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Abstract

A linear chain of spheres confined by a transverse harmonic potential experiences localized buck-

ling under compression. Here we present simple experiments using gas bubbles in a liquid-filled

tube to demonstrate this phenomenon. Our findings are supported semi-quantitatively by numer-

ical simulations. In particular we demonstrate the existence of a critical value of compression for

the onset of buckling.
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I. INTRODUCTION

Linear chains of particles have long been popular in providing simple examples for analysis

using classical mechanics. Consequentially, numerous classroom demonstrations entail the

study of such chains; examples include the problem of determining the force exerted by a

falling chain1–3 (a long-standing problem which continues to provoke debate4) the vibrations

(and normal modes5) of a chain of particles6, as a means of demonstrating the properties

of the catenary7 (and related curves), the physics of collisions and shock waves8, as well as

numerous other interesting problems suitable for the undergraduate physics curriculum9.

Much of this work has been largely confined to linear elastic theory and dynamics5,10.The

pedagogical value of such models lies in their essentially one-dimensional nature which is

helpful for observation, analysis and theory. In many respects they share the properties of

two- and three-dimensional systems and therefore provide an easy introduction to these.

Here we extend the suite of classroom demonstrations to linear chains of mutually re-

pelling particles. The particles are compressed along the length of the chain (corresponding

to being trapped by an axial potential in the related physical systems mentioned below)

while also being confined in the radial (or transverse) direction by a cylindrically symmetric

potential. We will focus on the case of static equilibrium, for compressions large enough to

induce complex nonlinear properties.

Our demonstration experiments and the accompanying theory and simulations make

contact with ongoing research in a number of areas, where they may serve as illustration of

the underlying physics, but can also offer inspiration for further measurements. Relevant

research includes that on laser-cooled ions in Penning traps11 and dusty plasmas12. Related

structures have also been observed in experiments with colloids13, microfluidic crystals14 and

magnetic particles15. A more accessible system was introduced by16, using buoyant plastic

spheres in a water-filled tube, rotated by a lathe; structures for a wide range of compression

were reported, and were further analyzed theoretically in17.

The type of arrangement formed by the particles depends on the competition between ra-

dial and axial confinement. When radial confinement dominates the particles form a straight

linear chain; however, on reducing the radial force the preferred (minimum energy) state of

the system transitions from a linear chain to a modulated zigzag structure18. Such systems

have many interesting properties, including buckling, localization (sometimes described in
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FIG. 1: Sketch of the experimental set-up and procedure. After filling, the tube is tilted to

release any excess bubbles, so that only a single line of bubbles remains. The second

stopper is then inserted and manually adjusted to vary the axial compression of the bubble

chain. The observation is carried out under water to avoid air entering the tube. (Inner

diameter of the tube: 6.7 mm, outer diameter 8.0 mm, axial extension of bubbles: D = 2.3

mm)

terms of “kinks” or “solitons”), a variety of alternative (meta)stable structures, topologi-

cal changes, bifurcation diagrams, and a Peierls-Nabarro potential for transitions between

them18,19. The buckling of a linear chain has also been found relevant to mechanical prop-

erties of engineered materials20 and to active colloidal chains in biology21. As mentioned,

buckled structures commonly occur in formations of cooled ions in traps; these in turn find a

range of advanced applications in spectroscopy, quantum computing and reaction kinematics

(see22 for a recent review).

In the present paper we describe for the first time a very simple experimental set-up

that may be used to demonstrate and measure many of the generic nonlinear properties of

such a system. It is easily realized with the simplest equipment available in the class-room

(test tube with stoppers, aquarium pump, dish-washing solution)(Fig.1). The experimental

arrangement consists of gas bubbles trapped in a horizontal liquid-filled tube. The bubbles

are confined axially by opposing walls (stoppers) at either end of the tube. Compressing

the linear chain of bubbles leads to buckling. Further increase of compression generates a

sequence of different modulated zigzag structures. These relate also to previous studies of

3



the packings of hard spheres in cylinders23.

This new type of experiment will enable many fine details to be explored, which have not

so far been analysed for any of the more sophisticated systems mentioned above, especially

when combined with the numerical simulations of the kind presented here.

II. EXPERIMENTAL METHOD AND RESULTS

Bubbles of equal size are produced by blowing air through a nozzle into a solution of

commercial detergent (“Fairy Liquid”) using an air pump with a flow control valve. The

bubbles are introduced into a perspex tube (inner diameter 6.7 mm, outer diameter 8 mm)

which is placed horizontally at the bottom of the container filled with the surfactant solution

(Fig.1), and stoppers are inserted. For a certain separation L0 of these stoppers N bubbles

are only just in contact with one another and the two stoppers. The uncompressed axial

extension D of the bubbles is then D = L0/N . In the experiments reported below we have

used N = 19 bubbles with D = 2.3 mm.

Decreasing the length of confinement L by manually pushing the stoppers, we may observe

and record (as photos or videos) the structures that are formed; for an example see figure

2. For small values of compression ∆, defined as ∆ = N − L/D, the chain of bubbles

remains straight, with all bubbles suffering equal deformation. However, at some critical

value of compression ∆, buckling occurs (see figure 2). The critical value of ∆ is zero for

hard spheres, and finite for soft (elastic) spheres, as in the case of bubbles.

In this regime the buckled structures are found to be planar for rotating cylinders16,17.

They are approximately so for the technique here introduced. Further examples are shown

in figure 3 and numbered for later reference.

To characterize these structures under compression in a simple way we have determined

the width W of the minimal rectangular box which contains all the bubbles of a particular

chain; for an example see figure 4 (top). This is a convenient parameter for measurement by

hand from photographs. However, the data reported below was obtained using the image

processing software ImageJ24.

Figure 4 shows the rescaled width W/D for ten different values of compression ∆, for

all the structures shown in Figure 3. The width increases strongly once the compression

exceeds its critical value.
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FIG. 2: The compression of a linear chain of bubbles results in buckling, once a critical

value of compression is exceeded. (a) Photograph of 19 gas bubbles in a tube filled with

surfactant solution for compression ∆ = 2.36 (corresponding to image/datapoint 6 in

figures 3 and 4). (b) A computer simulation of 19 soft spheres using the model of section

III and ratio of force constants k = 2.25 yields a closely similar structure, cf. the region

around the maximally displaced bubble, marked by an arrow.

Before describing the data in detail we will comment on a particular feature of the exper-

imental set-up. In the case of an uncompressed chain (∆ = 0) of hard spheres the width W

is simply D (which in this case coincides with the sphere diameter). However, two effects

play a role when interpreting W in our experiments with bubbles. Firstly, optical distortion

arising from using liquid-filled tubes leads to a small increase in the ratio W/D also in the

case of hard spheres for these experiments. (We found W/D ' 1.04 for a chain of hard

plastic spheres of diameter 3 mm, placed in the water-filled tube within the container used

for the bubble experiments.) Secondly, our gas bubbles are not spherical even under zero

compression ∆, due to the effect of buoyancy, pressing them against the tube surface.

The combination of these two effects can account for the value of W/D ' 1.14 found for

small compression, ∆ ' 0.13, see Figure 4. Upon further compression the width increases

slightly to about W/D ' 1.23 for ∆ ' 1.56. At ∆ = 2.13 the chain has clearly buckled,
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FIG. 3: Sequence of 10 photographs of a chain of 19 bubbles under compression

(∆i = 0.13, 0.32, 1.00, 1.56, 2.13, 2.36, 2.56, 2.62, 2.80, 2.85). For geometrical dimensions see

text. Compression was progressively increased by small amounts. The solid yellow line

marks the centre of each chain. Buckling becomes visible at the fifth image, leading to a

modulated zig-zag pattern of bubble displacement. Note the eventual exceptional case 10,

in which a transverse pair (or doublet) of bubbles is surrounded by a straight linear chain.

Variation of experimental procedure can produce localization at other places in the chain.
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FIG. 4: The variation of the normalized chain width W/D with compression ∆ reveals the

onset of buckling at a critical value ∆c ' 1.9. Values of ∆ exceeding 2.7 lead to the

occurrence of an increasing number of doublets within the same structure. (Numbers refer

to the chains shown in figure 3, the photograph at the top marks the width W for

structure 7.)

causing a large increase in width to about W/D ' 1.41. A further increase in compression

results in a roughly linear increase of W , as the profile of lateral displacement becomes

increasingly localized (see photograph in figure 4).

At values of compression exceeding ∆ ' 2.7 the localized zig-zag structure gives way to

a straight chain containing a ‘doublet’, a transverse pair of bubbles.

A linear extrapolation of the width variation of the buckled structures would identify the

onset of buckling at around ∆c ' 1.75. However, buckling is generally associated with a

square-root scaling in compression, visible in the simulations described in section III. Taking
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this into account we estimate the critical value of compression to lie somewhere in the range

1.8 < ∆c < 2.0 (figure 4).

III. THEORY AND SIMULATIONS

We have made a preliminary comparison of the above data with results from an elemen-

tary numerical simulation. The basis for this is explained below. We should emphasize that

the simple model for bubble-bubble interactions which we will employ is not intended to be

accurate, so comparison will not be fully quantitative.

We will be concerned with structures of length L, made up of N idealized spherical

particles of diameter D; see figure 5. We will restrict our analysis to structures formed

under low compression, ∆ = N − L/D. We have already shown one simulation result in

figure 2.

To obtain such numerical results we have used the Durian Model25,26. This represents

bubbles as spheres whose overlap is associated with a repulsive force between the bubble

centres. (A similar approach was suggested earlier27.) For a pair of bubbles of equal size,

the interaction energy Ei is Ei = k1
2

(
| ~Ri − ~Ri+1| −D

)2

, where ~Ri are sphere centres and k1

is the spring constant for bubble-bubble interaction. The crude model has proved useful in

foam physics28,29 in providing qualitative and semi-quantitative insights.

In the present case we write the total energy due to contacts, including the contribution of

the two bubbles in contact with the confining walls (i = 1 and (i = N), in the approximate

form

Econtact =
k1

2

[
N−1∑
i=1

((
Xi −Xi+1)2 + (Yi − Yi+1)2

)1/2 −D
)2

+ (
D

2
−X1)2 + (

D

2
+XN − L)2

]
.

(1)

Only the coordinates Xi and Yi enter, an approximation that makes the system planar and

is valid for small values of compression.

The corresponding approximation for the gravitational potential energy due to the buoy-

ancy of a particle held in place by the cylindrical surface is

Egravity =
k2

2

N∑
i=1

Y 2
i . (2)
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FIG. 5: Schematics for the modeling of a chain of soft spheres under compression. (a) Top

view and notation. (b) View along the X direction, showing bubbles (diameter D) pressed

against the surface of a liquid filled tube (radius r). For small displacements Y of a bubble

in the horizontal direction its downward movement leads to an increase in potential energy

due to buoyancy of approximately 1
2

∆ρgV
(r−D/2)

Y 2. Here ∆ρ is the density difference and V is

the volume of the bubble, V = 4
3
(D

2
)3π.

The force constant k2 is given by

k2 = ∆ρg[
4

3
(
D

2
)3π]/(r −D/2), (3)

where ∆ρ is the density difference of gas and liquid, g is acceleration due to gravity and

r is the radius of the cylinder, see figure 5 (b).

The total energy is thus approximated by Etotal = Econtact + Egravity. Expressed as a
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dimensionless energy, E = Etotal/(k2D
2), this may be written as

E(∆) =
1

2
k

N∑
i=0

(δi,i+1 − 1)2 +
1

2

N∑
i=1

y2
i , (4)

where we have introduced the dimensionless quantities xi = Xi/D, yi = Yi/D, δi,i+1 =

((xi − xi+1)2 + (yi − yi+1)2)
1/2

(for 0 < i < N), δ0,1 = 3
2
− x1, δN,N+1 = 3

2
+ xn − (N −∆),

and the ratio of the two force constants

k = k1/k2. (5)

This is essentially the same expression used by20.

The system has been reduced to two dimensions. The situation is rather different in the

other physical systems to which we referred in section I, where planar structures are found

to arise for only low compressions, but are not imposed by geometry at the outset (as we

have done here). That is, planar structures are found in practice and become twisted at

higher compression.

Starting from a small value of compression ∆, and a straight linear chain, we progres-

sively increase ∆. For each step the previous equilibrium structure is used as the starting

structure for minimization (in accord with the experimental procedure). Energy E, eqn.(4),

is minimized numerically with respect to the cordinates xi and yi.

Below a critical value of compression (which depends on the value for the ratio k of the

force constant, eqn.(5)) the minimum energy arrangement corresponds to that of a straight

linear chain, but this buckles to form a zig-zag chain at a critical value of compression, as

in the experiment. (A small perturbation is necessary to promote the instability.)

We performed computations for increments of δ∆ = 0.01 up to compression ∆ = 3.0 for

various values of k. Results for k = 2.5 and N = 19 are collated in Fig.6, in terms of the

dimensionless maximum transverse displacement, ymax = max(|yi|). We have found this to

be a more straightforward quantity for comparison with experiment, rather than width W ,

since W is affected by both optical distortion and bubble deformation, as discussed above.

For values of compression slightly exceeding ∆c = 1.83 we find ymax to vary as (∆−∆c)
1/2,

as is generally the case in buckling transitions. In this range the envelope of the displacement

profile is broad (roughly of cosine form).

For higher values of ∆ there is increased localization of buckling, as in the example

shown in Fig.2. Finally, there is a sudden jump in the maximum transverse displacement
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FIG. 6: Variation of maximum lateral bubble displacement ymax with compression ∆.

Data points correspond to the experimental data of figure 4. The solid line represents

numerical data obtained from a minimization of the energy of a chain of soft particles,

eqn.(4), for a value of the force constant ratio k = 2.5. At the onset of buckling the

numerical results indicate a square-root dependence of ymax with compression.

with increasing compression; at this point the doublet structure (with a transverse pair

of spheres) becomes favourable. The maximum transverse displacement associated with

this increases very slightly with compression, before encountering a further transition. Full

details of this rich scenario, as well as a comprehensive overview of theory and simulation,

are reserved for a future paper.
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IV. COMPARISON WITH EXPERIMENT

Fig.6 also presents experimental data for comparison. Here the maximum lateral bubble

displacement ymax = Ymax/D was obtained by first determining the lateral midpoint of each

bubble and then measuring its distance to the tube axis, using the photographs in Fig. 3.

(The representation of the buckling of a bubble chain using its width W , as in figure 4,

might be more suited in the context of a class-room, since it requires less measurements.)

There is broad agreement between experiment and theory for k = 2.5. Increasing k

moves the critical value of compression ∆c towards zero, the value found for the case of

hard spheres (k1 → ∞)17. The theory also correctly predicts the occurrence of a doublet

structure (number 10 in Fig.3).

We may also seek to estimate k from the relevant experimental parameters. Setting the

dimensional spring constant k1 = γ/226, where γ ' 0.03 N/m is the surface tension of our

surfactant solution, we can evaluate k = k1/k2 using eqn.(3). Inserting ρ = 1000 kg/m3, D

= 2.3 mm and r = 3.35 mm, we obtain k ' 0.5, i.e. a value of the same order of magnitude

as the one found from comparison with numerical data (figure 6).

V. FURTHER DEMONSTRATION EXPERIMENTS

The effects of buckling in a chain of particles can also be illustrated using even simpler

experimental set-ups.

Figure 7 shows an example of a buckled chain of 30 steel spheres (ball bearings) in a tube,

closed with two stoppers. In order to reduce friction we immersed the spheres in vegetable

oil. Related structures can also be investigated using golf or tennis balls in a perspex tube,

or even in a section of roof gutter, and doubtless other ingredients await discovery and

exploitation.

VI. SUMMARY AND OUTLOOK

We have described a simple experimental set-up, suitable for the class- or lecture room,

for the exploration of the nonlinear properties of a chain of spheres under compression. The

experiment demonstrates these properties which have recently lead to a number of publi-

cations on nano-scale systems11,12,30. The simulation method described is straightforward,
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FIG. 7: Buckled chain of 30 steel spheres (diameter 6.32 mm) confined in a perspex

cylinder (inner cylinder diameter 1.6 cm) and under compression, ∆ = 0.85. The spheres,

which are undeformed, are immersed in vegetable oil to reduce friction between them.

(The presence of the oil leads to a large optical distortion; the measured ratio of lateral

sphere extension to sphere diameter is about 1.9.)

and reproduces key features of the experiment. It might also lend itself to exploration in

the context of a computational physics laboratory.

The use of bubbles offers an additional dimension to the experiment which could be

explored: the effective softness of the bubbles is a function of their size. In the present

preliminary work we have used only a single bubble size and treat the softness parameter

(constant k in equation 4) as adjustable. Note that k can also be varied by varying the

cylinder radius.

In previous work we analysed the desk-top toy called “Newton’s Cradle”, i.e. a linear

chain of contacting metal balls, suspended from a railing by attached strings, and thus sub-

ject to a harmonic confining potential, albeit in the direction of the chain31. As is the case in

the present work, this system proved remarkably rich when analyzed in detail. In particular

the break-up of the line of balls following the initial impact is generally overlooked in physics

textbook descriptions. It is hoped that the bubble chain experiment presented here, which

shares with the cradle an economy of effort and expense, provides similar stimulation for

students to look for non-trivial phenomena in chains of confined spheres.

ACKNOWLEDGMENTS

This work was supported by EPSRC grants EP/K032208/1 and EP/R014604/1, and

Science Foundation Ireland (SFI) grant 13/IA/1926. AI acknowledges funding from the

13



TCD Provost’s PhD Project Awards.

∗ permanent address: School of Physics, Trinity College Dublin, Dublin 2, Ireland; ste-

fan.hutzler@tcd.ie

1 MG Calkin and RH March. The dynamics of a falling chain: I. American Journal of Physics,

57.2, 154-157, 1989.
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24 MD Abràmoff, PJ Magalhães, and SJ Ram. Image processing with ImageJ. Biophotonics

international, 11(7):36–42, 2004.

25 DJ Durian. Foam mechanics at the bubble scale. Phys. Rev. Lett., 75:4780–4783, 1995.

26 DJ Durian. Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches.

Phys. Rev. E, 55:1739–1751, 1997.

27 F Bolton and D. Weaire. Rigidity loss transition in a disordered 2D froth. Physical Review

Letters, 65:3449, 1990.

28 D. Weaire and S. Hutzler. The physics of foams. Clarendon press, Oxford, 1999.

29 I Cantat, S Cohen-Addad, F Elias, F Graner, R Höhler, O Pitois, F Rouyer, and A Saint-Jalmes.
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