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RESEARCH ARTICLE

DC-SIGN mediated internalisation of glycosylated extracellular vesicles from
Schistosoma mansoni increases activation of monocyte-derived dendritic cells

Marije E. Kuipers a,b, Esther N.M. Nolte-‘t Hoen b, Alwin J. van der Ham a, Arifa Ozir-Fazalalikhan a,
D. Linh Nguyena, Clarize M. de Korne a, Roman I. Koning c, John J. Tomes d, Karl F. Hoffmann d,
Hermelijn H. Smits a* and Cornelis H. Hokke a*

aDepartment of Parasitology, Leiden University Medical Center, Leiden, Netherlands; bDepartment of Biomolecular Health Sciences, Faculty
of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; cDepartment of Cell & Chemical Biology, Leiden University Medical Center,
Leiden, Netherlands; dInstitute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK

ABSTRACT

Helminths like Schistosoma mansoni release excretory/secretory (E/S) products that modulate host
immunity to enable infection. Extracellular vesicles (EVs) are among these E/S products, yet
molecular mechanisms and functionality of S. mansoni EV interaction with host immune cells is
unknown. Here we demonstrate that EVs released by S. mansoni schistosomula are internalised
by human monocyte-derived dendritic cells (moDCs). Importantly, we show that this uptake was
mainly mediated via DC-SIGN (CD209). Blocking DC-SIGN almost completely abrogated EV
uptake, while blocking mannose receptor (MR, CD206) or dendritic cell immunoreceptor (DCIR,
CLEC4A) had no effect on EV uptake. Mass spectrometric analysis of EV glycans revealed the
presence of surface N-glycans with terminal Galβ1-4(Fucα1-3)GlcNAc (LewisX) motifs, and a wide
array of fucosylated lipid-linked glycans, including LewisX, a known ligand for DC-SIGN.
Stimulation of moDCs with schistosomula EVs led to increased expression of costimulatory
molecules CD86 and CD80 and regulatory surface marker PD-L1. Furthermore, schistosomula
EVs increased expression of IL-12 and IL-10 by moDCs, which was partly dependent on the
interaction with DC-SIGN. These results provide the first evidence that glycosylation of S. mansoni

EVs facilitates the interaction with host immune cells and reveals a role for DC-SIGN and EV-
associated glycoconjugates in parasite-induced immune modulation.
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Introduction

Schistosoma mansoni is one of the major helminth para-

sites of humans with over 200 million people infected

[1,2]. In the initial phase of infection, schistosome larvae

(cercariae) penetrate the skin of the host and transform

into schistosomula. These schistosomula larvae will

migrate to the circulatory system, develop into adult

worms that mate and lay eggs [3]. S. mansoni can live

up to 10 years in its host because it has developed success-

ful mechanisms to evade immune responses. To establish

this immune evasion, the parasite releases excretory/

secretory (E/S) products that act on the host immune

system [4]. Among these E/S products are extracellular

vesicles (EVs) and evidence is accumulating that parasite-

derived EVs contribute to parasite-host interaction [5].

The molecular composition of EVs from S. mansoni lar-

vae and adult worms life stages has been partially char-

acterized [6–8], but the interaction of their EVs with host

cells remains unexplored.

For schistosomes to initiate and maintain infection,

modulating host innate and adaptive immune

responses is crucial [9]. Mouse models have shown

that cercarial penetration triggers migration of innate

antigen presenting cells (APCs), such as macrophages

and dendritic cells (DCs), towards the skin draining

lymph nodes [10]. These APCs have upregulated cost-

imulatory molecules, like CD86 and major histocom-

patibility complex (MHC) class II, which are

important for initiating adaptive immune responses.

In vitro stimulation of mouse bone marrow-derived

DCs (BMDCs) with E/S from schistosomula shows

a similar pattern: increased costimulatory molecules

and MHC class II expression and increased pro-

inflammatory cytokine release (IL-6, IL-12, and

TNF-α) [11]. Furthermore, cercarial secretions can

upregulate the expression of IL-10 and programmed

death ligand (PD-L)1 and 2 in human monocyte-

derived (mo)DCs, suggesting that the parasite addi-

tionally utilizes regulatory pathways to dampen
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adaptive immune responses [12]. Relatively little is

known about the exact molecular or structural com-

ponents derived from schistosomula that induce

immunomodulatory effects. Thus far, it has been

shown that recombinant tetraspanins, transmembrane

proteins associated to adult worm EVs [13], induce

IL-10 and Th1 cytokine responses by peripheral blood

mononuclear cells [14]. Whether schistosomula EVs

have similar effects on human DCs has not been

investigated.

Studies exploring the molecular content of schisto-

somula E/S have shown that part of the cytokine

responses by mouse macrophages and whole blood of

infected individuals is induced by glycosylated antigens

in the E/S [15,16]. Schistosome glycoconjugates can be

recognized by host pathogen recognition receptors

(PRRs) on APCs, in particular the C-type lectin recep-

tors (CLRs) such as the mannose receptor (MR,

CD206) [17], dectin-1/2 [18], dendritic cell immunor-

eceptor (DCIR, CLEC4A, CD367) [19] and dendritic

cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN,

CD209) [20]. A well-known immunogenic glycan-

motif, Galβ1-4(Fucα1-3)GlcNAc or LewisX (LeX), is

present on glycoproteins in schistosomula and egg

E/S and can be recognized by DC-SIGN [21] as well

as MR [22], leading to different effects depending on

the structural context of the LeX motif. Pathogen-

associated molecular patterns (PAMPs) containing

high-mannose (oligomannose) structures, which form

ligands for MR and DC-SIGN [23] have also been

found on glycoproteins in E/S from schistosomes

[24]. This raises the question whether schistosomula

EVs expose glycans instrumental in targeting to host

immune cells and whether these EV-associated glycans

play a role in modifying subsequent immune

responses. While it is known that mammalian EVs

contain glycoconjugates, publications on the structure

and function of EV glycans are very limited so far

[25–29].

In order to gain insights into the interaction of

schistosome EVs with the immune system we studied

the interaction of schistosomula EVs with human

moDCs and found that the EVs are internalised mainly

via DC-SIGN. We show that N-glycans on the surface

and glycolipids of the EVs contain DC-SIGN ligands,

including LeX. Furthermore, we demonstrate that these

EV preparations increase the activation status of

moDCs, affecting both immunostimulatory and immu-

noregulatory pathways which were partly dependent on

the interaction with DC-SIGN. Our study provides

evidence for a specific CLR-mediated uptake of EVs

that substantiates the importance of EV-associated gly-

coconjugates in pathogen-host interaction.

Materials and methods

Schistosomula culture

Infected Biomphalaria glabrata snails were incubated

in water at 30°C for 2 h to shed cercariae of the Puerto

Rican-strain of S. mansoni by exposure to light. The

collected cercariae in water were stored on ice for 1.5 h

to immobilize them and were subsequently pelleted by

centrifugation at 440 × g. After removal of the super-

natant, 12 mL of pre-warmed (37°C) DMEM

(Dulbecco’s Modified Eagle Medium, high glucose

with L-glutamine, Lonza, Basel, Switzerland) supple-

mented with 200 U/ml penicillin and 200 µg/ml strep-

tomycin (Sigma-Aldrich, St. Louis, MO, USA), was

added to transform the cercariae to schistosomula by

providing mechanical force via pipetting and incubat-

ing for 20 min at 37°C [30]. Cercarial bodies were

separated from their tails using an orbital shaker. The

collected schistosomula were resuspended in DMEM at

a concentration of 7,500 schistosomula/mL and cul-

tured in 25 cm2 polystyrene flasks (Greiner Bio-One,

Alphen a/d Rijn, The Netherlands) at 37°C and 5%

CO2 for 72 h.

EV isolation and staining

Schistosomula E/S products were enriched for EVs

by differential centrifugation as previously described,

with minor modifications [6]. Briefly, the collected

culture supernatant (9–34 mL per culture, 7,500

schistosomula/mL) was centrifuged in 15 mL tubes

(Greiner Bio-One) twice at 500 × g (k-factor

115,790.8) for 2 min (4°C) (SX4750A rotor and an

Allegra X-15 R centrifuge) (Beckman Coulter, Brea,

CA, USA) with low brake to remove remaining para-

sites. To remove any residual debris, the supernatant

was subsequently centrifuged at 700 × g (k-factor

82,764.4) for 20 min (4°C, low brake). Next, an EV-

enriched pellet was obtained by centrifugation of the

supernatant at 31,000 rpm (average around

120,000 × g, k-factor 216.3) for 80 min at 4°C

(max. acceleration and brake), followed by three

wash steps with cold phosphate buffered saline

(PBS) (B. Braun, Melsungen, Germany) in thin-wall

polypropylene tubes using an SW41 Ti rotor and an

Optima ΧE-90 ultracentrifuge (Beckman Coulter).

For binding/uptake experiments, EVs were stained

with PKH26 (Sigma-Aldrich) after the first ultracen-

trifugation step by addition of 80 µL Diluent C to the

resuspended EV-enriched pellet and incubation of

93 µL diluted PKH26 (1.5 µL in 100 µL Diluent C)

for 3 min at RT before addition of 11 mL PBS.

Unconditioned culture medium incubated without

2 M. E. KUIPERS ET AL.



parasites was processed (and stained) following the

same procedures and was used as (dye) control. EV-

enriched pellets (from 66,300–253,200 schistosomula)

for in vitro experiments were resuspended in 510 µL

PBS, for transmission electron microscopy (TEM)

and glycan analysis in 100 µL PBS, and for cryo

EM in 40 µL PBS. All were stored at −80°C until

further use except for 1 cryo EM sample, which was

processed directly after EV isolation. We have sub-

mitted all relevant data of our experiments to the

EV-TRACK knowledgebase (EV-TRACK ID:

EV190032) [31].

Transmission electron microscopy

EV preparations were generated in Leiden and visualized

by TEM at Aberystwyth University, as described pre-

viously [6]. Briefly, 10 µl of EV-enriched sample was

fixed with an equal volume of 4% glutaraldehyde,

adsorbed onto Formvar/carbon-coated copper grids

(Agar scientific, Stansted, UK) for 40 min, and subse-

quently contrast stained with 2%uranyl acetate (pH 4) for

10 min. Processed samples were then visualized on a Jeol

1010 transmission electron microscope operated at 80

kV. Images were recorded with a Kodak MegaPlus cam-

era Model 1.4i, other than the addition of scale bars, no

further image processing was done. Sizes were measured

by hand using Fiji/ImageJ software [32].

Nanoparticle tracking analysis (NTA)

EV-enriched suspensions were diluted 1:100 in PBS (to

obtain 25–100 particles per frame at camera level 16)

before analysing the concentration and size distribution

by nanoparticle tracking analysis (NTA) using

a NanoSight NS500 (Malvern Panalytical, Malvern, UK)

equipped with an sCMOS camera. For each EV-enriched

pellet, three videos of 30 seconds were recorded on three

different camera levels: 12, 14 and 16. The analysis was

done with NTA3.3 software and a detection threshold of

5. The average particle concentration of nine videos per

EV-enriched sample, after subtraction of the NTA back-

ground data from PBS alone, was used for further experi-

ments. We additionally measured the protein

concentration of the EV-enriched pellets with

microBCA according to the manufacturers protocol

(Pierce, Thermo Fisher Scientific, Waltham, MA, USA).

Cryo electron microscopy

Previously frozen or freshly isolated EV preparations

(EV from 86,00–112,00 schistosomula in 40 µL PBS)

were visualized by cryo EM. Copper EM grids

supporting a carbon film with regularly spaced 2

micron holes (R2/2, Quantifoil, Jena, Germany) were

glow-discharged in air at 0.2 mbar for 2 min at 20 mA

(EMITECH K950X with glow discharger unit). A 3 µL

drop of sample was applied to the grid and transferred

into the environmental chamber of a Leica EM grid

plunger (Leica Microsystems, Wetzlar, Germany) oper-

ating at RT and between 92% and 94% humidity.

Excess sample was blotted away for 1 second using

filter paper (Whatman no.1) and without waiting

plunged into a mixture of ethane/propane (63/37 v/v)

cooled with liquid nitrogen to −193°C. After vitrifica-

tion, grids were stored under liquid nitrogen and trans-

ferred into a cryo holder (type 626, Gatan, Germany).

In total 238 cryo-EM projection images were recorded

by 1 second exposures at spot 5 on a FEI Tecnai F12 at

120 kEV on a 4 k × 4 k CCD camera (Eagle, Thermo

Fisher Scientific) at a magnification of 13,500 ×

(0.85 nm pixel size) and a defocus value ~ −8 microns.

Size measurement was performed by hand using Fiji/

ImageJ software [32]. After removing double images

and images with no EVs, 233 images were used to

measure a total of 1056 EVs, which were subsequently

quantified in segments of 20 nm (i.e. 21–40 nm,

41–60 nm, 61–80 nm … 861–880 nm, 881–900 nm).

Human monocyte-derived dendritic cells (moDCs)

Venous blood of healthy volunteers who provided

informed consent, approved by the Institutional

Review Board of Leiden University Medical Centre,

was used to isolate monocytes and differentiate to

moDCs as previously described [33]. Immature DCs

were harvested on day 5 or 6, counted, seeded at

5 × 104 cells/well in a 96 well flat-bottom plate, and

rested overnight at 37°C and 5% CO2. Subsequently,

cells were stimulated with or without a pre-incubation

of 30 min with 10 mM EGTA (Sigma-Aldrich), 20 µg/

mL αDC-SIGN/CD209 (clone AZN-D1, custom order

without sodium-azide) (Beckman Coulter), 20 µg/mL

αMR/CD206 (clone 15–2) (BioLegend, San Diego, CA,

USA), 20 µg/mL αDCIR/CLEC4A (clone 111F8.04,

Dendritics, Novus Biologicals, Centennial, CO, USA),

and 20 µg/mL mouse IgG1 isotype control (clone

P3.6.2.8.1) (Invitrogen, Thermo Fisher Scientific) in

the presence of αFcgammaR-binding inhibitor

(eBioscience, Invitrogen) and in the presence or

absence of the maturation factors IL-1β (25 ng/mL)

(BioLegend) and TNF-α (50 ng/mL) (Sino Biological,

Beijing, P.R. China) or LPS (100 ng/mL) (InvivoGen,

San Diego, CA, USA). As a positive control for the

αMR, PF-647-labelled recombinant omega-1 was used

[22,34]. EV-enriched pellets were thawed only once

JOURNAL OF EXTRACELLULAR VESICLES 3



and several EV batches were pooled before incubation

with the cells (6 × 109 EV/mL or mentioned otherwise).

To investigate the effect of surface de-N-glycosylation,

EVs were incubated with or without peptide

N-glycosidase F (PNGase F) (4 U/100 µL, Roche

Diagnostics, Almere, The Netherlands) at 37°C for

20 h before moDC incubation. Supernatants were col-

lected from >85% CD1a+ cell cultures after 24 h stimu-

lation and IL-6 (Sanquin, Amsterdam, The

Netherlands), IL-10 (BioLegend), and IL-12p70 (BD

Biosciences, Franklin Lakes, NJ, USA) cytokine pro-

duction was determined with ELISA according to the

manufacturers protocols. Stimulated moDCs were

washed, stained, and measured by flow cytometry on

a FACSCanto II (BD Bioscience) and using the follow-

ing antibodies: CD1a-BV421 (clone HI149)

(BioLegend), HLA-DR-APC-eF780 (clone LN3)

(eBioscience), PD-L2/CD273-FITC (clone MIH18)

(Miltenyi Biotec, Bergisch Gladbach, Germany), CD86-

FITC (clone 2331 (FUN-1)), CD40-APC (clone 5C3),

CD80-V450 (clone L307.4), PD-L1/CD274-PE-Cy7

(clone MIH1) (all BD Bioscience) with the addition of

Fc receptor binding inhibitor (eBioscience) and Aqua

live/dead staining (Invitrogen). Flow cytometric mea-

surements were analysed with FlowJo (version 10, BD

Bioscience).

Confocal microscopy

5 × 104 moDCs/chamber were seeded onto poly-

L-lysine (Sigma-Aldrich) coated coverslips of a 4 cham-

ber glass bottom dish (ø35 mm; Greiner Bio-One) for

24 h. Cells were pre-incubated with EGTA or αDC-

SIGN+αFcgammaR-binding inhibitor as described

above, incubated with PKH-labelled schistosomula EV-

enriched pellets for 5 h, subsequently washed, and

treated with Hoechst (Sigma-Aldrich). Images were

taken at 37°C and 5% CO2 on a Leica TCS (true

confocal scanning SP8 WLL (white light laser) micro-

scope (Leica Microsystems). The sequential scanning

mode was applied to image Hoechst (excitation:

405 nm, emission: 420–470 nm) and PKH26 (excita-

tion: 561 nm, emission: 570–630 nm). For imaging the

uptake of EVs, a 63× objective (Leica HC PL APO 63×/

1.40na OIL CS2) was used. The z-stacks were recorded

and maximum projections of the recorded z-stacks

were generated using the Leica software (LAS

X version 1.1.0.12420; Leica Microsystems).

N-glycan and glycolipid-glycan analysis

For the N-glycan analysis, EV-enriched pellets (in PBS)

from >100,000 cultured schistosomula were lyophilized,

resuspended in 100 µL milliQ water, sonicated and subse-

quently reduced and denatured for 10min at 95°Cwith the

addition of SDS and β-mercaptoethanol which were neu-

tralized by adding NP-40 (Sigma-Aldrich). Full details on

N-glycan isolation has been described previously [35].

N-glycans were released by PNGase F (4 U/100 µL) incu-

bation for 24 h at 37°C and cleaned up by collection in the

flow through of reversed phase (RP) C18-cartridges (JT

Baker, Phillipsburg, NJ, USA) followed by isolation on

carbon cartridges (Supelclean ENVI-carb SPE, Sigma-

Aldrich). In addition, directly after isolation, intact EV

preparations in PBS were treated with PNGase F for 24 h

at 37°C to release directly accessible N-glycans (surface

glycans). The total suspension was subsequently trans-

ferred to a thin-wall polypropylene tube and topped up

with PBS. The EVs were pelleted by ultracentrifugation at

42,000 rpm (average around 120,000 × g, k-factor 85.4) for

65min at 4°C (max. acceleration and brake) using aTLS-55

rotor and an Optima TLX (Beckman Coulter). Next, the

supernatant containing the PNGase F released N-glycans

was collected and these N-glycans were isolated with C18-

and carbon-cartridges. The EV-enriched pellet without

PNGase F accessible surface N-glycans was resuspended

in PBS, lyophilized, sonicated, reduced, denatured, and

treated with PNGase F to isolate remaining N-glycans as

above.

For glycolipid-glycans analysis, EV-enriched pellets

were lyophilized, resuspended in milliQ water, soni-

cated, and subjected to extraction with chloroform

and methanol (MeOH). The upper phase was collected

after sonication and centrifugation. Similar volume as

collected was replaced with 50% MeOH and the pre-

vious steps were repeated twice. All collected upper

phases of the extraction were applied to an RP C18-

cartridge and flow-through and wash fractions were

combined and applied to another C18-cartridge.

Glycolipids were eluted from the cartridges with

chloroform/MeOH/water and dried under a flow of

nitrogen. The glycolipids were subsequently dissolved

in 200 µL 50 mM sodium acetate with 0.1% sodium

taurodeoxycholate hydrate (Sigma-Aldrich), sonicated,

and heated to 60°C for 10 min. 2 mU of recombinant

endoglycoceramidase II (Rhodococcus sp.) (rEGCase II)

(Takara-bio, Kusatsu, Shiga, Japan) was added to

release the lipid-bound glycans. After 24 h at 37°C,

another 2 mU was added and the sample was incubated

at 37°C for another 24 h. The purification of released

lipid-glycans was performed as described for the

N-glycans using RP C18- and carbon cartridges.

To support glycan structure assignments, part of the

isolated N-glycans and glycolipid-glycans were addi-

tionally treated with hydrofluoric acid (HF), which

removes labile substitutions including α1-3 linked
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fucoses. All isolated glycans were labelled with 2-ami-

nobenzoicacid and purified by Biogel P10 (Bio-Rad,

Hercules, CA, USA). The labelled glycans were mea-

sured by MALDI-TOF-MS with 2,5-dihydroxybenzoic

acid (Bruker Daltonics, Bremen, Germany) as matrix

using UltrafleXtreme mass spectrometers (Bruker

Daltonics) in the negative-ion reflectron mode. When

necessary, samples were cleaned up with ZipTip C18

(Merck Millipore, Burlington, MA, USA) before

MALDI-TOF-MS. The obtained mass spectra were

smoothed and the base-line was subtracted using

FlexAnalysis (version 3.4, Bruker Daltonics). Glycan

compositions were identified from the peak lists using

GlycoWorkbench (Version 3) [36]. Peaks with a signal

to noise ratio below 2 were excluded and masses are

registered as deprotonated [M-H]−. 2-AA was taken

into account as a fixed reducing-end modification.

For the interpretation of the relative most abundant

signals for spectral assignments we used (when avail-

able) previously published structural data from

S. mansoni glycans [35]. In the spectra, the structure

of the most likely or most abundant isomer of the

composition is indicated.

RNA extraction and qPCR analysis

HumanmoDCs were pre-incubated with or without αDC-

SIGN,αMR, or IgG1 isotype and stimulatedwith IL-1β and

TNF-α and schistosomula EV-enriched preparations as

described above. After 6 h stimulation at 37°C and 5%

CO2, cells were stored on ice for 10min, harvested, washed

with cold PBS, snap frozen, and stored at −80°C till RNA

extraction. RNA was extracted with the RNeasy Kit

(Qiagen, Hilden, Germany) according to the manufac-

turer’s protocol. RNA was quantified using NanoDrop

1000 Spectrophotometer (Thermo Fisher Scientific) and

cDNA synthesis was performed on 0.2 µg RNA according

to standard procedures. Primer Express (Applied

Biosystems, Waltham, MA, USA) was used to design pri-

mers that were synthesized by Biolegio (Nijmegen, The

Netherlands). Sequences of the primers were: β-

actin_Forward(F): 5ʹ- GCTACGAGCTGCCTGACGG-3ʹ;

β-actin_Reverse(R): 5ʹ- CAGCGAGGCCAGGATGGAG

CC-3ʹ; β-2-M_F: 5ʹ- TGCCGTGTGAACCATGTGA-3ʹ;

β-2-M_R: 5ʹ-CCAAATGCGGCATCTTCAA-3ʹ; RPLPO

_F: 5ʹ-GGCGACCTGGAAGTCCAACT-3ʹ; RPLPO_R: 5ʹ-

CCATCAGCACCACAGCCTTC-3ʹ; IL-10_F: 5ʹ-ACCT

GCCTAACATGCTTCGAG-3ʹ; IL-10_R: 5ʹ- CCA

GCTGATCCTTCATTTGAAAG-3ʹ; TNF-α_F: 5ʹ-TCT

TCTCGAACCCCGAGTGA-3ʹ; TNF-α_R: 5ʹ-CCTCT

GATGGCACCACCAG-3ʹ; IL-12p35_F: 5ʹ-CTCCTGGAC

CACCTCAGTTTG-3ʹ; IL-12p35_R: 5ʹ-TTGTCTGGCCT

TCTGGAGCA-3ʹ. Quantitative real-time PCR (qPCR)was

performed using CFX96 instruments (Bio-Rad

Laboratories) and CFX Maestro (Bio-Rad) software.

Technical duplicates with <1 Cq value difference were

averaged and gene expression was calculated with the

ΔΔCq method using the average Cq of the reference genes

β-actin, β-2-M, and RPLPO to normalize [37].

Statistical analyses

All data were analysed using a paired student t-test or

repeated measures One-way ANOVA (P values <0.05

were considered significant) with Tukey’s or Dunnett’s

Multiple Comparison Test in GraphPad Prism 5.0

(GraphPad Software, Inc., La Jolla, CA, USA).

Results

Cryo electron microscopy reveals ultrastructural

characteristics of schistosomula EVs

Schistosomula were cultured for 72 h and EV-enriched

preparations were obtained from schistosomula E/S by

sequential (ultra)centrifugation steps. TEM confirmed

isolation of vesicles in the size-range between 35 and

190 nm (Figure 1(a–b)). NTA analysis showed a size-

range of 30–650 nm with a minor peak around 40 nm

and three major peaks around 110, 160, and 350 nm

(Figure 1(c)). Culture medium without parasites that

was processed similarly (medium control) and PBS

alone only showed minor peaks between 60 and

150 nm as NTA background (Figure 1(c)). The average

particle concentration measured with NTA was

2.33E10/100,000 schistosomula and the average protein

concentration of EV-enriched preparations was 6 µg/

100,000 schistosomula.

Although the TEM images corresponded with pre-

vious observations [6], there was a discrepancy in the

sizes measured with the TEM and NTA. Therefore,

we additionally analysed the EV preparations with

cryo EM to visualise the near native state of the EVs

and measure their size (Figure 1(d)). Interestingly, the

cryo EM revealed thin filament-like structures cover-

ing the EV surface in 45.5% of all measured EV and

in >70% of EVs when excluding EVs smaller than

100 nm. The filamentous structures ranged from 10

to 340 nm in length (average length of 128.5 nm)

additional to the size of the EV diameter to the EV

membrane (Figure 1(e)). These surface structures were

most likely lost during the sample preparation for

negative stained TEM (Figure 1(a)) and thus not

observed, while NTA size measurement did include

these structures as shown by similar size ranges

between NTA and cryo EM.
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Figure 1. TEM, NTA and cryo EM measurement of schistosomula EVs.

EV-enriched preparations analysed by transmission electron microscopy at 60,000 × (a) and 120,000 × magnification (b). Scale bars are 200 nm. EVs

are pointed out with arrow heads, the small (<60 nm) structures (black arrows) in (b) are artefacts and were also observed in PBS only. In addition,

EVs were analysed by nanoparticle tracking analysis (NTA) (c). The graph shows the average of 17 schistosomula EV-enriched preparations (black

line), 10 medium controls (dark orange line), and 15 PBS (background) in which the preparations were resuspended (blue line), averages are shown

with SEM (lighter areas). Cryo EM of EVs at 13,500 × magnification (d). Scale bars are 500 nm. The EV membrane and stretch of the filamentous

structures are indicated in the middle pane with white dashed circles and black dashed circles, respectively. Right pane shows a close up of one EV

with filaments. Quantification of the EV sizes excluding (EV diameter) or including (EV diameter + filaments) the thin filaments from a total of 1056

EVs (e). EM pictures are representative for four biological replicates.
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Internalisation of schistosomula EV by human

moDCs is calcium dependent

To investigate the interaction of schistosomula EVs

with human moDCs, EVs were first labelled with the

fluorescent dye PKH26. MoDCs (0.25E6 moDC/mL)

were incubated with a maximum of 6E9 EV/mL,

which is equivalent to approximately 10 moDCs

receiving the number of EVs released by one schisto-

somulum during three days of culture. After 2 h of

incubation, there was a dose-dependent increase in EV

binding/uptake by the CD1a+ moDCs indicated by an

increased geometric mean fluorescence intensity

(geoMFI) relative to cells in medium only (Figure 2).

Furthermore, the fluorescence of cells incubated with

dye control was unchanged, indicating that the increase
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Figure 2. Dose dependent uptake of schistosomula EVs by human moDC is temperature and calcium dependent.

Measured PKH26 fluorescence (PKH26 labelled EVs) of CD1a+ cells was obtained via gating as pictured in (a). The geoMFI (geometric mean

fluorescent intensity) of PKH26 is shown relative to unstimulated cells (b). MoDC from three donors. EV uptake visualized by confocal microscopy

(c). Images show maximum projections (top panels) and 3D visualizations (bottom panels) of recorded z-stacks of two different fields. PKH26-

labelled EVs are stained in red and the nuclei in blue (Hoechst). Selected pictures are representative for three donors. Human moDC incubated with

EVs with either EGTA added pre- or post-incubation (d). Confocal images of moDC pre-treated with EGTA followed by EV incubation (e). Scale bars

are 10 µm. Mean±SEM *p < 0.05, **p < 0.01, ***p < 0.001, using repeated measures ANOVA with Dunnett’s Multiple Comparison Test compared to

cells in medium only (b) or repeated measures ANOVA with Tukey’s Multiple Comparison Test (d). SSC-A, side-scatter; FSC-A, forward-scatter
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in MFI was due to binding/uptake of labelled EVs and

not due to dye aggregates [38]. EV binding/uptake by

moDCs did not change due to stimulation of the cells

with LPS or in the presence of IL-1β+TNF-α.

Incubation at 4°C instead of 37°C did not lead to

binding/uptake of EVs by the moDCs (Figure 2), sug-

gesting that the interaction with and uptake of the

schistosomula EVs by target cells are active processes.

We visually confirmed that EVs were internalised by

moDCs with confocal microscopy (Figure 2(c)).

MoDCs are known to express C-type lectin recep-

tors that bind glycan motifs present on schistosome E/S

components in a calcium dependent manner [39]. To

investigate whether moDCs also recognise schistoso-

mula EVs via CLR-glycan motif interactions, moDCs

were incubated with fluorescently labelled EVs in the

presence of the calcium chelator EGTA and subse-

quently analysed by flow cytometry and confocal

microscopy (Figure 2(d–e)). Pre-incubation of EGTA

almost completely abrogated the fluorescence signal

and EV internalisation of moDCs compared to EV-

exposed moDCs without EGTA pre-incubation, indi-

cating calcium dependent interaction with moDCs

such as CLRs. Next, when EGTA was added after

incubation with EVs in order to remove EVs bound

to CLRs, this resulted in only a minor reduction of

fluorescence signal (Figure 2(d)), confirming that most

of the EVs were internalised by moDCs rather than

bound to the surface.

Schistosomula EVs contain CLR ligands on their

surface

We next analysed the glycosylation of schistosomula

EVs to assess whether ligands for CLRs were present.

First, the overall N-glycan content of the EV-enriched

preparations was determined by mass spectrometry

(Figure 3(a)). MALDI-TOF mass spectra of PNGase

F released N-glycans were assigned based on the

detailed glycan structure descriptions available for

overall N-glycan preparations of S. mansoni schistoso-

mula [35]. Interestingly, the spectrum of N-glycans

from the EV preparation was highly similar to pre-

viously published spectra of total extracts of three-day

cultured schistosomula [24,35]. The major signals are

from oligomannosidic structures of complex glycans

with a core(α6)-fucose and one or two antennae con-

sisting of Galβ1–4GlcNAc (LacNAc, LN) and/or LeX.

Structures with a core-xylose modification or

GalNAcβ1–4GlcNAc (LacDiNAc or LDN) antennae

with five to nine fucose residues were observed at

relatively low levels (Figure 3(b)). These results show

that schistosomula EVs contain similar N-glycans as

previously found in total schistosomula extracts,

including LeX and oligomannose motifs, which are

both ligands for DC-SIGN and MR [21,23].

To identify specific N-glycans that might be available

for interaction with CLRs on the surface of EVs, we

treated intact EVs with PNGase F to release all (“surface”)

N-glycans that were accessible to the enzyme. MALDI-

TOF-MS analysis was performed on both the released

“surface” N-glycans as well as on the remaining

N-glycans of the PNGase F-treated (“shaved”) EVs

(Figure 3(c–d)), which likely represent glycans on the

inside of the EVs. Interestingly, the most abundantly

detected N-glycans on the EV surface contained one or

two LeX antennae (Figure 3(c)) while the major glycans

of the “shaved” EVs were the oligomannosidic structures

(Figure 3(d)). These results show that the glycoproteins

on the surface of schistosomula EVs carry a specific sub-

set of N-glycans with LeX motifs, which are potential

ligands for DC-SIGN or MR in the context of pathogen-

host interactions [19,40,41].

EVs are internalised via DC-SIGN but not MR or

DCIR

To investigate whether DC-SIGN or MR on moDCs

were involved in uptake of schistosomula EVs via gly-

can motifs on these EVs, moDCs were pre-incubated

with antibodies blocking DC-SIGN or MR and subse-

quently incubated with labelled schistosomula EVs for

2 h (Figure 4(a–b)). In addition we investigated EV

binding after blocking DCIR, a receptor expressed on

moDCs that does not bind LeX containing glycans but

has been shown to bind S. mansoni cercarial extract

[19]. Blocking DC-SIGN led to almost complete inhi-

bition of EV uptake while blocking the MR, DCIR, or

pre-incubation with the isotype control did not reduce

EV internalisation. Inhibition of EV internalisation

after DC-SIGN block was confirmed by confocal

microscopy (Figure 4(c)). This reveals that schistoso-

mula EVs were internalised by moDCs via DC-SIGN.

EV-associated glycolipid-glycans include DC-SIGN

ligands

Given that the EV surface contained DC-SIGN ligands,

including the LeX motif, we investigated whether EV

deprived from surface N-glycans by PNGase

F treatment would still be internalised by moDCs.

Interestingly, the PNGase F-treated EVs showed

a minor but not significant reduction in internalisation,

and the EV uptake could still be inhibited by blocking

DC-SIGN (Figure 5(a)). Since it has been shown that

cercariae produce glycolipid-glycans that contain LeX
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and other potential DC-SIGN ligands [35,42], we addi-

tionally determined the total lipid-derived glycan profile

of the schistosomula EVs (Figure 5(b)). Here we detected

a heterogeneous set of highly α3-fucosylated glycolipid

structures, mostly similar to the glycolipid-glycans found

in total schistosomula extract [35]. Interestingly, these

lipid-glycans had terminal motifs that contained LeX,

Fucα1-3Galβ1-4(Fucα1-3)GlcNAc (pseudo-LewisY
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Figure 3. Schistosomula EV-surface N-glycans include DC-SIGN ligands.
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(LeY)) and GalNAcβ1–4(Fucα1–3)GlcNAc (LDN-F)

(Figure 5(b) insert), which are all previously described

ligands of DC-SIGN [42,43]. These data suggest that

additional to surface N-glycans, EV-associated lipid-

glycans play a role in interaction with DC-SIGN.

Schistosomula EVs induced increased cytokine

release and costimulatory molecule expression on

moDCs

Next, we investigated whether incubation of moDCs

with schistosomula EVs affect their activation status

and cytokine production. We first incubated human

moDCs for 24 h with EV-enriched preparations but

observed no or very low release of cytokines. Therefore,

in addition to EVs, moDCs were co-cultured with IL-

1β and TNF-α, cytokines that are released by immune

cells upon schistosome infection [3], allowing us to

further investigate whether EVs could change the acti-

vation status of moDCs. Under these conditions, schis-

tosomula EVs significantly increased IL-6, IL-10 and

IL-12 secretion by moDCs (Figure 6(a)).

Furthermore, a significant upregulation of the costi-

mulatory molecules CD80, CD86 and regulatory surface

molecule PD-L1 was observed, while there was no sig-

nificant effect on CD40, HLA-DR and PD-L2 expression

(Figure 6(b)). These data suggest that the EV-enriched

preparations were mostly synergizing or augmenting

other inflammatory signals.

Role for DC-SIGN in EV-augmented immune

responses

Since schistosomula-derived EVs were mainly inter-

nalised via DC-SIGN, we hypothesized that inhibit-

ing this receptor would alter the observed augmented

immune responses of moDCs by the EVs. Blocking

DC-SIGN during a 24 h EV stimulation, however,

did not show a significant effect on IL-6, IL-10 and

IL-12 release (Figure 7(a)) nor on the expression of

the co-stimulatory surface markers CD80, CD86,

HLA-DR, PD-L1 and PD-L2 after 48 h stimulation

(Figure 7(b)). To understand why the blocking of

DC-SIGN did not consistently influence the

enhanced immune responses of moDCs by the EVs

whereas it almost completely blocked EV internalisa-

tion after 2 h, we studied EV uptake in the presence

of DC-SIGN blocking antibodies after 48 h of
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incubation. Blocking of DC-SIGN significantly

reduced EV internalisation after 48 h (Figure 7(c)).

However, the vast majority of the moDCs were still

positive for the fluorescent dye, although the fluor-

escent intensity was lower when DC-SIGN was

blocked (Figure 7(d)). Possibly other mechanisms

than those mediated by DC-SIGN play a role in EV

internalisation by moDCs after prolonged exposure.

To investigate whether blocking of DC-SIGN does

interfere with moDC function during shorter incuba-

tions with schistosomula-derived EVs, moDCs were

stimulated with EVs in the absence or presence of

blocking antibodies for 6 h, after which cytokine

mRNA expression was determined. Indeed, at this

time point, the effect of blocking DC-SIGN was

more prominent with a significant reduction in

TNF-α mRNA and a trend for lower IL-10 mRNA

expression (Figure 7(e)). IL-12p35 mRNA levels were

also reduced in most donors, though not significant.

These results show that, within the first hours of

exposure but not at a longer timescale, the moDC

immune profile is influenced by schistosomula EVs

through internalisation via DC-SIGN.

Discussion

Schistosome parasites are master regulators of host

immune responses and they release various molecules
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and products to achieve this. Here we demonstrate that

S. mansoni schistosomula release EVs that contain LeX

antigens on their surface. Interaction of the glycosylated

EVs with DC-SIGN on moDCs lead to internalisation

and enhanced expression of both immunostimulatory

and regulatory effector molecules. Thus, schistosome
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Figure 7. Role for DC-SIGN in augmented immune responses by schistosomula EVs.

Released cytokines (a) and surface marker expression (b) of moDC with indicated pre-incubations (x-axes) before EV incubation. Linked points
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EVs appear to contribute to immune modulation by the

parasite.

Schistosomula are multicellular organisms, having

various organs and cells as potential sources of their

released EVs. It has been shown that micron-sized vesi-

cles are released from their acetabular glands [11,44] and

it is suggested that EVs can also derive from the tegument

[6]. Since multicellular organisms release heterogeneous

populations of EVs, it is likely that the moDCs can inter-

nalise these EVs via various receptors and/or routes [13].

The schistosomula-derived EV populations described

here were heterogeneous in size, which we analysed

with NTA (Figure 1(c)) and cryo EM (Figure 1(e)). The

size of EVs may influence uptake routes, as has been

shown for Helicobacter pylori outer membrane vesicles

(OMVs): small OMVs were taken up via caveolin-

mediated endocytosis and bigger OMVs via micropino-

cytosis and endocytosis [45]. The major population of

EVs >300 nm we observed have not been described

before for S. mansoni schistosomula [6]. Although we

used a similar schistosomula EV isolation protocol as

Nowacki et al [6], the isolated EVs in that paper were

only visualised by TEM of negatively stained EVs and not

by NTA. With this same technique, our isolated schisto-

somula EVs also showed similar sizes <200 nm

(Figure 1(a–b)) but only with the NTA and cryo EM the

EV population >300 nm was detectable. EVs >300 nm

have not been found among adult worms EVs [7,8,46].

Schistosomes are organisms with a complex life cycle and

the schistosomula and adult worm life stages differ in size,

shape, molecular, and cellular make up, and interaction

with the host and its immune system [2,47]. Therefore, it

is likely that different life stages of the parasite produce

different EV populations regarding molecular content

[6,48] as well as size. Furthermore, the adult worm EVs

published have been isolated by different protocols which

may further explain differences between the observed

sizes of EVs derived from various schistosome different

life stages.

Interestingly, our cryo EM data showed that around

half of the schistosomula-derived EVs were covered

with thin filament-like structures (Figure 1(d)). These

structures have not been described for eukaryotic EVs

so far. It remains to be explored what the molecular

composition of these EV-associated structures is and

whether these structures are specific for S. mansoni

and/or specifically related to the schistosomula life

stage. These thin filaments resemble the electron-

dense surface layer of extracellular proteins and LPS

or glycocalyx on some bacteria [49,50] and their

released OMVs [51]. We hypothesize that the struc-

tures on schistosomula EVs are composed of large,

complex glycoconjugates and/or include proteins with

attached glycan polymers, similar to the mammalian

glycocalyx consisting of proteoglycans with attached

glycosaminoglycans [25]. Altogether, the EM analyses

emphasize that cryo EM provides improved visualisa-

tion of the near native state of isolated EVs compared

to TEM of negatively stained EVs.

EVs released by S. mansoni schistosomula were

internalised by human moDCs (Figure 2). Previous

studies have demonstrated that S. japonicum EVs

derived from adult worms and eggs are also interna-

lised by host cells [46,52–54]. This indicates, together

with our data, that at least three lifecycle stages of

Schistosoma in humans release EVs that interact with

the host. By chelating extracellular calcium with EGTA,

schistosomula EV could not bind to or be taken up by

the moDC (Figure 2(d–e)). This suggests that the inter-

action of the EVs with the moDC was via the ligation

of glycoconjugates to CLRs, which is calcium depen-

dent, and not via protein-protein interaction. By inhi-

biting specific CLRs we show that internalisation of

schistosomula EVs by moDCs is primarily facilitated

by DC-SIGN (Figure 4). This CLR is known to bind

schistosome egg [21], cercarial [43], and worm antigens

[55], via glycan motifs including mannotriose, LeX,

LDN-F, and pseudo-LeY [19,42,43]. In contrast, CLR

DCIR mainly binds LeB (LewisB) and sulpho-LeA

(LewisA) motifs [19], and indeed, blocking this recep-

tor did not reduce EV uptake by the moDC. Previously,

it was shown that the egg-derived glycoprotein omega-

1, which carries LeX containing N-glycans highly simi-

lar to those found here on the EVs (Figure 3), is mainly

internalised by moDCs via the MR [22]. However,

when blocking the MR, EV internalisation was not

inhibited. This difference of internalisation routes

between omega-1 and EVs could be explained by the

characteristics of the two CLRs: DC-SIGN has one

carbohydrate recognition domain (CRD), is present as

tetramers, and it clusters in (lipid raft) nanodomains

that are distributed on the cell membrane. Clustering

increases the avidity of low affinity glycan-lectin inter-

actions and allows this receptor to interact at multiple

sites with pathogens that differ greatly in size [56]. On

the other hand, the MR consists of multiple CRDs,

which results in binding of multivalent or repetitive

ligands to a single MR monomer [57]. Considering

these aspects, larger particles such as EVs would favour

DC-SIGN mediated uptake while smaller glycosylated

proteins are more likely to be internalised via other

receptors, such as the MR. A very recent publication

substantiates this theory by showing that tumour-

derived apoptotic EVs with high-mannose glycans on

their surface were mainly internalised via interaction

with DC-SIGN and not the MR [58]. Furthermore, it
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suggests that, together with our findings, DC-SIGN

mediated EV uptake may be a widely occurring

mechanism, across a broad spectrum of species and

may not be exclusive to schistosomula-derived EVs.

Of note is that helminths, including S. mansoni, lack

sialic acid in their glycan repertoire, which is

a fundamental difference with mammalian glycans. It

was recently found that EVs released by human glio-

blastoma cells had complex sialic acid-capped

N-glycans on their surface that mainly bound to

Siglec-9 on moDCs [59]. When sialic acids on the EV

surface were enzymatically removed and LeY was

inserted, EV uptake by moDC and binding of the

EVs to DC-SIGN were increased. Furthermore, EVs

from murine hepatic cell lines expose sialyl-LeX on

the EV surface and removing the sialic acids with

neuraminidase significantly increased EV uptake by

M1 cell lines [28]. However, no DC-SIGN blocking

experiments were performed in these studies. Thus,

the question remains whether EV internalisation via

DC-SIGN is specific for schistosomula EVs, or whether

it is a more general mechanism via which EVs from

both pathogens and mammalian cells are internalised.

However, we cannot exclude the possibility that inter-

nalisation of schistosomula EVs may be facilitated via

different CLRs in a different host. For example, the

murine macrophage galactose-type lectin (MGL-1)

can bind to LeX [60] while the human MGL cannot

[61]. Human MGL binds to LDN motifs, which were

absent in our schistosomula EV glycan analyses.

So far, most research on glycosylation of pathogen-

derived EVs focussed on lipopolysaccharides of bacterial

OMVs [62–65]. Only very recently, the presence of gly-

coconjugates on the surface of EVs released by the hel-

minth Fasciola hepatica was studied using lectin

microarrays [66]. Here we performed a more detailed

structural analysis of glycans associated with EVs released

by a helminth parasite. Using mass spectrometry we

showed the presence of mainly complex type N-glycans

with LeX motifs as well as oligomannose and high man-

nose glycans (Figure 3(b)) and the presence of lipid-

linked glycans with LeX, pseudo-LeY, and other

α3-fucosylated glycan motifs (Figure 5(b)). The EV

N-glycan profile was qualitatively very similar to that of

whole schistosomula [35]. The overall glycosylation pat-

tern associated with this particular schistosome life stage

was reflected in the EVs, however, with differences in

relative abundances of the glycans. Biological replicates

of the parasite culture and EV isolation generated at two

different laboratories (Leiden and Aberystwyth) showed

similar N-glycan profiles, confirming the reproducibility

of the EV isolation protocol and glycan patterns [6].

Mostly complex glycans with LeX motifs were cleaved

from intact EVs by incubation with PNGase-F (Figure 3

(c)), implicating that these structures were on the EV

surface. Glycoconjugates on the EV surface can influence

their cellular internalisation, as was shown for bacterial

OMV [65], murine hepatic cell line EVs [28], tumour-

derived EVs [58,59] and F. hepatica adult worm EVs [66].

Interestingly, PNGase F treated EVs were still internalised

by moDC via DC-SIGN (Figure 5(a)). This indicates that

other glycans with DC-SIGN ligands such as the fucosy-

lated lipid-linked glycans play a role in this process, either

specifically or in addition to the N-glycans. Mass spectro-

metry analysis showed the presence of EV-associated

glycolipid-glycans (Figure 5(b)) containing several struc-

tures that were reported previously for schistosomula

[35], but with more extended higher molecular weight

structures. Our data indicate that many of the EV lipid-

derived glycans contain motifs such as LeX, pseudo-

LeY and other α3-linked fucose containing motifs that

can bind to DC-SIGN [42,43], which may explain why

PNGase-F treated EVs could still be internalised via DC-

SIGN. Furthermore, S. mansoni produce various

O-glycans [35], which are possibly also present on EVs

and contribute to EV-CLR interaction. We therefore

suggest that both N-glycans and glycolipid-glycans, and

possibly O-glycans, contribute to the interaction of the

EVs with DC-SIGN. This interaction is most likely via

LeX motifs, which are abundant in these glycan types,

with the possible contribution of other α3-fucosylated

lipid-glycans.

Interestingly, the complex type N-glycans on the EV

surface and many of the glycolipids of the schistosmula

EVs contain antigenic glycan motifs that were pre-

viously shown to be the target of antibodies of various

isotypes during schistosome infection. These motifs

include N-glycan core-xylose, LeX, and the various

fucosylated glycolipid motifs [67–69]. It is therefore

tempting to speculate that EVs can either elicit these

antibodies and/or that EVs are targeted by antibodies

generated against other, similarly glycosylated, antigens

produced by schistosomes during an infection.

Antibodies that recognize and bind molecules on the

EV surface can facilitate internalisation by APCs, for

example via Fc receptors. Antibody-bound EVs can be

targeted to different intracellular compartments com-

pared to EVs without antibodies. This has been

observed for EVs from the helminth Heligmosomoides

polygyrus [70]. H. polygyrus EVs pre-incubated with

antisera were targeted to lysosomes. However, lyso-

some targeting has also been observed for antigens

internalised by DC-SIGN [71]. Another possibility is

that EV uptake is enhanced after incubation with anti-

sera, which was observed for F. hepatica EVs and

RAW264.7 macrophages [66]. Differences in route of
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uptake can possibly alter the fate of the EVs and thus

possibly influence EV-induced immunomodulation.

Cross-species communication via EVs that contri-

butes to modulation of host immune responses has

been described previously for helminths, including

H. polygyrus [70] and Nippostrongylus brasiliensis

[72]. In this study, we observed that S. mansoni schis-

tosomula EVs are capable of augmenting activation-

induced cytokine secretion and surface molecule

expression by human moDCs, including both immu-

nostimulatory and regulatory factors (Figure 6). It has

been suggested that a delicate balance between benefit

for the host and benefit for the parasite contributes to

overall survival of the parasite within the host with

limited pathology [3]. The induction of pro-

inflammatory cytokines is a natural response of the

host to the skin-invading pathogen, however, this

response is transient. Priming of a protective adaptive

immune response is hampered, probably via the induc-

tion of regulatory responses by the parasite, such as

increased IL-10 release and PD-L1 expression [12],

allowing the parasite to develop into mature worms

and start egg laying. Different molecules present in

the heterogenous EV population may have contributed

to the observed augmented immune responses. It is

known that DC-SIGN signalling via fucose ligands,

which are motifs found on the N-glycan and lipid-

glycan structures of the EVs, mainly increases IL-10

and decreases pro-inflammatory responses [73]. In

contrast, we observed that blocking DC-SIGN actually

decreased pro-inflammatory TNF-α and IL-12 mRNA

and did not fully reduce the responses to baseline

(Figure 7(e)). Thus, it is likely to assume that schisto-

somula EVs contain a mix of various (glycosylated)

proteins and RNAs (amongst other biological mole-

cules, such as lipids [74]) that all may contribute to

a combined effect on host immunity [6]. Indeed, the

NTA data as well as the cryo EM show at least

a variation in EV size and with or without the thin

filaments, and it is tempting to speculate that these

different EVs may show variation in their surface gly-

can profile and may have specific activities on host

immunity. Interestingly, since total E/S from schisto-

somula increases IL-12, IL-6 and IL-10 release as well

as CD86 expression by mouse BMDCs [11], it is tempt-

ing to suggest that part of the effects of the E/S are

mediated by the EVs in that secretion.

In contrast to the strong blocking effect of anti-DC-

SIGN antibodies on EV internalisation (Figure 4 and

Figure 7(c)), however, blocking DC-SIGN did not sig-

nificantly alter EV-augmented immune responses dur-

ing prolonged stimulation (Figure 7(a–b)). The

variation we detected among donors in reduction or

increase of IL-10 release in the presence of blocking

DC-SIGN (Figure 7(a)) was also observed in another

study that examined glycan-mediated effects by larval

E/S [75]. These donor-specific variances could be asso-

ciated with intrinsic DC-SIGN levels, which vary highly

between and within donors [76]. Furthermore, residual

uptake of EVs via other processes such as (macro-)

pinocytosis or protein–protein interaction could still

have affected the immune activation of moDCs upon

prolonged culture (Figure 7(d)). Shorter incubation,

however, showed that part of the augmented immune

profile of moDCs by schistosomula EVs was indeed

dependent on interaction with DC-SIGN (Figure 7(e))

and provides evidence that interaction of glycans on

the EV surface with DC-SIGN does play a role in

immune modulation of host responses.

In conclusion, our study demonstrates that S. mansoni

schistosomula release glycosylated EVs that carry LeX,

pseudo-LeY, and other fucosylated motifs, and we reveal

a distinct role for DC-SIGN in glycan-mediated inter-

nalisation of EVs by host immune cells. This interaction

contributes to increased pro- and anti-inflammatory

responses, substantiating that EVs play a role in host

immune regulation by helminths to establish and control

infection. Future studies on how EV-associated mole-

cules contribute to immune modulation will further

our understanding of parasite–host interactions and

may provide insights for vaccine development.
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