The exponential map

from the Lie algebra sp(2n,R) to the group Sp(2n,R) is not surjective. However, all elements

in the group can be generated by multiplication of two exponentiated algebra elements. That is

∀S ∈ Sp(2n,R) there exists A,B ∈ sp(2n,R) such that S = eAeB. A set of symplectic matrices

are symplectically similar to another if one symplectic matrix maps one set to the other.

For a unitary evolution operator Û = eiĤt, defined on the infinite-dimensional space of the

quadrature operators in~r, the Heisenberg evolution is given byU †~rU = S~r where S is a symplectic

matrix [136, 137]. For real, symmetric 2n× 2n matrices H , matrices −HΩ are in the Lie algebra

sp(2,R) of the symplectic group Sp(2n,R). The quantum system will then evolve over time

according to S = e−HΩt. This correspondence between S and Û means that the Schrödinger

operator equation Eq. (1.6) for these systems can be written as

Ṡ = XS , (3.14)

where X = −HΩ and can be time-dependent. The controlled dynamics operator equation, taking

the form X = A+ u(t)B, is hence

Ṡ(t) =

(
A+

∑
j

uj(t)Bj

)
S(t), S(0) = I. (3.15)

This is the equivalent to the general closed system control dynamics equation Eq. (1.23). Here

the control functions uj(t) are real valued functions defined for all positive times t and A,B ∈

sp(2n,R).
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3.4 Symplectic operator control optimisation

The GRAPE algorithm (see Subsection 1.6.4) was used to produce some of the results in this

chapter. Some of the principles are recast here in the context of symplectic operators.

The evolution in each time slice is given by

Sk = e−HkΩ∆t. (3.16)

The full evolution is given by

S(T ) = SNtSNt−1 · · ·Sk · · ·S2S1. (3.17)

The cost function for the optimisation is the ‘trace difference’ infidelity defined in Eq. (1.48). In

terms of symplectic operators it is

E := λTr[(S(T )− Starget)
T(S(T )− Starget)] , (3.18)

with λ = 1/(4n) for a 2n × 2n matrix. It is clear that E = 0 if S(T ) = Starget. However, the

units are difficult to quantify, as there is no upper bound due to the non-compact nature of the

symplectic group. Some of the consequences of this are discussed in Section 2.6. Exact gradients

can be calculated for the symplectic propagators, and hence the fidelity error, using the Fréchet

derivative method. This is described for general generator matrices in Section 1.6).

Note Section 3.5 takes the propagator to be S = eΩH∆t. Using Ω−1 = −Ω, hence Ω2 = −I

(−Ω)(−HΩ)Ω = ΩHΩ2 (3.19)

= −ΩH , (3.20)

therefore

Ω−1e−HΩ∆tΩ = e−ΩH∆t . (3.21)

As Ω−1(·)Ω is a symplectic similarity transform, then the results are equivalent with t = −t.
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3.5 The reachable set of single-mode quadratic Hamiltonians

In this section single-mode systems will be used to investigate the controllability of systems with

quadratic Hamiltonians. The controlled dynamics operator equation Eq. (3.15) for a single mode

with one control operator is

Ṡ(t) = (A+ u(t)B)S(t), S(0) = I2, (3.22)

where the control function u(t) is a real valued function defined for all positive times t and A,B ∈

sp(2,R).

3.5.1 Controllability and the reachable set

In finite dimensional systems the Lie algebra rank criterion (LARC) is a necessary and sufficient

condition to determine the controllability of a quantum system, see Section 1.4. Satisfying the cri-

terion shows that all directions in the Hilbert space can be followed and therefore, given sufficient

time, the entire space is reachable due to its bounded nature and dynamical recurrence. For infinite

dimensional systems LARC is also a necessary condition. Again it shows that all directions are

accessible, but as the group is non-compact, then dynamical recurrence cannot be assured. In quan-

tum optics terms, there is the possibility that despite all phase-rotation directions being possible

squeezing will dominate the dynamics. These systems are referred to here as ‘unstable’.

It has been shown that for systems with quadratic Hamiltonians that if the combined Hamil-

tonian matrix of H = HA +
∑

j uj(t)HBj is positive(negative)-definite, then this combined with

LARC is sufficient for controllability [13]. This property of H corresponds to neutrality of the

symplectic generator. A neutral matrix has all imaginary eigenvalues, which in the context of dy-

namics generators, leads to recurrent motion. The existence of combined control Hamiltonians that

provide recurrence was shown to be a sufficient condition generally for non-compact Lie groups

by Jurdjevic and Sussmann [10].

It has been shown that neutrality is a sufficient and necessary condition for controllability in

single-mode systems by Wu, Li, Zhang and Tarn [12]. They consider systems evolving according

to the group SU(1, 1), rather than the symplectic Sp(2,R) group. These groups are isomorphic
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and so the result applies in both cases. SU(1, 1) is used to describe the dynamics of systems such

as Bose-Einstein condensates [138] and spin wave transitions [139]. The symplectic group is used

more prevalently in quantum optics [130].

As the full controllability of the single-mode system is only achievable when this neutrality

condition is met, then the reachable set of operations cannot be the entire set of single-mode sym-

plectic transformations. However, it is clear a subset of the symplectic transformations is reach-

able. A model where the LARC are met, but the neutrality condition cannot be met, and therefore

unstable, was used to determine that there is a bound on the reachable set and hence system is

not controllable [12]. By translating the model into the symplectic group it is possible to gain a

physical interpretation for the bound, and to discover some other characteristics of the reachable

set.

Given A and B from Eq. (3.22), the subset Ξ of sp(2,R) with elements of the form A + vB,

v ∈ R, is called the set of accessible dynamical generators of the system. To define the reachable

set for symplectic operations:

Definition: Reachable set. The union of all sets of elements S(t) that solve Eq. (3.22) for some

choice of control function u(t) is called the reachable set of Eq. (3.22) and is denotedR.

The symplectic generator can be categorised, with the elements of M of sp(2,R) being one of

• Parabolic, if Tr[M2] = 0,

• Hyperbolic, if Tr[M2] > 0,

• Elliptic, if Tr[M2] < 0.

The names provide some intuition on the action of the generators. The elliptic generators are

neutral resulting in recurring dynamics. Whereas parabolic and hyperbolic generators produce

non-recurring trajectories.

Given that the rank criterion with neutrality is sufficient for controllability, any set Ξ that satis-

fies the LARC and includes elliptic generators would result in a controllable system. It may seem

therefore that a set Ξ that excluding all elliptic generators would be sufficient to make a system

uncontrollable, since the set eX for all X non-elliptic is not Sp(2,R). However, the time evolved
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solution to Eq. (3.22) is a product of exponentials, so it is not apparent that this would be the case.

It is certain though that any uncontrollable system cannot include elliptic generators.

Neither hyperbolic nor parabolic generators have the recurring properties that would provide

full controllability. If Ξ contains parabolic elements, then either the rank criterion is not satisfied

or the system is controllable [12]. Therefore, a model that satisfies the rank criterion, but is not

controllable, will have Ξ with hyperbolic generators only.

These operators specify a basis of sp(2,R):

Kx =
1

2

0 1

1 0

 , Ky =
1

2

−1 0

0 1

 , Kz =
1

2

0 −1

1 0

 , (3.23)

with these commutation relations

[Kx, Ky] = −Kz, [Ky, Kz] = Kx, [Kz, Kx] = Ky. (3.24)

The generator Kz is elliptic. The group elements eKzt are 2-dimensional rotations, belonging to

SO(2), a subgroup of Sp(2,R). In quantum optics experiments, these correspond to phase-plates

or phase-shifters that rotate the optical phase of a field. They preserve the field excitations, for

which they are know as ‘passive’ or ‘energy-preserving’. The generators Kx and Ky are hyper-

bolic, and they generate squeezing operations, which do not preserve the number of field excita-

tions. As an example of how this basis can be used, the linear combination aKy +Kz, with a ∈ R,

is elliptic for |a| < 1, parabolic for |a| = 1, and hyperbolic for |a| > 1.

Any linearly independent combination of 3 generators would either subsume the drift term or

would imply that elliptical generators were accessible [12]. Hence a control system with only a

single control operator, i.e. in the form of Eq. (3.22), needs to be considered in a study of general

controllability of single-mode unstable systems

3.5.2 Uncontrollability of unstable systems

The uncontrollability of unstable single-mode systems was proven in [12]. This proof has been

repeated for the Sp(2,R) group and is provided in full for completeness in Appendix A. The
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outline of the proof, its key premises and strategy is given here.

An unstable system is one that contains only hyperbolic elements. It can be shown, for in-

stance by the example Eq. (3.40), that a Ξ satisfying this hyperbolic only condition is capable of

generating sp(2,R). Therefore the LARC will also be satisfied when Ξ contains all hyperbolic

elements.

Lemma 3.1. If Ξ only contains hyperbolic elements then Eq. (3.22) is similar, via a symplectic

transformation, to

Ṡ(t) = (−Kx + bKz + u(t)Ky)S(t), S(0) = I2, (3.25)

where constant b ∈ R, |b| < 1.

Therefore, the reachable set of any purely hyperbolic system will be symplectically similar to

any other purely hyperbolic system, hence any conclusion about one will be applicable to all. The

set of accessible controls of Eq. (3.25) is denoted by Ξ̃, with elements of the form −Kx + bKz +

vKy, v ∈ R, and its reachable set by R̃. The strategy of the proof is to show that for the purely

hyperbolic system Eq. (3.25) some part of the single mode symplectic space is unreachable, that is

R̃ 6= Sp(2,R).

A general 2× 2 real matrix can be written as

X =

x1 + x3 x2 + x4

x4 − x2 x1 − x3

 , xi ∈ R. (3.26)

This form allows the definition of the following lemma.

Lemma 3.2. If X ∈ R̃ then the function

f(X) := (x1 − x4)2 − (x2 − x3)2 (3.27)
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satisfies

f(X) ≥ 1,

ḟ(X) ≥ 0,

ḟ(X = I) ≥ 1,

(3.28)

for any choice of u(t) in Eq. (3.25).

As the initial (t = 0, X = I)) value of f(X) is 1, and for the purely hyperbolic system

Eq. (3.25), f is always non-decreasing, then f(X) will always be greater than 1. As there exists

X ∈ Sp(2,R) for which f(X) < 1, then the reachable set is not the entire symplectic group, that

is R̃ 6= Sp(2,R). It is possible to use this bound to gain a physical interpretation in a quantum

optical setting, which is given below.

3.5.3 Singular value decomposition

Any symplectic matrix can be decomposed into the product of two rotation and one squeezing

matrices, or a single rotation where there is no squeezing. This is a singular value decomposi-

tion (SVD) for symplectic transformations. This is often referred to as the Euler [140] or Bloch-

Messiah [141] decomposition.

Definition: Singular value decomposition. Define

SO(2) :=


cos[θ] − sin[θ]

sin[θ] cos[θ]

 ∣∣∣∣∣∣ θ ∈ R
 (3.29)

and

Z(2,R) := {diag(1/z, z) | z ∈ R, z ≥ 1} . (3.30)

So matrices in SO(2) can be described by a single parameter θ, which is the phase rotation, and

matrices in Z(2,R) can be described by a single parameter z, which is the level of squeezing. Any

X ∈ Sp(2,R) can be decomposed as either

X = RθZRφ or X = Rθ, (3.31)
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where Rθ, Rφ ∈ SO(2) and Z ∈ Z(2,R).

Note that this decomposition is not unique. It is trivial to see that any additional rotation of 2π

will be equivalent for instance. Slightly more subtle is that matched additional rotations of π/2 in

θ and −π/2 in φ combined with the anti-squeezing is also equivalent.

For the singular value decomposition to be unique, the allowed angles must be bounded such

that

−π + θ0 ≤ θ < π + θ0, −π
2

+ φ0 ≤ φ <
π

2
+ φ0, (3.32)

where θ0 and φ0 are arbitrary but fixed. See Appendix B.1 for a justification of these bounds.

Values of z < 1 result in equivalent squeezing of 1/z in the orthogonal squeezing plane, and so

only values of z ≥ 1 need to be considered.

The decomposition can be physically interpreted as a phase rotation, followed by some squeez-

ing, and then another phase rotation. As mentioned previously the phase rotations are passive

(energy preserving), whereas the squeezing operations are not. If the entire symplectic transform

is passive, and hence there is no squeezing operation, then it can be described by a single phase

rotation.

Note that the SVD of a matrix generally does not require that left-singular vectors and right-

singular vectors (Rθ andRφ in this case) are in SO(2), simply that they are unitary. There are other

decompositions therefore where the left-singular vectors and right-singular vectors are orthogonal,

but not necessarily rotations. This needs to be considered when using general SVD algorithms

with symplectic matrices, as discussed in Subsection 2.6.2.

The singular value decomposition allows symplectic matrices to be characterised in terms of

the parameters θ, φ and z. These are convenient for the physical interpretation of the reachable set,

and in its visualisation. The bound on the reachable set can be redefined in these coordinates. The

derivation of the coordinate transformation is given in Appendix B.2. Lemma 3.2 can be restated

as:

Corollary 3.1. If X ∈ R̃ then the function

g(X) := cos[2θ] cos[2φ]− λ(z, φ) sin[2θ] , (3.33)
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where

λ(z, φ) :=
1

2

(
z2 +

1

z2

)
sin[2φ]− 1

2

(
z2 − 1

z2

)
, (3.34)

satisfies

g(X) ≥ 1, (3.35)

ġ(X) ≥ 0, (3.36)

ġ(X = I) ≥ 1. (3.37)

for any choice of u(t) in Eq. (3.25).

3.5.4 Reachable sets of unstable systems

The Corollary 3.1 can be used to provide some bounds on R̃ for unstable systems in the SVD coor-

dinate system. By considering all possible trajectories of the evolution, starting from the identity,

it is possible to prove that pure passive operations (those with no squeezing component) cannot

achieved for hyperbolic systems. Although the identity is included in the set passive operations,

and it is trivial to see that at t = 0 this is reached, however all other passive rotations are not

reachable. This is formalised in the following theorem:

Theorem 3.1. If Eq. (3.22) is restricted to hyperbolic dynamical generators then its reachable set

does not contain any elements of SO(2) except for I.

The full proof of this theorem is given in Appendix C. In practical terms this means that for

unstable systems no manipulation of available controls can achieve, at any time, any optical phase-

shift operation. As a reminder, unstable systems are those with only the potential for hyperbolic

generators, but which are able to generate the whole symplectic algebra. This result demonstrates

that, for single-mode systems, it is not possible to achieve the equivalent of an elliptic generator

by any sequence of hyperbolic generators. This suggests that positive squeezing is unavoidable for

systems evolving under purely hyperbolic generators.
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3.5.5 Example system: controlled squeezing Hamiltonians

The reachable operations of single-mode systems with quadratic Hamiltonians, with restrictions

on the types of available generator (elliptic, parabolic, hyperbolic), can be explored using a model

with drift and control Hamiltonians as squeezing operations along different directions.

Ĥ = ĤA + u(t) ĤB, (3.38)

where the drift Hamiltonian ĤA and the control Hamiltonian ĤB are defined as

ĤA =
(1− c)x̂2 − (1 + c)p̂2

2
,

ĤB = − x̂p̂+ p̂x̂

2
.

(3.39)

These can be represented in the Hamiltonian generator matrix format (see Sec. 3.3) as

HA =

1− c 0

0 −c− 1

 , HB =

 0 −1

−1 0

 , (3.40)

By applying Ω this gives the open-loop control problem in terms of symplectic generators

Ṡ(t) = (A+ u(t)B)S(t), (3.41)

where

A

 0 −(1 + c)

−(1− c) 0

 , B =

−1 0

0 1

 . (3.42)

This example will be used to provide an investigation into of the reachable operations. It be can

easily configured to explore the three generator types, as:

|c| < 1 =⇒ hyperbolic

|c| = 1 =⇒ parabolic

|c| > 1 =⇒ elliptic

For investigating purely hyperbolic systems the obvious case is where c = 0, as this is furthest
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from the elliptic region. However values of c near boundary of the elliptic-hyperbolic region are

also worthy of investigation.

Reachable set visualisation

The visualisation uses the coordinate system from the singular value decomposition defined in

Sec. 3.5.3 and uses (z, θ, φ) as graph axes. For the volume to uniquely contain the symplectic

group then bounds must be set on the rotation angles by setting fixed values for θ0 and φ0. These

values are most suitable for clearly displaying the symmetry in the reachable operations

(θ0, φ0) = (0,
π

2
), (3.43)

which results in the bounds

−π ≤ θ < π, 0 ≤ φ < π. (3.44)

All symplectic group operations can be represented by a point in this cubic space. Note that

through the definition of Z in Eq. (3.30) z > 1 this provides a unique mapping. It is unbounded

above as there is no theoretical limit on squeezing, making the symplectic group non-compact,

and is related to the infinite set of energy eigenstates for QHO systems. The z = 1 plane contains

non-unique symplectic operations, as any combination of θ and φ that sum to the same angle are

equivalent to a single rotation of θ + φ. However, the main point of interest in this plane is the

identity, as this is the start point of the operator evolution trajectory.

Although any reconstruction of a symplectic operation from the SVD parameters where z =

1, θ = −φ is the identity, a specific ‘singular value decomposition of identity’ can be found by

considering the limit t→ 0 for some known reachable element. For example, from Eq. (3.41) with

S(0) = I, c = 0, u(0) = 0

exp

 0 −1

−1 0

 t

 (3.45)
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as t→ 0. Consider t = 1
n

, where n ∈ N.

exp

 0 −1

−1 0

 1

n

 =

R− 3π
4

1
e

0

0 e

R 3π
4


1
n

= R− 3π
4

1
e

0

0 e


1
n

R 3π
4
.

(3.46)

In the limit as n→∞ the singular value decomposition of the identity is singled out as

I = R− 3π
4
R 3π

4
. (3.47)

The analysis used in the proof of the reachable set in Appendix C can be applied to give a

further bound for unstable systems. The proof of Lemma C.1 states that sin[2θ] > 0 for S 6= I for

unstable systems. In the range chosen for symplectic uniqueness Eq. (3.44), this implies

−π < θ < −π
2
, 0 < θ <

π

2
. (3.48)

Given that the identity, where the operator evolution starts at t = 0, has been shown to be located

at θ = −3π/4, and that there can be no discontinuity in the SVD parameters during the time

evolution, then

−π < θ < −π
2
. (3.49)

This is further illustrated in the visualisation of the reachable set in Fig. 3.1 where there appear to

be inescapable buckets, so starting at θ = −3π/4 there could no continuous time evolution that

would reach the 0 < θ < π
2

range.

Reaching operations through optimal control

Previously in this section it has been shown that for unstable systems some region of the sym-

plectic space is unreachable. This does not imply that all the symplectic transformations outside

of the unreachable region are reachable operations. It is clear that for any system evolving under
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Eq. (3.15) that some symplectic operations are achievable, as any choice of u(t) will give some

symplectic operation at all values of t. Quantum optimal control (QOC) methods, as introduced

in Section 1.6, can be used determine whether a specific operator can be realised, by attempting to

find some function u(t) that achieves this. Finding such a function shows that the operator is reach-

able. The failure of a QOC algorithm to find a control function that achieves the objective does

not necessarily imply that one does not exist. However, a systematic use a QOC algorithm will

show points the SVD coordinate space of the single-mode symplectic group that can be reached.

To gain some indication of the boundaries of the reachable set many operator optimisations must

be attempted, hence the computational efficiency of the algorithm is important, making GRAPE a

good choice.

The GRAPE algorithm requires that the control function is piecewise constant, so there is a

discrete set of parameters (amplitudes in the timeslots) that can be optimised. This in itself is a

constraint on the function that may (or may not) exclude some operations. The evolution time

T is split into M equal time slices of length ∆t with the time at the beginning of each slice tk.

The amplitude u(tk) is constant throughout the time slice, hence the piecewise constant control

function u(t) corresponds to a set of M real values. Setting M = 10 provides a balance between

computational efficiency and limiting the constraint on u. Thus GRAPE can be used to find a set

of u(tk) that results in an ST that is sufficiently close to Starget for it to be considered ’reached’ and

therefore in the reachable set. If the control parameter optimisation for Starget fails it is ’unreached’

and in this subsection is assumed outside of the reachable set. The target is considered reached in

this case if E < 10−3.

The Hamiltonian generator matrices are of the form

Hk = HA + u(tk)HB, u(tk) ∈ R. (3.50)

where HA and HB are as given in Eq. (3.40).

A discretisation scheme in the (z, θ, φ) space is required for a set of possible target symplectics.

To produce the results here points at π/12 intervals in the angular directions and 10 logarithmically

equal intervals between z = 1 and the arbitrary upper bound of z = 100. Between any two reached
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and unreached points there exists a reachable set boundary. A point closer to this boundary can be

found by interpolating the coordinates for another point between them. See Section 2.6.1 for more

detail on how the boundary reached points were found.

The region proved unreachable, given by Eq. (3.35) and the numerical results of the tests for

unstable systems are shown in Fig. 3.1. Note that the points shown are those reached specifically

at evolution time T rather than up to time T . The reached points are restricted to a set centred

around (θ, φ) = (−3π/4, 3π/4), which are the coordinates of the identity. The boundary points

form a basket or bowl shape with the lowest point above the identity. This indicates that rotations

are accessible, but only at the expense of additional squeezing. The reached point are all within the

bounds of −π < θ < −π/2, as predicted by the analytics Eq. (3.49). The basket is symmetrical,

giving other bounds of π/2 < φ < π. This suggests that the reachable set is tighter than the

complement of the unreachable region. Due to the symmetry of the singular value decomposition,

it is likely that there is a lemma of similar form to Lemma 3.2 that would provide these bounds in

φ.

The volume not found unreachable is translationally symmetric in the 0 < θ < π region to the

−π < θ < 0 region. However, reachable points are only found in the−π < θ < 0 region. One may

ask why there is no basket of reachable points in the volume in the 0 < θ < π region. As explained

above, all operator evolution trajectories start at I, and the identity lies on the θ = −φ, z = 1 line.

All points on this line for θ > 0 are in the proven unreachable region, hence no trajectories can start

there, and there are no continuous evolution paths into this region, meaning there are no reachable

points in the 0 < θ < π region.

The points reached by random evolution of the system shown in plot (d) of Fig. 3.1. These are

the end points of the evolution based on samples where the piecewise constant amplitudes were

uniformly distributed in [−1, 1] with 10 timeslots. 10,000 samples were made, and the 1,000 most

spatially separated are plotted. The Hamiltonian parameters are identical to those in plot (b), and

so the reachable set is equivalent. The reached points all appear in the bottom of the basket. This

demonstrates the advantage of control optimisation in exploring the bounds of the reachable set.

In tests with stable systems, with |c| ≥ 1.1 all points were reached. For |c| = 1.01 the opti-

miser was unable to find a suitable control function for some Starget. These unreached points were
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(a) c = 0, T = 1 (b) c = 0, T = 5

(c) c = 0.99, T = 1 (d) c = 0, T = 5

Figure 3.1: The enclosed blue region is unreachable by Eq. (3.35). The blue points are reached
operations in the (z, θ, φ) basis after time T . The boundary points, found by interpo-
lation, are depicted as the darker blue points. The unreached points are not shown.
Specific parameters: (a) c = 0, T = 1; (b) c = 0, T = 5; (c) c = −0.99, T = 5,
(d) c = −0, T = 5. The magenta points in plot (d) were reached by random control
pulses.
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predominantly in the region found reachable for−1 < c < 1. However, it is most likely that this is

due to the constraints placed on the pulse optimisation, and demonstrates the difficulty of finding

a solution near the edge of stability. In the case for c = −0.99 the reachable set is broader – the

sides of the bowl are less steep. This broadening of the reachable set as c goes near the boundary

of stability indicates that the squeezing at the expense of rotations is less, and the control system

has become in some sense more stable. For the parabolic system |c| = 1 the reached points were

constrained to a plane, as would be expected because the generators do not fulfil the rank criterion.

3.6 Multi-mode systems

Having the recurring elements of the generating algebra, referred to as neutral, available to the

control system has been shown sufficient, with the rank criterion, for controllability on n modes

[23]. In the previous section neutrality was proven necessary for control generators to produce

passive operations for single-mode systems. Extending this result to any number of modes is

clearly desirable, however it remains a long-standing open problem in mathematical control theory

[10, 142].

To prove the necessity of neutral generators for controllability it would suffice to show that

there is no way of accessing the subgroup of passive operations because the non-neutral generators

induce irreversible squeezing. It is possible that an analytical approach such as that in used in

section 3.5.2 could be applied to n-modes, though clearly this would be more challenging. The

numerical approach used in section 3.5.5 is applicable to at least two modes. With a single mode,

reachable points, when elliptic generator elements are not accessible, the system is restricted to un-

bounded squeezing within a small angular region. A similar finding for two modes would motivate

an analytical study into trajectories with irreversible squeezing.

As, for single-mode, unstable systems the inaccessibility of passives is due to squeezing being

unavoidable, then it is reasonable to conjecture that this also true for n-modes. Given some general

n-mode symplectic operator S, acting the vector of quadrature operators Eq. (3.11), a measure of
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the squeezing involved is given by

ξ = max eig[SSᵀ]− 1, (3.51)

which only reaches zero when S is a passive element. For single-mode, unstable systems the only

passive element in the reachable set is the identity.

3.6.1 Example two-mode systems

The controlled dynamics operator equation Eq. (3.15) for a two-mode system with one control

operator is

Ṡ(t) = (A+ u(t)B)S(t), S(0) = I4, (3.52)

where the control function u(t) is a real valued function defined for all positive times t, A,B ∈

sp(4,R), and S is a symplectic operator Sp(2,R) acting on the quadrature operator vector Eq. (3.11)

with n = 2.

It is not trivial to find a control model where a single parameter can be used to set the neutrality

of the system, as in the single-mode example. However, there are neutral and non-neutral examples

with some physical interpretation.

Non-neutral system example

For a non-neutral example a combination of generators is required such that A+vB is non-neutral

for all values of v ∈ R

In the H-matrix form, defined in section 3.3

HA =


0 0 d c

0 0 c −d

d c 0 0

c −d 0 0


, HB =


a −b 0 0

−b −a 0 0

0 0 e −f

0 0 −f −e


, (3.53)

where HA corresponds to two-mode squeezer and HB corresponds to two single-mode squeezers.
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These provide

A =


0 0 c −d

0 0 −d −c

c −d 0 0

−d −c 0 0


, B =


−b −a 0 0

−a b 0 0

0 0 −f −e

0 0 −e f


. (3.54)

The elements A and B generate the Lie algebra sp(4,R), as can be be verified using the LieTree

algorithm. The method is described in section Section 2.5

Some specific values are required for a numerical treatment, for instance:

A =


0 0 1 −2

0 0 −2 −1

1 −2 0 0

−2 −1 0 0


, B =


−2 −1 0 0

−1 2 0 0

0 0 −4 −3

0 0 −3 4


. (3.55)

Neutral system

For a controllability comparison a neutral example is also required

H =


−2 0 0 0

0 −1 1 0

0 1 −7 0

0 0 0 −4


(3.56)

implies

Aneutral =


0 2 0 0

−1 0 0 −1

1 0 0 7

0 0 −4 0


, (3.57)

As the drift A in this case has all imaginary eigenvalues, then this guarantees access to neutral

elements for the system when combined with B as above.
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3.6.2 Two-mode singular value decomposition

In order to systemically probe the two-mode symplectic space the singular value decomposition

(SVD) can be used to construct an Starget based on component parameters.

A general two-mode symplectic may be decomposed as

S = R1ZR2, (3.58)

where

Z = diag(z1, 1/z1, z2, 1/z2), (3.59)

and

R = RαRβRθRφ (3.60)

with

Rα =

RO2(−α) 0

0 RO2(−α)



Rβ =

RO2(β/2) 0

0 RO2(−β/2)



Rθ =


cos[θ/2] 0 sin[θ/2] 0

0 cos[θ/2] 0 sin[θ/2]

− sin[θ/2] 0 cos[θ/2] 0

0 − sin[θ/2] 0 cos[θ/2]



Rφ =

RO2(φ/2) 0

0 RO2(−φ/2)



(3.61)

where

RO2(x) :=

cosx − sinx

sinx cosx

 , (3.62)

hence

S = S(α1, β1, θ1, φ1, z1, z2, α2, β2, θ2, φ2) (3.63)
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3.6.3 Numerical study using optimal control

Quantum optimal control can be used to determine if specific symplectic operations can be reached.

The approach is described in Section 3.5.5. For the piecewise control function, 24 equal timeslots

should provide sufficient optimisation parameters, as the Sp(2,R) group has dimension n(2n +

1) = 10, and therefore 24 variables should be sufficient in the optimisation algorithm. Evolution

time of T = 1 avoids the elements the symplectic exceeding computational limits. In all tests

discussed below optimisations were initialised with randomised control functions with amplitudes

in the range [−1, 1]. No bounds were placed on the amplitudes during the optimisation.

two-mode space sampling

As there are 10 SVD parameters in the two-mode symplectic, any deterministic approach to ex-

amining the entire space evenly with respect to these parameters gives rise to an infeasibly large

number of combinations for a control optimisation to be attempted on all of them. Primarily of

interest are the squeezing degrees of freedom. A feasible approach is to evenly span the squeezing

parameters space and use random sampling of the angular parameters to explore what can and

cannot be reached.

Tests were completed using control optimisation to determine the reachability of points for

all combinations of z1, z2 with 10 equally values in [1, 10]. For each of the angular parameters,

values were selected randomly for the full range of [−π, π] at intervals of π/4. These were used to

form some Starget based on the composition Eq. (3.58). For each pair of squeezing parameters 100

random angle combinations were attempted.

In the vast majority of scenarios, with the neutral example generators of Eq. (3.55), the Starget

was found to be reachable. However, with the non-neutral example of Eq. (3.57), none of the

targets were found to be reachable. As only a limited set of points were tested, these tests suggest

that potentially the reachable set is very narrow in one or more parameters. This is investigated by

seeing if controls can be optimised to reach targets close to known reachable points.

116



CHAPTER 3. SYMPLECTIC OPERATOR CONTROL

Shifted targets

It is possible calculate on operation that is very close to another that is known to be in the reachable

set. This can be done by evolving the system with some u(t) resulting in some S(T ) at t = T , as

per Eq. (3.17). A small change can introduced in any of the 10 parameters (α1, β1, θ1, φ1, z1, z2,

α2, β2, θ2, φ2) and a new operator calculated as a result. This can be used as some target Starget in

control optimisation. The SVD parameters can be extracted from S(T ) using a method described

in Subsection 2.6.3. From this the target can be constructed using Eq. (3.58), with

Starget = S(α1 + δα1, β1 + δβ1, θ1 + δθ1, φ1 + δφ1,

z1 + δz1, z2 + δz2,

α2 + δα2, β2 + δβ2, θ2 + δθ2, φ2 + δφ2) ,

(3.64)

where the α1, β1, . . . are the SVD parameters of S(T ) and the δα1, δβ1, . . . are the small changes,

for which it typically makes sense have only one non-zero.

Control optimisation attempts were made for targets shifted, as described above, from the

evolved operator S(T ). The initial control pulse for the optimisation was the random pulse that

evolved S(T ). Using the non-neutral example it was possible to find shifted targets (to within an

infidelity target of 10−5) where the change in squeezing (δz1 +δz2) between that randomly evolved

S(T ) and target Starget was in the range [−1, 2].

Angle shifted targets were more difficult to reach. A change of δθ in range [±0.05]rad is

reachable with with an infidelity target of 10−3, but δθ = ±0.01 is not reachable with an infidelity

target of 10−5. The other angles were found to be more sensitive. δφ = ±0.01 was reachable with

an infidelity target of 10−3. Whereas α, β did not accept any shifting > 0.0001, even for infidelity

target of 10−3.

3.6.4 Numerical study using random evolution

It is clear that the reachable set for the non-neutral example is not zero-volume. The system evolv-

ing under the generators must result in some transformation. Using the same piecewise constant

control function parameters, with the non-neutral example generators of Eq. (3.57), the system was
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(a) Squeezing parameters
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Figure 3.2: Decomposition of 10000 random pulse evolutions. All evolved for T = 1, with 24
timeslots.
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Measure Freq
z1 + z2 349
‖Z‖2 759
z1 4415
z2 16

z1 & z2 10

Table 3.1: Non-monotonicity of squeezing for 10000 random pulse evolutions. All evolved for
T = 1, with 24 timeslots.

evolved 10000 times using different random control functions.

SVD parameter distribution

The evolved S(T ) were decomposed into the 10 SVD parameters, the 4 angles of R1, the two

squeezing parameters, and the 4 angles of R2. For details of how these parameters were extracted

see section 2.6.3. Fig. 3.2 shows the distribution of the SVD parameters. It should be noted that

z1 > z2 for any single S(T ) due to the decomposition method, which explains some features of the

distributions of Fig. 3.2(a), such as z1 > z2 on average and the hard-edge z1 = z2 in the rightmost

plot.

The distributions show narrow angle ranges, in particular for α, β, φ. This provides some

explanation as to why the systematic search for the reachable set of the non-neutral example found

no reachable targets. The width of the angle ranges is greater than that found achievable in the

shifted target attempts. This hints at potentially a similar feature to that seen in the single-mode

unstable system, where rotations were only accessible at the expense of squeezing.

Anti-squeezing

A key conjecture of the uncontrollability of unstable systems is that squeezing is inevitable during

the operator evolution over time. In a piecewise constant setting this can investigated by exam-

ining the degree of squeezing in the operator evolved in each timeslot. In two-mode systems the

individual mode squeezing z1, z2 may not be expected increase monotonically, but as the level of
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squeezing may be transferred between modes, then the most valid measure would be

‖Z‖2 = Tr [ZTZ], (3.65)

If the SVD has already been completed, then this is more efficient than calculating Eq. (3.51).

The main objective is to show that passive operations are inaccessible for two-mode unstable

systems. One approach is to show that squeezing is unavoidable. The 10,000 random operator evo-

lutions can be analysed to see if they contain anything to counter this conjecture. Table 3.1 shows

the number of instances of non-monotonicity, by various measures, for the squeezing parameters.

Note that z1 & z2 non-monotonic does not imply that they both decreased in the same timeslot,

just that they each decreased during some timeslot of the evolution. The focus henceforth will be

on the ‖Z‖2 measure, and any timeslot where ‖Zk+1‖2 < ‖Zk‖2 will be referred to as an anti-

squeezing timeslot. There are then some combinations of S0:k, the time evolution up to timeslot k,

and Sk, the propagator in timeslot k (such that S0:k+1 ≡ SkS0:k), that result in anti-squeezing. As

shown in Table 3.1 there are 759 examples in the 10000 sample set where there is at least one anti-

squeezing timeslot, as measured by the change in ‖Z‖2. The timeslot index in which maximum

anti-squeezing occurs will be referred to as k′.

Given that anti-squeezing does occur in this unstable system, what are the features of the times-

lot dynamics that give rise to it? Are there specific generators that always anti-squeeze, or does the

system enter some state where squeezing can only be reversed, or does it require some combina-

tion of both? Fig. 3.3 a.) shows the frequency of maximum anti-squeezing in one timeslot for all

the examples that had at least one anti-squeezing timeslot. In the vast majority min ∆‖Z‖2 > −1.

However some have much more anti-squeezing, with one example having min ∆‖Z‖2 ≈ −22,

this specific example is referred to as the prime example. Fig.3.3 b.) shows the effect of the prime

anti-squeezing propagator on all the pre anti-squeezing operators. Fig. 3.3 c.) looks at the effect

of all anti-squeezing propagators on the prime pre anti-squeezing operator. These two histograms

suggest that in the prime example the operator is particularly susceptible to anti-squeezing, or oth-

erwise significant positive squeezing. That is, it is in some highly unstable stage of its evolution.

Fig. 3.4 looks at the effect of a.) the prime anti-squeezing propagator on some randomly
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Figure 3.3: Analysis of the min ∆‖Z‖2 (maximum anti-squeezing) for those evolutions that con-
tain at least one anti-squeezing timeslot. The anti-squeezing timeslot for the evolutions
is denoted by k′. The propagator Sk′ and evolution operator S0:k′ for the example that
was found to produce the overall maximum anti-squeezing of all the examples, re-
ferred to as the prime example, are used for additional analysis. a.) Distribution of
the maximum anti-squeezing; b.) max anti-squeezing propagator applied to all anti-
squeezing evolutions; c.) all anti-squeezing propagator applied to max anti-squeezing
evolution.
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Figure 3.4: The prime (see Fig. 3.3) anti-squeezing propagator and evolved operator are combined
randomly evolved operators and propagators.

evolved operator and b.) some random propagator on the prime pre anti-squeezing operator. The

random amplitudes are sampled in the range [−1, 1], and for the randomly evolved operator, a

random timeslot up to the 24th is used. These histograms seem to demonstrate that the prime anti-

squeezing propagator is not unusual, whereas the prime pre anti-squeezing operator is much more

likely to experience anti-squeezing than an average operator.

As the original conjecture about the unstable system and its generators is based around their
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Figure 3.5: The eigenvalues of the evolved operator up to the anti-squeezing timeslot. The subset
in b.) are those evolutions that have anti-squeezing greater than 2. These are compared
with c.) eigenvalues of randomly evolved operators

eigenvalues, then an examination of eigenvalues is justified when looking for some signature of

instability that potentially results in anti-squeezing. Fig. 3.5 attempts find some signature in the

eigenvalues of the pre anti-squeezing operators. The eigenvalues are all real for this non-neutral

example. The distribution of eigenvalues for the full set of pre anti-squeezing operators, a subset

that contains only the operators from the evolutions that have a ∆‖Z‖2 < −2, and an equivalent

size set of eigenvalues from randomly evolved operators are compared. Whereas for the full set of

pre anti-squeezing operators the distribution of eigenvalues appears indistinguishable from that of

the randomly evolved operators, the subset seems to have a range where eigenvalues are missing

from the distribution.

3.7 Coupled oscillators

The previous two sections focus on the necessity of neutrality in the generators of a bilinear sym-

plectic control system described by Eq. (3.15). The numerical studies in one and two modes

have demonstrated that access to neutral generators combined with the Lie algebra rank criterion

(LARC) is sufficient for achieving the full set of symplectic operations. This section looks extend

this into many modes by considering a challenging control objective in many-body systems.

Genoni, Serafini, Kim and Burgarth proved that, given satisfaction of LARC, positive-(negative)

definite Hamiltonian generating matrices are sufficient for controllability of systems with quadratic
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Hamiltonians [13]. This is equivalent to the neutrality condition. In the same study it is proven

that chains of coupled oscillators are fully controllable for specific controls acting on one oscillator

only, and coupling constants within a specific range. This section looks to use this oscillator chain

model to investigate some limits on control with these systems.

3.7.1 The oscillator chain model

The Hamiltonian for a chain of n coupled oscillators can be described by

Ĥ0 = ω

n∑
j=1

(
â†j âj +

1

2

)
+ g1

n−1∑
j=1

(âj â
†
j+1 +H.c.) + g2

n−1∑
j=1

(âj âj+1 +H.c.). (3.66)

where all the oscillators modes have the same frequency ω, âj and â†j are the bosonic mode op-

erators for the jth mode, and g1 and g2 are coupling constants, which in this model is the same

between all adjacent modes.

Control Hamiltonians, which act only on the first mode of chain,

Ĥ1 = ω1

(
a†1a1

)
,

Ĥ2 = χ(a2
1 + a†21 )

(3.67)

are local phase rotation and local squeezing operators respectively. Combined these give the full

Hamiltonian of the system

Ĥ(t) = Ĥ0 + u1(t)Ĥ1 + u2(t)Ĥ2 (3.68)

where u1(t) and u2(t) are real valued control functions. The LARC is shown to be satisfied for

this combination of Hamiltonians in [13] and its supplementary material. Also therein it is shown

that the positive-(negative) definite condition is met so long as g1 + g2 < ω/2.

In the terms of the quadrature operators the drift Hamiltonian can be expressed as

Ĥ0 =
ω

2

n∑
j=1

(
q̂2
j + p̂2

j

)
+ gq

n−1∑
j=1

q̂j q̂j+1 + gp

n−1∑
j=1

p̂j p̂j+1 (3.69)
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where gq = g1 + g2 and gp = g1 − g2.

The elements Hamiltonian generator matrix (defined in section 3.3) are therefore

H
(0)
l,m =



ω l = m,

gq |l −m| = 2, l even,

gp |l −m| = 2, l odd,

0 otherwise.

(3.70)

as the quadrature operators for different modes commute. For two modes this is

H0 :=


ω 0 gq 0

0 ω 0 gp

gq 0 ω 0

0 gp 0 ω


(3.71)

In terms of the quadrature operators the control Hamiltonians are

Ĥ1 =
ω1

2
(q1

2 + p1
2)

Ĥ2 = χ(q1
2 − p1

2)

(3.72)

and the corresponding H matrices can easily be recognised from these.

3.7.2 Optimal control of the chain

An interesting target for control optimisation is the square root of a boson swap between ends of the

chain, as achieving this would clearly demonstrate control of the whole chain, and would induce

an entangled state of the first and last oscillator modes. As this transformation is an exchange of

information on a length-scale, assuming a model of physical oscillators, then some inference about

the quantum speed limit could also be made. The Hamiltonian used to generate this target is

Ĥswap = â1â
†
n + ânâ

†
1 =

1

2
(q̂1q̂n + p̂1p̂n + q̂nq̂1 + p̂np̂1) = q̂1q̂n + p̂1p̂n . (3.73)
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Figure 3.6: Schematic of the control model. A chain of coupled oscillators with squeezing and
phase-rotation controls acting on the first oscillator mode. The control target is the
square root of the operation that swaps a field excitement (boson) from one end of the
chain to the other. This entangles the system.

The corresponding Hamiltonian generator matrix can be used to calculate the symplectic operator

as

S√swap = e−HswapΩπ (3.74)

A schematic of the full control set up is shown in Fig. 3.6.

Intuition suggests that for longer chains the ‘difficulty’ of achieving this S√swap target should

increase. A measure of the difficulty is the time required to effect this transformation. This can

be interpreted as some kind of quantum speed limit, as in physical systems such as ion traps or

coupled nano-oscillators, the number of oscillators in the chain translates to a length scale. A

bound is set for the amplitude of the control function, to model the limitation that would exist in a

physical experiment.

The GRAPE algorithm in QuTiP was used to find piecewise constant control functions for u1

and u2 that achieve the target operation, using the process described in Section 3.4. Optimisations

were attempted for specific total evolution times T , and the minimum fidelity error was recorded.

Optimisation was repeated for T in increasing increments until the operation could be achieved

with an fidelity error of less than 0.02 for 10 consecutive T . More details on the control optimi-

sation process, including the challenges of optimal control in many-body oscillator systems and

techniques for overcoming them, are given in Section 2.6.1

Specific parameters for the drift Hamiltonian were ω = 2, g1 = 0.3, g2 = 0.2. These were
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chosen to fulfil the positive definite requirement. Although g1 = g2 would be more typical for a

coupled QHO system, they were chosen different as momentum coupling does not occur in clas-

sical oscillator systems, and therefore having this makes the chains in some way more ‘quantum’.

The control Hamiltonian parameters were set at w1 = 1 and χ = 0.5. These are somewhat arbi-

trary, except in the context of of the amplitude bounds, which were set at [−10, 10]. The number

of timeslots for the piecewise constant controls was set based on the number of oscillators at 2n2.

This is based on theory from [78] and was confirmed by experimentation. As the number of de-

grees of freedom in this system increases, so number of parameters in the optimisation method

must also, unless there are symmetries that effectively reduce the degrees of freedom. The cost of

computing the time evolution grows exponentially with the number of oscillators. Combined with

the quadratic growth in optimisation parameters this made it infeasible to extend the numerical

results beyond 7 oscillators.

The plots in Fig. 3.7 show the results of the attempt to find the minimum evolution time T

required to perform the symplectic operation, known as the minimum gate time. There are two

measures of this. The first, Tg1 , is a specific time that is the smallest T found to be sufficient to

effect the operation, the second, TgA
, is a lower bound on T such that the operation can be reliably

achieved for all T > TgA
. The trends of both Tg1 and TgA

are shown in Fig. 3.8 for the S√swap

target. There is nothing in the plot to suggest a scaling of any worse than linear for either of the

minimum gate time measures. Similar results found for spin chains were reported in [143].

To verify that Tg1 and TgA
for S√swap are not significantly different for other operations, due

to some symmetry or other feature, the minimum gate time optimisations were repeated with a

randomly generated symplectic target. The target was kept the same for each T , but there was

no relation between the targets for different chain lengths. Plots Fig. 3.7 a.) & b.) show a very

similar trend for T with the minimum fidelity error for the different chain lengths. The trends for

minimum gate time with the random symplectic target are not plotted, because the targets for each

n are not related.

The fidelity error Eq. (3.18) is unbounded from above, so it is no surprise that E > 1 is seen

in Fig. 3.7. The minimum infidelities (or unreachable targets) for random symplectic targets are

typically higher than those for the S√swap target in the same size system, and this increases with n.
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(a) S√swap target
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Figure 3.7: The minimum fidelity error is plotted for different evolutions times T . This is repeated
for different chain lengths n = {1, 2, 3, 4, 5, 6, 7}. In (a) the target is the square root of
the boson swap, which is described in the main text. In (b) the target is some random
symplectic operation of corresponding n.
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Figure 3.8: Plot showing the trend in minimum total evolution time T found to be required to
effect the operation. The blue squares indicate Tg1 , the smallest time such that the
operation can be achieved to within a fidelity error of E < 0.01. The orange triangles
indicate TgA

, the time that E < 0.02 consistently for any greater T .

The elements of the S√swap target matrix are predominantly zeros, which is not necessarily true for

a random symplectic. The fidelity error at t = 0, S = I will likely be much higher for the random

symplectic, and when the target in not reachable for t = T , this is likely to remain that way.

3.8 Conclusion

The Lie algebra rank criterion is necessary and sufficient for controllability on compact Lie groups.

It is not sufficient for the non-compact symplectic group, which is used to represent the operators

on Gaussian quantum systems. The sufficiency of neutrality for controllability of the generators has

long been known. Specifically for the single-mode case this has been equated with the geometrical

interpretation of elliptic. Although previous work has proved the necessity of elliptic generators in

an isomorphic group, this study clearly illustrates this for the symplectic group in a single mode. A

region of the symplectic space has been shown to be unreachable when the control system cannot

access elliptic generators. Relating this to physical systems, such as in quantum-optics, passive,
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or energy-preserving operations have been shown impossible to implement for unstable single-

mode systems. This is due to squeezing, which is not energy preserving, being unavoidable while

attempting to drive the passive operations, which are phase rotations.

Further characterisation of the reachable set was made using numerical methods. Control op-

timisation finds reached points in the symplectic operator space that are symmetrical about the

identity in coordinates provided by singular value decomposition. This hints at the potential for

finding an analytical solution for the set that includes only reachable points.

Systems with hyperbolic generators, having operations accessible through control, exist in sev-

eral experimental set-ups, both optical and mechanical. They have potential for beating decoher-

ence times due to exponential speed-ups – for example [144], where such operations are proposed

to achieve this aim in the context of superconducting quantum magnetomechanics. The Hamilto-

nians generating these are referred to as ‘repulsive potentials’.

The two-mode reachable set investigation perhaps raises more questions than it answers. Cer-

tainly it remains open ended, with many avenues worthy of further investigation. The narrowness

of the reachable set for the specific unstable example, particularly in the angle parameters, is most

interesting. It is not immediately clear what the physical relevance of these angles are. Perhaps

the mean values could give some indication. It may be possible to find other unstable examples

that can access wider ranges of rotations. Why is there an upper limit on δz1 + δz2 for the shifted

targets? As the controlled generator is a two single-mode squeezer, and the control function is un-

bounded, then there should be no upper limit squeezing. It may be interesting to plot the trajectory

of the operator evolution in terms of these generators.

The inevitable squeezing conjecture appears to have been disproved with many counter exam-

ples. However, no examples were found where the overall squeezing was zero. The eigenvalue

signatures perhaps give some clue as to how a counter-example might be constructed. Only one

counter-example is necessary to disprove the conjecture about passives being inaccessible with

non-neutral systems. It would be sufficient to find one set of generators, combined with a control

function, where any squeezing is completely reversed in the final evolution,

The neutrality condition can be used to select valid parameters for a simulation or experiment

to ensure controllability. The reachable set investigation showed that it not necessary to exclude
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control parameters that give non-neutral generators, as although they do not provide full control-

lability, they do provide a set of potentially useful operations. Access to some neutral generators

is sufficient, as demonstrated in the coupled oscillator chain simulations, where what intuitively

seems like very limited control over the system, but shown to be sufficient through the Lie algebra

rank criterion and the neutrality condition, was found capable of achieving challenging control

objectives. Although only a limited set of data was possible, no evidence for scaling of gate times

with number of modes worse than linear was found. Numerical quantum control optimisation was

clearly demonstrated to be a useful tool in investigating both the reachable set of operations, and

the scaling of minimum gate times with system size, for continuous variable quantum systems.
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Chapter 4

Upgrading quantum simulators to

computers

The results presented in this chapter were produced as part of a collaborative project with Benjamin

Dive, Florian Mintert & Daniel Burgarth, they have been published in Ref. [145]. The application

of the local estimator fidelity to in-situ optimisation and its implementation as a QuTiP control

‘custom fidelity’ were completed by B. Dive. The thesis author developed the algorithm for locat-

ing the fidelity precision threshold, ran the control optimisation simulations and performed analysis

for the required updates and fidelity precision scaling, and ran the simulations and performed the

analysis for the topological and interaction type comparison.

4.1 Introduction

From the description of a gate type quantum computer given in Subsection 1.5.4, building a digital

quantum computer sounds like an achievable engineering feat – one just needs a sufficiently large

register of coherent qubits, that can be addressed individually for the preparation and readout of

quantum states, and upon which two different single qubit and one two qubit gates can be effected.

There are wide range of physical systems that can act as qubits, along with methods for controlling

their state evolution. However, effecting two-qubit gates to high-levels of fidelity in itself is hard,

and finding a physical platform which provides scalability in all of these ingredients is proving
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elusive. And so the objective of building a device that can demonstrate quantum supremacy, let

alone a digital quantum computer that perform useful tasks in science and the widely society,

remains unachieved.

There are many challenges that still remain to be overcome in the development of a scalable

quantum computer, as discussed in Subsection 1.5.4. Quantum simulators are a rapidly developing

technology, and today there are devices with hundreds of interacting coherent qubits. If single and

two qubit gates can be effected on these devices, initial states can be reliably set, and final states

be efficiently read out, then they will be able to execute quantum algorithms, and hence act as a

quantum computer.

For a given quantum simulator, if there is sufficient control over individual qubits and the nec-

essary interactions, then the many-body quantum system is fully controllable, meaning that any

unitary evolution can be effected upon it, and this clearly includes gates on single and pairs of

qubits. Assuming this, how can the controls which perform these gates be determined? If an accu-

rate model could be built, then the quantum control optimisation methods introduced in Section 1.6

could be used to determine the control parameters required to perform a gate on a specific qubit or

qubits. There are two insurmountable challenges with this. Firstly, it is impossible to model the

system accurately enough that gate fidelities would be sufficient. Secondly, the computing power

required to calculate the evolution of an n qubit system scales exponentially with n, making it

practically impossible to simulate any system than could perform a useful quantum computation.

In this chapter a scheme is presented whereby the controls that perform gates can be determined in

situ, that is within the device itself.

Suitable quantum simulators for the scheme exist, or at least are close to being realised. These

are discussed in Section 4.2. The idea of optimising controls in situ is not new, in fact it has a

long history that is outlined in Section 4.3. The crux of the scheme is that it must scale favourably

with system size, that is no worse than polynomially in n. Central to the scheme is a method for

determining how closely the controls effect the unitary that performs the desired gate(s), which

must not only effect the gate(s) on the selected qubit(s), but must also act trivially on the rest of the

system, and hence is a full system unitary operation. A fidelity measure for this purpose that does

not scale with the number qubits is presented in Section 4.5. The control optimisation method itself
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Figure 4.1: Illustration showing in-situ gate optimisation. A classical computer iteratively op-
timises a control pulse based on measurements performed to estimate the fidelity.
[graphic produced by B. Dive]

must also scale acceptably. The numerical study in Section 4.6 demonstrates this by simulating

the scheme up to the limits of (available) classical computing power, which is for systems of

up to 9 qubits, in which it is shown to scale polynomially for systems with Ising interactions in

various topologies. Thus demonstrating the useful application of numerical control optimisation

in developing quantum information processing technology.

4.1.1 The Choi-Jamiolkowski isomorphism

The Choi state will be used in the definition of the gate fidelity, hence it is defined here. There is

a one-to-one correspondence between CPT maps (introduced in Section 1.2.3) and quantum states

on the doubled space of the systemHCJ = HS⊗HS . This is the Choi-Jamiolkowski isomorphism,

defined as

ρM = (M ⊗ I)|Φ〉〈Φ| , where |Φ〉 = 1√
d

d∑
i

|i〉 ⊗ |i〉 (4.1)
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where the |i〉 form a basis of HCJ, the definition of |Φ〉 is that of the maximally entangled state,

and I is the identity map. The Choi state ρM is therefore the CPT map M acting on one half of the

maximally entangled state of the doubled space, and it encodes all properties of the map M . If M

is a unitary channel, then ρM will be a pure state.

4.2 Quantum simulator for computing

An overview of analogue quantum simulators, and the wide range of applications envisioned for

them, is given in Section 1.5.3. As mentioned there, one of the key applications is in the investi-

gation of magnetism at a quantum level. Some of the simulators being developed for this purpose

also happen to be suitable for implementing the scheme for upgrading them to quantum comput-

ers that is detailed in this chapter. The specific technologies and their applicability are discussed

below.

Ions trapped by electromagnetic potentials have long been employed in the experimental study

of quantum behaviour due to the ability to isolate individual particles [146]. Qubit states are

encoded in the internal electronic states. Laser cooling is used to limit this to the ground and first

energetic state, giving a two level system. Laser pulses are also used to drive transitions for state

read out, and couple ions through motional states, making two-qubit gates possible [43]. It is a

mature technology and quantum entanglement has been demonstrated in over 200 qubits in ion

trap simulators [45].

The flexibility of generating artificial lattice structures using ultra-cold atoms makes them par-

ticularly suited to many applications in condensed matter physics, such as superfluidity and su-

perconductivity [147]. There have been recent advances in generating two dimensional arrays to

simulate coupled spin-½ systems [46]. Although this study only reported success with arrays of

up to 30 spins, which is insufficient for a useful quantum computation, it is a rapidly developing

field. It could provide a platform for the in-situ gate optimisation scheme as a proof of principle,

as it provides the controllability and measurement criteria.

The nuclear spins of atoms within molecules have long been used as qubits. Their use in

quantum simulation has been proposed for some time [148], with some successful realisations
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[149]. The scaling of using NMR with liquid phase molecules has always been an issue, as beyond

tens of qubits it becomes difficult to address specific nuclei within the molecule. However, the

nuclear spins of impurities in diamond hold great potential for quantum simulation and computing,

as their locked positions in the lattice can be used to address individual nuclei. Architectures for

large scale simulators based on this idea have been proposed [150].

Superconducting circuit qubits, with states as direction of current flow or harmonic states of

oscillators, and couplings via capacitance or photonic cavities, offer one a the most scalable plat-

forms due to the well established lithographic techniques that are used to fabricate them. Tuning

for specific parameters can be achieved simply through geometry. Successful digital quantum sim-

ulations have been made with these devices [151]. There are challenges in individual qubit control

and addressing with larger scale devices [58].

The simulation of quantum spins with Ising type interactions is one of the prime applications

for these systems, as this is the model used to investigate magnetism at a quantum level. Simulators

configured in this way are called Ising machines. There examples with trapped ions [42], cold

atoms [46] and optical processors [152]. The numerical study demonstrates that these systems

can be upgraded to act as quantum computers, provided only that full control and addressing of

individual qubits is available.

4.3 In-situ control optimisation

The idea of using the system itself to solve Schrödinger’s equation in a control optimisation pro-

cedure was demonstrated in 1992 [153], in which a diatomic molecule was driven into a specific,

thermally inaccessible state through laser pulses. The shape of the pulse is provided by the control-

ling computer, which runs a genetic algorithm to iteratively improve on the fitness based on input

from the measurement device. The main motivation for using control in situ in this case was dif-

ficultly in accurately characterising the Hamiltonian of molecule under control. The Rabitz group

have continued to developed this method of “learning control” and have used it to explore many

aspects of quantum control [154, 155, 156, 157, 158, 159], with a particular focus on controlling

chemical reactions.
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In 2014 classical and in-situ control optimisation were combined using a method that the au-

thors call adaptation by hybrid optimal control (Ad-HOC) [160]. A control pulse is optimised on

a classical computer, running the Nelder-Mead algorithm, based on a model of the two coupled

superconducting qubit (transmon) system with estimated parameters. Again, not being able to

measure these parameters to sufficient precision is cited as the motivation for a hybrid approach

[161]. The partially optimised pulse is used as the initial condition for a closed-loop in-situ opti-

misation. The authors report that fidelities are improved by an order of magnitude by the second

stage optimisation.

In the same year the Santa Barbara group were using a process called optimised randomized

benchmarking for immediate tune-up (ORBIT) to improve gate fidelities [5]. Analytically derived

gate control pulses are optimised in situ for transmon qubits, again using the Nelder-Mead algo-

rithm. Randomised benchmarking [162, 163] is used to determine the gate fidelity. Improvements

in single and two-qubit gate fidelities are reported, with the main result being an increase in fidelity

from 0.984 to 0.993 for the two-qubit entangling controlled-phase gate. This brings it within the

limit required for fault tolerant computing [61]. Recently the Santa Barbara group has also used

in-situ optimisation [6] to remove qubit drift errors in arrays of 9 transmon qubits.

The efficiency of the hybrid classical-in-situ optimisation has been demonstrated experimen-

tally in a 7 qubit NMR type quantum simulator [164]. Their aim was to overcome the challenge

highlight in this chapter’s introduction: the cost of computing evolution under the Schrödinger

equation for large scale many-body quantum systems, due to the exponential scaling of the Hilbert

space. They found success in preparing certain states, but recognised the limitations of NMR

simulators in terms or scalability and speed.

So far in-situ optimisation has not been used to determine gate controls in large scale quantum

simulators. A significant challenge is the difficulty of measuring the gate fidelity in many-body

systems, for which a solution is proposed by this scheme.
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4.4 The Scheme

The proposed scheme is to take a quantum simulator, comprising locally coupled qubits, and op-

timise the gates required for a quantum computing algorithm in situ, that is within the device

itself. As discussed in previous sections, this has already been achieved in two-qubit devices. This

scheme would allow this to be extended into larger systems, making a scalable quantum com-

puter. To study the scalability of the scheme, a model is assumed for n qubits, coupled by some

interaction, such that all are connected either directly or indirectly. Full control over individual

qubits is assumed, meaning all single qubit unitary operations are possible. The decoherence time

is assumed to be long enough such that it is insignificant relative to the gate error threshold in the

gate operation timescale. Preparation and readout in a full basis set is also assumed for individual

qubits. It is almost certain that the scheme could operate with less stringent assumptions. What

is not assumed is any control over the interactions, nor any prior understanding of the effect of

control parameters on individual qubits.

The control assumptions are sufficient to implement any gate in the quantum simulator (see

Section 1.4), given sufficient couplings between qubits [165, 166, 167]. However, as no prior

understanding of how the control parameters will drive the system is assumed, then it is impossible

to design a control pulse functions to perform the gates. It is possible though to use the control

optimisation methods described in Section 1.6 to find the effective pulse parameters in the control

landscape, so long as a cost function can be found to evaluate the success of the control attempt.

A method for measuring the fidelity of the evolution with respect to the target operation is given in

the next section.

The steps for performing the gate optimisation are outlined in Fig. 4.2. It is assumed that there

is a discrete set of parameters to drive the system over a given time T and that the gate can be

effected within this time. In reality there would be some understanding of how these parameters

may drive the system. As here no assumption is made about this, then any selection is a guess, and

hence random is as good as any. The system is prepared in some state, evolved under the control

parameters, and the state at time T read out, these steps (which are described in detail in Sec-

tion 4.5) are repeated until the gate fidelity is estimated. Depending on the optimisation algorithm

in use, they may also be repeated to estimate the gradient with respect to each of the control param-
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Figure 4.2: Outline of the process for optimising quantum gates in situ using the quantum simu-
lator where the gate will be used for quantum computing algorithms. The process is
identical to that performed in a classical computer simulation, except that the system
evolution step is completed by the simulator and the measure of the fidelity would
take a number of repeats of this propagation, which would be controlled by a classical
computer along with the other steps.

eters. The fidelity is then compared with the target threshold, which it is not expected to meet until

after numerous repetitions. If it meets the threshold then the optimisation process is complete, as

a set of controls have been found that effect the desired gate, otherwise the optimisation algorithm

determines a new set of control parameters and the process repeats.

The system evolution step would be impossible to simulate classically for a quantum simulator

capable of executing a quantum algorithm that outperforms a classical counterpart, as the Hamil-

tonian matrix to integrate would be exponentially large in n. It would also be pointless, as the

Hamiltonian parameters could not be determined to sufficient precision for required gate fidelities

to be met, as the couplings between qubits cannot be measured. The in-situ evolution step solves

both of these problems, as the simulator evolves naturally and is a perfect model of itself. The

scheme assumes that although the system and control Hamiltonians are not known, that they do

not change over time, so that the controls determined through the optimisation process will per-

form the gate when applied again. Therefore, using this scheme, controls can be determined that

will perform all the gate combinations required for some quantum algorithm, and hence can be run

in sequence to implement the said algorithm.

As the control assumptions state that all single qubit operations are possible, then it is trivial

to see that controls could be found to perform single qubit gates. Control sequences for these

would need to be optimised in the quantum simulator. However, as described in Section 1.5.4, two
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qubit entangling gates are also required for universal quantum computing. The C-NOT gate is the

canonical two qubit gate for quantum computing. In physical systems these are much more difficult

to effect, as they rely upon the interactions between qubits, and typically have much higher gate

errors. Although it is not necessary to be able to effect these between all pairs of qubits in order

to perform algorithms, the option leads to shorter circuits and hence more efficient algorithms.

Therefore the focus of the numerical study is to demonstrate that this scheme is scalable with n

in optimising C-NOT gates between arbitrary qubits in the simulator; those which are directly and

indirectly connected in various topologies.

4.5 Local gate fidelity

Evaluating the fidelity of the evolved operator with respect to the target operation is easy in a

classical simulation of a gate optimisation, as the full evolution operator has to be computed. The

computation of this matrix is the expensive part (both in CPU time and memory requirements), due

to the exponential growth of the matrix with system size, hence part of the motivation for the in-

situ scheme. The evolution operator is not directly accessible in the in-situ optimisation, only the

states before and after the gate implementation attempt are available through measurement. The

standard method to calculate the operation effected by the controls is through a form of process

tomography called certification, which requires a repeated procedure of preparing the system in

some state, evolving the system (under controls), and performing measurements to estimate the

evolved state. The number of repetitions scales as O(d2) = O(22n), that is exponentially with

system size [168], making it infeasible in large systems such as the quantum simulators proposed

for implementing this scheme. So it is not possible to measure the actual gate fidelity efficiently,

but it is possible to measure a tight bound efficiently, as described in this section.

The gate fidelityFPSU introduced in Section 1.6.1, whether applied to dynamic maps or unitary

operators as targets, requires the full evolution for comparison with the target. The gate fidelity

applied to some CPT map M , which includes any dissipative or decohering effects, and the target
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unitary evolution operator U can be defined in terms of Choi states as

F(M,U) = 〈ψ|ρM |ψ〉 , (4.2)

where |ψ〉 = (U ⊗ I)|Φ〉 and ρM is the Choi state of M defined in Eq. (4.1) – where the maximally

entangled state |Φ〉 is also clearly defined. The fidelity is upper bounded at 1, with F = 1 when

M(·) = U(·)U †, and is lower bounded at 0. If the evolved map is also unitary, that is M(·) =

V (·)V †, then it simplifies down to the square of the unitary gate fidelity F (V, U) = 1
d2 |TrV †U |2.

As the gate acts only on a small number of qubits, maximum two if the only multi-qubit gate is

the C-NOT, then the target is not some arbitrary unitary, but rather one that can be expressed as the

tensor product of gates acting on subsystems, which in this case are single or pairs of qubits. That

is U =
⊗

Ui, where i is a subsystem index. These unitaries could be any combination of single or

(non-overlapping) multi qubit gates. This study focuses on product gates with a single C-NOT on

two qubits and the identity on the rest, that is

U =
⊗

Ui = C-NOT1 ⊗ I2 ⊗ I3 ⊗ . . . . (4.3)

Note that the subsystem index 1 here does not imply the first pair of qubits, the subsystem could

be any pair of qubits, adjacent in terms of topology or otherwise. So long as the target can be

decomposed as Eq. (4.3), then the fidelity is bounded by the local estimator FLE as

F(M,U) ≥ FLE(M,U) = 1−
∑
i

(1−F(Mi, Ui)) (4.4)

where Mi(ρi) = M(ρi
⊗

j 6=i
1
dj
Ij) is the reduced dynamical map acting on subsystem i and the

other subsystems are initialised in the maximally mixed state. The proof of FLE being a lower

bound on the gate fidelity is based on methods from [169] and is given in Appendix D.

Whereas to estimate the true gate fidelity requires certification over the entire system, leading to

the exponential scaling, the local estimator requires certification only over the small subsystems.

That is the one and two qubits that the gates (or identity) act upon. These do not scale with

the overall size of the system. The cost of measuring each subsystem is O(di
2). To calculate
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FLE each of the subsystem fidelities F(Mi, Ui) must measured, for which the Mi need to be

reconstructed. One method would be to initialise the state of one subsystem in a pure state, and the

other subsystems in the maximally mixed state, then allow the system to evolve under the controls,

then measure the specific subsystem in one basis. This would need to be repeated on the subsystem

until every combination of preparation and measurements has been completed for a complete basis

set, which is O(di
2) repetitions. As this would need to be repeated for each subsystem it leads to

an overall scaling for the number of measurements Nmeas = O(
∑

i di
2) = O(n).

Although linear scaling for fidelity measurement is already a big improvement over exponen-

tial, intuitively, measuring only one subsystem for each application of the controls seems ineffi-

cient. Indeed, as the maximally mixed state is a random mixture of pure states, the fidelity of each

subsystem can be measured concurrently by preparing each of them in a random pure basis state.

This removes the scaling with system size, as the time required for the measurements scales as

with that for the largest subsystem. So with this measurement procedure Nmeas = O(1).

Another important consideration for the local estimator to the fidelity is how tightly it bounds

the true gate fidelity and how it scales with n relative to the gate fidelity. These are important in

determining how effective it will be when used in an optimisation algorithm. The minimum for

the true gate fidelity is zero, whereas it is 1 − n for the local estimator. This is unlikely to hinder

any optimisation algorithm, as minimising the infidelity 1 − FLE would be the typical approach,

and hence there would just be a landscape scaling factor of n. The local estimator convergences on

the true gate fidelity in the limit that F (M,U) → 1, which is helpful, as this region is of primary

interest when optimising gates. Less easy to show is that FLE(M,U) increases monotonically as

as F(M,U) does. This was investigated numerically for variety of quantum simulator models

and gate targets. The two fidelity measures are plotted at each update stage of the optimisation

algorithm in Fig. 4.3. In all four system scenarios the local estimator can be seen to track the true

gate fidelity monotonically as the infidelity decreases, and the convergence of the two is shown to

be rapid. Thus showing that the local estimator to the infidelity operates well as a cost function for

minimising the gate infidelity in an optimisation algorithm.

The scaling of the local estimator bound with system size is also an important consideration.

Due to it being a sum over the subsystem fidelities, the difference is expected to scale linearly
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Figure 4.3: Comparison of the local estimator with the gate fidelity during the optimisation
procedure. The gate infidelity 1 − F(M,U) and the estimator to it 1 − FLE(M,U)
are plotted at each iteration step of one gate optimisation procedure. This is shown
for different scenarios, all of which are with models of 5 qubit systems, with the
target operation being the C-NOT gate on two qubits and the identity of the rest. The
scenarios are a.) an Ising chain with the C-NOT on the first two qubits, b.) an Ising
chain with the C-NOT on the first and last qubits, c.) an Ising ring with the C-NOT on
the first and third qubits, and d.) a Heisenberg chain with the C-NOT on the first two
qubits. The topologies and interactions are described in Section 4.6. In all scenarios
the local estimator can be seen to track and converge on the gate fidelity, demonstrating
that maximising the local estimator also maximises the gate fidelity.

with n. This was investigated numerically for targets on up to 14 qubits. A target unitary U was

formed for the C-NOT on the first two qubits and identity on the rest as per Eq. (4.3). Another

operator for comparison was generated from this by taking a randomly generated Hamiltonian

Hε and propagating U to give Uε = e−iHεU . Hε was generated by a Gaussian distribution and

normalised such that ||Hε||2 = 0.1. The gate fidelity averaged over different Hε remained at

99.5% for 3 to 14 qubits. The local estimator fidelity dropped linearly by less than 0.2% per qubit,

confirming the intuition based on the form of FLE in Eq. (4.4).
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4.6 Numerical investigation

In the previous section it was shown that a measurement scheme for determining a bound on the

fidelity of a gate operation exists that does not scale with system size. In order to show that the

entire in-situ scheme can be implemented efficiently it is necessary to show that other aspects scale

no worse than polynomially with system size. Specifically, these are the time that is required to

implement the gate, and time required to optimise the controls that effect the operation. Also the

precision to which the fidelity must be measured must also not scale exponentially with system

size. It has not been possible to find analytical expressions for these, and so a numerical approach

is used. For systems up a certain size, the entire scheme, as outlined in Fig. 4.2, can be simulated

on a classical computer.

One of the main drivers behind this scheme is that the system evolution computation step on

a classical computers is known to scale exponentially with the number of qubits, both in terms of

processing time and memory requirements. Due to this second limitation it was not possible to

go beyond 9 qubits on the high performance computing cluster that was available. For the fidelity

precision sensitivity trials, many optimisation attempts are required for reasonable statistics, and

so it was only possible to get up to 7 qubits in that part of the investigation. Although the local

estimator fidelity is exponentially more efficient to calculate than the true gate fidelity in an exper-

imental setup, in a classical simulation it is actually significantly more expensive to compute. As

the Mi in Eq. (4.4) need to be extracted from the full evolved map or unitary (which scales with

2n) using the partial trace, which is an expensive operation in itself, calculating the fidelities at

each update step is a significant proportion of the processing effort.

The average time required to find a set of controls that perform the desired gate using the

optimisation process is given by:

Ttotal = Trun Nruns/psucc . (4.5)

Trun is time taken for one run of the gate control sequence on the quantum device. It can be further

broken down as Trun = Tinit + Tgate + Tmeas, with Tinit being the time required to prepare the system

in its initial state, Tgate the time set for evolving the system under the controls, and Tmeas the time
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needed for performing the measurement on the system. Tinit and Tmeas are specific to the system

and are assumed to be constant. Not all gate optimisation attempts may be successful, psucc is the

probability that one is. Nruns is the average number of times that the gate must be attempted in a

optimisation procedure, that is, reach the target fidelity or terminate for another reason. Nruns can

be decomposed as

Nruns = Nmeas Nprec Nfids Nupds . (4.6)

HereNmeas is the number of times the gate controls are applied with different state preparations and

measurement basis in order to calculate the local estimator gate fidelity. In the previous section this

was shown to be O(1). Nprec is the number of times the fidelity must be measured to statistically

reach the required precision. Nfids is the number of gate fidelities needed for the optimisation

algorithm, which depends on the algorithm in use. This would be 1 per update for a gradient

free method, such as Nelder-Mead. For gradient based methods running in situ a finite difference

method must be used to calculate gradients (as per Eq. (1.58), hence Nfids = Ncp + 1, as an

additional fidelity would be required for each of the Ncp control parameters. Ncp depends on

the control model and control function parametrisation scheme. Nupds is the number of control

parameter updates, corresponding to the number of times the loop in Fig. 4.2 is executed. Again

this is dependent on the choice of optimisation algorithm, for gradient based methods this would

typically be at least an order of magnitude less than a gradient free method, as is discussed in

Section 1.6.2.

The optimisation algorithm used in this numerical investigation is the GRAPE type in QuTiP

introduced in Subsection 1.6.4. A ‘custom fidelity’ code module was developed specifically for

the study. This allows for a cost function of ELE = 1−FLE to be used. The module also calculates

the analytic gradients with respect to each of the control parameters. This scheme does not pro-

pose any method for calculating analytic gradients in situ, however the purpose of this numerical

investigation was to see how the control optimisation scales with the number of qubits n, rather

than produce the most faithful simulation of the scheme. Firstly to see how Nupds scales with n.

Using analytic gradients reduces the processing time to simulate the scheme by a factor of Nfids,

which is a known value and hence can be included later, but it would not be expected to have much

effect on Nupds, which is the unknown in Eq. (4.6).
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For a GRAPE optimisation a piecewise constant parametrisation must be used for the control

pulses. Hence the gate time Tgate is split into Nts equal duration timeslots in which the control

amplitude will be constant. For the quantum simulator to be classically simulated the Hamiltonians

for the internal system interactions and the control pulse interactions must be defined – for the

actual implementation of the in-situ optimisation scheme this would not be necessary. The full

Hamiltonian is of the form

H =
∑
j

[
ujx(t)σ

j
x + ujy(t)σ

j
y

]
+
∑
<j,k>

gj,kH
j,k , (4.7)

where σjx and σjy are the Pauli operators acting on the j th qubit, modulated by the control functions

ujx(t) and ujy(t). Any two independent rotations would give full control over individual qubits,

they need not be the same for each qubit, but were chosen to be so in this study for convenience.

Two controls per qubit means that with this model Nctrls = 2n. The second summation is over

all qubit pairs and represents the interactions between qubits. The form of Hj,k determines the

interaction type. The couplings gj,k define the topology; details of these are given as the results are

presented. So, with two independent control Hamiltonians per qubit and each function described

by Nts amplitudes, this gives a total number of control parameters Ncp = Nctrls Nts = 2nNts. A

summary of the parameters used to describe the scheme are given in Table 4.1. The initial guess

pulse for all controls used to produce the results presented comprised uniformly random amplitudes

in the range [−1, 1].

Fidelity, gradients and control parameters are purely classical values and therefore computa-

tions can be done classically. These scale at worst polynomially with system size and hence can

be completed efficiently on a classical computer. They would also be done off-line, that is the

control pulses required to perform gates would be determined before any quantum algorithm was

run, not as part of it. As discussed in Section 1.5.5, research into fully quantum algorithms for

multi-variable optimisation is a high-priority topic, and hence there is future potential for the com-

puter to optimise its own gates. However, the focus here is a scheme that can be implemented with

technology that currently exists.
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Parameter Description
Tgate Evolution time for the gate
Nts Number of timeslots for control pulse
Anum Accuracy of fidelity measurements
Ftarg Target fidelity for the desired gate
Nruns Number of (#) runs in total
Nmeas # different preparation and measurement pairs
Nprec # repeats for required fidelity precision
Nfids # different fidelities to update controls
Nupds # control updates needed
psucc probability of optimisation success
Nctrls # independent controls on system
Ncp Total # of control parameters for the optimisation

Table 4.1: Summary of parameters defined in the text. Those above the line are set by the exper-
imentalist, and are input parameters for the in situ optimisation. Those below the line
are a derived from parameters of the system and or the optimisation algorithm. They
are used to quantify the efficiency, and hence assess the scalability of the scheme.

4.6.1 Topologies and interactions

In order to demonstrate that the scheme is applicable to the wide range of different simulation

platforms that are available, a range of different topologies and interaction types were used. The

chain topology is where all qubits have two nearest neighbour interactions, except the first and last

which have only one interaction. The ring topology is the same except the first and last qubits

have an interaction with each other. The star has a central qubit that interacts with all other qubits,

which have no other interactions. The fully connected systems have interactions between all qubits.

The Ising type interactions are σz⊗σz couplings, the Heisenberg type are σx⊗σx, σy⊗σy, σz⊗σz

couplings. Unless otherwise stated the results presented are for equal coupling constants for all

interactions.

Consistently the study found finding controls through optimisation was much easier for sys-

tems with Ising type interactions. For chains, rings and stars it was found that the time needed to

effect the C-NOT gate does not need to scale with system size, neither did the number of timeslots.

Tgate = π,Nts = 12 was found to be sufficient for all systems up to 9 qubits for these systems

when the gate is performed on neighbouring qubits, and Tgate = 4π,Nts = 48 sufficient for finding

control pulses to perform C-NOT gates on any two qubits in the system. For Heisenberg sys-

tems the required gate time scaled badly with system size, potentially even exponentially with n.
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Figure 4.4: Illustrations of quantum simulator model topologies. The quantum spins are shown
as blue spheres with the red arrows indicating their state vector in the Bloch sphere.
The green springs indicate the interactions between qubits. The topologies shown are
top left: chain; top right: ring; bottom left: fully connected; bottom right: star.

Consistently it was found that a timeslot duration ∆t ≈ π/12 provided best performance by the

optimisation algorithm, and so Nts would also scale badly. Similarly difficult to find control pulses

for were fully connected systems with Ising interactions of unequal coupling strength (chosen ran-

domly). A summary of some of the results for different topologies and interactions are given in

Fig. 4.2. The gate times and number of timeslots shown are the minimum for which a control

pulse can be reliably found through optimisation. These results suggest that for 5 qubit systems

the scheme will work for a range of different simulators. However, to give an indication of relative

effort, the 50 optimisations on the Ising chain cost under one hour of processing time, whereas the

50 optimisations on the Heisenberg chain cost over 36 days. For some reason the Heisenberg chain

required a greater Tgate than any of the topology and interaction type combinations; there are no

clear intuition on why this should be.

Both the ease for which Ising system controls could be found and the difficulty in Heisenberg

systems are surprising results. For Ising systems it was expected that number of control parameters
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Topology Coupling Tgate Nts Nupds

chain Ising π 12 60
star Ising π 12 214

fully connected Ising 12π 160 295
chain Heisenberg 16π 160 585
star Heisenberg 12π 160 1043

fully connected Heisenberg 12π 160 881

Table 4.2: The average number of control updates Nupds for 5 qubit systems in a range of different
topologies is shown. The topologies and interactions are described in the main text. The
target operation is the C-NOT gate on the first two qubits (in the star case this includes
the central qubit) and the identity on the rest. These simulations were done with full
numerical precision. As the Hamiltonian used is that of Eq. (4.7) then Nctrl = 10, and
hence the total number of control parameters Ncp = 10Nts. The target fidelity in all
cases is Ftarg = 0.999. For each scenario 50 out of 50 attempts were successful in
finding controls.

would scale polynomially with system size, possibly as O(n2), as discussed in Subsection 1.6.2.

The intuition is that symmetries in the system allow for the gate to be effected, while state of the

surrounding qubits remains unaffected, with relative easy. It has been shown that it is possible to

do fast two qubit gates on n-qubit systems with any entangling interactions [166], and therefore

the difficulties in finding control pulses in that work for Heisenberg interacting systems should be

resolvable through optimisation techniques. The same problems were found with the standard gate

infidelity used as a cost function, and so the problem is not related to the local estimator fidelity.

It is possible that different parametrisations of the pulse would allow the dynamical decoupling

operations that effectively remove the additional interactions of Heisenberg to be found by the

optimisation process. Many different combinations of Nts and Tgate were trialled in order to try and

draw these out, however GRAPE does not appear to find these with standard piecewise constant

parametrisations, and having a large number of timeslots greatly hinders to performance of the

algorithm. Many variations of interaction types were also tested, including full σz weak σx and or

σy couplings, starting with weak σx and or σy couplings on qubit pairs. However, these all behaved

more similarly to the full Heisenberg interactions than Ising.

The aim of many quantum simulator developments is to make Ising machines, and hence it

is sufficient for now to show that the optimisation scheme works well for systems of different

topologies with Ising interactions. However, it is clearly desirable to be able to apply the scheme
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to a wider range of systems, and also to better understand the reasons for the relative difficulties

in finding effective pulses, and so this remains a very interesting area for future study in which

numerical control optimisation is a valuable tool.

4.6.2 Optimisation effort scaling

The previous section described how neither the gate time nor number of timeslots scales with

system size for Ising chains and rings. Consequently it was possible to investigate the scaling of

the number of control updates required with system size using these system models with up to 9

qubits, simulated on a classical computer. Rings, as well as chains, were chosen for study because

there is no potential for boundary effects with a ring. As has been previously mentioned, quantum

circuits are more efficient when two qubit gates can be implemented on arbitrary qubits, and so

checking that the optimisation for the C-NOT gate can be effected anywhere on the simulator is

also important. The results of simulated gate optimisations for 3 to 9 qubit systems are shown in

Fig. 4.5 for Ising chains and rings. The trend indicated for the number of control updates required

Nupds is no worse than linear in the number qubits n. A sub-linear fit for these could even be

feasible. A conservative linear extrapolation suggests that around 700 (400) updates would be

required to optimise for C-NOT gates in 50 qubit Ising chains (rings), and 1500 (900) for 100

qubits. The effort for each update is dependent on hardware type (and n, as discussed later), and so

converting this into any time units is non-trivial. However, it is not an untypically large number of

updates in control optimisation, as is seen throughout this thesis. Reaching 50 qubits is considered

an important milestone for quantum supremacy, as discussed in Section 1.5.4.

NUpds is slightly higher for the rings than the chains of equivalent size, although the gradient

is lower, suggesting the two may converge for larger systems, where the boundary conditions

at the ends of the chain will become less significant, which is further evidence for a sub-linear

relationship. The 3 qubit systems would not seem to fit any obvious model. The number of

updates required is strikingly low compared to the other systems. One intuition for this is that the

symmetry of the system allows for the qubit not part of the C-NOT gate to remain disentangled.

In both topologies the number of updates required for randomly separated and neighbouring gate

qubits are statistically indistinguishable. This is a somewhat surprising but welcome result, as
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Figure 4.5: Number of control pulse updates needed to optimise for C-NOT gate. Plots show-
ing the average number of control updates required for the optimisation procedure to
find controls that perform the C-NOT gate on either neighbouring or randomly sepa-
rated qubits. In both cases the first gate qubit is randomly selected. Plots are shown
for a.) Ising chains of length 3 to 9 qubits, b.) Ising rings of 3 to 9 qubits. The
topologies are described in more detail in the main text. In all cases a gate time of
Tgate = 4π was used, and the control parameters are the piecewise constant amplitudes
of pulses of Nts = 48 equal length timeslots. A local gate fidelity of FLE ≥ 0.999 was
achieved for each optimisation. Each data point represents repeated optimisations:
100 for n < 8; 96 for n = 8; 30 for n = 9. The number of successful optimisations is
psucc > 90% in all cases. The error bars shown are twice the standard error. As there
is no obvious model to fit the number of updates required to the size of the system, no
best-fit is shown.

intuitively one would expect the gate would become more difficult to effect with greater separation

between the gate qubits. It is possible that the same symmetries that make the gate time and

number of control parameters scale so favourably also allow for this ease of entanglement across

many qubit interactions.

4.6.3 Fidelity precision scaling

Another important consideration is the sensitivity of the system to measurement noise. The number

of repetitions required to achieve the necessary precision Nprec needs to scale favourably with

system size for the in-situ optimisation scheme to be viable. Concerns over the effort required

to achieve high levels of precision in fidelity measures in many-body systems have been raised

in other work, and so an important part of this investigation is to test how this required precision

scales with system size. The effects of measurement noise are modelled in the simulations via a
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parameter Anum. In the simulations reported on in this subsection, each local fidelity measure is

rounded to the precision of Anum. The process in situ would be to repeatedly measure the outcome

until this level of precision has been achieved statistically. The central limit theorem states that the

number of repetitions required scales quadratically with the desired precision, that is

Nprec ∝ A−2
num (4.8)

If the precision is too coarse, that isAnum is set too high, then the potential inaccuracy of the fidelity

measurement hinders the optimisation algorithm, and can lead early termination of the algorithm

due to its inability to determine a search direction. Setting the precision too fine would mean

unnecessarily many repeated measurements. So by determining the value of Anum that leads to

a fixed probability of success psucc for the algorithm optimises Nprec, and hence the whole in-situ

optimisation process. The method by which this was done in the classical simulations is described

in Section 2.7, and would be applicable in situ. Values for psucc ≈ 0.5 are optimal.

The required Anum is expected to scale as O(ELE/n) as, to achieve gate infidelities below ELE,

the fidelity would need to be measured to an accuracy ofO(ELE). As the gate infidelity is calculated

from a sum of subsystem infidelities, it is conjectured that each subsystem fidelity would need to be

measured to an accuracy ofO(ELE/n). In the classical simulations theAnum is applied at subsystem

level, that is each of the infidelities 1−F(Mi, Ui) are rounded to the precision of Anum.

Plot a.) in Fig. 4.6 shows the fidelity precision required to achieve psucc = 0.5. A number

of different fidelity targets are used in order to provide more evidence for the scaling conjecture.

Due to the many repeats of the optimisation procedure required to find the psucc threshold for each

of the fidelity target scenarios, only the Ising chain system was studied, and it was only possible

to work with up to 7 qubits. Separated gate qubits closest to the centre of the chain are used in

an attempt show a result not dependent on a direct gate qubit interaction and to avoid boundary

condition effects as far as possible within the simulation limitations. The c/n fit curves for Anum

shows strong evidence for the conjectured O(ELE/n) scaling for the required fidelity precision.

The third plot in the figure provides some evidence for the linear relationship of the required Anum

with ELE. The emphasis here is on the scaling with n, which the fits shown in plot a.) strongly
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Figure 4.6: Fidelity precision required for optimal scheme performance. The required fidelity
precision Anum for achieving a proportion psucc = 0.5 of successful optimisations for
C-NOT gates is found for Ising chains of length n being 3 to 7 qubits. This is repeated
for different fidelity targets. Plots showing a.) the fidelity precision Anum and b.) the
number of control updates Nupds for successful optimisations for each of the scenar-
ios. The details of the topology and interactions of the Ising chains are given in the
main text. Here the C-NOT gate optimisation is attempted between two qubits in the
middle of the chain, separated by one other qubit. The target is the identity for the
other qubits. The gate time is Tgate = 4π, split into Nts = 48 timeslots for the control
parametrisation. The fidelity accuracy for the psucc = 0.5 is estimated using an inter-
polation of psucc values for a range of Anum, with between 25 and 45 points used in the
interpolation. Each of these points are the average over a number of repetitions: 200
for n = 3, 4; 100 for n = 5; 50 for n = 6, 7. The error in values is derived from the
variance in the repetitions and the uncertainty in the interpolation method. In plot a.)
the error bars show five times the standard error, in plot b.) twice the standard error.
The fit line in plot a.) is based on a c/n model. The n = 3 data are excluded from
the fit for reasons discussed in the main text. Plot c.) shows the fit parameter c for the
different targets, shown as the infidelity as this is how the model is described in the
main text.

152



CHAPTER 4. UPGRADING QUANTUM SIMULATORS TO COMPUTERS

support O(1/n). The n = 3 data again suggests that the 3 qubit chain is a special case, it is the

least significant in terms of a scaling relationship where the upper end is most of interest, and it is

therefore excluded from the fits.

The average number of control updates Nupds for the successful optimisations are shown in plot

b.) of Fig. 4.6. The values for FLE = 0.999 can be compared with those in Fig. 4.5. Although the

systems differ in terms of gate position and separation, this was seen to be not significant in the

resulting Nupds in Fig. 4.5. The Nupds is typically lower in these simulations where Anum is found

to give a psucc = 0.5 than those where the full numerical precision is used. This may at first seem

a surprising result, as the optimisation algorithm is hindered by inaccurate fidelity measurements.

However, Nupds is only averaged for successful optimisations, and 50% failed. It is likely that the

50% that failed would have taken a greater number of updates than average if optimised using

machine precision, assuming that the initial parameters were in a less favourable position on the

fidelity landscape. The main point to note from Fig. 4.6 plot b.) is that, with the numerical accuracy

of the fidelity measurement modelling included, the simulations still indicate a no worse than linear

scaling of Nupds with n.

4.6.4 Full in-situ scheme scaling

Numerical simulations of Ising systems have been used to estimate the scaling of those parameters

used to calculate the time required to optimise a gate in situ, which are neither apparent from the

configuration of the system itself, nor have elsewhere been analytically derived. It is therefore now

possible to derive an estimate from the scaling of the in-situ gate optimisation scheme with the

number of qubits n in the system as follows. Nmeas for the local estimator fidelity was shown to

be O(1) in Section 4.5. Anum was estimated to be O(1/n) in simulations of Ising chains, which

combined with Eq. (4.8) gives Nprec = O(n2). As the number of timeslots Nts remained constant

for the Ising system simulations, the number of control parameters only scaled with n, and hence

Nfids = O(n) for the gradient based optimisation algorithm used. Simulations of optimisations in

Ising chains and rings showed evidence for no worse than Nupds = O(n). Substituting these into

Eq. (4.6) gives Nruns = O(n4).

It is assumed that Trun = O(Tgate), and the simulations using Ising systems found that Tgate =
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O(1). The value psucc = 0.5 is fixed in the estimate of Nprec scaling. Hence the total optimisation

time from Eq. (4.5) scales only with the number of runs required, that is Ttotal = O(Nruns) = O(n4).

So based on numerical simulation, for systems corresponding to the Ising chain or ring model, the

scaling for in-situ gate optimisation is polynomial.

4.7 Conclusion

The polynomial scaling of the in-situ gate optimisation scheme demonstrated numerically for some

models of quantum simulators provides encouraging evidence for its viability. The limits of clas-

sical simulation of quantum system dynamical evolution prohibits extension of this kind of ver-

ification into the scales that would demonstrate more conclusively that it could be used to turn

quantum simulators into quantum computers. This was known from the outset, and is one the

prime motivations behind proposing the scheme. The linear (or potentially sub-linear) fit for the

required number of control optimisation updates comes purely from numerical data, and there is

no analytical model to back this up, hence other fits are possible. Experimental verification would

be required to further validate the scalability scheme.

The results presented here are encouraging enough to suggest that high fidelity two qubit en-

tangling gates could be effected in some types of quantum simulator with up to 50 qubits, which

is potentially sufficient to demonstrate quantum supremacy. Specifically, simulators with linearly

arranged qubits where the interactions are of the Ising type between nearest neighbours, although

the scheme has been shown to work in models of various topologies and interaction, these were

found easiest to optimise classically. The simulations of optimisations performed for this study

could be repeated with parameters that more faithfully model a quantum simulator proposed for a

trial of the scheme. More limited controls for instance could potentially still allow for sequences

that perform the necessary gate operations – not all unitaries are necessary, just the single and two

qubit gates required for a quantum algorithm. The state-of-the-art quantum simulators provide suf-

ficient qubits and controls to extend the results of this study far beyond what is possible to simulate

classically.

The GRAPE algorithm was chosen for the classical simulation of this scheme due to the ef-
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ficiency that the gradients and system evolution can be calculated, and the resulting faster con-

vergence speed. This chapter has again demonstrated that numerical control optimisation, and in

particular GRAPE, to be a valuable tool for investigating theoretical scalability in quantum infor-

mation process systems. GRAPE relies on the piecewise constant parametrisation of control pulses

to gain these advantages. When operating the scheme in an experimental setting the efficiency of

piecewise constant system evolution calculation does not exceed any other parametrisation scheme,

and the overhead of the additional fidelity measures required to approximate the gradients may

outweigh the reduced number of algorithm iterations. It is also likely that other parametrisation

schemes would be easier to implement physically, such is one of main advantages of the CRAB

algorithm (see Section 1.6.6). Therefore it is possible that using a simplex optimisation method

such as the Nelder-Mead one used in CRAB may result in overall fewer control updates.

A stochastic simplex optimisation algorithm is compared with Nelder-Mead in another study

into in-situ gate optimisation [170]. It was found to out-perform Nelder-Mead due to its resilience

to measurement and control noise. Machine learning based optimisation algorithms (discussed in

the thesis conclusion) may further increase the optimisation efficiency when applied to in-situ gate

optimisation, by reducing the number of updates or being able to operate at lower fidelity precision.

However, with the theory and experiment in Ref. [164] the authors demonstrate the ability for the

fidelity and its gradient to be calculated in-situ, which could potentially reduce the overhead of

computing gradients, making gradient based algorithms most suited to this application.

Alternative methods for parametrising the control functions to specifically promote the dynam-

ical decoupling pulses that would negate or transform the unhelpful system interactions remains an

interesting direction for further study. It would certainly have been a much more satisfying result

to show that the scheme scales well in all models of many-body systems, regardless topology or

interaction type. Certainly a lot of effort went into trying to optimise gates in Heisenberg chains

of increasing length, which would be a promising first step. But, as a reminder, this does not stem

from the in-situ scheme – it is encountered generally in gate optimisation simulations.
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Chapter 5

Non-Markovian dynamics

The research for this chapter was completed in collaboration with Neill Lambert, RIKEN, Japan

and Daniel Burgarth. Neill Lambert developed the original HEOM solver code, provided the pure-

dephasing derivation and example code, dressed picture Lindbladian example code, and provided

example code for the dynamical decoupling. Daniel Burgarth suggested the dynamical decoupling

control objective. The thesis author improved upon the HEOM solver code, and implemented this

and the Lindblad master equation solver in a control optimisation setting, for which more detail is

given in Chapter 2. The thesis author developed the code, and ran all the simulations and performed

the analysis, for the results presented in this chapter.

5.1 Introduction

The theory of open quantum systems, for which some background is given in Section 1.2.3, is used

to predict the dynamics of quantum systems when couplings to the environment are taken into

consideration. Clearly, in quantum control theory, which looks to predict how quantum systems

can be manipulated given some external influences, the accuracy of the predictions depends on

the validity of the model used to describe the environmental interactions. There is a great body of

work investigating control in open quantum systems, including some in depth studies [171, 172].

The majority of this work assumes that the Born-Markov approximation is valid in the scenarios

considered, as this allows dynamics to be computed through solving a linear differential equation.

156



CHAPTER 5. NON-MARKOVIAN DYNAMICS

This chapter investigates a method of solving open systems dynamics that does not make that

assumption, and compares a control problem where the assumption cannot be used. Numerical

control optimisation is used determine optimal dynamical decoupling pulses, which can be used to

protect quantum information from decoherence, and potentially also negate unhelpful many-body

system interactions, such as those discussed in Chapter 4.

The hierarchical equations of motion (HEOM) method for solving the open systems dynam-

ics is described as exact, because it allows for correlations in the bath that persist for durations

longer than the characteristic timescales of the system, that is, it does not make the Born-Markov

approximation. As the name suggests, the dynamics are modelled through a hierarchy of coupled

differential equations, for which the solution is only exact with an infinite depth to the hierar-

chy. The precision is determined by the truncation, which must be balanced against computational

efficiency, making its application in control problems less trivial.

The HEOM has a long history, with the method originally proposed in 1989 by Tanimura

and Kubo [173], and extended to a more general spectral density in Ref. [174]. The model was

generalised to low temperatures by Ishizaki and Tanimura [175]. The model achieved its highest

fame when Ishizaki proposed its use in describing the speculated evidence of quantum coherence

in a biological system [176]. The proposed evidence of quantum coherence in the light harvest-

ing complexes of a photosynthetic bacteria, the Fenna-Matthews-Olson (FMO) complex, aroused

much excitement [177]. No other single model was able express the coherent, wavelike and in-

coherent, hopping behaviours of the biological system. The question of if and how the coherence

plays a role the function of the light harvesting complexes attracted much research attention, with

Ref. [177] attracting over 2600 citations, including this recent review [178]. Clearly, any research

with potential practical applications in the harvesting of light energy causes great excitement, as

these applications include artificial photosynthesis – the direction conversion of water and carbon

dioxide to sugars, and hence clean fuels made from carbon captured from the atmosphere.

For the model to be used efficiently in control optimisation, it must be valid for a time-

dependent system Hamiltonian, as driving the system towards some control objective typically

results in a time-dependent system Hamiltonian of the form of Eq. (1.22). The derivations in the

early papers are not specific about the time dependence, but they do not specify that it is assumed
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constant either. The derivation in Ref. [179] explicitly claims validity for systems driven by arbi-

trary time-dependent fields. This paper also describes how to quantify the precision of the method

for particular truncation and some method for correction, as well as generalising the spectral den-

sity parametrisation. Some work with control in non-Markovian processes has been undertaken

using the HEOM for computing the dynamics [180], where the authors report that driving the

system leads to increased non-Markovianity in the bath response.

The HEOM need to be solved in order to compute the evolution of the reduced density matrix

of the system. The original HEOM solver code in QuTiP by Neill Lambert was based on code

developed specifically to compare the reaction coordinate model [181, 182]. The QuTiP solver

code was reworked and documented by the author for this study. The computational efficiency

of the hierarchy construction was improved ten-fold, which is highly beneficial in control optimi-

sation, as the evolution needs to be computed many times, for reasons explained in Section 1.6.

To the authors best knowledge, this is the only open source generic solver of the HEOM – there

is another specific to the light-harvesting complexes [183]. The implementation is based on the

Drude-Lorentz spectral density for a single bath. Development of a more general spectral density

and support of multiple baths is well progressed, but not officially released at the time of this writ-

ing. The integration with control optimisation is publicly available in the qoc branch of QuTiP

[113], but also not yet officially released.

This chapter starts by discussing Markovianty in quantum processes, and how non-Markovianty

might manifest in the evolution of quantum systems. It then goes on to describe how the dynam-

ics can be computed by solving the Lindblad master equation. For this there are many textbook

resources, including Ref. [22], and these manuscripts provide good summary Refs. [171, 172], par-

ticularly in relation to control. The hierarchical equations of motion are described briefly in section

Section 5.3, with a focus on their applicability in control optimisation. The specific model for the

spectral density that is used in the QuTiP HEOM solver is outlined in Section 5.4. Section 5.5 val-

idates the HEOM solver and investigates suitable hierarchy parameters using an analytical model

for comparison. The Lindblad master equation and HEOM dynamics, as solved by numerical sim-

ulation, are compared in Section 5.6. A comparison by example of the two methods for computing

driven system dynamics is given in Section 5.7, based on a control optimisation simulation. The
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optimisation dynamical decoupling pulse scheme with dynamics computed using the HEOM is

described in Section 5.8. The results are summarised and discussed in Section 5.9, which also

gives some outlook.

5.2 Markovianity and quantum processes

Markovianity was first introduced as a way to distinguish between different types of classical

stochastic process, with those classed as Markov having the property that their behaviour going

forward is not linked to past events [184]. The generalisation in to quantum systems needs to

take into account that measurement affects the state of the system [185], and so the strict defini-

tions from the study of classical systems cannot be directly applied in the quantum regime. One

definition is based on the divisibility of the map

M(t3, t1) = M(t3, t2)M(t2, t1) ∀ t3 ≥ t2 ≥ t1 ≥ 0, , (5.1)

as it states that the evolution from time t2 to t3 is independent of the evolution from time t1 to t2 for

any choice of durations. This is therefore often used as a definition for Markovianity in quantum

systems [185].

There are some issues with this definition of Markovianity in quantum systems. Firstly that

it is binary, as a quantum process by this definition is either Markovian or not. Secondly, but re-

lated, is that it is difficult to measure in any actual quantum process. It would be useful to have

some scale of non-Markovianity that could be measured in an experiment. A measure proposed in

Ref. [186] is based on the premise that the trace distance (introduced as a measure of infidelity in

Eq. (1.48)) between any two states should decrease monotonically during evolution under Marko-

vian dynamics. The trace difference is interpreted as a measure of distinguishably, and when this

decreases, information has been lost to the environment. Therefore a quantification of any increase

in the trace distance during the evolution could be used as a measure of non-Markovianity, one of

which is presented in Ref. [186]. Information decreasing monotonically is shown to be equivalent

to divisibility of the process in Ref. [187].

There are many descriptions of non-Markovianity and how it can be measured, some of these
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are reviewed in Ref. [188], and it remains an active area of research. Typically it is assumed that

the Markovianity or non-Markovianity of the dynamics is determined only by the inherent the

system-environment interactions, however in Ref. [189] it is shown that in some cases it is also

dependent on the how the system is driven, which is an important consideration when designing

controls.

5.2.1 Markovian quantum dynamics

The map M(t2, t1) acts on the space of density operators in a way that it will give the quantum

state of a system at some time t2 based on its state at t1. That is, at t1 it is in state ρ1 and at t2 it

is in state ρ2 = M [ρ1]. For understanding how the system state may evolve in the duration t1 to

t2, and hence model how systems may interact, it would be helpful to have a differential equation

to describe it. A linear differential equation of form similar to Schrödinger’s equation Eq. (1.4)

would be ideal, that is something of the form

d

dt
ρ(t) = L[ρ(t)] , (5.2)

which would therefore have solutions of the form

M(t) = eLt , (5.3)

thus making M a linear operator. In order for such an equation as Eq. (5.2) with solution Eq. (5.3)

to hold the generator L must be independent of the system state, either directly or indirectly. This

implies that the generator of the dynamics has no memory the past, which in the context of an open

system means the dynamics of the system are assumed not to affect the bath in any way that alters

its effect on this system at some future time, which is often referred to as no back-action. This

assumption relies on the interaction between the system and bath being sufficiently weak to ensure

this, which is known as the Born approximation. As discussed above, this implies that the map

itself is infinitely divisible, which when considering a differential equation like Eq. (5.2) implies

M = Mj
n ∀ n ∈ N , (5.4)
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where Mj is some other map that when applied n times is equivalent to M . This divisibility

requirement is known as the Markov approximation, because the operator generating forward evo-

lution does not depend on previous time steps. Because one depends on the other, they are often

referred to as the combined Born-Markov approximation.

For closed systems where ρ1 and ρ2 would be pure states, the form of L is that from the

Liouville-von Neumann equation Eq. (1.7), that is L = −i[H, ρ], so it is clear that when there are

no dissipative or dephasing effects that L must reduce to this. The map must be able to result in

mixed states from pure states, and hence there must be additional components to the generator that

allow this. It turns out that generators L exist that satisfy the requirement that M is a CPT map, so

long as they are of the form

L[ρ] = −i[H, ρ] +
∑
j

γj

[
VjρV

†
j − 1

2
(V †j Vjρ+ ρV †j Vj)

]
(5.5)

where H is a Hamiltonian, γj > 0, and the Vj are referred to as Lindblad, jump or collapse

operators. The dissipative effects are contained within the summation, and the γj determine the

strength of the interactions that result in the dissipation. The L generator itself is referred to as the

Lindbladian [190, 191, 192].

In this form the Lindbladian is constant in time, but it need not be so. So long as the time-

dependence does not come from the system or bath state, but is independent, then the Hamiltonian

and Lindblad operators may be time-dependent, that is H ≡ H(t), γj ≡ γj(t), Vk ≡ Vk(t) in

Eq. (5.5). When the Lindbladian is time-dependent, the map is described as infinitesimally divisi-

ble, that is

M =
n∏
j=1

Mj ∀ n ∈ N , (5.6)

where the Mj are CPT maps, but no longer need be identical.

In the general case then, for the time-dependent Lindbladian generator L(t), the state dynamics

are described by the Gorini-Kossakowski-Sudarshan-Lindblad master equation

d

dt
ρ(t) = L(t)[ρ(t)] . (5.7)
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For which a derivation can be found in Ref. [21]. To solve the Lindblad master equation Eq. (5.7)

numerically it is convenient to take the superoperator form of the Lindbladian [193]

L = i
(
HT ⊗ I− I⊗H

)
+
∑
j

γj
[
V̄ ⊗ V − 1

2

(
I⊗ V †V + V TV̄ ⊗ I

)]
. (5.8)

This acts on a column stacked vector form of the density matrix, that is

|ρ〉 := (ρ1,1, ρ2,1, . . . , ρd,1, . . . , ρ1,d, . . . , ρd,d)
T , (5.9)

such that

L|ρ〉 ≡ L[ρ] . (5.10)

Here the action of L on |ρ〉 is matrix multiplication. |ρ〉 is a vector of length d2, and hence L a

d2 × d2 matrix. This allows an equivalent differential

d

dt
|ρ(t)〉 = L|ρ(t)〉 . (5.11)

The solution for which is

|ρ(t)〉 = T̂ exp

(∫ t

0

dτL(τ)

)
|ρ(0)〉 , (5.12)

where T̂ denotes Dyson’s time ordering operator. This defines another representation for the map

M , as the d2 × d2 matrixM for which |ρ(t)〉 =M|ρ(0)〉. This in turns implies the operator form

of Eq. (5.11)
d

dt
M(t) = L(t)M(t) , M(0) = I . (5.13)

The solution for which is

M(t) = T̂ exp

(∫ t

0

dτL(τ)

)
. (5.14)

It is clear that in the time-independent L case that the solution simplifies toM(t) = eLt.

The time-dependent version of Eq. (5.11) can be used to investigate the control of open systems,

by substituting H with the controlled Hamiltonian of Eq. (1.22). Examples of this can be found in
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Refs. [171, 172]. The control fields are typically assumed neither to be modulated by, nor directly

affect, the dissipative system-environment interactions. This assumption has been criticised when

the dynamics are non-Markovian [194].

Control optimisation with piecewise constant control functions was described in Section 1.6.

For the GRAPE algorithm, where the Lindbladian is constant in the timeslots, the propagators in

the timeslots are maps of the form eLt. The combined Lindblad superoperator is

L(t) = L0 +
Nc∑
j=1

uj(t)Lj , (5.15)

where the Lj are the control Lindlad superoperators, which when these are assumed to act only on

the system, are of the form Lj = i
(
HT
j ⊗ I− I⊗Hj

)
, where the Hj are control Hamiltonians,

makes them superoperators of the Liouville-von Neumann equation Eq. (1.7). The dissipative

effects are wholly contained in the drift Lindbladian L0. The evolution in the kth time slice is given

by

Mk = eLk∆t. (5.16)

The full evolution is given by

M(T ) =MNtMNt−1 · · ·Mk · · ·M2M1. (5.17)

The cost function for the optimisation is the ‘trace difference’ infidelity defined in Eq. (1.48).

For map operator optimisation the scale factor is λ = 1/(2d2). For density operator optimisation,

the scale factor is λ = 1/2 (as in Eq. (1.52)). Exact gradients can be calculated for the prop-

agators, and hence the infidelity gradients, using the Fréchet derivative method, as the Lindblad

superoperator is applied as general linear matrix.

Not all processes are Markovian. Therefore in some cases a different description of the dy-

namics is needed. One that claims to be exact, in so far as the Born-Markov approximation is not

required, is the hierarchical equations of motion (HEOM), which is described in the next section.
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5.3 The hierarchical equations of motion

The canonical separation of the total Hamiltonian of system and environment is

HT = HS +HI +HB , (5.18)

where HS is the free Hamiltonian of system that solely would govern its dynamics if closed from

the environment. HB is the Hamiltonian of the bath and, most importantly for an open systems

description, HI is the Hamiltonian that describes how the system and bath interact.

There are many derivations of the HEOM, as mentioned in the introduction to this chapter.

As the primary interest in this study is for a method that can be used in controlled open system

evolution, for which the system Hamiltonian is time-dependent, then the derivation in Ref. [179]

is the primary source in this section, as it explicitly states that it is valid for systems driven by

external fields. The full derivation is not repeated here, but notation from the paper is used so that

the reader may easily refer back to the source.

In the model for the HEOM the bath is a collection harmonic oscillators, which need not be

of effectively infinite number. The only assumption is the interactions with the system satisfy

Gaussian statistics. The form of Eq. (5.18) for the HEOM derivation is

HT = H(t)−
∑
a

QaF̂a + hB . (5.19)

The system Hamiltonian is explicitly time-dependent. The exact form of the bath Hamiltonian

hB is not important, because its effects on the system are entirely described by the interaction

Hamiltonian, in which the Qa are system operators and F̂a the bath interaction operators.

The canonical bath ensemble average, defined for some bath operator Ô, is

〈Ô〉B ≡ Tr B(Ôρeq
B ) = Tr B(Ôe−βhB)/Tr Be

−βhB , (5.20)

where β ≡ 1/T is the inverse temperature and ρeq
B being the thermal equilibrium state of the bath.

The F̂a are Gaussian stochastic processes, meaning that 〈F̂a〉B = 0. Based on these assumptions
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the effects of the bath operators are encapsulated in the correlation functions

Cab(t− τ) = 〈F̂a(t)F̂b(τ)〉B . (5.21)

As before, the primary interest in is the time evolution of the system density operator

ρ(t) = Tr BρT(t) = U(t, t0)ρ(t0) , (5.22)

where U acting as a map on ρ is the propagating superoperator. Again this is based on separable

states at time t0, that is ρT(t0) = ρ(t0)⊗ ρeq
B

The propagator U is found using the path integral formalism [195], using an approach that the

authors of Ref. [179] call influence generating functionals calculus-on-path-integral (IGF-COPI)

which they detail in a previous paper [196]. For this {|α〉} is a basis set in the system subspace,

with α = (α, α′) being a shorthand for some path in the state space. In this representation the

evolution of the system density operator from Eq. (5.22) is given by

ρ(α, t) ≡ ρ(α, α′, t) =

∫
dα0 U(α, t;α0, t0)ρ(α0, t0) . (5.23)

The propagator is calculated using the path integral

U(α, t;α0, t0) =

∫ α[t]

α0[t0]

Dα eiS[α]F [α]e−iS[α′]. (5.24)

The free dynamics of the reduced system are encapsulated in the classical action functional S[α].

This is evaluated along the path α(τ), which is constrained by the two fixed ending points α(t0) =

α0 and α(t) = α. The interaction with the bath is through the Feynman-Vernon influence func-

tional F . If there were no interactions with the bath, then F = 1, and the dynamics would reduce

to the Liouville-von Neumann equation for the superoperator

d

dt
U = −i[H(t),U ] , (5.25)

that is, fully coherent dynamics.
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The system-bath interactions are all incorporated into F through the correlation functions Cab

and system operators Qa. It turns out, with steps in detail given in Ref. [179], that Eq. (5.24)

becomes a product of integrals for which the time derivative depends only on the fixed end points.

This then gives a differential equation of the form

d

dt
U = −i[H(t),U ]− [R(t),U ] , (5.26)

or equivalently
dρ

dt
= −i[H(t), ρ]− [R(t), ρ] . (5.27)

The first half of the RHS being the only place where the system Hamiltonian appears means that

so long as it is assumed that the external fields only affect the system, and not the interaction

Hamiltonian, then controlled evolution in the presence of noise can be calculated using this model.

The bath correlations and system-bath couplings determine the dissipation functional R(t). The

operator form of Eq. (5.26) means it can used to evolve maps that can be expressed as operators.

An exact operator-level expression for R is not generally available. However Eq. (5.26) can

be solved using a hierarchy of coupled differential equations, the form which depends on the

parametrisation scheme for the bath correlation functions. In the Drude-Debeye model this is

Ca(t > 0) ≡ Caa′(t) = ηae−γat , (5.28)

where the frequencies γa are real and coefficients ηa are complex. For this model, as derived in

Ref. [179], the set of hierarchical coupled differential equations are

ρ̇n = −
(
−iL+

∑
a

naγa
)
ρn +

∑
a

(
naCaρn−a − iQaρn+

a

)
. (5.29)

The set of non-negative integers n = (na, nb, . . . ) determines the interaction between ancillary

density operators. The number of elements in n is equal to the number of different types of bath

mode pair interactions, that is the number of different correlation functions Eq. (5.28), as deter-

mined by the frequencies and coefficients. The integers na, nb, . . . are the excitation level of the

bath mode. Each ρn, as identified by its unique index, is an ancillary density operator, except
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ρ(0,0,...,0), which is the system density operator. The index set n±a = (na ± 1, nb, . . . ) differs only

from n in the specific na, which is changed to na ± 1.

The operators in Eq. (5.29) are defined as

LÔ = [H(t), Ô] (5.30a)

CaÔ = −i(ηaQaÔ − η∗aÔQa) (5.30b)

QaÔ = QaÔ − ÔQa (5.30c)

Through the interactions between the system and ancillary density operators, the action of H(t)

will drive the strength of the correlations between bath modes, and hence in return these corre-

lations may drive the system. So the memory of the system-bath interactions are stored in the

ancillary density operators, which is how the HEOM allow for non-Markovian dynamics.

The model is only exact when taken to an infinite level of hierarchy, as the bath is modelled

as oscillators, which have an infinite number of potential states, as explained in Chapter 3. Even

allowing for a moderate number of excitation levels results in a great many ancillary elements,

which is expanded upon with an example bath correlation model in the next section. It can be

seen from Eq. (5.29) that the effect of the bath correlations on the dynamics are included based

on the frequencies γa and coefficients ηa only. This means that any set of correlation functions

that can be represented as exponentials with real decay constants and complex coefficients can be

used with the HEOM. One such, that has physical relevance, is the Drude-Lorentz model for the

spectral density.

5.4 Spectral density

The bath interacts with the system through the coupling of oscillator modes with system energies.

Not all mode frequencies are equally likely, consequently some way of modelling their relative

probability is required – this is the spectral density. The magnitude of the interaction is also de-

pendent on the temperature of the bath and the strength of the coupling with the bath. For the

bath interaction models considered in this chapter the temperature dependence is accounted for
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Figure 5.1: Plots of the Drude-Lorentz spectral density of Eq. (5.31), with α = 1, ωc =
0.1, 1, 10, 50. Note that at ω = 1: for ωc = 0.1 there is a steep gradient, ωc = 1
there is a resonance peak, whereas J(ω) is approximately linear for ωc = 10, and,
relative to the others, J(ω) is approximately constant for ωc = 50.

separately. The coupling strength is considered independent of mode frequency and bath tempera-

ture, and so is a constant scaling factor for the interaction. One such model is the Drude-Lorentz

model for the spectral density, which is often referred to as a model for an underdamped Brownian

oscillator. The form used in this study is

JDL(ω) = ω
2ωcα

ω2 + ωc2
, (5.31)

where ωc is described as the cut-off frequency and sets the position of the maximum of the function,

and hence is also referred to as the resonant frequency. The scaling factor coupling strength is α.

The Fourier transform of Eq. (5.31) can be decomposed as a sum of exponentials, as in Eq. (5.28).

For these reasons it is commonly used in studies of non-Markovian dynamics, including one of the

earliest HEOM papers [174], and more recent work [197, 181]. Plots of this function are shown in

Fig. 5.1 for a range of ω that is relevant in the numerical investigation in the later sections.

The Fourier transform of the spectral density gives the sum of exponentials in the time domain
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C(t) =
∞∑
k=0

ηke
−γkt . (5.32)

Each exponential term in the summation Ck = ηke
−γkt can be taken as a two-time correlation

function in Eq. (5.28). Note the spectral density transform into correlation functions is only exact

for an infinite number of exponential terms, but assuming a truncation of the sum at k = M , it

can be used in the HEOM model to solve the dynamics numerically. Each Ck is referred to as a

Matsubara term, and the corresponding Matsubara frequencies and prefactors are given by



γk = 2πk/β k ≥ 1

γ0 = ωc

ηk = 4αωcγk
β(γk2+ω2

c )
k ≥ 1

η0 = αωc[−i + cot(βωc/2)]

(5.33)

The influence of the temperature of the bath on the strength of interaction with the system enters

here through the inverse temperature β = 1/T . It can be seen from the form of the formula for ηk

that ηk → 0 as k →∞, and so some termination will provide an approximation. Also that ηk → 0

as β → ∞ (k > 0), whereas η0 → ∞ as β → 0, meaning that the k = 0 term will dominate at

higher temperatures. According to Ref. [174], for high temperature baths (T & 10), the Matsubara

terms for k ≥ 1 will have negligible effect.

The QuTiP implementation of a solver using the HEOM coupled differential equations Eq. (5.29)

is based on the Drude-Lorentz spectral density. The Matsubara parameters are calculated as per

Eq. (5.33) based on the spectral density parameters α, ωc, T , leading to the form of the HEOM

implemented in QuTiP, which is described in Section 2.8.2.

The bath cutoff parameter Nc and number of Matsubara terms K = M + 1 must be chosen.

These must be selected carefully, as the number of ancillary elements in the hierarchy is (Nc +

K)!/(Nc!K!), so this quickly becomes infeasible when both Nc � 1 and K � 1. The following

sections validate the HEOM implementation in QuTiP, and investigate the appropriate Nc and K

parameter values for certain spectral density scenarios.
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5.5 Comparison with pure-dephasing

One of the few exactly solvable models for open systems dynamics is the pure-dephasing of a qubit

– a two-level system (TLS), such a spin-½ system in an external field or a two level atom – coupled

to a cavity modes with an arbitrary spectral density. The Hamiltonian for the two level system is

Hs =
ωq
2
σz +

∆

2
σx (5.34)

where ωq is the energy of the TLS and ∆ is the tunnelling term. The two energetic states of the

system are denoted |g〉 and |e〉. The coupling to the bath is through Q = σz. In this investigation

into the dephasing predicted by the HEOM model, to ensure only dephasing effects of the coupling

to the bath, then ωq = 1,∆ = 0 and the initial state is set at ψ(0) = (|e〉 + |g〉)/
√

(2) , ρ(0) =

|ψ(0)〉〈ψ(0)|. The coherence (purity) of the state is given by the absolute value of the off diagonals

of ρ(t), that is |ρ12|, with ρ12 := 〈e|ρ|g〉. For the initial pure state ρ12(0) = 0.5, and in the

maximally mixed state ρ12 = 0.

The exact model for this pure dephasing set up is

ρ12(t) = exp

[
−
∫ ∞

0

dω

{
4J(ω) coth

βω

2

(
1− cos(ωt)

ω2

)}]
ρ12(0) . (5.35)

A derivation of this can be found in Ref. [22]. A derivation based on the model from Ref. [176]

is also included in Appendix E. Eq. (5.35), with J(ω) = JDL(ω) from Eq. (5.31), is solved here

numerically to compare with the evolution computed using the HEOM solver in QuTiP.

As discussed in the previous sections, the HEOM model is only exact when taken to an infinite

level of hierarchy, and the spectral density transform into correlation functions is only exact for

an infinite number of Matsubara terms. Clearly this is impossible in numerical simulation, and

so some truncation is necessary to use the HEOM in control optimisation. Numerical simulation

is used to determine the Matsubara parameters for satisfactory convergence of HEOM with the

exact model. It is expected that only one Matsubara term is required at high temperatures, which

is T & 10. When the interaction is stronger at ωc ≈ ωq, and as the bath interactions become less

Markovian, that is ωc � ωq, it is expected that a deeper hierarchy will be required.
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Figure 5.2: Convergence of the HEOM numerical simulation for temperature T = 10, coupling
strength α = 0.5, spectral density cut-off frequency ωc = 10. The coherence (purity)
of the state is given by the absolute value of the off diagonals of ρ(t), denoted |ρ12|.
The plot on the left shows the differences between the HEOM evolution and the exact
model for increasing level bath cut-off Nc. The plots on the right show (upper) the
evolution of the coherence, and (lower) the difference from the exact model, for the
best attempted HEOM parameters Nc = 5, K = 1.

The investigation starts with the cut-off frequency that puts the resonance outside of the ener-

getic range of the system. The plots in Fig. 5.2 indicate that for ωc = 10, T = 10 a bath cut-off

of five and one Matsubara term are required for good convergence with the exact model. At the

lower temperature of T = 1 used to produced the plots in Fig. 5.3 convergence is only around 90%

for K = 1, but continues to improve with increasing numbers of Matsubara terms, with maximum

error of around 2% for K = 6.

The results for cutoff frequency on resonance with the system energy, that is ωc = 1, for the

bath temperature T = 10 are shown in Fig. 5.4. Due to the increased interaction with the bath

(compared to the the ωc = 10 scenario) as J(ω) is much greater at the system energy, then a much

greater bath cut-off is required, resulting in a deeper hierarchy. Here Nc = 30, K = 1 gives a

maximum error of around 0.1%. With the same cutoff frequency, but lower temperature, (shown

in Fig. 5.5) fewer hierarchy levels are required. At the lower temperature the average excitation

count is lower, and hence the interaction is weaker. However, again more Matsubara terms are

required at the lower temperature. The best HEOM parameters tested here Nc = 10, K = 5 give

an error of around 0.2%, whereas the worst performing parameters attempted Nc = 4, K = 1 give

a maximum error of approx 6%.

Finally, with the spectral density cut-off ωc = 0.1 and T = 10, at the very strong coupling of
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Figure 5.3: Convergence of the HEOM numerical simulation for T = 1, α = 0.5, ωc = 10 (see
Fig. 5.2 for description of parameters). The bath cut-off of Nc = 4 found for sufficient
for T = 10 is used again here. The plot on the left shows the differences between
the HEOM evolution and the exact model for increasing numbers of Matsubara terms
K. The plots on the right show (upper) the evolution of the coherence, and (lower)
the difference from the exact model, for the best attempted HEOM parameters Nc =
4, K = 6.
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Figure 5.4: Convergence of the HEOM numerical simulation for T = 10, α = 0.5, ωc = 1 (see
Fig. 5.2 for description of parameters). The plot on the left shows the differences
between the HEOM evolution and the exact model for increasing levels of bath cut-
offNc. The plots on the right show (upper) the evolution of the coherence, and (lower)
the difference from the exact model, for the best attempted HEOM parameters Nc =
30, K = 1.

α = 0.5, a very high bath cut-off of Nc = 100 is required to bring the maximum error to within

0.2%, as shown in Fig. 5.6. Very similar features are seen with the smaller coupling of α = 0.05,

however only Nc = 40 is required to achieve similar convergence. With these spectral density

cut-off and coupling parameters a single Matsubara term was found to be sufficient at T = 1 also.

The difference between the T = 1 snd T = 10 scenarios (Fig. 5.7) is that there is some divergence

early in the HEOM evolution, similar to that seen in the other ωc scenarios for T = 1.
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Figure 5.5: Convergence of the HEOM numerical simulation for T = 1, α = 0.5, ωc = 1 (see
Fig. 5.2 for description of parameters). The plots on the left show the differences
between the HEOM evolution and the exact model; left (upper) for increasing levels
of bath cutoff Nc, with K = 5, and (lower) for increasing number of Matsubara
terms K, with Nc = 10. The plots on the right show the evolution of the coherence
and its difference from the exact model. The upper two show the worst case tested
Nc = 4, K = 1, and the lower two for the best HEOM parameters Nc = 10, K = 5.

5.6 Comparison with Lindblad master equation

For the combined dissipation and dephasing there is no exact model for validating the HEOM

solver. However, it is possible to compare the evolution computed with the HEOM model and

numerical solutions to the Lindblad master equation Eq. (5.7). The solutions should converge

where the Born-Markov approximation can be made. Standard qubit-bath master equations assume

that coupling to the bath is weak. The HEOM does not make this assumption, and so it would be

better to have a Lindblad master equation that also holds in the ultrastrong coupling regime for

comparison.

Using a model referred to as the dressed picture in Ref. [198], the authors derive a Lindbladian
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Figure 5.6: Convergence of the HEOM numerical simulation for T = 10, ωc = 0.1 (see Fig. 5.2
for description of parameters). The upper set of plots are for α = 0.5 and the lower
for α = 0.05. The plots on the left show the differences between the HEOM evolution
and the exact model for increasing levels of bath cut-off Nc, with K = 1. The plots on
the right show the evolution of the coherence and its difference from the exact model
with the best HEOM parameters tested for the corresponding α.
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Figure 5.7: Convergence of the HEOM numerical simulation for T = 1, α = 0.5, ωc = 0.1 (see
Fig. 5.2 for description of parameters). The plots on the left show the differences
between the HEOM evolution and the exact model for increasing levels of bath cut-
off Nc, with K = 1. The plots on the right show the evolution of the coherence and
its difference from the exact model with the best attempted HEOM parameters.
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[Eq.(16) of 198], based on the transition probabilities of the system states, that takes account

of qubit-resonator coupling to the bath in the ultrastrong regime. Based on the same method,

a Lindbladian for a system with Hamiltonian HS coupled to a bath of harmonic oscillators that

allows for strong coupling is described below. Firstly HS is taken in a diagonal basis to give the

eigendecomposition {Ej, |j〉}, ordered by increasing energy, with the difference denoted ∆kj =

Ek − Ej . The system is coupled to the bath by operator Q with coupling strength α. The bath is

characterised by a spectral density J(ω) for oscillator mode frequencies ω, in which α is a scaling

factor. The bath temperature T , gives an average phononic boson count

Nbs(ν, T ) =
1

eνβ − 1
, (5.36)

where β = 1/T . Then, defining the dissipater operator as

D[V ](ρ) = V ρV † − 1
2
(V †V ρ+ ρV †V ) , (5.37)

the dissipative part of the Lindbladian is given by

Ldr(ρ) =
∑
j,k>j

{Γjkκ D[|j〉〈k|](ρ) + Γkjγ D[|k〉〈j|](ρ)}+
∑
j

ΓjφD[|j〉〈j|](ρ) , (5.38)

where

Γjkκ = 2|〈j|Q|k〉|2αJ(∆k,j)(1 +Nbs(∆k,j, T ) , (5.39)

Γkjγ = 2|〈k|Q|j〉|2J(∆k,j)Nbs(∆k,j, T ) , (5.40)

Γjφ = 4|〈j|Q|j〉|2J0T . (5.41)

The rate of transition to higher energy states is given by Γjkκ , where |〈j|Q|k〉|2 gives the transition

probability, which is then factored by the spectral density corresponding to that energy and the

phonon count. Similarly, the relaxation rate Γkjγ to lower energies is proportional to that transition

probability. The dephasing rate in the eigenstates is given by Γjφ, where J0 := limω→0 J(ω)/ω.

The plots in Fig. 5.8 show comparisons between the dressed picture master equation (DME)
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Figure 5.8: Comparison of the HEOM and dressed picture ME evolution of the two-level system
with Hamiltonian from Eq. (5.34) with ωq = 1,∆ = 1. The spectral density cut-
off for the four scenarios decreases left to right and top to bottom, with values ωc =
50, 1, 0.5, 0.1. Coupling constant values are chosen as α = 0.1, 0.005, 0.002, 0.001
respectively, such that the dissipation is similar. All scenarios have temperature T =
10. Two plots are shown for each scenario. The upper axes show plots for both models
of the first element of the density matrix ρ11 and the absolute value of the off diagonals
|ρ12| during the evolution. The lower axes show plots of the difference between the
models for the two measures.

and HEOM decoherence models for different spectral densities. The coupling constant α values

are chosen such that the dissipation from t = 0 to t = 10 is similar in each spectral density cut-off

wc scenario. The system evolves under its Hamiltonian Eq. (5.34) with ωq = 1,∆ = 1 from its

initial excited state |e〉. The probability of measuring the system in the state |e〉 is given by the first

element of the density matrix and is hence denoted ρ11. The absolute value of the off diagonals

|ρ12| gives the maximum probability of measuring the system in an equal superposition state. In

the scenario where ωc � E (E being the system energy levels) the Markovian approximation

should hold, and the two noise models do appear to predict very similar evolution. When wc � E
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the bath memory time, via the correlation functions, is long compared with the system dynamics

timescales, and hence the Markovian approximation is invalid. This is supported by the divergence

between the predictions of the models for wc = 0.1. The HEOM parameters used here are those

that were found to converge well with the exact model in the previous section. Although the

evidence in Fig. 5.8 is far from conclusive, as far as demonstrating the HEOM convergence in this

more general setting, the two models do diverge where expected, potentially indicating that the

Markovian approximation in the DME is not valid for ωc � E.

So, how reliable are noise models that make the Markovian approximation in predicting the

effects of noise in some control experiment? The next section investigates a specific control ob-

jective to validate an optimisation performed using the Lindblad ME solver, in the Markovian and

non-Markovian scenarios identified here.

5.7 Controlled evolution

Assuming a control optimisation searching for some control parameters that result in a desired

evolution of the system, to achieve some target state or operation, where these are to be used in

some physical experiment, if the model for the dissipation is inaccurate, then it would be doubtful

that the control parameters, when applied to the actual system, would achieve the predicted result.

This is investigated here by considering the HEOM as exact, and using it for a comparison with

a driven system evolution where the decoherence is determined by the dressed master equation

(DME) Lindbladian. That is, the controls are optimised in a simulation where the noise model is

DME.

In the previous section the evolution of a two-level system (TLS) with the HEOM and DME

were seen to coincide for a spectral density in the Markovian regime (T = 10, ωc = 50, α = 0.1),

but diverge for the non-Markovian (T = 10, ωc = 0.1, α = 0.001). So the control parameters

would be expected to achieve the same target in both models in the Markovian regime, but what

will happen in the non-Markovian regime is difficult to predict. This is investigated using a TLS
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Hamiltonian with controls

Hs(t) =
(ωq

2
+ uz(t)

)
σz +

(
∆

2
+ ux(t)

)
σx , (5.42)

where uz(t) and ux(t) are control functions. In this case they are piecewise constant in five equal

durations, making ten control parameters in all. The control fields are assumed not to influence the

bath. The collapse operators for the decoherence model are based on the energy splitting of Hs, as

per Eq. (5.6), and so these are calculated for each timeslot. The system drift in this case is set by

ωq = 1,∆ = 1.

The control objective is to transfer from the initial pure state |e〉 to the pure superposition

state (|e〉 + |g〉)/
√

2. The cost function to optimise is the squared trace difference described in

Section 1.6.1, Eq. (1.52), defined here again as

ETD2 (ρ(tf ), ρtarget) := 1
2

Tr[(ρ(tf )− ρtarget)
†(ρ(tf )− ρtarget)] . (5.43)

where ρ(tf ) is the density matrix at the end of the evolution, and ρtarget is the density matrix for

the target. The control modules in QuTiP are used optimise the parameters of the control pulses to

minimise the cost function. The method for computing the evolution of the open system dynamics

is described in Section 2.8. The control amplitudes are bounded at [−0.5, 0.5].

The dissipation scenarios are taken from the previous section, using the two extremes. The bath

parameters, temperature T = 10, spectral density cutoff frequency ωc = 50 and coupling strength

α = 0.1, are expected to allow the Markovian assumption, whilst a bath characterised by T =

10, ωc = 0.1, α = 0.001 potentially induces non-Markovian evolution. The plots in Fig. 5.9 show

the optimised control pulses and resulting system evolution. The exact pure dephasing for both

these scenarios predicts that, if in superposition state (|e〉 + |g〉)/
√

2 for the whole evolution, the

system would be almost completely dephased, that is in the maximally mixed state, with ETD2 ≈

0.25. So the optimisation consequently finds parameters that favour keeping the system state close

to its initial state (which is not subject to dephasing) until near the end of the evolution, and then

allowing it to move rapidly to the target state near the end of the allowed time. This is particularly

noticeable in the Markovian case.
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The optimised control parameters found under the DME noise model are used to drive the

system under the HEOM noise model. The system evolution using both models are plotted together

in Fig. 5.9. As expected, in the Markovian scenario, the evolution matches very closely, and the

final cost is almost identical, ETD2 = 0.011 (DME) and ETD2 = 0.012 (HEOM). More surprisingly,

despite some deviation of state during the evolution, in the non-Markovian scenario, the final state

is very similar for both noise models, with HEOM achieving a lower cost ETD2 = 7.4× 10−4 and

DME ETD2 = 1.6× 10−3.

5.8 Dynamical decoupling optimisation

Dynamical decoupling (DD) is known to be a method for preserving the purity of quantum states

[199]. It has been shown that the method only works for systems that are actually coupled to

environments [200], and therefore cannot be simulated based on dynamics modelled using the

Born-Markov approximation [189]. The HEOM are based on actual couplings to environmental

oscillators, and therefore can be used to model DD. Consequently optimisation of theoretical DD

schemes can be performed using the HEOM to compute the dynamics. An example of this is given

here, based on the DD scheme presented in [201].

For simplicity, the rotating frame of the system is considered by setting ωq = 0 in Eq. (5.34),

making the system Hamiltonian in this controlled system

Hs(t) = uDD(t)σx , (5.44)

where uDD(t) is the control function. In the DD case the control is restricted to a number of short

‘bursts’, known in the NMR community as ‘bang-bang’ pulses. Specifically, in this case, these are

the so-called π pulses. Working in the frame rotating in z at ωq/2, these are defined by 2V τp = ±π,

where V is the amplitude and τp is the duration of the individual pulses. This pulse induces a π/2

rotation about the Bloch sphere x-axis in the rotating frame. They are called π pulses because

they equate to θ = π in Eq. (1.11). Typically, in most theoretical work, it is assumed that this can

be applied with a large enough amplitude V such that τp → 0, making the operation effectively

instantaneous. In numerical simulation τp must be chosen to be sufficient such that the pulse is
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Figure 5.9: Controlled evolution of the two level system with Hamiltonian Eq. (5.42), compar-
ing HEOM and dressed picture ME dissipation models in the Markovian and non-
Markovian scenario. The system is initialised in the excited state |e〉. The target for the
optimisation is (|e〉+|g〉)/

√
2. The plots on the left are resulting from the spectral den-

sity parameters, T = 10, ωc = 50, α = 0.1, which is referred to as the Markovian sce-
nario. The plots on the right are from simulations with T = 10, ωc = 0.1, α = 0.001,
which is the non-Markovian scenario. The upper plots show the piecewise constant
control amplitudes found by numerical optimisation, which were bounded [−0.5, 0.5].
The lower plots show the expectation values throughout the evolution in the canonical
basis.

accurately included in the numerical integration.

The objective of the control is to preserve the purity of the state, so the infidelity measure is

based on purity. Therefore the cost for the optimisation is based on

Epure (ρ(tf )) = ETD2

(
ρ(tf ), ρ(tf )

2) , (5.45)
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with the trace difference infidelity for density matrices defined in Eq. (5.43). For a pure state

ρ = ρ2, and hence Epure = 0. As was seen in previous sections, with the system-bath interaction

operatorQ = σz, dephasing is observed when the system is in a superposition state in the canonical

basis. Therefore, the system is initialised in the state ψ(0) = (|e〉+ |g〉)/
√

(2), with density matrix

ρ(0) = |ψ(0)〉〈ψ(0)|. Hence, as the Hamiltonian Eq. (5.44) has only σx rotations, then the only

dynamics of the state, other than global phase, can be dephasing.

The system is initially evolved with a ‘guess’ DD sequence, using the HEOM solver in QuTiP

with time-dependent system Hamiltonian, as described in Subsection 2.8.2. The sequence is then

optimised using the L-BFGS-B algorithm. The variables for the optimisation are the intervals

between pulses. The results for optimisations using four DD pulses are shown Fig. 5.10. It can be

seen from the plots of the evolution of |ρ12(t)| show how, after the application of the DD pulse, the

coherence is returned to the system from the bath for a time period. The system then dephases again

until the next DD pulse flips the system into the state where coherence starts to be returned. The

optimal sequence is found to be that with equal spacing between the DD pulses, which would seem

to arise from the symmetry of the dephasing / re-phasing periods of the evolution. As the evolution

needs to symmetrical about the middle of the evolution time, to ensure the maximum coherence

coincidences with the end of the evolution time, so then the DD sequence is symmetrical about the

same. The same optimal sequence was found whichever initial sequence was chosen. Fig. 5.10

shows the results for two optimisations – one starting from equally separated, and the other from

randomly separated, initial sequences. Further detail on how the optimisations were performed are

given in Section 2.8.2.

5.9 Conclusion

Some justification has been given for the validity of the HEOM in driven system dynamics. The

dissipation functional was shown to be independent of the system Hamiltonian [179], which would

seem to imply that the bath is influenced by the state of system only, which is evolving in time

whether the system is driven or otherwise. Hence the HEOM can be used to calculate the system

propagation in control simulations, so long as the controls are assumed to only effect the system
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Figure 5.10: Results of optimisation of dynamical decoupling (DD) sequences, with controlled
system Hamiltonian Eq. (5.44). The system is initialised in the superposition state
(|e〉+ |g〉)/

√
2 and is evolved using the HEOM. The coupling to the bath is through

Q = σz. Two initial pulse scheme scenarios are shown: (a) 4 equally spaced π pulses;
(b) 4 randomly spaced π pulses. The DD sequences are optimised to minimise the
infidelity Epure. There are two sets of axes for each scenario, the upper showing the
time-evolution of the system, and the lower the initial and optimised sequences. The
red solid line shows the absolute value of off-diagonals of ρ(t) over the evolution
|ρ12(t)|, based on the initial DD sequence (solid blue line). The black dashed line
shows |ρ12(t)| for the evolution with the optimised DD sequence (dashed orange
line). The decoherence arises through the HEOM with spectral density parameters
T = 10, ωc = 0.1, α = 0.001, and bath correlation parameters Nc = 30, K = 1.
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directly. The derivation assumes that the system bath interaction operator is not time-dependent,

so any time-dependence in the bath resulting from the driving fields could only be included in the

parameters of the spectral density, such as the coupling strength or cut-off frequency, which may

be worthy of investigation.

Open quantum system dynamics can be computed far more efficiently by solving the Lindblad

master equation than by solving the hierarchical equations of motion. However, there are physical

systems where the bath correlation times are known to exceed the limit that allows the Born-

Markov approximation, and there are many others where it is suspected that this may also be so.

The HEOM solver in QuTiP is sufficiently efficient to allow for computation of non-Markovian

dynamics on a standard desktop computer in a few seconds for small quantum systems. This means

that it is also suitable for control optimisation simulations for small systems.

The validation of the HEOM solver against the pure dephasing model demonstrates that trun-

cations of the hierarchy can be made that provide sufficient precision, and which allow for efficient

computation. This was shown for a range of spectral density parameters and temperatures. In par-

ticular, for high temperature scenarios, a single Matsubara term was found to be sufficient, which

was predicted in Ref. [174]. There are known issues at low temperatures for this Drude-Lorentz

spectral density parametrisation used in the HEOM. These are addressed with other parametri-

sations [179], which could be validated through the same method. It should be noted that this

validation was only against one specific model. There is scope for further validation against other

models, exact and approximate. This validation against the pure dephasing model was just to

find HEOM parameters appropriate for the spectral density used in the other tests, rather than any

validation of the exactitude of the HEOM.

The comparison with the Lindblad master equation dynamics showed convergence of the two

solutions in the Markovian limit, but divergence when the bath frequency distribution potentially

leads to correlation times that exceed the system dynamics timescales, which was as expected. The

master equation used relies on the secular assumption, that is, high frequencies and degenerate

energy levels a not considered. This may mean that it is inaccurate for pure dephasing and high

frequency bath modes, which may account for some of the divergence encountered. There is

potential to develop a non-secular ME solver, which may show closer convergence, and could be
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validated against the pure-dephasing model.

The similarity of outcome for pure state to pure state optimised controls is encouraging for the

large body of work that assumes the Markovian model. In the driven example, the system evolution

by solved master equation and HEOM are much closer than in the undriven case. This is likely

due to the controls maintaining the system state where it is less subject to dephasing, and hence the

difference between the models is not so evident. The dynamical decoupling optimisation demon-

strated that it is possible to use the HEOM for investigating control objectives where modelling the

actual couplings to environmental systems is essential. This is the first numerical optimisation of

a dynamical decoupling scheme using a realistic bath model, as validated in this study and others.

A genetic algorithm has been used for optimising dynamical decoupling [202]. However, in this

work they use coupling to four spins as the model for the bath. The success of this initial test

suggests potential for extension of the many results in the theory of dynamical decoupling, such

as the randomised scheme in Ref. [203], or in Ref. [204], where they discuss the potential for DD

while maintaining the positive effects of some other driving field.

Small systems only have been investigated here due to the extra expense of computing the dy-

namics with the HEOM. To extend this study into many-body systems it would be most beneficial

to implement some method of parallelising the computation. The equations have been described as

highly suited to parallel process solving [205], and these and other have reported performance ad-

vantages of using graphical processing units (GPUs) to solve the hierarchy [183, 206]. Therefore

it should be fairly straightforward to implement in QuTiP, which would allow for investigation into

scaling relations in control of many-body systems with open system evolution computed through

the HEOM, thus allowing for non-Markovianity.
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Conclusion

The reachable set of symplectic operations on Gaussian systems with unstable quadratic Hamil-

tonians was proven not to contain any passive operations (except the identity) for single-mode

systems. The numerics indicated a distinct reachable region. The shape of this region, at least for

the most unstable system (defined by c=0 in Eq. (3.39)), is much simpler than that of the proven

unreachable region. This hints that it should be possible to derive an analytical description of it.

Attempts to find a similar reachable region with the two-mode unstable using numerics were less

successful. However, The assumption about the inevitability of squeezing was challenged by some

of the two-mode numerical results, and some analytical explanation for this may be a promising

direction for further study, as reputedly the question of whether passives are inaccessible without

neutral generators has remained open for some time for n-mode systems.

The numerics consistently found that systems with neutral generators were controllable; in the

single-mode, two-mode and coupled chain simulations. However, the difficulty of reaching target

symplectic operations, in all the systems studied, suggests that the control parameter space contains

traps that do not exist for composite qubit system optimisations. Referring back to the discussion

in Section 1.6.7, this raises the question of whether the existence of non-recurrent generators con-

stitutes a constraint on the optimisation. The control parameter space was proven to be smooth and

trap-free [14]. The experiences of this study, and anecdotal evidence from other researchers, runs

contrary to this proof. Comparative analysis of these landscapes is also an interesting potential

direction for further study.
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The GRAPE type algorithms using analytical gradients in, combination with the L-BFGS-B

multi-variable optimisation algorithm, provided fast convergence on optimisation targets. The low

number of cost function evaluations, when compared with simplex or approximate gradient based

methods, have made it possible to use control optimisation to study scalability with system size.

As discussed throughout this thesis, the computational expense of a cost function scales with the

Hilbert space size or worse, and so this is the limiting factor on the upper bound of system size that

can be studied with simulated control optimisation methods. This is much excitement currently

about machine-learning based algorithms in many applications. The use of machine learning tools

in quantum optimal control is not new, with genetic algorithms in use in 1995 [207]. With this

fresh excitement, there is renewed interest in machine learning applied applied to quantum control

optimisation. The deep reinforced learning method used by AlphaGo [63], has now been used in

quantum optimal control [67, 68]. Machine learning has also be shown to work in situ to optimise

Bose-Einstein condensate production [69], where they refer to it as ‘online optimization’. These

tools have been shown to be effective in time optimal control (finding control pulses that have

shorter total evolution times for achieving gate synthesis) and increasing robustness to noise [68].

For specific, difficult to achieve, control objectives, these tools may be best the method. However,

there is an overhead in developing the ’learning’, which would have made them infeasible in this

study, without having access to significantly more computing resource. If control parameter land-

scapes have been proven trap-free, which as discussed in Section 1.6.7 is true for the majority of

quantum systems, then gradient-based algorithms should out-perform deep-learning based ones.

The in-situ optimisation of gates in quantum simulators was shown to scale only polynomially

with the number of qubits, making it a viable scheme for developing the set of controls necessary

for executing quantum algorithms on such devices. This set of controls only needs to be found once

for a given device, assuming that the Hamiltonian, although not fully characterised, does not alter

between computations. There is also potential for in-situ optimisation of error correction protocols.

The collaboration team of this study have also worked on optimising controls that protect logical

qubits from environmental noise, including tuneable interactions that allow the system to discover

decoherence-free subspaces. Work continues on demonstrating the scalability of the approach,

which is challenging to simulate classically due to the doubled space of CPT maps.
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The next step is to demonstrate the viability of the in-situ optimisation scheme on some small

device. A collaboration with the University of California, Berkeley has been arranged for this

purpose, where the in-situ scheme will be used optimise controls for two-qubit gates and error

correction protocols in cavity-coupled transmon qubits. Initial simulation results, using the esti-

mated parameters of the system, have shown promise for good experimental outcomes. The in-situ

scheme could be applicable to any control target on a quantum simulator, and so could also be

used to enhance fidelities of any outcome, so long as the fidelity can be measured efficiently. In

fact the classical-quantum hybrid optimisation approach, with the classical computer performing

an open-loop optimisation of experimental controls, is applicable to a wide range of quantum ex-

periments. This is the focus of the thesis author’s immediate future research, as part of a joint

European QuantERA project called ‘Theory-blind Quantum Control’ or TheBlinQC. In applica-

tions where analytical gradients are not accessible, such as in the in-situ case, or just difficult to

calculate, such as simulating dynamical decoupling with the hierarchical equations of motion, then

the additional overhead of calculating approximate gradients makes it less apparent which method

will perform best. Collaborators at Imperial College have found promising initial results using

Bayesian algorithms for determining trajectories through the control parameter space. These have

a lower overhead than training a neural-network in deep learning methods. These will be studied

by the thesis author for their suitability to in-situ control optimisation.

The hierarchical equations of motion (HEOM) were shown to be a viable method for com-

puting quantum dynamics in the context of control optimisation. An optimisation of a dynamical

decoupling (DD) scheme was performed that would be impossible using Lindbladian dynamics.

This demonstrates clear potential for other applications of dynamical decoupling. In this study,

gate synthesis in many-body Heisenberg interacting systems was found to be exponentially (with

system size) more difficult to achieve than with Ising interacting systems. The potential for negat-

ing unwanted system interactions was proposed in Ref. [201]. It should be possible to derive

potential DD schemes for effectively making Heisenberg systems behave as Ising systems, and

optimise these with the tools developed for this study. The study of scaling of the HEOM with

system-size remains to be completed. The hierarchy superoperator is already very large before

tensoring with the system operator space. As, for qubit systems, the system operator space scales
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with 2n, then this compounds the issue. Additional development is required to paralellise solving

of the HEOM, which should be straightforward using OpenMP, as used elsewhere in QuTiP. So, it

remains to be seen what is the limit of system-size for control optimisation while using the HEOM

dynamics.

In summary, numerical quantum control optimisation has been used to test a variety objec-

tives in different system models, using software tools developed for this study. It has be found

to be a valuable method in investigating controllability through characterisation of reachable sets,

and also minimum times required to perform operations. The question of scalability in control

of many-body systems for practical application in quantum information processing has been ad-

dressed through investigating minimum gates times in both discrete and continuous variable sys-

tems. In both cases, in specific examples, the scaling was demonstrated to be sub-exponential over

the system size range tested, which is limited by the processing time and memory required for

simulating many-body quantum systems on a classical computer. There are many directions for

potential future study, outlined above, using numerical control optimisation, which this study has

demonstrated to be a valid and useful method.
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Appendix A

Proof of the uncontrollability condition

It should be noted that this proof was first made by Wu, Li, Zhang and Tarn [12] working with the

group SU(1, 1). The translation to the symplectic group Sp2,R, which is isomorphic to SU(1, 1),

was primarily completed by Uther Shackerley-Bennett for [128]. It is appended to this thesis

for completeness, and adapted slightly for the purpose. The relevant lemmata and definitions are

repeated here for the convenience of the reader.

The controlled dynamics operator equation for a single mode with one control operator is

Ṡ(t) = (A+ u(t)B)S(t), S(0) = I2, (A.1)

where the control function u(t) is a real valued function defined for all positive times t and A,B ∈

sp2,R.

These operators specify a basis of sp2,R:

Kx =
1

2

0 1

1 0

 , Ky =
1

2

−1 0

0 1

 , Kz =
1

2

0 −1

1 0

 , (A.2)

with these commutation relations

[Kx, Ky] = −Kz, [Ky, Kz] = Kx, [Kz, Kx] = Ky. (A.3)

GivenA andB from Eq. (A.1), the subset Ξ of sp2,R with elements of the formA+vB, v ∈ R,
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is called the set of accessible dynamical generators of the system

Lemma A.1. If Ξ only contains hyperbolic elements then Eq. (A.1) is similar, via a symplectic

transformation, to

Ṡ(t) = (−Kx + bKz + u(t)Ky)S(t), S(0) = I2, (A.4)

where constant b ∈ R, |b| < 1.

The set of accessible controls of Eq. (A.4) is denoted by Ξ̃, with elements of the form −Kx +

bKz + vKy, v ∈ R, and its reachable set by R̃.

A general 2× 2 real matrix can be written as

X =

x1 + x3 x2 + x4

x4 − x2 x1 − x3

 , xi ∈ R. (A.5)

Lemma A.2. If X ∈ R̃ then the function

f(X) := (x1 − x4)2 − (x2 − x3)2 (A.6)

satisfies

f(X) ≥ 1,

ḟ(X) ≥ 0,

ḟ(X = I) ≥ 1,

(A.7)

for any choice of u(t) in Eq. (A.4).

In order to prove Lemmata A.1 and A.2, we need a few preliminary statements, which are also

taken directly from [12].

Lemma A.3. The equation

Tr[[M,N ]2] = Tr[MN ]2 − 2 Tr[N2] Tr[M2] (A.8)

holds for M,N ∈ sp2,R.
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Proof First we expand the elements in the basis defined in Eq. (A.2):

M = m1Kx +m2Ky +m3Kz, (A.9)

N = n1Kx + n2Ky + n3Kz. (A.10)

We use this expansion to express the value of the following terms:

Tr[M2] =
1

2
(m2

1 +m2
2 −m2

3), (A.11)

Tr[N2] =
1

2
(n2

1 + n2
2 − n2

3), (A.12)

Tr[MN ] =
1

2
(m1n1 +m2n2 −m3n3), (A.13)

Tr[[M,N ]2] =
1

2
((m2n3 −m3n2)2 (A.14)

+ (m3n1 −m1n3)2

− (m1n2 −m2n1)2).

Then we combine them to prove the statement:

Tr[[M,N ]2] = Tr[MN ]2 − 2 Tr[N2] Tr[M2]. (A.15)

Lemma A.4. If Tr[[A,B]2] = 0 in Eq. (A.1) then the system does not obey the Lie algebra rank

criterion.

Proof From Eqs. (A.9) and (A.10) it can be concluded that M , N and [M,N ] are linearly depen-

dent if and only if

Det


m1 n1 m2n3 −m3n2

m2 n2 m3n1 −m1n3

m3 n3 −(m1n2 −m2n1)

 = 0, (A.16)

or equivalently

(m2n3 −m3n2)2 + (m3n1 −m1n3)2 − (m1n2 −m2n1)2 = 0. (A.17)
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From Eq. (A.14) we see that this is equivalent to Tr[[M,N ]2] = 0. If A, B and [A,B] are linearly

dependent then the span of A and B does not generate sp2,R.

Lemma A.5. Consider hyperbolic M ∈ sp2,R. There exists P ∈ Sp2,R such that PMP−1 =√
2 Tr[M2]Ky.

Proof M is hyperbolic and so Tr[M2] > 0. We seek a matrix P1 = eαKz ∈ Sp2,R which satisfies

P1MP−1
1 =

√
m2

1 +m2
2Ky +m3Kz. (A.18)

using the decomposition of Eq. (A.9). Let α be the angle satisfying

sin[α] =
m1√

m2
1 +m2

2

, cos[α] =
m2√

m2
1 +m2

2

. (A.19)

According to the formula

eMNe−M = N + [M,N ] +
1

2!
[M, [M,N ]] + . . . , (A.20)

one can immediately obtain that

eαKzMe−αKz = m1e
αKzKxe

−αKz +m2e
αKzKye

−αKz +m3Kz

= (m1 cos[α]−m2 sin[α])Kx + (m1 sin[α] +m2 cos[α])Ky +m3Kz

=
√
m2

1 +m2
2Ky +m3Kz.

(A.21)

Next we show that there is a matrix P2 = eβKx ∈ Sp2,R which can convert
√
m2

1 +m2
2Ky +

m3Kz into
√

2 Tr[M2]Ky. Using Eq. (A.11) we know that m2
1 + m2

2 − m2
3 > 0 and so we can

choose β such that

sinh[β] =
m3√

m2
1 +m2

2 −m2
3

, cosh[β] =

√
m2

1 +m2
2√

m2
1 +m2

2 −m2
3

. (A.22)
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Make use of Eq. (A.20) again and obtain

eβKx(
√
m2

1 +m2
2Ky +m3Kz)e

−βKx =
√
m2

1 +m2
2e
βKxKye

−βKx +m3e
βKxKze

−βKx

= (
√
m2

1 +m2
2 cosh[β]−m3 sinh[β])Ky

+ (m3 cosh[β]−
√
m2

1 +m2
2 sinh[β])Kz

=
√
m2

1 +m2
2 −m2

3Ky

=
√

2 Tr[M2]Ky.

(A.23)

Consequently the Sp2,R matrix eβKxeαKz will convert M into
√

2 Tr[M2]Ky when M is hyper-

bolic.

Using the two previous lemmas we may now proceed to a proof of Lemma A.1 that was stated

in the main text. First we restate it.

Lemma A.1. If Ξ only contains hyperbolic elements then Eq. (A.1) is similar, via a symplectic

transformation, to

Ṡ(t) = (−Kx + bKz + u(t)Ky)S(t), S(0) = I2, (A.24)

where b is some real constant with modulus strictly less than one.

Proof If Eq. (A.1) only has hyperbolic controls then the following inequality holds:

Tr[(A+ vB)2] = Tr[B2]v2 + 2 Tr[AB]v + Tr[A2] > 0, (A.25)

for all v ∈ R. For this inequality to hold for all v it is immediately clear that Tr[A2] > 0. We can

see that Tr[B2] > 0 because (a) if it were less than zero then there exists v for which the inequality

does not hold and (b) if it were equal to zero then Tr[AB] must equal zero; by Lemma A.3 this

implies that Tr([A,B]2) = 0 which implies that the system does not obey the Lie algebra rank

criterion by Lemma A.4 which would contradict our assumption.

With the knowledge that B is hyperbolic, Lemma A.5 states that there exists a symplectic
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similarity transformation to transform Eq. (A.1) into:

Ṡ(t) = (A′ + u(t)Ky)S(t), S(0) = I2, (A.26)

where A′ is some unspecified element of sp2,R. Expand A′ in the symplectic basis of Eq. (A.2):

A′ = bxKx + byKy + bzKz. (A.27)

By redefining u(t) we can transform the system such that by equals zero. We know that A′ is

hyperbolic because this property is invariant under similarity transformation, therefore we know

that |bx| > |bz| from Eq. (A.11). The role of time in Eq. (A.26) allows us to rescale such that the

coefficient of Kx has modulus one leaving us with system

Ṡ(t) = (εKx + bKz + u(t)Ky)S(t), S(0) = I2, (A.28)

where |b| < 1 and ε = ±1. If ε = −1 then we leave the system as it is and the proof is finished. If

ε = 1 then enacting a similarity transformation under the symplectic matrix Ω is equivalent to time

reversal and sends each of the basis matrices to their negative. Thus we have shown that Eq. (A.1)

is symplectically similar to Eq. (A.24). Note that we did not talk about effects on the initial value

of X because this is set to be I2.

We are now able to proceed to a proof of Lemma A.2 stated above. First we restate it.

Lemma A.2. If X ∈ R̃ then the function

f(X) := (x1 − x4)2 − (x2 − x3)2 (A.29)

satisfies

f(X) ≥ 1, (A.30)

d

dt
f(X) ≥ 0, (A.31)

d

dt
f(X = I) ≥ 1, (A.32)
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for any choice of u(t) in Eq. (A.1).

Proof Eqs. (A.24) and (A.5) provide the set of equations

ẋ1 =
1

2
(ax2 − x4 − ux3), (A.33)

ẋ2 =
1

2
(−ax1 + x3 − ux4), (A.34)

ẋ3 =
1

2
(−ax4 + x2 − ux1), (A.35)

ẋ4 =
1

2
(ax3 − x1 − ux2). (A.36)

Subtracting Eqs. (A.33) and (A.36) then followed by a succeeding multiplication by 2(x1 − x4)

provides
d

dt
(x1 − x4)2 = a(x1 − x4)(x2 − x3)

+ (x1 − x4)2

+ u(x1 − x4)(x2 − x3).

(A.37)

Similarly, we have
d

dt
(x2 − x3)2 =− a(x1 − x4)(x2 − x3)

− (x2 − x3)2

+ u(x1 − x4)(x2 − x3).

(A.38)

Then subtracting Eqs. (A.37) and (A.38)

d

dt

(
(x1 − x4)2 − (x2 − x3)2

)
= 2a(x1 − x4)(x2 − x3)

+
(
(x1 − x4)2 + (x2 − x3)2

)
= (1− |a|)

(
(x1 − x4)2 + (x2 − x3)2

)
+ |a| ((x1 − x4)− sign(a)(x2 − x3))2

≥ 0 .

(A.39)

Thus, the function f is nondecreasing for every trajectory of the system. Since the initial value of

f is 1 it can be concluded that the reachable states of Eq. (A.24) should satisfy the restriction that
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f ≥ 1. Furthermore the initial value of the rate of change is equal to one if we set x1 = 1 and

x2 = x3 = x4 = 0. This implies that the function is increasing from the beginning.
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Appendix B

Symplectic singular value decomposition

B.1 Uniqueness of the singular value decomposition

Alexander Pitchford and Uther Shackerley-Bennett independently found bounds on the ranges θ

and φ to ensure the uniqueness of the decomposition. The proof and its presentation in this form

was completed by Uther Shackerley-Bennett for the study reported in [128].

To prevent any ambiguity we require that the singular value decomposition be unique. This is

not true in general and therefore we need to restrict the range of allowed angles so that it is properly

defined. In short, we want

S = RθZRφ = RαZ
′Rβ (B.1)

to imply that α = θ, β = φ and Z ′ = Z. The first thing to notice is that the singular values of S

are unique and so we would only ever get either Z ′ = Z or Z ′ = Z−1. The latter case corresponds

to the situation where z < 1 which may be ignored provided the range of the angles is properly

limited allowing Z−1 = R−π/2ZRπ/2. Thus we need only consider two cases, z = 1 and z > 1. In

the conclusion we use these cases to show that we have a freedom in how to represent the singular

value decomposition.
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B.1.1 Z 6= I

Let’s first look at the former case, Z ′ = Z, where Z 6= I. Assume a non-unique decomposition:

RθZRφ = RαZRβ, (B.2)

or equivalently

Rθ−αZ = ZRβ−φ, (B.3)

and explicitly 1
z

cos[θ − α] −z sin[θ − α]

1
z

sin[θ − α] z cos[θ − α]

 =

1
z

cos[β − φ] −1
z

sin[β − φ]

z sin[β − φ] z cos[β − φ]

 .

(B.4)

This implies the set of conditions

1

z
sin[θ − α] = z sin[β − φ],

z sin[θ − α] =
1

z
sin[β − φ],

cos[θ − α] = cos[β − φ],

(B.5)

which only hold when

sin[θ − α] = 0,

sin[β − φ] = 0,

cos[θ − α] = cos[β − φ].

(B.6)

These only hold when

α = θ + nπ and β = φ+mπ (B.7)

for n,m ∈ Z either both odd or both even.

To avoid Eq. (B.7) being satisfied for m,n 6= 0 we limit φ to vary in a range less than π so that

β = φ. This sets m = 0 and so to satisfy Eq. (B.7) without letting α = θ the nearest option would

be to let α = θ ± 2π. The maximum range for the angles governing SO(2) is 2π and so this is the
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bound that will apply to θ. For uniqueness, therefore, we set the ranges of θ and φ to:

−π + θ0 ≤ θ < π + θ0, −π
2

+ φ0 ≤ φ <
π

2
+ φ0, (B.8)

where θ0, φ0 fix the centre of the ranges.

B.1.2 Z = I

In this case we consider Z = I. We look for times when

RθRφ = RαRβ (B.9)

is satisfied.

These are cases when

θ + φ = α + β + 2nπ, (B.10)

for n ∈ Z.

This holds true for a whole range of angles. We can arbitrarily set φ = φ0 to let θ label the

elements of SO(2).

B.1.3 Angle limit

Now we have choices on how to set the angles such that the decomposition is unique. We choose

−π + θ0 ≤ θ < π + θ0, −π
2

+ φ0 ≤ φ <
π

2
+ φ0 (B.11)

to make the singular value decomposition unique when Z 6= I. θ0 and φ0 are some constants that

we are free to set. Note that we have made a further arbitrary choice in exactly where to make the

bounds tight. For Z = I we must totally restrict one of the angles and leave the other free; we

choose so set φ = φ0.
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B.2 Singular value decomposition coordinates for f

Alexander Pitchford and Uther Shackerley-Bennett independently derived the coordinate transfor-

mation. The presentation in this form was completed by Uther Shackerley-Bennett for [128].

In this section we represent cos[θ] as cθ and sin[θ] as sθ for brevity. We begin with two expres-

sions for X ∈ Sp2,R:

X =

x1 + x3 x2 + x4

x4 − x2 x1 − x3

 , (B.12)

and

X =

 cθcφ
z
− zsθsφ − cθsφ

z
− zsθcφ

sθcφ
z

+ zcθsφ − sθsφ
z

+ zcθcφ

 . (B.13)

Equating the two expression and solving for xi we find that

2x1 =
1

z
(cθcφ− sθsφ) + z(cθcφ− sθsφ), (B.14)

2x2 = −1

z
(sθcφ+ cθsφ)− z(sθcφ+ cθsφ), (B.15)

2x3 =
1

z
(cθcφ+ sθsφ)− z(sθsφ+ cθcφ), (B.16)

2x4 =
1

z
(sθcφ− cθsφ) + z(cθsφ− sθcφ), (B.17)

and so

2(x1 − x4) =
1

z
(cθcφ− sθsφ− sθcφ+ cθsφ) + z(cθcφ− sθsφ− cθsφ+ sθcφ), (B.18)

2(x2 − x3) = −1

z
(sθcφ+ cθsφ+ cθcφ+ sθsφ)− z(sθcφ+ cθsφ− sθsφ− cθcφ), (B.19)

or more simply

2(x1 − x4) =
1

z
(cθ − sθ)(cφ+ sφ) + z(cθ + sθ)(cφ− sφ),

2(x2 − x3) = −1

z
(cθ + sθ)(cφ+ sφ)− z(cθ − sθ)(−cφ+ sφ),

(B.20)
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which leads to

(x1 − x4)2 =
1

4

(
1

z2
(cθ − sθ)2(cφ+ sφ)2 + z2(cθ + sθ)2(cφ− sφ)2

+ 2(cθ + sθ)(cθ − sθ)(cφ+ sφ)(cφ− sφ)

)
,

(x2 − x3)2 =
1

4

(
1

z2
(cθ + sθ)2(cφ+ sφ)2 + z2(cθ − sθ)2(cφ− sφ)2

− 2(cθ + sθ)(cθ − sθ)(cφ+ sφ)(cφ− sφ)

)
.

(B.21)

Subtracting the two

(x1 − x4)2 − (x2 − x3)2 =
1

4

(
1

z2
(cφ+ sφ)2

(
(cθ − sθ)2 − (cθ + sθ)2

)
+

z2(cφ− sφ)2
(
(cθ + sθ)2 − (cθ − sθ)2

)
+

4(cθ2 − sθ2)(cφ2 − sφ2)

)
,

(B.22)

to

(x1 − x4)2 − (x2 − x3)2 =
1

4

(
1

z2
(1 + s2φ)(−s2θ) + z2(1− s2φ)(s2θ) + 4c2θc2φ

)
, (B.23)

to

(x1 − x4)2 − (x2 − x3)2 = c2θc2φ− s2θ
(

1

2

(
z2 +

1

z2

)
s2φ− 1

2

(
z2 − 1

z2

))
. (B.24)

which is our new expression for f in terms of θ, φ and z.
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Proof reachable set excludes passives

Uther Shackerley-Bennett derived the proofs in this appendix as part of the study reported in [128].

They are included in this thesis for completeness. The presentation is adapted for the purpose.

The controlled dynamics operator equation for a single mode with one control operator is

Ṡ(t) = (A+ u(t)B)S(t), S(0) = I2, (C.1)

where the control function u(t) is a real valued function defined for all positive times t and A,B ∈

sp2,R.

These operators specify a basis of sp2,R:

Kx =
1

2

0 1

1 0

 , Ky =
1

2

−1 0

0 1

 , Kz =
1

2

0 −1

1 0

 , (C.2)

with these commutation relations

[Kx, Ky] = −Kz, [Ky, Kz] = Kx, [Kz, Kx] = Ky. (C.3)

In this basis the controlled dynamics equation for hyperbolic systems is:

Ṡ(t) = (−Kx + bKz + u(t)Ky)S(t), S(0) = I2, (C.4)
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where constant b ∈ R, |b| < 1. The reachable set of Eq. (C.4) is denoted by R̃.

The following is a restatement of Lemma A.2 (proof in Appendix A) in the singular value

decomposition coordinates, using the transformation derived in Appendix B.2.

Corollary C.1. If X ∈ R̃ then the function

g(X) := cos[2θ] cos[2φ]− λ(z, φ) sin[2θ] , (C.5)

where

λ(z, φ) :=
1

2

(
z2 +

1

z2

)
sin[2φ]− 1

2

(
z2 − 1

z2

)
, (C.6)

satisfies

g(X) ≥ 1, (C.7)

ġ(X) ≥ 0, (C.8)

ġ(X = I) ≥ 1. (C.9)

for any choice of u(t) in Eq. (C.4).

To gain some analytical insight into unstable systems we use Corollary C.1 to provide some

bounds on R̃.

Lemma C.1. The existence of solutions for g(X) > d, where d ≥ 1, implies that

z >

√
d+ 1

2
. (C.10)

Proof First we prove that g(X) > 1 implies that sin[2θ] ≥ 0. Define

δ := λ(z, φ)− sin[2φ], (C.11)

which allows one to rewrite g(X) as

g(X) ≡ cos[2(θ − φ)]− δ sin[2θ]. (C.12)
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If sin[2θ] < 0 then g(X) > 1 only has solutions if δ > 0. This is only true if λ(z, φ) > sin[2φ].

Hence
1

2

(
z2 +

1

z2

)
sin[2φ]− 1

2

(
z2 − 1

z2

)
> sin[2φ], (C.13)

equally (
z2 +

1

z2
− 2

)
sin[2φ] > z2 − 1

z2
. (C.14)

z2 + 1/z2 − 2 is positive for all values of z and sin[2φ] ≤ 1. Therefore this has only solutions if

z2 +
1

z2
− 2 > z2 − 1

z2
, (C.15)

implying z < 1 which we have ruled out by convention. Proving that sin[2θ] ≥ 0.

Now we look for existence of solutions to the inequality g(X) > d. Because sin[2θ] ≥ 0 these

exist if and only if there exist solutions to

δ < −(d− 1). (C.16)

This translates to

1

2

(
z2 +

1

z2

)
sin[2φ]− 1

2

(
z2 − 1

z2

)
< sin[2φ]− (d− 1), (C.17)

equally

(z2 +
1

z2
− 2) sin[2φ] < z2 − 1

z2
− (d− 1). (C.18)

z2 + 1
z2 − 2 is positive for all values of z and sin[2φ] ≤ 1. Therefore this has solutions if and only

if

z2 +
1

z2
− 2 < z2 − 1

z2
− (d− 1), (C.19)

which only has solutions for

z2 >
d+ 1

2
, (C.20)

proving the statement.

Lemma C.1 links lower bounds on g(X) to lower bounds on z which will be used to further
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understand the boundary of the reachable set when considered in (z, θ, φ) space.

Lemma C.2. There does not exist X ∈ R̃ such that

X = SRθS
−1, (C.21)

where S ∈ Sp2,R, Rθ ∈ SO(2).

Proof Assume there exists X ∈ R̃ that satisfies the above condition. We know that

Xm ∈ R̃ ∀m ∈ N (C.22)

because the reachable set of Eq. (C.4) has a semigroup structure. Note that

‖Xm − I‖ = ‖S(Rm
θ − I)S−1‖

≤ ‖S‖‖S−1‖‖Rm
θ − I‖,

(C.23)

where we use the Euclidean norm

‖X‖ :=
√

Tr[XTX]. (C.24)

S is time-independent and so ||S||||S−1|| is constant. Rθ is quasi-periodic and so there must exist

some m such that

‖Rm
θ − I‖ < ε, ∀ε > 0 (C.25)

and so there exists m such that

‖Xm − I‖ < ε, ∀ε > 0. (C.26)

From Eq. (3.36) we know that the value of g(X) must be non-decreasing along any trajectory of

the system and from Eq. (3.37) we know that its rate of change at identity is 1. As a result, for

some finite evolution time of Eq. (C.4) all subsequent trajectories must contain elements that have

a lower bound on their value of g(X) that is greater than 1. By Lemma C.1 this implies a lower
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bound on the value z along a given trajectory of the control system given some minimal evolution

time. Xm is a possible trajectory of the system for all m and we can find m such that the z value of

Xm is arbitrarily close to 1 violating the lower bound. Therefore such an X cannot be an element

of R̃.

Theorem C.1. If Eq. (C.1) is restricted to hyperbolic dynamical generators then its reachable set

does not contain any elements of SO(2) except for I.

Proof The reachable set R of Eq. (C.1) is symplectically similar to R̃. Lemma C.2 states that R̃

does not contain any element that is symplectically similar to an element of SO(2) \ I. Thus R

does not contain any element of SO(2) \ I.
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Appendix D

Bound of the local estimator fidelity

This derivation of this local estimator to the fidelity, and the proof that it bounds the gate fidelity,

based on methods from [169], was completed by Benjamin Dive and is presented in [145] and in

more detail in [172]. It is included here for completeness, with notation adapted for this thesis.

The local estimator to the gate fidelity FLE is a lower bound on the true gate fidelity, as will

be shown below. Firstly the gate fidelity in terms of Choi states given in Eq. (4.2) is defined again

here for a CPT map M and unitary operator for comparison U , which in this context is the target

operation.

F(M,U) = 〈ψ|ρM |ψ〉 , (D.1)

where |ψ〉 = (U ⊗ I)|Φ〉 and ρM is the Choi state of M , and |Φ〉 is maximally entangled state

between the original Hilbert space and a copy of it. These are more explicitly defined in Subsec-

tion 4.1.1.

The local estimator is only applicable to target unitaries with a tensor product structure such

that U =
⊗

i Ui. The Choi state of U inherits the tensor product structure, that is |ψ〉 =
⊗

i |ψi〉.

The first step in finding a bound for the gate fidelity is to define the projectors hi = Ii − |ψi〉〈ψi|

for each Ui. These projectors have a very simple spectrum with a single 0 eigenvalue with corre-

sponding eigenket |ψi〉, and a degenerate orthogonal space with eigenvalue 1. These projectors are

summed together to form a Hamiltonian H =
∑

i hi ⊗ Iī such that each hi acts on its own part of

the Hilbert space and is identity on the rest (the bar over the i indicates all subsystems except i).

This has a single E0 = 0 eigenvalue with eigenstate |E0〉 = |ψ〉, while all its other eigenvalues are
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positive integers. Expanding this Hamiltonian in its eigenbasis {Ek, |Ek〉} gives

TrHρ =
∑
k≥0

Ek〈Ek|ρ|Ek〉

≥
∑
k>0

〈Ek|ρ|Ek〉 ,
(D.2)

as E0 = 0 and all the other energies are one or greater. Using this and properties of the density

operator provides the identity

Tr ρ =
∑
k≥0

〈Ek|ρ|Ek〉 = 1 , (D.3)

which allows the inequality of Eq. (D.2) to be expressed as

TrHρ ≥ 1− 〈E0|ρ|E0〉

≥ 1− 〈ψ|ρ|ψ〉 .
(D.4)

Using the definition of the gate fidelity from Eq. (D.1) with ρ taken as the Choi state of M gives a

bound

F (M,U) ≥ 1− TrHρ . (D.5)

The expectation value of the Hamiltonian acting on the Choi state, based on the definition of

the Choi state, can be evaluated as follows

TrHρ =
∑
i

Tr (Ii − |ψi〉〈ψi|)⊗ Iī ρ (D.6)

=
∑
i

Tri[(Ii − |ψi〉〈ψi|)ρi] (D.7)

=
∑
i

(1− 〈ψi|ρi|ψi〉) , (D.8)

where ρi = Tr̄i[ρ] is the Choi state of the map

Mi( · ) ≡M( ·
⊗
j 6=i

1
dj
Ij), (D.9)

which is the mapM acting on subsystem iwith the other subsystems in the maximally mixed state.
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This results in

F (M,U) ≥ 1−
∑
i

(1− F (Mi, Ui)) , (D.10)

which describes the bound on the gate fidelity, the right hand side being called the local estimator

FLE.
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Appendix E

Derivation of pure dephasing

This derivation is included here because it goes slightly beyond the one in [22] in terms of its

application. It is also based on the model from one of the landmark HEOM papers [176]. It was

completed by Neill Lambert. The notation has been adapted for this thesis.

E.1 Pure dephasing – exact

Starting from the expression for the propagator of the reduced density matrix

ρ(t) = U(t)ρ(0) , (E.1)

which in this case, adapted from Eq.(2.7) of [176],

U(t) = exp

[
− 1

~2

∫ t

0

ds

∫ s

0

dyσ×z

{
S(s− y)σ×z − i

~
2
χ(s− y)σoz

}]
, (E.2)

is in the interaction picture. Here there is a single batch and the system operator which couples

to the bath σz is not time dependent. The hyperoperator notation Ø× indicates the commutator,

e.g. Ø×ρ ≡ [O, ρ]. Similarly Øo indicates the anticommutator.

Because the system operators in the above are time independent in the interaction picture, there
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is no time ordering difficulty, and the integral can be evaluated directly. Using

S(t) =
~
π

∫ ∞
0

dωJ(ω) coth
β~ω

2
cosωt,

χ(t) =
2

π

∫ ∞
0

dωJ(ω) sinωt .

(E.3)

Inserting these in Eq. (E.1), both time integrals can be evaluated, leaving

U(t) = exp

[
− 1

~2

∫ ∞
0

dωσ×z

{
~
π
J(ω) coth

β~ω
2

(
1− cos(ωt)

ω2

)
σ×z − i

~
π
J(ω)

(
sin(ωt)− ωt

ω2

)
σoz

}]
(E.4)

As σ×z σ
o
z = 0 and

σ×z σ
×
z = 2(I− σz · σz)

= 4(|e〉〈e| · |g〉〈g|+ |g〉〈g| · |e〉〈e|)
(E.5)

This gives us the time-dependence of an off-diagonal matrix element as

〈e|ρ(t)|g〉 = exp

[
− 1

π~

∫ ∞
0

dω

{
4J(ω) coth

β~ω
2

(
1− cos(ωt)

ω2

)}]
〈e|ρ(0)|g〉 . (E.6)

Note that the 1/π factor may be included within the spectral density parameters in some cases.
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Thierry Lahaye, and Antoine Browaeys. “Tunable two-dimensional arrays of single Ryd-
berg atoms for realizing quantum Ising models”. In: Nature 534.7609 (June 2016), pp. 667–
670. DOI: 10.1038/nature18274.

[47] Peter Williston Shor. “Algorithms for quantum computation: discrete logarithms and fac-
toring”. In: Proc. 35th Symp. on Foundations of Computer Science (Santa Fe, NM, 20-22
November) ed S Goldwasser. Los Alamitos, CA: IEEE Computer Society Press, 1994,
pp. 124–34.

[48] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer”. In: SIAM Journal on Computing 26.5 (Oct. 1997),
pp. 1484–1509. DOI: 10.1137/S0097539795293172.

[49] David P. DiVincenzo. “Two-bit gates are universal for quantum computation”. In: Physical
Review A 51.2 (Feb. 1995), pp. 1015–1022. DOI: 10.1103/PhysRevA.51.1015.
arXiv: 9407022 [cond-mat].

[50] L M Vandersypen, Matthias Steffen, Gregory Breyta, C S Yannoni, M H Sherwood, and I
L Chuang. “Experimental realization of Shor’s quantum factoring algorithm using nuclear
magnetic resonance.” In: Nature 414 (2001), pp. 883–7. DOI: 10.1038/414883a.

[51] Aram W. Harrow and Ashley Montanaro. “Quantum computational supremacy”. In: Nature
549.7671 (Sept. 2017), pp. 203–209. DOI: 10.1038/nature23458.

[52] C Neill et al. “A blueprint for demonstrating quantum supremacy with superconducting
qubits.” In: Science (New York, N.Y.) 360.6385 (Apr. 2018), pp. 195–199. DOI: 10.1126/
science.aao4309.

[53] A. P. Lund, Michael J. Bremner, and T. C. Ralph. “Quantum sampling problems, Boson-
Sampling and quantum supremacy”. In: npj Quantum Information 3.1 (Dec. 2017), p. 15.
DOI: 10.1038/s41534-017-0018-2.

215

https://doi.org/10.1186/epjqt10
http://arxiv.org/abs/1405.2831
https://doi.org/10.1126/science.1208001
http://arxiv.org/abs/1109.1512
http://arxiv.org/abs/1109.1512
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nature10981
https://doi.org/10.1126/science.aad9958
https://doi.org/10.1038/nature18274
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1103/PhysRevA.51.1015
http://arxiv.org/abs/9407022
https://doi.org/10.1038/414883a
https://doi.org/10.1038/nature23458
https://doi.org/10.1126/science.aao4309
https://doi.org/10.1126/science.aao4309
https://doi.org/10.1038/s41534-017-0018-2


BIBLIOGRAPHY

[54] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang
Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. “Characterizing quan-
tum supremacy in near-term devices”. In: Nature Physics 14.6 (June 2018), pp. 1–6. DOI:
10.1038/s41567-018-0124-x. arXiv: 1608.00263.

[55] Emanuel Knill. “Q & A Quantum computing”. In: Nature Physics 463.January (2010).

[56] M. Veldhorst et al. “A two-qubit logic gate in silicon”. In: Nature 526.7573 (Oct. 2015),
pp. 410–414. DOI: 10.1038/nature15263.

[57] S. Schaal, S. Barraud, J. J. L. Morton, and M. F. Gonzalez-Zalba. “Conditional Dispersive
Readout of a CMOS Single-Electron Memory Cell”. In: Physical Review Applied 9.5 (May
2018), p. 054016. DOI: 10.1103/PhysRevApplied.9.054016.
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