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Visual-guided Robotic Object Grasping
using Dual Neural Network Controllers

Wubing Fang, Fei Chao, Member, IEEE, Chih-Min Lin, Fellow, IEEE, Dajun Zhou, Longzhi Yang, Senior
Member, IEEE, Xiang Chang, Qiang Shen, and Changjing Shang,

Abstract—It has been a challenging task for a robotic arm to
accurately reach and grasp objects, and much research attention
has been attracted. This paper proposes a robotic hand-eye
coordination system by simulating the human behavior pattern
to achieve a fast and robust reaching ability. This is achieved by
two neural-network-based controllers, including a rough reaching
movement controller implemented by a pre-trained Radial Basis
Function (RBF) for rough reaching movements, and a correction
movement controller built from a specifically designed Brain
Emotional Nesting Network (BENN) for smooth correction move-
ments. In particular, the proposed BENN is designed with high
nonlinear mapping ability, with its adaptive laws derived from
the Lyapunov stability theorem; from this, the robust tracking
performance and accordingly the stability of the proposed control
system are guaranteed by the utilisation of the H∞ control
approach. The proposed BENN is validated and evaluated by a
chaos synchronisation simulation, and the overall control system
by object grasping tasks through a physical robotic arm in a
real-world environment. The experimental results demonstrate
the superiority of the proposed control system in reference to
those with single neural networks.

Index Terms—Robotic hand-eye coordination, neural network-
based controller, robotic reaching movement

I. INTRODUCTION

The key for a successful vision-based robotic manipulator
system with reaching ability is effective hand-eye coordination
[1], which uses the information obtained from vision sensors to
guide robotic manipulators to reach and manipulate the target
objects [2]–[4]. Hand-eye coordination combines the tech-
nologies in computer vision and robotics to enhance robotic
sensory-motor ability [5]–[7], which plays an important role in
industrial assembly robots [8]–[10], mobile exploration robots
[11], and robots for education, medical, military, etc [12].
Traditional hand-eye coordination works based on the accurate
kinematic calibrations between the robotic hand and vision
system, which are usually designed by human engineers [13].
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However, it is getting increasingly more difficult to handle
real-world applications using such hand-crafted approaches,
leading to the requirement of adaptability for intelligent robots
[14]. Therefore, various neural networks and artificial infant
developmental approaches have been developed.

Challenges remain to be solved for the adaptation of in-
fant development patterns to visual-guided robotic reaching.
Vision-guided manipulators usually move inaccurately and
react slowly, as the mappings between robotic vision and
manipulator is highly non-linear [15], [16], which forms one of
the main challenges. Visual-guided robotic reaching is usually
implemented using neural network-based approaches due to its
non-linear mapping ability [17]–[19]. For instance, a hand-eye
coordination system based on the three Radial Basis Functions
is reported in [20]; and a large convolutional network has been
developed to observe the spatial relationship between robotic
arm and target [17]. However, those systems either presents a
long leeway for adjustments and training, or low accuracy of
the robot actions.

Human-like behavioral patterns have been used for hand-
eye coordination, in an effort to reduce the complexity of
robot learning and thus ease the first challenge, but they are
often lack of a solid theoretical foundation and its analysis for
stability [15], [20]. Of course, an unstable system often leads
to inaccurate movements and poor performance for grasping
tasks. If a robotic arm touches its target without accurate
movements, certain unexpected damages can be expected to
both the robotic arm and the target. Therefore, more efforts is
required to guarantee the stability of robotic reaching system
with the adaptation of human behavior patterns.

This paper proposes a robotic hand-eye coordination control
system by artificially implementing human behavior patterns
for robotic reaching movements. In the human infant’s reach-
ing movement, once a target object is detected, the infant can
perform only a rough reaching movement towards the object
in its early stage, but this activity is constantly improved and
most babies can accurately reach objects in 31 weeks [21].
Inspired by this, the artificial reaching ability is established in
two stages: (1) a rough reaching movement guided by vision,
and (2) a smooth correction movement guided by inverse
kinematics. These two stages are realised by dual neural-
network-based controllers, with the first one driving the robotic
arm to generate a wide range of reaching movements, whilst
the second one enabling the robotic arm to perform correction
movement for accurate grasp operations. Both controllers take
the visual-spatial coordinates provided by a stereo vision
system as network inputs.
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The proposed hand-eye coordination control system was
evaluated using target-reaching experiments, whilst the correc-
tion movement controller was additionally verified by a chaos
synchronization simulation. The experimental results show that
the proposed controller can achieve a higher success rate and
better control performance, which effectively alleviating the
aforementioned challenges faced in the field. The contribu-
tions of this paper are: (1) establishing a robotic hand-eye
coordination control system implemented in two stages; (2)
proving the stability and convergence of the proposed system
using the Lyapunov stability theorem, which is guaranteed by
the network learning rules.

The remainder of this paper is organized as follows: Section
II introduces the development procedure of infant reaching
movement and the platform of the hand-eye coordination
system established. Section III describes the implementation
details of the proposed robotic hand-eye coordination control
system. Section IV shows the experimental results. Section V
concludes the paper and points out important future work.

II. BACKGROUND AND PLATFORM

The developmental procedures of infant reaching movement
have been recently well studied by developmental psychol-
ogists [21]. In the first two months after birth, infants can
only generate brief extension movements attempting to touch
nearby objects by their hands [22]; and these extension move-
ments cannot successfully touch targets every time. However,
after 31 weeks, infants are able to use the distance between
hands and objects, measured through eyes, to adjust the
position and orientation of hand to reach targets [23]. In other
words, infants gradually develop error correction movements
to achieve accurate object reaching ability. Such discovered
development sequences are very informative for artificial hand-
eye coordination development.

Inspired by the developmental procedures of infants reach-
ing ability, a typical robotic hand-eye coordination system
platform was also used in this paper, as shown in Fig. 1. The
platform is comprised of a depth vision sensor and a robotic
arm. In particular, the depth vision sensor is used to acquire
the positions of the robotic arm and a target in the workspace;
while the robotic arm is responsible for performing the desired
reaching movements and the grasp actions. The mobility of
the platform in this work is implemented for capturing targets
beyond the reaching area of the robotic arm.

Fig. 1. Platform of the robotic hand-eye coordination system.

The robotic vision system is mainly formed by a depth
vision sensor (Kinect) with the support of an image processing
module, which calculates the visual-spatial coordinates of
the robotic arm and the target to guide the movement of
the robotic arm. The depth vision sensor captures an RGB
image of the workspace, including the “Shoulder”, “Wrist”,
and “Grip” joints of the robotic arm and the target. Then,
the target is recognized from the image by employing the
minimum peripheral circle program in OpenCV, which also
helps determine the coordinates of the joints. From this, the
3-dimensional coordinates of the joints and target in the stereo
space are calculated using the Kinect SDK.

The robotic arm is a five-degree-of-freedom parallelogram
robotic arm with six servo motors, which can be expressed by
the following second-order equation [24]–[26]:

B(q)q̈ + C(q, q̇)q̇ + g(q) + τd = τ, (1)

where q = (θ1, θ2, . . . , θm)T denotes the joint angle vec-
tor of the robotic arm, q̇ and q̈ are respectively the cor-
responding angular velocity vector and angular acceleration
vector, B(q) represents the inertia matrix, C(q, q̇) indicates the
Coriolis/Centripetal matrix, g(q) expresses the gravity vector,
g = 9.8m/s is gravity acceleration, τd represents external
disturbance, and τ = (S1, S2, . . . , Sm) is the output torques
of servo at each joint. For the illustrated robotic arm, m is set
to 6.

The parameters of the accurate system model are unknown;
however, the neural network can approximate a corresponding
nominal model of the platform, which is defined as:

Bn(q)q̈ + Cn(q, q̇)q̇ + g(q) = τ, (2)

where Bn(q) and Cn(q, q̇) are the nominal functions of B(q)
and C(q, q̇), respectively. Then Eq. (1) can be re-expressed as:

Bn(q)q̈ + Cn(q, q̇)q̇ + g(q) + l(q̈, q̇, q) = τ, (3)

where l(q̈, q̇, q) = ∆Bn(q)q̈ + ∆Cn(q, q̇)q̇ + τd denotes the
lumped disturbances and uncertainties.

III. ROBOTIC HAND-EYE COORDINATION SYSTEM

Inspired by the infant developmental procedure of reaching
and grasping ability, the robotic reaching movement is im-
plemented by dual network-based controllers in two training
stages. Stage one implements a rough reaching process, by
which the robotic arm can roughly reach targets by large range
movements. This process does not require well-developed non-
linear mapping abilities; therefore, a pre-trained Radial Basis
Function network-based controller is established to map the
manipulator moments to the visual inputs. Stage two realises
small refinement correction movements, to enable a smooth
and accurate reaching movements. The correction movements
can only be implemented by a controller with higher nonlinear
mapping abilities, so as to deal with the highly non-linear
mapping between angular tracking errors for the joints of the
manipulator and the states of the joint motor. Studies show that
a better nonlinear mapping ability can be achieved if an ad-
ditional network is embedded in the emotional networks [27].
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Fig. 2. The proposed robotic hand-eye coordination system with dual neural-
network-based controllers.

Therefore, a new type of Brain Emotional Nesting Network
(BENN) is proposed here for the correction movements.

The framework of the proposed control system is shown in
Fig. 2, which consists of a robotic system module, a rough
reaching movement controller, and a correction movement
controller. First, the positions of the robotic gripper, G(x, y, z),
and target, B(x, y, z), are acquired by processing the infor-
mation acquired from the vision system. The position error
between the gripper and the target is then calculated using the
Euclidean distance.

Note that the distance between the griper and the object
may change over time due to gripper movement errors or
environment changes, therefore, the two controllers and thus
the two stages of training may be triggered at any time in
any order when performing an object reaching task. Two
thresholds, Dmax and Dmin, are employed in this work to
distinguish the application of the two controllers: if d > Dmax,
the robotic arm is controlled by the rough reaching movement
controller with a pre-trained RBF network to perform rough
reaching actions; if Dmin < d < Dmax, the correction
movement controller with the proposed BENN neural network
is used to control the robotic arm as the robotic arm has moved
to a position that is close to the target and must perform
a smooth correction movements to complete the grasping;
otherwise, the robotic arm performs a grasping action. The
two controllers are detailed in the rest of this section below.

A. Vision System

The image processing function in the vision system is
designed to obtain the position coordinates of the target
and the robot’s Shoulder, Wrist, and Grip in the workspace,
which in turn are used to calculate the inputs of the robotic
control system. The left column of Fig. 3 demonstrates some
captured RGB images from the Kinect device. To simplify
the image processing task, the Shoulder was marked in green,
and Wrist and Grip are marked in pink; an orange ball
was used as the capturing target. The RGB color ranges of
the Shoulder mark (i.e., green), the Wrist and Grip (i.e.,
pink), and the target Ball (i.e., orange) were set to (50 − 78,
70− 150, 100− 230), (160− 180, 57− 140, 140− 255), and
(20 − 35, 130 − 240, 0 − 255), respectively. The Wrist and
Grip were distinguished by the movement region size, that

Fig. 3. Input and output of image processing. (a) Detections of Robotic
shoulder; (b) robotic wrist and gripper; and (c) target.

Grip owns a larger size whilst the Wrist owns a smaller one.
With the defined color ranges, the joints and the target can be
detected as clusters in the binarization images (as shown in
the right column of Fig. 3) by using the RGB color ranges.
Then, the position coordinates of each cluster can be obtained
accurately in the stereo space using the Kinect SDK.

B. Rough Reaching Movement Controller

The rough reaching movement controller implemented by a
RBF neural network is triggered to drive the robotic arm to
move when the distance between the gripper and the object is
bigger than the pre-defined threshold Dmax. The input of the
RBF-based controller is the position of the target, B(x, y, z),
and the output is the servo speed, (S1, S2, S3, S4, S5, S6), of
each robotic arm joint, based on the position of the griper. The
pose of the gripper and target can be calculated based on the
robotic arm’s shoulder, Shoulder(x, y, z), which is defined as
the origin of the base coordinate system.

The RBF used in this work consists of 55 hidden nodes,
which was determined empirically. The weights of these
nodes are denoted as νj , j = 0, 1, 2, . . . , 55, and the
outputs of the RBF are denoted as R(ν). Define h

(i)
ν =

(xb, yb, zb, R(ν)1, R(ν)2, R(ν)3, R(ν)4, R(ν)5, R(ν)6);
the cost function can then be defined as J(ν) =
1
2

∑55
i=1(h

(i)
ν − t(i))2. The stochastic gradient descent

algorithm is employed to train the RBF network, which can
be expressed as νj := νj − αRBF ∂

∂νj
J(ν), where αRBF is

the learning rate.
In order to train the RBF, a motor-babbling inspired move-

ment pattern is developed to generate the training data. First,
the target position, B(xb, yb, zb), is substituted by the po-
sition of the gripper, G(xg, yg, zg), denoted as (xs, ys, zs).
Then, the servo is randomly driven to simulate the motor-
babbling movements occurred in an infants development.
Thus, for the i-th movement, a sample of training data,
t(i) = (xs, ys, zs, S1, S2, S3, S4, S5, S6), is obtained, repre-
senting the servo speed of each robotic manipulate joint. Based
on some empirical study, a training data set based on 3,000
movements usually leads to good acceptable results, with
2,000 instances for training and the rest for testing.
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C. Correction Movement Controller

The robotic arm generates correction movements when the
distance between the griper and the object is between the pre-
defined thresholds, Dmin and Dmax, so that the robotic arm
can smoothly and accurately grasp the target. The joint angle
vector, qd = (θd1 , θ

d
2 , . . . , θ

d
m)T , needs to be calculated by

using inverse kinematics. The inverse kinematic calculations
can convert the errors between the target and gripper to the
relative values of the robot’s joints.

The correction movement controller is comprised of a
BENN and a robust controller. The input of the BENN-based
controller is the combined error s(e), which is specified as:

s(e) = [I,K]

 ė
e∫ T

0
e(t)dt

 , (4)

where e = [ė, e,
∫ T

0
e(t)dt]T , e = qd − q, whilst q =

(θ1, θ2, . . . , θm)T is the current joint angle vector. In addition,
K is an error matrix, which is defined as:

K =

ρ11 ρ21

. . . . . .
ρ1m ρ2m

 ∈ <m×2m, (5)

where ρij is the combination coefficient, for i = 1, 2, j =
1, 2, . . . ,m. For this robotic arm, m is set to 6.

The output of the BENN-based controller is τBENN =
(∆S1,∆S2, . . . ,∆Sm), where ∆Sm denotes the increment of
the mth joint servo. It is guaranteed that the entire system
(both rough reaching movement and correction movement
controllers) is stable once the robotic arm reaches a wide range
of the target space (i.e., in the correction movement stage). The
structure and adaptive laws of the proposed BENN are detailed
below.

1) The proposed BENN: The structure of proposed BENN
neural network is shown in Fig. 4, which consists of (1) the
input space, S ∈ <m, (2) the association memory space,
H ∈ <mn, (3) the receptive field space, Ψ ∈ <n, (4) the
weight spaces, Γ ∈ <mn×m and W ∈ <n×m, (5) the sub-

output spaces, S − Oe ∈ <m and S − Os ∈ <m, and (6)
the output space, T ∈ <m. Note that the network is divided
into two channels from the association memory space. One
channel mimics the emotional channel in brain emotional
learning, which consists of a weight space Γ, whilst the other
channel simulates the function of the sensory channel in brain
emotional learning, comprising of the receptive field space Ψ
and the weight space W . The final output of the network,
τ = oe − os, is the difference of the outputs of the two
channels, where the output of the emotional channel is defined
as oe = ΓT ·H , and the output of the sensory channel is defined
as os = WT ·Ψ.

2) Adaptive laws of BENN: Taking the derivative of (4) and
applying (3), yields:

ṡ(e) = q̈d −B−1
n [τ − Cnq̇ − g − l] +K

[
ė
e

]
. (6)

This means the control system will be stable if s(e)ṡ(e) ≤
−
∑m
i=1 βi|si|, for βi > 0, i = 1, 2, . . . ,m. In addition,

an ideal controller τIDEAL for correction movement can be
defined as:

τIDEAL =Bnq̈d + Cnq̇ + g + l

+BnK

[
ė
e

]
+Bn · β · sgn(s(e)),

(7)

where sgn(·) is a symbolic function. However, the ideal
controller τIDEAL is not available. Therefore, the ideal con-
troller is approximated by the proposed correction movement
controller, consisting of a BENN-based controller and a robust
controller.

The adaptive laws of the sensory channel in the proposed
BENN are derived from the Lyapunov stability theorem,
whilst those of the emotional channel are given by the brain
emotional learning. Therefore, residual approximation errors
Γ̃ and W̃ exist between the ideal weights Γ∗, W ∗ and the
estimated weights Γ̂, Ŵ . In addition, an attenuation of the
approximation error ε presents between the ideal controller
output τIDEAL and the output of BENN τ∗BENN . The robust
controller is used to compensate for Γ̃ and ε. The robust
tracking performance of the controller is guaranteed base on
the H∞ control approach [28].

Subtracting (7) from (6), yields:

ṡ(e) = B−1
n [τIDEAL − τcontroller]− β · sgn(s(e)), (8)

where τIDEAL can be represented as:

τIDEAL = τ∗BENN + ε = Γ∗TH −W ∗TΨ + ε, (9)

and τcontroller can be calculated as:

τcontroller = τBENN + τRC = Γ̂TH − ŴTΨ + τRC , (10)

where Γ̃ = Γ∗ − Γ̂, W̃ = W ∗ − Ŵ . Applying (9) and (10) to
(8) leads to:

ṡ(e) =B−1
n [Γ∗TH −W ∗TΨ + ε− Γ̂TH + ŴTΨ

− τRC ]− β · sgn(s(e))

=B−1
n [Γ̃TH − W̃TΨ + ε− τRC ]− β · sgn(s(e)).

(11)
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For the existence of Γ̃ and ε, predefined attenuation levels ς1
and ς2, corresponding to ε and Γ̃ respectively, can be applied
to ensure a H∞ tracking performance [16]:
m∑
i=1

∫ T

0

s2
i (t)dt ≤ sT (e(0))Bns(e(0)) + tr[W̃T (0)α−1

W W̃ (0)]

+
m∑
k=1

ς21k

∫ T

0

ε2
k(t)dt+

m∑
k=1

ς22k

∫ T

0

γ̃2
k(t)dt,

(12)

where αW represents the positive definite learning rate ma-
trix, γ̃ijk indicates the element in the matrix Γ̃. Γ̃ and ε
are bounded, i.e., Γ̃ ∈ L2[0, T1] and ε ∈ L2[0, T2] with
∀T1, T2 ∈ [0,∞). Note that Γ̃ is contained in ε, this means
that Γ̃ will decay to 0 as ε decays to 0. Thus, it leads to ς2 = 1,
whilst λ = ς1, which can be adjusted in τRC .

3) Proof of stability: RBF and BENN are two independent
controllers with different mechanisms. The RBF controller
performs rough reaching movements, as long as the training
method of RBF can guarantee the tracking error to be bounded.
Therefore, the stability of the entire system is based on the
BENN based controller.

Theorem 1: The adaptive laws of the emotional channel in
BENN can be described as:

∆Γ =αΓ[H ×max(0, d− b)], (13)
d =αd1 × q + αd2 × τBENN , (14)

where αΓ, αd1, αd2 are the learning rates, b is the output of
the emotional channel, q is the input of entire network, and
τBENN is the output of entire network. The update laws of
the sensory channel in BENN can be designed as:

˙̂
W = −αWΨsT (e), (15)

τRC = (2R2)−1[(I +H2)R2 + I]sT (e), (16)

where R = diag
[
λ1 λ2 . . . λm

]
∈ <m×m is a diagonal

matrix of a robust controller to converge the proposed system
with the update rules ˙̂

W .

Proof: The Lyapunov function is given as:

L(s(e), W̃ ) =
1

2
sT (e)Bns(e) +

1

2
tr[W̃Tα−1

W W̃ ]. (17)

Taking the derivative of the Lyapunov function and using Eqs.
11, 15, and 16, the following can be derived:

L̇(s(e), W̃ ) = sT (e)Bnṡ(e) + tr[W̃Tα−1
W

˙̃W ]

= sT (e)Γ̃TH − sT (e)W̃TΨ− tr[W̃Tα−1
W

˙̂
W ]

+ sT (e)(ε− τRC)− s(e)T ·Bn · β · sgn(s(e))

≤ sT (e)Γ̃TH + sT (e)(ε− τRC)

= −1

2
sT (e)s(e)− 1

2
[
s(e)

λ
− λε]T [

s(e)

λ
− λε]

− 1

2
tr[[HsT (e)− Γ̃]T [HsT (e)− Γ̃]] +

1

2
λ2εT ε+

1

2
tr[Γ̃T Γ̃]

≤ −1

2
sT (e)s(e) +

1

2
λ2εT ε+

1

2
tr[Γ̃T Γ̃].

(18)

Integrating Eq. 18 from t = 0 to t = T , yields:

L(T )− L(0) ≤ −1

2

m∑
i=1

∫ T

0

s2
i (t)dt

+
1

2

m∑
k=1

λ2
k

∫ T

0

ε2
k(t)dt+

1

2

m∑
k=1

∫ T

0

γ̃2
k(t)dt.

(19)

Since L(T ) > 0, the following holds:

1

2

m∑
i=1

∫ T

0

s2
i (t)dt ≤

L(0) +
1

2

m∑
k=1

λ2
k

∫ T

0

ε2
k(t)dt+

1

2

m∑
k=1

∫ T

0

γ̃2
k(t)dt

=
1

2
sT (e(0))Bns(e(0)) +

1

2
tr[W̃T (0)α−1

W W̃ (0)]

+
1

2

m∑
k=1

λ2
k

∫ T

0

ε2
k(t)dt+

1

2

m∑
k=1

∫ T

0

γ̃2
k(t)dt.

(20)

The equivalence between Eqs. 12 and 20 proves that the H∞

tracking performance is achievable.

IV. EXPERIMENTATION

A chaos synchronisation experiment was conducted first to
verify whether the correction movement controller with the
proposed BENN network is stable, without the utilisation of
the rough reaching movement controller. Then, a hardware
platform was established to evaluate the proposed robotic
hand-eye coordination system in real-world experiments. From
this, a comparative study was conducted to analyze the effects
of reaching movement decomposition on robotic arm control,
and also demonstrate the competitiveness of the proposed
approach.

A. Chaos Synchronisation Experiments

Accurate capture of targets requires a stable controller,
which must be able to converge quickly with a small over-
shoot. Therefore, a chaos synchronization experiment was
designed as shown in Fig. 5 to verify whether the proposed
correction movement controller with BENN meet these re-
quirements. In particular, the proposed correction movement
controller with BENN was applied to track a chaotic curve,
with the results compared with those led by the Sliding Mode
Controller (SMC) and single neural network-based Cerebellar
Model Articulation Controller (CMAC).

The solid black line in Fig. 5 represents the reference
trajectory, generated by a driven system. The yellow, blue
and red solid lines represent the trajectories generated by the
response systems, which were controlled by the SMC, CMAC
and BENN controllers, respectively. The driven system can be
represented by the following equation:

ẍd = −0.3ẋd+1.2xd−x3
d+0.25

√
x2
d + ẋ2

d sin(0.5t)+5 cos(0.5t).
(21)

The response system can be represented as:

ẍ =− 0.3ẋ+ 1.2x− x3 + 0.25
√
x2 + ẋ2 sin(0.5t)

+ 5 cos(0.5t) + ∆B(x) + l(t) + τ(t).
(22)
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Fig. 5. Trajectory responses of chaos synchronization under SMC (yellow),
CMAC controller (blue) and BENN controller (red).
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Fig. 6. States x, ẋ, errors e, and control outputs u of chaos synchronization
under SMC (yellow), CMAC controller (blue) and BENN controller (red).

It is clear from the figure that all three trajectories can track
chaotic trajectories, but the red trajectory has faster converging
speed and less overshoot than the yellow and blue trajectories.
This indicates the proposed BENN outperforms the other two
reference approaches.

The detailed experimental results are shown in Fig. 6. In
particular, Figs. 6(a)-(d) illustrate the tracking response of x, ẋ,
the tracking error e, and the control output τ , respectively. The
yellow, blue and red lines represent the control responses from
SMC, CMAC, and BENN, respectively. The experimental
results show that the proposed BENN has a better control
effect and a speedy response, which is important for grasping
the target accurately using refined correction movements.

B. Reaching Movement Experiments

Three comparative experiments on reaching movements
were designed to demonstrate the control performance of the
proposed controller and its sub-comments under the guidance
of the vision system:

1) a rough reaching movement driven by the rough reaching
movement controller;

Fig. 7. Top view (a) and oblique view (b) of the experimental environment.

2) a smooth correction movement controlled by the correc-
tion movement controller;

3) a reaching movement driven by the overall system.
1) Experimental setup: The experimental environment is

illustrated in Fig. 7, where the picture in sub-figure (a) was
captured from the top view and (b) from the oblique view.
The robotic arm was fixed in an initial position. The target
was a yellow ball, which was in the operating space of the
robotic arm. The experimental goal was that the robotic arm
must reach and grasp the ball, and then deliver the ball to a
predefined end position, under the guidance of the information
captured from the 3-dimensional vision system.

In the three experiments, only four degrees of freedom of
the robotic arm were used; i.e., θ5 is set to 0 based on the task
requirement. The posture of the robotic gripper was retained
to be vertical downward, thus, θ6 = π

2 − θ′2. The initial
parameter values of BENN were set as: m = 6, n = 12,
µij ∼ [−3.6, 3.6, 0.3], σij = 1.0, β = 30, αη = 0.01,
αd1 = 1, αd2 = 10, αW = 0.1.

2) Experiments using rough reaching movement controller
only: A successful reaching movement control with only the
rough reaching movement controller is shown in Fig. 8. In
particular, sub-figure 8 (1) describes the recognition of the
target; 8 (2) shows that the robotic arm was reaching the target;
8 (3) shows the grasping process, and 8 (4) illustrates the
robotic arm moving towards the end position. The position
coordinates of the target are displayed at the left bottom corner.
With only the rough reaching movement applied, the entire
reaching movement was completed by one step.

Although the robot with a single neural network controller
can have successful reaching, the failure rate of such a con-
troller is high. Due to the inaccuracy of nonlinear mapping and
the external disturbances, the robotic arm often bumped into
the ball and pushed the ball beyond the workspace. In addition,
when a failure occurs, the controller is unable to adjust the
arm’s gesture based on the error between the current griper’s
position and the target position, and thus fail the grasping task.

3) Experiments using correction movement controller only:
A successful reaching movement generated by the correction
movement controller only is demonstrated in Fig. 9. In partic-
ular, sub-figure 9 (1) describes the recognition of the target;
and 9 (2-12) show the reaching process towards the target.
The joint angles of the robotic arm were adjusted step by step
based on the position errors between the hand and target, and
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Fig. 8. A successful reaching movement with only rough reaching movement
controller.

Fig. 9. A successful reaching movement with only correction movement
controller.

the whole process took 11 steps. Sub-figures 9 (13-15) show
that the robotic arm finally grasped the target and returned to
the end position. This experiment only applied the correction
movements, and the entire process took 15 steps.

The robotic arm slowly started from the initial position,
reached the target and grasped the target, then returned to the
end position. Due to the involvement of the visual feedback,
the position of gripper was constantly adjusted to reach the
target. This control system has a high success rate of grasping.
However, if the gripper is too far from the target, the robotic
arm must adjust many times, so that it cannot grasp the target
quickly.

4) Experiments using dual network-based controllers: This
experiment simulated the movement decomposition in human-
like reaching movement pattern. Each movement was imple-
mented by either the rough reaching movement controller,
or the correction movement controller based on the distance
between the grasper and the object, with pre-defined threshold
values Dmax = 0.08m and Dmin = 0.03m in this experiment.
If the training of the RBF is unfortunately trapped to a local
extreme, its output cannot accurately control the robot arm
to reach the target despite not far away. By appropriately
adjusting the parameter Dmax, the robot can still reach a space
where the BENN-based controller can be triggered, so as to

Fig. 10. A successful reaching movement with dual networks-based controller.

Fig. 11. Another successful reaching movement with dual networks-based
controller.

eliminate the effect of the training of RBF controller at the
local extreme.

A successful reaching movement process is shown in Fig.
10. Sub-figure 10 (1) shows the image processing module
detected the target position. If the system determined that the
distance, d, between the gripper and the target was greater
than Dmax, the rough reaching movement controller was called
to perform a rough reaching movement as shown in Fig. 10
(2). If Dmin < d < Dmax, the robotic arm applied the
correction movement controller to perform a smooth correction
movement as demonstrated in sub-figures 10 (3-6). In addition,
sub-figures 10 (7-8) show that the robotic arm successfully
grasped the target and delivered it to the target position.

Fig. 11 shows another experiment process, with a different
target position closer to the robotic arm. The rough reaching
movement and the correction movement are shown in sub-
figures 11 (2) and 11 (3-8), respectively. In this experiment, the
grasper successfully grasped the ball, even though the target
was closer to the robotic arm, which made the robotic arm
easier to touch the ball and lead to a failure. The same exper-
iments have been repeated many times with different ball and
target positions, and the proposed system almost successfully
completed all the ball moving tasks, which demonstrated the
robustness of the proposed system.

5) Comparison of three control experiments: The three
experiments are summarised in Table I based on 30 repetitions
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TABLE I
COMPARISON OF EXPERIMENTAL RESULTS.

numall nums numf rates avg
pRBF 30 22 8 73.3% 1
BENN 30 28 2 93.3% 13
dual NN 30 29 1 96.7% 6

In this table, pRBF denotes the rough reaching movement controller; BENN
denotes the correction movement controller; and dual NN denotes the dual-
neural-network based controller.

(i.e., numall = 30), with the details of the number of success,
nums, the number of failure, numf , the success rates, rates,
and the average steps taken, avg. The robotic arm controlled
by the rough reaching movement controller only included
rough reaching movements, and thus the success rate was the
lowest with only 73.3%. The robotic arm controlled by the
correction movement controller only had smooth correction
movements, and the joint angles were adjusted base on the
visual feedback errors detected at each step. Although the
success rate was high as 93.3%, the number of adjustment
steps was very big, with an average of 13 steps. When the
robotic arm was controlled by dual-neural-network controllers
in different modes, the success rate reached 96.7%, and the
average adjustment step was only 6. This result shows that the
proposed system enjoys the advantages of its sub-systems, but
compensating the disadvantages of each other; in other words,
the proposed robotic hand-eye coordination control system can
ensure both real-time response and high success rates.

The experimental results demonstrate the superiority of the
proposed system from two perspectives. On one hand, it proves
the feasibility of importing human behavior pattern to the
robotic grasping arm. Through the movement decomposition,
the robotic hand-eye coordination can be completed more
effectively. On the other hand, the stability of the control
system has been greatly improved by the adaptation of the
infant learning patterns, which is consistent with the theoretical
proof as presented in Section III-C.

V. CONCLUSION

This paper proposed a new method for robotic reaching
movements inspired by the human infant reaching ability
development process, and established a visual-guided robotic
hand-eye coordination control system. The reaching movement
in this work was decomposed and implemented in one of the
two neural networks under different conditions. The stability
of the control system has been proved by Lyapunov stability
theorem. The experimental results showed that the dual neural
network-based controller usually leads to higher success rate
and better control performance, compared with those control
systems with a single neural network. Note that the target
ball is supposed to be stationary in this work; therefore, it is
interesting to further develop the proposed approach for the
tracking and grasping of dynamic targets.
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