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There is no self-awareness in ecosystems, no language, no 
consciousness, and no culture; and therefore no justice and 

democracy; but also no greed or dishonesty. 

 ̶ Fritjof Capra, The web of life 

 

These, then, are some of the basic principles of ecology –
interdependence, recycling, partnership, flexibility, diversity, and, as 

a consequence of all those, sustainability. [...] the survival of 
humanity will depend on our ecological literacy, on our ability to 

understand these principles of ecology and live accordingly. 
̶ Fritjof Capra, The web of life 
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Abstract 

In disease ecology, the relationship between biodiversity and pathogen transmission is still 
under investigation. In particular, the dilution effect, namely that higher biodiversity 
decreases disease transmission, is currently the most debated eco-epidemiological theory 
in the context of multi-host pathogen systems. Mechanisms of dilution include transmission 
and encounter reduction, and susceptible host regulation. 
This study integrated empirical data and mathematical modelling to investigate the 
transmission of parasites and pathogens in Welsh wild rodent communities, as rodents are 
considered an ideal system to study multi-host parasite/pathogen transmission in the eco-
epidemiological context. Rodents were live-trapped and faecal samples and ecto-parasites 
were screened for parasites and pathogens. Field data were used, where relevant, to 
parameterise models of infection that investigated the effects of parameter variation and 
community composition on pathogens with different transmission modes. The final aims 
were to provide additional knowledge on Welsh rodent communities, to identify rodent-
borne parasites/pathogens circulating in the sampling area, and to improve understanding 
of local transmission dynamics, testing the dilution effect through eco-epidemiological 
modelling.  
The main results from the parasite and pathogen screening were: a. the observation of host 
heterogeneity in ecto-parasite and macroparasite prevalence and burden, with different 
host species contributing in different ways to the transmission pool; b. the isolation of 
Anaplasma phagocytophilum and Babesia microti in ixodid ticks; c. Bartonella spp. were 
isolated in fleas, B. rochalimae, notably, for the first time in the UK. 
The directly transmitted pathogen model outputs confirmed that reduced (or “diluted”) 
infection prevalence might not represent a true dilution effect to some hosts, since 
prevalence could decrease simultaneously with the increase of infectious individuals. The 
model was effective in recognising susceptible host regulation via inter-specific 
competition and predation as the most important dilution mechanism.  
Modelling the two similar but different host-tick-pathogen systems showed that the 
parameters affecting the juvenile stages of the ticks were the ones most affecting pathogen 
transmission: crucial information to develop targeted control strategies. In the system with 
the more generalist vector, Ixodes ricinus, dilution effect was more significant and more 
dilution mechanisms were observed. The key parameters regulating transmission were also 
different between the two systems, but the dilution was observed only with regards to 
infectious hosts, as more complex communities led to amplification of infectious nymphs, 
representing amplified human disease risk.  
With regards to the flea-borne Bartonella, force of infection and proportion of hosts 
transmitting vertically were the parameters most affecting transmission and degree of the 
dilution, which occurred through the mechanism of regulation of susceptible hosts, 
providing evidence that community composition was crucial to the dynamics of pathogen 
transmission. The average flea burden of infested hosts was another important parameter, 
which was estimated from empirical data, demonstrating the importance of field data 
collection. Finally, in each system, the parameters most affecting pathogen transmission, 
were also the most uncertain.  
This study supported the idea that the dilution effect is not a universal principle, but it can 
be observed under certain conditions considering the appropriate epidemiological metric. 
Nonetheless, in the context of pathogen emergence risk factors were identified, especially 
alteration of biological communities caused by human disturbance. Hence, it may be more 
sensible to investigate local pathogen dynamics, gather data, and develop specific control 
measures instead of trying to find a one-fits-all disease-diversity relationship. In conclusion, 
the eco-epidemiological approach, overcoming boundaries between disciplines, is crucial to 
investigate and control wildlife pathogens, to conserve biodiversity, and reduce human 
disease risk. 
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Chapter 1 

 

General introduction 

 

1.1 The ecosystemic approach in disease ecology 

 

Disease ecology – the “ecological study of host-pathogen interactions within the 

context of their environment and evolution” (Kilpatrick and Altizer, 2010) – is 

gaining increasing attention due to the current context of rapid biodiversity 

decline and environmental change, which have been hypothesised to play a 

crucial role in the increasing of emerging/re-emerging diseases. Before the 

Nineties, this discipline mainly focused on the population scale impact of 

parasites and epidemics (e.g. Rinderpest in Africa), but, in the last few decades, 

investigations targeted within-host processes (due to advances in areas such as 

immunology) and community and ecosystem scale processes (Tompkins et al., 

2011).  

Disease ecology, in a conservation perspective, is essential because parasites 

and pathogens can shape species communities (Roche and Guégan, 2011), and 

host-pathogen relationship affects co-evolution, altering species persistence 

(Decaestecker et al., 2013). Antagonistic co-evolution might boost host genetic 

diversity, at the host community level and within host-species, increasing 

survival through the accumulation of resistance alleles (Decaestecker et al., 

2013). Therefore, in order to undertake effective conservation strategies, it is 

vital to preserve also evolutionary processes at the host-pathogen interface. 

Understanding existing and emerging pathogen dynamics may be crucial to 

balance the risks diseases pose to endangered species and the evolutionary 

processes that are necessary to maintain viable wildlife populations, especially 



2 

 

now that human pressures are affecting changes in pathogen biology (Altizer et 

al., 2003).  

According to De Castro and Bolker (2005) and Smith et al. (2009a) disease 

mediated extinctions have been underestimated: pathogens are not only 

directly responsible for extinctions but they are likely to affect population 

fitness negatively, and to cause more severe outcomes in small, isolated and less 

genetically variable populations (Pedersen et al., 2007; Smith et al., 2009a). 

Furthermore, many disease agents are not subject to population density 

thresholds and they can survive in very small host populations (Lloyd-Smith et 

al., 2005), or they can persist in a reservoir host, causing a major impact in 

other, more susceptible hosts (Smith et al., 2009a). The drivers of these 

phenomena appear to be: - habitat loss and alterations that restrict species 

movement, increase individual contact rates and so the chance of a disease 

spreading, deplete food resources and decrease genetic variability; - climate 

change that affects, directly or indirectly, pathogen survival, transmission, host 

susceptibility, and hosts’ and vectors’ abundance and distribution (Harvell et al., 

2002); - increase in domestic-wildlife species contact that enhances the 

transmission of domestic animals diseases to wildlife; - increase of invasive 

species that introduce new pathogens in native species (Smith et al., 2009a).  

Regarding human zoonotic risk, the ecosystemic approach in disease ecology 

has revealed that environmental modifications and wildlife communities’ 

alteration induced by anthropogenic disturbance might determine an 

intensification of the emergence of zoonoses (Pongsiri et al., 2009). For 

example, overfishing of mollusc-eating fish in Lake Malawi has resulted in a 

greater number of Bulinus sp. gastropods (intermediate host) and the 

subsequent spread of schistosomiasis (Stauffer et al., 2006). Nevertheless, the 

causal mechanisms are not fully understood and the complexity of the human-

natural systems in which hosts, pathogens, and vectors interact makes it 

extremely difficult to assess general patterns of disease emergence or epidemics 

(Wilcox and Gubler, 2005).  
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In the mentioned example, biodiversity is considered to provide, as an 

“ecosystem service”, protection from disease transmission. Ecosystems have 

been recognised to absorb and recycle nutrients, produce biomass, food, water, 

and to realise many other functions that are assumed to be useful for humans, 

and are so called “ecosystem services” (Millennium Ecosystem Assessment 

Program, 2005). Human pressures, such as habitat fragmentation, alteration, 

and loss, reduce biodiversity directly and indirectly (Fahrig, 2003), and this in 

turn “reduces the efficiency by which ecological communities capture 

biologically essential resources, produce biomass, decompose and recycle 

biologically essential nutrients” (Cardinale et al., 2012). Biodiversity amplifies 

the stability of ecosystem functions, even if the impact of it on each ecosystem 

process is nonlinear, and it seems to be influenced by the loss of key species, 

which exhibit specific functional traits with major effects on ecosystems (Chapin 

et al., 2000; Tilman, 2000). However, some researchers have highlighted the 

potential for ecosystems to create “disservices” (e.g. von Doehren and Haase, 

2015), and in particular the likelihood of increasing the emergence of new 

zoonotic diseases (Dunn et al., 2010; Jones et al., 2008a). If this is true then 

conservation efforts may be threatened by concerns about disease emergence 

(Ostfeld and Keesing, 2017). 

In order to analyse the connection between biodiversity and human zoonotic 

disease emergence, Ostfeld and Keesing (2017) evaluated evidence of the three 

assumptions in the suggested causal chain linking high vertebrate diversity with 

the probability of emergence of infectious diseases. The three assumptions are:  

1. The more species of vertebrates there are in a specific location, the more 

total vertebrate-borne pathogen species are present there. To satisfy this 

assumption, each vertebrate species has to harbour at least some unique 

pathogens; otherwise, if most pathogens are shared among hosts, the 

total number of host species is less important.  

2. The more pathogen species occur in a specific area, the higher the 

percentage of potentially zoonotic species. For this assumption to be 

true, zoonotic pathogens have to be almost equally distributed across all 
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vertebrate pathogens. In fact, if zoonotic pathogens are predominant in a 

restricted range of host taxa, then the total number of host species 

becomes less important.  

3. The more potentially zoonotic pathogens are present in an area, the 

more human disease can be expected.  

Regarding the first statement, the relationship between pathogens and hosts 

has been found to be not linear, and, in most cases, the increase of host species 

did not lead to an increase in species richness of pathogens (e.g. Dobson et al., 

2008). Nonetheless, the relationship between vertebrates and viruses and 

bacteria diversity, which are the dominant groups of emerging infectious 

zoonoses, is generally unknown (Jones et al., 2008a). Ultimately, other sources 

of non-linearity in the relationship can be host sharing and differences in 

species–area accumulation curves of hosts and pathogens. 

In the second case, no formal examination of the correlation between total 

vertebrates pathogen richness and zoonotic (potential or actual) pathogens has 

been performed, but it is recognised that some host taxa are much more likely 

to harbour zoonotic pathogens (Han et al., 2015). According to Han et al. (2016), 

rodents, and secondarily carnivores, are the taxa more frequently involved in 

zoonotic transmission, and the ones with higher zoonotic reservoir potential. In 

particular, they identify 244 species of rodents hosting 85 unique zoonotic 

pathogens. Also, communities usually consist of few highly abundant species 

and an increasing number of more rare species (Magurran, 2004), so, when 

moving from less to more diverse vertebrate communities, it is possible to 

notice an accumulation of rare species. Therefore, if rare species were involved 

in zoonotic transmission, then the second assumption would be supported; 

however, the above mentioned study suggests that the more abundant and 

ubiquitous vertebrate species, e.g. rodents, are more often responsible for 

zoonoses and more suitable to act as reservoir hosts for zoonotic pathogens 

(see section 1.2.1). Beyond doubt, in order to understand the link between 

vertebrate and zoonotic pathogen diversity, it is also important to understand 
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community composition/structure and the relative abundance of species along 

different gradients of diversity (Ostfeld and Keesing, 2017). 

Dunn et al. (2010) examined one aspect related to the third assumption; 

focusing on some zoonotic diseases they investigated whether the status 

(endemic, sporadic, or non-endemic) of the diseases was correlated, in each 

country, with the total species richness of human pathogens (bacteria, viruses, 

helminths, and protists). The results were that pathogen richness was positively 

correlated to endemicity; however, per capita spending on health care was the 

strongest negative predictor, while minimum actual evapotranspiration the 

strongest positive predictor, of endemicity of the chosen diseases. In fact, 

studies suggest that interaction between pathogens can lower disease severity 

through mutual interference, and that pathogen diversity is not adequate as a 

metric of epidemiological impact, which should be measured using prevalence 

of infection (Johnson et al., 2015a). Finally, Han et al. (2016) did not find any 

correlation between zoonotic host diversity and zoonotic pathogen diversity, 

and discovered that despite higher zoonotic host diversity at lower latitudes, 

the diversity of zoonotic pathogens was rather evenly distributed across 

latitudes. 

Considering the above, it is difficult to draw a definitive conclusion due to the 

complexity of host-parasite interaction and community composition, but an 

area of agreement between scientists is that human disturbance is progressively 

increasing both risk of transmission and/or human exposure to actual or 

potential zoonotic pathogens. For example, pathogen spillover from wildlife to 

humans is occurring more often in disturbed habitats and in cases of increased 

exposure through specific human activities, such as hunting, laboratory work, 

veterinary practice, etc. (Johnson et al., 2015b). Nevertheless, a spillover event 

(i.e. when a pathogen jumps from one species to another) is just the first step 

needed for a disease to “emerge”. And evidence has been found to corroborate 

the hypothesis that high biodiversity inhibits the other steps required for 

disease emergence (establishment, spread, and impact on hosts) (Keesing et al., 

2010; Ostfeld and Keesing, 2012; Johnson et al. 2015b). 
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The ecosystemic approach, and the application of principles of community 

ecology, is therefore essential in understanding wildlife disease ecology, since 

infectious diseases are often the result of multi-species interactions (Johnson et 

al., 2015b). Research in disease ecology typically involves one of the following 

levels: a. within- host, concerning the interactions between host immune system 

and parasites; b. between-host, focusing on parasite spread in host populations; 

c. regional/biogeographical scales, using methods from macro-ecology.  

The processes at those levels and in between the levels are hard to interpret 

only from observational data so methodologies such as field experiments and 

eco-epidemiological modelling are increasingly used to shed light on the nexus 

between biodiversity and disease transmission.  

In conclusion, “the degree to which biodiversity will regulate infection by a 

particular parasite depends on: the degree to which host assembly is 

deterministic; whether the parasite is niche or dispersal limited; how the 

increase in richness affect host and vector abundance” (Johnson et al., 2015b). 
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1.2  Dilution effect: definitions, mechanisms, 

examples, and critique 

 

In the previous section it was emphasised how crucial it is to consider the whole 

community when investigating wildlife disease transmission, especially when 

interested in making predictions for wildlife conservation or human zoonotic 

risk. In this section, dilution effect (one of the most prominent theory in disease 

ecology) will be discussed, and examples from previous studies will be provided 

to describe it. 

Several studies in wildlife disease ecology, especially regarding vector-borne 

diseases, supported the hypothesis that higher biodiversity may reduce disease 

prevalence in the most competent host, reducing disease transmission and 

disease risk to humans (Keesing et al., 2010) through what has been called the 

dilution effect (Ostfeld and Keesing, 2000). That is, an increase in host diversity, 

altering the proportion of the most competent host population, results in lower 

disease prevalence (Schmidt and Ostfeld, 2001). This phenomenon has been 

theorised to be an ecosystem service, negatively affected by biodiversity loss 

(Keesing et al., 2010).  

Ostfeld and Keesing (2000) are among the first to focus explicitly on the dilution 

effect, coining the term, in the context of Lyme disease in USA. They presented a 

conceptual model of how Lyme disease (caused by the spirochaete Borrelia 

burgdorferi through the bite of an ixodid tick) risk for humans is reduced in 

regions with higher host species richness and evenness. In North America, 

where the most competent reservoir host of B. burgdorferi is the white-footed 

mouse (Peromyscus leucopus), Ostfeld and Keesing (2000) showed that the 

prevalence of infection in ticks was lower in areas where the density and/or the 

proportion of the most competent host were altered by the presence of other, 

less competent, host species. Non-competent Lyme disease host-species, 

providing alternative blood meals for ixodid ticks, “dilute the power of the 

white-footed mouse to infect ticks by causing more ticks to feed on inefficient 
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disease reservoirs” (Ostfeld and Keesing, 2000). Nevertheless, in this case study, 

the species richness of ground-dwelling birds, competent hosts for the 

spirochaete and the tick, was positively correlated with per capita Lyme disease 

cases, proving that prevalence of vectors might increase with increasing host-

diversity when they acquire disease agents effectively from many hosts. The 

concept of the dilution effect was explored further and modelled 

mathematically by Schmidt and Ostfeld (2001), using the same Lyme disease 

system. Using an empirically based model, they inferred the role of additional 

non-competent host-species in order to quantify the diluting effect. They used 

simulations to assemble host communities, which had different species 

richness, species evenness, and net interactions between alternative hosts and 

mice. They found that increasing species richness - but not evenness - reduced 

disease risk, and the greater the abundance of less competent reservoir species, 

the stronger the dilution effect. The assumed conditions to be met for the 

dilution to occur were: -the presence of a generalist vector; - variable reservoir 

competence among hosts; - absence (or low degree) of vertical transmission in 

vectors; - the species most likely to persist when diversity declines support a 

greater abundance of pathogen and/or vector (conversely, those in more 

diverse environments tend to be less competent hosts); - the species most likely 

to occur when diversity increases diminish contact rates between most 

competent hosts and pathogens or their abundance (Ostfeld and Keesing, 2012; 

Schmidt and Ostfeld, 2001). Ostfeld and Keesing (2012) demonstrated that 

there are different levels of competence among hosts in the majority of host-

pathogen interactions, and there is evidence that the last two conditions are 

also frequently met (Johnson and Thieltges, 2010; Ostfeld and Keesing, 2000; 

Pongsiri et al., 2009), but their generality has not been fully established yet.  

In plants, amphibians and rodents, it has been shown that communities might 

have nested patterns of species composition along diversity gradients (i.e. some 

species tend to be more abundant and ubiquitous, while the rarer species are 

progressively lost when diversity decreases), and there might also be a positive 

correlation between resilience and host competence (Cronin et al., 2010; 

Johnson et al., 2012b; Previtali et al., 2012; see section 1.2.1). On the other hand, 
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the dilution effect is expected not to occur in the case of highly specialized 

pathogens or vectors, and to be nullified where a single host does not allow the 

pathogen to be maintained and transmitted (Ostfeld and Keesing, 2012). 

The potential mechanisms underlying dilution are shown in Box 1.1. 

 

Box 1.1. The dilution effect mechanisms theorised in the influential paper by 
Keesing et al. (2006). 

a. Reduction in space use (e.g. sympatric species), and consequent encounter 

reduction between susceptible and infected individuals. 

b. Reduction of the probability of transmission because of species sharing the 

same vector but unable, or less competent, to infect it. 

c. Reduction of the number of susceptible hosts (e.g. by predation). 

d. Increasing of the recovery rate of infected individuals. 

e. Increasing of the mortality rate of infected individuals.  

Additional mechanisms are not excluded, and, in sum, the dilution effect is 

intended as the net effect of species diversity reducing disease risk by any of a 

variety of mechanisms (Keesing et al., 2006).  

 

Lyme disease is not the only example in support of this theory. Ezenwa et al. 

(2006) found that non-passerine species richness was negatively correlated 

with both mosquito and human West Nile Virus (WNV) infection rates, although 

there was no significant relationship between passerine species richness and 

measures of infection risk. These results, in alignment with the dilution effect 

hypothesis, suggest that non-passerine diversity might decrease WNV growth in 

mosquitoes, minimizing human disease risk. Furthermore, in the context of 

WNV, it has been found that northern cardinals and other birds of the family 

Mimidae act as infection “supersuppressors” attracting mosquitoes at the 

critical time of the year providing protection against human spillover and 

further evidence of dilution (Levine et al., 2016). 

Kedem et al. (2014), in a natural gradient of rodent-species richness, examined 

the possible mechanisms mediating the relationship between host-species 
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richness and microbial prevalence, along with microbe specificity. They 

identified two dominant flea-borne bacterial lineages (host-specific bacteria, 

and host-opportunistic bacteria), and observed that host-species richness 

affected prevalence of these bacteria directly and indirectly. The host-specific 

bacteria were less abundant in richer host communities, probably because of 

the increased frequency and density of the less suitable host-species. Regarding 

the opportunistic lineage, host-species richness had direct and indirect effects, 

largely mediated by modifications of flea densities and by the presence of the 

other bacterial lineage. The results provided evidence that host-species richness 

is associated with multiple elements of community structure, including density 

and proportion of the different host-species, total host densities, vector 

densities, and microbial co-infection rates. Also, they supported the mechanisms 

described in Keesing et al. (2006), transmission reduction, encounter reduction, 

susceptible host regulation, infected-host mortality, vector regulation, and co-

infection, confirming that these are not mutually exclusive.  

In another study about rodent-borne diseases, experimental large mammal 

defaunation was carried out in a savannah ecosystem in East Africa to test how 

this would have affected rodent populations, and infection prevalence of 

Bartonella spp. in rodents (host-species) and fleas (vector species) (Young et al., 

2014). Results described no increase in infection prevalence in rodents or 

vectors, but bacterial abundance doubled, doubling also the density of infected 

hosts and fleas; these findings reinforce the ideas that large wildlife defaunation 

increases landscape-level disease transmission through the decrease of 

susceptible host regulation, and that there is an host/vector density response in 

biodiversity-disease relationships. In fact, investigations on the effects of an 

introduced species on native host-parasite interactions in a rodent community 

in Ireland showed that the flea-borne Bartonella spp. prevalence in the native 

wood mouse (Apodemus sylvaticus) populations declined significantly in 

response to the introduction of bank voles (Myodes glareolus), even if the 

infection was detected only in wood mice (Telfer et al., 2005). 
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Dilution has not been suggested only in vector-borne diseases; in the case of 

Hantavirus Pulmonary Syndrome (HPS) and other diseases directly transmitted 

by a broad range of Hantaviruses, small mammal diversity (primary reservoir 

hosts) was negatively associated with human disease risk in different locations 

(Clay et al., 2009a; Ruedas et al., 2004; Suzán et al., 2009; Yahnke et al., 2001).  

Venesky et al. (2014) showed a dilution effect with both laboratory and field 

data, and demonstrated that dilution and amplification are strongly related to 

definite host traits. They were among the first researchers linking manipulative 

experiments with the analysis of field data on species richness, host identity, 

spatial autocorrelation and disease prevalence, in order to ascertain causality 

and ecological relevance. They used an amphibian-Batrachochytrium 

dendrobatidis system, due to the global pathogenic importance of this fungus, to 

test the capacity of different amphibian species to filter fungal spores from the 

water column, and the consistency between laboratory results and field 

patterns of amphibian species richness, host identity and disease prevalence. 

Results demonstrated that spores declined as a function of tadpole diversity; in 

particular, dilution was enhanced by the presence of specific species, which 

were seen to be capable to filter, and consequently remove, a remarkable 

quantity of spores from the aquatic environment. These findings suggest that 

species identity is a key metric to evaluate pathogen dilution, and community 

composition influences the magnitude of the dilution effect.  

In order to investigate community composition in the context of dilution effect, 

Johnson et al. (2012a) performed wetland surveys of host community structure 

and linked them with mechanistic experiments on a multi-host parasite system. 

They discovered that snail host communities were strongly nested: the 

competent hosts for the selected parasite (the trematode Ribeiroia ondatrae) 

prevailed in low-richness assemblages, whereas unsuitable host species 

increased with the increase of assemblage diversity. Further, density of the 

most competent host was negatively associated with snail species richness.  

Orlofske et al. (2012) expanded the experiments above, including not only host-

species, but also other constituents of the community under investigation (e.g. 
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predators, sympatric species, etc.) to identify the various mechanisms altering 

parasite transmission. In brief, presence of either predators or alternative hosts 

remarkably reduced infection in the most competent host, suggesting the 

importance of evaluating the complex dynamics of the entire community when 

estimating the effects of diversity on pathogen prevalence.  

In Britain, an investigation on long term (1992-2000) data about amphibian 

mortality highlighted that frog mortality due to Ranavirus was associated with 

anthropogenic abiotic alteration of the habitat, in particular, disease prevalence 

was positively correlated with frog population density and negatively correlated 

with the presence of alternative hosts (North et al., 2015). 

Another element to take into account to understand these effects is the spatial 

scale, which can affect the results of different studies. A review on zoonotic risk 

of Lyme disease showed that opposite results have been obtained when 

considering different spatial scales (Wood and Lafferty, 2013). Considering a 

landscape scale (urban to suburban to rural), strong evidence for a positive link 

between forestation and/or biodiversity and Lyme disease risk was found, 

whereas the traditional, local, perspective might lead to opposite predictions 

(Wood and Lafferty, 2013). At the host scale dilution is supported considering 

that the ability of a pathogen to establish itself in a host population is negatively 

correlated with the number of genotypes in the population, and the infection 

disappears more quickly in a more genetically diverse population (Lively, 

2010). Similarly, a negative relationship between diversity and disease is 

observed in the context of microbiomes (Hanski, 2014); for instance, healthy 

corals have been found to sustain more diverse microbial communities than 

those affected by white plague disease (Sunagawa et al., 2009). 

To summarise, from these examples, it can be theorised that dilution is expected 

in a disease system when host species have different degree of competence in 

maintaining and transmitting the focal pathogen, and encounters between 

susceptible and infectious hosts (or vectors) are dominant in lower diversity 

communities. The second condition implies that most competent host species 

tend to persist as biodiversity is lost (nested community structure), and are 
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common across a wide range of community assemblages (Johnson et al., 2015a). 

The research has been further expanded including in the picture the diversity of 

the system beyond host species, namely including ecological relationships such 

as predation, competition and co-infection. These components of diversity may 

affect disease transmission in more complex ways; interactions with non-host 

species can influence host species abundance/distribution and community 

structure and so, indirectly, disease transmission and the potential dilution 

effect (Buhnerkempe et al., 2015). In conclusion, species that are more likely to 

be present in more diverse assemblages, in order to exhibit dilution power, 

need to reduce one or more of the following: abundance, susceptibility or 

tolerance of competent species; encounters between competent species and 

pathogen; encounters between competent species and vectors; overall 

competence of the host community; abundance of the pathogen; abundance of 

vectors (Johnson et al., 2015a). So, the research focus is shifted from species 

richness to species identity and to functional groups and community 

composition.  

Despite evidence suggesting that dilution conditions exist in a wide variety of 

ecological systems, and observations of dilution effect having been recorded for 

micro and macroparasites, in both aquatic and terrestrial systems, and in 

various types of host communities, researchers are still debating the question. 

In fact, support to the opposing theory, amplification effect – i.e. increased host 

diversity increases disease transmission – can also be found in the scientific 

literature.  

Randolph and Dobson (2012), in a very influential review paper, revised the 

dilution effect hypothesis, stating that this can be actually relevant to simple 

host-pathogen systems, but that it can rarely apply to complex systems, typical 

of many zoonoses and vector-borne diseases. The first pitfall found was that, 

generally, research in support of a dilution effect did not distinguish between 

functional diversity (e.g. species identity, specific host features), species 

richness, or species evenness. In addition, they reviewed the theoretical and 

empirical evidence in favour of the hypothesis and concluded that dilution is 
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rarely supported, even amongst vector-borne diseases, which are the most 

studied in the dilution framework, because most of the studies considered only 

the prevalence and not the abundance of infected vectors. Their final conclusion 

was that a dilution or amplification effect depends specifically on community 

composition rather than biodiversity per se. Cardinale et al. (2012) extensively 

reviewed literature about ecosystem services and concluded that there is still 

no strong support for the dilution effect; it is not clear how general the dilution 

effect is and what exactly it means, e.g. reduction of zoonotic risk, reduction of 

spillovers, reduction of pathogen establishment probability (Wolfe et al., 2007). 

The concept that higher biodiversity reduces infectious disease prevalence is 

also criticised by Salkeld et al. (2013), whose extensive meta-analysis suggests 

that the relationship between biodiversity and zoonotic disease risk is 

idiosyncratic. While a dilution effect would be appealing because of the positive 

implications in wildlife conservation and public health, their results show a 

highly heterogeneous relationship between host diversity and disease, mainly 

determined by specific local conditions and by the ecology of hosts, pathogens, 

and vectors. According to Salkeld et al. (2013), controlled field experiments 

with removal of specific hosts or vectors are necessary to understand, locally, 

disease ecology and the relationship between all the species in the system, and 

what are the influences on disease transmission (and biodiversity) of other 

factors such as rainfall, anthropogenic disturbance, human behaviour, latitude, 

etc. 

In addition, other studies involving mathematical modelling and/or collecting 

data from the field (also field experiments) did not get results in favour of the 

dilution hypothesis. A case of amplification has been provided in the system 

grouse-hare-deer-louping ill virus (transmitted by ticks) in Britain. The system 

with the three hosts, instead of one or two, enabled disease persistence and 

amplified prevalence, increasing abundance of the vector (Gilbert et al., 2001). 

Other studies found that higher host species diversity corresponded to a 

decreased prevalence but also to an increased infectious population, reinforcing 

the idea that empirical observations of dilution might be a misinterpretation of 

field data (Roche et al., 2012). States et al. (2014) compared Borrelia burgdorferi 
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infection prevalence in Ixodes scapularis nymphs, density of infected nymphs, 

and Borrelia burgdorferi genotype diversity at different sites and observed that 

nymphal infection prevalence was similar across sites where the most 

competent host dominated small mammal community and sites with higher 

species richness and evenness. Further, the density of Borrelia burgdorferi 

infected nymphs, in contrast with the dilution hypothesis, was higher in the 

more diverse sites. An amplification effect was also recognised by Thoma et al. 

(2014), who observed a positive effect of biodiversity on Puumala Virus (PUUV) 

prevalence in Central Europe, a finding that contrasts what has been 

documented for other Hantaviruses elsewhere (e.g. SNV, Choclo Virus, Laguna 

Negra Virus, and Bayou virus). It has been hypothesised that the particular 

composition of the small mammal community was responsible for this result. 

Central European small mammal communities are naturally less diverse than 

American ones, so American Hantaviruses might have several reservoir species 

and transmission might occur between species (Peixoto and Abramson, 2006), 

whereas it appears that only the bank vole is the reservoir species of PUUV 

(Thoma et al., 2014).  

In conclusion, although there is theoretical and experimental support for the 

dilution effect, the likelihood that biodiversity can provide protection from 

human zoonotic diseases it is still controversial (Wood et al., 2014), and it is the 

variability in community composition that significantly affects the intensity of 

pathogen transmission (Roche et al., 2012). Indeed, there are still open 

questions regarding the subject, and, as mentioned before, the current research 

focuses are: identifying diluting species traits and combining community 

ecology principles with disease ecology (Johnson et al., 2015b), and linking 

anthropogenic change with its effects on biodiversity and  disease emergence 

(Hosseini et al., 2017). Also, from the pathogens’ perspective, in order to assess 

the generality of dilution and predict disease emergence, it is important to 

understand the factors that determine host generalism, since identifying 

pathogens that are likely to have still unknown additional hosts can be a tool in 

evaluating transmission risk (Walker et al., 2017).  
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1.2.1 Reservoir competence and species resilience  

 

The reservoir host of an infectious disease is the source of infection and is able, 

alone, to sustain the pathogen in a population, while reservoir community refers 

to the minimum set of hosts who are necessary to sustain the pathogen in the 

population (Nishiura et al., 2009). The reservoir potential is considered to be a 

function of numerous epidemiological parameters: host susceptibility, host 

infectivity, and duration of infectiousness (Huang et al., 2013). This concept has 

been linked to numerous species life history traits such as life span, body size 

and reproductive rate and it has been hypothesised that species with faster life 

histories, investing less in immunological defence, are more competent 

reservoir hosts (Previtali et al., 2012). Species with faster life histories are 

predicted to invest more in innate immune responses, which include non-

specific defences against a wide variety of pathogens, while long-lived species 

are predicted to invest more in adaptive immune responses, highly pathogen-

specific (Previtali et al., 2012). These predictions have been tested in a rodent 

community inhabiting deciduous forests in north-eastern United States and the 

results were consistent with the pace-of-life immune-defence hypothesis 

(Previtali et al., 2012). Other evidence of this relationship has been provided by 

the positive relationship between natural antibody levels and incubation period 

in bird and mammal species, suggesting that longer developmental times are 

associated with an improved adaptive immune system (Lee et al., 2008). 

However, Huang et al. (2013) did not find any significant relationship between 

incubation/gestation period and reservoir competence. In fact, Huang et al. 

(2013) used several life-history traits (body mass, incubation/gestation time, 

and clutch/litter size), surrogates of other characteristics linked to immune 

response such as metabolic rate, to test the relationship between these and 

reservoir competence. Their results showed that life history traits could explain 

some interspecific variation in reservoir competence, and in particular, body 

mass was a strong predictor of the reservoir competence in Lyme disease. 

Further, fast-lived amphibian species were found to be more prone to be 
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infected by a trematode (Ribeiroia ondatrae), acting as amplifying hosts in the 

community (Johnson et al., 2012a). 

Based on these results, it is expected that species with a high reservoir 

competence are more likely to be those that are more widespread and more 

resilient. In fact, species with faster life histories usually have lower energetic 

requirements and higher reproductive rates, which increase their survival 

likelihood in disturbed, low diversity habitats (Cardillo, 2003). This is confirmed 

by the studies linking species traits and extinction risk. In general, species with 

slower life histories are less resilient; also, species that needs larger home 

ranges are subjected to a higher extirpation risk (Joseph et al., 2013).  Species at 

higher trophic levels are also more prone to local extirpations due to their 

demography and, in some cases, direct human impact (Duffy, 2003). Thus, 

assuming the nested nature of communities (Almeida-Neto et al., 2007; Wright 

et al., 1998), it appears that the species lost in the less diverse assemblages are 

also those less responsible for disease transmission, also determining a higher 

abundance of more competent species in low diversity systems due to release 

from competition or predation (Joseph et al., 2013). This might be one of the 

conditions that underlie the dilution effect together with what was stated in the 

previous sections.  

An example is provided by the amphibian survey in 345 wetlands performed by 

Johnson et al. (2013) in California (USA). The amphibian community 

composition of the wetlands changed in a non-random fashion, with the highly 

competent host species for the trematode Ribeiroia ondatrae dominating the 

less diverse specie assemblages, whereas more resistant host species were 

progressively more common in more diverse communities. Therefore, 

amphibian species richness strongly diluted parasite transmission, with a 

78.4% decline in realised transmission in more diverse assemblages. The study 

reveals a consistent link between species richness and community competence, 

emphasising the importance of the community-based approach in the 

investigation of infectious diseases. 



18 

 

Parasite evolution and in particular local adaptation of pathogens has also been 

suggested as a possible mechanism for dilution, since the selective pressure of 

losing hosts during community disassembly may lead the parasites to evolve 

and infect the most abundant or widespread hosts, boosting the negative 

relationship between extirpation risk and host competence (Ostfeld and 

Keesing, 2000). 
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1.3 Disease ecology in the current context of 

anthropogenic change 

 

In the context of disease ecology, there is general agreement that the variability 

of results obtained by different studies investigating the relationship between 

biodiversity and pathogen transmission/emergence is due to specific species 

traits, community disassembly/assembly rules, and epidemiological metrics 

considered. The majority of the studies focuses on how biodiversity affects 

disease dynamics and how this is related to human disease risk and spillover; 

however, this seems to be in tight connection to anthropogenic change, which 

appears to be a major cause of disease emergence (Hosseini et al., 2017). Not 

taking into consideration habitat disturbance may lead to biased conclusions, 

which do not account for functional diversity, and for the processes that convert 

hazards (pathogens) into risks (disease outbreaks) (Hosseini et al., 2017). For 

example, it has been suggested that human and wildlife emerging infectious 

diseases (EIDs), such as amphibian chytridiomycosis, Nipah virus disease, and 

West Nile Virus (WNV), are essentially caused by the new ecological conditions 

produced by human environmental disturbance, creating a vicious circle of 

negative impact on biodiversity (Daszak et al., 2001). Also, it has been 

hypothesised that biodiversity, being the natural reservoir for infectious 

diseases, may be considered the hazard (i.e. disease emergence), but it does not 

necessarily represent the risk since biodiversity hotspots are not often disease 

emergence hotspots, while emergence is more often related to human related 

factors (Hosseini et al., 2017; Jones et al., 2008). An example could be the Ebola 

virus, which circulates in wildlife and can be considered a hazard. However, the 

risk of an outbreak in the human population is related to various risk factors, 

mostly related to human activities (e.g. bushmeat consumption, forest 

fragmentation and access to deep forest areas, etc.) that affect the likelihood 

and the magnitude of the actual risk (Ezenwa et al., 2015).  
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Humans determine environmental changes at different levels, on a global scale, 

climate change affects host and vector distribution, influencing vector-borne 

diseases (e.g. increased temperatures at higher latitudes/elevations allow 

parasites and vectors to expand their range) (Mills et al., 2010), but also directly 

transmitted diseases, as in the case of Hantaviruses (Dearing and Dizney, 2010). 

Similarly, urbanization alters disease transmission routes, and may increase 

zoonotic risk, for example altering species behaviour. Urban and peri-urban 

resource availability facilitates contacts between humans and urban-adapted 

wildlife species, and between wildlife and domestic species, which can also be 

non-native species, boosting pathogen circulation and adaptation in new hosts 

(Bradley and Altizer, 2007). Moreover, human-modified landscapes may impact 

wildlife susceptibility to diseases through contaminants, pollutant, 

zooanthroponoses (Messenger et al., 2014), and stress increase (Brearley et al., 

2013).  The links between habitat modifications (e.g. matrix hostility, loss of 

connectivity), physiological stress and disease susceptibility are not completely 

clear yet, but it has been established that elevated stress levels decrease 

immunity, and are likely to reduce recovery rates (Brearley et al., 2013). Also, 

the amount, type and scale of disturbance may change the outcomes in terms of 

wildlife disease transmission and human disease risk (Gottdenker et al., 2014). 

An exemplar case is the Puumala virus (PUUV) in Belgium, where human 

infection risk is higher in partially disturbed landscapes than in deforested 

areas (Linard et al., 2007; Tersago et al., 2008). In contrast, small mammals’ 

seroprevalence of Hantaviruses in Panama was higher in disturbed and edge 

habitats than in forested areas (Suzán et al., 2008), and a negative relationship 

between Sin Nombre virus (SNV) prevalence in deer mice and disturbance was 

found in North America (Lehmer et al., 2014). The last finding was not 

determined by the higher density of the most competent host, but by a reduced 

long-term survival of deer mice, including infected individuals, along a gradient 

of disturbance, emphasising the difficulty of predicting prevalence patterns due 

to the complex interconnections among population demography and habitat 

quality. The change in land use and the increase of connectivity through global 

travel, trade and introduction of non-native species can create novel species 
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associations and, indirectly, alter associations of hosts, parasites and vectors 

(Rogalski et al., 2017). Young et al. (2016) provide a very comprehensive 

summary of the potential effects of the introduction of alien species on native 

communities and pathogen richness and prevalence.  For example, an invasive 

species can dilute or amplify a native pathogen depending on its susceptibility 

and competence to transmit it; in alternative, invasive species might carry 

invasive pathogens that might spread in the native host community. Also, 

introduced pathogens can adapt altering their life cycle, evolving specialisation 

or generalism, and modifying other features such as longevity, reproductive 

strategy, host breadth, etc. (Cable et al., 2017). 

Human pressures are directly and indirectly selecting for new pathogens 

(Hulme, 2014); large-scale changes to the environment caused by human are 

affecting the evolution of wildlife pathogens, leading to evolutionary shifts in 

parasite characters through their effects on parasite survival and reproduction 

(Vander Wal et al., 2014). A remarkable example comes from the analysis of the 

genetics and evolution of oral transmission in Toxoplasma gondii, which 

indicate that the parasite started to bypass sexual recombination in favour of 

oral transmission relatively recently, in coincidence with human agricultural 

expansion (Su et al., 2003). Therefore, human actions influence host-parasite 

co-evolutionary and eco-evolutionary dynamics at the same time, making it 

difficult to interpret the observations from the field (Rogalski et al., 2017).  

Lambin et al. (2010) identified general principles of landscape epidemiology 

using eight case studies from Europe and West Africa (e.g. WNV in Senegal, 

PUUV in Belgium, malaria in the Camargue), with the aim of distinguishing and 

estimating the effects of land changes on emerging/re-emerging vector-borne 

diseases and/or zoonoses. They concluded that variation in disease risk does 

not only depend on the presence and extension of a critical habitat, but also on 

its spatial configuration, e.g. connectivity, which is crucial for vector and/or host 

distribution. Landscape, in terms of land cover and land use (management, 

ownership, human behaviour), might be considered as a proxy for specific 

associations of reservoir hosts and vectors, and together with climate might 



22 

 

regulate the emergence and the spatial concentration/diffusion of infection risk. 

In the context of disease transmission, they advocated for a more dynamic view 

of landscapes that includes social and ecological processes, spatial and temporal 

interactions between habitats, human activities, hosts and vectors. The case 

studies showed that spatial variations in disease risk were regulated by three 

groups of factors: a. biology of vectors, hosts and pathogens with their 

pathogenic cycle; b. ecosystem processes at a landscape scale, including 

ecosystem structure, connectivity, configuration, climate, species interactions; c. 

human factors, such as land use, human behaviour, socio-economic and cultural 

conditions.  

In this complex scenario, the focus in disease ecology is on functional diversity, 

and so, the investigation of host or pathogen traits that make them more likely 

to be involved in disease emergence, that make a host more susceptible to an 

outbreak, or that may determine host capability of diluting or amplifying certain 

pathogens (Ostfeld and LoGiudice, 2003; Venesky et al., 2014). It appears that 

the most effective metric to measure biodiversity in relation to disease 

transmission may be species identity rather than species richness, and, as 

mentioned in the previous sections, the loss of particular species, even the order 

in which they are lost, might radically change disease transmission (Venesky et 

al., 2014). Hence, the knowledge required to fully understand the relationship 

between biodiversity and pathogen prevalence includes the functional role 

played by each species and the sequence with which species are added to or lost 

from communities in nature (Keesing et al., 2010; Ostfeld and LoGiudice, 2003). 

This knowledge is rarely available, and despite the examples provided in section 

1.2.1, a general validation for the theory that the most resilient species are also 

the most competent reservoir hosts is still lacking. As it is knowledge is still 

lacking about the functional consequences of a decline in biodiversity in a whole 

community (multiple trophic groups) (Soliveres et al., 2016). 

Ostfeld and LoGiudice (2003) tried to address this lack of knowledge using 

simulation models to assess the effect of the sequence of species loss from 

vertebrate communities on human exposure risk to Lyme disease. They 
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simulated plausible sequences of species loss from landscapes exposed to 

anthropogenic disturbance, such as deforestation and fragmentation, removing 

species according to specific criteria: a. decreasing order of body mass; b. 

decreasing order of home-range size; c. from highest to lowest trophic level; d. 

in the estimated order described for Midwestern U.S.A. mammals in forest 

patches included in an agricultural matrix; e. random. Results differed for each 

simulation, with the randomized sequences of species loss resulting in a 

decrease in disease risk, in contradiction with results from non-randomized 

sequences, in fact highlighting the significance of both species identity and the 

order in which species are lost. Murray et al. (2015) suggested that “faunal 

convergence among regions, which might arise as a result of non-random 

biodiversity loss…could coincide with convergence in infectious disease 

assemblages and, in turn, disease risks.” 

In summary, greater biodiversity may increase the hazard of emerging 

infectious diseases, due to the potential presence of a larger number of 

pathogens, but this is not always the case and it has been found that biodiversity 

is not predictive of disease risk at all scales or in all systems (Hosseini et al., 

2017). Human disturbance often decreases biodiversity in a non-random 

fashion (Lambin et al., 2010), determining loss of functional diversity from the 

system and usually the persistence of host species responsible for amplifying 

pathogens (Keesing et al., 2010). Further, when human activities increase in 

areas with higher biodiversity, pathogen introductions/spillover or increased 

human exposure may lead to disease emergence that can mistakenly be linked 

with the high diversity of the area; biodiversity conservation may therefore 

reduce disease transmission and human disease risk directly preserving the 

functional diversity of the system and also reducing contact between humans 

and wildlife (Hosseini et al., 2017). 
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1.4 Epidemiological modelling as a tool in disease 

ecology 

 

It emerges, from what was said above, that the study of wildlife disease 

transmission in the context of community ecology is very complex and requires 

a multidisciplinary approach. In this study, the emphasis will be placed mainly 

on multi-host multi-parasite systems, which are dominant in wildlife, and on the 

effects of external factors on epidemiological outputs, e.g. the relevant 

interactions in wild populations that affect disease persistence and 

transmission, or the circumstances under which they occur (Tompkins et al., 

2011). Studies where natural populations may be used in laboratory 

experiments, or experimental studies of wild populations are strongly 

advocated; however, also eco-epidemiological modelling has been extensively, 

and successfully, used in wildlife disease ecology (e.g. Clay et al., 2009b; Clay et 

al., 2014; Keesing et al., 2006; Ostfeld and Keesing, 2000; Ostfeld and LoGiudice, 

2003; Roche et al., 2012; Schmidt and Ostfeld, 2001). Mathematical modelling is 

an invaluable tool since the processes of systematically refining model 

assumptions, interpreting variables, and estimating parameters are crucial in 

explaining the observed patterns, predicting the future course of outbreaks, and 

evaluating control strategies (Choisy et al., 2007; Keeling and Rohani, 2007; 

Heesterbeek et al., 2015).  

Historically, the modelling approach to host-pathogen or host-parasite 

interactions started in the context of human infections with the model of 

smallpox by Bernoulli (1760) (McCallum, 2015). Subsequently, the approach 

used for human infections was applied also in the context of livestock and 

wildlife; the fundamental modelling framework for micro and macroparasites 

was developed by Anderson and May (Anderson and May, 1978, 1979; May and 

Anderson, 1978, 1979), who elaborated the Susceptible – Exposed – Infected – 

Recovered (SEIR) compartmental framework.  
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Modelling wildlife diseases presents different challenges compared to humans 

or livestock, since modellers usually face a lack of data; in addition, wildlife 

population is not constant and can be influenced by various factors, and the 

transmission mode may often depend on population density and be somewhere 

in between frequency and density dependent (Smith et al., 2009b). Models can 

be used to make predictions about wildlife (e.g. predict population-level 

epidemic dynamics from individual-level), to understand epidemiological 

trends, or understand the impact of control measures (e.g. vaccination) (Keeling 

and Rohani, 2007). In general, models are “wrong” by definition, because they 

make assumptions to simplify the real system under investigation; however, 

models can be developed in a way that they capture the essential features of a 

system, balancing between accuracy, transparency, and flexibility (Keeling and 

Rohani, 2007). Accuracy means reproducing the observed data and reliably 

predicting future dynamics, and it is vital for predictive models (Johnson et al., 

2015a). These models, according to the chosen aim, may require a qualitative or 

quantitative fit: a qualitative fit is suitable to gain insights into disease 

dynamics, whilst quantitative fit is necessary if the aim is, for example, to check 

the future effects of a control measure (Keeling and Rohani, 2007). 

Transparency is the ability to understand how the model components affect 

disease dynamics and interact with each other; this is an essential feature for 

models used for better understanding dynamics (Johnson et al., 2015a). Finally, 

flexibility is a measure of how easy it is to adapt the model to different 

situations, and it is crucial in the case of evaluating control policies or predicting 

future disease in a changing environment (Johnson et al., 2015a). In summary, 

the two key attributes of a good model are: a. the appropriateness to the 

purpose, following the principle of parsimony, and with the right balance of 

accuracy, transparency, and flexibility; b. parameterisation based on available 

empirical data.  

In the context of wildlife diseases, most studies involving mathematical models 

have been used to describe single-host single-pathogen systems, despite these 

not being common in reality; or, when more species have been included in the 

systems, these are usually host to the same pathogen and they do not interact 
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with each other (Roberts and Heesterbeek, 2013). There is a disproportionate 

number of studies investigating only epidemiological interactions. In the 

context of multi-species systems, it would be more appropriate to include also 

ecological interactions, such as consumer-resource relations and competition 

(Roberts and Heesterbeek, 2013). Indeed, interactions with non-host species in 

the same community affect infectious disease dynamics in host-species; thus, 

multi-species eco-epidemiological modelling approaches should aim to fulfil 

these criteria: a. include features of both frequency and density dependent 

transmission; b. perform a community assembly that is neither entirely additive 

nor substitutive (i.e. saturating) (Mihaljevic et al., 2014); c. describe variable 

patterns of community disassembly depending on biodiversity loss drivers (e.g. 

habitat destruction, direct exploitation, etc.); d. include host-parasite specificity 

as a function of host diversity (Johnson et al., 2015b). 
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1.5 The model for studying multi-host parasite 

transmission: wild rodent communities 

 

Wild rodent communities are an ideal system for studying multi-host parasite 

transmission in a community context for numerous reasons.  

Firstly, rodents harbour a remarkable proportion of zoonotic parasites (22.5 %) 

(Cleaveland et al., 2001), and rodent-borne diseases are currently a real risk for 

human health (Meerburg et al., 2009). Indeed, rodents represent, or are part of, 

the zoonotic reservoir for Hantaviruses (e.g. PUUV, HPS), Leptospira spp. 

(leptospirosis), Yersina pestis (bubonic plague), and Borrelia burgdorferi (Lyme 

disease). Rodents also possess also a higher zoonotic potential than other taxa 

regarding viruses, and in particular vector-borne viruses, which pose a high 

zoonotic risk  (Olival et al., 2017). Also, Han et al. (2015), observed that rodents 

have a much higher probability of harbouring undiscovered zoonotic pathogens 

based on traits, which, in general, make them ideal reservoir species, and are: 

early sexual maturity, high reproductive rate, large litters, short gestation 

periods, rapid postnatal growth rate, small body size. Understanding rodent-

associated transmission is therefore important from an applied disease-control 

perspective, especially because they represent one of the most resilient taxa and 

are predicted to rise as a consequence of defaunation of large mammals (Young 

et al., 2014). 

Furthermore, rodent communities represent ideal natural study systems, even 

when considering pathogens with no zoonotic or conservation importance. 

Usually, more than one species share the same habitat, occupying slightly 

different ecological niches; they are small in size and their restricted, but 

overlapping, home ranges mean that individuals, and so the population, can be 

relatively easily surveyed, characterised and manipulated (Wolton and 

Flowerdew, 1985).  

Finally, rodent communities harbour a large variety of endemic pathogens, 

which have been also used as models of human infections (e.g. Bartonella spp., 
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Birtles et al., 1994; Herpesvirus, Knowles et al., 2012), and the study of these in 

the field, under natural conditions, may provide useful additional information to 

the lab-based results. They are also ideal to investigate multi-host parasite 

transmission because individual rodents often carry more than one pathogen at 

the same time, and these pathogens seem to infect multiple rodent species 

(Begon et al., 1999; Telfer et al., 2007c; Paziewska et al., 2012).  

In the United Kingdom, the ground dwelling rodent community is dominated by 

wood mice (Apodemus sylvaticus), bank voles (Myodes glareolus), and field voles 

(Microtus agrestis); these species are abundant, widespread, and often occur in 

sympatry (Crawley, 1970; Greenwood, 1978), despite some habitat preferences. 

These species are considered the main reservoir hosts for a variety of 

microparasites, such as Gammaherpesvirus (Knowles et al., 2012), Cowpox 

virus (Crouch et al., 1995) and Bartonella spp. (Birtles et al., 1994), 

macroparasites, such as intestinal helminths (Behnke et al., 1999), and 

ectoparasites (Whitaker, 2007). Nevertheless, it appears that the role of each 

species in transmission dynamics of generalist infectious agents is different. 

Begon et al. (1999), using long-term longitudinal time-series epidemiological 

data of cowpox infection in bank voles and wood mice, investigated which 

transmission processes best explained the infection dynamics of the virus in 

each host species population. The striking result was that, although prevalence 

of infection in both species that occurred in the same environment was high, the 

transmission between species was negligible. Subsequently, a different study 

found that bank voles might have a role in the initial invasion of cowpox virus 

into small wood mouse populations (Begon et al., 2003). Another example 

regarding the analysis of the reservoir role of different species is provided by 

Telfer et al. (2007c). They found that the prevalence of Bartonella birtlesii in 

wood mice was positively correlated to bank vole density, suggesting again that 

bank voles might have an essential role in between-species transmission to 

maintain the bacteria in the population of the other species.  
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1.6 Outline of the research 

 

The Welsh ground-dwelling wild rodent community (see Appendix IV for a brief 

description of the study species and their images) was chosen as the target host-

species community for this research in the context of dilution effect. 

As illustrated in the previous section, wild rodent communities are ideal 

systems to investigate multi-host parasite and pathogen systems, therefore 

Welsh rodent communities were selected since virtually no information about 

rodent distribution, population density, species assemblages, and 

pathogen/parasite presence was available in Wales. By contrast, rodent 

population dynamics and parasite and pathogen screening have been 

performed in other British regions (e.g. Begon et al., 2009; Bown et al., 2003; 

Mallorie and Flowerdew, 1994; Marsh and Harris, 2000), but mostly focusing on 

one single rodent species, field vole (Microtus agrestis) (e.g. Burthe et al., 2008; 

Smith et al., 2006; Turner et al., 2014), while, in this study, multi-species data 

across different habitats were gathered. 

Rodents were live-trapped, and biological samples - faeces and ectoparasites – 

were collected. Data collected in the field were used, where relevant, to 

parameterise eco-epidemiological models of infection. Biological samples were 

screened for pathogens differing in types of transmission and ecology. The 

dilution effect was investigated in different host-pathogen or host-vector-

pathogen systems analysing the effects of parameter variation and community 

composition, in terms of host and non-host species.  

Through the modelling work, the following were examined: - whether 

prevalence or other epidemiological metrics were affected by community 

composition; - whether there were diluter and/or amplifier species and their 

functional role in the community; - whether the dilution effect occurred and 

which were the mechanisms involved; - which were the key parameters 

affecting pathogen transmission. According to the suggestions by Johnson et al. 

(2015b), this research gathered more empirical and laboratory data, 
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investigated the influence of different features of diversity on pathogen 

transmission, including functional diversity (e.g. predators, non-reservoir 

hosts), and analysed how the relationship between host diversity, parasite 

diversity and human/wildlife disease risk vary among different systems. 

The final aims were to provide additional knowledge on Welsh rodent 

communities’ population dynamics, to identify rodent-borne parasites and 

pathogens circulating in an area where human/wildlife disease risk was not 

assessed, and to improve understanding of wildlife pathogen local transmission 

dynamics. 

This knowledge is particularly significant in Wales for the following reasons: 

 the country is predominantly rural, and human settlements are in close 

proximity with wildlife; 

 agriculture and tourism are the main economic sectors, so humans are in 

close contact with livestock, and significantly use the countryside for 

recreational activities; 

 a very widespread farming system involves grazing of open areas, so 

livestock and wildlife extensively interact and might share parasites and 

pathogens; 

 conservation programmes are in place, e.g. pine marten (small rodents 

specialist predator) reintroduction, for which this information are extremely 

relevant; 

 UK-wide projects are currently on going to monitor vectors and vector-borne 

pathogens, but these mainly focus on pets and human zoonotic risk, 

overlooking wildlife (e.g. Big Tick Project and Big Flea Project by MSD Animal 

Health). 

The research findings might contribute developing improved policies and/or 

management actions to conserve biodiversity and reduce human zoonotic risk.  
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Chapter 2 

 

Rodent community characterisation and analysis of 

population dynamics  

 

2.1 Introduction 

 

Small rodent communities are ideal systems for multi-host parasite 

transmission study, as discussed in section 1.5.  Ground dwelling rodents were 

therefore chosen as the target community in this eco-epidemiological study. 

Small rodents have also important roles in ecosystem functioning; they are 

primary and secondary consumers, seeds and mycorrhizal fungi dispersers 

(Moore et al., 2007), seed consumers, and prey of several vertebrate predators 

(Whitaker and Hamilton, 1998). Further, they are sensitive to habitat 

modifications, although they are found in a wide range of habitats (including 

anthropologically modified areas), and are able to influence their own 

environment (Breitbach et al., 2012); for example, a dominance of seed predator 

species can decrease forest regeneration (Struhsaker, 1997). Moreover, they 

represent a massive prey biomass for their predators, therefore their density 

has a strong impact on predator species’ abundance and diversity (Salamolard 

et al., 2000); owls, weasels, and stoats may fail to breed due to low rodent 

density (King, 1985).  

Considering the above, it appears clear that small rodents have significant 

interactions with other species, and can be considered keystone species 

(Rayfield et al., 2009), assuming that, in an ecosystem, these are the species that 

have considerable more interactions with other species (Jordàn, 2009). Hence, it 

is worthwhile focussing on small rodents not only from the epidemiological, but 



32 

 

also from the ecological point of view, facilitating the investigation of how 

ecological relationships impact disease transmission.  

Nonetheless, there are few studies assessing small rodent diversity and 

population dynamics, especially on a local scale (Breitbach et al., 2012). For 

instance, within forests where fruiting trees predominate, the community will 

be dominated by seed predators (e.g. Apodemus spp.), whereas in open forests, 

with low canopy cover and high herbaceous ground cover, the community will 

be characterized by a higher presence of herbivorous species such as Myodes 

glareolus (Suchomel et al., 2012).  

Consequently, the first step to acquire knowledge on a population is to assess 

the status of populations (Cowlishaw and Dunbar, 2000), and so evaluate 

spatio-temporal abundance and distribution (Chapman et al., 1999). This is 

especially important for small rodents populations that fluctuate across years 

and seasons; in Britain small rodents do not have the same regular multi annual 

fluctuations or drastic summer declines like in Fennoscandia, but certainly they 

display seasonal variation in numbers (Lambin et al., 2000). In order to capture 

these variations, and estimate population densities the most common method 

for small rodents is to use capture-mark-recapture data obtained from live-

trapping grids (Krebs et al., 2011). 

In the present study live-trapping ground dwelling wild rodents was performed 

in different locations in Wales to collect information on community 

composition, to estimate population densities, growth rates, and parameters 

(e.g. contact rates) for models of infection incorporating ecological and 

epidemiological relationships, and investigate spatial distribution of the 

captured individuals. In addition, the fieldwork was used to collect biological 

samples for pathogen screening. Description of field sites and trapping 

methodologies are provided in the next sections. 
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2.2 Methods 

 

2.2.1 Study sites 

 

The study sites included six locations in Wales (see map, figure 2.1), each one 

having one trapping grid, located to cover different habitats and different 

potential rodent assemblages. Three trapping grids were placed in the 

Pembrokeshire Coast National Park (PCNP) in the Stackpole Estate (owned by 

the National Trust), two trapping locations were located in an area managed by 

the Forestry Commission (now Natural Resources Wales) in the Rheidol Valley 

near Cwmystwyth (Ceredigion), and one site was set on Skomer Island (an 

island off the coast of Pembrokeshire managed by the Wildlife Trust of South 

and West Wales); the pilot study was performed in a privately managed 

woodland in Capel Bangor (Ceredigion) (Fig. 2.1).  

Here, the characteristics of each trapping location will be described, while the 

details about live-trapping will be discussed in the next section. 

In the Stackpole Estate live-trapping of small rodents was carried out during 

September/October 2015, May/June 2016, September/October 2016, and 

May/June 2017. Three trapping grids were set: two in different patches of 

woodland (MPW and WW) and one in a grassland area (MPG) (Fig. 2.2).  

The Mere Pool Woodland, where the MPW trapping site was located, is 

constituted by a forested area of around 5.5 ha, and it is contiguous with other 

habitats such as scrub, species-rich unimproved grassland, and Phragmites 

dominated swamp. The mixed deciduous woodland is dominated by the 

Fraxinus excelsior, Acer campestre, Mercurialis perennis community (W8 in the 

British National Vegetation Classification - NVC), with a sub-community 

characterised by Geranium robertianum (W8e of the NVC). The canopy is 

discontinuous, while the shrub layer is very dense and dominated by Fraxinus 

regeneration and Corylus avellana (Castle and Mileto, 2002). 
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The site MPG is found in the same area of the estate, where the grassland was 

characterised by low cover of fescues with Sagina nodosa, Erigeron acer and a 

rich lower plant flora. The closest NVC fit would appear to be SD12, Carex 

arenaria - Festuca ovina - Agrostis capillaris dune grassland; however, there is 

absence of Ammophila arenaria and calcifuges such as Galium saxatile. Other 

associates tend to be robust plants such as Ononis repens, Eupatorium 

cannabinum, and Torilis japonica or scramblers such as Rubia peregrina, and 

Lonicera periclymneum. Rubus caesius, and Rosa pimpinellifolia scrubs are 

present, as bracken dominated areas (NVC Survey of Stackpole Estate, 2012 

provided by National Trust Officer Paul Culyer).  

Last woodland site (WW) was situated in a patch of 25.3 ha forested area that 

grades to scrub along southern and eastern edges, where is mostly open to 

sheep grazing. The canopy is dominated by Acer pseudoplatanus with some 

Quercus ilex, while the shrub layer is generally quite sparse, constituted by Acer 

regeneration. Other species present, especially along the edges are: Ulmus 

glabra, Sambucus nigra, and Prunus spinosa. The field layer, in the area where 

the trapping grid was located, included mostly Rubus fruticosus, Urtica dioica, 

and Hedera elix; this area was also occasionally grazed by sheep and steers.  

In the modelling section, rodent and non-rodent species constituted the full 

community assembled to investigate the effects of non-host species on disease 

transmission, so the list of mammals recorded on the Estate is shown in Table 

2.1. 

The trapping grid on Skomer was placed in the typical Skomer vole habitat 

(Myodes glareolus skomerensis) present on the island, the bracken forest 

(Pteridium aquilinum), specifically in a high-density site approximately 300 m 

south of North Pond (GR094724) (Healing, 1984). The area was dominated by 

bracken and brambles (Rubus fruticosus), but bluebells (Hyacinthoindes non-

scripta), and wood sage (Teucrium scorodonia) were also present. Worthy of 

note is that on the island there are no terrestrial predators, and, with regards to 

mammals, voles share their habitat with common shrews, wood mice, and 
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rabbits. The island was surveyed for three consecutive years (2015-2017) 

during late August. 

 

Table 2.1. Wild Mammals (excluding bat species) recorded at Stackpole Estate. 

Common 
Name 

Scientific 
Name 

Common 
Name 

Scientific 
Name 

Common 
Name 

Scientific 
Name 

American 
Mink Mustela vison Fox Vulpes vulpes Polecat 

Mustela 
putorius 

Badger Meles meles Grey Seal 
Halichoerus 
grypus 

Pygmy 
Shrew 

Sorex 
minutus 

Bank Vole 
Myodes 
glareolus 

Grey 
Squirrel 

Sciurus 
carolinensis Rabbit 

Oryctolagus 
cuniculus 

Brown 
Rat 

Rattus 
norvegicus Hedgehog 

Erinaceus 
europaeus Stoat 

Mustela 
erminea 

Common 
Shrew Sorex araneus 

House 
Mouse Mus musculus 

Water 
Shrew 

Neomys 
fodiens 

Feral 
Ferret Mustela furo Mole 

Talpa 
europaea Weasel 

Mustela 
nivalis 

Field Vole 
Microtus 
agrestis Otter Lutra lutra 

Wood 
Mouse 

Apodemus 
sylvaticus 

 

 

In Ceredigion, the woodland site selected for live trapping included a mixed 

species noble fir (Abies procera; non-native species) plantation with few young 

oaks, birch, beech or hazel in amongst the conifer (Fig. 2.3). The ground flora 

was well-developed and included common heather and bilberry. Some edges of 

the woodland patch graded in to scrub dominated by Sambucus nigra, Prunus 

spinosa, and Rubus fruticosus. In the same wide area, the second site was 

constituted by an old clear-cut area that was experiencing unmanaged regrowth 

assuming features of scrubland dominated by Ulex europaeus and Rubus 

fruticosus (Fig. 2.3). These sites were sampled, like Stackpole sites, in 

September/October 2015, May/June 2016, September/October 2016, and 

May/June 2017. During the sampling period, in the same area, a project for the 

reintroduction of pine martens was carried out and it has been estimated that 

the area, intended as the whole site (more than 1000 ha), was visited by 5 

individuals in 2015, decreased to 2 in 2016 and 2017. The mammals recorded 

in the area are listed in Table 2.2. 
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Table 2.2. Wild Mammals (excluding bat species) recorded in the Forestry 
Commission area; data from personal communications of other surveyors of the 
area and from the WWBIC (West Wales Biodiversity Information Centre) 
database. 

Common Name Scientific name 

Badger Meles meles  

Bank vole Myodes glareolus 

Brown hare Lepus europaeus 

Common Shrew Sorex araneus 

Grey Squirrel Sciurus carolinensis 

Pine Marten Martes martes 

Red Fox Vulpes vulpes 

Wood mouse Apodemus sylvaticus 

  

The site of the pilot study, performed in June 2015 (Fig. 2.3), in Capel Bangor, 

was a combination of a semi-deciduous natural forest and an old unmanaged 

conifer plantation. The forest was characterised by a mixture of oak species 

(Quercus robur and/or Q. petraea) and birch (Betula 

pendula and/or B. pubescens). The ground flora had the typical acidophile 

species and well-developed lower plant like Pteridium aquilinum and Rubus 

fruticosus. Also, there was a fragmentary occurrence of the Tilio-

Acerion woodland type, while the coniferous patch was dominated by the non-

native Sitka sprouce (Picea sitchensis). There was a record of mammal sightings 

for the area and it is showed in Table 2.3. 

 

Table 2.3. Wild Mammals (excluding bat species) recorded in the private 
woodland surveyed in Capel Bangor; data from personal communications of the 
owner and from the WWBIC (West Wales Biodiversity Information Centre) 
database. 

Common Name Scientific name 

Badger Meles meles 

Bank vole Myodes glareolus 

Common shrew Sorex araneus 

Grey Squirrel Sciurus carolinensis 

Polecat Mustela putorius 

Red fox Vulpes vulpes 

Wood mouse Apodemus sylvaticus 
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Fig. 2.1. Map of Wales showing the regions where the field sites were located. The 
sampling areas are shown in red and the figure number refers to the enlarged 
map displaying the exact location of the trapping grids.  
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Fig. 2.2. Trapping sites at Stackpole Estate. 1: Mere Pool Valley Woodland (MPW); 
2: Mere Pool Valley grassland (MPG); 3: Warren woodland (WW). 
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Fig. 2.3. Trapping sites in Ceredigion. CB: Capel Bangor woodland, pilot study 
(red); CG: grassland, clear-cut (green); CW: conifer plantation (red).  
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2.2.2 Rodent live-trapping 

 

A regular sized trapping grid was used to investigate ground dwelling small 

rodent communities in the chosen sites. Compared to linear transects, grids are 

better in providing spatial resolution to estimate population density, home-

ranges, and dispersion (Pearson and Ruggiero 2003). The configuration of the 

grids was square to diminish the perimeter/area ratio in order to reduce the 

edge-effect (Gurnell and Flowerdew, 2006), with two traps each grid point 

(trapping station). The distance between stations was set according to the 

habitat as suggested by Gurnell and Flowerdew (2006): 15 m distance in 

woodlands, 5/10 m in grasslands.  

In each location, the grid comprised 36 trapping stations (6x6) with one 

Longworth and one Sherman trap each station, in order to diminish sampling 

error and yield better estimate of species composition (Anthony et al., 2005; 

Lambin and MacKinnon, 1997). Therefore, the area covered in the woodland 

locations was 0.56 ha, in the grasslands 0.12 ha (the distance chosen was 7 m), 

while in Skomer 0.25 ha (the grid layout was already in place with a distance of 

10 m between stations). The traps were set up with appropriate bedding 

material (hay or straw) and food (rolled oats, carrot chunks, dried mealworms) 

to comply with animal welfare policies, research ethics regulations, and to 

decrease mortality (Powell and Proulx, 2003).Traps were also provided with 

shrew holes, since shrew species are protected under Schedule 6 of the Wildlife 

and Countryside Act (1981) and a licence is required to trap them. Each 

trapping grid was apart well above the 250 m suggested to avoid 

pseudoreplicates (Fauteux et al., 2013).  

The live-trapping was performed during two different seasons to estimate 

individual densities of the pre-breeding recruitment population (May-June) and 

post-breeding peak population (September-October). The two seasons will be 

referred as, respectively, spring, and autumn. The sampling was carried out 

from autumn 2015 to spring 2017. 
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Each trapping occasion consisted in four consecutive days and nights, with the 

first day/night being pre-baiting, i.e. the traps were locked open to get the 

animals accustomed with the new feature in the environment (Jones et al., 

1996). So, the traps were checked twice a day for three consecutive days (early 

morning and sunset) for a total of six checks. Traps were not a permanent 

feature of the environment and were removed between each trapping session. 

After each session all the traps were washed and disinfected with Virkon® or 

autoclaved to avoid cross-contamination between sites or seasons. 

Each individual captured was identified at species level, sexed, assigned to an 

age class according to size/reproductive status – juvenile, sub-adult, adult 

according to Telfer et al. (2002) –, weighed, individually marked by fur clipping, 

and finally released. On first capture only, biological samples were collected 

from each individual. Adult individuals were considered reproductively active. 

Faeces were collected directly from the animal or from the trap tunnel and 

stored in a sample tube at -80°C. Before being stored in the freezer samples 

were at ambient temperature maximum for 3 hours, considering the maximum 

duration of the trap checking session and the transport. Ticks and fleas were 

collected from each individual and stored at -18°C in sample tubes filled with 

RNAlater, in order to preserve nucleic acids, or at -80°C without RNAlater, to 

allow further molecular investigations (more information on sample collection 

and storage in Chapter 3 and 4). Also, during the sampling period, information 

about temperature, weather, or extreme conditions that could potentially affect 

the sampling were collected.  

The described methodology, in the chosen sites, was aimed to trap mice and 

vole species; in particular, considering the locations and the trap size the target 

species were represented by: Apodemus spp., Mus musculus, Myodes glareolus 

(Myodes glareolus skomerensis on Skomer), Microtus agrestis (Sibbald et al., 

2006). 
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2.2.3 Data Analyses 

 

2.2.3.1 Rodents body mass estimation 

Body mass in grams, estimated during trapping with a spring scale (100 g • 1 g), 

was used to compare individuals of different species, sexes, age classes, and 

captured in different seasons. These data were collected to estimate some 

allometric parameters to be included in the models of infection. The data were 

analysed using independent-samples t-test after checking for normality; all the 

analyses were performed in R (R Core Team, 2016). 

 

 

2.2.3.2 Population density estimation 

Individual density of each species in each site, and for each trapping occasion 

was estimated with the POPAN algorithm (Schwarz and Arnason, 1996) within 

the software MARK (White and Burnham, 1999), assuming, during the trapping 

session, open population, constant survival, and constant capture probability. 

Goodness-of-fit was tested with the RELEASE suite within the same software. 

Schwarz and Arnason (1996) developed a likelihood function for the open-

population capture-recapture (Jolly-Seber) experiment, which consisted in a 

generalization to the usual Jolly-Seber representation that models births using a 

multinomial distribution from a super-population. 

Similarly to Mallorie and Flowerdew (1994), for each species, a linear 

regression was carried out between log-transformed density and the log-

transformed density in the following season to identify any density-dependent 

delayed effect on population abundance.  
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2.2.3.3 Seasonal growth rate estimation 

The growth rate, r, was estimated for each species according to the formula 

proposed by Lambin et al. (2000):  

ri = log10Ni(t) – log10Ni(t-1) 

where N is the population density of species i. The operation was repeated for 

each season, in order to have a growth rate representing breeding and non-

breeding seasons. Considering the trapping design, the growth rate 

representing the change of the population from the autumn to the following 

spring is considered the growth during the non-breeding season, while the rate 

of change during the breeding season is considered from spring to the following 

autumn. 

Growth rates were also estimated allometrically, according to Bolzoni et al. 

(2008), and all the values obtained were compared with the ones found in 

literature to establish the most appropriate values to include as parameters in 

the modelling work. The growth rates estimated for different seasons were 

included, in order to include seasonality in modelling rodent species population. 

According to Huitu et al. (2004), a linear regression was performed between 

growth rate and log-transformed population density in order to identify 

whether individual density had a direct or delayed effect on growth rate. 

 

 

2.2.3.4 Intra and inter-specific contact rate estimation 

A contact was defined as two individuals caught in the same trap or in the 

adjacent trap in the same trapping session (Grear et al., 2009; Grear et al., 2013; 

Perkins et al., 2009; VanderWaal et al., 2013). Two types of contacts were 

estimated, intra and interspecific, for each species and each trapping session. In 

addition, the contacts were also estimated, for each session, by sex, age class, 

and breeding status. The total contacts were averaged by day and were used for 
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the analyses reported in this section, but also were used in the modelling of 

directly transmitted diseases (see Chapter 5).  

According to Clay et al. (2009b) and Springer et al. (2017), statistical analyses 

were performed to investigate potential differences in intra and interspecific 

contact rates between seasons, sites, and species. Since the distribution of the 

data was not normal (Anderson-Darling test, p < 0.01), the statistical test chosen 

was permutation, in particular, the two-sample Fisher-Pitman permutation test, 

and the K-sample Fisher-Pitman permutation test when comparing more than 

two samples. The analyses were carried out in R using the package coin (R Core 

Team, 2016).  

A finer grained analysis was completed using the intra and interspecific contacts 

estimated for each species and for each sex, age class, and breeding condition. 

Using chi-square test, it was examined whether each of the categories listed 

above did realise significantly more contacts. Also, as suggested by Clay et al. 

(2009b), weight was used in a linear regression to investigate its potential role 

as explanatory variable for intra and interspecific contacts. Linear regressions 

were also used to highlight any potential relationship between contacts and 

population density. All the statistical analyses were performed in R (R Core 

Team, 2016). 
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2.3 Results 

 

2.3.1 Rodent community composition  

 

During the entire period of fieldwork, the species recovered were Apodemus 

sylvaticus (wood mouse), Myodes glareolus (bank vole), and very few Microtus 

agrestis (field vole); on Skomer, Myodes glareolus was present with the 

subspecies Myodes glareolus skomerensis (Skomer vole). See Appendix IV for a 

brief description of the species and their images. 

During the 4968 trap-nights, 680 unique individuals were caught, 258 bank 

voles, 183 Skomer voles, 230 wood mice, and 9 field voles, for a total of 1195 

captures (including recaptures). The individuals were balanced in terms of sex 

with an overall male to female ratio of 1.08. Excluding Skomer, where the voles 

occur in very high density, and massively exceeded wood mice, the ratio wood 

mice: bank voles was 0.86. The age class far more represented in sampled bank 

voles was sub-adult (52.64%), namely individuals that present adult pelage and 

are heavier than juveniles, but are not reproductively active (no descended 

testes in males, or perforated vagina in females). By contrast, in wood mice, 

both adults and sub-adults were almost evenly captured (sub-adults 43.18%, 

adults 48.64%). Juveniles constituted a very small percentage of the total 

individuals in every site but Skomer, where they accounted for the 22.40% of 

the individuals trapped; almost all the juveniles were captured in the post-

breeding peak season (late summer/early autumn). 

In all the woodland sites and on Skomer the community was constituted by two 

species, wood mouse and bank vole (or Skomer vole), while the grassland 

comprised only wood mice, and the clear-cut site presented a three species 

assemblage including also filed voles. In every trapping grid, including on 

Skomer Island, the traps presented signs of shrew visits, such as bedding and 

food carried out through the shrew hole and distinctive scats in the trap tunnel. 
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2.3.2 Rodents body mass 

 

The species, excluding Skomer voles, did not differ significantly in weight (F = 

1.07, p = 0.34), while Skomer voles were significantly heavier than all the other 

species (F = 47.96, p < 0.001) (Table 2.4). Combining data of all captured 

individuals, average body mass did not differ significantly between males and 

females (Table 2.5). This result was consistent even when the data were 

analysed by species, but, on Skomer, female voles showed a tendency to be 

slightly heavier than males (Table 2.5; p = 0.1), while the opposite trend was 

true regarding bank voles (Table 2.5; p = 0.06). 

Juveniles, in all species, weighted significantly less than adults and sub-adults (F 

= 125.5, p < 0.001). Adults and sub-adults pooled together of all species, 

excluding Skomer voles (which were sampled in only one season) were lighter 

in late summer/early autumn with an average weight of 17.82 (SE 0.28), while 

in spring the average body mass was 23.35 (SE 0.36) (t = -11.07, p < 0.001).  

 

Table 2.4. Average body mass and standard error of all unique individuals 
captured during the study. In brackets the sample size. 

Species Body mass (g) St.Er 
Bank vole 19.30 (258) 0.34 
Field vole 22.22 (9) 1.93 
Skomer vole 26.33 (183) 0.59 
Wood mouse 19.58 (230) 0.43 

 

Table 2.5. Results of the independent samples t-test related to gender of all 
unique individuals captured during the study divided by species. n: sample size; 
St.Er: standard error; df: degrees of freedom. 

Species n Sex Body mass (g) St.Er df t p 
Pooled 
species 

320 F 21.65 0.43 
622.31 -1.00 0.32 

345 M 21.08 0.36 

Bank vole 
139 F 18.69 0.49 

245.80 1.89 0.06 
125 M 19.98 0.45 

Field vole 
3 F 26.33 2.90 

4.34 -1.70 0.16 
6 M 20.17 2.18 

Skomer 
vole 

104 F 27.15 0.82 
175.23 -1.61 0.10 

85 M 25.27 0.78 
Wood 
mouse 

88 F 19.29 0.65 
178.12 0.46 0.65 

144 M 19.70 0.57 
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2.3.3 Population density  

 

Population density of the all the species (excluding Skomer voles) during the 

sampling seasons is displayed in Fig. 2.4. Inter-seasonal fluctuations are evident, 

and in general it is noticeable higher density in the post-breeding peak season 

(autumn). Looking at Fig. 2.5, it is reasonable to hypothesise that populations 

may be subjected to yearly fluctuations. 

In general, density (N) was not related to the previous season density (pooled 

data excluding Skomer). Nevertheless, when the same analysis was carried out 

by species, wood mouse density was slightly negatively related to the previous 

season density (logNt = 2.38 – 0.6 * logNt-1, r2 = 0.26, p = 0.07), while density of 

bank voles showed a slightly positive relationship with the previous season 

density (logNt = 0.24 + 0.85 * logNt-1, r2 = 0.43, p = 0.05).  

Regarding Skomer, wood mice were in very low numbers to give a reliable 

population estimate; Skomer voles were present at very high densities each 

sampling year, but the traps available were too low and the grid did saturate, so 

also in this case the estimation, which heavily relies on recaptures, were not 

precise. Nonetheless, the values were 262 (ind/ha) in 2015, 504 (ind/ha) in 

2016, and 356 (ind/ha) in 2017. 
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Fig. 2.4. Average population density (number of individuals per hectare ± 
standard error) of sampled species across sampling seasons (excluding Skomer 
voles). Wood mouse: solid line; Bank vole: dotted line; Field vole: dashed line. 

 

 

Fig. 2.5. Population density (number of individuals per hectare ± standard error) 
of sampled species across sampling seasons. a) site MPW; b) site CW; c) site WW. 
Wood mouse: dotted line; Bank vole: solid line. 
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2.3.4 Seasonal growth rate  

 

Non-breeding season growth rates were mostly negative, or much lower than 

breeding season values in both species: bank voles and wood mice (Fig. 2.6 and 

Fig. 2.7). It was impossible to estimate growth rate for field voles due to the very 

low number of individuals trapped, and, regarding Skomer voles, the analysis 

was not performed because of data being collected only in one season.  Too few 

bank voles were trapped in site CG and no individuals were captured in site 

MPG, thus it was not possible to estimate growth rates. 

The general trends were very similar between the two species, but it appeared 

that wood mice are subject to greater population decrease during non-breeding 

seasons. 

However, non-breeding seasons average growth rates were not significantly 

different between species (t = 1.41, p = 0.18), and so were breeding season 

averages (t = 0.16, p = 0.88) (Fig. 2.8 and Table 2.6). These values, estimated 

form empirical data, were much lower than the ones obtained allometrically 

according to Bolzoni et al. (2008) (Fig. 2.8 and Table 2.6).  

Considering both species pooled data, population density (N) had a direct 

positive effect on growth rate (r): r = -1.22 + 0.73 * logN, r2 = 0.30, p < 0.01. 

However, analysing the data separately indicated that this relationship was 

significant only for wood mice (r = -1.61 + 1.08 * logN, r2 = 0.57, p < 0.01). In 

addition, growth rate in one species was not explained by opposite species 

density. 

Previous season individual density showed a delayed negative effect on growth 

rate in both species (Fig. 2.9 and Fig. 2.10), but in wood mice this effect was 

stronger (wood mouse: rt = 1.49 – 1.12 * logNt-1, r2 = 0.65, p < 0.001; bank vole: 

rt = 0.89 – 0.52 * logNt-1, r2 = 0.52, p = 0.03). 
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Fig. 2.6. Growth rate estimated for bank voles using the formula from Lambin et 
al. (2000). On the x axis the different sites. Black: non-breeding season 2015/16; 
white: breeding season 2016; grey: non-breeding season 2016/17. 

 

 

 

Fig. 2.7. Growth rate estimated for wood mice using the formula from Lambin et 
al. (2000). On the x axis the different sites. Black: non-breeding season 2015/16; 
white: breeding season 2016; grey: non-breeding season 2016/17. 
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Fig. 2.8. Comparison between average seasonal growth rates and allometric 
estimation. Error bars represent standard deviation. Black: bank vole; grey: 
wood mouse. 

 

 

Fig. 2.9. Relationship between seasonal growth rate and individual density of the 
previous season in wood mice. Density was log-transformed. See text for the line 
equation. 
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Fig. 2.10. Relationship between seasonal growth rate and individual density of 
the previous season in bank voles. Density was log-transformed. See text for the 
line equation. 

 

 

 

Table 2.6. Growth rate values averaged by season for each species, and values 
obtained by allometric estimation according to Bolzoni et al. (2008); the body 
mass used for the estimation was the average of adult and sub-adult individuals. 
Sample size in brackets. St.Er: standard error. 

Species Season Mean St.Er 
Bank vole Breeding  0.444 (3) 0.163 
Wood mouse  Breeding 0.413 (5)  0.151 
Bank vole Non-breeding -0.196 (6) 0.141 
Wood mouse Non-breeding -0.526 (8) 0.207 
Bank vole Allometric 1.590 
Wood mouse Allometric 1.615 

 

 

 

 

 



53 

 

2.3.5 Intra and inter-specific contact rate 

 

The frequency distribution of unique contacts per individual was non-normal, 

but highly aggregated, indicating that a small number of individuals were 

responsible for a large proportion of the contacts. The overdispersion 

parameter of the negative binomial regression fitting the data was 5.18 for 

intra-specific contacts, and 1.73 inter-specific contacts (pooled data excluding 

Skomer voles); therefore, inter-specific contacts resulted more aggregated than 

intra-specific. 

The average daily individual contact rates estimated for each species are 

showed in Fig. 2.11. No significant difference was found in contact rates within 

species, while bank voles performed more intra-specific contacts than wood 

mice (Z = 2.84, p = 0.004), and wood mice slightly more inter-specific contacts 

than bank voles (Z = -1.66, p = 0.09).  

The analysis performed by season did not reveal any significant difference in 

either intra or inter-specific contacts (pooled data excluding Skomer voles due 

to the high-density bias); the difference was not significant when data were 

analysed by species (Fig. 2.12). There was no significant difference between 

sites in intra-specific contacts (Fig. 2.13), while the daily average of inter-

specific contacts differed between sites (Z = 9.33, p = 0.05) (Fig. 2.13).  

Inter-specific contacts in bank voles were positively associated with the intra-

specific contacts in wood mice (y = 0.22 + 0.41 * x, r2 = 0.51, p < 0.01), and the 

opposite relationship was also significant (y = 0.45 + 0.39 * x, r2 = 0.85, p < 

0.001) (Fig. 2.14). 

The contact rates were also analysed in relation to individual characteristics: 

sex, age class, and reproductive status. Females realised more intra-specific 

contacts (Z = 3.41, p-value < 0.001), but only when the data were analysed for 

all the species together. In general, juveniles were found to perform significantly 

more intra-specific contacts that the other age classes (Z = 9.99, p < 0.001), and 

this was significant also in bank voles (Z = 9.55, p < 0.01). In addition, juveniles 
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performed less inter-specific contacts than adults and sub-adults (Z = 8.89, p = 

0.01), but when the data were analysed by species this was true only in bank 

voles (Z = 7.56, p = 0.02). Reproduction status seemed not to have any influence 

on intra or inter-specific contact rates. 

A negative binomial regression was employed to investigate the effect of body 

mass on contact rates. The model using pooled data did not show any 

significance, but the data considered separately revealed that among wood mice 

heavier individuals realised less intra-specific contacts (p = 0.01). In contrast, 

weight only affected inter-specific contacts in bank voles; the regression 

showed that heavier individuals performed less inter-specific contacts (p = 

0.04). Both models were tested for goodness-of-fit and both showed a good fit 

(p > 0.05). The addition of other variables to the basic model, including just 

body mass as explanatory variable, significantly decreased the fit. 

Intra-specific contacts were positively related with population density 

regarding pooled data (r2 = 0.70, p < 0.001) and bank voles (r2 = 0.82, p < 

0.001), but this relationship was just slightly significant for wood mice (r2 = 

0.16, p = 0.07), and not significant for field voles (Fig. 2.15). The models were all 

significantly different from each other. Population density of one species did not 

affect intra-specific contacts of the other species. 

Population density did not show the same association with inter-specific 

contacts, but a higher proportion of inter-specific contacts was performed at 

lower individual densities (pooled data excluding Skomer voles: y = 0.33 – 

0.001*x, r2 = 0.15, p = 0.02), although the proportion of variance explained by 

the model was low.   

Analysing the relationship between contacts and densities of the opposite 

species, the only significant relationship was found between wood mice inter-

specific contacts and bank vole density (r2 = 0.84, p < 0.001) (Fig. 2.16).  
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Fig. 2.11. Average number of daily individual contacts realised by each species 
during the trapping period. Error bars represent standard deviation. Black: 
intra-specific contacts; white: inter-specific contacts. 

 

 

 
Fig. 2.12. Box and whiskers plot of daily individual contact rates estimated for 
each of the two different seasons of trapping (autumn: post-breeding peak; 
spring: pre-breeding recruitment). Pooled data from all the sites excluding 
Skomer. White: bank vole; light grey: field vole; dark grey: wood mouse. a) Intra-
specific contacts; b) Inter-specific contacts. 
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Fig. 2.13. Box and whiskers plot of daily individual contact rates estimated for 
each trapping site (data pooled by species). Different letters represent 
significance (p <0.05). White: intraspecific contact rate; grey: interspecific 
contact rate. 

 

 

Fig. 2.14. Relationship between daily average  inter-specific and intra-specific 
contacts in bank voles and wood mice. Each data point represents a trapping 
session. Squares: bank vole; triangles: wood mouse. Solid line: regression line of 
the relationship between bank vole inter-specific contacts and wood mouse 
intra-specific contacts. Dashed line: regression line of the relationship between 
wood mouse inter-specific contacts and bank vole intra-specific contacts. See text 
for line equations. 
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Fig. 2.15. Relationship between daily average intra-specific contacts and 
individual density. Each data point represents a trapping session. Squares: bank 
vole; triangles: wood mouse. Solid line: regression line (pooled species). Dashed 
line: regression line for bank voles. Dotted line: regression line for wood mice.  

 

 

Fig. 2.16. Relationship between daily average wood mice inter-specific contacts 
and bank vole individual density. Each data point represents a trapping session. 
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2.4 Discussion 

 

2.4.1 Rodent community composition 

 

The species captured reflected the expected community assemblages in the 

habitat chosen, but, despite the vicinity to human settlement/activities of some 

sites, there were no house mice trapped (Mus musculus). In the grassland sites, 

were it was expected a greater abundance of field voles, mostly wood mice were 

trapped, while field voles (Microtus agrestis) was present at very low densities 

only in the clear-cut site. It is reported that field voles may go through more 

marked population fluctuations compared to other small rodent species in 

Britain (Lambin et al., 2000), so the result may be due to true low density during 

the sampling period in the selected sites.  

Wood mice (Apodemus sylvaticus) were found in all the sites sampled, reflecting 

the extreme generalism of the species, which has been recorded in all types of 

woodlands, hedgerows, open areas, and agricultural fields (Millán de la Peña et 

al., 2003). No yellow-necked wood mice (Apodemus flavicollis) were trapped, 

although present in south Wales its distribution is restricted to ancient 

woodlands and it is very localised (Marsh and Harris, 2000). 

All the sites, with the exception of one grassland, revealed the presence of bank 

voles, which are very widespread in UK.  The species often occurs in the same 

habitat of wood mice, but the microhabitat preferences are slightly different and 

they usually minimise the niche overlap, depending more on forested areas 

(Torre and Arrizabalaga, 2008). Also, they influence each other’s density and 

distribution (Fasola and Canova, 2000), and M. glareolus exhibit less dispersal 

abilities and smaller home-ranges than mice species (Kozakiewicz et al., 1999).  

The Skomer vole (Myodes glareolus skomerensis) is a distinct island subspecies 

that has recently evolved after probably accidental introduction to the island 

(Hare, 2009). It is larger than the mainland bank vole, and also presents some 
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differences in terms of behaviour, social organisation, and ecology (Corbet, 

1964). These are due to the adaptation to the generally high-density life in the 

patches of bracken forests, and the absence of terrestrial predators (Fullagar et 

al., 1962; Adler and Levins, 1994). Skomer voles have a breeding season 

generally lasting from May to September and the period of study (end of 

August/beginning of September) motivated the high percentage of juveniles 

captured in this site.  

Wood mice and bank voles, in Great Britain, are thought to reproduce from 

March/April to October, but the two species are not fully synchronous (Mallorie 

and Flowerdew, 1994; Huitu et al., 2004), therefore this might explain the 

differences in percentage of adults and sub-adults. The high percentage of sub-

adults found in bank vole populations may reflect an earlier breeding peak than 

wood mice. 

 

 

2.4.2 Rodents body mass 

 

Skomer voles were, as expected, significantly heavier than all sampled species, 

due to the “island syndrome”, a term used to summarise all the systematic 

differences in morphology, demography, reproduction, and behaviour that 

rodents show after isolation and adaptation on island habitats (Adler and 

Levins, 1994). Also, on Skomer, females appeared to be slightly heavier than 

males, and this may be caused by the decrease of male adult mass as the 

breeding season progress for the maturation of young males. In fact, the 

sampling was carried out towards the end of the breeding season, when 

individuals born at the beginning of it already left the nest, and entered the sub-

adult, or adult population. However, female body mass varies according to 

reproductive state so the data needs to be interpreted with caution. Also, there 
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was no difference in body weight between females and males on mainland 

species. 

In all the species juveniles were significantly lighter than other age classes, but 

there was no difference between adults and sub-adults. Therefore, for each 

species, the average body mass of adult and sub-adult individuals was the value 

chosen to estimate allometric parameters (Bolzoni et al., 2008) for the models 

of infection (see Chapter 5), including the growth rate showed in Fig. 2.8. 

Finally, all adults and sub-adults were found to be lighter in the post-breeding 

recruitment season (autumn), reflecting the difference in demography between 

the two seasons of sampling. The spring sampling season therefore captured the 

pre-breeding recruitment population, mostly represented by heavier, older 

individuals, conversely, in autumn, the population also comprised younger and 

lighter individuals born earlier in the season. This confirmed that the sampling 

strategy was effective in capturing two different moments in populations’ 

fluctuations. 

 

 

2.4.3 Population density 

 

The high individual density of Skomer voles, although the estimation lacked in 

precision, was in agreement with previous reported values (Fullagar et al.. 

1962; Harris et al., 1995; Healing et al., 1983; Healing, personal communication; 

Loughran, 2013). The values recorded on Skomer at different times have always 

been higher, up to four times, than the mainland bank vole populations 

(Healing, 1984). Skomer populations also seem to have intra-annual cycles, with 

minimum densities occurring in late spring, before breeding, and peaks in 

autumn, by the end of the breeding season. Therefore, considering the time of 

sampling, it is reasonable to think that the estimates in this study represented 

almost the population peak. 
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It has been reported that these voles also exhibit multiannual cycles, but the 

amplitude or the determinants of the cycles are not fully understood (Healing, 

1984; Loughran, 2013). Skomer has no terrestrial predators, so the only 

predator pressure comes from avian predators (barn owls, short-eared owls, 

kestrels); this together with density-dependent dynamics, (e.g. breeding 

suppression, decrease of dispersal), and density-independent factors (e.g. 

weather, resource availability) might regulate Skomer voles cycles (Loughran, 

2013). 

Mainland species, as expected, displayed higher density in autumn, when there 

is recruitment of new individuals born earlier in the breeding season, compared 

to the spring values, which represented the population at the beginning of the 

breeding season. In Britain, bank voles are known to exhibit annual cycles of 

abundance with a winter/spring decline and a progressively increase in 

numbers towards the autumn (Alibhai and Gipps, 1985). This was well 

documented by the densities found in every site of the study; however, it was 

impossible to speculate about a potential multiannual cycle.  

Small rodents in northern Fennoscandia have regular multiannual cycles, which 

seem to be dampened along a latitudinal gradient towards the south due to the 

greater diversity of generalist predators and alternative preys, the decrease of 

snow cover, and the increase of habitat heterogeneity (Hanski et al., 1993; 

Hanski et al., 2001; Hanski and Henttonen, 1996; Sundell et al., 2004; Turchin 

and Hanski, 1997). In Britain there have been different findings, Lambin et al. 

(2000) described, in field voles, cyclic dynamics very similar to those reported 

from Fennoscandia, but in bank voles these characteristic multiannual cycles 

were never reported (Petty, 1999; Sundell et al., 2012). This difference may be 

due to the lack of long-term studies, which failed to identify the cycles, or to the 

unexpected population regulation of multispecies assemblages and the local 

predatory dynamics (Hanski and Henttonen, 1996; Hanski et al., 2001; Sundell 

et al., 2004). This lack of synchrony between rodent species has been compared 

to the area of Fennoscandia around the 60°N, where forest inhabiting bank 
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voles tend to have more stable populations than field voles inhabiting 

grasslands or clear-cuts (Hansson and Henttonen, 1985; Lambin et al., 2000). 

Ultimately, the factors affecting population density are likely to be a 

combination of first order effects, such as predation and competition, as well as 

secondary effects connected to food resources, influenced by weather and 

vegetation cover (Gorini et al., 2012; Lima et al., 2006; Sundell, 2006). In 

addition, disease processes and parasitism may also influence behaviour, social 

organisation, and survival, contributing to population dynamics (Altizer et al., 

2006; Begon et al., 2009; Cavanagh et al., 2004; Telfer et al., 2002). 

Density in bank voles and wood mice showed different relationship with 

previous season density, highlighting the complexity of density-dependent 

processes in different populations. However, the lack of long-term data and the 

low significance of the regression models make impossible to draw any 

conclusion. In fact, in a microtine population in England the density-dependent 

lag was found to be between 1.5 and 2 years (Lambin et al., 2000), but the lack 

of data did not allow testing this pattern in the current study. Evidence support 

that delayed density-dependent effects on recruitment have strong effect on 

rodent population (Aars and Ims, 2002). In particular, densities during non-

breeding season have been found to determine the onset time of breeding 

season, playing a role in population cycles (Ergon et al., 2011; Smith et al., 

2006).  

 

 

2.4.4 Seasonal growth rate 

 

Seasonal growth rate clearly showed the difference between non-breeding and 

breeding season, confirming the intra-annual fluctuations remarked by density 

estimates. The values were in agreement with other studies on rodent species 

(Careau et al., 2013; Merritt et al., 2001; Huitu et al., 2004; Lambin et al., 2000). 
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The difference between wood mice and bank voles was not significant in both 

seasons, but this may be due to the small size of the data set; in fact, looking at 

the graph it seems that there is a trend for wood mice to have a more distinct 

reduction in population during non-breeding season. There is no knowledge 

about a greater overwinter mortality of wood mice compared to bank voles, but 

this pattern may be determined by the asynchrony of population fluctuations, so 

that the two species might have been in different phases of their intra and inter-

annual cycle (Hanski et al., 2001; Mallorie and Flowerdew, 1994; Sundell et al., 

2004).  

The values found empirically were much lower than the allometric estimate 

suggested by Bolzoni et al. (2008), who used growth rate and other 

allometrically estimated parameters to parameterise a model for microparasites 

infection in a range of host differing in body size. This will be taken in account in 

the modelling section (Chapter 5), where the growth rates derived from 

population estimates will be used as parameters in the models of infection of 

various pathogens.  

Individual density had a direct positive effect on growth rate, especially for 

wood mice, but this effect may be just an artefact due to the short time scale of 

the data; density usually has a direct or, more often delayed, negative effect on 

population growth (Aars and Ims 2002; Merritt et al. 2001; Smith et al. 2006).  

However, according to the delayed-density effect, previous season individual 

density showed a negative relationship with growth rate in both species, 

confirming that intra-specific density-dependent factors are primary 

determinants of population dynamics (Burthe et al., 2010; Huitu et al., 2004; 

Lambin et al., 2000; Smith et al., 2006).  

 

 

 

 



64 

 

2.4.5 Intra and inter-specific contact rate 

 

The importance of social structure in epidemiology has been largely 

demonstrated in humans and wildlife, since the way individuals interact affect 

the spread of an infectious disease in a population and the probability of 

individuals to be infected (White et al., 2015; Silk et al., 2017). Contact network 

analyses are used to quantify individual-level and population-level patterns of 

social behaviour and their relationship with epidemiological data, and this 

information are invaluable tools for statistical and epidemiological modelling of 

host–pathogen systems (Silk et al., 2017). 

A comprehensive analysis of the contact network of the communities sampled 

was beyond the aim of the study, but the estimation of the daily individual 

contact rates is a simple and easy way to explore contact distributions, describe 

contact heterogeneity, and investigate shared space (Grear et al., 2009; Perkins 

et al., 2009; VanderWaal et al., 2013). Although, this methodology may miss 

information about quality of contacts, which has been found to be more suitable 

than frequency in explaining patterns of disease transmission (Clay et al., 

2009b; White et al., 2015). Nevertheless, in a comparison of methods to quantify 

contact networks using radio telemetry and capture–mark–recapture data, 

Perkins et al. (2009) found that both methods of data collection produced 

similar contact distributions for a population of yellow-necked mice, but 

capture-mark-recapture may underestimate the numbers of contacts. 

Additionally, the method used in the study is applicable to investigate directly 

and indirectly transmitted diseases, being a surrogate of shared space use, 

which also underlies social and transmission networks (Sih et al., 2017). 

In order to maximise the information about shared space use, identify 

heterogeneities, and potential superspreaders, individual daily contacts were 

estimated for each species and for each class of individuals (classified by sex, 

age, reproductive status, weight). 
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The analysis of individual daily contacts revealed that the distribution of both 

intra and inter-specific contacts was highly aggregated, meaning that a small 

number of individuals were responsible for a large proportion of interactions. 

This was also found in deer mice, in an investigation of transmission of Sin 

Nombre Virus in USA (Clay et al., 2009b).  

It appeared that for each species considered (bank vole, field vole, and wood 

mouse) there was no difference between intra and inter-specific contacts. 

However, bank voles performed more intra-specific contacts than wood mice, 

while wood mice tent to interact more with other species. This might be related 

to differences in population density, space use, and the greater dispersal 

abilities of wood mice, which have larger home ranges and are able to exploit a 

higher range of habitats (Douglass et al., 1992; Geuse et al., 1985; Kikkawa, 

1964).  

However, contacts are not static, and social interactions are likely to vary in 

different conditions (e.g. breeding and non-breeding), as confirmed also in other 

species such as mouse lemurs, cattle, raccoons (Chen et al., 2014; Hirsch et al., 

2016; Springer et al., 2017). The results showed no variation of contacts across 

seasons, but inter-specific contacts were significantly different across sites, 

reflecting different species assemblages, habitat use, and relative densities. 

With regards to individual characteristics, females and juveniles were found to 

realise more intra-specific contacts, as expected due to the higher rate of male 

dispersal, and the typical female territoriality in rodent species (Dobson, 1982; 

Douglass et al., 1992; Wolff, 1993). This might have implication in disease 

transmission, when considering the demography and the social structure of the 

target populations. In addition, in wood mice weight was negatively associated 

with intra-specific contacts, but in bank voles this was negatively associated 

with inter-specific contacts. So, older, heavier wood mice may be more mobile 

and have more inter-specific transmission potential, while heavier bank voles 

might have more intra-specific transmission potential; body weight was found 

positively associated with number of contacts and transmission potential by 
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Clay et al. (2009b). According to the analysis on body mass, heaviest individuals 

could not be distinguished in terms of sex or reproductive status. 

Inter-specific contacts in both species were positively associated with intra-

specific contacts of the alternative species, and this can be interpreted in light of 

the relationship found between contacts and individual density. In fact, in both 

species intraspecific contacts increased with density, consequently it is likely 

that an increase in density of either species boosted inter-specific contacts.  

There was no significance between density and inter-specific contacts, but 

considering their proportion, this was inversely related to individual density, 

although this result needs to be interpreted with caution because the model did 

not have a good fit. This might mean that there was a decrease in proportion of 

inter-specific contacts when the population increased due to aggregation and 

limited movements to avoid aggressive interactions and overlap of territories 

(Bogdziewicz et al., 2016; Hestbeck, 1982). However, it also seemed that inter-

specific contacts in wood mice increased with the increase of bank vole density, 

suggesting that interaction between mice and voles was mainly determined by 

an increase in abundance of the second species.  

In conclusion, it is clear that there is a relationship between density and 

contacts of both types, but this is highly complex, and often non-linear. In fact, it 

has been found that in wildlife contacts and density have a linear density-

dependent relationship at low densities, while the relationship progresses 

towards a frequency-dependent one when density increases (Davis et al., 2015; 

Smith et al., 2009b). 
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Chapter 3 

 

Characterisation of ecto-parasite infestation in Welsh 

wild rodents 

 

3.1 Introduction 
 

Ecto-parasites are a group of diverse parasitic organisms that live on the outside 

of their host’s body for a variable length of time (Hersh et al., 2014a). These can 

affect host body condition and physiology (Hawlena et al., 2006; Lourenco and 

Palmeirim, 2007; Heylen and Matthysen, 2008), reproduction (Neuhaus, 2003; 

Fitze et al., 2004; Hillegass et al., 2010), and behaviour (Brown and Brown, 1992; 

Raveh et al., 2011). Ecto-parasites can influence host survival and population 

dynamics, depending on factors such as host and parasite(s) taxonomic 

identities, duration, and intensity of infestation; however, these effects are 

variable and not uniform across all individuals in a particular population (Brown 

et al., 1995; Krkosek et al., 2007; Devevey and Christe, 2009). In fact, ecto-

parasite infestation, or burden, varies considerably among individuals, and 

usually there is a high level of aggregation, also determined by host individual 

characteristics (Anderson and May, 1978; Brunner and Ostfeld, 2008). Higher 

burdens have been found in males due to their size or hormonal profile (Gorrell 

and Schulte-Hostedde, 2008; Devevey and Brisson, 2012), but this pattern has 

multiple exceptions (Kiffner et al., 2013; Krasnov et al., 2005). Intensity of 

infestation can also be the result of environmental aggregation (e.g. due to 

microhabitat conditions; Calabrese et al., 2011). These parasites can also affect 

their hosts by transmitting a wide range of diseases; in fact, they have been found 

to be vectors of a large number of pathogens of different taxa, including humans. 

In particular, among this disparate group of parasites, ticks and fleas are very 
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frequently involved in disease transmission in small mammals (Bitam et al., 

2010; Espinaze et al., 2016). 

Ticks are arachnids of the order Ixodida, and are obligate ecto-parasites feeding 

on the blood of a wide variety of vertebrates (Klompen et al., 1996). The target 

community of the study, small rodents, act as hosts for different species of hard 

ticks (family Ixodidae). Ixodid ticks have a three-host life cycle (larva, nymph, and 

adult), during which rodents represent host for all or just some life stages, 

depending on the tick species (Paziewska et al., 2010), and their abundance is 

determined by abiotic factors (e.g. habitat, climate), but also by the host 

community composition (Gray, 2008). In the past, ticks were thought to be 

specialist parasites, being specifically adapted to feed on a particular host 

(Hoogstraal and Kim, 1985), but more recently it has been discovered that they 

exhibit prevalent host generalism (Espinaze et al., 2016). Hence, understanding 

tick-host associations, and how multiple host species regulate tick dynamics, is 

very important to comprehend ticks ecology, and predict patters of tick 

distribution, especially in the context of tick and tick-borne disease management 

and control (Cumming and Van Vuuren, 2006). Further, generalism may increase 

the chance of disease transmission and favour spillover events in a larger number 

of host species (Power and Mitchell, 2004), that is why ticks (and tick-borne 

diseases, see Chapter 4) are ideal multi-host parasites to be investigated in the 

context of disease ecology (Dobson, 2014).  

Among rodents, ixodid ticks have not been found to negatively affect host 

survival, and tick burden has also been positively associated with survival in 

white-footed mice (Peromyscus leucopus) (Hersh et al., 2014), probably because 

the most heavily parasitised individuals were also the most likely to survive 

(Perkins et al., 2003). Prevalence and intensity of infestation of ticks in small 

rodents have been extensively investigated and different patterns of species 

preferences have been found (e.g. Hussein, 1980; Paziewska et al., 2010). Also 

sex seemed to affect infestation, in particular, heavier males were usually found 

to have higher burdens (e.g. Perkins et al., 2003; Harrison et al., 2010). Finally, 

Brunner and Ostfeld (2008) noticed that rodent density was negatively related to 
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tick burdens, but this has not been found to be always true, most likely because, 

when the number of questing ticks is so high, this nullifies the rodent density-

dependent effect on tick burden (Paziewska et al., 2010).  

The second ecto-parasite taxon of interest is fleas (Insecta, Siphonaptera), which 

are small, laterally flattened, wingless insects; they are holometabolous insects 

with a life cycle that, from egg to adult, comprises several larval stages and a 

pupal stage (Bitam et al., 2010). They feed on blood on many higher vertebrates, 

preferring small burrowing mammals, and alternate between periods occurring 

on the host body and periods occurring in the host burrow (or nest) (Krasnov et 

al., 2002). As vectors, they harbour a large number of pathogens, of which the 

majority are still understudied, but can represent a serious threat in terms of 

emerging diseases (see Chapter 4) (Bitam et al., 2010). In general, flea biology 

and ecology have not been fully understood yet, especially flea-host relationship 

is still under investigation, but latest research revealed that species compositions 

of flea species host spectra were determined by an interaction between species 

phylogeny and traits (Krasnov et al., 2015; Krasnov et al., 2016). Compared to 

ticks, fewer studies concerned flea prevalence patterns, and the existing ones 

revealed an extreme complexity in host-habitat-parasite associations (Krasnov et 

al., 2002), making the collection of data about local prevalence and abundance of 

fleas an invaluable tool in uncover host-parasite dynamics and flea role as disease 

vectors (Kowalski et al., 2015).  

As for ticks, rodent host species characteristics and population dynamics seemed 

to influence prevalence and intensity of infestation of fleas. Host density and flea 

burden or prevalence relationship has been found to be different in different host 

species-flea species association, exhibiting linear or asymptotic shapes (Krasnov 

et al., 2002; Krasnov et al., 2015; McCauley et al., 2008; Young et al., 2014). No 

universal rule can be drawn by examining host gender preferences of fleas 

(Kiffner et al., 2014), or preferences for a specific host age-class (Hawlena et al., 

2005). For example, Kowalski et al. (2015), in Poland, found male-biased 

parasitism in Apodemus agrarius and Myodes glareolus, but not in A. flavicollis, 

and this was due to the relationship with body mass only in A. agrarius. Another 



70 

 

study observed both male and female biased parasitism, and, in particular, the 

pattern changed across seasons, suggesting that flea host gender preference 

involves many factors related not only to the host (e.g. size, immunity, spatial 

behaviour) (Krasnov et al., 2005), but also to the parasite (Krasnov and Matthee, 

2010).  

In this study, tick and flea patterns of prevalence and intensity of infestation were 

investigated among the Welsh rodent communities sampled (see Chapter 2); in 

the next section details are provided about methodology of parasite collection and 

identification. 

Additionally, identification of ecto-parasites was performed both morphologically 

and molecularly. Morphological identification based on phenotypic traits is not 

always possible due to specimen degradation, complexity of pathognomonic 

features, or lack of expertise and/or local ID keys, although it is economic and 

convenient (Ernieenor et al., 2017; Marrelli et al., 2007). Thus, it is useful to 

develop a different characterization method in order to differentiate species, and 

subspecies, which is also reliable and convenient (Pagel Van Zee et al., 2007). 

Molecular approaches, based on mitochondrial (mt) and ribosomal DNA (rDNA) 

fragments, have been proven to be an efficient tool for tick identification, and at 

the same time estimate genetic variation and discriminate the closely-related 

species (e.g. Chitimia et al., 2010; Lv et al., 2013; Lv et al., 2014). Polymerase 

chain reaction (PCR) amplification of specific genome regions, sequence analysis 

of the amplicons obtained, and alignment of the data with reference sequence 

have been successfully employed to distinguish arthropod species, including 

ticks (Casati et al., 2008; Che Lah et al., 2016; Zahler et al., 1995).  

Among genome regions, the cytochrome oxidase subunit I (COI) is the most 

commonly used marker for identification and barcoding, especially invertebrates 

(Deagle et al., 2014). This gene has been considered ideal due to the higher 

mutation rate, maternal inheritance and haploid nature of the mtDNA encoded, 

and widely used for tick and flea phylogenetic analyses (e.g. Ćakić et al., 2014; 

Chitimia et al., 2010; Ernieenor et al., 2017; Lawrence et al., 2015; Márquez, 

2015). However, COI gene is also more frequently used because no other regions 
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can be found in taxonomically verified databases, but often it has been proven 

not to be the best barcoding marker choice (Deagle et al., 2014). It has been 

suggested that markers should be study-specific, and that several barcode 

markers should be routinely used in molecular identification studies (Deagle et al., 

2014; De Barba et al., 2014). Thus, genotypic identification of the ecto-parasites 

collected was performed amplifying not only the COI gene, but also a different 

fragment of DNA, 16S for ticks and 18S for fleas, which was proven effective in 

the taxa considered, with the aim to contribute to the advancement of ticks and 

fleas metabarcoding techniques. The 16S gene was chosen because successfully 

used in UK to identify Ixodes trianguliceps (Bown et al., 2006), which was by far 

the most represented species in the tick pool according to the morphological 

identification. Regarding the fleas, 18S gene was selected because traditionally 

used in flea phylogenetic analyses (e.g. Whiting et al., 1997; Whiting, 2001; 

Whiting et al., 2008), so greater information was available also for comparing the 

results of this study. 
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3.2 Methods 
 

3.2.1 Ecto-parasite collection 

 

Ecto-parasites, namely ticks and fleas, were collected from small rodents sampled 

during live-trapping performed from autumn 2015 to spring 2017. Seven sites in 

Ceredigion and Pembrokeshire (Wales) were selected and a regular sized 

trapping grid (6x6) was used to capture ground dwelling rodents in two seasons 

(spring and autumn) (see Chapter 2 for more details about field methods). Each 

individual was screened at its first capture for ecto-parasites, while no ticks and 

fleas were collected during recaptures.  

Ticks were collected, after visual inspection, with fine point forceps mainly from 

the cephalic area of the animals. In fact, ticks mostly occur in the anterior third 

of small rodents, and in particular on the ears (Hussein, 1980; Randolph, 1975a). 

Fleas were collected according to McCauley et al. (2008) and Young et al. (2014). 

Each individual was held over an open, deep and transparent, plastic bag and 

then combed for 10 strokes with a flea comb; all the fleas recovered from both, 

the bag and the comb, were collected.  

Specimens were stored at -18°C in sample tubes filled with RNAlater, or at -80°C 

without RNAlater, in order to preserve nucleic acids and allow molecular 

investigations. Before storing the samples in the freezer, usually the maximum 

amount of time the samples spent at ambient temperature was 3 hours 

(considering the trap checking session time and the transport); however, most of 

the time, the parasites not preserved in RNAlater were still alive at the moment 

of freezing. RNAlater was used because proven to be effective in preserving 

nucleic acids for 24 hours at 37°C, 1 week at 25°C, 1 month at 4°C, or indefinitely 

at -20°C (Drakulovski et al., 2013).  The RNAlater solution was prepared 

according to De Wit et al. (2012). 
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3.2.2 Morphological identification 

 

Frozen samples were incubated with Dietrich’s fixative solution (equal parts of 

96% ethanol, glycerol, and double distilled water) overnight in the fridge in 2 ml 

sample tubes. The morning after incubation the batch of samples were identified 

under a high magnification microscope mounted on a cavity slide with a drop of 

Dietrich’s solution, and assigned a new sample code for molecular analyses. The 

fixative solution improved the visualisation of the specimen and protected it 

from degradation during the identification process. The identification was 

performed at species level for ticks according to Hillyard (1996), and Snow 

(1978) for larval samples; life stage and sex of the adults was also recorded. Fleas 

were identified, when possible, at subspecies level according to Whitacker 

(2007). 

 

 

3.2.3 DNA extraction and PCR for molecular identification 

 

After morphological identification, the samples were washed for 1 hour in 70% 

Ethanol, 1 hour in 50% Ethanol, 1 hour in 30% Ethanol, 1 hour in 10% Ethanol, 

and 1 hour in double distilled water, and placed in a new 0.5 ml sample tube (Ash 

et al., 2017; Harris et al., 2009). In this tube the specimens were prepared for 

DNA extraction through alkaline digestion (Bown et al.,  2003). Each sample was 

macerated with a pipette tip and incubated overnight at 56°C with 20 μl of 

Proteinase K (Qiagen, Germany) and 80 μl of PBS solution (ThermoFisher, UK) to 

increase DNA yield. After incubation, 0.5 ml of 1.25% ammonia solution was 

added to the sample (1 ml for engorged adult female ticks), which was then 

heated at 100°C for 20 minutes, and centrifuged at 17000 rpm for 5 minutes. 

Finally, the lid of the tube was opened and the sample was heated at 100°C until 

half of the volume was evaporated. Alternatively, for some samples DNA was 

extracted with the tissue protocol of Qiagen Mini Kit (Qiagen, Germany) to 



74 

 

compare DNA yields between methodologies. The DNA sample obtained was used 

for the following PCR reactions and kept in the freezer for storage at -18°C.  

Tick samples were employed in two different PCR reactions with two different 

sets of primers targeting two regions of DNA. The first PCR targeted a region of 

~710 bp of the COI gene, using the primers LCO-1490 (5'-

GGTCAACAAATCATAAAGATATTGG-3’) and HCO-2198 (5’-TAAACTTCAGGGTG 

ACCAAAAAATCA-3’) from Folmer et al. (1994). The amplification program 

consisted of a total of 55 cycles: denaturing at 95 °C for 30 s, annealing at 45°C 

for 1 min, and extension at 72°C for 45 sec, with an initial denaturation at 95°C 

for 3 min, and a final elongation at 72°C for 2 min. The reaction mix of 10 μl 

consisted of 2 μl of DNA template, 0.5 μl of each primer, 5 μl of Biomix (Bioline, 

UK), and 2 μl of nuclease free water. This reaction mix was used for all the PCR 

reactions described in this section. In addition, the samples were subjected to a 

reaction targeting a segment of the 16S gene of ~460 bp, using the forward 

primer 16S+1 (5'-CTGCTCAATGATTTTTTAAATTGCTGTGG-3') and the reverse 

primer 16S-1 (5’-CCGGTCTGAACTCAGATCAAGT-3’), according to Black and 

Piesman (1994) and  Bown et al. (2006). The conditions of this reaction were: 

denaturing at 95 °C for 20 sec, annealing at 55°C for 20 sec, and extension at 

72°C for 50 sec (35 cycles), with an initial denaturation at 95°C for 2 min, and a 

final elongation at 72°C for 5 min. 

DNA samples obtained from fleas were used in a PCR targeting the COI gene, as 

described for the ticks, while the second reaction targeted a portion of around 

~450 bp of the 18S gene. The primers were designed from those reported in 

Whiting (2001) and Whiting (2001): Con-Dia-F (5’-ATGCATGTCTCAGTGCAAGC-

3’) and Con-Dia-R (5’-AGCTTTTTAACCGCAACAAC-3’). The amplification reaction 

comprised an initial denaturation step at 94°C for 2 min, 35 cycles of denaturing 

at 94°C for 1 min, annealing at 50°C for 1 min, extension at 72°C for 90 sec, and 

finally an elongation step at 72°C for 10 min. 

In each case the positivity of the amplification was confirmed by electrophoresis 

in a 1% agarose gel. PCR products were then stored frozen at -18°C.  
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Amplified DNA was purified using SureClean Plus (Bioline, UK) according to the 

manufacturer protocol, and then the samples, consisting of 1 μl forward primer, 1 

μl purified DNA, and 4 μl nuclease free water, were sequenced with an AB3500 

DNA sequencer (Applied Biosystems). 

 

 

3.2.4 Sequence alignment and phylogenetic analysis 

 

Sequences obtained from tick and flea specimens were compared to sequences 

deposited in GenBank using the BLAST feature of NCBI 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1990). Considering tick 

samples, 15 sequences of the length of 390 bp representing the COI fragment, 

and 56 sequences of the length of 253 bp representing the 16S fragment were 

imported in MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for 

bigger datasets (Kumar et al., 2015). Appropriate sequences downloaded from 

GenBank were added to the data sets to represent out-groups, and some 

sequences of the species expected in the data set were also added and imported 

together with the sequences obtained in this study. Multiple sequences alignment 

was performed by ClustalW, grouping the sequences according to the gene 

considered. The sequences for the analysis were chosen according to their 

quality, short sequences or with a low quality chromatogram were excluded. The 

same software was used for phylogenetic analyses; phylogenetic trees were 

constructed by the Maximum Likelihood method based on best fitting model for 

each set of sequences (i.e. lowest BIC score), and bootstrap test of 1000 

replicates. Regarding fleas, 13 sequences of length 356 bp representing the COI 

gene, and 59 sequences of 276 bp for the 18S gene were selected for 

phylogenetic analysis. The same selection criteria and methodologies illustrated 

for the tick data were applied. 
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3.2.5 Statistical analyses 

 

Patterns in prevalence of ecto-parasites in rodent populations (namely the 

proportion of individuals found hosting ecto-parasites) were analysed utilising 

generalised linear models, fitting a Poisson distribution. It was investigated 

whether there were significant differences among host species, host age classes, 

host gender, sampling sites, and sampling season. Generalised linear modelling 

was also used to investigate the relationship between average ecto-parasite 

prevalence and host population density. Differences in prevalence among 

different species/life stages of ticks and fleas were examined with Pearson’s Chi-

square test for independence, in order to identify any significant difference of 

frequency among host species, sampling season. Further, intensity of infestation, 

i.e. mean number of fleas on each individual host, patterns were investigated 

with non-parametric Wilcoxon rank test or the non-parametric Kruskal-Wallis 

test to identify differences among host species, host age classes, host gender, 

sampling sites, and sampling season. These statistical tests were chosen 

according to the guidelines provided by Alexander (2012) regarding analysis of 

skewed data, in particular parasite counts and prevalence, and to similar 

published studies (e.g. Paziewska et al., 2010), in order to present comparable 

results. Finally, the relationship between mean log10 parasite burden and log10 

variance (Taylor’s power law) (Taylor, 1961) was considered. All the analyses 

were performed in R (R Core Team, 2016). 
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3.3 Results 
 

3.3.1 Prevalence and intensity of infestation of ecto-parasites 
 

3.3.1.1 Ticks 
In total, 225 ixodid ticks were collected from 120 rodent individuals, the 16.28% 

of total individuals sampled, of two species: Apodemus sylvaticus (wood mouse) 

and Myodes glareolus (bank vole) (Fig. 3.1).  

Across all the individuals sampled (pooled species) during the entire study, total 

infestation prevalence was 15.99%. Prevalence was higher in bank voles 

(18.14%) than wood mice (16.09%) (p < 0.01), and site CW (coniferous 

woodland in Ceredigion) showed, overall, a higher prevalence of ticks (32.60%) 

(p = 0.004) compared to the other sites. No difference in prevalence was found 

between different age classes, but males exhibited a higher rate of infestation 

(21.74%) compared to females (13.17%) (p < 0.01). Ticks were more prevalent 

in spring (27.18%) rather than in autumn (12.87%) (pooled data excluding 

Skomer because sampling occurred only in one season) (p < 0.01).  

Bank voles were more heavily parasitised than wood mice (H = 11.859, p = 0.02), 

and, overall, intensity of infestation was higher in males than females (W = 50390, 

p < 0.01), but the analysis performed by species revealed that this was true only 

for bank voles (W = 20308, p < 0.01) (Table 3.1). Average number of ticks per 

individual was also higher in spring than in autumn (W = 51550, p < 0.01) (Fig. 

3.2). 

Regarding tick species, Ixodes trianguliceps was, by far, the most represented in 

the sample set, being the most frequent species recovered on both host species 

(Table 3.2 and Fig. 3.3). This result was also confirmed by molecular identification 

(see section 3.3.1.1). Analysis of the life stages (pooled data) revealed that adults 

(essentially adult females, as very few males were collected) were more abundant 

in spring, while larvae and nymphs were more abundant in autumn (p < 0.01) 



78 

 

(Fig. 3.4 and Fig. 3.5), also different tick life stages were not differently 

distributed across host species (p > 0.05).  

The plot displaying Taylor’s power law relationship for ticks attached to the two 

host-species (Fig. 3.6) showed that tick distribution on bank voles and wood 

mice was different, being more clustered on the first host (slope > 1).  

Finally, tick prevalence was negatively associated with wood mouse density, but 

the fit of the model was quite poor (Prevalence = -139.02 – 89.33 * NBV – 78.05 * 

NWM, R2 = 0.17, p = 0.02), while there was no significant relationship with bank 

vole individual density. 

 

Table 3.1. Average number of ticks per individual rodent. St.Dev: standard 
deviation; M: males; F: females. 

Host species Sex Mean St.Dev 
Bank vole M+F 0.38 1.36 
 F 0.19 0.48 
 M 0.23 0.55 
Wood mouse M+F 0.20 0.52 
 F 0.28 1.28 
 M 0.51 1.47 

 

 

 

Table 3.2. Prevalence of tick species occurring on the sampled rodents according 
to morphological identification. In brackets sample size. Unknown species were 
specimen collected, but degraded to be identified by phenotypic features. 

Species Prevalence (%) 
Ixodes acuminatus 1.78 (4) 
Ixodes hexagonus 1.33 (3) 
Ixodes ricinus 4.44 (10) 
Ixodes trianguliceps 84.00 (189) 
Ripicephalus sanguineus 0.44 (1) 
Unknown 8.00 (18) 
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Fig. 3.1. Histogram representing frequency distribution of ticks on rodent 
populations. Dashed lines represent the median of non-zero values, which is 1 for 
all species. White: bank vole; grey: field vole; black: wood mouse. 

 

Fig. 3.2. Average number of ticks per individual rodent across sampling seasons. 
Error bars represent standard error. Solid line: pooled species; dotted line: bank 
vole; dashed line: wood mouse. 
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Fig. 3.3. Prevalence of tick species occurring on the sampled rodents according to 
morphological identification. Unknown species were specimens collected but too 
morphologically degraded to be identified by phenotypic features. Black: bank 
vole; grey: wood mouse. 

 

Fig. 3.4 . Percentage of tick stages found in the two different sampling seasons. 
Percentage was calculated on the total number of ticks collected in each of the 
two seasons (bars do not reach 100% because of degraded specimens of which 
life stage was unknown). Light grey: larvae; dark grey: nymphs; black: adults. 
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Fig. 3.5. Percentage of tick life stages across sampling seasons. Percentage was 
calculated on the total number of ticks collected in each sampling season. Solid 
line: adults; dashed line: nymphs; dotted line: larvae. 

 

  

 

Fig. 3.6. Taylor’s power law relationship for ticks. Plot of log mean infestation 
versus log variance for all tick species. Each data point represents a trapping 
session. Circles: bank vole; squares: wood mouse. 
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3.3.1.2 Fleas 
Overall, 100 fleas were collected from 71 individuals, including all the rodent 

species trapped (i.e. bank vole, field vole, and wood mouse); these represented 

the 9.63% of the population sampled (Fig. 3.7).  

Flea total prevalence was 8.70%, and there was no difference in prevalence 

between seasons, sites, or host characteristics like sex or age class. However, 

wood mouse displayed significantly lower prevalence than the other species (p < 

0.01) (Table 3.3). 

Also regarding fleas, the intensity of infestation was higher in bank voles (H = 

29.181, p < 0.01) (Table 3.3), which displayed a slightly higher flea burden in 

spring (W = 17408, p = 0.09) (Fig. 3.8). No significant difference was found 

among sexes or age classes. Similarly, no significant patterns of infestation were 

exhibited by wood mice.  

In total, 13 species of fleas were morphologically identified, but two specimens 

were identified only at genus level (Table 3.4). Prevalence varied across these 

species, and values resulted to be significantly different (p < 0.01). In addition, 

Ctenophtalmus sp., Megabothris sp., and Hystrichopsylla sp. were more prevalent 

in autumn (p < 0.05) (flea species were grouped by genus for this analysis) (Fig. 

3.9).  

Taylor’s power law relationship for fleas (Fig. 3.10) represented Poisson-

distributed data (slope = 1), being the fleas mostly occurring singularly on the 

hosts. 

Further, flea prevalence was negatively associated with wood mouse density, but, 

as before, the model did not show a good fit (Prevalence = -126.27 – 99.68 * NBV 

– 78.74 * NWM, R2 = 0.13, p = 0.05).  
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Table 3.3. Average number of ticks per individual rodent and prevalence of 
infestation. St.Dev: standard deviation. 

Host species Mean St.Dev Prevalence (%) 
Bank vole 0.19 0.63 12.24 
Field vole 055 1.01 33.33 
Wood mouse 0.03 0.17 3.04 

 

 

 

Table 3.4. Prevalence of flea species occurring on the sampled rodents according 
to morphological identification. In brackets sample size. Unknown species were 
specimen collected, but degraded to be identified by phenotypic features. 

Species Prevalence (%) 

Amalareus penicilliger  4.00 (4) 

Ctenophthalmus (Ctenophthalmus) nobilis nobilis 26.00 (26) 

Ctenophthalmus (Ctenophthalmus) nobilis vulgaris 12.00 (12) 

Ctenophthalmus sp. 1.00 (1) 

Doratopsylla dasycnema dasycnema 1.00 (1) 

Hystrichopsylla talpae talpae 14.00 (14) 

Leptopsylla (Leptopsylla) segnis 1.00 (1) 

Megabothris (Gebiella) turbidus 17.00 (17) 

Megabothris (Megabothris) walkeri 5.00 (5) 

Megabothris sp. 1.00 (1) 

Nosopsyllus (Nosopsyllus) fasciatus 1.00 (1) 

Nosopsyllus londiniensis 2.00 (2) 

Peromyscopsylla spectabilis 2.00 (2) 

Rhadinopsylla (Actenophthalmus) pentacantha 2.00 (2) 

Typhloceras poppei poppei 1.00 (1) 

Unknown 10.00 (10) 
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Fig. 3.7. Histogram representing frequency distribution of fleas on rodent 
populations. Dashed lines represent the median of non-zero values, which is 1 for 
all species. White: bank vole; grey: field vole; black: wood mouse. 

 

 

Fig. 3.8. Average number of fleas per individual rodent across sampling seasons. 
Error bars represent standard error. Solid line: pooled species; dotted line: bank 
vole; dashed line: wood mouse. 
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Fig. 3.9. Percentage of flea species found in the two different sampling seasons. 
Percentage was calculated on the total number of fleas collected in each of the 
two seasons. 

 

Fig. 3.10. Taylor’s power law relationship for fleas. Plot of log mean infestation 
versus log variance for all flea species. Each data point represents a trapping 
session (data pooled for all host species). 
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3.3.2 Phylogenetic analysis 

 

3.3.1.1 Ticks 
The sequences obtained from tick specimens were compared with the ones 

deposited in GenBank to confirm morphological identification, and to verify 

whether there were sequences available for the species sampled. When using the 

sequences representing the segment of COI gene, the identification at species 

level was not possible because the search results returned identity ~90% with 

several different species of the Ixodes genus. In addition, there were no 

sequences in the GenBank database for the COI gene of Ixodes trianguliceps, 

namely the most represented species in the study. On the other hand, the 

sequences representing the 16S gene fragment matched the I. trianguliceps 

sequences in the GenBank database (identity ranging from 99% to 100%), 

confirming that the vast majority of the samples were actually of this species, 

and seven samples were actually phenotypically misidentified. In particular, four 

samples were morphologically identified as I. ricinus, and three as I. hexagonus, 

but they were, according to the molecular identification, I. trianguliceps.  

After selecting the best sequences, the COI gene based phylogenetic tree was 

created using 15 sequences from the sampled ticks of the length of 390 bp (Fig. 

3.11). The COI fragment was really effective in separating the I. trianguliceps 

clade from other Ixodes species; however, this clade seemed also split, with two 

samples probably representing a different I. trianguliceps subspecies (they were 

found on the same host species but in two different sites). Some samples 

identified morphologically as a different species were included in the I. 

trianguliceps clade, but the high bootstrap values and the match with sequences 

in GenBank database, makes molecular identification more likely to be correct. 

Better sequences were obtained amplifying the 16S gene, thus 56 sequences of 

the length of 253 bp were included in the phylogenetic tree (Fig. 3.12). In this 

case the separation among the out-groups, and the clades including Ixodes 

species was clear, but the I. trianguliceps clade is split in different sub-groups 

not matching any pattern regarding host species or location. However, 
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bootstrap values of these branches were quite low, excluding one representing 

some I. trianguliceps samples collected from a shrew (included only in the 

phylogenetic data analysis). 

 

 

 

Fig. 3.11. Phylogenetic tree of the partial COI gene sequences from ticks 
constructed by Maximum Likelihood method based on the Tamura 3-parameter 
model (Tamura, 1992) and 1000 bootstrap replicates. Branches corresponding 
to partitions reproduced in less than 50% bootstrap replicates are collapsed 
(50% majority rule consensus tree). Numbers indicate bootstrap values reported 
as percentages. Accession number is displayed for the sequences downloaded 
from GenBank. Species names represent morphological identification. *: sample 
not matching morphological identification. 
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Fig. 3.12. Phylogenetic tree of the partial 16S gene sequences from ticks 
constructed by Maximum Likelihood method based on the Tamura 3-parameter 
model (Tamura, 1992) and 1000 bootstrap replicates. Branches corresponding 
to partitions reproduced in less than 50% bootstrap replicates are collapsed 
(50% majority rule consensus tree). Numbers indicate bootstrap values reported 
as percentages. Accession number is displayed for the sequences downloaded 
from GenBank. Species names represent morphological identification. *: sample 
not matching morphological identification. 
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3.3.1.2 Fleas 
Flea sequences were identified on GenBank, but it was impossible to verify 

morphological identification in that way because sequences representing both 

genes were unable to provide definitive results. Identity >90% was found for a 

wide range of flea species of different genera and families, always including the 

genus of the species identified phenotypically. Four species were likely to be 

morphologically misidentified, since the BLAST search gave high matching scores 

with another species, and this result was confirmed by phylogenetic analyses. In 

particular, one sample identified as Ctenophtalmus nobilis nobilis, and two as 

Nosopsyllus londiniensis, were found to be Amalareus penicilliger penicilliger, 

while one sample identified as A. penicilliger penicilliger resulted C. nobilis 

instead. 

The phylogenetic tree of the partial COI gene included 13 sequences of length 356 

bp and it is shown in Fig. 3.13. The COI gene was able to separate different 

species in different clades, and this, in addition with the BLAST results, confirmed 

that the morphological identification of the above-mentioned specimens was 

incorrect. Interestingly, the C. nobilis clade was split, probably representing the 

two subspecies C. nobilis nobilis, and C. nobilis vulgaris, which are extremely 

challenging to distinguish only with morphology, and impossible even in female 

specimens. 

Finally, 59 sequences (276 bp) were obtained for a section of the 18S gene, and 

the phylogenetic tree realised is displayed in Fig. 3.14. Overall, the tree lacked 

resolution, as confirmed by the lower bootstrap support on clades within the tree. 

Different species were clustered together, and C. nobilis specimens from Skomer 

voles were clustered together, but in different clades. 
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Fig. 3.13. Phylogenetic tree of the partial COI gene sequences from fleas 
constructed by Maximum Likelihood method based on the General Time 
Reversible model (Nei and Kumar, 2000) and 1000 bootstrap replicates. 
Branches corresponding to partitions reproduced in less than 50% bootstrap 
replicates are collapsed (50% majority rule consensus tree). Numbers indicate 
bootstrap values reported as percentages. Accession number is displayed for the 
sequences downloaded from GenBank. Species names represent morphological 
identification. *: sample not matching morphological identification. 
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Fig. 3.14. Phylogenetic tree of the partial 18S gene sequences from fleas 
constructed by Maximum Likelihood method based on Jukes-Cantor model 
(Jukes and Cantor, 1969) and 1000 bootstrap replicates. Branches corresponding 
to partitions reproduced in less than 50% bootstrap replicates are collapsed 
(50% majority rule consensus tree). Numbers indicate bootstrap values reported 
as percentages. Accession number is displayed for the sequences downloaded 
from GenBank. Species names represent morphological identification. *: sample 
not matching morphological identification. 
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3.4 Discussion 
 

3.4.1 Factors affecting prevalence and intensity of 
infestation of ecto-parasites 
 

The numbers of ecto-parasites recovered from rodents were in general 

agreement with other studies in which collection was made on living, 

unanesthetised individuals (e.g. Paziewska et al., 2010; Randolph, 1975a). 

Although collection of ecto-parasites from live individuals may underestimate the 

actual parasite burden compared to anesthetised or euthanised animals, it has 

been shown that this method gives an accurate estimation of total ecto-parasite 

loads (Mooring and McKenzie 1995); further, the sampling method used for fleas 

has been proven to be a reliable indicator of flea population size (Krasnov et al., 

2004).  

The proportion of the population parasitised by ticks and fleas was very small, 

supporting the “20/80 Rule” (see Perkins et al., 2003; Woolhouse et al., 1997), 

which suggests that usually a small proportion of individuals in a population 

(20%) is responsible for a certain phenomenon, in this case sustaining the ecto-

parasite population, and potentially transmitting the related pathogens. 

According to the results, the percentage of the population carrying either ticks or 

fleas was lower than the 20%, and the population carrying both ecto-parasites 

was even lower, being 2.98% (only 22 individuals). Consequently, it was 

interesting to investigate patterns of prevalence and intensity of infestation to 

identify potential categories of individuals more likely to be involved in vector-

borne disease transmission.  

In general, bank voles were more parasitised by ticks and fleas than wood mice in 

terms of prevalence and also parasite burden. This finding is in agreement with 

Hussein (1980), which found microtine rodents more heavily parasitised by 

Ixodes trianguliceps than murine species in north-western England. In addition, 

the low level of general infestation found in this study was similar to the findings 

of Rudolph (1975a), who also reports similar burdens for I. trianguliceps in small 
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mammal species in England. In this study, I. trianguliceps accounted for 87% of 

the ticks collected, with only three cases of two different species of ticks co-

feeding on the same individual. The higher prevalence in bank voles may be 

determined by the overall dominance of I. trianguliceps, since, when I. ricinus has 

been found to be the dominant tick species, wood mice were the most 

parasitised hosts (e.g. Gray et al., 1999, Ireland; Kurtenbach et al., 1995, 

Germany). Regarding fleas, host preferences have been recorded in Kenya, where 

Saccostomus mearnsi (Mearn’s pouched mouse), among other small rodents, was 

recorded to account for > 95% of the fleas collected over 2 years (Young et al., 

2014). Bank voles were more parasitised than wood mice also in Ireland, where 

they represented an introduced species, although the two species shared the 

same flea species assemblage (Telfer et al., 2005). Nonetheless, no conclusions 

can be drawn on the parasite host preferences, since an important part of the 

ground dwelling small mammal community, shrew species, was not sampled, but 

these species are known to share the same ecto-parasite species, and 

represented a highly prevalent population (Bray et al., 2007; Mysterud et al., 

2015; Randolph, 1975a). 

Commonly, patterns of parasites prevalence and infestation have not been 

related to a species per se, but its density, home range, social structure, and 

behaviour (Krasnov et al., 2002). In this study, bank vole data showed that gender 

and season were the factors influencing ecto-parasite burden. Both, ticks and 

fleas were more prevalent and abundant in spring, and among males.  

According to tick life cycle, mostly dependent on temperature and humidity, ticks 

were expected to be more abundant in spring; in fact, in the UK, they peak in 

spring and decline over the summer to have another, smaller peak, in autumn 

(Dobson et al., 2011; Randolph, 1975b; Randolph et al., 2002; Randolph, 2004). In 

spring, a higher I. trianguliceps burden was also found in Norway, and the finding 

was not related to rodent demography; however, I. ricinus displayed the opposite 

trend, being more abundant in autumn (Mysterud et al., 2015). This may suggest 

a sort of niche segregation between the two species that could not be 

investigated in this study because of the scarcity of I. ricinus collected.  
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Nonetheless, this phenomenon may be extremely important in the context of 

disease transmission (e.g. host-parasite-pathogen association, infection 

seasonality), and it would be interesting to investigate sites where different 

species of ticks can be found in allopatry. 

Fleas are also influenced by climate, and the effect of seasonality have been 

reported in temperate and tropical areas (e.g. McCauley et al., 2008, Kenya; 

Harris et al., 2009, Poland). In Kenya, prevalence and intensity of infestation of 

the genus Xenopsylla were at their lowest after the rainy season, but other work 

in East Africa demonstrated that temperature, rainfall, and humidity determined 

different responses in Xenopsylla species, and in different locations (McCauley et 

al., 2008). In fact, not all flea species have the same reproductive strategy. In 

Poland, it has been observed that Hystrichopsylla orientalis is univoltine, with 

adults emerging between June and August and undergoing a decline during 

autumn and winter, while Ctenophthalmus agyrtes and Megabothris turbidus are 

bivoltine, emerging in March, and again in July/August (Harris et al., 2009). This 

species-specific behaviour, together with climate variables may explain the 

seasonality of the current results. Bank vole flea burden was higher in spring, but 

when analyses were carried out by flea genus, Hystrichopsylla, Ctenophthalmus, 

and Megabothris were more prevalent in autumn. This suggests that UK flea 

species may also adopt different reproductive strategies, which may be dependent 

by the climatic variables, but also by taxonomic characteristics. Interestingly, 

Telfer et al. (2007a) noticed that in autumn the flea community was more 

diverse, and dominated by Peromyscopsylla spectabilis, H. talpae talpae, and C. 

nobilis, while in this study spring flea community was more diverse, dominated 

by singletons. Nevertheless, as mentioned before, H. talpae, Ctenophthalmus sp., 

and Megabothris sp. were significantly more prevalent in autumn, suggesting 

that these species might have a similar reproductive seasonality across British 

Islands. This might influence investigations on flea diversity, host-flea 

assemblages, and flea-borne disease prevalence, since studies of rodent 

ectoparasites in temperate areas are usually suspended during winter, or are not 

continuous during the year, likely missing considerable information about flea 

diversity. In terms of flea diversity and host-flea assemblages, this study found 
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results in agreement with other field studies carried out in British Islands (e.g. 

Withenshaw et al., 2016; Telfer et al., 2007a), but a higher number of species 

were recovered. 

Another factor affecting ecto-parasite burden was sex, with more males carrying 

a higher number of ticks and fleas. Male gender-biased parasitism has been 

extensively reported across different taxa of parasites, but this pattern has also 

multiple exceptions due to the fact that parasites might choose the most 

convenient host: lower immune response, better trophic resource, higher 

probability of encounter, higher probability of transmission (Christe et al., 2007). 

Schalk and Forbes (1997) found that male biased parasitism was mainly 

recorded across arthropods and due to the lower host immune response caused 

by androgens. Among small rodents, individuals more likely to survive, namely 

heavier males, were reported to carry higher tick burdens (e.g. Perkins et al., 

2003; Harrison et al., 2010), and examples of male biased parasitism in rodent 

fleas exist too (e.g. Smith et al., 2005). However, this subject is still debated for 

different taxa; for example, no consistent patterns of the effect of host sex and 

body mass on rodent flea abundance was found in different biomes (Kiffner et al., 

2013). The effect of sex was found to be related to host species ranging 

behaviour, or mediated by host body mass, so in host species with opposite 

sexual dimorphism female were more parasitised (Kiffner et al., 2013; Kiffner et 

al., 2014). In Siberian chipmunks, I. ricinus male biased infestation was 

inconsistent, being connected to the season of sampling and the season of birth 

of the host (Le Coeur et al., 2015). In Negev desert, male and female biased 

parasitism was observed among rodent fleas, and this varied with season as well 

(Krasnov et al., 2005). Therefore, tick and flea host gender preference can involve 

factors related both to the host and the parasite.  

In conclusion, host preference may be a compromise between host suitability 

(Brunner and Ostfeld, 2008), host habitat preferences (home range in an area 

with a favourable microhabitat) (Randolph, 2004), host dispersal abilities, and 

abundance in different habitats (Boyard et al., 2008). This complex mechanism 

might explain the finding of higher tick prevalence in the site CW, the coniferous 
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woodland in Ceredigion; in fact, no different rodent community was found there, 

and no factors usually increasing tick abundance, such as grazing species 

presence, characterised the site. It may be just possible that the lush understorey, 

dominated by common heather and bilberry, represented a better microhabitat 

for the ticks, which are recognised to be favourably influenced by higher levels of 

humidity (Berger et al., 2014; Dobson et al., 2011; Randolph, 2004). 

Ticks and fleas were distributed differently across host species, as showed by the 

Taylor’s power law plots. This relationship defines clustering, with the slope of the 

line representing a specific distribution of the organism per unit area (Taylor, 

1961). Slope values > 1 indicate clustering, while slope = 1 indicates Poisson-

distributed data, so the less steep is the slope the less overdispersed are the data. 

Ticks, especially on bank voles, were more clustered than fleas, confirming the 

behavioural, ecological, and spatial differences of these two organisms 

parasitising the same rodent populations. 

Both tick and flea prevalence were negatively associated with wood mouse 

density, but the fit of the model was low, while there was no significant 

relationship with bank vole density. Host-density has been suggested to be 

positively correlated to ecto-parasite abundance/prevalence, but changes in host 

density may have unclear effects on parasite populations; for example, in ticks 

numerical responses may be biased by the difference between real (total tick 

population) and visible (questing individuals) tick population (Dobson, 2014). 

This relationship may be also complicated by delayed density dependent effects, as 

Telfer et al. (2007a) observed in rodent-flea dynamics in England; they recorded 

higher flea infestations the year after a peak of host density, but lower infestations 

during phases of high host density. Krasnov et al. (2002), investigating the flea, 

Xenopsylla dipodilli, infesting the gerbil Gerbillus dasyurus, also found a negative 

relationship at high, but not at low host densities. The explanation proposed was 

that at high rodent densities, there are more transient individuals that do not 

have access to burrows and are therefore less likely to be infested. In this study 

no clear relationship was found between ecto-parasites and host density. The 

only finding was a not well-supported negative relationship between wood mice 
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density and ecto-parasite prevalence. This may be due to the fact that wood mice 

were significantly less parasitised (or at least less parasites were recovered), or 

may indicate that the species dilutes tick and flea prevalence, although, this not 

necessarily mean a decrease in total parasite abundance. Fleas are known to 

spend most of the time in the burrows that are shared among all ground 

dwelling small mammal species, and ticks quest on the vegetation, available for 

any host, so there is a high percentage of parasitic population that could be in the 

environment, or on non-sampled hosts. The finding may also reflect the actual 

absence of relationship between host density and ecto-parasites, as supported by 

other studies (e.g. McCauley et al., 2008; Stanko et al., 2002; Stanko et al., 2006) 

Several mechanisms have been suggested to explain the decoupling of host 

density and parasite intensity/prevalence. For instance, host grooming 

behaviour, and consequent parasite mortality (Fichet-Calvert et al., 2003; 

Krasnov et al., 2006; Stanko et al., 2002; Whiteman and Parker, 2004), or parasite 

characteristics such as transmissibility, life history, and exposure to intra/inter-

specific competition (Krasnov et al., 2005; Stanko et al., 2006). 

To summarise, it seems clear that is challenging to identify a species, or a 

category, which universally represent a higher risk in terms of vector-borne 

disease transmission; therefore, in order to better understand disease dynamics, 

it is essential to appreciate local host-vector interaction dynamics.  

 

 

3.4.2 Effectiveness of molecular approach in ecto-parasite 
species identification 

 

Ecto-parasite samples proved to be difficult to analyse molecularly. The DNA yield 

from extraction varied greatly from different samples and the extraction via 

commercial kit yield remarkably less DNA than alkaline digestion. The quality of 

DNA obtained was also very variable, but overall primers targeting smaller 

fractions were more effective in PCR reactions. This phenomenon is not 
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uncommon with this type of samples, in which the large amount of chitinous 

structures and other chemical compounds interfere with DNA extraction and 

amplification (Sándor, personal communication). In insects, the large amount of 

polyphenol bound proteins, created by the enzymes (phenol-oxidases) in the 

cuticle, represent the most abundant contaminants in extracted DNA samples, but 

the mechanism by which phenolic compounds inhibit DNA-polymerase is not 

clear yet, they might bind DNA itself reducing PCR reactions (Arakane et al., 

2005; Koonjul et al., 1999).   Further, inhibitors of PCR amplification are present 

in engorged ticks, which might be not completely removed even after a correct 

DNA extraction (Schwartz et al., 1997b). These reasons are likely to explain the 

not always successful molecular work on the ecto-parasite samples, and as a 

result a limited amount of good quality sequences, of which the length might 

have affected the resolution of phylogenetic analysis. 

Despite these difficulties, alternatives to morphological identification of 

arthropod vectors, which can be difficult because lack of expertise, or degraded 

specimens, have been developed and are still under development (e.g. DNA 

barcoding, MALDI-TOF MS) (Diarra et al., 2017). The most common technique is 

sequencing gene from ribosomal sub-units (e.g. 12S, 16S, 18S), or the 

cytochrome oxidase subunit 1 (COI) (Yssouf et al., 2016), but there is currently 

no universal PCR protocol, and debate about the best pairs of primers is still 

undergoing (Ernieenor et al., 2017). Further, when DNA sequences are used for a 

BLAST search, it is assumed that sequences in GenBank database are correct and 

the database is comprehensive enough to allow species identification, but often 

this is not the case (Bridge et al., 2003; Song et al., 2008). However, molecular 

markers have been successfully used for arthropod species identification and 

phylogenetic analyses, including ticks and fleas (Ernieenor et al., 2017; Che Lah et 

al., 2016; Schmidt et al., 2015; Whiting, 2001; Whiting et al., 2008). Therefore, in 

this study both morphological and molecular analyses were performed to 

compare the two methodologies, assess the matching of the obtained sequences 

with those in the GenBank database, and compare the effectiveness of the widely 

used COI fragment with other molecular markers used in ticks and fleas. 
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Tick specimens represented almost entirely Ixodes trianguliceps, which was 

effectively identified morphologically, except for seven samples. COI sequences 

were not present on GenBank for I. trianguliceps, while all the sequences were 

effectively matched with sequences obtained amplifying the 16S ribosomal sub-

unit. This reveals that there are still gaps in tick molecular studies, and an 

extensive collection of sequences it is still not available. In fact, all the 16S 

sequences from I. trianguliceps were from a single study about this tick species in 

UK (Bown et al., 2006). However, the phylogenetic tree built according to the COI 

sequences was much more informative than the one constructed with the 16S; 

and it confirmed that the mismatch of the seven sequences with GenBank 

database was actually true, since the sequences were correctly clustered within 

the I. trianguliceps clade with a very high bootstrapping support. However, the 

clade seemed to split, with two samples probably representing a different 

species or subspecies. In order confirm this, further analyses are required, also 

because all the samples were collected from same host species, but the two split 

ones differed in location between each other, so it is arduous to form any 

hypothesis. The second phylogenetic tree clearly separated the Ixodes genus 

from the out-group, and clustered the different species together, but probably 

longer sequences, and so better resolution, was needed to identify any pattern 

in the I. trianguliceps clade. Interestingly, four I. trianguliceps collected from a 

shrew clustered together on a separate branch of the clade, suggesting some 

genetic variability of the same species parasitising a phylogenetically different 

host (shrews are not part of the rodent order Rodentia, but they are included in 

the Eulipotyphla order). Although this finding needs further analyses to be 

confirmed, this may be likely since shrews have been often found highly 

parasitised (Bray et al., 2007; Mysterud et al., 2015; Randolph, 1975a), and I. 

trianguliceps may have evolved specific adaptations to such host. For example, I. 

scapularis and Amblyomma americanus have been reported to express different 

saliva proteins when stimulated to start feeding on different hosts (Tirloni et al., 

2017). Different races of the same species are also found in I. uriae (seabird 

tick), which displays different population genetic structure according to the 

parasitised host (McCoy et al., 2003). Finally, these results confirmed that 16S 



100 

 

gene gives less phylogenetic resolution than COI, due to its slower mutation rate, 

but can be used as complementary to COI, when COI fails to produce reliable 

results, as 16S sequences are generally, and in particular also in this study, of 

better quality (Lv et al., 2014). 

Collected fleas displayed a much higher species variability compared to ticks, and 

morphological and molecular identification was more challenging. The absence of 

comparator sequences on GenBank, for the species of interest, made impossible 

the validation of the phenotypic identification through the BLAST search. 

However, three species that were morphologically identified as Nosopsyllus 

londiniensis and Ctenophtalmus nobilis were subsequently identified as 

Amalareus penicilliger thank to the comparison between GenBank results and the 

phylogenetic tree constructed with the sequences obtained from the COI 

segment. The phylogenetic classification was reliable since the species were all 

clustered as A. penicilliger, while, according to the morphological classification 

they would have been in different families or sub-families (A. penicilliger and N. 

londiniensis are included in the Ceratophyllidae family, but they are classified in 

different sub-families; C. nobilis is comprised in the Ctenophthalmidae family). 

Similarly, one sample identified as A. penicilliger was reliably identified as 

Ctenophtalmus nobilis thank to the analysis performed with the COI gene. As for 

the ticks, the tree constructed with the COI gene was more informative. The 18S 

gene tree lacked resolution, different species were clustered together, and there 

was no separation with regards to location or host species. Again, 18S typically 

shows lower mutation rates than COI therefore has less informative sites than 

COI (Hebert et al., 2003). In this case, the combination of phenotypic and genetic 

approaches was essential to determine species identification, and allow the 

characterisation of flea community. Fleas are widespread vectors of emerging 

and re-emerging infectious diseases (Bitam et al., 2010), therefore more effort 

should be put into developing a reliable identification method for eco-

epidemiologists (without an entomological background) to support their 

investigation of host-parasite-pathogen dynamics. According to the results, COI, 

the most used fragment of mtDNA for barcoding, might still represent the best 

choice, but more research is needed especially for obscure taxa, such as 
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Siphonaptera, where the combination of morphological and molecular 

approaches is still required, particularly when focusing on the pathogen they 

potentially harbour (Lawrence et al., 2015). Also, the BLAST search alone was 

mostly insufficient to provide definitive information on species identification, so 

more work is necessary to increase the number of sequences and their quality 

on GenBank. As GenBank relies on direct submissions from individuals, the 

volume of new information translates also into error accumulation, so more 

control and accuracy is necessary to be considered as a fully reliable tool for 

species identification (Shen et al., 2013). 

Finally, ecto-parasite population genetic studies are essential to address 

questions that cannot be addressed just with ecological methods. For example, 

genetic variation can be studied at a temporal (e.g. Dharmarajan et al., 2009), or 

at spatial scale (Paulauskas et al., 2006). Genetic variability can be investigated 

with regards to host-preferences, especially interesting when considering 

generalist parasites like ticks, and the formation of host specific races within a 

species (McCoy et al., 2003). All of this information represent critical insights to 

better understand host-parasite interactions, and consequently pathogen 

transmission (Araya-Anchetta et al., 2015). 
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Chapter 4 

 

Screening of directly-transmitted and vector-borne 

pathogens and parasites 

 

4.1 Introduction 

 

Sampled rodent communities were screened for several parasites and pathogens. 

The high potential of rodents as reservoirs for wildlife and human pathogens was 

discussed in Chapter 1, so faecal samples collected from the trapped individuals 

and their ecto-parasites were analysed to identify presence and prevalence of 

parasites and pathogens with different types of transmission modes. All the 

pathogens and parasites screened pose an epidemiological challenge because of 

the ability to infect multiple hosts, although generalism dynamics are still to be 

clarified (Webster et al., 2017). Host species of a particular pathogen may differ 

in abundance, exposure and susceptibility, so it is likely that each species does 

not contribute equally to parasite transmission (Altizer et al., 2003). Certain 

species may contribute disproportionately to transmission, representing a “key 

host”, responsible for the persistence of the pathogen in the population (Streicker 

et al., 2013). Therefore, parasites and pathogens known to be generalists, but 

described to have differential affinity for different host species and host 

characteristics, were selected in the study. 
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4.1.1 Directly transmitted pathogens 

 

In particular, the faecal samples were examined to detect Herpesvirus, 

Escherichia coli, Mycobacterium microti, and helminths. The significance of each 

of these pathogens will be discussed below. 

 

 

4.1.1.1 Herpesvirus 

The most documented Herpesvirus infecting wild rodent populations has been 

recognised as Murid Herpesvirus 4, which is a Gammaherpesvirus and infects 

respiratory and immune system cells (Blasdell et al., 2003). It has been reported 

to be present in UK, where its prevalence has been found higher in wood mice 

than bank voles, and not related to any seasonal or demographic pattern; 

although, it was more prevalent in heavier males, which were probably 

subjected to reactivation of latent infections (Telfer et al., 2007b). 

 

 

4.1.1.2 E. coli 

E. coli, is one of the most abundant bacteria associated with human and animal 

stool, but some strains are extremely pathogenic (e.g. shiga toxin-producing 

strains - STEC), and livestock and wildlife may act as reservoir (Hughes et al., 

2009). In birds, the circulation of strains producing pathogenic toxins was 

associated with season, probably due to seasonal risk factors, such as diet or 

dispersion patterns (Hughes et al., 2009). Peri-urban rodent faecal samples, in 

Madagascar, were found to be almost three times more likely to carry E. coli 

than livestock, containing strains also found in human faeces (Bublitz et al., 

2014). However, in Europe, wildlife is known to harbour a much wider range of 
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strains compared to humans, and wild rodents displayed very low prevalence in 

several investigations (e.g. Healing et al., 1980; Swiecicka et al., 2003). 

 

 

4.1.1.3 Mycobacterium microti 

Mycobacterium microti, the causative agents of vole tuberculosis, is a member of 

the M. tuberculosis complex (Brosch et al., 2002; van Soolingen et al., 1998) and 

causes chronic, endemic infection in different species of wild British rodents, 

altering their population dynamics (Burthe et al., 2008; Cavanagh et al., 2002; 

Kipar et al., 2013; Turner et al., 2014). Tuberculosis in voles causes clinical 

pathology, but only in the later stages of the infection; it has a slow development 

with externally visible cutaneous lesions recognisable only at a very late stage 

(Burthe et al., 2008; Cavanagh et al., 2004; Kipar et al., 2013). Post-mortem 

examination and culture from tissues of infected organs (e.g. lungs, spleen, liver, 

mesenteric lymph nodes) indicated much higher prevalence than previously 

estimated only on external signs (Cavanagh et al., 2002). M. microti has also 

been involved in infections in human subjects (Horstkotte et al., 2001; Niemann 

et al., 2000) and domestic animals (Emmanuel et al., 2007; Rüfenacht et al., 

2011).  

 

 

4.1.1.4 Helminths 

Helminths were also investigated in fresh faecal samples to characterise 

macroparasite communities in different species or categories (e.g. adults vs. 

juveniles, males vs. females). The targeted macroparasites were included in two 

phyla, Nematoda and Platyhelminthes. Nematodes are round worms that go 

through several stages of larval development shedding their cuticle; the last 

larval stage represents the immature adult (Taylor et al., 2007). In the direct life 
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cycle, the first two larval stages are free living stages and infection occurs with 

the ingestion of the third larval stage, but it can sometimes occur through skin 

penetration (Taylor et al., 2007). Some nematodes have an indirect life cycle, 

namely they have an intermediate host where the first two larval stages 

develop, and so the infection of the final host (where the worm will reproduce) 

is usually caused by the ingestion of the intermediate host (but it can be 

inoculation of the larva if the intermediate host is a blood sucking arthropod) 

(Taylor et al., 2007). 

Platyhelminthes, i.e. flat worms, are divided in two classes, Trematoda and 

Cestoda. The first class includes parasites having both direct and indirect life 

cycles, but the trematodes found in small mammals (as final hosts) belong to the 

subclass Digenea and all have an indirect life cycle, where the larval stages 

develop in a molluscan intermediate host (Taylor et al., 2007). Similarly, 

cestodes have an indirect life cycle, with one or more intermediate hosts (where 

the larval form develops), and a final host which get infected ingesting the larva 

(inside the intermediate host) and excrete parasite eggs through the faeces 

(Taylor et al., 2007).  

According to Walker et al. (2017) data collected from live animals 

underestimate macroparasite prevalence and abundance, but host-parasite 

associations, and trends such as gender-biased parasitism or taxonomic clusters 

can still be detected. Analysing host heterogeneities among rodents and shrews 

for 11 species of multi-host parasites (including helminths and coccidia), 

Streicker et al. (2013) recorded that the magnitude of host heterogeneity varied 

considerably across parasites, suggesting a continuum of host specialisation. 
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4.1.2 Vector-borne pathogens 

 

4.1.2.1 Tick-borne pathogens 

Ticks were screened for the following vector-borne pathogens, Anaplasma 

phagocytophilum (bacterium of the order of Rickettsiales), Babesia microti 

(intraerythrocytic protozoan), and Borrelia burgdorferi s.l. (spirochete 

bacterium).  

The tick-borne pathogens selected represent more or less recognised zoonotic 

threats (Gray, 2006; Homer et al., 2000), with B. burgdorferi, causative agent of 

Lyme disease, being one the most widespread and well-studied zoonotic tick-

borne pathogen in temperate regions of North America, Europe, and Asia 

(Dantas-Torres et al., 2012; Kilpatrick et al., 2017a). In UK, these have rodent 

species as main reservoir hosts and can be transmitted by different species of 

ticks, in particular Ixodes ricinus and I. trianguliceps (Bown et al., 2003; Bown et 

al., 2006). Ixodid ticks can be simultaneously infected by these organisms, for 

example I. scapularis has been reported to be commonly co-infected with 

different pathogen associations, suggesting that pathogens facilitate or limit 

other pathogens infection (Adelson et al., 2004; Hersh et al., 2014b). Among 

rodents, these infections have different levels of prevalence, but do not seem to 

affect survival (Bown et al., 2008), or to be correlated with rodent tick diversity 

(Foley and Piovia-Scott, 2014). However, Ostfeld et al. (2014) found that 

reservoir competence for B. burgdorferi s.l., B. microti, and A. phagocytophilum 

were associated with attributes of particular species; for example, B. burgdorferi 

competence seemed mainly positively correlated with population density, while 

B. microti competence was negatively associated with body mass. 
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4.1.2.2 Flea-borne pathogens 

Rodent fleas have been recognised as vectors for numerous species of 

bartonellae (Bitam et al., 2010; Tsai et al., 2011). In Britain, the flea 

Ctenophthalmus nobilis collected from bank voles was confirmed to be an 

efficient vector for B. taylorii and B. grahamii (Bown et al., 2004), and five 

species have been confirmed to circulate in woodland rodent communities 

(Birtles et al., 2001; Telfer et al., 2007). Small mammals have demonstrated a 

high Bartonella prevalence, but infections do not result in clinical disease 

(Kosoy et al., 1997; Telfer et al., 2010). Also, diversity of Bartonella species in 

ecto-parasites seems to be much wider than species detected in hosts (Tsai et 

al., 2011).  

Pathogen screening might also reveal patters of co-infection; in fact, several 

genera of microparasites have frequently been found infecting the same 

individual (e.g. Healing, 1981). Infection risk for a microparasite has been 

reported to be significantly positively or negatively correlated with the infection 

by other microparasites. For instance, B. microti infection was positively 

correlated with anaplasmosis, but negatively correlated with Bartonella 

infection, likewise individuals infected by A. phagocytophilum were significantly 

less at risk of Bartonella infections (Telfer et al., 2010). In addition, helminth co-

infections affect magnitude of infection and parasite species assemblages, and 

have an impact on microparasite infections, altering host vulnerability 

(Budischak et al., 2015). Finally, some pathogens are assumed to infect multiple 

hosts, but between-species transmission among sympatric hosts may not be 

inevitable, therefore genetic analyses of generalist pathogens are also essential 

to determine whether host species are actually infected by the same organisms 

(e.g. different strains) (Withenshaw et al., 2016). 
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4.2  Methods 

 

4.2.1 Extraction and amplification of pathogen DNA 

 

Faecal samples and ecto-parasites were collected from individual rodents as 

illustrated in the Methods section of Chapter 2 and 3. DNA was extracted from 

ecto-parasites as described in the Methods section of Chapter 3, while total DNA 

was extracted from faecal samples using QIAamp DNA Stool Mini Kit (Qiagen, 

UK) according to manufacturer protocol. Eluted DNA samples were used for PCR 

reactions and kept in the freezer for storage at -18°C. In total 358 faecal samples 

were analysed from the two highest density sites, Skomer and Mere Pool Valley 

woodland in Stackpole (site MPW). These were collected from autumn 2015 to 

autumn 2016; 299 samples were from bank voles (including Skomer voles), and 

59 samples from wood mice. 

Herpesvirus detection consisted of a nested PCR amplification targeting the 

highly conserved DNA polymerase (DPOL) gene of Herpesviruses using the 

consensus primer sets (ILK, DFA, TGV, KG1, and IYG), according to Vandevanter 

et al. (1996) and Zheng et al. (2016). The first reaction included the primers 

DFA (5’-GAYTTYGCNAGYYTNTAYCC-3’), ILK (5’-TCCTGGACAAGCAGCARNYSGC 

NMTNAA-3’), and KG1 (5’-GTCTTGCTCACCAGNTCNACNCCYTT-3’), while the 

second reaction comprised TGV (5’-TGTAACTCGGTGTAYGGNTTYACNGGNGT-

3’) and IYG (5’-CACAGAGTCCGTRTCNCCRTADAT-3’). The reaction mix of 10 μl 

consisted of 2 μl of DNA template, 0.5 μl of each primer, 5 μl of Biomix (Bioline, 

UK), and 1.5 μl of nuclease free water (2 μl in the second reaction). The 

amplification program, in both reactions, comprised 45 cycles: denaturing at 

95°C for 20 sec, annealing at 46°C for 1 min, and extension at 72°C for 30 sec, 

with an initial denaturation step at 95°C for 12 min, and a final elongation at 

72°C for 10 min. In the second reaction 2 μl of the product from the first reaction 

was included as template. As positive control was added “Clinical Virology 
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Multiplex I: Immunodeficiency panel working reagent for Nucleic Acid 

Amplification Tests (NAT)” from NIBSC, according to manufacturer instructions. 

The expected size of the DNA amplified was between ~160 and ~232 bp. 

Escherichia coli primers were selected according to Wang et al. (1996) (ECO-1 

5’-GACCTCGGTTTAGTTCACAGA-3’ and ECO-2 5’-CACACGCTGACGCTGACCA-3’), 

as they were able to amplify a wide range of E. coli strains from different 

species, targeting the malB promoter gene. The reaction mix of 10 μl included 2 

μl of DNA template, 0.5 μl of each primer, 5 μl of Biomix (Bioline, UK), and 2 μl of 

nuclease free water. This reaction mix was used for all the following PCRs 

described in this section. The amplification program consisted in an initial 

denaturation of 15 sec at 94°C, 55 cycles of denaturing at 94°C for 3 sec, 

annealing at 50°C for 1 min, and extension at 72°C for 35 sec, and a final 

elongation step of 2 min at 72°C. The expected product size was ~585 bp. After a 

trial PCR, and the sequencing of a positive sample, this was added to the 

reaction as positive control. 

In order to identify more strains of Mycobacterium microti two sets of primers 

were used targeting the flanking regions of the RD1mic gene (RD1micFl-Fw 5’-

GCAGTGCAAAGGTGCAGATA-3’ and RD1micFl-Rv 5’-GATTGAGACACTTGCCACGA 

-3’), and the internal region of the same gene (RD1micInt-Fw 5’-

TCCGTACCTTTCCGACTATC-3’ and RD1micInt-Rv 5’CGGGAAGGTGTTATCTCCTC-

3’) (Brosch et al., 2002; Smith et al., 2009c). In both reactions the amplification 

program included 90 sec at 95°C, 35 cycles of denaturing at 95°C for 30 sec, 

annealing at 58°C for 1 min, and extension at 72°C for 4 min, and a final 

elongation of 3 min at 72°C. Strains with an intact RD1mic gene were expected to 

generate products of ~642 bp with the internal primer and flanking primer, 

while strains with RD1mic deleted were expected to generate a product of ~360 

bp with the flanking primers only (Smith et al., 2009c). 

A nested PCR targeting the 16S rDNA was performed to identify A. 

phagocytophilum (Massung et al., 1998). First reaction included the primers 

ge10r (5’-TTCCGTTAAGAAGGATCTAATCTCC-3’) and ge3a (5’-CACATGCAAGTC 

GAACGGATTATTC-3’), and second reaction ge9f (5’-AACGGATTATTCTTTATAGC 
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TTGCT-3’) and ge2 (5’-GGCAGTATTAAAAGCAGCTCCAGG-3’). The final expected 

product size was ~546 bp, and the two amplification programs comprised an 

initial denaturation at 95°C for 2 min, 40 cycles (30 in the second PCR) of 

denaturing at 94°C for 30 sec, annealing at 55°C for 30 sec, and extension at 

72°C for 1 min, and a final elongation step at 72°C for 3 min. 

Primers and protocol to identify Babesia microti were selected according to 

Bown et al. (2008), who used primers specific to strains circulating in northern 

England (KebabF 5’-GAATTTCTGCCTTGTCATTAATC-3’ and KebabR 5’-

GTAAATACTGGAAGATAGTAAGG-3’), with an expected final product size of 

~240 bp. The program included 55 cycles: denaturing at 95°C for 20 sec, 

annealing at 50°C for 50 sec, extension at 72°C for 30 sec; in addition, 2 min 

initial denaturation at 95°C, and 2 min final elongation at 72°C were performed. 

Additionally, in order to test whether other strains were circulating at the study 

sites another PCR reaction targeting the 16S rDNA gene with the primers BAB-1 

(5’-CTTAGTATAAGCTTTTATACAGC-3’) and BAB-4 (5’-ATAGGTCAGAAACTTGAA 

TGATACA-3’) (Schwartz et al., 1997a) was conducted with the following 

amplification program: initial denaturation at 94°C for 2 min, 35 cycles of 

denaturing at 94°C for 1 min, annealing at 55°C for 1 min, extension at 72°C for 2 

in, and final elongation at 72°C for 2 min (Adelson et al., 2004; Duh et al., 2001; 

Persing et al., 1992). Expected product size was ~238 bp. 

The 23S rDNA gene was targeted for B. burgdorferi PCR amplification (Bb23Sf 

5’-CGAGTCTTAAAAGGGCGATTTAGT-3’ and Bb23Sr 5’-GCTTCAGCCTGGCCATAA 

ATAG-3’) (Courtney et al., 2004). The amplification protocol consisted of an 

initial denaturation at 95°C for 10 min, 55 cycles of denaturing at 95°C for 15 

sec, annealing at 50°C for 1 min, extension at 72°C for 1 min, and final 

elongation for 2 min at 72°C. 

All the tick samples tested for A. phagocytophilum, B. microti, and B. burgdorferi 

were pooled according to site, season, and host of collection because low 

pathogen prevalence was expected. Positive controls for these organisms were 

obtained from Prof Richard Wall (University of Bristol).  
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Finally, DNA from bartonellae was amplified with the methodology described by 

Roux and Raoult (1995), and successfully employed by Telfer et al. (2005) to 

distinguish Bartonella species. A Bartonella genus-specific PCR assay that 

amplifies a fragment of the 16S–23S intergenic spacer region (ISR) consisted of 

a semi-nested PCR (first reaction big-F 5’-TTGATAAGCGTGAGGTC-3’ and big-R 

5’-TCCCAGCTGAGCTACG-3’; second reaction reverse primer substituted by bog-

R 5’-TGCAAAGCAGGTGCTCTCCCA-3’). Both reactions programs were as follows: 

initial denaturation 3 min at 96°C, 40 cycles of denaturing at 96°C for 10 sec, 

annealing at 55°C for 10 sec, extension at 72°C for 50 sec, and final elongation at 

72°C for 5 min. The use of PCRs targeting the ISR exploits recognized inter-

Bartonella species hypervariability, and so amplification products obtained 

from different species are of different sizes (Roux and Raoult, 1995). In 

addition, another reaction targeting the ssrA gene of Bartonella was performed 

according to Diaz et al. (2012). The primers, designed to have a final product of 

~253 bp, were ssrA-F (5’-GCTATGGTAATAAATGGACAATGAAATAA-3’) and 

ssrA-R (5’-GCTTCTGTTGCCAGGTG-3’). The protocol included 2 min at 95°C as 

initial denaturation step, 55 cycles: denaturing at 95°C for 15 sec, annealing at 

50°C for 1 min, extension at 72°C for 30 sec, and a final elongation step of 2 min 

at 72°C. Positive controls for bartonellae were obtained from Dr Michael Kosoy 

(Centre for Disease Control and Prevention, Ft. Collins, USA). 

For each PCR described, the presence of amplified DNA was confirmed by 

electrophoresis in a 1% agarose gel, with the exception of the Bartonella 

targeting the ISRs, as a 3% agarose gel was employed. PCR products were then 

stored frozen at -18°C.  

Amplified DNA was purified using SureClean Plus (Bioline, UK) according to the 

manufacturer protocol, and then the samples, consisting of 1 μl forward primer, 1 

μl purified DNA, and 4 μl nuclease free water, were sequenced with AB3500 DNA 

sequencer (Applied Biosystems). Sequences obtained were compared to 

sequences deposited in GenBank using the BLAST feature of NCBI 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1990). In the case of the 

positive samples for B. microti and bartonellae, the sequences were imported in 
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MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets 

(Kumar et al., 2015). Appropriate sequences downloaded from GenBank were 

added to the data sets to represent out-groups, and sequences of the species 

expected in the data set were also added and imported together with the 

sequences obtained in this study. Multiple sequences alignment was performed 

by ClustalW with the same software. The sequences for the analysis were chosen 

according to their quality, short sequences or with a low quality chromatogram 

were excluded. MEGA was also used for phylogenetic analyses; phylogenetic trees 

were constructed by the Maximum Likelihood method based on best fitting 

model for each set of sequences (i.e. lowest BIC score), and bootstrap test of 1000 

replicates.  

 

 

4.2.2 Faecal egg count (FEC) for helminths   

 

Fresh faecal samples were collected during trapping sessions in spring 2016 

and autumn 2016 from site MPW, MPG, CW, and WW. The same day of 

collection, the gastrointestinal parasite burden was determined based on faecal 

egg count (FEC), a non-invasive method widely used in ecological studies 

(Biedrzycka and Kloch, 2016; Sommer, 2005). Faecal flotation was performed 

using saturated salt solution, and the count of parasite eggs was estimated using 

a Modified McMaster technique (Dunn and Keymer, 1986). For each sample, 

0.01 g were weighed, placed in a mixing tube with 2 ml of flotation solution and 

5 metal beads and shacked for 30 seconds until the faecal material was broken 

down. This solution was filtered with a very fine sieve in a new tube, and 

immediately pipetted into the chambers of a McMaster slide until completely 

filled. After 30 minutes the chambers were examined under high magnification 

microscope, and all egg types were counted. The number of eggs was calculated 



113 

 

per 1 g of faeces. Eggs were identified taxonomically at genus level, or at class 

level with regards to trematodes.  

 

 

4.2.3 Data analysis 

 

According to Alexander (2012), prevalence data were analysed using logistic 

regression and non-parametric Wilcoxon signed rank test (or the non-

parametric Kruskal-Wallis test in case of more than two groups). 

Helminths descriptive statistics included arithmetic mean and median to 

investigate individual burden intensity, and geometric mean to investigate 

parasite distribution across infected individuals (Alexander, 2012). 

Macroparasite burden was compared using negative binomial regression, and 

the same test was used to identify whether season, species, sex, age class, site, 

co-infection with another parasite, or the interaction among these factors 

explained patterns of infection loads. Further, using the methodology illustrated 

in Streicker et al. (2013), the relative host-species contribution to transmission 

was estimated for helminths. Briefly, πi is the relative contribution of host 

species i to the parasite total transmission and it is proportional to the product 

of that species abundance, infection and shedding asymmetries.  

 

where Hi is the total number of individuals of species i infected or not, pi is the 

proportion of infected (prevalence) in species i, λ is the number of per capita 

eggs shaded by individuals of species i, and N the number of host species in the 

community. The equation used to estimate the host-species contribution 

relative to the average in the host community was: 
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where θA represents the degree of asymmetry in host abundance, θI the degree 

of asymmetry in host prevalence, and θS the degree of asymmetry in eggs 

shedding.  

  

where  is the average number of individuals per host species in the whole 

community. 

 

where  is the total number of infected individuals in the community divided 

by the total number of individuals (i.e. the average prevalence of infection in the 

community, regardless of species identity). 

 

where l  is the total number of infective stages shed by all infected individuals 

in the community divided by the total number of infected hosts (i.e. the average 

per capita rate of shedding in the whole community, regardless of species 

identity). For host species i to be a key host, πi > T (T = threshold value), at least 

one of these asymmetries must considerably exceed 1. In other words, it either 

needs to be much more abundant than other hosts in the community, and/or be 

infected more than expected (e.g. be more exposed to the parasite, or more 

susceptible), and/or shed more infective stages. This equation shows that a 

host-species can make an asymmetric (disproportionate) contribution to the 

total infectious pool by being super-abundant, super-infected, and/or a super-

shedder. 

All the analyses were performed with the software R (R Core Team, 2016). 
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4.3 Results 

 

4.3.1 Directly transmitted pathogens 

 

Total Herpesvirus prevalence was 1.12% (4 individuals), but only bank voles 

were found positive, therefore wood mouse prevalence was 0%, while bank 

vole was 1.34%. All the positive samples were collected from Skomer, 

representing two adult females and two adult males. The sequences, of length 

~150 bp showed high similarity (>90%) with human alphaherpesvirus 3 

varicella-zoster (3 samples), and human alphaherpesvirus 2 herpes simplex (1 

sample).  

Only six individuals (1.67%) were found to have E. coli in the faeces, of which 

one was an adult male wood mouse from site MPW, and 5 bank voles (2 females 

from Skomer, and 2 females and 1 male from site MPW), therefore the relative 

species-specific prevalence was 1.69% and 1.67% respectively. All the positive 

samples were collected in autumn. The identification of the sequences via the 

BLAST search revealed that most of the strains were associated with human 

strains; in particular, two displayed high homology with the strain LF82 

(associated with Crohn’s disease), and three were highly similar to the 

innocuous laboratory strain K12. Finally, the sequence retrieved from the wood 

mouse sample did not show high similarity with any particular strain. 

There was no M. microti DNA found in the faecal samples analysed. 

Analysis of the confidence of freedom for prevalence results are displayed in 

Appendix II. 
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4.3.2 Helminths detected by FEC 

 

Total sample size for the FEC was 212, of these individuals 69 were found not 

being parasitised at all (no eggs counted in the McMaster slide grid).  

Two phyla were represented in the samples, Nematodes and Platyhelminthes, 

and Cestoidea was the most represented class among the latter, with very few 

individuals carrying Trematode eggs. Amongst Nematodes, Trichuris sp., 

Enterobius sp., Necator sp., and Ascaris sp. were recovered in the samples 

analysed, while Hymenolepis sp., Taenia sp., and Dypilidium sp. were the 

Cestoideans observed. 

Considering pooled data, Cestoidean burden was higher than Nematoda (W = 

7313.5, p < 0.01) (Fig. 4.1). According to the negative binomial regression 

Nematode burden was negatively associated with intensity of infection of 

Cestoidea (p = 0.03), while the opposite relationship was not significant (Fig. 

4.2). Nematode infection was higher in bank voles than wood mice (p < 0.01), 

while this was not true regarding Cestoidean. Also, Nematode burden was 

significantly higher in spring (both species pooled data, p < 0.01), while the 

opposite (higher burden in autumn) was observed for Cestoda (p < 0.01) (Fig. 

4.3). According to the negative binomial distribution model, Nematode burden 

was not explained by sex, but this covariate was significant when season was 

added to the model, resulting in males being more parasitised in spring (p < 

0.05). Juveniles were less parasitised and “sub-adult” was the age class with 

highest intensity of infestation (p < 0.5). Finally, intensity of infection in site 

WW was significantly higher than other sites. Cestoda infestation, in the 

population sampled, was higher in females (p < 0.05), and this relationship was 

stronger in autumn (p < 0.01). Age class was also associated with patterns of 

parasite burden, with juveniles and sub-adults displaying higher parasites loads 

(p < 0.01). With regards to parasite genera, Taenia burden was higher in wood 

mice (p < 0.05), while Dypilidium and trematodes were only recorded in bank 

voles (Fig. 4.4). Finally, prevalence of E. coli (data available only for site MPW) 
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was not significant in explaining intensity of infestation for both nematodes and 

cestodes.  

Nematode prevalence (the proportion of infected) was higher in bank voles (p < 

0.05), and in spring (both species pooled data, p < 0.05), but sex and age class 

were not significant (Table 4.1). In this case cestode prevalence was not 

significant in predicting Nematoda prevalence. On the other hand, cestode 

prevalence was not explained by season, host-species, sex, age class, or 

nematodes prevalence (Table 4.1). For a summary of descriptive statistics see 

Table 4.2 and Table 4.3.  

Regarding host heterogeneities in transmission, the wood mouse represented 

the super-spreader host-species for cestodes and the bank vole for nematodes; 

wood mouse asymmetry was mainly in the number of eggs shed (super-

shedder), while bank voles had high values for all the three components of 

asymmetry (Fig. 4.5). Analysing the data by parasite genus revealed that wood 

mice contributed disproportionally to the transmission of Ascaris, Enterobius, 

and Taenia, representing always a super-shedder species. On the contrary, bank 

vole asymmetry was mostly represented by host abundance and prevalence, or 

by all three components. The result showed that bank vole was a key host-

species for Hymenolepis, Necator, and Trichuris. 
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Fig. 4.1. Box and whiskers plot representing nematodes (white) and cestodes 
(grey) intensity of infection (log transformed). Individuals not infected are not 
shown.  

 

 

 

Fig. 4.2. Box and whiskers plot representing the relationship between nematodes 
and cestodes intensity of infection. Individuals not infected are not shown.  
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Fig. 4.3. Box and whiskers plot representing nematodes (white) and cestodes 
(grey) intensity of infection (log transformed) in the two seasons of sampling. 
Individuals not infected are not shown. 

 

 

Fig. 4.4. Box and whiskers plot of parasites intensity of infection (log 
transformed) in bank voles (BV) and wood mice (WM). Nematodes (grey scale) 
and cestodes (green scale) are displayed by genus. Individuals not infected are 
not shown. Dots represent outliers. 
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Fig. 4.5. Contributions of three sources of host heterogeneity for the parasites by 
class and by genus. Label values represent the proportion to the total 
contribution of infective stages produced by each host species (π). Key host 
species for each parasite: π > 0.5. a) Nematoda; b) Cestoda; c) Ascaris; d) 
Enterobius; e) Hymenolepis; f) Necator; g) Taenia; h) Trichuris. 

 

 

 

 

 

a) Nematoda b) Cestoda c) Ascaris 

d) Enterobius e) Hymenolepis f) Necator 

g) Taenia h) Trichuris 
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Table 4.1. Proportion of infected (prevalence) by host-species and season of 
sampling. BV: bank vole; FV: field vole; WM: wood mouse. 

Season Species Nematoda Cestoda 

Autumn 

BV 0.54 0.25 

FV 0.00 0.43 

WM 0.24 0.26 

Spring 
BV 0.80 0.30 

WM 0.84 0.12 
 

 

 

Table 4.2. Nematoda: descriptive statistics. BV: bank vole; FV: field vole; WM: 
wood mouse; F: female; M: male; A: adult; S = sub-adult; J = juvenile; St.Dev: 
standard deviation.  

 

 

 

 

Season Species Sex Age Mean St. Dev Median 
Geometric 

Mean 
Autumn BV F A 3.43 4.39 1.00 3.10 
Autumn BV F J 0.20 0.45 0.00 1.00 
Autumn BV F S 2.89 6.38 0.00 3.25 
Autumn BV M A 26.36 36.35 9.50 19.92 
Autumn BV M J 0.00 0.00 0.00 na  
Autumn BV M S 4.60 8.31 1.00 4.75 
Autumn FV F A 0.00 0.00 0.00 na  
Autumn FV F J 0.00 na 0.00 na  
Autumn FV M A 0.00 na 0.00 na  
Autumn FV M S 0.00 0.00 0.00 na  
Autumn WM F A 6.33 15.03 0.00 6.08 
Autumn WM F J 0.00 na 0.00 na  
Autumn WM F S 0.44 0.73 0.00 1.26 
Autumn WM M A 1.00 2.26 0.00 2.88 
Autumn WM M S 1.22 4.70 0.00 2.71 
Spring BV F A 10.21 10.35 7.50 6.25 
Spring BV F J 0.00 0.00 0.00 na  
Spring BV F S 14.90 16.95 11.50 11.81 
Spring BV M A 18.67 31.92 8.00 9.32 
Spring BV M S 12.21 17.35 5.00 9.69 
Spring WM F A 11.50 14.85 11.50 4.69 
Spring WM F S 4.17 5.98 2.00 2.86 
Spring WM M A 9.08 10.78 4.00 6.53 
Spring WM M S 0.00 na 0.00 4.58 
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Table 4.3. Cestoda: descriptive statistics. BV: bank vole; FV: field vole; WM: wood 
mouse; F: female; M: male; A: adult; S = sub-adult; J = juvenile; St.Dev: standard 
deviation.  

Season Species Sex Age Mean 
St. 

Dev Median 
Geometric 

Mean 
Autumn BV F A 0.00 0.00 0.00 na 
Autumn BV F J 176.80 319.72 12.00 105.44 
Autumn BV F S 4.16 15.06 0.00 5.01 
Autumn BV M A 0.29 0.61 0.00 1.26 
Autumn BV M J 1.00 1.41 1.00 2.00 
Autumn BV M S 4.15 12.28 0.00 4.97 
Autumn FV F A 0.00 0.00 0.00 na 
Autumn FV F J 3.00 na 0.00 3.00 
Autumn FV M A 0.00 na 3.00 na 
Autumn FV M S 12.50 13.43 0.00 8.12 
Autumn WM F A 0.33 0.52 12.50 1.00 
Autumn WM F J 0.00 na 0.00 na 
Autumn WM F S 91.33 166.96 0.00 57.14 
Autumn WM M A 17.92 59.83 0.00 11.24 
Autumn WM M S 15.83 43.38 0.00 23.62 
Spring BV F A 2.64 6.07 0.00 2.65 
Spring BV F J 5.00 7.07 0.50 10.00 
Spring BV F S 0.80 1.93 5.00 3.46 
Spring BV M A 0.89 1.62 0.00 1.49 
Spring BV M S 0.21 0.63 0.00 2.00 
Spring WM F A 0.00 0.00 0.00 na 
Spring WM F S 1.83 4.49 0.00 11.00 
Spring WM M A 0.54 1.33 0.00 3.46 
Spring WM M S 0.00 na 0.00 na 
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4.3.3 Pathogen screening in ticks 

 

Molecular analysis revealed that Anaplasma phagocytophilum was present in 

site MPW (one of the woodland in Stackpole) in the pooled sample of ticks 

collected from bank voles in spring. The sequence displayed high similarity (id > 

99%) with the sequences present in GenBank database for the species. 

No positive results were found for B. microti (Kielder forest strains), and B. 

burgdorferi. However, Babesia microti was present at site CW (conifer woodland 

in Ceredigion), detected in a sample of ticks collected from bank voles in spring. 

The sequence recovered showed high homology (id = 97%) with a B. microti 

strain (Munich) from Europe isolated from rodent species and from a human 

case in Spain. Phylogenetic analyses confirmed that the strain identified was 

more related to European strains than to other strains from UK (Fig. 4.6). 

 

Fig. 4.6. Phylogenetic tree of the partial 18S gene from Babesia microti 
constructed by Maximum Likelihood method based on Kimura 2-parameter 
model (Kimura, 1980) and 1000 bootstrap replicates. Numbers indicate 
bootstrap values reported as percentages. Accession number is displayed for the 
sequences downloaded from GenBank. The scale bar corresponds to 0.20 change 
per nucleotide. 

 KT271759.1 Babesia microti strain S1

 AB366158.1 Babesia microti strain Munich

 sample B5

 AF510196.1 Babesia microti strain MD UK

 AF510195.1 Babesia microti strain Kings College UK

 XM 002368068.2 Toxoplasma gondii

100

95

95

0.2  
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4.3.4 Pathogen screening in fleas 

 

All the fleas collected during trapping sessions (100) were analysed for 

detecting Bartonella species, and the total prevalence was 14.00%. Thus, 14 

individual fleas were positive according to the molecular results. All the positive 

fleas were collected from bank voles, with the exception of one from a field vole 

and one from a wood mouse. With regard to flea species, the infected fleas were 

represented by three Amalaraeus penicilliger, five Ctenophthalmus nobilis, three 

Hystrichopsylla talpae, and three Megabothris turbidus. The logistic regression 

showed that prevalence was not associated with flea species, flea burden, 

season, trapping session, or site (Fig. 4.7). In fact, positive fleas were collected 

from almost all study sites. Among bank voles, which hosted the highest number 

of infected fleas, flea prevalence did not significantly differ among sites, and 

host individual characteristics (sex, age class) were not associated with flea 

infection. 

Representative sequences among those identified through the BLAST search 

were chosen to perform a phylogenetic analysis, and investigate Bartonella 

species circulating among the studied populations (Fig. 4.8). The phylogenetic 

tree showed that at least three species of Bartonella were represented in the 

samples (B. taylorii, B. grahamii, and a species > 96% similar to B. rochalimae). 

No association was present between Bartonella species and flea species.  

The ssrA fragment was really effective in separating the Bartonella species, as 

confirmed by the high bootstrap values and the match with sequences in 

GenBank database. 
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Fig. 4.7. Plot of all Bartonella species prevalence (%) across a) trapping seasons 
and b) study sites (labels represent sample size). 

a)

 

b) 
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Fig. 4.8. Phylogenetic tree of the partial ssrA gene from Bartonella species 
constructed by Maximum Likelihood method based on Kimura 2-parameter 
model (Kimura, 1980) and 1000 bootstrap replicates. Numbers indicate 
bootstrap values reported as percentages. Accession number is displayed for the 
sequences downloaded from GenBank. The scale bar corresponds to 0.20 change 
per nucleotide. 

 sample 06

 sample 20

 JN029797.1 Bartonella rochalimae strain BMGH
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 JN029775.1 Bartonella birtlesii strain IBS 325 non-coding RNA (ssrA) gene partial sequence

 outgroup AY956830.1 Salmonella enterica subsp. enterica serovar Gallinarum strain SGD-8 pathogenicity island 2 partial sequence and SsrA (ssrA) gene partial cds
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4.4 Discussion 

 

4.4.1 Low prevalence of directly transmitted pathogens 

 

MHV-68 (murine Herpesvirus), or MHV-4, was originally isolated from bank 

voles in Slovakia by Blaskovic et al. (1980), when they also isolated other 

related Herpesviruses (MHV-60 and MHV-72) from bank voles and from wood 

mice (MHV-76 and MHV-78). The high diversity of Herpesviruses in natural 

population is also confirmed by other studies (e.g. wood mice in Cheshire: 

Hughes et al., 2010; wild rodents in China: Zheng et al., 2016), that is why the 

choice of pan-herpesvirus primers seemed the best strategy to detect Alpha, 

Beta, and Gammaherpesvirus. This technique, employed by Zheng et al. (2016) 

on wild rodents and shrews rectal swabs in China, revealed a low viral loads in 

faeces, but a prevalence up to ~8% of a wide variety of Beta and 

Gammaherpesvirus. The very low prevalence found in this study might be 

explained by the type of sample tested. In fact, despite individuals testing PCR 

positive for their entire lifetime when spleens and lungs are tested (Blasdell et 

al., 2003), these viruses can be latent for long periods, with the consequence of 

no shedding of viral particles (Nash et al., 2001). Finally, it seems that the wood 

mouse is the major reservoir host (Telfer et al., 2007b), but no wood mice were 

found infected in the populations sampled. This finding, together with the 

similarity to human HVs of the positive samples, may suggest that no MHVs are 

circulating at the sampling sites, but other strains, potentially originated by 

rodent-human proximity, are present and have different epidemiological 

dynamics (e.g. more affinity with bank voles). 

E. coli occurrence in the mammalian gut has been found to vary from the more 

than 90% of gut microbiota in humans to the 56% of gut microbiota in wild 

mammals (Gordon and Cowling, 2003; Tenaillon et al., 2010). In particular, it 

has been hypothesised that the presence of E. coli in wild mammals is positively 
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related to exposure to human contamination (Iovine et al., 2015). In rodents, 

this bacterium has always been recovered at low prevalence (Kozak et al., 2009; 

Sayah et al., 2005; Swiecicka et al., 2003), supporting the findings of this study.  

Further, no pathogenic strains are reported to have rodents as reservoir hosts 

(e.g. Healing et al., 1980; Kilonzo et al., 2013). Therefore, the presence, in the 

rodent samples analysed, of strains similar to human ones is not surprising, but 

also needs further investigation at a finer genetic scale. In fact, high levels of 

genetic diversity have been reported in E. coli occurring in wild hosts, and 

similar features to human strains (e.g. antibiotic susceptibility) has also been 

found (Swiecicka et al., 2003). The positive samples were all collected in 

autumn almost exclusively from bank voles, and this may be explained by the 

relationship between gut microbiota and diet. In spring and summer, bank voles 

feed mostly on green parts of plants, while in autumn and winter they 

incorporate more seeds, influencing microbial flora (Ecke et al., 2018; 

Gebczynska, 1983; Hansson, 1979, 1985). It is likely that different food items 

determine presence and abundance of E. coli, and this would also be supported 

by the fact that no positive samples were found among Skomer voles, which 

have a less diverse diet, totally lacking in seeds, due to Skomer habitat features. 

However, this is a hypothesis that needs further investigation to be confirmed. 

No individuals were found infected by Mycobacterium microti, and this could be 

due to the absence of lesions to the gastro-intestinal tract, as found by Burthe et 

al. (2008), Cavanagh et al. (2002), and Kipar et al. (2013), who recommend the 

analysis of liver and spleen to obtain a reliable prevalence estimation. Although, 

Wells (1946) found a high rate of mycobacterium shedding in faeces and urine, 

combined to frequent lesions to gastro-intestinal and urinary tract; in addition, 

M. avium has been found in sheep faeces, which has been successfully analysed 

through a molecular approach (Marsh and Whittington, 2001). Ultimately, 

further investigations are needed to conclude that M. microti is absent from the 

populations sampled. 

However, the confidence of freedom analysis (Appendix II) revealed that the 

prevalence estimated was likely to be reliable, since PCR is a methodology that 
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is considered highly sensitive and highly specific (Yang and Rothman, 2004). 

PCR has proved to be highly specific and sensitive in the detection of bacteria in 

several different types of samples, including faecal swabs (Vaidya et al., 2008; 

Whyte et al., 2002). 

 

 

4.4.2 Prevalence, intensity of infection, and host 

heterogeneity of rodent helminths 

 

Distribution of helminths, having complex life cycles, depends on survival and 

distribution of definitive and intermediate hosts, and on environmental 

conditions (Poulin and Morand, 2004). These are usually aggregated, with a 

small proportion of hosts being majorly parasitised, including nematodes and 

cestodes (Walker et al., 2017). In the study, 67.45% of the population was found 

to be parasitised by at least one genus, while 54.24% was infected by 

nematodes, 25.47% by cestodes and 12.26% by both taxa, confirming that 

different types of parasites, differing in life cycle, present distinct transmission 

dynamics. This was corroborated by the preferential distribution in different 

categories of hosts, and seasonal patterns. Moreover, another factor 

determining parasite prevalence and intensity is the interaction among parasite 

species (Behnke, 2008). Cestode burden was found to be generally higher than 

that of nematodes, and negatively affected nematodes intensity of infection, 

suggesting that among the population sampled cestodes exerted a higher inter-

specific competition, although being less prevalent, probably because of their 

indirect life cycle. Nevertheless, published experimental data established that 

interactions between intestinal helminths of rodents were mostly mediated by 

host immune response, and not by direct effect of one species upon the other 

(Behnke, 2008). In addition, definitive conclusions cannot be drawn due to 

sampling methodology. Faecal egg count is recommended when invasive 
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sampling (e.g. post-mortem) cannot be performed and gives reliable results on a 

variety of hosts (e.g. Lynsdale et al., 2015; Seivwright et al., 2004). However, it 

can give biased results due to factors related to parasites (e.g. adult parasite sex 

ratio, number, and fecundity: Guyatt and Bundy, 1993; Tompkins and Hudson, 

1999), or to the hosts (e.g. sex and age: Wood et al., 2013). Helminths also have 

interactions with gut microbiota, as demonstrated in humans and animals 

(Berrilli et al., 2012; Kreisinger et al., 2015; Loke and Lim, 2015); nevertheless, 

in this study, most likely due to the limited amount of data available, no 

association was found between E. coli prevalence and parasite prevalence or 

intensity of infection.  

Nematodes and cestodes seemed to display different seasonality; in fact, burden 

was higher in spring for the first, while in autumn for the latter, but this result 

needs to be considered with caution due to the quantity of data available. 

Nematode genera recorded present a direct life cycle with a phase of maturation 

in the environment outside the host, and their survival is mainly related to soil 

moisture and suitable temperature (Haukisalmi et al., 1996; Lewis, 1987). Thus, 

as it happens in other species (Vlassoff et al., 2001) spring may represent the 

peak of egg shedding for this type of parasites. On the other hand, cestodes need 

an intermediate host, so their annual variation is associated with the availability 

of the intermediate host (Foronda et al., 2011). These differences in life cycle 

might also explain the higher nematode burden in bank voles, which include a 

very low proportion of animal matter in the diet (e.g. insects representing 

intermediate hosts for cestodes), especially in spring (Gebczynska, 1983; Lewis, 

1987). Ultimately, parasite characteristics and host ecology both contribute to 

shape host-parasite associations, and need to be taken in account when 

considering relative host contribution to the transmission in multi-host 

parasites. Undoubtedly, the environment, and the overall species community 

play a role too. In this study, a significantly higher burden of nematodes was 

found in the WW woodland that was usually grazed by sheep and cows (hosts of 

several nematode species), and with a lower presence of masting trees, 

determining higher degree of herbivory and a higher risk of nematode larvae 

ingestion. 
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With regards to host individual factors, sex and age class affected parasite 

distribution. Male-biased infection was found in nematodes, while the opposite 

was recorded for cestodes. Male-biases have been frequently found in 

nematodes among rodents and other species (Ferrari et al., 2004; Perkins et al., 

2008; Poulin, 1996), but this phenomenon is not always observed across all 

seasons and locations (Hwang et al., 2010; Krasnov et al., 2012); also, nematode 

transmission seems to be driven not only by disassortative mixing (Perkins et 

al., 2008). Interestingly, the less common female-biased parasitism has been 

previously reported in cestode intensity of infection. For example, Hwang et al. 

(2010), among red-backed voles (Myodes gapperi), found higher Cestoda 

intensity in females, and in particular in juvenile females. Similarly, in birds, 

cestode infection has been reported to be higher in females than in males 

(Poulin, 1996). Additionally, experimental findings have shown that in different 

congenic and syngeneic strains of mice, females become more infected with 

Taenia crassiceps (Huerta et al., 1992; Larralde et al., 1995; Morales-Montor et 

al., 2015; Sciutto et al., 1991; Terrazas et al., 1998). This differential 

susceptibility to parasite infection seems to be caused by the different immune-

mediated response in males and females, determined by the distinct hormonal 

configuration (Schalk and Forbes, 1997). In fact, this is confirmed by the often 

attenuated differences in juvenile individuals, that have less sexually distinctive 

hormonal profiles (Schalk and Forbes, 1997).  However, in this study juveniles 

were significantly less parasitised by nematodes, while displayed a higher 

parasite burden compared to adults regarding cestodes. Usually, juveniles are 

highly parasitised because they lack of acquired immunity (Anderson and 

Crombie, 1984; Anderson and May, 1985; Dobson et al., 1990), but maternal 

immunity, host behaviour, and specific host-parasite dynamics may have 

determined this result. In fact, biased parasitism occurs often, but not always 

within the same host-parasite association, it might vary spatially or temporally, 

and be mediated by environmental factors (Krasnov et al., 2012). 

Finally, to understand parasite transmission in a multi-host system, it is 

necessary to be able to identify the contribution of each host to transmission. In 

some cases the transmission can be sustained by a community of hosts, but, in 
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other cases, one key host disproportionately drives parasite spread, 

representing a super-spreader (Fenton et al., 2015; Streicker et al., 2013; 

Streicker et al., 2015). Identification of the type of contribution of different hosts 

is essential in designing control strategies, understanding effects of host 

community change on pathogen transmission, and eco-epidemiological 

modelling.  The result of host heterogeneity analysis revealed that bank voles 

were key hosts for nematodes, while wood mice were for cestodes, and this was 

due to different mechanisms. Bank voles, also when the analysis was performed 

at parasite genus level, contributed to transmission mainly in terms of host 

abundance and prevalence (i.e. super-abundant and super-infected host), while 

wood mice represented exclusively super-shedder hosts. Clearly, the 

methodology might have influenced the results, for example, unequal detection 

and sampling of host species, or of parasite eggs. However, this demonstrates 

that even in an apparently simple and common multi-host-parasite system, over 

a small spatial and temporal scale, host heterogeneities are detectable. Hence, 

this framework might be adapted and applied to other multi-host-parasite 

systems, which are ubiquitous and often implicated in disease emergence 

(Cleaveland et al., 2001; Smith et al., 2009a), for tailoring more effective and 

ecologically sound wildlife and pathogen management plans to  alleviate human 

and wildlife disease risk (Fenton et al., 2015; Johnson et al., 2015a; Rynkiewicz 

et al., 2015).  

 

 

4.4.3 Prevalence of tick-borne pathogens 

 

The three pathogens investigated in tick specimens are considered, in the UK, to 

have rodent species as primarily reservoir hosts, and they have been recorded 

in different ixodid tick species, in particular Ixodes ricinus and I. trianguliceps 

(Bown et al., 2003; Bown et al., 2006). Anaplasma phagocytophilum was 



133 

 

detected only in one site, in ticks recovered on bank voles. This finding is in 

agreement with Bown et al. (2003), who found this species more likely to be 

infected compared to wood mice, probably due to a higher tick burden (as 

recorded in this study, see Chapter 3). The sample was constituted by ticks 

collected in spring (the trapping season including May and June), and previous 

studies recorded A. phagocytophilum only from late spring to late autumn 

(Chvostáč et al., 2018). No definitive conclusions can be made due to limited 

data, but it seems that the seasonal patterns was respected, most likely driven 

by seasonal increases of I. trianguliceps adults (this study, Bown et al., 2003). I. 

trianguliceps is not only competent in transmitting this pathogen, but, in Britain, 

is considered the main reservoir vector, despite the mean numbers of ticks per 

rodent being low (this study, Bown et al., 2003; Burri et al., 2011). It is likely 

that the sympatric, and when present more abundant, I. ricinus might acquire 

the infection from rodents and it is responsible for rodent prevalence and 

human disease risk amplification (Bown et al., 2003). Similarly, in USA, the A. 

phagocytophilum-I. spinipalpis-dusky wood rat cycle is maintained by the 

amplification caused by the sympatric tick I. pacificus, which is responsible for 

the transmission to humans and domestic animals (Castro et al., 2001). The very 

low presence of I. ricinus at the sampling sites, and the short infectious period 

reported in rodents (short amount of time for the ticks to be infected) (Bown et 

al., 2003) may explain the low recovery of this pathogen in the analysed 

samples. In addition, highly prevalent species, such as birds, have been 

proposed as reservoir hosts in different locations in Europe, since prevalence in 

rodents has been found consistently low (Baráková et al., 2018; Blaňarová et al., 

2014; Bown et al., 2009; Burri et al., 2011).  

According to the results, Borrelia burgdorferi s.l. did not occur in the ticks 

collected. I. trianguliceps accounted for more than 87% of the pool of ticks, and 

this species is not considered of major importance in transmitting the 

spirochete (Kilpatrick et al., 2017a; Stanek et al., 2012). However, the pathogen 

has been identified in multiple environments, harboured by several species of 

ixodid ticks (Dantas-Torres et al., 2012). Low prevalence of infection in rodents 

recorded in several European countries (e.g. Ireland, UK, Slovakia) is considered 
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part of a growing evidence that small mammals may not be the main reservoir 

for Lyme disease in Europe (Chvostáč et al., 2018; Gray et al., 1999; Kurtenbach 

et al., 1998). The reason might be found in the low rates of I. ricinus nymphal 

infestations in rodents, while transmission dynamics may be primarily shaped 

by abundance and temporal population fluctuations of other species, such as 

ungulates and birds (Chvostáč et al., 2018; Gray et al., 1999). 

Only one tick sample was positive for the protozoan Babesia microti, although 

this has been often recorded in Britain, in I. trianguliceps (Bown et al., 2008; 

Hussein, 1980) and in I. ricinus (Abdullah et al., 2018). When the PCR was 

performed with primers specific to strains from northern England no sample 

resulted positive, thus it may be possible that the strains circulating at the 

sampling sites are genetically diverse. In fact, Babesia has been found to be a 

very diverse genus, as several new species have been involved in human cases 

in geographical locations where the enzootic cycle was known for decades but 

the human disease risk was neglected (Hunfeld et al., 2008). Yet, low prevalence 

has been reported in other studies (e.g. Welc-Falęciak et al., 2008), and absence 

has been previously reported on Skomer island (Healing, 1981). On the other 

hand, in B. microti low prevalence might have been determined by a non-

preferential host-vector association. In Europe, high prevalence has been found 

in I. ricinus (Baráková et al., 2018), and in other species of rodents (Microtus 

arvalis and M. oeconomus) (Welc-Falęciak et al., 2008), suggesting that the role 

of different vector and rodent species in maintaining the enzootic cycle of B. 

microti might vary. Moreover, the strain recovered from the positive sample 

displayed high relatedness to a European strain (Munich) isolated from ticks 

and rodents in several European countries, and involved in the first human case 

of B. microti-caused babesiosis in Spain (Arsuaga et al., 2016). On the other 

hand, the phylogenetic tree showed that this strain is highly dissimilar from the 

British strains found in the GenBank database (MD and King’s College strains, 

Zahler-Rinder et al., unpublished). This finding strengthens the importance of 

molecular analysis to understand specific distribution and ecology of B. microti 

strains. It seems likely that, in UK, different strains of B. microti are circulating, 



135 

 

and these might not only differ with regards to host and vector preferences, but 

also in terms of zoonotic risk (Gray, 2006).  

Finally, another factor to consider in interpreting the results is the interaction 

between pathogens. For example, I. scapularis co-infections with B. burgdorferi 

and B. microti occur more often than expected by chance, whereas co-infections 

with A. phagocytophilum and B. microti are less common than expected (Diuk-

Wasser et al., 2016; Hersh et al., 2014b); although, in rodents, Telfer et al. 

(2010) found that B. microti infection was positively correlated with 

anaplasmosis. This means that factors that regulate rodent species, including 

competition, predation, and habitat disturbance are likely to affect independent 

and combined infection prevalence in vectors. Hence, the results found may be 

explained by true absence/low prevalence of the pathogens, low competence of 

the rodent and vector populations sampled, negative impact on the pathogens 

tested of other undetected infections, or a combination of these factors. 

 

 

4.4.4 Bartonella prevalence in the sampled flea community  

 

Bartonella was detected in the most represented flea species in the pool 

(Amalaraeus penicilliger, Megabothris turbidus, Hystrichopsylla talpae, and 

Ctenophthalmus nobilis). The overall prevalence of 14% was in the range of 

values found in other field studies (e.g. Abbot et al., 2007; Abreu-Yanes et al., 

2018; Stevenson et al., 2003; Withenshaw et al., 2016). However, prevalence 

recorded in rodents has often been much higher: 62% in small woodland 

rodents in Britain (Birtles et al., 1994), 76% in cotton rats in Georgia, 76% in 

white-footed mice in North Carolina (Kosoy et al., 1997), 45–57% in Norway 

rats in Los Angeles, New Orleans, and Portugal (Ellis et al., 1999), and 44% in 

rodents in China (Ying et al., 2002). In Ireland, Telfer et al. (2005) observed 

Bartonella infection in a similar flea community to the one sampled in this 
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study, and reported similar flea species prevalence. Here, amongst the fleas 

collected Amalaraeus penicilliger showed 42.86% prevalence while 

Ctenophthalmus nobilis 12.82%, Hystrichopsylla talpae 21.43%, and Megabothris 

turbidus 16.67%. Statistical analyses did not reveal any pattern of association 

between flea infection and other factors related to fleas or hosts. Indeed, it has 

been observed that flea prevalence was not directly related to host infection, 

since dynamics of transmission are driven by the complex distribution of 

species-specific Bartonella strains (Withenshaw et al., 2016). In general, in 

rodent host species prevalence displays seasonal variations connected with host 

demography and patterns of acquired immunity to different Bartonella species 

(Kosoy et al., 2004a; Telfer et al., 2007a). However, this could not be tested in 

this study, and no seasonality was recorded in flea infestation. As expected, 

Bartonella infections were recorded in fleas collected from bank voles, as this 

represented the dominant species in the rodent community (Bai et al., 2002; 

Birtles and Harrison, 1994; Gutiérrez et al., 2015; Kosoy et al., 1997); higher 

prevalence has been observed in highly abundant hosts, and when high flea 

burden occurs (Cevidanes et al., 2017).  

The best sequences, according to the BLAST search, were used for the 

phylogenetic analysis, but no species-specific prevalence was estimated because 

the molecular approach adopted was not optimal for fine characterisation of the 

wide diversity of Bartonella strains. However, the sequences chosen to 

represent the results of molecular analysis were appropriate to reveal that at 

least three species (or three different groups with high similarity to B. taylorii, B. 

grahamii, and B. rochalimae) were circulating at the sampling sites. B. taylorii, 

and B. grahamii have been widely recorded in rodent fleas in UK (Birtles et al., 

2000; Telfer et al., 2007a; Telfer et al., 2007c; Withenshaw et al., 2016), and in 

other countries  (e.g. Špitalská et al., 2017), but, to the best of my knowledge, it 

is the first time that B. rochalimae (or a highly similar species) is described in 

UK. This species has been previously isolated in different hosts, e.g. foxes in 

France, raccoons and coyotes in USA (Henn et al., 2009), dogs, foxes, rock 

hyraxes, and Tristam’s jirds in Israel (Marciano et al., 2016). Among rodents, it 

has been observed in rats (Spain: Abreu-Yanes et al., 2018; USA: Gundi et al., 



137 

 

2012; Taiwan: Lin et al., 2008), in Apodemus flavicollis (yellow-necked wood 

mouse) and Microtus arvalis (common vole) in Slovakia, and finally in Myodes 

glareolus (bank vole) in Lithuania (Lipatova et al., 2015) and France (Buffet et 

al., 2012). In this study, it has been isolated from fleas collected from bank voles 

(including Skomer voles), confirming its potential distribution across multiple 

rodent species. Interestingly, it has rarely been isolated from fleas (but see 

Pérez-Martínez et al. (2009) who isolated B. rochalimae from Pulex irritans from 

dogs in Chile), so the role of fleas in transmission has not been clarified yet. This 

result may provide additional evidence that B. rochalimae circulates among 

small rodents, and it is very likely that fleas act as a vector for transmission. 

Additionally, B. rochalimae is involved in human zoonotic transmission (e.g. 

Eremeeva et al. (2007) reported a case of a bacteraemic patient presenting 

splenomegaly). 

In conclusion, the study provides evidence that ground-dwelling rodent fleas 

from selected sites in Wales harbour several Bartonella, including zoonotic 

species. Further investigation is needed to better understand host-vector-

pathogen associations and estimate potential human disease risk. In fact, small 

rodents and humans often share the same environment, but flea contribution to 

Bartonella transmission, and the degree of human exposure to flea bites are still 

not fully understood. 
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Chapter 5 

 

Eco-epidemiological modelling of rodent-borne 

pathogens 

 

5.1 Introduction 

 

Research into host-pathogen interaction has mostly been done in systems with 

a simplified ecology (e.g. human and livestock), but the rise of zoonotic 

emerging diseases has increased the awareness of the ecological context of 

infectious diseases (Daszak et al., 2001; Taylor et al., 2001), and has drawn 

attention to the gap between theory and ecological reality (Roche et al., 2012). 

Also, in the current context of biodiversity decline and environmental change, 

disease ecologists’ main focus is to predict pathogen transmission in 

impoverished animal communities, and so prevent potential epidemics arising 

from wildlife (Roche et al., 2013). 

The pioneering work by Ostfeld and colleagues regarding Lyme disease 

demonstrated that species-rich communities, because of the different degrees of 

host reservoir competence, are associated with lower Borrelia prevalence 

(Keesing et al., 2010; LoGiudice et al., 2003; LoGiudice et al., 2008; Ostfeld and 

Keesing, 2000). They illustrated this phenomenon with empirical data and 

modelling techniques, and termed it dilution effect (Ostfeld and Keesing, 2000). 

A broader description of the theory underlying dilution and further examples 

are given in Chapter 1. Since then, dilution has been investigated and modelled 

extensively, but a mechanistic theoretical framework is currently lacking. It has 

been hypothesised that in multi-host parasite systems the type of transmission 

determines the outcome of diversity–pathogen relationships (Faust et al., 2017). 
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One of the few theoretical studies showed that pathogens with frequency-

dependent transmission, e.g. vector-borne, are expected to decrease in 

prevalence as biodiversity increases, i.e. the dilution effect, because the 

inclusion of species with low reservoir competence represents wasted bites for 

vectors (Dobson, 2004; Rudolf and Antonovics, 2005). In reality, this has been 

described in some cases, but the extent to which these findings can be 

generalised is unclear. By contrast, pathogens characterised by density-

dependent transmission are predicted to increase in prevalence as host 

diversity increases because of the overall increase in the susceptible population 

(Dobson, 2004). However, in directly transmitted pathogens, both amplification 

and dilution effects have been observed in the field (Mihaljevic et al., 2014). 

As a consequence, it seems that greater ecological sophistication in 

epidemiological theory is needed to clarify the dilution and amplification 

mechanisms and the human zoonotic risk, and identify potential determinants 

of pathogen spillover (Faust et al., 2017; Johnson et al., 2015a; Kilpatrick et al., 

2017b). For example, for directly transmitted pathogens, Dobson (2004) 

assumed that an increase in host-species led to an increase in host abundance 

resulting in an increase in transmission rate due to increased contact. In reality, 

the consequences on transmission of introducing a new species to the host 

community are more complex, and depend also on competitive interactions in 

the host assemblage (O’Regan et al., 2015; Roche et al., 2012). In addition, the 

alteration of contact networks due to the modification of relative abundances of 

host species has to be taken in account. In fact, the proposed mechanism of 

dilution in the case of directly transmitted pathogen centres on encounter 

reduction, namely the decrease of contacts between the most susceptible 

species because of the introduction of less susceptible hosts (Keesing et al., 

2006). It is likely that not all the individuals of the host community perform the 

same types and quantity of contacts (see Chapter 2); therefore, when modelling 

population-level pathogen dynamics it is vital to take into account contact 

network features as an alternative to the standard random-mixing (Keeling and 

Eames, 2005). This can also be extended to vector-borne pathogens, where 

vector host preferences and host-specific survival rates might determine 
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different outputs when alternative host species are added to the community 

(Roche et al., 2013). 

In this study, eco-epidemiological models of transmission for directly 

transmitted, tick-borne, and flea-borne pathogens were developed with the aim 

of creating a better link between ecology and epidemiology. The proposed 

framework included a theoretical approach supported by empirical 

observations, and the assembly of a realistic community of host (small rodents) 

and non-host species. The objectives were, according to some of the main 

challenges in multi-host systems indicated by Buhnerkempe et al. (2015), to 

identify potential dilution or amplification effect in different pathogen systems, 

the potential mechanisms behind dilution/amplification, the importance of 

between-species transmission, and the parameters most affecting model 

outputs. Based on the work of Arino et al. (2004), Hadeler and Freedman 

(1989), Malchow et al. (2008), and Venturino (1994; 2001; 2002), the models 

are demographic models accounting for interactions between different 

populations in which the pathogen spreads among host species. Although direct 

estimation of ecological relationships is very complicated, a more realistic 

modelling approach might be useful to identify key species interactions in the 

context of pathogen transmission, and direct more efficient data collection for 

parameter estimation. The biggest challenge in integrating ecological and 

epidemiological modelling is to find the correct balance between the high level 

of complexity to include, and the necessary simplifications to be made 

(Buhnerkempe et al., 2015; Malchow et al., 2008). This will improve the 

understanding of the ecosystem context of wildlife diseases, including zoonoses, 

which is important because of the concerns over anthropogenic effects on 

biodiversity with regards to human health and conservation of endangered 

species (Altizer et al., 2013; Keesing et al., 2010; Millennium Ecosystem 

Assessment, 2005).  
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5.2 Directly transmitted pathogen model: effect of 

competence, competition and predation on the 

dynamics of a rodent-borne Hantavirus 

 

The study employed a deterministic multi-host compartmental model 

constituted by a set of differential equations (Eq. 1-11). The results were 

produced using the function rk4 in the R package deSolve (R Core Team, 2016), 

which is based on the classical Runge-Kutta 4th order integration. The model 

was not explicitly spatial; the area, 1 ha, was considered constant since it was 

constrained by the sampling unit (Begon et al., 2002), so the populations were 

expressed in individuals/ha and the parameters were scaled accordingly. The 

dilution effect was tested by assembling a progressively more complex 

community: host-species, competitor and predator species were added in turn 

following realistic assembly rules. The structure of the model was chosen to 

offer a compromise between complexity and parsimony. 

The pathogen chosen for the simulation is a Puumala-like (PUUV-like) 

Hantavirus. Puumala virus (PUUV) is not currently reported in UK, but it is 

widespread in mainland Europe and poses a zoonotic risk, being the etiologic 

agent of nephropathia epidemica (Sauvage et al., 2002; Tersago et al., 2009; 

Vaheri et al., 2013; Voutilainen et al., 2016). Its main reservoir host is Myodes 

glareolus (bank vole), which is very widespread in UK, but it has been reported 

in other sympatric small rodents as well (Dubois et al., 2017; Laakkonen et al., 

2006; Klingstro m et al., 2002). The virus, among rodents, is transmitted 

horizontally via direct contacts (e.g. bites) or excretions (aerosolised urine and 

faeces) (Bernshtein et al., 1999; Kallio et al., 2006), and the infection is chronic 

and mainly asymptomatic (Bernshtein et al., 1999; Voutilainen et al., 2015). The 

ability of the virus to survive outside the host is the reason why it has been 

hypothesised that PUUV or PUUV-like strains might invade UK, especially under 

conditions of climate change (Bennett et al., 2010; Kallio et al., 2006). In 

addition, other Hantaviruses have been reported in Britain, and, in particular, 
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Pounder et al. (2013) isolated a circulating hantavirus in a British field vole, 

which was phylogenetically closely related to PUUV. The epidemiology of this 

virus has been extensively investigated (Voutilainen et al., 2016), also in an eco-

epidemiological framework, and Thoma et al. (2014) observed evidence of the 

amplification effect; so, it is likely that ecological relationships are affecting 

pathogen transmission dynamics. 

Host community was represented by ground-dwelling small rodents, and, in 

particular, the model was parameterised, where possible, with data collected 

during live trapping (see Chapter 2). The most represented host species were 

considered wood mouse and bank vole, with the addition of a third species, field 

vole when the community was fully assembled. Sorex ssp. shrews were added to 

the community as a sympatric competitor non-host species, since evidence of 

their presence were found in the sites sampled (Eq. 10). Finally, the predation 

was introduced with two terms representing generalist (e.g. avian predation) 

and specialist (mustelids) predation (Eq. 11). Community assembly was 

performed starting from one host species and then adding in turn a second host 

species, the competitor species, the predation terms, and finally the third host 

species. 

Rodent and shrew populations were modelled according to the Lotka-Volterra 

system, namely they followed a logistic growth tending to species-specific 

carrying capacity and limited by intra-specific density dependent reduction and 

inter-specific competition (Lotka, 1925; Hanski et al., 1993; Volterra, 1926). 

Inter-specific competition among rodents, and among rodents and shrews was 

represented by a density dependent competition term (Huitu et al., 2004; 

O’Regan et al., 2015; Turchin and Hanski, 1997). Rodent species were 

considered better competitors than shrew species since growth rates of 

common shrew populations have been reported to be negatively correlated 

with total rodent density (Henttonen et al., 1989; Huitu et al., 2004). These 

species were all predated upon, but rodent species were considered preferential 

preys (Korpimaki and Norrdahl, 1989; Korpimaki, 1992). Generalist predation 

was modelled according to the alternative prey hypothesis (Holling type III 
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functional response), while specialist predator population was modelled 

according to the Holling type II functional response based on the Rosenzweig-

MacArthur model (1963) with no preference among rodents (Elton, 1942; 

Erlinge, 1975; Hanski and Henttonen, 1996; Holling, 1965; Krebs and Myers, 

1974; Turchin and Hanski 1997). Parameters about specialist predation 

represented Mustela nivalis (least weasel), which was the most common and 

widespread mustelid across sampled sites. For details about the parameter 

estimation see Section 5.2.1. 

The time scale of the simulations was 20 years to allow the eco-epidemic 

dynamics to reach equilibrium, and the time step was 1 day. The model included 

four compartments for the host species – Susceptible, Exposed, Infectious, and 

Recovered (SEIR) – since there is evidence of a latent (but not infectious) period 

for the pathogen considered (Allen et al., 2006; McCormack and Allen, 2006), 

and recovery with life-long immunity (Voutilainen et al., 2016) (Eq. 1-4 and Eq. 

5-9). The transmission term, or force of infection (Eq. 1b and Eq. 9), was 

density-dependent and split into contact rate (φ) and reservoir competence (τ). 

Contacts were not fixed but varied in relation to individual density (see 

Parameter estimation Section 5.2.1), in order to allow for heterogeneous (non-

random) mixing and represent more realistic transmission dynamics according 

to Begon et al. (2002) and McCallum et al. (2001). The reservoir competence 

term summarised individual susceptibility, ability of the pathogen to magnify 

and persist in the host, and efficiency of transmission; all the individuals of same 

host species were equally competent, but different species might display 

different levels of competence. The initial density for each host-species was set 

at the average value found from field data (Chapter 2) (pooled sites excluding 

Skomer). The inoculum was a single infectious individual. The equations for the 

basic single-host model are given below; see Table 5.1 for the list of variables 

and parameters. 
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𝑑𝑆

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾
) − 𝜆𝑆       Eq. 1a 

 

𝜆 = 𝜏𝜑𝐼         Eq. 1b 

 

𝑑𝐸

𝑑𝑡
= 𝜆𝑆 − 𝜅𝐸         Eq. 2 

 

𝑑𝐼

𝑑𝑡
= 𝜅𝐸 − 𝜎𝐼         Eq. 3 

 

𝑑𝑅

𝑑𝑡
= 𝜎𝐼         Eq. 4 

 

The following set of equations represents the multi-host model, including the 

multi-host force of infection, the competitor and specialist populations. 

 

𝑑𝑆𝑖

𝑑𝑡
= 𝑟𝑖𝑁𝑤 (1 −

(𝑁𝑖 −  𝐶𝑗𝑖𝑁𝑗 − … 𝐶𝑛𝑗𝑁𝑛 − 𝐶𝑐𝑖𝑁𝑐)

𝐾𝑖

) − 𝜆𝑖𝑆𝑖 −
(𝑔𝑆𝑖

2)

(𝑆𝑖
2 + ℎ2)

  

−
(𝛼𝑖𝑁𝑝𝑆𝑖)

(𝛥𝑖+𝑁𝑖+
𝛥𝑖
𝛥𝑗

𝑁𝑗+⋯
𝛥𝑖
𝛥𝑛

𝑁𝑛+
𝛥𝑖
𝛥𝑐

𝑁𝑐)

 Eq. 5 

 

𝑑𝐸𝑖

𝑑𝑡
= 𝜆𝑖𝑆𝑖 − 𝜅𝐸𝑖 −

(𝑔𝐸𝑖
2)

(𝐸𝑖
2+ℎ2)

−
(𝛼𝑖𝑁𝑝𝐸𝑖)

(Δ𝑖+𝑁𝑖+
Δ𝑖
Δ𝑗

𝑁𝑗+⋯
Δ𝑖
Δ𝑛

𝑁𝑛+
𝛥𝑖
𝛥𝑐

𝑁𝑐)

   Eq. 6 

 

𝑑𝐼𝑖

𝑑𝑡
= 𝜅𝐸𝑖 − 𝜎𝐼𝑖 −

(𝑔𝐼𝑖
2)

(𝐼𝑖
2+ℎ2)

−
(𝛼𝑖𝑁𝑝𝐼𝑖)

(Δ𝑖+𝑁𝑖+
Δ𝑖
Δ𝑗

𝑁𝑗+⋯
Δ𝑖
Δ𝑛

𝑁𝑛+
𝛥𝑖
𝛥𝑐

𝑁𝑐)

   Eq. 7 

 

𝑑𝑅𝑖

𝑑𝑡
= 𝜎𝐼𝑖 −

(𝑔𝑅𝑖
2)

(𝑅𝑖
2+ℎ2)

−
(𝛼𝑖𝑁𝑝𝑅𝑖)

(Δ𝑖+𝑁𝑖+
Δ𝑖
Δ𝑗

𝑁𝑗+⋯
Δ𝑖
Δ𝑛

𝑁𝑛+
𝛥𝑖
𝛥𝑐

𝑁𝑐)

                                                  Eq. 8 
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𝜆𝑖 = 𝜏𝑖𝜑𝑖𝑖𝐼𝑖 + 𝜏𝑗𝜑𝑖𝑗𝐼𝑗 + ⋯ 𝜏𝑛𝜑𝑖𝑛𝐼𝑛      Eq. 9 

𝑑𝑁𝑐

𝑑𝑡
= (𝜈𝑐 − 𝜌𝑐)𝑁𝑐 (1 −

(𝑁𝑐− 𝐶𝑖𝑐𝑁𝑖−…𝐶𝑛𝑐𝑁𝑛)

𝐾𝑐
) −

(𝑔𝑁𝑐
2)

(𝑁𝑐
2+ℎ2)

−
(𝛼𝑐𝑁𝑝𝑁𝑐)

(𝛥𝑐+𝑁𝑐+
𝛥𝑐
𝛥𝑖

𝑁𝑖+⋯
𝛥𝑐
𝛥𝑛

𝑁𝑛)
    Eq. 10 

 

𝑑𝑁𝑝

𝑑𝑡
= (𝜈𝑝 − 𝜌𝑝)𝑁𝑝 (1 −

𝑞𝑁𝑝

(𝑁𝑖+
𝛥𝑖
𝛥𝑗

𝑁𝑗+⋯
𝛥𝑖
𝛥𝑛

𝑁𝑛+
𝛥𝑖
𝛥𝑐

𝑁𝑐)

)           Eq. 11 

 

Fig. 5.1 represents the graphical visualisation of the multi-host compartmental 

model consisting of the equations above. 

Simulations were performed to test the following hypotheses: a) addition of a 

less competent host decreases pathogen transmission compared to the single-

host scenario; b) inter-specific competition among host-species, affecting the 

most competent host’s relative density, decreases pathogen transmission; c) 

addition of a non-host competitor and predation decreases pathogen 

transmission through susceptible host regulation. 
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Fig. 5.1. Multi-host compartmental model. Boxes represent the four 
epidemiological compartments in which each host-species population is 
subdivided: S = susceptible, E = exposed, I = infectious, R = recovered. N 
(population density) = S+E+I+R. Subscripts represent different species: 1 and 2 = 
rodent species (host-species); i = non-host competitor (shrew species). λ = force 
of infection (dependent on competence, infectious, and intra/inter-specific 
contacts, see Eq. 1b and Eq. 9), r = growth rate (determined by competition and 
density of rodent and shrew species), c = competition coefficient, Ni = non-host 
competitor population density, κ = rate at which exposed individuals become 
infectious (latent period), σ = recovery rate. Arrows indicate the direction of 
movement of individuals between classes and are labelled by the transition rates. 
Arrows pointing outside the boxes represent mortality. 
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Table 5.1. List of model variables and parameters. For details about parameters 
estimation see section 5.2.1. 

Symbol Description (source where relevant) 
S Number of susceptible individuals  

E Number of exposed individuals  

I Number of infectious individuals  

R Number of recovered individuals  

N Total number of individuals (population size)  

i, j, n Host-species  

c Non-host competitor species  

p Specialist predator  

C Competition factor 
(O’Regan et al., 2015; this 
study) 

g Saturation rate of generalist predation (Turchin and Hanski, 1997) 

h 
Prey density at which generalist predation 
rate is half of the maximum (Turchin and Hanski, 1997) 

K Carrying capacity 
(Bolzoni et al., 2008; De Leo 
and Dobson, 1996) 

q Specialist predator-prey ratio constant (Turchin and Hanski, 1997) 

r Rodent growth rate (this study) 

α 
Maximum consumption rate of specialist 
predator (Turchin and Hanski, 1997) 

Δ Half-saturation constant (specialist predator) (Turchin and Hanski, 1997) 

κ Rate at which exposed become infectious (Wolf, 2004) 

λ Force of infection (Eq. 1b and Eq. 9)  

ν Birth rate 
(Bolzoni et al., 2008; De Leo 
and Dobson, 1996) 

ρ Death rate 
(Bolzoni et al., 2008; De Leo 
and Dobson, 1996) 

σ Recovery rate (Allen et al., 2009) 

τ Reservoir competence (this study) 

φ Contact rate (this study) 

 

 

 

 

 

 



148 

 

5.2.1 Parameter estimation 

 

All the parameters, listed in Table 5.1 were estimated, where possible, from the 

data collected in this study (see Chapter 2), and from literature. Wood mouse 

and bank vole growth rates (r) were calculated from field data according to 

Lambin et al. (2000) (section 2.2.3.3), but using 𝑙𝑜𝑔𝑒 instead of 𝑙𝑜𝑔10 because it 

was to be used directly in the model as growth rate. The values obtained for the 

breeding and non-breeding seasons were scaled by day, as for the other 

parameters in the model, and seasonality was included in the model considering 

the breeding season from March to October, and the non-breeding season 

November to February (Hörnfeldt, 1994; Stenseth et al., 2002). Due to lack of 

data, the bank vole growth rate was also used for modelling the field vole 

population. Carrying capacity for all the species, and the birth and death rates of 

the non-host species were estimated allometrically with the following formulae:  

𝐾 =  16.2𝑤−0.70, 𝜈 = 𝑤−0.25 , 𝜌 = 0.4𝑤−0.25 (where w is the mean body mass in 

g) (Bolzoni et al., 2008; De Leo and Dobson, 1996). The body mass values used 

were: the average of adults and sub-adults (this study) for each rodent species 

(Skomer voles were excluded due to their larger size), while adult average 

values from PanTHERIA database (Jones et al., 2009) were used for the common 

shrew and the least weasel. The competition factor (C) values were computed 

algebraically, ranging from 0 (competition absent) to the maximum value for the 

competing species to co-exist (for example, in the case of competition of species 

i over species j, the maximum value is 𝐾𝑗 𝐾𝑖⁄ ). Logistic regression was performed 

between daily contact rates and individual densities found in the field (Chapter 

2) to obtain regression equations for intra (𝜑𝑖𝑖) and inter-specific (𝜑𝑖𝑗) contact 

rates so that 𝜑𝑖𝑖 = 𝑎1 + 𝑏1𝑁𝑖, and 𝜑𝑖𝑗 = 𝑎2 + 𝑏2𝑁𝑗  (where 𝑎1, 𝑏1, 𝑎2 and 𝑏2 are 

the coefficients for the regression equations). In this way, both intra and inter-

specific contact rate increased with individual density, as revealed by empirical 

data (Sundell et al., 2012). The range of values for reservoir competence was 

calculated from the equations, τmin = 0, while τmax was ~0.35 for each host-

species (𝜏𝑖 𝑚𝑎𝑥 = 1 (𝑎1 + 𝑏1𝐾𝑖)⁄  where 𝑎1 and 𝑏1 are the coefficients in the 
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regression equation of intra-specific contacts and density). The latency period 

(κ), or rate at which exposed individuals become infectious, for the pathogen 

considered, was obtained from the value reported by Wolf (2004), while the 

recovery rate (σ) was calculated with the formula 1/infectious period, using the 

value from Allen et al. (2009). All the parameters relating to predation were 

estimated with the formulae proposed by Turchin and Hanski (1997), but using 

empirical data from this study or data relative to UK. The formula for the 

saturation rate of generalist predation was g = 70*10*L (where L is the latitude 

of the sampling sites), so the value used in the model was an average of all the 

sampled sites. In the aforementioned paper, the density at which the generalist 

predation rate is half of the maximum (h) was estimated by fitting long-term 

population data, so in this study a sensitivity analysis was performed (see next 

section). The maximum consumption rate of the specialist predator (α) was 

estimated using the average weight of adults and sub-adults individuals 

sampled (all rodent species pooled) and the average weight of British weasels 

reported in literature (Tapper, 1979). The formula, which is 𝛼 = 0.6𝑤𝑝 𝑤𝑟⁄ +

1

2
0.6𝑤𝑝 𝑤𝑟⁄  (0.6 g is the weasel average daily intake per gram of body mass 

according to Gillingham (1984), wp is the average weasel body mass in g, and wr 

is the average rodents body mass in g), includes 50% surplus killing. Half 

saturation constant (Δ) represents the prey density (rodents/ha) at which the 

specialist predator consumption rate reaches one-half of the maximum (α) 

(Turchin and Hanski, 1997). The formula is ∆ =  
𝛼∗𝑁𝑐𝑟𝑖𝑡−𝛼𝑐𝑟𝑖𝑡∗𝑁𝑐𝑟𝑖𝑡

𝛼𝑐𝑟𝑖𝑡
, where Ncrit is 

the critical minimum density of voles below which the weasel is unable to 

reproduce, and αcrit is the consumption rate by an individual weasel when prey 

density is Ncrit; these values were estimated according to Tapper (1979). Finally, 

the specialist predator-prey ratio constant (q) represents the predator 

population equilibrium in relation to prey numbers. With regard to shrews, α 

and Δ were estimated separately, since they are lighter and less preferred by 

predators. Table 5.2 shows all the parameter values (or range of values) used 

for the simulations and the starting population densities.  
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Table 5.2. List of starting conditions and parameter values used for the 
simulations. When a range of values is provided, sensitivity analysis has been 
performed (see section 5.2.2). 

Symbol Description  Value 
Nw Wood mouse population 49 (ind/ha) 

Nb Bank vole population 75 (ind/ha) 

Nf Field vole population 30 (ind/ha) 

Nj Shrew population 20 (ind/ha) 

Np Weasel population 3 (ind/ha) 

cbw 

cfw 

cjw 

Competition of wood mouse over bank vole, field 
vole and shrew respectively (range) 

0-1.01 

0-0.95 

0-1.74 

cwb 

cfb 

cjb 

Competition of bank vole over wood mouse, field 
vole and shrew respectively (range) 

0-0.98 

0-0.91 

0-1.71 

cwf 

cbf 

cjf 

Competition of field vole over wood mouse, bank 
vole and shrew respectively (range) 

0-1.05 

0-1.10 

0-1.82 

cwj 

cbj 

cfj 

Competition of shrew over wood mouse, bank 
vole, and field vole respectively (range) 

0-0.57 

0-0.58 

0-0.55 

g Saturation rate of generalist predation 0.49 

h 
Prey density at which generalist predation rate is 
half of the maximum (range) 

1-67.5 

q Specialist predator-prey ratio constant 56 

rb+, rb- 
Bank vole growth rate breeding season (+), and 
non-breeding season (-) 

0.007; -0.002 

rw+, rw- 
Wood mouse growth rate breeding season (+); 
non-breeding season (-) 

0.04; -0.006 

α 
Maximum rodent consumption rate of specialist 
predator (range) 

1-18 

αs 
Maximum shrew consumption rate of specialist 
predator 

7.67 

Δ Half-saturation constant (rodent) 11.31 

Δs Half-saturation constant (shrew) 22.62 

κ Rate at which exposed become infectious 0.14 

σ Recovery rate 0.11 

τ Reservoir competence (range) 0 – 0.35 
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5.2.2  Sensitivity analyses 

 

Sensitivity analysis was performed on parameters of interest for which there 

was no direct estimation, or a range of plausible values. Firstly, sensitivity 

analysis was carried out on reservoir competence via systematic sampling (100 

intervals were input into the sensitivity between the minimum and the 

maximum value selected). In fact, multiple rodent species were found to be 

susceptible to the pathogen and potentially competent to transmit it, although 

the bank vole is considered the main reservoir host (Kariwa et al., 2009; 

Klingström et al., 2002; Sauvage et al., 2002). The sensitivity analysis on this 

parameter was intended to test the dilution mechanism of transmission 

reduction (Keesing et al., 2006), namely does the variability of competence 

reduce pathogen prevalence due to the higher proportion of individuals with 

lower competence? 

Sensitivity analysis by Latin hypercube sampling (Iman et al., 1981a,b) (values 

were randomly chosen between the minimum and the maximum found in the 

selected sources) was then carried out on competition between host species, 

and between host species and non-host competitor species, and finally, on 

generalist and specialist predation, altering values of h and α respectively. In 

these cases the dilution mechanism tested was susceptible host regulation due 

to inter-specific competition or predation, to detect the degree and the direction 

of the impact of these ecological relationships on pathogen transmission, and 

the potential identification of dilution (or amplification). 

As a final point, some of the most relevant rodent-borne pathogens were chosen 

(Table 5.3), and modelled varying the relative parameters (Table 5.3) to test 

whether the results obtained modelling PUUV were consistent across a range of 

different directly transmitted pathogens. 
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Table 5.3. List of rodent-borne pathogens and relative parameters modelled to 
compare the results obtained modelling PUUV. 

Pathogen κ σ Source Notes 

Cowpox virus 0.14 0.32 
(Bennett et al., 1997; 
Chantrey et al., 1999; 
Hazel et al., 2000) 

Bank vole found 
more competent 

Leptospira spp. 1 0.0014 (Holt et al., 2006) 
Virtually no 
latency and life-
long infection 

Mouse hepatitis 
virus (Co-V) 

1 0.14 

(Navas and Weiss, 2003; 
Siddell et al., 1983;  

Weiss and Navas, 2005) 

Virtually no 
latency 

Murine Herpesvirus 
(MuHV-4) 

0.071 0.03 
(Francois et al., 2010; 
Sunil-Chandra et al., 1992; 
Telfer et al., 2007b) 

Wood mice 
found more 
prevalent 

Murine Norovirus 
(MNV) 

0.25 0.05 
(Compton, 2008;  

Goto et al., 2009) 

Mostly 
laboratory data 

Mycobacterium 
microti 

0.17 0.0014 
(Cavanagh et al., 2004; 
van Soolingen et al., 1998; 
Wells, 1946) 

Probably life-
long infection 
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5.2.3  Results 

 

Comparing the single-host and the two-host scenarios, keeping reservoir 

competence (τ) constant and assuming no inter-specific competition, it seemed 

that the number of infectious was almost double in the second case, while 

prevalence was very similar between the different scenarios (Fig. 5.2). Wood 

mouse and bank voles were modelled with species-specific growth rates and 

carrying capacities, therefore the relative single-host scenarios were different 

due to their characteristic demography (Fig. 5.2).  

Fixing bank vole reservoir competence at 0.06 and varying wood mouse 

competence (assuming no inter-specific competition), the proportion and 

number of total infectious at equilibrium were virtually unchanged compared 

with the two-host scenario with equal reservoir competence (Fig. 5.3). 

Fig. 5.4 shows the complete results of the sensitivity analysis on reservoir 

competence performed on both hosts together. This analysis showed that, in the 

absence of inter-specific competition, the increase in competence determined a 

parallel increase in both proportion and total number of infectious, but the 

shape of the increase was slightly different on the x and y axis due to the 

demographic differences of the two host species (e.g. different recruitment 

rate). Also, above ~0.05 (for both species) the maximum transmission occurred 

and prevalence and number of infectious reached a plateau.  

However, when inter-specific competition was added in the two-host scenario, 

the proportion and actual number of infectious displayed opposite trends. 

Higher competition decreased the number of infectious, increasing pathogen 

prevalence (proportion of infectious) (Fig. 5.5). In addition, comparing the 

equilibrium values of the two-host scenarios with and without inter-specific 

competition (setting the same reservoir competence values), a low level of 

competition was enough to decrease the number of infectious (but not 

prevalence). 
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Similarly, inter-specific competition with the non-host species led to a decrease 

in total infectious numbers, and total susceptible population, and an increase in 

pathogen prevalence (Fig. 5.6). Although sensitivity analysis was performed on 

four parameters (cwj, cbj, cjw, cjb), representing competition of the non-host 

with each host species and vice versa, the model was most sensitive to the 

parameters cbj and cwj, competition of the non-host over the host species.  

Variation of predation intensity had a significant effect on the total number of 

infectious, especially generalist predation (Fig. 5.7b). The parameter 

corresponding to intensity of generalist predation was allowed to vary more 

than that for specialist predation, since the realistic range of mustelid density 

and efficiency in predation was smaller than the realistic range of generalist 

predation. In this case the plots displaying proportion and number of infectious 

at equilibrium were markedly different due to the effect of predation on the 

non-host competitor population, and to the complex effect on host species 

relative densities (Fig. 5.7). Intensification of specialist predation led to a slight 

increase in pathogen prevalence, and a less marked decrease of infectious 

numbers, while generalist predation showed the opposite trend, with the output 

being more variable (Fig. 5.7). 

In Fig. 5.8, proportion of infectious, total number of infectious, and density of 

host-species are displayed along a gradient of community complexity. The 

course of the epidemic and the equilibrium values were very similar with 

regards to pathogen prevalence, with the only exception being the wood mouse 

single-host scenario (Fig. 5.8 a, Fig. 5.9). By contrast, the number of infectious 

was more noticeably affected by the community assembly, showing an increase 

from the single to two-host scenario, and then a progressive decrease due to the 

addition of host-species inter-specific competition, non-host species, and finally 

predation (Fig. 5.8b, Fig. 5.9). With the chosen set of values for competition and 

predation parameters, the latter had a major effect on regulating susceptible 

host populations (Fig. 5.8c), leading to a more marked effect on the 

epidemiological dynamics.  
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Finally, the results obtained using parameters relating to PUUV were confirmed 

modelling other rodent-borne pathogens (Fig. 5.10, Fig. 5.11). Although very 

different epidemic courses, when considering the equilibrium values across the 

gradient of community complexity, proportion and number of infectious 

followed the same trend found previously, namely little variation of proportion 

of infectious, and a hump shaped response of infectious numbers (Fig. 5.11). 
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Fig. 5.2. Comparison between single-host and two-host scenarios. Proportion a) 
and total number of infectious b) for scenarios including wood mouse only 
(dotted line), bank vole only (dashed line), and both species with no inter-
specific competition (solid line). τ = 0.06; cbw = cwb = 0.  

 

 

Fig. 5.3. Two-host scenario (wood mouse and bank vole). Equilibrium values for 
proportion a) and total number of infectious b). On the x-axis τ wood mouse 
values. Reservoir competence: τ  bank vole = 0.06; competition: cbw = cwb = 0.  
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Fig. 5.4. Two-host scenario (wood mouse and bank vole): sensitivity analysis on 
reservoir competence. Equilibrium values for proportion a) and total number of 
infectious b) are shown on the z-axis. 0 ≤ τ (reservoir competence) ≤ 0.1; 
competition: cbw = cwb = 0.  
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Fig. 5.5. Two-host scenario (wood mouse and bank vole): sensitivity analysis on 
inter-specific competition. Equilibrium values for proportion a) and total 
number of infectious b).  Latin hypercube sampling 2000 replicates. 
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Fig. 5.6. Three species scenario: two hosts (wood mouse and bank vole) and non-
host competitor. Sensitivity analysis on non-host inter-specific competition: 
equilibrium values for proportion a) and total number of infectious b). Latin 
hypercube sampling 2000 replicates. 
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Fig. 5.7. Full community scenario: three hosts (wood mouse, bank vole, and field 
vole), non-host competitor, generalist and specialist predation. Sensitivity 
analysis on predation: equilibrium values for proportion a) and total number of 
infectious b). Latin hypercube sampling 2000 replicates. 

  

 

 

 

 

 

 

 

a) 

b) 



161 

 

Fig. 5.8. Comparison between different community assemblages. Proportion of 
infectious a), total number of infectious b), and total rodent population c). Wood 
mouse only (black dotted line), bank vole only (black dashed line), two-host 
species with no inter-specific competition (black solid line, parameters as in Fig. 
5.2); two-host species with inter-specific competition (purple dot-dashed line, 
parameters as in Fig. 5.6); two-host species and non-host competitor (purple 
dotted line, parameters as in Fig. 5.7); full community (purple solid line, h = 9.9, α 
= 1, other parameters as in Fig. 5.7).  
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Fig. 5.9. Comparison between different community assemblages. Equilibrium 
values for proportion of infectious (right) and total number of infectious (left). 
Parameters value as in Fig. 5.7. 
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Fig. 5.10. Effect of community composition on pathogen transmission: total 
number of infectious. Communities: a) wood mouse; b) two-host species; c) two 
host species and non-host competitor; d) full community. Cowpox virus (light 
green solid line), Leptospira spp. (violet dashed line), Mouse hepatitis virus (Co-
V) (dark green solid line), Murine Herpesvirus (MuHV-4) (violet solid line), 
Murine Norovirus (MNV) (dark violet solid line), Mycobacterium microti (light 
green dashed line), PUUV (black solid line). Pathogen related parameters are 
reported in Table 5.3, other parameters as in Fig. 5.7.  
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Fig. 5.11. Effect of community composition on pathogen transmission: 
equilibrium values for proportion of infectious a) and total number of infectious 
b). Cowpox virus (light green circle), Leptospira spp. (violet square), Mouse 
hepatitis virus (Co-V) (dark green circle), Murine Herpesvirus (MuHV-4) (violet 
circle), Murine Norovirus (MNV) (dark violet circle), Mycobacterium microti (light 
green square), PUUV (black circle). Communities: wood mouse; two host species; 
two host species and non-host competitor; full community. Pathogen-related 
parameters are reported in Table 5.3, other parameters as in Fig. 5.7.  
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5.2.4  Discussion 

 

Before examining the results, some methodological choices with regards to 

model structure and parameter estimation will be discussed. Firstly, rodent 

populations were modelled including intra-annual variations, as supported by 

field data (Chapter 2), but no cyclic dynamics were included since these have 

been rarely observed in Britain (Petty, 1999; Sundell et al., 2012; but see 

Lambin et al., 2000); also, empirical data could not confirm multi-annual cycles 

in sampled populations. Secondly, more complex methodologies for growth rate 

estimation could not be employed due to the field data collection design 

(Chapter 2). Although the growth rates of rodent populations were found to 

have density and non-density dependent drivers (Aars and Ims, 2002), and 

density-dependent lag varied in different studies (e.g. Lambin et al., 2000), 

evidence supports the idea that the non-breeding season density is a 

determinant in regulating rodents’ growth rate (Ergon et al., 2011; Smith et al., 

2006). Therefore, the methodology used, which estimated the rate of change 

between the pre-breeding recruitment population density (representing the 

non-breeding season) and the post-breeding peak population density, was 

considered appropriate to describe seasonal fluctuations of rodent populations. 

Thirdly, in Chapter 2, the estimation of daily individual intra and inter-specific 

contacts was performed via a bottom-up approach, namely contacts were 

estimated directly considering individuals’ shared space (Buhnerkempe et al., 

2015). However, defining an epidemiologically relevant contact remains 

difficult, and estimating the probability of transmission per contact is 

problematic (Buhnerkempe et al., 2015). Thus, in order to overcome inference 

limitations, contact rates employed were not fixed (i.e. absolute value estimated 

from empirical data), but were included as a function of individual density (see 

Parameter estimation Section 5.2.1), and the transmission term was 

deconstructed (McCallum et al., 2017). In fact, the pathogen transmission term 

was split into contact rates (between susceptible and infectious individuals), 

and reservoir competence coefficient, in order to distinguish between key 
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components of transmission and increase model flexibility (McCallum et al., 

2017). 

The results showed that, in the absence of inter-specific competition, the 

addition of host species led to an increase in the number of infectious hosts 

compared to the single-host scenario (Fig. 5.2). In addition, reservoir 

competence variation between the two hosts was not sufficient to reduce the 

additive effect of a second host species (Fig. 5.3). The competence sensitivity 

analysis revealed that, as expected, prevalence (i.e. proportion of infectious) and 

total infectious rose as the competence values increased, but this rise was 

slightly different among the two hosts due to demographic differences (i.e. 

different recruitment rates) (Fig. 5.4). The bank vole population had slightly 

steeper growth, and a greater carrying capacity than wood mouse, so the 

transmission was quicker than in wood mouse. Also, reservoir competence 

affected pathogen transmission only until a threshold value (~0.05 for both 

species) was reached; beyond that value, maximum transmission occurred and 

prevalence and number of infectious reached a plateau. For this reason, Fig. 5.4 

shows reservoir competence ranging from 0 to 0.1 and not to the maximum 

algebraic value found. Therefore, if only variability in host reservoir competence 

is considered, the variation of community composition did not produce an 

actual dilution of pathogen transmission. In agreement with Roche et al. (2012), 

a simply additive increase in host species richness yielded a greater number of 

infectious individuals, simultaneously reducing pathogen prevalence (Fig. 5.2a). 

The introduction of inter-specific competition negatively affected the 

susceptible host population growth rate, and altered the relative densities of 

host and non-host species in the community: the higher the competition, the 

lower the number of susceptible hosts, and so the lower the number of 

infectious individuals (Fig. 5.5 and Fig. 5.6). By contrast, prevalence showed the 

opposite trend, and this reinforces the importance of metric selection in 

interpreting epidemiological results (Roche et al., 2012). These results 

supported the hypothesis that, in the context of rodent-borne pathogens, the 

observations of reduced (or diluted) infection prevalence might not represent a 
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true dilution effect, but a misinterpretation of empirical data (Dobson and Auld, 

2016; Roche et al., 2012). Consequently, both pathogen prevalence and the 

number of infectious individuals were always considered and compared in this 

study (also in the following sections). Although competition was not estimated 

empirically, this type of mutual density-dependent effect between sympatric 

species has been often observed in the field (Bryce et al., 2001; Huitu et al., 

2004; Merritt et al., 2001; Sundell et al., 2012). In agreement with the results, 

inter-specific competition has been found to be an essential parameter in 

affecting intensity and trend of pathogen-diversity relationships for directly 

transmitted pathogens (O’Regan et al., 2015; Strauss et al., 2015). 

Similarly, predation affected susceptible host population through top-down 

regulation (Ostfeld and Holt, 2004), reducing the number of infectious hosts 

(Fig. 5.7). Predator removal has been found to increase pathogen transmission 

in preys across different contexts (Holt and Roy, 2007; Packer et al., 2003); 

conversely, predator species have been reported to decrease transmission, 

especially when they consume selectively infected preys (Hoverman and Searle, 

2016). Although this was not modelled, it is likely that the effect of susceptible 

host regulation is amplified by the consumption of infected preys, which 

simultaneously limits the number of infectious, removes parasites from the 

system, and increases abundance of healthy individuals (assuming no predator-

prey transmission) (Hoverman and Searle, 2016; Hudson et al., 1992; Murray et 

al., 1997). Thus, predators are essential to keep under control rodent 

abundance, which is correlated with zoonoses emergence (Bordes et al., 2015). 

In the specific context of Hantavirus transmission, predator species presence 

has been associated with a decrease of Hantavirus prevalence and zoonotic risk 

(Dearing and Dizney, 2010; Orrock et al., 2011). Further, generalist and 

specialist predation had different effects on prevalence and number of 

infectious (Fig. 5.7). The intensification of specialist predation slightly increased 

prevalence, while marginally decreasing the number of infectious individuals. 

By contrast, generalist predation had a much more marked effect on both 

outputs: the higher the generalist predation, the lower both the proportion and 

total number of infectious. This was to some extent expected considering how 



168 

 

predation was modelled (functional responses); generalist predation is 

considered to chronically suppress rodent populations (Ostfeld and Holt, 2004), 

and an important cause of population cycle dampening (Hanski et al., 1991; 

Hanski and Henttonen, 1996; Hanski et al., 2001; Korpela et al., 2014). However, 

Lambin et al. (2000) have criticised the approach used to model generalist 

predation developed by Turchin and Hanski (1997), which was used in this 

study, since in their study they did not find evidence of field vole population 

cycles dampened by generalist predators. It is indeed very challenging to 

estimate predation parameters exactly from empirical data, and it may be that 

predation terms need to be modelled according to local dynamics (Lambin et al., 

2000), but it is undeniable that predators keep rodent populations at lower 

densities, decreasing pathogen transmission (Ostfeld and Holt, 2004). 

Understanding the magnitude of the susceptible host regulation driven by 

competition and predation is paramount, since host densities and abundance 

are key parameters in pathogen transmission, with higher abundance and 

densities correlated to higher prevalence and pathogen diversity (Anderson and 

May, 1979; Begon et al., 2002; Bordes et al., 2015). Hence, a community 

perspective, which includes realistic ecological relationships and reliable 

parameter estimation from empirical data, may give critical insights into 

wildlife epidemiological patterns and may help to understand and predict their 

dynamics (Belden and Harris, 2007; Johnson et al., 2015a; Koprivnikar and 

Johnson, 2016). This was confirmed by the fact that not only the number of 

species in the community, but also the degree of community complexity (in 

terms of interaction among species) affected pathogen transmission (Fig. 5.8 

and Fig. 5.9). A true dilution effect, i.e. a decrease of the number of infectious 

hosts, occurred when species were added to the community together with their 

ecological relationships; no dilution occurred in a simple additive model. 

Considering PUUV and other Hantaviruses, dilution has been often detected in 

field studies (Clay et al., 2009a; Dearing and Dizney, 2010; Ruedas et al., 2004; 

Tersago et al., 2008). In light of the modelling results it may be that the 

observed phenomenon was not due, as hypothesised, to the variability of host 
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species reservoir competence, namely transmission reduction (Keesing et al., 

2006). In fact, it seems more likely that dilution, in directly transmitted 

pathogens, is caused by the mechanism of susceptible host regulation due to the 

interactions between host and non-host sympatric species (Faust et al., 2017). 

Moreover, the mechanism of encounter reduction (between most susceptible 

hosts) due to the presence of non-host (or less susceptible) species was not 

formally tested in this study, but it seems a possible mechanism of dilution since 

rodent intra-specific contacts were found to be negatively correlated with 

shrew density (Khalil et al., 2016). In addition, in this study a positive 

relationship was found between rodent density and inter-specific contacts 

(Chapter 2). 

The results observed modelling PUUV were consistent when modelling other 

rodent-borne pathogens (Fig. 5.10 and Fig. 5.11), despite very different courses 

of epidemics. For example, mouse hepatitis virus (Co-V) displayed an early 

infectious peak due to the extremely short latency period and the short 

infectious period (Navas and Weiss, 2003; Siddell et al., 1983; Weiss and Navas, 

2005), whereas, Mycobacterium microti showed a slow and steady increase of 

infectious due to the extended latent and infectious periods (Cavanagh et al., 

2004; van Soolingen et al., 1998; Wells, 1946). All these pathogens exhibited a 

decrease of total infectious when competition and predation reduced the 

number of susceptible individuals in the community, while prevalence was 

subject to minor alterations (Fig. 5.11). Considering infectious equilibrium 

values (Fig. 5.11b), the same hump shaped pattern could be identified, for all the 

pathogens (including PUUV), across the progressive increase of community 

complexity. In order to check the reliability of these results, pathogen 

prevalence was compared with relevant published prevalence records 

(epidemiological studies of wild rodent population in Britain). The model 

predicted prevalence values in general agreement with existing data, although 

pathogen prevalence data were not always available. For example, Cowpox 

virus prevalence was in the range found by Hazel et al. (2000), and in line with 

values predicted by Cavanagh et al. (2004) for the relative rodent densities. 

Murine Herpesvirus (MuHV-4) predicted prevalence was higher compared to 
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the values described by Telfer et al. (2007b), while M. microti values were in the 

range of values reported for British rodent populations (Cavanagh et al., 2002; 

Wells, 1946). Regarding PUUV, this pathogen is not currently circulating in UK, 

but prevalence data from Fennoscandia revealed great variation across time 

and population phases (Razzauti et al., 2009; Razzauti et al., 2013). In the long 

term, the model predicted a high prevalence value (~80%) for all the 

community assemblages (Fig. 5.8a), and this result was comparable with the 

prevalence observed in the long-term longitudinal study by Voutilainen et al. 

(2016). This underlines the importance of long-term longitudinal studies to fully 

appreciate pathogen epidemiological differences, and gather high quality 

epidemiological data to compare pathogen transmission, and back up modelling 

work. 

In conclusion, the model was effective in recognising susceptible host regulation 

via competition and predation as the most important dilution mechanism with 

regards to directly transmitted pathogens. The modelling results highlighted 

that estimation of the magnitude of competition and predation was essential to 

understand the strength of dilution. Additionally, this type of modelling 

approach might be suitable to identify parameters most affecting specific 

pathogen transmission in certain community assemblages, and to design 

efficient eco-epidemiological studies, maximising fieldwork efforts and 

providing essential information for wildlife disease management. Lastly, wild 

rodents are a significant reservoir of zoonotic pathogens, so the model might 

also find applications in the context of public health. 
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5.3 Tick-borne pathogen model: testing dilution the 

effect in different host-vector pathogen systems 

 

The aim of the study was to investigate potential dilution effects in two host-

tick-pathogen systems, analysing the effects of parameter variation and 

community composition, in order to highlight the effects on vector numbers and 

pathogen prevalence. The research focused on identifying key parameters 

affecting disease transmission in each system, and investigating the role of non-

competent host species (not able to maintain pathogen transmission) in 

determining dilution (or amplification). 

The study employed a deterministic multi-host single-vector compartmental 

model constituted by a set of differential equations (Eq. 1-18). All the results 

were produced using the function rk4 in the R package deSolve (R Core Team, 

2016) which is based on the classical Runge-Kutta 4th order integration. The 

model was not explicitly spatial; the area, 1 ha, was considered constant since it 

was constrained by the sampling unit (Begon et al., 2002), so the populations 

were expressed in individuals/ha and the parameters were scaled accordingly. 

Dilution was tested by modelling a progressively more complex community: 

species were added in turn following realistic assembly rules. As in section 5.2, 

the reservoir community was represented by ground-dwelling small rodents, 

and the model was parameterised (when possible) with data on such ground-

dwelling small rodents collected during live trapping (see Chapter 2). Wood 

mouse and bank vole were the host species for the pathogen and at the same 

time to be host for the ticks. Sorex ssp. shrews were added to the community as 

sympatric competitor non-host species, since evidence of their presence were 

found in the sites sampled (Eq. 3), and they were also hosts for ticks. Finally, 

predation was added: specialist predators (mustelids; Eq. 4) were considered 

suitable hosts for ticks in this system, but the generalist predation term (e.g. 

avian predation) representing only generalist predation intensity did not affect 

tick population. Community assembly was performed starting with (1) one host 
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species and then (2) adding a second host species, (3) the competitor species, 

(4) the predation terms, and, finally, (5) a large grazing ungulate (i.e. sheep or 

deer [in this context]). The latter was included as a closed, constant population 

not affecting, or affected by any other population in the system, and unable to 

transmit the pathogen, except in that it is a suitable host for the vector. Rodent 

and shrew populations followed a logistic growth tending to species-specific 

carrying capacity and limited by intra-specific density-dependent reduction and 

inter-specific competition (Lotka, 1925; Hanski et al., 1993; Volterra, 1926). 

Inter-specific competition among rodents, and between rodents and shrews was 

represented by a density dependent competition term (Huitu et al., 2004; 

O’Regan et al., 2015; Turchin and Hanski, 1997). Rodent species were 

considered more competitive than shrew species since shrew growth rate has 

been found to be reduced by rodent populations (Henttonen et al., 1989; Huitu 

et al., 2004). These species were all predated upon, but rodent species were 

considered preferential prey (Korpimaki and Norrdahl, 1989; Korpimaki, 1992). 

Generalist predation was modelled according to the alternative prey hypothesis 

(Holling type III functional response), while specialist predator population was 

modelled according to the Holling type II functional response based on 

Rosenzweig-MacArthur model (1963) with no preference among rodents (Elton, 

1942; Erlinge, 1975; Hanski and Henttonen, 1996; Holling, 1959; Krebs and 

Myers, 1974; Turchin and Hanski 1997). Specialist predation parameters were 

based on Mustela nivalis (least weasel), which was the most common and most 

widespread mustelid across sampled sites. Tick population equations were 

based on the work by Norman et al. (1999) with the addition of density-

dependent reduction in fecundity (Ogden et al., 2007). Tick distribution on hosts 

was modelled in order to take into account aggregation, i.e. non-homogeneous 

distribution of the vectors on the host population (Rosà et al., 2003). For 

parameter estimation details regarding host population dynamics, competition 

and predation see section 5.2.1 and 5.3.1, while for details about parameters 

regarding vector population and vector-borne pathogens see section 5.3.1. 

The two systems chosen for the analysis were Ixodes ricinus – Borrelia 

burgdorferi s.l. and I. trianguliceps – Babesia microti. These ixodid ticks have a 
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three-host life cycle (larva, nymph, and adult), for which rodents act as hosts for 

all or just some life stages, depending on the tick species (Paziewska et al., 

2010). Ixodes ricinus (sheep tick) is a generalist tick and the key vector for 

Borrelia burgdorferi s.l. (causative agent of Lyme disease in humans) (Norman et 

al., 2017). Larvae and nymphs feed on small mammals, while adults mostly 

prefer larger animals (Mysterud et al., 2015). I. trianguliceps is a specialist tick 

for small mammals and all life stages feed on them (Bown et al., 2006; Cotton 

and Watts, 1967; Mysterud et al., 2015). In the UK, it has been found to be the 

key vector for B. microti, a potentially zoonotic protozoan, of which voles seem 

to be the main reservoir (Bown et al., 2008; Hussein, 1980; Siński et al., 2006). I. 

ricinus is sympatric with I. trianguliceps in many areas, but the role of the first in 

Babesia transmission, and the zoonotic potential of the second are still unclear 

(Bown et al., 2006; Bown et al., 2011; Kovalevskii et al., 2013). 

The time scale of the simulations was 20 years to allow the eco-epidemic 

dynamics to reach the equilibrium, and one day was the basic time step. The 

model included susceptible, infectious, and recovered compartments (SIR) for 

the host; and susceptible and infectious (SI) for the vector (Porco, 1999); non 

viraemic transmission through tick co-feeding was not considered because it 

was found to be a very minor, or inefficient route of transmission for the chosen 

pathogen (Jacquet et al., 2016). Moreover, both pathogens were considered not 

to be vertically transmitted; consequently larvae could not be infectious, but 

could be infected and moult into infectious nymphs (Gray, 2006; Randolph, 

1995; Wood and Lafferty, 2013). The reservoir competence value summarised 

susceptibility, ability of the pathogen to magnify and persist in the host/vector, 

and efficiency of transmission; all the individuals of same host species were 

equally competent, but different species might display different levels of 

competence. The initial density for each rodent species was set at the average 

value found from field data (Chapter 2) (pooled sites excluding Skomer). The 

inoculum was represented by a single infectious individual.  

Equations 1 to 7 represent the model of host-vector dynamics in the absence of 

pathogen, while equations 8 to 18 represent the SIR-SI model. Non-host 
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competitor and specialist predator equations (Eq. 3 and 4) are reported only 

once because the equations are identical with or without pathogen 

transmission. Model variables and parameters are listed in Table 5.4, while Fig. 

5.12 graphically represents the transmission dynamics expressed by the 

equations 8 to 18. 
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Fig. 5.12. Tick-borne disease compartmental model a) and tick life cycle b). Boxes 
represent epidemiological compartments in which each population is 
subdivided: L = tick larval stage, S = susceptible, I = infectious, R = recovered. J 
(host population density) = S+I+R. Subscripts: n = tick nymphal stage, a = tick 
adult stage; j = rodent species (host), ν = non-host competitor (shrew species). r = 
growth rate (determined by competition and density of rodent and shrew 
species), c = competition coefficient, N = non-host competitor population density, 
P = specialist predator population density, β = host-vector encounter rate, d = tick 
moulting success, ρ = tick death rate, σ = recovery rate, τ = reservoir competence. 
Arrows indicate the direction of movement of individuals between classes. 
Arrows pointing outside the boxes represent mortality. Vectors can feed on J, N, 
and P. 
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Table 5.4. List of model variables and parameters. For details on parameter 
estimation see section 5.2.1 and section 5.3.1. 

Symbol Description (source where relevant) 
S Number of susceptible individuals  

I Number of infectious individuals  

R Number of recovered individuals  

N Total number of individuals (population size)  

w, b 
Host-species for the pathogen: wood mouse 
(w); bank vole (b) 

 

j 
Non-host (for the pathogen) competitor 
species 

 

p Specialist predator  

v Vector (ixodid tick)  

d Grazing species (ungulate)  

l Number of tick larvae  

n Number of tick nymphs  

a Number of tick adults  

Sn Number of susceptible nymphs  

Sa Number of susceptible adults  

In Number of infectious nymphs  

Ia Number of infectious adults  

r Rodent growth rate (this study) 

c Competition factor 
(O’Regan et al., 2015; this 
study) 

K Carrying capacity 
(Bolzoni et al., 2008; De Leo 
and Dobson, 1996) 

τ Reservoir competence of transmission  

(Giardina et al., 2000; 
LoGiudice et al., 2003; 
Harrison et al., 2011; 
Hartemink et al., 2008) 

β Encounter rate vector-host 
(Dobson et al., 2011; 
Hancock et al., 2011) 

d Moulting/feeding success (LoGiudice et al., 2003) 

numegg 
Maximum number of per capita adult female 
tick eggs production 

(Ixodes ricinus: Norman et 
al., 1999; I. trianguliceps: 
Krasnov et al., 2007) 

sv 
Density-dependent reduction of tick growth 
rate 

(Ogden et al., 2007) 

σ Recovery rate 

(Harrison et al., 2011; 
Hartemink et al., 2008; 
Randolph, 1995; Randolph 
et al., 1996) 

ν Birth rate 
(Bolzoni et al., 2008; De Leo 
and Dobson, 1996) 
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Table 5.4 (continued). List of model variables and parameters. For details on 
parameter estimation see section 5.2.1 and section 5.3.1. 

Symbol Description (source where relevant) 

ρ Death rate 
(Bolzoni et al., 2008; De Leo 
and Dobson, 1996) 

ρv Tick death rate (Dobson et al., 2011) 

g Saturation rate of generalist predation (Turchin and Hanski, 1997) 

h 
Prey density at which generalist predation 
rate is half of the maximum 

(Turchin and Hanski, 1997) 

α 
Maximum consumption rate of specialist 
predator 

(Turchin and Hanski, 1997) 

Δ Half-saturation constant (specialist predator) (Turchin and Hanski, 1997) 

q Specialist predator-prey ratio constant (Turchin and Hanski, 1997) 

k Tick aggregation parameter 
(this study; Rosà et al., 
2003) 

 

 

5.3.1 Parameter estimation 

 

All the parameters relating to host species, inter-specific competition and 

predation were estimated as in section 5.2. Wood mouse and bank vole growth 

rates (r) were calculated from field data according to Lambin et al. (2000) 

(section 2.2.3.3), but using      instead of       for the purpose of the inclusion 

in the model. The values obtained for breeding and non-breeding season were 

scaled by day, as were all other parameters in the model, and seasonality was 

included in the model considering breeding season from March to October, and 

non-breeding season November to February (Hörnfeldt, 1994; Stenseth et al., 

2002) (Table 5.5). Carrying capacity for all the species, birth rate, and death rate 

of shrew and weasel were estimated allometrically with the following formulae:  

             ,          ,             (where w is the mean body mass in 

g) (Bolzoni et al., 2008; De Leo and Dobson, 1996). The body mass values used 

were: average adults and sub-adults (this study) for rodent species (Skomer 

voles were excluded due to their larger size), while adult average values from 

PanTHERIA database (Jones et al., 2009) were used for common shrew and least 
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weasel. The competition factor (c) values were computed algebraically, ranging 

from 0 (competition absent) to the maximum value for the competing species to 

co-exist (for example, in the case of competition of species i over species j, the 

maximum value is      ), but here the values were fixed as illustrated in Table 

5.5. The parameters relative to predation were estimated with the formulae 

proposed by Turchin and Hanski (1997), but using empirical data from this 

study or data relative to UK, as in section 5.2.1. In this case no sensitivity was 

performed for predation intensity and the parameter values used are reported 

in Table 5.5. Maximum number of per capita adult female tick egg production in 

I. ricinus and I. trianguliceps was set as suggested by Norman et al. (1999) and 

Krasnov et al. (2007) respectively (Table 5.4 and Table 5.5). Tick death rate, 

specific for each life stage, was estimated from Dobson et al. (2011) empirical 

study (Table 5.4 and Table 5.5). According to Ogden et al. (2007) the tick 

approach to equilibrium was modelled with a density-dependent reduction in 

fecundity:                       
 

 
    , where a was the number of adult 

ticks, and N the total density of tick hosts. In addition, tick distribution on hosts 

was modelled in order to represent aggregation, i.e. non-homogeneous 

distribution of the vectors on the host population (Rosà et al., 2003). The 

aggregation parameter, k, was calculated from empirical data as the dispersion 

parameter of the negative binomial distribution fitting the data collected in the 

field about the distribution of ticks on rodent hosts (all rodent data pooled 

together: k = 0.18, μ = 0.23). Values for reservoir competence of hosts and 

vector, host-vector encounter rates, and moulting/feeding success were taken 

from relevant literature and sensitivity analysis was carried out as described in 

section 5.3.2 (Table 5.4 and Table 5.5). Recovery rate (σ) values used in the 

model were pathogen specific and given by 1/infectious period (see Table 5.4 

and Table 5.5 for sources and numeric values).  
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Table 5.5. List of starting conditions and parameter values used for the 
simulations. When a range of values is provided, sensitivity analysis has been 
performed (see section 5.3.2). 

Symbol Description Value 
Nw Wood mouse population 49 (ind/ha) 

Nb Bank vole population 75 (ind/ha) 

Nj Shrew population 20 (ind/ha) 

Np Weasel population 3 (ind/ha) 

Nd Ungulate population (constant) 5 (ind/ha) 

Nv Tick population 100 (ind/ha) 

cbw, cjw 
Competition of wood mouse over bank vole, and shrew 
respectively 

0.20 

1.04 

cwb, cjb 
Competition of bank vole over wood mouse, and shrew 
respectively 

0.20 

1.03 

cwj, cbj 
Competition of shrew over wood mouse, and bank vole 
respectively 

0.11 

0.12 

dr 

ds 

dl 

Moulting/feeding success on rodents, shrews, and large 
hosts respectively (range) 

0 – 0.593 

0 – 0.496 

0 – 0.639 

g Saturation rate of generalist predation 0.49 

h 
Prey density at which generalist predation rate is half of 
the maximum 

9.9 

k Tick aggregation parameter 0.18 

numegg 
Maximum number of per capita adult female tick eggs 
production: Ixodes ricinus, I. trianguliceps  

1500 

1000 

q Specialist predator-prey ratio constant 56 

rb+, rb- 
Bank vole growth rate breeding season (+), and non-
breeding season (-) 

0.007; -0.002 

rw+, rw- 
Wood mouse growth rate breeding season (+); non-
breeding season (-) 

0.04; -0.006 

α Maximum rodent consumption rate of specialist predator 1 

αs Maximum shrew consumption rate of specialist predator 7.67 

βsl, βll 

βsn, βln 

βsa, βla 

Encounter rate small host, large host-larva (range) 

Encounter rate small host, large host-nymph (range) 

Encounter rate small host, large host-adult (range) 

0.0043 – 0.073 

0.04 – 0.0975 

0.043 – 0.105 

Δ Half-saturation constant (rodent) 11.31 

Δs Half-saturation constant (shrew) 22.62 

ρv 

Tick death rate: larvae,  

nymphs,  

adults 

0.0014 

0.0005 

0.0004 

σbb Recovery rate Borrelia burgdorferi s.l. 0.0083 

σbm Recovery rate Babesia microti s.l. 0.4 

τ Reservoir competence (range) 0 – 0.90 
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5.3.2 Sensitivity analyses 

 

Sensitivity analysis was performed on parameters that were hypothesised to 

affect model outputs but could not be directly estimated, namely reservoir 

competence, host-vector encounter rate, moulting/feeding success. These 

parameters were chosen because they were considered among the most 

important affecting transmission in similar tick-borne pathogen systems (Dunn 

et al., 2013; Roche et al., 2013). The range of values chosen for the sensitivity 

analyses were selected from empirical papers that investigated the same or 

similar host-vector-pathogen systems; when available, data from the same host 

and vector species were preferred (Table 5.4 and Table 5.5). Firstly, sensitivity 

analysis was carried out on encounter rates via systematic sampling; 10 

intervals were input into the sensitivity between the minimum and the 

maximum value found in literature. In this way the impact of different 

encounter rates (host-larva, host-nymph, or host-adult) on pathogen 

transmission across different community assemblages was examined. Next, 

sensitivity analysis through Latin hypercube sampling (Iman et al., 1981a,b) 

was executed for the moulting/feeding success parameter assembling a 

progressively more complex community in order to identify the relative 

importance of different hosts in sustaining tick population and pathogen 

transmission. Finally, reservoir competence was split into five parameters for 

each rodent species: host to larva, host to nymph, host to adult, nymph to host, 

and adult to host. Sensitivity analysis was performed through Latin hypercube 

sampling (Iman et al., 1981a,b) on each of those to investigate the effect of 

variation of every competence parameter on pathogen transmission among 

rodents and ticks. For each of these parameters (moulting success and reservoir 

competence) values were randomly chosen between the minimum and the 

maximum. Sensitivity analyses were performed separately for the two systems 

under consideration, keeping constant pathogen-specific parameters such as 

recovery rate, and tick-specific parameters such as the maximum number of per 

capita adult female tick eggs production. 
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5.3.3 Results 

 

Fig. 5.13 shows the two vector populations across different host species 

assemblages in the absence of pathogen transmission. Ixodes ricinus, compared 

to I. trianguliceps, was more prolific and displayed an overall higher number of 

individuals, but due to adult lower preference of feeding on small sized hosts, 

the proportion of nymphs and adults was lower, especially in the assemblages 

without larger hosts (Fig. 5.13a, b, c). Thus, assembling the community, I. ricinus 

population increased, especially the proportion of adults. Conversely, I. 

trianguliceps did only feed on small hosts (rodents and shrews) therefore there 

was no substantial change in tick numbers across different communities. 

However, a slight increase in individuals is noticeable when the shrew 

population was added, due to the overall host increase (Fig. 5.13g), and also in 

the full community because predation, lessening small host populations, 

determined a relaxation of the host-density dependent fecundity reduction.  

Considering the system I. ricinus-Borrelia burgdorferi, sensitivity analysis on 

host-vector encounter rates revealed that the parameter most affecting the 

outputs of interest, proportion and number of infectious nymphs and hosts, was 

the encounter rate between small host and larva (Fig. 5.14 and Fig. 5.15). This 

meant that for each value of this parameter the alteration of other parameters 

representing encounter rates did not determine much variation in the outputs. 

In the single-host and two host scenario (Fig. 5.14a,b and Fig. 5.15a,b), 

increasing the small host-larva encounters caused a decrease of proportion and 

number of infectious hosts and a decrease of number of infectious nymphs, 

while an increase in nymph prevalence (proportion of infectious individuals). 

This pattern was produced because tick fecundity is regulated by tick density 

and host density. The addition of the shrew to the community (Fig. 5.14c and 

Fig. 5.15c) increased the total number of hosts available for the ticks, and, 

consequently, the encounter rate value was irrelevant in determining host and 

nymphal prevalence, and number of infectious hosts. The minimum value of the 

parameter was enough to saturate transmission. However, compared to the less 
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complex communities, host prevalence was higher and nymph prevalence was 

lower, due to the ticks feeding also on non-competent hosts for the pathogen. In 

the full community (Fig. 5.14d and Fig. 5.15d), the presence of many alternative 

tick hosts determined an increase in nymph prevalence, without an increase of 

the number of infectious nymphs, compared with the previous scenario. 

Similarly, the presence of predators affected prevalence and number of 

infectious hosts decreasing actual number of infectious hosts and increasing 

host prevalence at the same time. 

The second host-vector-pathogen system presented substantially different 

results (Fig. 5.16 and Fig. 5.17), especially with regards to the values of 

infectious hosts, which were considerably lower than the previous case, due to 

the shorter infectious period of Babesia microti. The outputs were not 

remarkably affected by different community assemblages, but, in general, the 

progressive addition of competitor and predator species progressively reduced 

the number of infectious hosts (due to the susceptible host regulation). 

However, the pattern of the results along the range was different because of the 

lower fecundity of I. trianguliceps and the lower amount of hosts suitable for this 

tick species (only rodent species and shrew). The increase of encounter rates 

determined a subsequent increase in infectious nymphs (with no change in 

prevalence as the total nymphal population increased as well), while prevalence 

and total number of infectious hosts reached a peak, then a decline followed by a 

slow rise (most likely caused by the interaction between host and tick 

population size and patterns of ticks aggregation). 

Sensitivity analysis on moulting success parameters demonstrated that, in both 

systems, rodents and shrews were the hosts more affecting pathogen 

transmission (Fig. 5.18 to Fig. 5.21). Taking into account the I. ricinus-B. 

burgdorferi system, in the community constituted only by rodents and shrew, 

the number of infectious nymphs increased with the increase of the moulting 

success on rodents (the opposite trend could be observed for prevalence 

because of the rise of total tick population), while the moulting success on 

shrews did not affect the results (Fig. 5.18a, c). Likewise, higher moulting 

success on rodents determined a rise of infectious hosts (but, unlike nymphal 



185 

 

prevalence, host prevalence increased too) (Fig. 5.19a, c). Moulting success on 

shrews mostly affected proportion and number of infectious nymphs in the full 

community because of the higher predation on rodents than shrews (Fig. 5.18b, 

d). The rise in shrew relative density compared to the former scenario boosted 

their role in supporting tick population. By contrast, in terms of patterns of 

results, no difference could be noticed with regards to proportion and number 

of infectious hosts between the two communities; moulting success on rodents 

was the most important parameter affecting the outputs (Fig. 5.19b, d). 

However, in the full community, an overall higher number of infectious nymphs 

and a lower number of infectious hosts could be observed compared to the less 

complex assemblage. A threshold value could be observed above which the 

maximum transmission occurred and the proportion and number of infectious 

hosts reached a plateau, likely due to the inclusion in the model of tick 

aggregation on hosts (Fig. 5.19). 

Considering sensitivity analysis on the same parameters, the I. trianguliceps-B. 

microti results did not significantly differ from the previous case in terms of 

trends and patterns (Fig 5.20 and Fig. 5.21). Moulting success on rodents was 

the main parameter affecting numbers of infectious nymphs and hosts, but in 

the full community, the relative rise of shrew population determined the same 

phenomenon as described earlier (Fig. 5.20d). Comparing the two host 

assemblages, there was no change in number of infectious nymphs, while a 

decrease in the number of infectious hosts could be observed in the more 

complex assemblage (Fig. 5.21b, d). However, there were two important 

differences between the systems. Firstly, the higher amount of wasted bites (in 

terms of pathogen transmission) of I. ricinus and the higher encounter rate of I. 

trianguliceps with small sized hosts (including rodents, competent in 

transmitting the pathogen) yielded an overall lower amount of nymphs were 

infected by B. burgdorferi. Secondly, the higher fecundity of I. ricinus and the 

higher number of alternative hosts (in the full community) determined that a 

lower value of moulting success on rodents was sufficient to reach the 

maximum number of infectious hosts in this system. 
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Results regarding the sensitivity analysis on competence of transmission were 

difficult to interpret due to the relative contribution to transmission of all the 

five different parameters (rodent to larva, nymph, adult, nymph or adult to 

rodent). In general, as expected, the proportion and the number of infectious 

nymphs and hosts increased together with the increase in competence of 

transmission. However, Fig. 5.22 to Fig. 5.25 display the pair of parameters for 

which the model was more sensitive in each case. In both systems, the 

proportion and number of infectious nymphs were influenced by multiple 

parameters, and the graphical visualisation of the results did not reveal any 

specific pattern, with the exception that it seemed that an increase in nymphal 

competence of transmission to rodents decreased the number of infectious of I. 

ricinus nymphs, while the opposite was observed for I. trianguliceps (in this case 

the same occurred for nymph prevalence) (Fig. 5.22 and Fig. 5.24). In the second 

system a small value of competence was enough to reach the maximum level of 

transmission, as the vast majority of the available hosts were competent in 

transmitting the pathogen. In this system, increasing community complexity, led 

to a marked rise of infectious nymphs due to the addition of shrews, which 

increased host availability and boosted tick population (Fig. 5.24f). Conversely, 

the higher number of alternative hosts for I. ricinus produced an overall lower 

number of infectious nymphs in the full community (Fig. 5.22f). With regards to 

the effect of competence on hosts, the competence of transmitting the pathogen 

from nymph to rodent was the most important parameter in the I. ricinus-B. 

burgdorferi system, with a low value sufficient to reach maximum transmission 

(Fig. 5.23). Also, in assembling the community, we observed an increase of host 

prevalence, but a lower number of infectious hosts because of the overall 

reduction of rodent populations due to competition and predation (Fig. 5.23c, f). 

In the alternative system, the effect of competence was less clear because a low 

level of competence for any of the parameters was enough to sustain 

transmission. However, the parameters the increase of which produced a more 

marked amplification of proportion and number of infectious hosts were 

primarily competence of transmission from rodent to larva (the effect of bank 

vole or wood mouse was similar, although for the plotting purpose only the 
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parameter relative to bank vole was shown), and nymph to rodent. Finally, also 

in this case, competition and predation reduced the number of infectious hosts 

compared to the communities consisting of only rodent species because 

reduced the availability of competent hosts (Fig. 5.25d, e, f). 

 

Fig. 5.13. Host-vector dynamics: comparison between Ixodes ricinus (a, b, c, d) 
and I. trianguliceps (e, f, g, h) systems. Log transformed number of individual 
larvae (dashed line), nymphs (solid line), and adults (dotted line) across 
different community assemblages (values were log transformed). Bank vole (a, 
e); wood mouse and bank vole (b, f); two rodent species and shrew (c, g); full 
community (two rodent species, shrew, generalist and specialist predation, 
ungulate) (d, h).  
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Fig. 5.14. Ixodes ricinus-Borrelia burgdorferi: sensitivity analysis on encounter 
rates. Proportion of infectious hosts (purple) and infectious nymphs (green) 
across different community assemblages: a) bank vole; b) wood mouse and bank 
vole; c) two rodent species and shrew; d) full community (two rodent species, 
shrew, generalist and specialist predation, ungulate). Box and whiskers plots of 
the results (1000 combinations) sorted according to the encounter rate small 
host (rodents and shrews)-larva.  
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Fig. 5.15. Ixodes ricinus-Borrelia burgdorferi: sensitivity analysis on encounter 
rates. Number of total infectious hosts (purple) and infectious nymphs (green) 
across different community assemblages: a) bank vole; b) wood mouse and bank 
vole; c) two rodent species and shrew; d) full community (two rodent species, 
shrew, generalist and specialist predation, ungulate). Box and whiskers plots of 
the results (1000 combinations) sorted according to the encounter rate small 
host (rodents and shrews)-larva.  
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Fig. 5.16. Ixodes trianguliceps-Babesia microti: sensitivity analysis on encounter 
rates. Proportion of infectious hosts (purple) and infectious nymphs (green) 
across different community assemblages: a) bank vole; b) wood mouse and bank 
vole; c) two rodent species and shrew; d) full community (two rodent species, 
shrew, generalist and specialist predation, ungulate). Box and whiskers plots of 
the results (1000 combinations) sorted according to the encounter rate small 
host (rodents and shrews)-larva.  
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Fig. 5.17. Ixodes trianguliceps-Babesia microti: sensitivity analysis on encounter 
rates. Number of total infectious hosts (purple) and infectious nymphs (green) 
across different community assemblages: a) bank vole; b) wood mouse and bank 
vole; c) two rodent species and shrew; d) full community (two rodent species, 
shrew, generalist and specialist predation, ungulate). Box and whiskers plots of 
the results (1000 combinations) sorted according to the encounter rate small 
host (rodents and shrews)-larva. 
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Fig. 5.18. Ixodes ricinus-Borrelia burgdorferi: sensitivity analysis on moulting-
feeding success. On the z-axis equilibrium values for proportion (a, b) and 
number of infectious nymphs (c, d) across different community assemblages: a) 
and c) two rodent species plus shrew; b) and d) full community. Latin hypercube 
sampling 1000 replicates. 
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Fig. 5.19. Ixodes ricinus-Borrelia burgdorferi: sensitivity analysis on moulting-
feeding success. On the z-axis equilibrium values for proportion (a, b) and 
number of infectious hosts (c, d) across different community assemblages: a) and 
c) two rodent species plus shrew; b) and d) full community. Latin hypercube 
sampling 1000 replicates. 
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Fig. 5.20. Ixodes trianguliceps-Babesia microti: sensitivity analysis on moulting-
feeding success. On the z-axis equilibrium values for proportion (a, b) and 
number of infectious nymphs (c, d) across different community assemblages: a) 
and c) two rodent species plus shrew; b) and d) full community. Latin hypercube 
sampling 1000 replicates. 
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Fig. 5.21. Ixodes trianguliceps-Babesia microti: sensitivity analysis on moulting-
feeding success. On the z-axis equilibrium values for proportion (a, b) and 
number of infectious hosts (c, d) across different community assemblages: a) and 
c) two rodent species plus shrew; b) and d) full community. Latin hypercube 
sampling 1000 replicates. 
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Fig. 5.22. Ixodes ricinus-Borrelia burgdorferi: sensitivity analysis on reservoir 
competence. On the z-axis equilibrium values for proportion (a, b, c) and number 
of infectious nymphs (d, e, f) across different community assemblages: a) and d) 
bank vole; b) and e) wood mouse and bank vole; c) and f) full community. Latin 
hypercube sampling 1000 replicates. BV: bank vole. 
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Fig. 5.23. Ixodes ricinus-Borrelia burgdorferi: sensitivity analysis on reservoir 
competence. On the z-axis equilibrium values for proportion (a, b, c) and number 
of infectious nymphs (d, e, f) across different community assemblages: a) and d) 
bank vole; b) and e) wood mouse and bank vole; c) and f) full community. Latin 
hypercube sampling 1000 replicates. BV: bank vole.  
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Fig. 5.24. Ixodes trianguliceps-Babesia microti: sensitivity analysis on reservoir 
competence. On the z-axis equilibrium values for proportion (a, b, c) and number 
of infectious nymphs (d, e, f) across different community assemblages: a) and d) 
bank vole; b) and e) wood mouse and bank vole; c) and f) full community. Latin 
hypercube sampling 1000 replicates. BV: bank vole. 
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Fig. 5.25. Ixodes trianguliceps-Babesia microti: sensitivity analysis on reservoir 
competence. On the z-axis equilibrium values for proportion (a, b, c) and number 
of infectious nymphs (d, e, f) across different community assemblages: a) and d) 
bank vole; b) and e) wood mouse and bank vole; c) and f) full community. Latin 
hypercube sampling 1000 replicates. BV: bank vole. 
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5.3.4 Discussion 

 

The structure of the model seemed suitable to highlight differences in the host-

vector-pathogen dynamics. The empirical data collected in the field were useful 

to develop a model suitable to describe the systems under investigation. First, 

aggregation of the vector on the host was included (non-uniform distribution on 

the host population), as found in the field, in order to have a more realistic 

pathogen transmission patterns, as the increase of vectors does not linearly lead 

to an increase in infections because of the “20/80 rule” (Perkins et al., 2003; 

Woolhouse et al., 1997). The aggregation parameter was estimated from both 

species and for all tick life stages due to the uneven amount of data for each of 

those variables; although, this may be host and life stage specific (Krasnov et al., 

2007). Intensity of infestation has been reported to predict pathogen prevalence 

(Van Buskirk and Ostfeld, 1995; Foley and Piovia-Scott, 2014; Hofmeester et al., 

2017), therefore the aggregation term parameterised according to the tick 

distribution found in the field seemed an optimal way to incorporate this 

relationship in the model (Calabrese et al., 2011). Then, the often 

counterintuitive relationship between host density and ecto-parasites 

abundance/prevalence (e.g. Fichet-Calvert et al., 2003; McCauley et al., 2008; 

Stanko et al., 2006) was the reason to include the tick and host density 

dependent fecundity reduction function to the tick recruitment equation (Ogden 

et al., 2007). In fact, ecto-parasites do not necessarily linearly increase following 

host abundance increase. Further, no transmission through tick co-feeding 

(non-viraemic) was introduced, as, in the animals sampled, co-feeding was an 

extremely rare event. Also, the pathogens considered were assumed not to have 

non-viraemic transmission (Jacquet et al., 2016), although different pathogens 

and strains were found to have different efficacy of infection through co-feeding 

(Levin and Fish, 2000; Richter et al., 2002; Tonetti et al., 2015; Voordouw, 

2015). Ecological differences between the two tick species have been observed, 

e.g. different host preferences and different seasonal peaks representing 

different environmental preferences (e.g. temperature, humidity) (Mysterud et 



201 

 

al., 2015), and the two species have often not been recorded together (e.g. this 

study), therefore it was reasonable to model the two systems independently. 

Further, B. burgdorferi has never been isolated in I. trianguliceps (Mysterud et 

al., 2015). 

The vector populations modelled were comparable with other empirical and 

modelling studies with regards to tick density (taking into account the spatial 

scale and the host densities), and the proportion between larvae, nymphs and 

adults (~1000:100:2) (Dobson et al., 2011; Harrison et al., 2011). It might seem 

that a very small number of ticks were collected in this study (see Chapter 3) 

compared to the size of the population modelled, but ticks were not sampled 

from the environment, where the vast majority of the tick real population is 

found (Dobson, 2014). Moreover, other very important tick vertebrate hosts 

were not sampled (i.e. shrews: Bray et al., 2007; Mysterud et al., 2015).  

According to LaDeau et al. (2011), multiple data sources were integrated in 

developing the model in order to maximise existing ecological and 

epidemiological knowledge. As advised by Roche et al. (2013), no fixed 

relationship was introduced between host abundance and reservoir 

competence (competence of transmission was parameterised according to 

previous empirical studies), and seasonality was included in the host population 

dynamics. Despite seasonality not explicitly being included in the tick 

population dynamics, the period of the year in which they were expected to 

peak was included in the rodents’ breeding season, so, this caused an indirect 

seasonal effect. Lastly, the model might have been improved by including the 

links between tick population dynamics and habitat, which is essential to 

understand local dynamics (and avoid ecological fallacy), as it has been 

observed that tick prevalence may be more dependent upon site rather than 

host species (Maaz et al., 2018), but this was beyond the scope of this study.  

The prevalence values predicted by the model were plausible for the pathogen 

considered. B. burgdorferi s.l. prevalence in I. ricinus in Europe differs regionally, 

ranging from 3.3 to 36.2% (reviewed in Obiegala et al., 2017). In Germany, 

Obiegala et al. (2017) found that the majority of species of the order Rodentia 
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were highly prevalent (25.4–62.5%), while insectivores and carnivores were all 

negative, and Khanakah et al. (2006) found all rodents species positive with 

prevalence ranging from 13.3 to 77.0%. By contrast, B. microti has been found at 

low prevalence across rodents (Hussein, 1980; Welc-Falęciak et al., 2008), 

although it seems to widely vary according to rodent species and methodology 

used (blood smear or PCR) (Siński et al., 2006). 

The model outputs of interest were proportion and number of infectious hosts, 

and proportion (NIP) and number of infectious nymphs (DIN), since the latter 

are common metrics used to estimate human disease risk, as nymphs are the 

most numerous infectious tick life stage (no transovarial transmission), and the 

most likely to bite humans (Barbour and Fish, 1993; LoGiudice et al., 2003; 

Piesman, 1989; Wood and Lafferty, 2013). Both the proportion and number of 

infectious were included as they represent different metrics, and might respond 

in divergent ways to parameter and community composition variations, 

according to the finding in section 5.2. 

The encounter rate parameter that most influenced the pathogen transmission 

was, in both systems, the one between small hosts and larvae, most likely 

because this was also the parameter most impacting the recruitment of tick 

populations. However, the increase in encounters had a negative effect on 

infectious nymphs in I. ricinus, and the opposite in I. trianguliceps because the 

population of the first tick species, being more prolific, was subjected to a 

progressive population reduction due to the greater fecundity reduction, which 

was density-dependent. The addition of the shrew population, which was not 

competent in transmitting the disease proved evidence of dilution through 

transmission reduction (wasted tick bites) in the I. ricinus-B. burgdorferi 

system; in fact, despite the rise of overall hosts available for ticks, there was no 

increase of infectious nymphs, and nymph prevalence dropped (because of the 

overall increase in nymph population). This effect was not observed in the 

alternative system, as prevalence and number of infectious nymphs did not vary 

across different community assemblages. The reason for this phenomenon 

might be found in the different disease-related parameters, and the aggregation 
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term that determined that maximum transmission was reached already in the 

community with only two rodents, and the addition of more ticks into the 

system was irrelevant. Comparing the third scenario with the richest 

community assemblage, it was possible to find evidence of dilution (with 

regards to the host) through susceptible host regulation in both systems, as the 

number of infectious hosts decreased due to predation. Also, this effect acted in 

synergy with transmission reduction in the first host-vector-pathogen system, 

as I. ricinus fed also on the non-competent species added to the last assemblage 

(predator, ungulate). In general, it was observed that there was usually, for each 

case, a threshold value of the encounter rate higher than which the output 

under consideration reached a plateau. The explanation might be found in the 

constraints of transmission that were represented by the values of competence 

lower than 100%, and the presence of the aggregation term. 

Moulting success on rodents was the parameter that most affected pathogen 

transmission in both systems, especially with regards to host infection. Moulting 

success on shrews did have an impact on prevalence and number of infectious 

nymphs only in the community where predation was modelled, since predators 

preyed preferentially on rodents and the shrew population became relatively 

more important in sustaining the tick population, and subsequently pathogen 

circulation. However, even in this case the numerical differences between the 

two systems were maintained; compared to I. trianguliceps, the I. ricinus 

population was larger, yet overall fewer infectious nymphs were present in both 

community assemblages, because of the presence of alternative hosts, and the 

different host preferences. By contrast, a lower value of moulting success on 

rodents was sufficient to reach the maximum number of infectious hosts 

because of the greater number of ticks. Hence, the higher number of wasted 

bites (in terms of pathogen transmission) of I. ricinus and the higher encounter 

rate of I. trianguliceps with small sized hosts (including rodents, competent in 

transmitting the pathogen) yielded an overall lower amount of nymphs infected 

by B. burgdorferi. Nonetheless, the lower population size of I. trianguliceps 

determined that a higher value of moulting success was necessary to reach the 

plateau with regard to infectious hosts, of which the number varied more along 
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the range of values of moulting success than of encounter rates. Therefore, 

moulting success on rodents rather than encounter rate, in the second system, 

was the parameter that regulated pathogen transmission. Comparing the two 

community assemblages, there was evidence, as described earlier, of dilution 

through susceptible host regulation by predation in both systems.  

Considering competence of transmission, in the B. microti system, this 

parameter did not massively influence transmission among ticks, as I. 

trianguliceps fed almost exclusively on competent hosts, so a small value of 

competence was enough to reach the maximum level of transmission among 

nymphs. With regards to infectious hosts, the two competence parameters that 

seemed to be more decisive were rodent to larva and nymph to rodent, 

probably due to the fact that a higher number of infectious larvae can moult in 

infectious nymphs, while adults are a minor part of the population, confirming 

the crucial role of nymphs in transmission. In the full community there was 

evidence of susceptible host regulation (the number of infectious hosts 

decreased compared to the two-host scenario), but the presence of shrews did 

cause an increase in infectious nymphs. By contrast, in the alternative system, 

competence was essential in determining the transmission among ticks, with all 

the different competence parameters contributing to the infection of nymphs; 

therefore, it was visually impossible to display any pattern. However, with 

regards to transmission among hosts, the parameter most influencing the 

number of infectious was competence of transmission from nymph to rodent. A 

low value of this parameter was sufficient to reach the maximum number of 

infectious hosts, as the nymphal life stage is the most numerous among 

infectious ticks. Also in this case there was evidence of dilution through 

susceptible host regulation by predation in both systems. It seemed that, due to 

the higher proportion of wasted bites, competence of transmission was crucial 

in regulating the pathogen circulation in this system. Finally, the increase in 

nymphal competence of transmission to rodents decreased the number of 

infectious I. ricinus nymphs because this increased the number of infectious 

adults, without altering the total vector prevalence.  
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So, it seemed that the parameters most affecting the juvenile stages of the ticks 

were the ones most affecting transmission, and this has been previously 

observed by Van Buskirk and Ostfeld (1995). They demonstrated that the 

density of hosts for adult ticks impacted transmission only at very low densities 

of hosts for juvenile ticks, and provided evidence that Lyme disease risk was 

more efficiently decreased controlling small mammal populations not ungulates. 

The results provide evidence that in the system with the more generalist vector, 

I. ricinus, the dilution effect was more significant and more mechanisms were 

represented, and this is in agreement with the classic assumptions about 

dilution formulated by Schmidt and Ostfeld (2001). The modelling study was 

also useful to identify the key parameters regulating transmission in the two 

systems. Taking into account the more complex community, moulting success 

seemed to be crucial in the case where the tick species had a smaller population 

and fewer alternative hosts, because transmission was limited by the number of 

ticks. Whereas, for I. ricinus, the regulating factor was competence of 

transmission, since this species had to maximise the efficiency of transmission 

of the lower proportion of feeding events on competent hosts. Consequently, in 

the two systems the key dilution mechanisms were also different: transmission 

reduction for I. ricinus-B. burgdorferi, and susceptible host regulation for I. 

trianguliceps-B. microti. Furthermore, the parameters most affecting the 

systems were among the most uncertain, demonstrating that more empirical 

studies are needed to estimate the most relevant parameters for these systems 

and so improve model prediction power. This modelling approach may be 

useful to better direct and design field studies, according to the system under 

consideration. 

Transmission reduction due to the presence of fewer, or non-competent, hosts 

was the basic mechanisms of dilution described by the majority of the studies 

about vector-borne pathogens (e.g. Levi et al., 2016; LoGiudice et al., 2008; 

Ostfeld and LoGiudice, 2003). This was observed in this study, but was only 

relevant to the number of infectious hosts because the increase in host (for the 

vector) abundance also enhanced vector abundance, and subsequently 
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infectious vector abundance, as shown by other modelling works (Roche et al., 

2013; Ruyts et al., 2018). Nevertheless, this phenomenon was overlooked by 

many studies, as vector prevalence, in the presence of more alternative hosts, 

decreased producing spurious dilution (Dobson and Auld, 2016). Considering 

dilution in the host, shrew population dilution power has been observed 

empirically, as shrews often possess higher tick burdens than rodents, 

representing an important source of wasted bites for the tick population, 

although in North America shrew species have been found to be fairly 

competent to transmit B. burgdorferi (Halsey et al., 2018). Nevertheless, shrew 

species are typically less abundant than rodents, and therefore their abundance, 

degree of competition with rodents, and degree of competence will strongly 

determine their role in pathogen transmission, so a better understanding, at a 

local scale, is needed to draw definitive conclusions. 

The second mechanism of dilution, observed in both systems, was susceptible 

host regulation, mainly due to predation (a minor reduction of rodent 

populations came from the competition with the shrew population, but that 

parameter was chosen conservatively since it was very uncertain). In agreement 

with this finding, predation has been previously observed to lower the density 

of reservoir-competent hosts (Levi et al., 2012; Ostfeld and Holt, 2004). In 

addition, it has also been found to have other indirect effects. Predators might 

reduce the density of infectious nymphs (DIN) via non-lethal effects on prey as 

many prey species show decreased movement and increased refuging 

behaviour; predator activity has been found to be negatively correlated with 

rodent larval burden, and therefore with DIN, and, finally, animals that move 

more, acquiring more ticks, are more easily predated upon (selective predation 

on highly infested animals) (Hofmeester et al., 2017). Moreover, predators, such 

as mustelids and foxes, are not heavily parasitised by ticks (Lorusso et al., 2011; 

Meyer-Kayser et al., 2012) so they do not contribute markedly to the increase in 

tick population.   

In summary, dilution or amplification effects might not be mutually exclusive 

and depend on the metric under consideration, which has to be selected 
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according to the aim of the study (e.g. public health or wildlife 

management/conservation) (Dobson and Auld, 2016; Lou et al., 2014). In the 

presented cases more complex communities led to fewer infectious hosts 

providing evidence for dilution, but also led to an amplification of human 

disease risk due to the increase of density of infectious nymphs. Still, with 

regards to the I. trianguliceps-B. microti system the quantification of human 

disease risk is challenging because I. trianguliceps is present at lower densities 

than I. ricinus, and has not been found involved in zoonotic transmission yet 

(Kovalevskii et al., 2013). Nonetheless, B. microti has been isolated in I. ricinus 

(e.g. Abdullah et al., 2018), and the two tick species may be sympatric, so where 

they occur together, I. ricinus might amplify human disease risk as it happens for 

the system B. microti-I. spinipalpis-I. scapularis in North America (Castro et al., 

2001).  

Finally, the model did not take into consideration the presence of multiple 

species of vectors, and pathogen co-infection, which could be included in a 

further development of the model. Although in a study investigating Anaplasma 

phagocytophilum (another rodent-borne pathogen), infection probability in 

ticks was not related to tick species richness, diversity, or evenness (Foley and 

Piovia-Scott, 2014), tick species have been often reported to have differential 

transmission competence (e.g. as illustrated for B. burgdorferi and B. microti). In 

addition, pathogens can facilitate or inhibit different pathogen infection; for 

example, the tick I. scapularis has been infected with B. microti and B. 

burgdorferi more often than expected by chance, whereas the opposite has been 

observed with A. phagocytophilum and B. microti (Diuk-Wasser et al., 2016; 

Hersh et al., 2014b). 
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5.4 Flea-borne pathogen model: is the dilution effect 

detectable in presence of reinfection and vertical 

transmission? 

 

As previously, a deterministic multi-host compartmental model constituted by a 

set of differential equations (Eq. 1-9) was employed to investigate the dynamics 

of a flea-borne pathogen. All the results were produced using the function rk4 in 

the R package deSolve (R Core Team, 2016) which is based on the classical 

Runge-Kutta 4th order integration. Also this model was not explicitly spatial; the 

area, 1 ha, was considered constant since it was constrained by the sampling 

unit (Begon et al., 2002), so the populations were expressed in individuals/ha 

and the parameters were scaled accordingly. The dilution effect was tested by 

assembling a progressively more complex community: host-species, competitor 

and predator species were added in turn following realistic assembly rules.  

In this case the pathogen chosen for the simulation was Bartonella sp., which 

was isolated in the fleas collected in this study (see Chapter 4). Bartonella is a 

gram-negative bacterium that is transmitted via fleas (and probably other 

vectors), of which several species have been commonly found to infect rodent 

species (Birtles et al., 2000; Telfer et al., 2007a,c; Paziewska et al., 2012). These 

species do not seem to be associated with a particular flea assemblage, but it has 

been discovered that a great variety of strains have different infectivity among 

rodents, as they do not develop full cross-immunity, so they can get re-infected 

by a different strain (Gutiérrez et al., 2015; Kosoy, 2010). Further, Bartonella 

strains displayed some degree of species-specificity among rodents 

(Withenshaw et al., 2016), and vertical transmission has also been observed 

(Brook et al., 2017; Kosoy et al., 1998; Morick et al., 2013). This host-vector-

pathogen system has been chosen with the aim of testing whether the dilution 

mechanisms observed in the previous sections were still detectable in a vector 

other than tick, a specialist of rodents, and in the case of a pathogen that does 

not cause life-long immunity, and also presents vertical transmission.  
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The host community for both pathogen and vector was represented by ground-

dwelling small rodents, and, in particular, the model was parameterised where 

possible with data collected during live trapping (see Chapter 2). The rodent 

species considered were wood mouse and bank vole. Sorex ssp. shrews were 

added to the community as a sympatric competitor non-host species, since 

evidence of their presence was found in the sites sampled (Eq. 8). Bartonella 

species have been isolated in shrews, but they have been hypothesised to be 

specific to shrew species (Bray et al., 2007), therefore in the model it was 

assumed that they were not competent in transmitting in rodent species. Also, 

shrews were not considered hosts for rodent fleas, as very little information is 

available about flea-shrew dynamics, and it was assumed that they did not share 

the same flea assemblages. Finally, predation was introduced with two terms 

representing generalist (e.g. avian predation) and specialist (mustelids) 

predation (Eq. 9). Community assembly was performed starting from one host 

species, then adding a second host species, and finally including the competitor 

species (shrew) and the predation terms. 

Similarly to the previous models, rodent and shrew populations were modelled 

according to the Lotka-Volterra system, namely they followed a logistic growth 

tending to species-specific carrying capacity and limited by intra-specific 

density dependent reduction and inter-specific competition (Lotka, 1925; 

Hanski et al., 1993; Volterra, 1926). Inter-specific competition among rodents, 

and among rodents and shrews was represented by a density dependent 

competition term (Huitu et al., 2004; O’Regan et al., 2015; Turchin and Hanski, 

1997). Rodent species were considered better competitors than shrew species 

since shrew density has been observed to be negatively correlated with rodent 

density (Henttonen et al., 1989; Huitu et al., 2004). These species were all 

predated upon, but rodent species were considered preferential prey 

(Korpimaki and Norrdahl, 1989; Korpimaki, 1992). Generalist predation was 

modelled according to the alternative prey hypothesis (Holling type III 

functional response), while specialist predator population was modelled 

according to the Holling type II functional response based on the Rosenzweig-

MacArthur model (1963) with no preference among rodents (Elton, 1942; 
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Erlinge, 1975; Hanski and Henttonen, 1996; Holling, 1959; Krebs and Myers, 

1974; Turchin and Hanski 1997). Parameters associated with specialist 

predation were referred to Mustela nivalis (least weasel), which was the most 

common and widespread mustelid across sampled sites. For details about 

parameters estimation see next section (5.4.1). The time scale of the simulations 

was 20 years, and one day was the basic time step.  

The epidemiological structure of the model followed the one proposed by 

Anguelov and colleagues (Anguelov et al., 2010; Brettschneider et al., 2012); the 

vector was split into three compartments, susceptible, exposed, infectious (SEI), 

while to the host population was also added the recovered compartment  

(SEIR). It was assumed that flea recruitment was determined by host 

abundance, and limited by a seasonal carrying capacity (Eq. 12) that regulated 

flea birth and death rate over time (Eq. 10-11) (Anguelov et al., 2010; 

Brettschneider et al., 2012). The transition between maximum abundance 

(spring/summer as found in field), and low abundance (autumn/winter) was 

set at ~20% and modelled using the periodic environmental carrying capacity, 

which also comprised the average flea infestation for each species. The 

epidemiologically relevant population consisted of adult fleas, since the larvae 

are rarely parasitic and feed on debris in the host burrows (Krasnov et al., 

2004a). Fleas were assumed to remain infectious for their entire life span (~1 

year) (Brettschneider et al., 2012), but no vertical transmission in fleas was 

included (Morick et al., 2010). Further, transmission only occurred through the 

vector, i.e. no horizontal transmission occurred among rodents (Bown et al., 

2004; Colton et al., 2011), and vertical transmission was assumed to be possible 

(Kosoy et al., 1998; Morick et al., 2013). Bartonella infection has not been 

reported to cause increased mortality or any other effect on vector and host 

population dynamics (Birtles et al., 2001; Jones et al., 2008b). The force of 

infection parameter combined the reservoir competence and infectivity, while 

the contact rate was determined by host-vector dynamics. 

Initial density for each host-species was set at the average value found from 

field data (Chapter 2) (pooled sites excluding Skomer). The inoculum was 
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represented by a single infectious individual. Model equations are reported 

below, and variables and parameters are listed in Table 5.6. 

 

𝑑𝑆𝑓

𝑑𝑡
= 𝜈𝑓(𝑡) − 𝜆𝑓 (

(𝑚𝑓𝑖𝐼𝑖+𝑚𝑓𝑗𝐼𝑗)

(𝑚𝑓𝑖𝑁𝑖+𝑚𝑓𝑗𝑁𝑗)
) 𝑆𝑓 − 𝜌𝑓(𝑡)𝑆𝑓    Eq. 1 

 

𝑑𝐸𝑓

𝑑𝑡
= 𝜆𝑓 (

(𝑚𝑓𝑖𝐼𝑖+𝑚𝑓𝑗𝐼𝑗)

(𝑚𝑓𝑖𝑁𝑖+𝑚𝑓𝑗𝑁𝑗)
) 𝑆𝑓 − (𝜅𝑓 + 𝜌𝑓(𝑡))𝐸𝑓     Eq. 2 

 

𝑑𝐼𝑓

𝑑𝑡
= 𝜅𝑓𝐸𝑓 − 𝜌𝑓(𝑡)𝐼𝑓       Eq. 3 

 

𝑑𝑆𝑖

𝑑𝑡
= 𝑟𝑖𝑁𝑤 (1 −

(𝑁𝑖− 𝑐𝑗𝑖𝑁𝑗−𝑐𝑛𝑗𝑁𝑛)

𝐾𝑖
) + 𝛾𝑖𝜎𝑖𝐼𝑖 − 𝜆𝑖 (

𝑚𝑓𝑖𝐼𝑓

(𝑚𝑓𝑖𝑁𝑖+𝑚𝑓𝑗𝑁𝑗)
) 𝑆𝑖  

          −𝜀𝑖𝑟𝑖𝑁𝑤 (1 −
(𝑁𝑖− 𝑐𝑗𝑖𝑁𝑗−𝑐𝑛𝑗𝑁𝑛)

𝐾𝑖
) 𝐼𝑖 −

(𝑔𝑆𝑖
2)

(𝑆𝑖
2+ℎ2)

−
(𝛼𝑁𝑝𝑆𝑖)

(Δ𝑖+𝑁𝑖+
Δ𝑖
Δ𝑗

𝑁𝑗+⋯
Δ𝑖
Δ𝑛

𝑁𝑛)

 Eq. 4 

 

𝑑𝐸𝑖

𝑑𝑡
= 𝜆𝑖 (

𝑚𝑓𝑖𝐼𝑓

(𝑚𝑓𝑖𝑁𝑖+𝑚𝑓𝑗𝑁𝑗)
) 𝑆𝑖 − 𝜅𝑖𝐸𝑖 −

(𝑔𝐸𝑖
2)

(𝐸𝑖
2+ℎ2)

−
(𝛼𝑁𝑝𝐸𝑖)

(Δ𝑖+𝑁𝑖+
Δ𝑖
Δ𝑗

𝑁𝑗+⋯
Δ𝑖
Δ𝑛

𝑁𝑛)

 Eq. 5 

 

𝑑𝐼𝑖

𝑑𝑡
= 𝜅𝑖𝐸𝑖 + 𝜀𝑖𝑟𝑖𝑁𝑤 (1 −

(𝑁𝑖 − 𝑐𝑗𝑖𝑁𝑗 − 𝑐𝑛𝑗𝑁𝑛)

𝐾𝑖
) 𝐼𝑖 − 𝜎𝑖𝐼𝑖 −

(𝑔𝐼𝑖
2)

(𝐼𝑖
2 + ℎ2)

 

          −
(𝛼𝑁𝑝𝐼𝑖)

(Δ𝑖+𝑁𝑖+
Δ𝑖
Δ𝑗

𝑁𝑗+⋯
Δ𝑖
Δ𝑛

𝑁𝑛)

      Eq. 6 

        

𝑑𝑅𝑖

𝑑𝑡
= 𝜎𝑖𝐼𝑖 −

(𝑔𝑅𝑖
2)

(𝑅𝑖
2+ℎ2)

−
(𝛼𝑁𝑝𝑅𝑖)

(Δ𝑖+𝑁𝑖+
Δ𝑖
Δ𝑗

𝑁𝑗+⋯
Δ𝑖
Δ𝑛

𝑁𝑛)

    Eq. 7 
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𝑑𝑁𝑛

𝑑𝑡
= (𝜈𝑛 − 𝜌𝑛)𝑖𝑁𝑛 (1 −

(𝑁𝑛 −  𝑐𝑖𝑛𝑁𝑖 − … 𝑐𝑗𝑛𝑁𝑗)

𝐾𝑐
) −

(𝑔𝑁𝑛
2)

(𝑁𝑛
2 + ℎ2)

 

          −
(𝛼𝑠𝑁𝑝𝑁𝑛)

(𝛥𝑛+𝑁𝑛+
𝛥𝑛
𝛥𝑖

𝑁𝑖+⋯
𝛥𝑛
𝛥𝑗

𝑁𝑗)

      Eq. 8 

 

𝑑𝑁𝑝

𝑑𝑡
= (𝜈𝑝 − 𝜌𝑝)𝑁𝑝 (1 −

𝑞𝑁𝑝

(𝑁𝑖+
𝛥𝑖
𝛥𝑗

𝑁𝑗+⋯
𝛥𝑖
𝛥𝑛

𝑁𝑛)

)    Eq. 9 

 

𝜈𝑓(𝑡) = 𝜌𝑓𝐾𝑓(𝑡) + 𝜈𝑓𝑚𝑎𝑥(𝐾𝑓(𝑡) − 𝑁𝑓 , 0)    Eq. 10 

 

𝜌𝑓(𝑡) = 𝜌𝑓 + 𝜈𝑓𝑚𝑎𝑥 (1 −
𝐾𝑓(𝑡)

𝑁𝑓
, 0)     Eq. 11 

 

𝐾𝑓(𝑡) = (𝑚𝑓𝑖𝑁𝑖 + 𝑚𝑓𝑗𝑁𝑗)𝑚𝑖𝑛(1.1, 𝑚𝑎𝑥(0.65 + cos 2𝜋𝑡, 0.2))  Eq. 12 
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Fig. 5.26. Flea-borne disease compartmental model a) and female flea life cycle 
b). Boxes represent epidemiological compartments in which each population is 
subdivided: S = susceptible, E = exposed (not infectious), I = infectious, R = 
recovered. F (vector population density) = S+E+I, J (host population density) = 
S+E+I+R. Subscripts: f = flea, j = rodent species (host), n = non-host competitor 
(shrew species). r = growth rate (determined by competition and density of 
rodent and shrew species), c = competition coefficient, N = non-host competitor 
population density, γ = reinfection rate, ε = rate of vertical transmission, κ = rate 
at which exposed became infectious (latent period), λ = force of infection, ρ = flea 
death rate, σ = recovery rate. Arrows indicate the direction of movement of 
individuals between classes and are labelled by the transition rates. Arrows 
pointing outside the boxes represent mortality. Vectors can feed only on J. 

 

 

a) 

b) 
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Table 5.6. List of model variables and parameters. For details about parameters 
estimation see section 5.2.1 and section 5.4.1. 

Symbol Description (source where relevant) 
S Number of susceptible individuals  

E Number of exposed individuals  

I Number of infectious individuals  

R Number of recovered individuals  

N Total number of individuals (population size)  

i, j 
Host-species for the pathogen: wood mouse; 
bank vole 

 

n Non-host competitor species  

p Specialist predator  

f Vector (flea)  

r Rodent growth rate (this study) 

c Competition factor 
(O’Regan et al., 2015; this 
study) 

g Saturation rate of generalist predation (Turchin and Hanski, 1997) 

h 
Prey density at which generalist predation 
rate is half of the maximum 

(Turchin and Hanski, 1997) 

q Specialist predator-prey ratio constant (Turchin and Hanski, 1997) 

α 
Maximum consumption rate of specialist 
predator 

(Turchin and Hanski, 1997) 

γ Rate of reinfection 
(Anguelov et al., 2010; 
Brettschneider et al., 2012) 

Δ Half-saturation constant (specialist predator) (Turchin and Hanski, 1997) 

ε Rate of vertical transmission 
(Anguelov et al., 2010; 
Brettschneider et al., 2012; 
Kosoy et al., 1999) 

K Carrying capacity 
(Bolzoni et al., 2008; De Leo 
and Dobson, 1996) 

κ Rate at which exposed became infectious 

(Anguelov et al., 2010; 
Brettschneider et al., 2012; 
Kosoy et al., 1999; Morick et 
al., 2013) 

κf 
Rate at which exposed became infectious 
fleas 

(Anguelov et al., 2010; 
Brettschneider et al., 2012; 
Kosoy et al., 1999; Morick et 
al., 2013) 

λ Force of infection to rodent 
(Anguelov et al., 2010; 
Brettschneider et al., 2012; 
Brook et al., 2017) 

λf Force of infection to flea 
(Anguelov et al., 2010; 
Brettschneider et al., 2012; 
Brook et al., 2017) 

mf Maximum average flea burden (this study) 
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Table 5.6 (continued). List of model variables and parameters. For details about 
parameters estimation see section 5.2.1 and section 5.4.1. 

Symbol Description (source where relevant) 

Ν Birth rate 
(Bolzoni et al., 2008; De Leo 
and Dobson, 1996) 

νf Flea birth rate 
(Anguelov et al., 2010; 
Brettschneider et al., 2012) 

ρ Death rate 
(Bolzoni et al., 2008; De Leo 
and Dobson, 1996) 

ρf Flea death rate (Shrewsbury, 2005) 

σ Recovery rate 
(Koesling et al., 2001; Kosoy 
et al., 1999) 

 

 

5.4.1 Parameter estimation 

 

All the parameters relating to host species, inter-specific competition and 

predation were estimated as in section 5.2 and section 5.3, and the values used 

for the simulations in this section are reported in Table 5.7, as no sensitivity 

analysis was performed on any of these parameters.  

Flea birth and death rates were estimated according to Brettschneider et al. 

(2012) and Shrewsbury (2005), and used to parametrise time-dependent birth 

and death functions (Eq. 10-11). The average flea burden of infested individuals 

was estimated according to the empirical data in this study (see Chapter 3). 

Pathogen-related parameters such as rate at which exposed became infected (κ) 

and recovery rate (σ) were taken from relevant literature (Table 5.6 and Table 

5.7), while sensitivity analysis was performed on force of infection (both to flea 

and to host), rate of reinfection, and vertical transmission. The ranges of values 

used for sensitivity analysis are shown in Table 5.7, while the methodology of 

sensitivity analysis is described in section 5.4.2. 
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Table 5.7. List of starting conditions and parameter values used for the 
simulations. When a range of values is provided, sensitivity analysis has been 
performed (see section 5.4.2). 

Symbol Description Value 
Nw Wood mouse population 49 (ind/ha) 

Nb Bank vole population 75 (ind/ha) 

Nj Shrew population 20 (ind/ha) 

Np Weasel population 3 (ind/ha) 

Nv Flea population 100 (ind/ha) 

cbw 

cjw 

Competition of wood mouse over bank vole, and 
shrew respectively 

0.20 

1.04 

cwb 

cjb 

Competition of bank vole over wood mouse, and 
shrew respectively 

0.20 

1.03 

cwj 

cbj 

Competition of shrew over wood mouse, and bank 
vole respectively 

0.11 

0.12 

g Saturation rate of generalist predation 0.49 

h 
Prey density at which generalist predation rate is half 
of the maximum 9.9 

mf 
Maximum average flea burden of infested 
individuals: wood mouse; bank vole  

1 

1.53 

q Specialist predator-prey ratio constant 56 

rb+, rb- 
Bank vole growth rate breeding season (+), and non-
breeding season (-) 0.007 -0.002 

rw+, rw- 
Wood mouse growth rate breeding season (+); non-
breeding season (-) 0.04-0.006 

α 
Maximum rodent consumption rate of specialist 
predator 1 

αs 
Maximum shrew consumption rate of specialist 
predator 

7.67 

γ Rate of reinfection (range) 0-1 

Δ Half-saturation constant (rodent) 11.31 

Δs Half-saturation constant (shrew) 22.62 

ε Rate of vertical transmission (range) 0-0.5 

κ Rate at which exposed became infectious 0.24 

κf Rate at which exposed became infectious fleas 0.26 

λ Force of infection to rodent (range) 0-3 

λf Force of infection to flea (range) 0-10 

νf Flea birth rate 0.03727 

ρf Flea death rate 0.00273 

σ Recovery rate  0.021 
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5.4.2 Sensitivity analysis 

 

As mentioned in the previous section, sensitivity analysis has been performed 

on both vector and host force of infection. Force of infection to flea ranged from 

0 to 10 (range found in the selected sources) and 21 intervals were input into 

the sensitivity between the minimum and the maximum. For each of these 

values, 100 force of infection to host values were randomly chosen between the 

minimum and the maximum (0 to 3) via Latin square sampling (Iman et al. 

1981a,b). In this analysis, it was assumed there were no reinfection and no 

vertical transmission among rodents.  

Systematic sampling was used for the sensitivity analysis of reinfection and 

vertical transmission rates; 33 intervals were input into the sensitivity between 

the minimum (0 = no effect) and the maximum values, which were 1 (all the 

infectious did get reinfected) and 0.5 (all the infectious individuals reproducing 

gave birth to infectious offspring) respectively.  
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5.4.3 Results 

 

The sensitivity on the force of infection revealed, as expected, that the increase 

of this parameter (both flea and host force of infection) increased pathogen 

transmission, in this case represented by cumulative incidence and total 

infectious host over total time due to the periodic nature of this epidemic 

(absence of an endemic equilibrium) (Fig. 5.27 to Fig. 5.35). In general, the 

increase of the force of infection to flea induced a more marked effect on flea 

incidence, while the increase of the force of infection to rodents had a more 

obvious effect on host incidence. Starting from the single-host scenario (Fig. 

5.27 to Fig. 5.29), transmission seemed to reach a maximum above specific 

values of force of infection, especially noticeable in the plot showing the total 

infectious hosts over time (Fig. 5.29). In this case, the increase of the force of 

infection to flea determined the magnitude of maximum transmission and the 

higher this parameter the lower force of infection to host required to reach this 

maximum (steeper curve with longer plateau).  

The two-host community displayed the same patterns (Fig. 5.30 to Fig. 5.32), 

but incidence was overall slightly lower (for any λ value) compared to the 

previous scenario because transmission slowed down due to the host-vector 

dynamics (host-vector ratio) (Fig. 5.30 and Fig. 5.31). The increase of force of 

infection to bank vole had a moderately bigger impact on transmission, since 

bank vole had a higher flea load; in fact, this effect was more evident looking at 

the steeper increase of flea incidence on the force of infection to bank vole axis 

in Fig. 5.30. Pathogen transmission in this community, for any equivalent value 

of force of infection, led to a higher number of total infectious hosts (Fig. 5.32). 

In the full community flea cumulative incidence showed the same patterns and 

values (Fig. 5.33) as the two-host scenario, but host incidence was lower than 

both previous assemblages (Fig. 5.34). Similarly, total infectious hosts over time, 

in this scenario, decreased compared to the two-host community, but were 

higher than in the single-host case (Fig. 5.35).  
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Generally, at force of infection values greater than two, the increase of incidence 

and total infectious hosts was progressively slower, especially with regards to 

host-related outputs, and in the more complex community. Therefore, for the 

following sensitivity analysis the force of infection (to flea and to host) value 

was set at one in order to model a moderate force of infection. 

Considering the sensitivity analysis on the reinfection rate, in the single-host 

scenario, the greater this parameter the greater host incidence and total 

infectious hosts (Fig. 5.36b, c), but flea incidence reached a peak at γ = 0.72 and 

above that value gradually decreased (Fig. 5.36a). As expected from the 

previous results, in the two-host community, for any value of γ, flea and host 

incidence were lower than the previous scenario (Fig. 5.36d, e), while total 

infectious hosts showed the opposite trend (Fig. 5.36f). It seemed that the 

increase of wood mouse reinfection rate determined a slightly steeper increase 

of all the outputs taken into account. Assembling the full community, incidence 

and total infectious hosts went down compared to the two-host scenario (Fig. 

5.36g, h, i), as it happened in the previous sensitivity analysis; and this effect 

was extremely evident in host related outputs (Fig. 5.36h, i). Host incidence 

values were lower than both previous assemblages, and total infectious hosts 

were not so remarkably higher than the single-host community. Further, with 

regards to these results, the difference between no reinfection and maximum 

reinfection rate was much lower than in the other two cases. 

The vertical transmission rate sensitivity analysis was then performed 

assuming moderate force of infection (λ = 1) and moderate reinfection rate (γ = 

0.5). There was a sigmoid relationship between ε and the model outputs 

displayed in Fig. 5.37, especially clear in the total infectious hosts (Fig. 5.37b, d, 

f). Analogously to the previous analyses, flea incidence, for any given value of 

vertical transmission rate, decreased along the gradient of assemblage 

complexity (Fig. 5.37a, c, e). Comparing the single-host to the two-host scenario, 

total infectious hosts values did not substantially differ, contrasting the previous 

analyses results, where a marked increase of infectious was observed with the 

addition of the second host. Also in this scenario it was clear that there was a 

maximum transmission level, and high values of vertical transmission 
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determined the plateauing of the total infectious hosts. Wood mouse population 

had a major effect in this case, and this can be observed by the steepness of the 

curve on the wood mouse axis in Fig 5.37c to f. In the full community, the 

number of total infectious hosts was lower than the previous scenarios only at 

values of vertical transmission below 0.4, while, above this threshold, the 

number showed a slight increase compared to the maximum transmission in the 

previous community assemblages. However, it was striking that the number of 

total infectious hosts for just moderate values of vertical transmission differed 

from previous analyses by almost one order of magnitude. 
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Fig. 5.27. Single-host scenario: sensitivity analysis on force of infection (λ). 
Cumulative incidence of fleas. a) to i) λf = 0.5, 1, 1.5, 2, 2.5, 3, 5, 7.5, 10. On the x-
axis, rodent force of infection, λ, ranging from 0 to 3. Reinfection rate (γ) = 0; 
vertical transmission (ε) = 0. 
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Fig. 5.28. Single-host scenario: sensitivity analysis on force of infection (λ). 
Cumulative incidence of hosts. a) to i) λf = 0.5, 1, 1.5, 2, 2.5, 3, 5, 7.5, 10. On the x-
axis, rodent force of infection, λ, ranging from 0 to 3. Reinfection rate (γ) = 0; 
vertical transmission (ε) = 0. 

 
 

 

 

 

 

 

Rodent force of infection (λ) 

C
u

m
u

la
ti

ve
 i

n
ci

d
en

ce
 o

f 
h

o
st

s 

f) λf = 3 

i)  λf = 10 

e) λf = 2.5 

c) λf = 1.5 b) λf = 1 a)  λf = 0.5 

h) λf = 7.5 

d) λf = 2 

g) λf = 5 



223 

 

Fig. 5.29. Single-host scenario: sensitivity analysis on force of infection (λ). Total 
infectious hosts over total time (divided by 100000). a) to i) λf = 0.5, 1, 1.5, 2, 2.5, 
3, 5, 7.5, 10. On the x-axis, rodent force of infection,  λ, ranging from 0 to 3. 
Reinfection rate (γ) = 0; vertical transmission (ε) = 0. 
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Fig. 5.30. Two-host scenario: sensitivity analysis on force of infection (λ). 
Cumulative incidence of fleas. a) to i) λf = 0.5, 1, 1.5, 2, 2.5, 3, 5, 7.5, 10. On the x-
axis, rodent force of infection, λ, ranging from 0 to 3. Reinfection rate (γ) = 0; 
vertical transmission (ε) = 0. BV: bank vole; WM: wood mouse. 
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Fig. 5.31. Two-host scenario: sensitivity analysis on force of infection (λ). 
Cumulative incidence of hosts. a) to i) λf = 0.5, 1, 1.5, 2, 2.5, 3, 5, 7.5, 10. On the x-
axis, rodent force of infection, λ, ranging from 0 to 3. Reinfection rate (γ) = 0; 
vertical transmission (ε) = 0. BV: bank vole; WM: wood mouse. 
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Fig. 5.32. Two-host scenario: sensitivity analysis on force of infection. Total 
infectious hosts over total time (divided by 100000). a) to i) λf = 0.5, 1, 1.5, 2, 2.5, 
3, 5, 7.5, 10. On the x-axis, rodent force of infection, λ, ranging from 0 to 3. 
Reinfection rate (γ) = 0; vertical transmission (ε) = 0. BV: bank vole; WM: wood 
mouse. 
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Fig. 5.33. Full community scenario: sensitivity analysis on force of infection. 
Cumulative incidence of fleas. a) to i) λf = 0.5, 1, 1.5, 2, 2.5, 3, 5, 7.5, 10. On the x-
axis, rodent force of infection, λ, ranging from 0 to 3.  Reinfection rate (γ) = 0; 
vertical transmission (ε) = 0. BV: bank vole; WM: wood mouse. 
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Fig. 5.34. Full community scenario: sensitivity analysis on force of infection. 
Cumulative incidence of hosts. a) to i) λf = 0.5, 1, 1.5, 2, 2.5, 3, 5, 7.5, 10. On the x-
axis, rodent force of infection, λ, ranging from 0 to 3. Reinfection rate (γ) = 0; 
vertical transmission (ε) = 0. BV: bank vole; WM: wood mouse. 
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Fig. 5.35. Full community scenario: sensitivity analysis on force of infection. Total 
infectious hosts over total time (divided by 100000). a) to i) λf = 0.5, 1, 1.5, 2, 2.5, 
3, 5, 7.5, 10. On the x-axis, rodent force of infection, λ, ranging from 0 to 3. 
Reinfection rate (γ) = 0; vertical transmission (ε) = 0. BV: bank vole; WM: wood 
mouse. 
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Fig. 5.36. Sensitivity analysis on reinfection rate (γ). Cumulative incidence of fleas 
(a, d, g), cumulative incidence of hosts (b, e, h), and total infectious hosts over 
total time (divided by 100000) (c, f, i) across different community assemblages: 
single-host scenario (a, b, c); two-host scenario (d, e, f); full community (g, h, i). 
Flea force of infection (λf) = 1; host force of infection (λ) = 1; vertical transmission 
(ε)= 0. BV: bank vole; WM: wood mouse. 
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Fig. 5.37. Sensitivity analysis on vertical transmission rate (ε). Cumulative 
incidence of fleas (a, c, e), and total infectious hosts over total time (divided by 
100000) (b, d, f) across different community assemblages: single-host scenario 
(a, b); two-host scenario (c, d); full community (e, f).  Flea force of infection (λf) = 
1; host force of infection (λ) = 1; reinfection rate (γ) = 0.5. BV: bank vole; WM: 
wood mouse. 
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5.4.4 Discussion 

 

Several researchers have reported seasonal patterns of infection with 

Bartonella among wild rodents; for example, the seasonal prevalence peak in 

Ireland changed according to pathogen species (Telfer et al., 2007c), and 

prevalence was influenced by rodent demographic processes in USA (Kosoy et 

al., 2004a). In Poland, peak prevalence was reported in summer months, most 

likely because it coincided with the peak of flea population (Pawelczyk et al., 

2004; Paziewska et al., 2012), and the prevalence variation between years and 

seasons was mostly explained by year, season, and their interactions as 

extrinsic factors (Pawelczyk et al., 2004). Thus, the structure of the model, 

capturing the seasonality of rodent and flea populations proved to be ideal to 

describe realistic Bartonella transmission dynamics. Further, since the disease 

displayed seasonal oscillations, the outputs chosen to describe the effect of 

parameter variation and community composition were incidence and total 

infectious hosts over time in order to capture more information about the 

course of the epidemic. 

Bartonella has been often reported, in field and laboratory studies, to have a 

long infectious period, presenting long bacteraemia rather than high incident 

rates (Birtles et al., 2001; Koesling et al., 2001; Kosoy et al., 1997; Kosoy et al., 

1999). This finding is in agreement with model results, which showed rather 

high total infectious hosts over time with moderate values of incidence. 

However, the infectious period selected, ~47-48 days, may be an 

underestimation, since Kosoy et al. (2004a) found that infection in cotton rats 

can be as long as 11 months. This variable could also be species or strain 

specific to Bartonella genus, which displays a very high diversity among 

mammalian hosts (Kosoy, 2010). 

Considering the sensitivity analysis on the force of infection, in general, the 

increase of the force of infection to flea induced a more marked effect on flea 

incidence, while the increase of the force of infection to rodents had a more 

obvious effect on host incidence. In all community assemblages, there seemed to 
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be evidence of values of force of infection above which there was no change in 

the outputs, representing maximum transmission. The reason for this 

phenomenon was most likely the way in which host-vector dynamic was 

modelled, with the carrying capacity and average flea burden that limited flea 

population growth and host-vector contacts. Comparing the single- and two-

host communities, a decrease of incidence was observed because of the slower 

input of susceptibles in the host population (reduction of rodent growth rates 

due to inter-specific competition), and of the host-vector ratio. In fact, the way 

fleas were modelled assumed no linear increase of fleas with increasing host 

density according to Krasnov et al. (2002) and Smith et al. (2005). Fleas live 

mostly in host burrows and, when host density increase, their density increases 

at first, but, above certain values of host density, transient hosts (i.e. not living in 

burrows) rise so there is no further flea increase.  

Bank voles had a moderately bigger impact on transmission than wood mice, as 

they had a slightly higher average flea load, and this was mostly evident with 

regards to flea incidence. Although, transmission was somewhat slower, the 

addition of the second host species led to, for any equivalent value of force of 

infection, a higher number of total infectious hosts. In the full community, due to 

a decrease of the rodent population determined by inter-specific competition 

with shrew and predation, host incidence decreased further, but flea incidence 

remained essentially unchanged, because the host decrease was probably not 

sufficient to cause major changes in flea population. In this case, the total 

infectious hosts over time were lower than the two-host community, but higher 

than the single-host case, so with regard to host population there was evidence 

of dilution through susceptible host regulation (Keesing et al., 2006). 

Susceptible host regulation was also observed by Young et al. (2014) who, in 

their field experiment, recorded fewer infectious rodents in the plots where 

they did not remove large fauna that played a major role in controlling rodent 

populations. Differently from the tick system there was no chance of dilution 

through transmission reduction, as there were no wasted bites; nonetheless, 

increasing host richness, and so overall host abundance, a mechanism similar to 

encounter reduction (between flea and host) might occur considering the 
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constraint of the maximum average flea burden and the host-vector relationship 

(Kosoy et al., 2004b; Krasnov et al., 2002). Telfer et al. (2007a) found that at 

high host densities the flea population is divided between more potential hosts 

and consequently individual hosts are less likely to be infested, which might be 

an encounter reduction type of dilution effect. In Ireland, the addition of the 

non-native and non-competent bank vole to the rodent community determined 

the reduction of Bartonella prevalence among the competent wood mice, 

demonstrating that the increase in vector population did not outweigh 

encounter reduction (Telfer et al., 2005). Also, in agreement with these results, 

Telfer et al. (2007a) observed that Bartonella infection dynamics appeared to be 

more strongly influenced by competent host density than flea abundance. 

However, increased flea abundance due to the addition of non-competent host 

species in the community might increase the number of infectious fleas in the 

environment. Unlike ticks though, most rodent fleas are considered negligible in 

terms of human disease risk (but see Zeppelini et al., (2016) for a review on 

plague human risk), and their potential in transmitting the recognised zoonotic 

Bartonella species (e.g. B. henslae) is still undetermined (Eisen and Gage, 2012). 

Maaz et al. (2018) have reported that, among all the flea species collected on 

mice and voles in Germany, only Monopsyllus sciurorum and Nosopsyllus 

fasciatus have been found to attack humans (Brinck-Lindroth and Smit, 2007). 

Both species had a wide host array, and N. fasciatus was highly prevalent; in this 

study, Nosopsyllus fasciatus and other species from the same family 

(Ceratophyllidae) were collected from sampled rodents (see Chapter 3). 

Examining reinfection rate sensitivity analysis, it was observed that, in the 

single-host scenario, 0.72 was the threshold at which maximum flea incidence 

occurred, while both host incidence and total infectious hosts increased linearly 

with the increase of reinfection values. So, above a reinfection rate of 0.72, the 

infection of fleas was slowed down most likely because of the constraint of the 

maximum average flea burden (i.e. when most of the fleas were already infected 

and there was a maximum number of fleas allowed on each host, it was more 

difficult to find a susceptible flea to be infected). 
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As before, incidence decreased in the more complex community assemblages, 

while total infectious hosts showed the opposite trend. In this case, wood mouse 

reinfection rate seemed to have a greater influence on pathogen transmission 

because of the faster recruitment rate that, over time, increased their 

dominance in the host community. Nonetheless, susceptible host regulation was 

obvious in this case too, as total infectious hosts decreased in the full 

community compared to the two-host assemblage. In addition, in the full 

community, the lower amount of susceptible hosts and the slower recruitment 

rate determined that reinfection rate values had a much lower impact on 

number of infectious hosts compared to the alternative scenarios.  

Reinfection is a very likely event in Bartonella transmission dynamics 

(Paziewska et al., 2012), as the multiple strains and species, circulating in the 

same location (this study Chapter 4; Streicker et al., 2010; Telfer et al., 2007a,c; 

Withenshaw et al., 2016), do not provide full cross-immunity (Birtles et al., 

2001). In fact, it has been suggested that high prevalence found in rodent 

populations may be due to the high diversity of bartonellae, which determine 

reinfection and coinfection (Gutiérrez et al., 2015; Holmberg et al., 2003; Kosoy, 

2010). Although traditionally it was thought that there was no host species-

specificity among Bartonella species in rodent communities (Kosoy et al., 

2004a), in depth molecular studies have revealed that different strains were 

infecting preferentially some rodents (or fleas), or occupying different 

ecological and epidemiological niches (Buffet et al., 2013; Gutiérrez et al., 2015; 

Withenshaw et al., 2016; Ying et al., 2002). Telfer et al. (2007c) found that B. 

taylorii and B. doshiae were more prevalent in wood mice than bank voles, 

whereas B. birtlesii was more prevalent in bank voles, and this was probably 

due to different infection and recovery rates in different hosts and different 

Bartonella species. A different recovery rate was also observed between yellow-

necked wood mice (Apodemus flavicollis) and bank voles in Poland, where the 

first displayed a much longer infection (Paziewska et al., 2012). Kosoy et al. 

(2000) hypothesised that this species-specificity was associated with the flea 

vector, but Withenshaw et al. (2016) provided evidence that this was associated 
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with the host, being the fleas more likely to be infected with the strain specific 

to the species on which they were feeding.  

Hence, the degree and the origin of species-specificity are still unclear and may 

vary depending on the flea-rodent assemblages, and it was not included in the 

model. Nonetheless, it is definitely a matter of interest and warrants further 

investigation, as it could potentially change the outcome of the simulations, 

since one of the basic assumptions for dilution is the generalism of the pathogen 

(Ostfeld and Keesing, 2000; Ostfeld and Keesing, 2012; Schmidt and Ostfeld, 

2001; Wood et al., 2014).   

According to the above, vertical transmission rate sensitivity analysis was 

performed assuming moderate force of infection and some degree of 

reinfection. As in the previous cases, and for analogous reasons, flea incidence 

decreased along the gradient of assemblage complexity. In this case, the number 

of total infectious hosts was much higher than in previous analyses, with 

maximum values greater by almost one order of magnitude. However, the total 

number of infectious hosts did not substantially differ between the single-host 

and two-host community, most likely because the recruitment of one host 

population, tending freely to its carrying capacity, was similar to the 

recruitment of the two populations exerting inter-specific competition upon 

each other. The sigmoid relationship exhibited by vertical transmission rate and 

model outputs, especially clear in the single-host case, represented the 

existence of a maximum transmission due to host-vector dynamics 

(constraints), force of infection, and reinfection rate, therefore beyond a certain 

value of vertical transmission no more infections could occur. The wood mouse 

population was mostly responsible for the increase of flea incidence and total 

infectious hosts due to vertical transmission, because of its greater growth rate 

compared to bank vole (this study). Consequently, the wood mouse input of new 

infectious individuals to the community was much greater. 

Upon assembly of the full community, susceptible host regulation was present 

only at values of vertical transmission lower than 0.4, since, above this 

threshold, the value increased compared to the previous assemblages, and 
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vertical transmission outweighed dilution. Nonetheless, because of the inter-

specific competition with shrews and the predation that reduced rodent 

population, a rather high value of vertical transmission was necessary to 

counterbalance dilution. Interestingly, in the full community, with values of 

vertical transmission greater than 0.4, the number of total infectious hosts was 

higher than in the previous scenarios. This was probably due to the shrews 

exerting slightly higher competition on voles, resulting in wood mice being 

more dominant compared to the two-host scenario. As they reproduce faster 

than voles, this community could support more infectious individuals. 

Vertical transmission has been documented by Kosoy et al. (1998) and Kosoy et 

al. (2004a), who hypothesised this to be the reason for the high prevalence 

frequently recorded in wild rodents. In particular, it may be plausible that the 

prevalence peaks observed in cotton rats by Kosoy et al. (2004a) in the late 

reproductive season were due to the introduction into the population of 

vertically infected individuals. In general, higher prevalence was reported often 

in the most dominant species in the community (Kosoy et al., 1997; Kosoy et al., 

2000; Kosoy et al., 2004a), and model results were in agreement, with the more 

abundant and fastest growing species contributing more to the pathogen 

transmission. Nevertheless, there have been cases in which Bartonella was not 

infecting the numerically dominant species in the community (e.g. Holmberg et 

al., 2003). Assuming some level of species-specificity of Bartonella, as 

mentioned before, it may be possible that high prevalence in numerically 

dominant species occurs because a higher proportion (higher probability of 

encounters) of fleas feed on those species and get infected with species-specific 

strains being less able to infect alternative host species. In this study most of the 

fleas positive for Bartonella were collected from bank voles (Chapter 4), which 

were dominant, while wood mice density was slightly negatively associated 

with flea infestation (Chapter 3), so it might be possible that across the sampled 

sites wood mice diluted flea infestation with regards to the dominant host 

species. 

In the future, aspects that could be investigated with regards to Bartonella 

infection include alternative transmission routes, for example alternative 
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vectors (Morick et al., 2013; Telfer et al., 2007c). Ticks have been found to be 

competent in transmitting Bartonella experimentally, and B. henslae have been 

isolated in ticks from cats and dogs (Cotté et al., 2008). In the wild, Bartonella 

have been recorded in ticks and other several ecto-parasites infesting mammals 

in Poland, Netherlands, but these may not be efficient vectors (Jardine et al., 

2006; Tsai et al., 2011). The presence of alternative routes of transmission could 

strongly affect the dynamics illustrated by this model, and nullify dilution 

mechanisms. In addition, co-infections may affect dilution, as Bartonella has 

been often found in association with other pathogens (Pawelczyk et al., 2004; 

Vaumourin et al., 2013), but no interaction has been observed between Borrelia 

and Bartonella in bank voles (Vaumourin et al., 2013). 

In summary, the parameters under investigation that most affected pathogen 

transmission and the degree of dilution were force of infection and vertical 

transmission, which were also among the most uncertain in the system, and 

require further investigation. With regards to force of infection, it seemed that 

highest variability in the results occurred setting values between 0 (no 

transmission) and ~2-3, probably because the constraints to transmission 

mentioned above made highest values unable to remarkably increase 

transmission. A crucial value to determine these transmission constraints was 

the maximum average flea burden that, in this study, was estimated from 

empirical data, representing realistic local dynamics, and that should be 

adapted according to the host-flea community under consideration. Vertical 

transmission also needs further research, as above a certain threshold it 

reversed the effect of susceptible host regulation, and even moderate values 

increased the number of total infectious hosts by an order of magnitude 

compared the results of other analyses. By contrast, reinfection rate did not 

affect dilution mechanisms, and in the full community did not considerably 

impact the number of total infectious hosts. 

From the epidemiological point of view, the metrics chosen to examine 

modelling results were more informative than prevalence, since this seemed 

inappropriate due to the cyclic nature of the pathogen chosen and the 

misleading interpretation that it can produce (as illustrated in the previous 
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sections of this chapter). Whereas incidence and abundance of infectious hosts 

were recommended as among the best metric for Bartonella disease risk 

(Salkeld and Lane, 2010; Young et al., 2014). In particular, the total number of 

infectious hosts over time was the most informative output to understand the 

effects of parameter variations and community composition on this pathogen 

transmission. 

Finally, the results of this modelling study were supported by several studies 

that found Bartonella infection to vary among communities differing in diversity 

and compositions (e.g. Bai et al., 2009; Kosoy et al., 2004b). Bai et al. (2009) 

showed a negative correlation between Bartonella prevalence and community 

diversity, suggesting that transmission was more common within species than 

between species. So, increasing community diversity and host diversity may 

decrease Bartonella transmission reducing the probability of encounters 

between hosts and fleas (and also between host and flea infected with matching 

the species-specific pathogen species/strain), and limiting or regulating host 

numbers through competition and predation. 
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Chapter 6 

 

Final discussion: summary of research, innovations, 

limitations, and future perspectives 

 

6.1 Summary of experimental chapters 

 

Chapter 2. Small rodent species captured during the live trapping were wood 

mouse, bank vole, and rarely field vole. Bank vole was dominant when present, 

likely because it exhibits less dispersal abilities and smaller home-ranges than 

mice species (Kozakiewicz et al., 1999). The differences found in demography of 

the two most represented species seemed to reflect the asynchronous breeding 

peaks (Mallorie and Flowerdew, 1994; Huitu et al., 2004).  

Body mass and population density analysis confirmed that the sampling seasons 

chosen were effective in capturing the seasonal differences of the population. 

Adults and sub-adults individuals were lighter in the post-breeding peak phase 

(autumn), reflecting the introduction in the population of the individuals born 

previously in the breeding season, and in this season higher densities were 

recorded. Population densities were also higher in woodland habitats compared 

to grasslands, and Skomer voles’ density was much higher than mainland bank 

voles. Further, the estimated seasonal growth rate clearly showed the difference 

between non-breeding and breeding season, validating the intra-annual 

population fluctuations remarked by density estimates.  

In order to include relevant epidemiological information about contacts 

between individuals, daily individual contact rates were estimated. The analysis 

revealed that the distribution of both intra and inter-specific contacts was 

highly aggregated, meaning that a small number of individuals were responsible 
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for a large proportion of interactions. However, bank voles performed more 

intra-specific contacts than wood mice, while wood mice tent to interact more 

with other species. In addition, it was found that older, heavier wood mice 

might be more mobile and have more inter-specific transmission potential, 

while heavier bank voles might have more intra-specific transmission potential. 

In both species, heaviest individuals could not be distinguished in terms of sex 

or reproductive status.  

Chapter 3. The collection of ticks and fleas recovered from sampled rodents 

showed that the proportion of the population parasitised was very small 

supporting the “20/80 Rule” (see Perkins et al., 2003; Woolhouse et al., 1997). 

Bank voles were more prevalent than wood mice with regards to both ticks and 

fleas, and also exhibited higher intensity of infestation. According to the 

molecular identification, I. trianguliceps accounted for 87% of the ticks 

collected, with only three cases of two different species of ticks co-feeding on 

the same individual. Fleas collected displayed higher species diversity, with 

Ctenophtalmus nobilis, Hystrichopsylla talpae, and Megabothris turbidus 

dominating the flea community.  

In this study, data showed that gender and season were the factors influencing 

ecto-parasite burden. Both ticks and fleas were more prevalent and abundant in 

spring, and among males. However, when flea data were analysed by genus, 

Hystrichopsylla, Ctenophthalmus, and Megabothris were more prevalent in 

autumn, suggesting that different flea genera might adopt different 

reproductive strategies, which may be dependent by climatic variables and 

taxonomic characteristics.  

Intensity and prevalence of infestation were analysed in relation to host density, 

but no clear relationship was found between ecto-parasites and host density. 

The only finding was a not well-supported negative relationship between wood 

mice density and ecto-parasite prevalence, likely due to the fact that wood mice 

were significantly less parasitised. Alternatively, it may indicate that the species 

dilutes ecto-parasite prevalence, although, this does not necessarily mean a 

decrease in total parasite abundance. The finding may also reflect an actual 

absence of relationship between host density and ecto-parasites, as supported 
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by other studies that have explored the mechanisms of host density and 

parasite intensity/prevalence decoupling (e.g. McCauley et al., 2008).  

These findings are particularly interesting in the context of pathogen 

transmission because they shed light on host preferences, vector assemblages, 

vector seasonality, and host-vector dynamics. 

Ecto-parasite molecular analysis confirmed that 16S and 18S genes gave less 

phylogenetic resolution than COI, due to slower mutation rates, but can be used 

as complementary to COI, when this fails to produce reliable results. COI, which 

is the most used fragment of mtDNA for barcoding, might still represent the best 

choice, but more research is needed especially for obscure taxa where the 

combination of morphological and molecular approaches is still crucial. 

Especially in the case of fleas, the combination of phenotypic and genetic 

approaches was essential to determine species identification, and allow the 

characterisation of flea community. Also, the BLAST search alone was mostly 

insufficient to provide definitive information on species identification, so more 

work is necessary to increase the number of sequences and their quality on 

GenBank.  

Chapter 4. The pathogen investigation in rodent faeces revealed very low 

prevalence of Herpesvirus and Escherichia coli, and absence of Mycobacterium 

microti among the individuals sampled. The positive samples of Herpesvirus 

displayed high similarity to human HVs, and no Murid Herpesviruses were 

isolated. E. coli positive sample were collected in autumn almost exclusively 

from bank voles, and this may be explained by the relationship between gut 

microbiota and diet. In fact, it is likely that different food items determine 

presence and abundance of E. coli. No individuals were found infected by M. 

microti, and this might represent true absence, or may be due to the absence of 

gastro-intestinal lesions and consequent absence of mycobacteria in the faeces. 

However, confidence of freedom analysis revealed that the prevalence data 

were likely to be reliable. 

Regarding macroparasites, the result of host heterogeneity analysis revealed 

that bank voles were key hosts for nematodes, while wood mice for cestodes. 

Bank voles contributed to transmission pool mainly in terms of host abundance 
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and prevalence (i.e. super-abundant and super-infected host), while wood mice 

represented exclusively super-shedder hosts. Clearly, the methodology might 

have influenced the results, for example, unequal detection and sampling of host 

species, or of parasite eggs. However, this demonstrates that even in an 

apparently simple and common multi-host-parasite system, over a small spatial 

and temporal scale, host heterogeneities are detectable. Identification of the 

type of contribution of different hosts is essential in designing control 

strategies, understanding effects of host community change on pathogen 

transmission, and eco-epidemiological modelling.  

Tick-borne pathogens detected in the sampled ticks were Anaplasma 

phagocytophilum and Babesia microti. A. phagocytophilum was detected only in 

one site, in ticks recovered on bank voles. The very low presence of Ixodes 

ricinus (amplification vector) at the sampling sites, and the short infectious 

period reported in rodents (short amount of time for the ticks to be infected) 

(Bown et al., 2003) may explain the low recovery of this pathogen. Only one tick 

sample was positive for the protozoan B. microti. The strain recovered from the 

positive sample displayed high relatedness to a European strain (Munich) 

isolated from ticks and rodents in several European countries, and involved in 

the first human case of B. microti-caused babesiosis in Spain (Arsuaga et al., 

2016). It seems likely that, in UK, different strains of B. microti are circulating, 

and these might not only differ with regards to host and vector preferences, but 

also in terms of zoonotic risk (Gray, 2006). Borrelia burgdorferi s.l. did not occur 

in the ticks collected, probably because I. trianguliceps, which accounted for the 

vast majority of ticks sampled, is not considered of major importance in 

transmitting the spirochete (Kilpatrick et al., 2017a; Stanek et al., 2012). The 

results found were likely due to the combination of factors such as true 

absence/low prevalence of the pathogens, low competence of rodents and/or 

vectors, negative impact on the pathogens tested of other undetected infections. 

Bartonella was detected in the most represented flea species in the sampled 

pool (Amalaraeus penicilliger, Megabothris turbidus, Hystrichopsylla talpae, and 

Ctenophthalmus nobilis). Statistical analyses did not reveal any pattern of 

association between Bartonella infection and factors related to fleas or hosts 
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(e.g. flea species, host from which the flea was collected). As expected, 

Bartonella infections were recorded in fleas collected from bank voles, as this 

represented the dominant species in the rodent community (Bai et al., 2009; 

Gutiérrez et al., 2015; Kosoy et al., 1997). The sequences chosen to represent 

the results of molecular analysis were appropriate to reveal that at least three 

species (or three different groups with high similarity to B. taylorii, B. grahamii, 

and B. rochalimae) were circulating at the sampling sites. While B. taylorii and B. 

grahamii have been widely recorded in rodent fleas (in UK and other countries) 

(Birtles et al., 2000; Špitalská et al., 2017; Telfer et al., 2007a,c; Withenshaw et 

al., 2016), it was the first time that B. rochalimae (or a highly similar species) 

has been isolated in UK. This species, which has a zoonotic potential (Eremeeva 

et al., 2007), has rarely been isolated from fleas, so the role of fleas in 

transmission has not been clarified yet. This result may provide additional 

evidence that B. rochalimae circulates among small rodents, and it is very likely 

that fleas act as a vector for transmission.  

Chapter 5. Modelling results of a directly transmitted pathogen (PUUV) 

confirmed that reduced (or diluted) infection prevalence might not represent a 

true dilution effect, since prevalence could decrease simultaneously to the 

increase of infectious individuals. Consequently, both pathogen prevalence and 

number of infectious individuals were always considered and compared in this 

study. The model was effective in recognising susceptible host regulation via 

inter-specific competition and predation as the most important dilution 

mechanism with regards to directly transmitted pathogens, and the results 

highlighted that estimation of the magnitude of competition and predation was 

essential to understand the strength of dilution. Hence, a community 

perspective, which includes realistic ecological relationships and reliable 

parameter estimation from empirical data, may give critical insights into 

wildlife epidemiological patterns and may help to understand and predict their 

dynamics (Belden and Harris, 2007; Johnson et al., 2015a; Koprivnikar and 

Johnson, 2016). This was confirmed by the fact that not the number of species in 

the community, but the degree of community complexity (in terms of 

interaction among species) affected pathogen transmission. The results 
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observed modelling PUUV were consistent when modelling other rodent-borne 

pathogens, regardless of very different course of epidemics.  

Modelling two similar but different host-tick-pathogen systems showed that, in 

general, the parameters most affecting the juvenile stages of the ticks were the 

ones most affecting transmission. The results provided evidence that in the 

system with the more generalist vector, Ixodes ricinus, the dilution effect was 

more significant and more mechanisms were represented, in agreement with 

the classic assumptions about dilution formulated by Schmidt and Ostfeld 

(2001). The modelling study was also useful to identify the key parameters 

regulating transmission in the two systems. Moulting success seemed to be 

crucial in the case of I. trianguliceps, which had smaller population and less 

alternative hosts than I. ricinus, because transmission was limited by the 

number of ticks in the system. Whereas, for I. ricinus, the regulating factor was 

competence of transmission, since this species had to maximise the efficiency of 

transmission of the lower proportion of feeding events on competent hosts. 

Consequently, in the two systems the key dilution mechanisms were also 

different: transmission reduction for I. ricinus-Borrelia burgdorferi, and 

susceptible host regulation for I. trianguliceps-Babesia microti. However, here, 

more complex communities led only to fewer infectious hosts (evidence for 

dilution effect), because, at the same time, there was also an increase (or a 

stability) of infectious nymphs, representing amplification of human disease 

risk.  

In the context of the flea-borne Bartonella, the modelling study, focusing on 

testing dilution in a pathogen determining reinfection and vertical transmission, 

identified force of infection and vertical transmission as the parameters most 

affecting transmission and degree of dilution (through susceptible host 

regulation adding inter-specific competition and predation). With regards to 

force of infection, it seemed that highest variability in the results occurred 

setting values between 0 (no transmission) and ~2-3, probably because the 

constraints to transmission due to host-vector dynamics made highest values 

unable to remarkably increase transmission. A crucial value to determine 
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transmission constraints was the maximum average flea burden that, in this 

study, was estimated from empirical data. Vertical transmission rate, above a 

certain threshold, reversed the effect of susceptible host regulation, and even 

moderate values increased the number of total infectious hosts by an order of 

magnitude compared to the other analysis results. By contrast, reinfection rate 

did not affect dilution mechanisms, and in the full community did not 

considerably impact the number of total infectious hosts. The results of 

modelling were supported by several studies that found Bartonella infection to 

vary among communities differing in diversity and compositions. In particular, 

since transmission seems more common within species than between species 

(Bai et al., 2009; Withenshaw et al., 2016), increasing community and host 

diversity may decrease transmission in two ways: reducing encounters between 

hosts and fleas with the correct species-specific Bartonella species/strain; and 

limiting or regulating susceptible hosts through competition and predation. 
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6.2 Limitations, innovations, and future perspectives 

 

This study integrated empirical data about local host communities with 

mathematical modelling techniques to develop a realistic eco-epidemiological 

approach for the investigation of rodent-borne pathogens with different 

transmission modes. First, it was chosen to explore rodent communities 

through live trapping in selected sites across Wales in order to gather 

information about local population dynamics, and perform multi-host parasite 

and pathogen screening focusing on all host-species sampled. Then, 

mathematical models were developed to describe pathogen transmission in 

rodent populations.  

The study presented some limitations mostly due to the fieldwork design and 

the lack of explicit spatial scale in the model. Specifically, the epidemiological 

study did not include a longitudinal pathogen screening due to the impossibility 

of identifying individuals between different trapping seasons (i.e. fur clipping 

did not allow identification between seasons), the lack of authorisation for 

sample collection apart from faeces and ecto-parasites, and the impossibility of 

more intensive trapping (i.e. lack of resources to increase trapping frequency). 

The model did not include an explicitly spatial scale, which is essential to 

analyse the effect of patches connectivity, individual dispersion, and meta-

populations on pathogen transmission (Cohen et al., 2016), but this was beyond 

the scope of this study. In addition, host populations in the model might have 

split according to age and/or sex groups to better define the different 

contribution of individuals to pathogen transmission, for example sub-adult 

individuals seemed to be crucial in bartonellae transmission (Kosoy et al., 

2004a; Jardine et al., 2006; Telfer et al., 2007a).  

Despite the limitations, this innovative modelling approach included rodent 

population dynamics parameterised with data collected through the live 

trapping, and detailed ecological and epidemiological dynamics, representing a 

realistic Welsh community assemblage of host and non-host species interacting 
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with each other. This approach was inspired by the recommendations for future 

work on diversity–disease relationships by Johnson et al. (2015b). In their 

seminal review, the distinction between response and predictor variable was 

clearly delineated. In particular, the effect of host species richness and non-host 

species functional diversity on different epidemiological metrics representing 

wildlife and human disease risk separately was taken into account. In addition, 

more empirical and laboratory data were collected, and the modelling 

methodology expanded from purely additive versus purely substitutive 

community structures, considering more realistic patterns, according to 

Mihaljevic et al. (2014). The influence of multiple diversity components on 

pathogen transmission was investigated, allowing the identification of distinct 

dilution mechanisms and the species responsible for each mechanism to occur; 

so, this approach was different from the purely theoretical (e.g. Roche et al., 

2012, 2013), or purely observational ones (e.g. Clay et al., 2009; Kosoy et al., 

2004b). Moreover, it was explored how the relationships between host 

diversity, community structure and disease risk varied among different host-

pathogen systems, assembling the community according to realistic ecological 

criteria and identifying how community complexity played a different role in 

each system differing for pathogen transmission mode, in contrast with 

previous studies that focused on a single type of transmission (e.g. Clay et al., 

2009b; Clay et al., 2014; Keesing et al., 2006; Ostfeld and Keesing, 2000; Ostfeld 

and LoGiudice, 2003; Roche et al., 2012; Schmidt and Ostfeld, 2001).  

Commonly, modelling studies in disease ecology have focused on a single host 

species or on a single aspect such as the transmission term (e.g. Begon et al., 

2002), the variance of reservoir competence (e.g. Roche et al., 2012), the inter-

specific competition (e.g. O’Regan et al., 2015), or the predator-prey-pathogen 

dynamics (e.g. Roberts and Heesterbeek, 2013), and often employing theoretical 

frameworks (e.g. Dobson and Auld, 2016). By contrast, in this study, these were 

all combined in a unique framework to describe pathogen transmission 

dynamics in a realistic community, to identify potential dilution mechanisms 

and the key parameters in each system.  
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Especially novel was the application of this modelling technique to the flea-

borne pathogen Bartonella, as, to the best of this author’s knowledge, it was the 

first time that such a comprehensive approach was used to describe flea-host-

pathogen dynamics. In fact, other studies described host-flea dynamics (e.g. 

Krasnov et al., 2002), or the difference in flea and pathogen prevalence among 

sympatric rodent species (e.g. Brettschneider et al., 2012; Kedem et al., 2014), 

but this study put all these aspects together in a unified eco-epidemiological 

framework. In addition, the work on fleas was particularly valuable, since little 

information is available on the taxon (but see Krasnov et al., 2002, 2015, 2016), 

and this study contributed to knowledge about small rodents’ flea communities, 

flea-host associations, and flea-borne bartonellae circulating in Wales, isolating 

for the first time in UK a Bartonella rochalimae-like  species. 

One of the most interesting outcomes of the modelling work was that the 

parameters most affecting pathogen transmission, in each system, were also the 

most uncertain, suggesting that more ad hoc empirical studies are needed to 

improve model reliability (Johnson et al., 2015a). The modelling results also 

pointed out, in each system, which were the parameters that were mostly 

affecting the transmission, representing a useful tool for designing future 

empirical data collection. Moreover, the search of these parameters in literature 

suggested that, when available, these values should be provided with clearer 

information about their units (or methods of estimation), so they can be 

meaningfully used in modelling studies.  

In this study more than one epidemiological metric was reported to illustrate 

modelling results (in contrast with the widespread tendency of reporting 

exclusively pathogen prevalence), in order to distinguish between true and 

spurious dilution effect (Dobson and Auld, 2016), and identify which metric was 

the most appropriate to evaluate the effect of community composition and 

parameter variation on wildlife and human disease risk independently.  

Lastly, this investigation provided not only qualitative, but also quantitative 

information about rodent populations and their parasites and pathogens. This 

knowledge may be useful to implement and improve management practices in 



 

 

250 

place at the sampling sites, since all the pathogens found have a human zoonotic 

potential (Bitam et al., 2010; Eremeeva et al., 2007; Gray, 2006; Homer et al., 

2000). 

In the future, it would be ideal, for each pathogen system considered, to have 

precise estimation of the parameters on which assumptions were made or 

sensitivity analysis was performed. Additionally, another field to explore via 

modelling would be the systems in which multiple vectors or multiple 

transmission modes are involved (Webster et al., 2017), and an example may be 

Bartonella, which has been isolated also in ticks (e.g. Chang et al., 2001; Cotté et 

al., 2008; Tsai et al., 2011). The parallel implementation of the theoretical and 

empirical approach would facilitate the identification of key hosts and key 

transmission pathways, as well as the identification of effective disease control 

strategies (Webster et al., 2017). Likewise, this methodology might be employed 

to understand the effects of human disturbance on pathogen transmission, since 

it has been shown that several common human environmental impacts can 

contribute to disease emergence, and emerging infectious diseases (EIDs) are a 

substantial threat to biodiversity, human health and economic well-being 

(Rogalski et al., 2017). Indeed, it could be very interesting for future research to 

monitor epidemiological variations where conservation measures are put in 

place compared to control sites (with no conservation efforts) (Keesing et al., 

2010). Finally, since the debate about existence, generality, and definition of the 

dilution effect is still open, it will be worth to find new ways of approaching 

dilution estimation. For example, Ruyts et al. (2018), in the context of tick-borne 

pathogens, introduced a new indicator referred to as “potential dilution”, which 

represents the proportion of larvae feeding on dilution hosts in the host 

community, and can be derived from the proportion of dilution hosts in the total 

host community weighted by the species-specific average larval burden.  
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6.3 Conclusions  

 

This study supported the idea that the dilution effect is not a universal principle, 

but it can be observed in some systems considering the appropriate 

epidemiological metrics and/or outputs (Johnson and Thieltges, 2010).  

Moreover, it was taken into account the response of community composition of 

just one pathogen at a time, but it is still very much unclear what is the overall 

relationship between diversity and the overall pathogen and parasite 

community, if there is one (Johnson et al., 2015b).  Nonetheless, in the context of 

pathogen (and disease) emergence some risk factors were identified, especially 

human disturbance and consequent changes in biological communities (i.e. 

species introductions and extirpations, higher human-wildlife-livestock 

interface; Johnson and Thieltges, 2010). Hence, it may be more effective to focus 

on pathogen control investigating specific cases and gathering data to develop 

specific control measures instead of trying to find a one-fits-all disease-diversity 

relationship.  

Considering public health, the emphasis on the potential spillover risk in areas 

with high parasite diversity has been criticised by Plowright et al. (2017), who 

demonstrated that spillover requires a complex series of processes. Also, 

pathogen/parasite richness is the result of interplay between parasite lifestyle, 

host ecology, host defences (Krasnov et al., 2016), and so the effort should be 

put in the eco-epidemiological investigation of the systems with distinct risk 

factors. Infectious disease distribution has been found to be uneven, with 

human zoonoses being particularly concentrated in some geographical areas, 

but the drivers of this phenomenon are not clarified yet, and it is also difficult to 

predict how this distribution will change in the future due to the 

aforementioned environmental changes (Morand and Krasnov, 2010). 

Therefore, eco-epidemiological studies to explore this might involve the 

investigation of patterns of reservoir competence, of the relationship between 

resilience and competence, and between life traits and immune response.  



 

 

252 

In conclusion, the health ecology (i.e. one health) approach has been revealed to 

be crucial in this era, in which infectious diseases are tightly linked to human 

driven environmental changes (Morand and Krasnov, 2010). In order to 

understand the connections between biodiversity, wildlife disease ecology and 

zoonotic risk it is essential to overcome boundaries between disciplines such as 

veterinary science, epidemiology, microbiology, parasitology, evolutionary 

biology, wildlife and landscape ecology and integrate ecological niche modelling, 

macroecology, biogeography with the final goal of developing effective 

strategies in managing wildlife disease to conserve biodiversity and reduce 

human disease risk (Morand and Krasnov, 2010; Vander Wal et al., 2014). 
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Appendix I 

 

Statistical analyses R code 

 

I. 1 Chapter 2 

 

Normality test:  

require("nortest") 

ad.test(data) 

 

Linear regression between log-transformed rodent population density and the 

log-transformed rodent population density in the following season: 

density_next_density.glm<-

lm(log_density~next_seas_density,data,na.omit) 

 

Linear regression between rodent growth rate and log-transformed rodent 

population density: 

growth_density.glm<-lm(growth_rate~log_density,data,na.omit) 

 

Permutation test to investigate differences in intra and interspecific contact 

rates between seasons, sites, and rodent species, sex, age class, and breeding 

condition: 

require("coin") 

oneway_test(contacts~variable,na.omit(data),distribution=appro

ximate(B=9999)) 
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Negative binomial regression between intra and interspecific contacts and 

rodent weight: 

require("MASS") 

contact_weight.glm.nb<-glm.nb(contacts~weigth,data,link="log") 

 

 

I. 2 Chapter 3 

 

Ecto-parasite prevalence analyses: 

prevalence.glm<-glm(prevalence~variable,data,family=poisson) 

 

Regression between ecto-parasite prevalence and rodent population density: 

prevalence.density.lm<-lm(density~prevalence,data) 

 

Chi-square test for independence for differences among ecto-parasite species 

distribution on host species: 

Chisq.test(table(data$var1,data$var2) 

 

 

Non-parametric statistics to analyse patters of intensity of infestation: 

Infestation.test<-kruskal.test(parasite.burden~variable,data) 

Infestation.test<-wilcox.test(parasite.burden~variable,data) 
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I. 3 Chapter 4 

 

Pathogen prevalence analysis: 

prevalence.glm<-

glm(prevalence~variable,data,family=binomial,na.omit) 

prevalence<-kruskal.test(prevalence~variable,data) 

prevalence<-wilcox.test(prevalence~variable,data) 

 

Helminth burden analysis: 

Helminth.burden.glm<-

glm(burden~variable,data,family="binomial",na.omit) 
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Appendix II 

 

Confidence of Freedom of prevalence found for 

Herpesvirus, Escherichia coli and Mycobacterium 

microti 

 

Confidence of Freedom of prevalence found for Herpesvirus, E. coli and M. 

microti was estimated (Christensen and Gardner, 2000; Humphry et al., 2004; 

Romeo and Ferrari, 2017) (Fig. II.1, Fig. II.2, and Fig. II.3 respectively). 

The method considers that confidence of freedom equals the Herd-level 

Negative Predictive Value (HNPV) (i.e. Negative Predictive Value = probability 

that a test-negative individual is truly negative), which represents the 

probability that a test-negative herd (or a wild population) is truly negative and 

depends on prevalence, specificity, sensitivity and sample size. 

 

where eP is the prevalence, HSp is the herd specificity:  (i.e. the 

probability that an uninfected herd will give a negative result to a defined 

testing protocol, it depends only on the sample size N), and HSe is the herd 

sensitivity:  (i.e. the probability that 

an infected herd will give a positive result to a defined testing protocol, it 

depends on sample size and prevalence). Since specificity (Sp) and sensitivity 

(Se) values were not available for the detection tests employed in the study, 

sensitivity analysis on those variables was performed. 
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Fig. II.1. Herpesvirus prevalence Confidence of Freedom estimated according to 
Christensen and Gardner (2000), Humphry et al. (2004), and Romeo and Ferrari 
(2017). Herd sensitivity (HSe) values, from 0 to 1, are represented by the lines 
from lighter to darker shade. 

 

 

Fig. II.2. Escherichia coli prevalence Confidence of Freedom estimated according 
to Christensen and Gardner (2000), Humphry et al. (2004), and Romeo and 
Ferrari (2017). Herd sensitivity (HSe) values, from 0 to 1, are represented by the 
lines from lighter to darker shade. 
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Fig. II.3. Mycobacterium microti prevalence Confidence of Freedom estimated 
according to Christensen and Gardner (2000), Humphry et al. (2004), and Romeo 
and Ferrari (2017). Herd sensitivity (HSe) values, from 0 to 1, are represented by 
the lines from lighter to darker shade. 
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Appendix III 

 

R code of eco-epidemiological models of infection 

 

III.1 Directly-transmitted pathogen model 

 

#requires the package deSolve 

require("deSolve") 

 

# define the function 

multihostSEIR.model <- function( t, x, parameters ) 

 

{ sw <- x[1] 

ew <- x[2] 

iw <- x[3] 

rw <- x[4] 

sb <- x[5] 

eb <- x[6] 

ib <- x[7] 

rb <- x[8] 

sf <- x[9] 

ef <- x[10] 

iF <- x[11] 

rf <- x[12] 

nj  <- x[13] 

np <- x[14] 

 

with(as.list(parameters), 

     { nw <- sw + ew + iw + rw 

     nb <- sb+eb+ib+rb 

     nf <- sf+ef+iF+rf 

     nj  <- nj 

     np <- np 

     r.temp.w<-ifelse(t %% 1 < 2/3, gw[2],gw[1]) 

     r.temp.b<-ifelse(t %% 1 < 2/3, gb[2],gb[1]) 

     r.temp.f<-ifelse(t %% 1 < 2/3, gb[2],gb[1]) 

     lambdaw <-

(tauw*(0.23+(0.01*nw))*iw)+(tauw*(0.71+(0.02*nb))*ib)+(tauw*(0.71+(0

.02*nf))*iF) 

     lambdab <- 

(taub*(0.53+(0.01*nb))*ib)+(taub*(0.39+(0.02*nw))*iw)+(taub*(0.23+(0

.01*nf))*iF) 

     lambdaf <- 

(tauf*(0.53+(0.01*nf))*iF)+(tauf*(0.39+(0.02*nw))*iw)+(tauf*(0.23+(0

.01*nb))*ib) 

     mw <- M[1] 

     mb <- M[2] 
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     mf <- M[3] 

     mj  <- M[4] 

     mp <- M[5] 

     vj  <- (mj**-0.25) 

     vp <- (mp**-0.25) 

     rhoj  <- (0.4*(mj**-0.25)) 

     rhop <- (0.4*(mp**-0.25)) 

     kw <- k[1]  

     kb <- k[2] 

     kf <- k[3] 

     sigmaw <-  sigma[1] 

     sigmab <-  sigma[2] 

     sigmaf <- sigma[3] 

     Kw <- (16.2*(mw**-0.70)) 

     Kb <- (16.2*(mb**-0.70)) 

     Kf <- (16.2*(mf**-0.70)) 

     Kj <- (16.2*(mj**-0.70)) 

     Kp <- (16.2*(mp**-0.70)) 

     cwb<-c.mat[1] 

     cwj<-c.mat[7] 

     cbw<-c.mat[2] 

     cbj<-c.mat[8] 

     cjw<-c.mat[10] 

     cjb<-c.mat[11] 

     cwf <- c.mat[5] 

     cbf <- c.mat[6] 

     cfw <- c.mat[3] 

     cfb <- c.mat[4] 

     cfj <- c.mat[9] 

     cjf <- c.mat[12] 

     deltaw <- delta[1] 

     deltab <- delta[2] 

     deltaf <- delta[3] 

     deltaj <- delta[4] 

      

     dsw <- r.temp.w*nw*((Kw-nw-(cwb)*nb-(cwf)*nf-(cwj)*nj)/Kw) -

lambdaw*sw - ((g*sw^2)/(sw^2+h^2)) - 

((alfa*np*sw)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaf)*nf+(del

taw/deltaj)*nj))) 

     dew <- lambdaw*sw -kw*ew- ((g*ew^2)/(ew^2+h^2)) - 

((alfa*np*ew)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaf)*nf+(del

taw/deltaj)*nj))) 

     diw <- kw*ew - sigmaw*iw - ((g*iw^2)/(iw^2+h^2))- 

((alfa*np*iw)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaf)*nf+(del

taw/deltaj)*nj))) 

     drw <- sigmaw*iw - ((g*rw^2)/(rw^2+h^2)) - 

((alfa*np*rw)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaf)*nf+(del

taw/deltaj)*nj))) 

     dsb <- r.temp.b*nb*((Kb-nb-(cbw)*nw-(cbf)*nf-(cbj)*nj)/Kb) -

lambdab*sb - ((g*sb^2)/(sb^2+h^2)) - 

((alfa*np*sb)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaf)*nf+(del

tab/deltaj)*nj)))   

     deb <- lambdab*sb -kb*eb - ((g*eb^2)/(eb^2+h^2))- 

((alfa*np*eb)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaf)*nf+(del

tab/deltaj)*nj))) 

     dib <- kb*eb - sigmab*ib - ((g*ib^2)/(ib^2+h^2))- 

((alfa*np*ib)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaf)*nf+(del

tab/deltaj)*nj))) 
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     drb <- sigmab*ib - ((g*rb^2)/(rb^2+h^2)) -

((alfa*np*rb)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaf)*nf+(del

tab/deltaj)*nj))) 

     dsf <- r.temp.f*nf*((Kf-nf-(cfw)*nw-(cfb)*nb-(cfj)*nj)/Kf) -

lambdaf*sf - ((g*sf^2)/(sf^2+h^2)) - 

((alfa*np*sf)/(deltaf+nf+((deltaf/deltaw)*nw+(deltaf/deltab)*nb+(del

taf/deltaj)*nj))) 

     def <- lambdaf*sf -kf*ef- ((g*ef^2)/(ef^2+h^2)) - 

((alfa*np*ef)/(deltaf+nf+((deltaf/deltaw)*nw+(deltaf/deltab)*nb+(del

taf/deltaj)*nj))) 

     diF <- kf*ef - sigmaf*iF - ((g*iF^2)/(iF^2+h^2))- 

((alfa*np*iF)/(deltaf+nf+((deltaf/deltaw)*nw+(deltaf/deltab)*nb+(del

taf/deltaj)*nj))) 

     drf <- sigmaf*iF - ((g*rf^2)/(rf^2+h^2)) - 

((alfa*np*rf)/(deltaf+nf+((deltaf/deltaw)*nw+(deltaf/deltab)*nb+(del

taf/deltaj)*nj))) 

     dnj  <- (vj-rhoj)*nj*((Kj-nj-(cjw)*nw-(cjb)*nb-(cjf)*nf)/Kj) - 

((g*nj^2)/(nj^2+h^2))-

((alfas*np*nj)/(deltaj+nj+((deltaj/deltaw)*nw+(deltaj/deltab)*nb+(de

ltaj/deltaf)*nf))) 

dnp <- (vp-rhop)*np*(1-

((q*np)/(nw+(deltaw/deltab)*nb+(deltaw/deltaj)*nj)))  

     res <- 

c(dsw,dew,diw,drw,dsb,deb,dib,drb,dsf,def,diF,drf,dnj,dnp) 

     list(res) 

     } 

)} 

 

# parameters 

times <- seq(0,20,length=7300)   

gw<-c(-0.006,0.04)   

gb<-c(-0.002,0.007)   

M<-c(0.02025503,0.01906557,0.02175, 0.0092,0.07845) 

k<- c(0.14,0.14,0.14)  

alfa <- 1  

alfas<-7.674456522  

delta <- c(11.31050155,11.31050155,11.31050155,22.621)    

cwb_sens.an <- seq(0, 0.9851319, length.out = 6) 

cbw_sens.an <- seq(0, 1.015092, length.out = 6) 

cfw_sens.an <- seq(0, 0.9513746,length.out = 6) 

cfb_sens.an <- seq(0,0.9119129,length.out = 6) 

cwf_sens.an <- seq(0,1.051111,length.out = 6) 

cbf_sens.an <- seq(0,1.096596,length.out = 6) 

cwj_sens.an <- seq(0, 0.5744988, length.out = 6) 

cbj_sens.an <- seq(0, 0.5831694, length.out = 6) 

cfj_sens.an <- seq(0,0.5475578,length.out = 6) 

cjw_sens.an <- seq(0, 1.740648, length.out = 6) 

cjb_sens.an <- seq(0, 1.714768, length.out = 6) 

cjf_sens.an <- seq(0, 1.826291,length.out = 6) 

c.mat<-

c(cwb_sens.an[2],cbw_sens.an[2],cfw_sens.an[2],cfb_sens.an[2],cwf_se

ns.an[2],cbf_sens.an[2],cwj_sens.an[1],cbj_sens.an[1],cfj_sens.an[1]

,cjw_sens.an[6],cjb_sens.an[6],cjf_sens.an[6]) 

sigma<-c(0.011,0.011,0.011)  

g= 0.49312  

h = 9.9  

q= 56  

taub<-0.05 

tauf<-0.03 
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# perform the realisation 

parameters <- 

c(M=M,alfa=alfa,alfas=alfas,delta=delta,c.mat=c.mat,g=g,h=h,q=q, 

sigma=sigma,tauw=tauw,taub=taub,tauf=tauf,gw=gw,gb=gb) 

xstart<-

c(sw=48,ew=0,iw=1,rw=0,sb=75,eb=0,ib=0,rb=0,sf=30,ef=0,iF=0,rf=0, 

nj=20, np=3)  

output<-

as.data.frame(rk4(xstart,times,multihostSEIR.model,parameters)) 

output$Prev.w<-output$iw/apply(output[,2:5],1,sum) 

output$Prev.b<-output$ib/apply(output[,6:9],1,sum) 

output$Prev.f<-output$iF/apply(output[,10:13],1,sum) 
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III.2 Tick-borne pathogen model 

 

#requires the package deSolve 

require("deSolve") 

 

# define the function 

multihostTICK.model <- function( t, x, parameters ) 

         

{ l <- x[1] 

sn <- x[2] 

In <- x[3] 

sa <- x[4] 

ia <- x[5] 

sw <- x[6] 

iw <- x[7] 

rw <- x[8] 

sb <- x[9] 

ib <- x[10] 

rb <- x[11] 

nj  <- x[12] 

np <- x[13] 

 

with(as.list(parameters), 

     { nv <- l+sn+In+sa+ia 

     nw <- sw+iw+rw 

     nb <- sb+ib+rb 

     nj  <- nj 

     np <- np 

     nd <- 0 

     prop_l <- l/(l+In+sn+ia+sa) 

     prop_In <- In/(l+In+sn+ia+sa) 

     prop_sn <- sn/(l+In+sn+ia+sa) 

     prop_sa <- sa/(l+In+sn+ia+sa) 

     prop_ia <- ia/(l+In+sn+ia+sa) 

     mw <- M[1] 

     mb <- M[2] 

     mj  <- M[3] 

     mp <- M[4] 

     r.temp.w<-ifelse(t %% 1 < 2/3, gw[2],gw[1]) 

     r.temp.b<-ifelse(t %% 1 < 2/3, gb[2],gb[1]) 

     vj  <- (mj**-0.25) 

     vp <- (mp**-0.25) 

     rhoj  <- (0.4*(mj**-0.25)) 

     rhop <- (0.4*(mp**-0.25)) 

     Kw <- (16.2*(mw**-0.70)) 

     Kb <- (16.2*(mb**-0.70)) 

     Kj <- (16.2*(mj**-0.70)) 

     Kp <- (16.2*(mp**-0.70)) 

     sigmaw <-  sigma[1] 

     sigmab <-  sigma[2] 

     cwb<-c.mat[1] 

     cwj<-c.mat[7] 

     cbw<-c.mat[2] 

     cbj<-c.mat[8] 

     cjw<-c.mat[10] 
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     cjb<-c.mat[11] 

     deltaw <- delta[1] 

     deltab <- delta[2] 

     deltaj <- delta[4] 

     sv <- (0.5+(0.049*log((1.01+((sa+ia)/2))/(nw+nb+nj+np+nd)))) 

      

     dl <- 

(beta[7]*d[1]*nw+beta[7]*d[1]*nb+beta[8]*d[2]*nj+beta[9]*d[3]*np+bet

a[9]*d[4]*nd)*(sa+ia)*(num_egg-sv*nv)-rhov[2]*l-

(beta[1]*nw*l+beta[1]*nb*l+beta[2]*nj*l+beta[3]*np*l+beta[3]*nd*l)*(

1+1/k) 

     # nymphal stage 

     dIn <- (beta[1]*d[1]*iw*tauw[1]*l+beta[1]*d[1]*taub[1]*ib*l)* 

(1+1/k)-rhov[3]*In-

(beta[4]*nw*In+beta[4]*nb*In+beta[5]*nj*In+beta[6]*np*In+beta[6]*nd*

In)*(1+1/k) 

     dsn <- 

(beta[1]*d[1]*(rw+sw)*l+beta[1]*d[1]*(rb+sb)*l)+beta[2]*d[2]*nj*l+be

ta[3]*d[3]*np*l+beta[3]*d[4]*nd*l-rhov[3]*sn-beta[4]*nw*sn-

beta[4]*nb*sn-beta[5]*nj*sn-beta[6]*np*sn-beta[6]*nd*sn 

     # adult stage 

     dia <- 

beta[4]*d[1]*nw*In+beta[4]*d[1]*nb*In+beta[5]*d[2]*nj*In+beta[6]*d[3

]*np*In+beta[6]*d[4]*nd*In+(beta[4]*d[1]*ib*taub[2]*sn+ 

beta[4]*d[1]*iw*tauw[2]*sn)*(1+1/k)-rhov[4]*ia-

(beta[7]*nw*ia+beta[7]*nb*ia+beta[8]*nj*ia+beta[9]*np*ia+beta[9]*nd*

ia)*(1+1/k) 

     dsa <- 

(beta[4]*d[1]*(rw+sw)*sn+beta[4]*d[1]*(rb+sb)*sn)+beta[5]*d[2]*nj*sn

+beta[6]*d[3]*np*sn+beta[6]*d[4]*nd*sn-rhov[4]*sa-beta[7]*nw*sa-

beta[7]*nb*sa-beta[8]*nj*sa-beta[9]*np*sa-beta[9]*nd*sa 

 

     # hosts 

     dsw <- r.temp.w*nw*((Kw-nw-cwb*nb-cwj*nj)/Kw) -

tauv[1]*beta[4]*sw*In-tauv[2]*beta[7]*sw*ia - ((g*sw^2)/(sw^2+h^2)) 

- ((alfa*np*sw)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaj)*nj))) 

     diw <- tauv[1]*beta[4]*sw*In + tauv[2]*beta[7]*sw*ia -sigmaw*iw 

-((g*iw^2)/(iw^2+h^2))- 

((alfa*np*iw)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaj)*nj))) 

     drw <- sigmaw*iw - ((g*rw^2)/(rw^2+h^2)) - 

((alfa*np*rw)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaj)*nj))) 

     dsb <- r.temp.w*nb*((Kb-nb-cbw*nw-cbj*nj)/Kb) -

tauv[1]*beta[4]*sb*In-tauv[2]*beta[7]*sb*ia- ((g*sb^2)/(sb^2+h^2)) - 

((alfa*np*sb)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaj)*nj)))   

     dib <- tauv[1]*beta[4]*sb*In + tauv[2]*beta[7]*sb*ia - 

sigmab*ib - ((g*ib^2)/(ib^2+h^2))- 

((alfa*np*ib)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaj)*nj))) 

     drb <- sigmab*ib - ((g*rb^2)/(rb^2+h^2)) -

((alfa*np*rb)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaj)*nj))) 

     dnj  <- (vj-rhoj)*nj*((Kj-nj-cjw*nw-cjb*nb)/Kj) - 

((g*nj^2)/(nj^2+h^2))-

((alfas*np*nj)/(deltaj+nj+((deltaj/deltaw)*nw+(deltaj/deltab)*nb))) 

     dnp <- (vp-rhop)*np*(1-

((q*np)/(nw+(deltaw/deltab)*nb+(deltaw/deltaj)*nj)))  

     res <- c(dl,dsn,dIn,dsa,dia,dsw,diw,drw,dsb,dib,drb,dnj,dnp)  

     list(res) 

      

     } 

)} 
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# parameters 

times <- seq(0,20,length=7300)   

gw<-c(-0.006,0.04)   

gb<-c(-0.002,0.007)  

M<-c(0.02025503,0.01906557,0.02175, 0.0092,0.07845) 

alfa <- 1 

alfas<-7.674456522  

delta <- c(11.31050155,11.31050155,11.31050155,22.621)    

cwb_sens.an <- seq(0, 0.9851319, length.out = 6) 

cbw_sens.an <- seq(0, 1.015092, length.out = 6) 

cfw_sens.an <- seq(0, 0.9513746,length.out = 6) 

cfb_sens.an <- seq(0,0.9119129,length.out = 6) 

cwf_sens.an <- seq(0,1.051111,length.out = 6) 

cbf_sens.an <- seq(0,1.096596,length.out = 6) 

cwj_sens.an <- seq(0, 0.5744988, length.out = 6) 

cbj_sens.an <- seq(0, 0.5831694, length.out = 6) 

cfj_sens.an <- seq(0,0.5475578,length.out = 6) 

cjw_sens.an <- seq(0, 1.740648, length.out = 6) 

cjb_sens.an <- seq(0, 1.714768, length.out = 6) 

cjf_sens.an <- seq(0, 1.826291,length.out = 6) 

c.mat<-

c(cwb_sens.an[2],cbw_sens.an[2],cfw_sens.an[2],cfb_sens.an[2],cwf_se

ns.an[2],cbf_sens.an[2],cwj_sens.an[1],cbj_sens.an[1],cfj_sens.an[1]

,cjw_sens.an[6],cjb_sens.an[6],cjf_sens.an[6]) 

beta <- c(0.025,0.025,0.025,0.04,0.04,0.04,0.01,0.01,0.06)  

d <- c(0.415,0.496,0.639,0.563)/3  

num_egg = 1500   

rhov <- c(0.002,0.001428,0.000476,0.000408)  

g= 0.49312  

h = 9.9  

q= 56  

sigma <- c(0.0083,0.0083)  

tauw <- c(0.5,0.5,0.4)  

taub <- c(0.5,0.5,0.4)  

tauv <- c(0.8,0.8)  

k = 0.18  

 

# perform a realisation 

parameters <- 

c(M=M,alfa=alfa,alfas=alfas,delta=delta,c.mat=c.mat,g=g,h=h,q=q, 

sigma=sigma,tauw=tauw,taub=taub,tauv=tauv,k=k,gw=gw,gb=gb) 

xstart<-c(l=0,In=0,sn=100,ia=0,sa=0,sw=48,iw=1,rw=0,sb=75,ib=0,rb=0, 

nj=20, np=3) 

output<-

as.data.frame(rk4(xstart,times,multihostTICK.model,parameters)) 
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III.3 Flea-borne pathogen model 

 

#requires the package deSolve 
require("deSolve") 

 

# define the function 

multihostFLEA.model <- function( t, x, parameters ) 

         

{sF <-x[1] 

 eF <-x[2] 

 iF <-x[3] 

 sw <-x[4] 

 ew <-x[5] 

 iw <-x[6] 

 rw <-x[7] 

 sb <-x[8] 

 eb <-x[9] 

 ib <-x[10] 

 rb <-x[11] 

 nj <-x[12] 

 np <-x[13] 

 

with(as.list(parameters), 

     { nF <- sF+eF+iF 

     nw <- sw+ew+iw+rw 

     nb <- sb+ew+ib+rb 

     nj  <- nj 

     np <- np 

     mw <- M[1] 

     mb <- M[2] 

     mj  <- M[3] 

     mp <- M[4] 

     r.temp.w<-ifelse(t %% 1 < 2/3, gw[2],gw[1]) 

     r.temp.b<-ifelse(t %% 1 < 2/3, gb[2],gb[1]) 

     rhoj  <- (0.4*(mj**-0.25)) 

     rhop <- (0.4*(mp**-0.25)) 

     rhoF<- 0.00273 

     aF<-0.04-rhoF 

     vj  <- (mj**-0.25) 

     vp <- (mp**-0.25) 

     Kw <- (16.2*(mw**-0.70)) 

     Kb <- (16.2*(mb**-0.70)) 

     Kj <- (16.2*(mj**-0.70)) 

     Kp <- (16.2*(mp**-0.70)) 

     kappaw <-  kappa[1] 

     kappab <-  kappa[2] 

     cwb<-c.mat[1] 

     cbw<-c.mat[2] 

     cwj<-c.mat[3] 

     cbj<-c.mat[4] 

     cjw<-c.mat[5] 

     cjb<-c.mat[6] 

     deltaw <- delta[1] 

     deltab <- delta[2] 

     deltaj <- delta[3] 
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     MAXFw<- MAXF[1] 

     MAXFb<- MAXF[2] 

     epsilonw<-epsilon[1] 

     epsilonb<-epsilon[2] 

     sigmaw<-sigma[1] 

     sigmab<-sigma[2] 

     lambdaw<-lambda[1] 

     lambdab<- lambda[2] 

      

     # flea 

     Cf.t<-min(1.1,max(0.65+cos(2*pi*t),0.2))*(nw*MAXFw+nb*MAXFb) 

     alphaF_t<-rhoF*Cf.t+aF*max(Cf.t-nF,0) 

     rhoF_t<-rhoF+aF*max(1-Cf.t/nF,0) 

     dsF <-alphaF_t-

kappaF*((MAXFw*iw+MAXFb*ib)/(MAXFw*nw+MAXFb*nb))*sF-rhoF_t*sF 

     deF <- kappaF*((MAXFw*iw+MAXFb*ib)/(MAXFw*nw+MAXFb*nb))*sF-

(lambdaF+rhoF_t)*eF 

     diF <- lambdaF*eF-rhoF_t*iF 

 

     # hosts 

     dsw <- r.temp.w*nw*((Kw-nw-cwb*nb-cwj*nj)/Kw) - epsilonw*iw + 

1/2*kappaw*iw - sigmaw*((MAXFw*iw)/(MAXFw*nw+MAXFb*nb))*sw - 

((g*sw^2)/(sw^2+h^2)) - 

((alfa*np*sw)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaj)*nj))) 

     dew <- sigmaw*((MAXFw*iw)/(MAXFw*nw+MAXFb*nb))*sw - lambdaw*ew+ 

epsilonw*iw - ((g*ew^2)/(ew^2+h^2)) - 

((alfa*np*ew)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaj)*nj))) 

     diw <- lambdaw*ew - kappaw*iw -((g*iw^2)/(iw^2+h^2))- 

((alfa*np*iw)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaj)*nj))) 

     drw <- kappaw*iw - ((g*rw^2)/(rw^2+h^2)) - 

((alfa*np*rw)/(deltaw+nw+((deltaw/deltab)*nb+(deltaw/deltaj)*nj))) 

     dsb <- r.temp.w*nb*((Kb-nb-cbw*nw-cbj*nj)/Kb) - epsilonb*ib + 

1/2*kappab*ib - sigmab*((MAXFb*ib)/(MAXFw*nw+MAXFb*nb))*sb - 

((g*sb^2)/(sb^2+h^2)) - 

((alfa*np*sb)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaj)*nj)))   

     deb <- sigmab*((MAXFb*ib)/(MAXFw*nw+MAXFb*nb))*sb - lambdab*eb 

+ epsilonb*ib - ((g*eb^2)/(eb^2+h^2)) - 

((alfa*np*eb)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaj)*nj)))   

     dib <- lambdab*eb - kappab*ib  - ((g*ib^2)/(ib^2+h^2))- 

((alfa*np*ib)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaj)*nj))) 

     drb <- kappab*ib - ((g*rb^2)/(rb^2+h^2)) -

((alfa*np*rb)/(deltab+nb+((deltab/deltaw)*nw+(deltab/deltaj)*nj))) 

     dnj  <- (vj-rhoj)*nj*((Kj-nj-cjw*nw-cjb*nb)/Kj) - 

((g*nj^2)/(nj^2+h^2))-

((alfas*np*nj)/(deltaj+nj+((deltaj/deltaw)*nw+(deltaj/deltab)*nb))) 

dnp <- (vp-rhop)*np*(1-

((q*np)/(nw+(deltaw/deltab)*nb+(deltaw/deltaj)*nj)))  

     res <- c(dsF,deF,diF,dsw,dew,diw,drw,dsb,eb,dib,drb,dnj,dnp)  

     list(res) 

      

     } 

)} 

 

# parameters  

times <- seq(0,20,length=7300)   

gw<-c(-0.006,0.04)   

gb<-c(-0.002,0.007)  

M<-c(0.02025503,0.01906557,0.02175, 0.0092,0.07845) 

alfa <- 1 
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alfas<-7.674456522  

delta <- c(11.31050155,11.31050155,11.31050155,22.621)    

cwb_sens.an <- seq(0, 0.9851319, length.out = 6) 

cbw_sens.an <- seq(0, 1.015092, length.out = 6) 

cfw_sens.an <- seq(0, 0.9513746,length.out = 6) 

cfb_sens.an <- seq(0,0.9119129,length.out = 6) 

cwf_sens.an <- seq(0,1.051111,length.out = 6) 

cbf_sens.an <- seq(0,1.096596,length.out = 6) 

cwj_sens.an <- seq(0, 0.5744988, length.out = 6) 

cbj_sens.an <- seq(0, 0.5831694, length.out = 6) 

cfj_sens.an <- seq(0,0.5475578,length.out = 6) 

cjw_sens.an <- seq(0, 1.740648, length.out = 6) 

cjb_sens.an <- seq(0, 1.714768, length.out = 6) 

cjf_sens.an <- seq(0, 1.826291,length.out = 6) 

c.mat<-

c(cwb_sens.an[2],cbw_sens.an[2],cfw_sens.an[2],cfb_sens.an[2],cwf_se

ns.an[2],cbf_sens.an[2],cwj_sens.an[1],cbj_sens.an[1],cfj_sens.an[1]

,cjw_sens.an[6],cjb_sens.an[6],cjf_sens.an[6]) 

Cf.vals.partial<-sapply(times,Cf.func.partial) 

MAXF<- c(1,1.5)  

g= 0.49312  

h = 9.9  

q= 56  

sigma <- c(0.021,0.021)  

epsilon <- c(0.5,0.5)  

lambdaF <- 1 # rate from exposed to infective 

lambda <- 1 

kappa <- c(0.024,0.024) 

kappaF <- 0.26  

 

# perform a realisation 

parameters <- 

c(M=M,alfa=alfa,alfas=alfas,delta=delta,c.mat=c.mat,g=g,h=h,q=q, 

sigma=sigma,MAXF=MAXF,kappaF=kappaF,epsilon=epsilon,lambdaF=lambda,l

ambda=lambda,eta=eta,gw=gw,gb=gb) 

xstart<-

c(sF=100,eF=0,iF=1,sw=48,ew=0,iw=1,rw=0,sb=75,eb=0,ib=0,rb=0, nj=20, 

np=3) 

output<-

as.data.frame(rk4(xstart,times,multihostFLEA.model,parameters)) 
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Appendix IV 

 

Rodent species sampled during the study 

 

Rodent species captured during the live-trapping (Chapter 2) were Apodemus 

sylvaticus (wood mouse), Myodes glareolus (bank vole), Myodes glareolus 

skomerensis on Skomer Island (Skomer vole), and Microtus agrestis (field vole) 

(Fig. IV.1).  

Rodents (Order Rodentia) are a various taxonomic group, of which the main 

common feature is the number and structure of incisors, a rootless pair, on 

either the upper and the lower jaw, that have a continuous growing (Single et 

al., 2001). The aforementioned species are included in the subfamilies 

Arvicolinae (voles) and Murinae (mice). Voles usually feed on grass and other 

types of vegetation, while mice are more generalists, consuming seeds, buds, 

fruits, nuts, but also animal matter (Single et al., 2001). The first are usually 

active during day and night; they use to live in burrows in woodlands, but also 

scrubs, grasslands and hedgehogs (Single et al., 2001). Mice are nocturnal and 

excavate burrows in various habitats, from woodlands to arable lands. Wood 

mice are more adaptable than voles, and usually are the first recolonizing areas 

after disturbance (Single et al., 2001). These small rodents are heavily predated 

by owls and carnivores (Single et al., 2001).  
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Fig. IV.1. Rodent species sampled during the study. The photographs were taken 
during this study. 

 


