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Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and 29 

inbreeding. In Papaver rhoeas interaction of cognate pollen and pistil S-determinants 30 

triggers programmed cell death (PCD) of incompatible pollen. We previously identified that 31 

reactive oxygen species (ROS) signals to SI-PCD. ROS induced oxidative post-translational 32 

modifications (oxPTMs) can regulate protein structure and function. Here we have identified 33 

and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had 34 

numerous irreversible oxidative modifications; untreated pollen had virtually none. Our data 35 

provide the first analysis of the protein targets of ROS in the context of SI-induction and 36 

represent a milestone because currently there are few reports of irreversible oxPTMs in 37 

plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a 38 

prominent target. Oxidative modifications to a phosphomimic form of a pyrophosphatase 39 

result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of 40 

pollen proteins during SI and show that this can affect protein function. We suggest that this 41 

reduction in cellular activity could lead to PCD. 42 

 43 

Higher plants perform sexual reproduction using pollination, utilizing specific interactions 44 

between pollen (male) and pistil (female) tissues. Many angiosperms use self-incompatibility 45 

(SI) to prevent self-fertilization and inbreeding. These genetically controlled systems trigger 46 

rejection of “self” (incompatible) pollen. Papaver rhoeas uses a SI system involving the 47 

female S-determinant (PrsS) protein, a ligand secreted by the pistil (Foote et al., 1994) and 48 

the male S-determinant protein, PrpS(Wheeler et al., 2009). SI also triggers PCD, involving 49 

the activation of a DEVDase/caspase-3-like activity (Bosch and Franklin-Tong, 2007). A 50 

MAP kinase, p56, is involved in signalling to SI-PCD(Rudd, 2003; Li et al., 2007; Chai et al., 51 

2017). The actin cytoskeleton is an early target of the SI signalling cascade in Papaver 52 

pollen (Geitmann et al., 2000; Snowman, 2002) beginning with actin depolymerization and 53 

formation of punctate F-actin foci (Geitmann et al., 2000; Snowman, 2002; Poulter et al., 54 

2010). SI also triggers transient increases in reactive oxygen species (ROS) and nitric oxide 55 

(NO) (Wilkins et al., 2011). Live-cell imaging of ROS in growing Papaver pollen tubes, using 56 

chloromethyl- 2’7’-dichlorodihydrofluorescein oxidation, showed that SI induces relatively 57 

rapid and transient increases in ROS, as early as 2 min after SI in some incompatible pollen 58 

tubes. A link between SI-induced ROS and PCD was identified using ROS scavengers, 59 

which revealed alleviation of SI-induced events, including formation of actin punctate foci 60 

and the activation of a DEVDase/caspase-3-like activity(Wilkins et al., 2011). These data 61 

provided evidence that ROS increases are upstream of these key SI markers and are 62 
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required for SI-PCD(Wilkins et al., 2011) and represented the first steps in understanding 63 

ROS signalling in this system.  64 

Exactly how ROS mediate SI-induced events is an important question that needs to be 65 

addressed. One possibility is that oxidative post-translational modifications to proteins 66 

(oxPTMs) are involved. These include reversible modifications to cysteine (e.g. sulfenylation, 67 

disulphide bonds, S-glutathionylation) and methionine (methionine sulfoxide) as well as a 68 

range of irreversible oxPTMs (Møller et al., 2007). In the case of cysteine, reversible 69 

oxPTMs mediate signalling or changes in protein function(Waszczak et al., 2014; Akter et 70 

al., 2015a; Waszczak et al., 2015). NO produced during SI (Wilkins et al., 2011) also 71 

provides the possibility of a role for cysteine S-nitrosylation. Although we had previously 72 

identified ROS as a signal to SI-PCD(Wilkins et al., 2011), earlier studies did not extend to 73 

identifying the protein targets of oxidation. Here investigations were aimed at identifying and 74 

mapping oxPTMs on pollen proteins triggered by SI and H2O2 using LC tandem mass 75 

spectrometry (LC-MS/MS). This is the first study to analyse the protein targets of ROS in the 76 

context of SI-induction and identification and mapping of specific modifications. Our data 77 

reveal that irreversible oxidation is likely to be an important mechanism involved in SI events 78 

in incompatible Papaver pollen and provide the first link between irreversible oxPTMs and a 79 

ROS-mediated physiological process.  80 

 81 

RESULTS 82 

 83 
SI causes oxidative modifications to proteins in incompatible pollen 84 

As we had previously shown that ROS and NO increased during the SI response and played 85 

a role in mediating actin alterations and PCD (Wilkins et al., 2011), we wished to examine 86 

whether pollen proteins were oxidatively modified after SI. We used LC-MS/MS to examine 87 

the extent and type of oxPTMs to pollen proteins during early SI, taking samples 12 min after 88 

SI induction. We compared the SI response with H2O2 treatment to determine which of these 89 

modifications were also induced by artificially generated oxidative stress. A number of 90 

oxidative modifications were detected following both treatments (Tables S1-S3). SI pollen 91 

proteins had far more oxPTMs than untreated pollen. We identified 181 uniquely modified 92 

oxPTM peptides containing 251 different oxidatively modified amino acids in SI-induced 93 

pollen (Table S1), while untreated pollen analysed in an identical manner side by side had 94 

104 uniquely modified peptides with 110 different oxidatively modified amino acids (Table 95 

S2). 262 unique oxPTMs were identified in H2O2-treated pollen (Table S3). Notably, proteins 96 
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which in control conditions contained methionine sulfoxide modification often showed 97 

increased oxidation to the sulfone form following SI induction and H2O2 treatment (Table S1-98 

S3).   99 

 100 

Figure 1. Distribution of the number of unique oxidative modifications to amino acids 101 
on pollen proteins according to function after different treatments. Each unique 102 
oxidatively modified amino acid was counted and categorized according to its function for 103 
each pollen treatment: SI induction (SI), H2O2 or untreated (UT). 104 
 105 

Proteins with oxPTMs were categorised according to their general functions (Figure 1). For 106 

all of the functional groups, the SI samples had increased numbers of unique amino acids 107 

modified by oxidation compared to untreated pollen. The largest difference in numbers of 108 

oxidatively modified amino acids between SI-induced pollen and untreated pollen was found 109 

in the general functional grouping of cytoskeleton (33 vs 9), signalling/regulatory (24 vs 6), 110 

stress related (27 vs 15) and metabolism (60 vs 40), which together comprised 69% of the 111 

modified proteins in SI-induced pollen. However, even in functional groupings where fewer 112 

modifications were found in SI pollen proteins, proportionally the difference compared to 113 
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untreated pollen was large (e.g. for proteins involved in redox, SI had 13 differently modified 114 

amino acids, compared to 2 in untreated). The oxidatively modified proteins identified from 115 

the H2O2-treated pollen were also categorised based on their general functions. Like SI 116 

treatment, proteins involved in metabolism, signalling/regulation, stress and cytoskeleton 117 

comprised the majority (70%) of those with oxPTMs after H2O2 treatment (Figure 1). 118 

Although the frequency of oxPTMs in the dataset will be influenced by protein abundance, it 119 

is striking that cytoskeletal proteins and enzymes involved in energy metabolism represent a 120 

prominent target during the SI response (Table S1, S3). In relation to energy metabolism, a 121 

large proportion of enzymes associated with glycolysis (phosphoglucomutase, 122 

pyrophosphate-dependent phosphofructokinase, glyceraldehyde 3-P dehydrogenase, 123 

enolase, pyruvate kinase, inorganic pyrophosphatase), organic acid metabolism (aconitase, 124 

citrate synthase, citrate lyase, isocitrate dehydrogenase, malate dehydrogenase, 125 

phosphoenolpyruvate carboxylase) and ATP synthesis/use (ATP synthase, ATPases) have 126 

oxPTMs.   127 

 128 

Proteins with oxPTM common to SI and H2O2 treatments  129 

To gain a better idea of the overlap between SI and H2O2- treated samples, we identified 130 

peptides with identical oxPTMs in the SI-induced and the H2O2- treated samples, but not in 131 

untreated pollen (Table 1, S1-S3). 32 peptides shared 44 oxidatively modified amino acids, 132 

with identical modifications found in both SI-induced and H2O2 treated samples. This overlap 133 

gives confidence that the modifications triggered in incompatible pollen tubes are authentic 134 

ROS-mediated events and that these proteins are rapidly oxidatively modified by ROS 135 

formed during SI. There was no overlap between proteins/peptides with S-nitrosocysteine 136 

modifications in SI and H2O2 treated samples, suggesting that those modified during SI 137 

might be specific.  138 

 139 

The proteins identified with identical oxPTMs after SI and H2O2 (Table, 1), suggest that 140 

some key common events are triggered. Actin and tubulin are shared targets, with 10 141 

identical peptides containing 14 shared oxidatively modified amino acids. Other proteins 142 

known to be involved in tip growth, e.g. soluble inorganic pyrophosphatases, Rab GTPases 143 

and several elongation factor subunit peptides were also oxidatively modified in both SI and 144 

H2O2 treated pollen. These modified targets could contribute to inhibition of pollen tube 145 

growth. These data further suggest that protein synthesis and energy metabolism is altered 146 

by ROS during SI.   147 
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 148 

Types of oxidative modifications induced by SI and H2O2   149 

Identifying the nature of the oxPTMs on individual proteins is an important step to 150 

understanding how cells interpret oxidative signals and translate them into a response. The 151 

types of oxidative modifications identified on peptides from SI-induced pollen proteins were  152 

 153 

Figure 2. Distribution of types of oxidative modifications of pollen proteins after 154 
different treatments. Each unique oxidative modification identified on a unique peptide for 155 
each type of pollen treatment: SI induction (SI), H2O2 or untreated (UT) was categorized 156 
according to its type of modification and counted. These were represented proportionally in 157 
pie charts and are shown as a percentage of total counts, with the actual number of 158 
modifications identified in brackets. 159 
 160 

quite different from those identified on peptides from untreated pollen (Figure 2). Notably, 161 

we found that the majority (94%) of the oxidatively modified amino acids in the SI sample 162 

were irreversibly modified (209/223), compared to only 13/107 (12%) in the untreated pollen 163 

sample. Irreversible modifications identified in SI-induced samples included 71 methionine to 164 

Met sulfone, 51 aminoadipic semialdehyde (AASA) on lysine, 38 proline to Glu γ-165 

semialdehyde, and 35 cysteine to cysteic acid; other modifications were kyneurine on 166 

tryptophan (9) and 2-oxohistidine (5; Figure 2). Most of these modifications are to the 167 

highest level of oxidation and irreversible. Few reports of such irreversible oxidative 168 

modifications exist. Cysteines are generally irreversibly oxidized to cysteine sulfonic acid or 169 

cysteic acid in response to severe oxidative stress, which generally leads to protein 170 
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inactivation and degradation (Møller et al., 2007). Modification of lysine to aminoadipic 171 

semialdehyde (AASA) is a carbonylation modification which is the most common type of 172 

irreversible oxidative modification to a protein which generally inhibits the function of 173 

proteins. Together these data demonstrate that during early SI, many proteins are 174 

permanently modified.  175 

 176 

In contrast, the majority of the oxPTMs on untreated pollen proteins were of a reversible 177 

nature (94 out of 107 modifications identified; Figure 2). These mainly comprised 72 178 

methionines modified to Met sulfoxide. Untreated samples also had 21 deamidated amino 179 

acids. In contrast, the SI-induced pollen had no Met sulfoxide modifications; only one 180 

deamidation was identified. H2O2-treatment of pollen also resulted in a majority of 181 

irreversible oxidative modifications (Figure 2), with 218 irreversibly modified amino acids 182 

over 155 different peptides; the remaining 8 oxPTMs were reversible. Irreversible 183 

modifications identified in H2O2 treated samples included 92 proline to Glu γ-semialdehyde, 184 

54 aminoadipic semialdehyde (AASA) on lysine and 52 methionine to Met sulfone.  185 

 186 

Pollen proteins are modified by S-nitrosylation after SI  187 

We previously showed that increases in NO were observed after SI-induction in incompatible 188 

pollen (Wilkins et al., 2011). NO, via S-nitrosoglutathione (GSNO) production could induce 189 

protein S-nitrosylation. Here we directly examined if SI stimulated S-nitrosylation by 190 

analysing protein extracts from pollen after SI induction using LC-MS/MS. First, we 191 

examined pollen protein extracts for S-nitrosylation using western blotting, treating 192 

germinated pollen with GSNO as a comparison. Pollen extracts were selectively labelled for 193 

proteins containing an S-nitrosylated cysteine using iodoTMTzero™, then visualised after 194 

western blotting using an anti-TMT antibody. Both SI-induced and GSNO-treated pollen had 195 

high levels of S-nitrosylation, whereas little staining of S-nitrosylated proteins was detectable 196 

in the untreated pollen (Figure 3). Addition of the reducing agent DTT during protein 197 

extraction resulted in the almost complete loss of staining, verifying that the staining was 198 

detecting oxidised proteins. Thus, SI treated pollen has more S-nitrosylated proteins than 199 

untreated pollen. LC-MS/MS identified 13 S-nitrosocysteine (CySNO) modifications in the SI-200 

induced pollen samples (Table S1, Fig 1). In comparison, only one and three CySNO 201 

modified peptides were identified in untreated and H2O2 treated pollen, respectively. This 202 

provides good evidence for authentic S-nitrosylation of proteins triggered in pollen by SI.    203 
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 204 

Figure 3. Detection of S-nitrosylated proteins from pollen tubes by Western blot 205 
analysis. Western blot of S-nitrosylated proteins detected with PierceTM S-nitrosylation 206 
western blot kit.  UT=Untreated sample, SI=SI-induced sample, GSNO=NO donor S-207 
nitrosoglutathione, GSH= Reducing agent glutathione, SI+DTT=SI induced S-nitrosylated 208 
proteins were reduced by addition of DDT, GSNO+DTT= NO donor treated S-nitrosylated 209 
proteins reduced by addition of DTT. M= Molecular marker (kDa). Right-hand panel: 210 
coomassie blue staining of these S-nitrosylated proteins on SDS-PAGE showing equal 211 
loading of proteins. 212 
 213 

Soluble inorganic pyrophosphatases are targets of ROS-mediated irreversible 214 

modification during SI & H2O2 treatment 215 

Two proteins that were identified as having oxPTMs after SI-induction by LC-MS/MS were 216 

the soluble inorganic pyrophosphatases (sPPases) p26.1a/b (referred to here as 217 

p26a/p26b). These were previously identified as targets for SI-induced phosphorylation 218 

(Rudd et al., 1996; de Graaf et al., 2006; Eaves et al., 2017). Three oxidatively modified 219 

peptides from p26a, comprising 6 oxPTMs, and three from p26b, also comprising 6 oxPTMs, 220 

were identified in SI-induced pollen samples (Table S1, Figure 4A). Most of the 221 

modifications observed in the SI-induced pollen were irreversible; for p26a, Met129 was 222 

irreversibly modified to Met sulfone; Pro38 and Pro130 were both irreversibly modified to Glu 223 

γ-semialdehyde; Trp39 was modified to kynurenine, His40 to 2-oxohistidine, and Lys60 was 224 

modified to AASA. Five irreversible oxPTMs were identified on p26b (His37, 2-oxohistidine; 225 

Met150, met sulfone; Pro151, glu γ-semialdehyde; Lys202 and Lys217, AASA) and one 226 

reversible modification (Asp43, deamidation) (Table S1, Figure 4A). All the modifications 227 

identified in the SI-induced samples of p26a were identical to those identified in samples 228 

from H2O2-treated pollen, suggesting that they are authentic ROS-stimulated modifications. 229 
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In untreated pollen, only reversible Met sulfoxide oxPTMs were identified. These data 230 

provide good evidence for these p26 sPPases (which play a critical role in modulation of 231 

pollen tube growth) as a target of largely irreversible oxidation after SI-induction.  232 

 233 

 234 

Figure 4. Oxidative modifications identified on the sPPase, Prp26.1a/b and alterations 235 
to PPase activity in the p26(3E) mutant recombinant protein. A. Sequence of the 236 
sPPase p26a and p26b from Papaver rhoeas showing the peptides identified from pollen 237 
after SI induction (red), with the oxidatively modified amino acids in bold (small letters); 238 
notably all 8 were also identified in H2O2-treated samples. Modifications indicated in blue 239 
were found in untreated samples. B. PPase activities in recombinant p26a/b and its 240 
phosphomimic/null (3E/A) mutant proteins after treatment with H2O2. Recombinant p26 241 
enzymes were assayed for PPase activity at pH7.2 (white bars) and supplemented with 242 
H2O2  (hatched bars). Values for PPase activity are mean + SE (n > 3). The oxidative 243 
modifications identified on each of these proteins are indicated above the bars. 244 
 245 

We examined the possible effects of ROS on p26a/b further, to see if PPase activity might 246 

be affected. We had previously made triple phosphomimic mutant recombinant proteins 247 

[p26a(3E) and p26b(3’E)], which mimic the three sites phosphorylated during SI and their 248 

corresponding phosphonull mutants [p26a(3A) and p26b(3’A)]. These phosphomimic mutant 249 

proteins exhibited significantly reduced PPase activity in the presence of Ca2+ and/or H2O2 250 

(Eaves et al., 2017).  We treated recombinant p26a/b proteins and their mutant forms with 251 

H2O2 and then analysed them for both PPase activity and oxPTMs using LC-MS/MS. The 252 

phosphomimic recombinant p26a(3E) protein had reduced PPase activity and contained two 253 
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unique irreversible oxidative modifications on Cys119 (cysteic acid) and Met202 (met 254 

sulfone) that were not found in p26a or the phosphonull p26a(3A) treated with H2O2 (Table 2, 255 

Figure 4B). Two further irreversible oxPTMs were identified (cysteic acid on Cys99 and S-256 

nitrosocysteine on Met111) which were also present on the phosphonull mutant p26a(3A) 257 

protein and did not have significantly different PPase activity from the phosphomimic (3E). 258 

However, it is plausible that these, when modified in combination with the other oxidised 259 

amino acids, Cys119 and Met202, may alter function, as Cys99 and Cys119  are adjacent to 260 

the active site (Cooperman et al., 1992). Moreover, Cys119 is also additionally modified by 261 

nitrosylation. The phosphomimic protein p26a(3E) was much more sensitive to H2O2 than 262 

the wild-type enzyme, displaying significantly lower PPase activity (P = 0.0064; Figure 4B). 263 

In contrast, the phosphonull recombinant p26a(3A) protein did not have significantly different 264 

PPase activity from p26a (P = 0.650; Figure 4B). Irreversible oxidative modifications were 265 

also found on the p26b recombinant protein (Met1 and Met223, met sulfone), but no 266 

significant alteration in PPase activity was detected in the phosphomimic mutant p26b(3’E) 267 

compared to that exhibited by p26b and p26b(3’A) after treatment with H2O2 (NS, P = 0.852 268 

and 0.966 respectively; (Figure 4B) ), so these also are unlikely to be involved in modulating 269 

PPase activity. These data suggest that the oxidative modifications on the phosphomimic 270 

p26a(3E) protein contribute to the reduction in PPase activity.   271 

 272 

Cytoskeletal proteins are oxidatively modified after SI-induction  273 

We identified thirty unique oxidatively modified cytoskeletal protein peptides with 36 different 274 

oxidative modifications after SI-induction compared to eight peptides with 9 different oxPTMs 275 

identified in untreated pollen. Notably, these peptides from the SI-induced pollen contained 276 

many more irreversible modifications (31/39, Table S1) than untreated pollen (1/8, Table 277 

S2). It is of interest that the H2O2-treated pollen contained 13 identically modified amino 278 

acids on actin and tubulin as the SI-induced pollen (Table 1). These data confirm that SI 279 

induces a similar ROS response as H2O2 treatment, suggesting these are authentic ROS-280 

mediated events. In addition, three actin binding proteins (ABPs; one profilin and two 281 

fimbrins), identified by 6 different modified peptides containing 8 irreversibly modified 282 

oxPTMs, were found in the SI induced sample (Table S1). Modification of profilin might alter 283 

its affinity for binding to actin filaments or could affect its actin sequestering property. 284 

Similarly, modifications to fimbrin could potentially affect its binding to actin and 285 

consequently affect actin filament bundling. Thus, oxPTMs to these proteins could potentially 286 

impact on the organization of the actin cytoskeleton in incompatible pollen. Although 287 
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previous studies showed that the actin cytoskeleton is a target for ROS signals(Wilkins et al., 288 

2011), these studies were indirect, using ROS scavengers, and we had not previously 289 

shown a direct link between increases in H2O2 and formation of actin punctate foci. Having 290 

identified many oxPTMs on actin in the current study, we examined whether addition of H2O2 291 

might trigger alterations to pollen tube F-actin configuration.  292 

 293 

Figure 5. F-actin alterations in pollen induced by H2O2 in Papaver pollen tubes.  294 
F-actin was visualized with rhodamine-phalloidin using fluorescence microscopy. (A) F-actin 295 
organization in a representative untreated pollen tube, (B-C) H2O2 treated pollen tubes after 296 
5 min, 12 min, 1 h and 3 h of treatment. Alterations were observed as early as 5 min after 297 
treatment. At 1 and 3h large punctate foci of actin were formed. (F-I) Pollen tubes at 5 min, 298 
12 min, 1 h and 3 h after SI-induction showed similar alterations to F-actin. (J-N) Pollen 299 
grains showed similar alterations.  (J) Untreated pollen grain with F-actin filament bundles 300 
(K-L) H2O2 treated pollen grains and (M-N) Scale bar = 10 µm. 301 
 302 

H2O2 stimulates the formation of actin foci in pollen tubes 303 

We treated pollen tubes with either H2O2 or recombinant PrsS to induce SI and used 304 

rhodamine phalloidin staining to observe the alterations in F-actin configuration. In the 305 

untreated pollen tubes (Figure 5A), F-actin filament bundles were visible. Pollen tubes 306 

treated with H2O2 displayed alterations to the F-actin organization as early as 5 min (Figure 307 

5B, C); the typical F-actin filament bundles were significantly reduced, even at 5 and 12 min  308 
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 309 

Figure 6. Quantitation of actin alterations stimulated by ROS and H2O2 in Papaver 310 
pollen. Pollen tubes were treated with SI induction or H2O2 and samples were fixed at 311 
different time points after treatment. F-actin was stained with rhodamine-phalloidin and 312 
examined using fluorescence microscopy. The actin configuration was evaluated by placing 313 
each pollen tubes into one of the three categories: according to Snowman et al (2002): Actin 314 
filaments only (Black bars), foci only (grey bars) or intermediate (i.e. filaments and foci; open 315 
bars). Three independent experiments scoring 100 pollen tubes for each treatment 316 
expressed as percentage of total. Data are mean ± SEM (n=100).  317 
 318 

treatments (p=0.010*, (Figure 6A). After 1h small F-actin foci were present (Figure 5D) and 319 

large punctate foci were observed after 3h of treatment (Figure 5E); after 1-3h of treatment 320 

~80% of pollen tubes contained punctate actin foci (Figure 6A). These alterations triggered 321 

by H2O2 appear very similar to those in SI induced pollen previously observed(Geitmann et 322 

al., 2000; Snowman, 2002; Poulter et al., 2010) (Figure 5F-I, 6B). Non-germinated pollen 323 

grains showed a similar response as the pollen tubes (Fig. 5J-N), showing that these can 324 

also respond to ROS. Our data show that ROS can stimulate major changes in actin 325 

configuration in pollen that are strikingly similar to those observed during SI. Together with 326 

the identification of oxPTMs to actin and associated proteins, this provides further evidence 327 

for the involvement of ROS in the formation of SI-stimulated F-actin punctate foci.  328 
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 329 

Figure 7. Measurement of various protease activities after SI in Papaver pollen 330 
extracts The 20S proteasomal activities in poppy SI response were measured using 331 
fluorogenic peptide substrates in pollen extracts 5h after SI induction (SI) or in untreated 332 
(UT) controls. DEVDase activity was measured as control. Significant increases of 333 
DEVDase, PBA1 and PBE activities were observed in the SI extracts. The actual values of 334 
DEVDase, PBA1 and PBE activities are not comparable, because different probes were 335 
used. Mean ±SD, n=4. *, p<0.05; **, p<0.01. 336 

Increased 20S proteasomal activity is observed after SI 337 

Irreversible oxidation damages proteins. As the 20S proteasome is implicated in removing 338 

oxidatively damaged proteins during apoptosis/PCD(Aiken et al., 2011), we investigated 339 

whether increased proteasomal activity might be triggered by SI. We characterized the 340 

activities of 20S proteasome β subunits β5 (PBE) and PBA1, during the SI-PCD response, 341 

using fluorogenic probes Z-GGL-amc and Ac-nLPnLD-amc as substrates. In the early phase 342 

(1h) of the SI response, there were no statistically significant changes in PBA1 and PBE 343 

activities (data not shown). However, later (5 h after SI), significant increases in both PBA1 344 

and PBE activities were detected (Figure 7). This provides evidence that the 20S 345 

proteasome is activated by SI and could be involved in removal of irreversibly oxidised 346 

proteins in incompatible pollen. 347 
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DISCUSSION    351 

Previously, we showed that SI-induced ROS and NO production are required for pollen tube 352 

PCD (Wilkins et al., 2011) but the mechanism was not determined. Both ROS and NO can 353 

modify proteins and we now show that the SI response involves rapid formation of many 354 

irreversible oxPTMs and provide evidence that this is linked to altered protein function.  355 

Critically, the pattern of oxPTM formation induced by SI overlaps with those induced by 356 

exogenous H2O2 and happens sufficiently rapidly (within 12 minutes) to strongly suggest it is 357 

not a consequence of PCD. Irreversible modifications found were Glu y-semialdehyde (from 358 

proline and arginine), aminoadipic acid (AASA from lysine), Met sulfone, Kynurenine (from 359 

tryptophan), Cysteic acid and 2-oxohistidine. Few reports of rapid irreversible oxidative 360 

modifications exist in plants. Moreover, little is known about the functional consequences of 361 

these irreversible oxPTMs(Møller et al., 2007; Rinalducci et al., 2008; Jacques et al., 2013; 362 

Jacques et al., 2015). The reversible modifications methionine sulfoxide(Jacques et al., 363 

2013) and S-nitrosocysteine(Astier et al., 2011) were also detected but not sulfenylated 364 

cysteines, possibly because our method did not protect these reactive groups during 365 

extraction.  Protein sulfenylation has been detected in plants following H2O2 treatment by 366 

trapping these groups(Waszczak et al., 2014; Akter et al., 2015b; Waszczak et al., 2015).  367 

While cysteine sulfenylation and S-nitrosocysteine formation have been implicated as 368 

mediators of H2O2 (Smirnoff and Arnaud, 2018) and NO(Astier et al., 2011) signalling, the 369 

extent to which irreversible oxPTMs represent damage or have a functional significance is 370 

less well understood. Our results provide the first evidence that rapid production of 371 

irreversible oxPTMs is involved in a physiological response in plants, rather than 372 

representing longer-term oxidative damage.   373 

 374 

Irreversible modification of proteins is likely to inhibit function and they can be marked for 375 

proteolysis by the proteasome(Grune et al., 1996; Berlett and Stadtman, 1997).  Irreversible 376 

protein oxidation is particularly detrimental in the cell, as this can render damaged proteins 377 

inactive or lead to functional abnormalities. Studies have implicated the 20S proteasome as 378 

important for the removal of damaged proteins, as (at least in animal cells) it is more 379 

resistant to oxidative stress than the 26S proteasome, maintaining activity even after 380 

treatment with moderate to high concentrations of H2O2 (Reinheckel et al., 1998; Aiken et al., 381 

2011; Pajares et al., 2015). Moreover, 20S proteasomes can degrade oxidized proteins in 382 

vitro, independent of ubiquitin/ATP(Aiken et al., 2011). We measured a significant increase 383 

in 20S proteasomal activity in SI-induced poppy pollen. This is not inconsistent with the idea 384 
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that protein damage is triggered by SI and that the 20S proteasome may be recruited to 385 

degrade oxidatively damaged proteins during the SI response.  386 

 387 

It is striking that cytoskeletal proteins and enzymes involved in energy metabolism respond 388 

prominently during the SI response. In relation to energy metabolism, a large proportion of 389 

enzymes associated with glycolysis, organic acid metabolism and ATP synthesis/use have 390 

oxPTMs. In animal cells one of the principle targets of protein oxidation is metabolism; 391 

evidence suggests that oxidation of a few metabolic enzymes, especially those involved in 392 

glycolysis, can dramatically affect the cellular energy status, thereby rapidly inducing cellular 393 

dysfunction with a limited number of protein oxidation events. GAPDH is one of the best 394 

examples of oxidation of a metabolic enzyme having direct control over apoptosis in animal 395 

cells(Cecarini et al., 2007; Sirover, 2012; Villa and Ricci, 2016). In yeast, oxidative stress 396 

inactivates GAPDH, enolase and aconitase(Cabiscol et al., 2000). Modulation of metabolism 397 

resulting in inhibition of glycolysis leads to cell death via ROS-mediated cell death in 398 

plants(Kunz et al., 2014). Thus, it is well established that inhibition of glycolysis leads to cell 399 

death. It is noteworthy that cytosolic GAPDH from Arabidopsis was identified as a major 400 

H2O2-oxidised protein; reversible cysteine oxidation resulted in inhibition of its activity 401 

(Hancock et al., 2005; Yang and Zhai, 2017). In plants, there is increasing evidence 402 

supporting the idea that plant cytoplasmic GAPDH has alternative, non-metabolic 403 

“moonlighting” functions triggered by oxPTMs of the protein under stress conditions 404 

(Zaffagnini et al., 2013). A study using Arabidopsis GAPDH knockout lines displayed 405 

accelerated PCD in response to effector-triggered immunity(Henry et al., 2015). Our data 406 

provide a mechanistic link between SI, which triggers PCD, and possible protein targets of 407 

irreversible oxidation that could result in destruction of metabolism. In animal cells there is 408 

good evidence that during apoptosis the loss of energy production contributes to the 409 

dismantling of the cell. A decrease in ATP content during apoptosis has been shown to be 410 

dependent on inhibition of glycolysis, leading to the impairment in the activity of two 411 

glycolysis-limiting enzymes, phosphofructokinase and pyruvate kinase, (Pradelli et al., 412 

2014). While there is currently limited evidence that the oxPTMs modifications observed 413 

here specifically cause SI-mediated PCD, the literature suggests that this may be the case 414 

and this possibility should be investigated in future studies. 415 

 416 

The soluble inorganic pyrophosphatase (sPPase, p26a/b) provides an example of an 417 

enzyme involved in the SI response(de Graaf et al., 2006; Eaves et al., 2017) that is a target 418 
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of SI-ROS oxidation, displaying several oxPTMs within a few minutes of SI induction. 419 

Previously, we showed that p26a/b were phosphorylated following SI and this reduces 420 

PPase enzyme activity(de Graaf et al., 2006); phosphorylation together with Ca2+, ROS and 421 

low pH further inhibited PPase activity(Eaves et al., 2017). Here we show that H2O2 422 

treatment of the mutant recombinant enzyme p26a(3E) resulted in a reduction in PPase 423 

activity. Thus, the phosphomimic amino acid substitutions on this enzyme contribute to an 424 

increased susceptibility to oxidative modification, resulting in a reduction in PPase activity in 425 

vitro. Some of the oxidized residues (Met111 and Asp138) are located in regions of the 426 

protein that could potentially interfere with the enzyme’s catalytic properties, based on 3D 427 

structures of E. coli sPPase(Cooperman et al., 1992). The irreversible modification of 428 

cysteine residues (Cys99 and Cys119) either side of conserved active site residues could 429 

affect function. sPPases are enzymes that hydrolyse inorganic pyrophosphate (PPi) to 430 

provide the driving force for many metabolic reactions. PPi is generated during biopolymer 431 

synthesis and hydrolysed to inorganic phosphate (2Pi); this reaction provides a 432 

thermodynamic pull favouring biosynthesis(Kornberg, 1962). In a biological context, 433 

phosphorylation of p26a during SI in vivo is rapidly followed by an increase in ROS; this 434 

oxidative modification could further reduce PPase activity, which will result in lowering of 435 

ATP levels and further impact on cellular energetics. Thus, our data provide insights into a 436 

novel mechanism whereby PPase activity can be inhibited. Here we not only show that ROS 437 

can contribute to SI by inhibiting a crucial enzyme for biosynthesis, but this provides a 438 

significant advance by providing an example of ROS modifying an enzyme to affect its 439 

activity. This finding could have implications for many biological systems that involve 440 

biosynthesis.  441 

 442 

We show that cytoskeletal proteins (both actin and tubulin) and the ABPs fimbrin and profilin, 443 

are targets of extensive irreversible oxidative modifications. Methionine residues in actin are 444 

commonly oxidised to the irreversible sulfone form, while oxidation of actin methionines has 445 

been reported previously(Dalle-Donne et al., 2001). Moreover, oxidation of key cysteine 446 

residues of actin results in cell death in yeast(Farah et al., 2007). The actin cytoskeleton 447 

plays an essential role in pollen tube growth(Gibbon et al., 1999; Vidali et al., 2001), and is 448 

implicated in mediating apoptosis in yeast. In yeast, during acute oxidative stress, F-actin 449 

forms oxidized actin bodies (OABs) that sequester actin into immobile, non-dynamic 450 

structures that regulate the oxidative stress response, playing a pivotal protective role in the 451 

decision whether to enter apoptosis(Farah et al., 2011). These OABs appear similar to the 452 
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highly stable F-actin foci that we observed in SI(Geitmann et al., 2000; Snowman, 2002; 453 

Poulter et al., 2010) and H2O2-treated pollen (Wilkins et al., 2011). We previously 454 

demonstrated that SI-induced ROS and NO production was required for the formation of 455 

these distinctive actin structures, which were concomitant with initiation of PCD (Wilkins et 456 

al., 2011). Here we show that H2O2 induces the formation of actin foci.  In yeast, it is well 457 

established that a decrease in actin dynamics and accumulation of aggregates of stabilized F-458 

actin can induce ‘actin mediated apoptosis’ (ActMAp) involving ROS-mediated apoptosis(Gourlay 459 

et al., 2004). The apparent underlying similarities in actin involvement in plant PCD have been 460 

commented upon (Franklin-Tong and Gourlay, 2008) and the current study reinforces this idea. 461 

Together, these data suggest that the oxidation of cytoskeletal proteins observed here may 462 

play a key role in SI-PCD in pollen. The role of oxidation in cytoskeletal function in plant cells 463 

requires further investigation. Clearly the cytoskeleton and its associated proteins are an 464 

important target during SI and we have shown for the first time that several are oxidatively 465 

modified. These modifications may affect cytoskeletal dynamics, as several irreversible 466 

modifications occur in the binding domain of actin which would restrict actin or ABPs to bind 467 

with actin and thus might alter actin dynamics.  468 

 469 

We identified several S-nitrosylated proteins in the SI-induced pollen samples. The majority 470 

of NO affected proteins appear to be modified by S-nitrosylation of the thiol group of a single 471 

cysteine residue. To date, around 20 different S-nitrosylated proteins have been 472 

characterized in detail in plants and most of them have been reviewed recently with regard 473 

to their functional significance in NO signaling(Astier et al., 2011; Lamotte et al., 2015). The 474 

identified proteins from plant proteome-wide studies have been shown to take part in major 475 

cellular activities, notably primary and secondary metabolism, photosynthesis, protein 476 

folding, cellular architecture, and stress responses (Astier et al., 2011). It is thought that NO 477 

signalling in plants uses S-nitrosylation of cysteine residues of redox-sensitive proteins 478 

(Wang et al., 2006; Moreau et al., 2010), which can affect protein activity, and so has the 479 

potential to be important in regulating cellular events (Lindermayr et al., 2005; Couturier et 480 

al., 2013). The phosphomimic mutant recombinant protein p26a(3E) sPPase was not only 481 

irreversibly oxidised on Cys119 to cysteic acid but was also nitrosylated on this site. As this 482 

modified protein had significantly reduced PPase activity, it suggests oxidation may play a 483 

role.  484 

 485 

In conclusion, we have shown that oxidation is an important mechanism triggered by the SI 486 
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response in Papaver pollen. Here we have shown that the SI response results in rapid and 487 

extensive oxidation of pollen proteins. Strikingly, many of these oxPTMs are irreversible. We 488 

provide evidence for increased proteasomal activation, which is consistent with the idea that 489 

following inactivation, oxidised proteins may be removed by the 20S proteasome. The 490 

observed oxidative modifications particularly impact enzymes associated with energy 491 

production and the cytoskeleton. In some cases (GAPDH and sPPase here) there is 492 

evidence that such irreversible modifications inhibit critical core metabolic enzyme activity. 493 

These modifications could therefore contribute to the very rapid growth inhibition and PCD 494 

following induction of SI. We also show that actin is a target for extensive irreversible 495 

oxidation and that oxidation stimulates the formation of stable actin foci in pollen. Actin 496 

dynamics have previously been implicated in the decision whether to enter PCD and this 497 

study further suggests that this is the case. Together, our data demonstrate irreversible 498 

oxidation of key pollen proteins and suggest that this triggers a catastrophic reduction in 499 

cellular activity that could lead to PCD. 500 

 501 

 502 

MATERIALS AND METHODS 503 

Pollen tube growth, SI-induction and other treatments 504 

Papaver rhoeas pollen was hydrated then grown in vitro in liquid germination medium (GM) 505 

[0.01% H3BO3, 0.01% KNO3, 0.01% Mg(NO3)2.6H2O, 0.036% CaCl2-2H2O, and 13.5% 506 

Sucrose] at 25°C for 1 h (Snowman, 2002). SI was induced by adding incompatible 507 

recombinant S proteins (final concentration 10 μg mL−1) as described previously (Snowman, 508 

2002). Samples were taken at 12 min after SI-induction. For each SI-induced sample, a non-509 

induced control was prepared by adding only GM to the pollen. For H2O2 treatments, 510 

germinated pollen tubes were treated with H2O2 (2.5 mM) for 12 min, as this was when ROS 511 

increases were detected in incompatible pollen tubes (Wilkins et al., 2011).  Pollen was 512 

harvested by centrifuging, resuspended in HEN buffer (250 mM HEPES/pH7.7, 1 mM EDTA, 513 

0.1mM neocuproine), homogenised on ice and clarified by centrifugation. The protein 514 

content of the supernatant was determined using by Bradford assay (Bradford, 1976), which 515 

was stored at -20ºC until required.  516 

 517 

To generate S-nitrosylated proteins for western blots, germinated pollen was treated with 518 

500 µM NO donor S-nitrosoglutathione (GSNO) for ~30 min. Proteins (60 µg) were extracted 519 

as described above except Trypsin digests were performed without DTT. Peptides were 520 
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adjusted to 3 µg.µL-1 in HEN buffer. Thiols were blocked using 0.2 % S-methyl methane 521 

thiosulfonate (MMTS) and 2.5% SDS and proteins peptides incubated for 20 min at 50°C 522 

then removed using Spin 6 columns (BioRad) and equilibrated in HEN buffer according to 523 

manufacturer’s instructions.  524 

 525 

Detection of S-nitrosylation of proteins by western blot 526 

Protein extracts were prepared as described above and separated by SDS PAGE. Proteins 527 

containing S-nitrosylated cysteine were selectively labelled using iodoTMTzero™. S-528 

nitrosylated proteins were visualised by western blotting using anti-TMT antibody using a 529 

PierceTM S-nitrosylation Western Blot Kit according to the manufacturer’s instructions. 50 530 

mM DTT (dithiothreitol) was added to controls during protein extraction. 531 

 532 

Trypsin digestion  533 

Sample pollen proteins (60 µg) were run into SDS-PAGE and gel plugs containing the 534 

proteins were digested using Trypsin Gold (Promega) according to manufacturer’s 535 

instructions. 10 mM DTT in 100 mM ammonium bicarbonate (pH 8) was added to the protein 536 

and incubated for 30 min at 56°C. Samples were cooled to room temperature and alkylated 537 

with 50 mM iodoacetamide in the dark for 30 min. Tryptic peptides were analysed for 538 

oxidative modifications by mass spectrometry.  539 

 540 

Sample desalting for mass spectrometry 541 

Samples were desalted using ZipTipC18 (Merck Millipore, Germany). Tips were pre-wet in 542 

100% acetonitrile and rinsed in 2x10 µL 0.1% trifluoroacetic acid. Samples were loaded 543 

according to manufacturer’s instructions. ZipTip were washed with 0.1% trifluoroacetic acid 544 

(3x10 µL) to remove excess salts. Peptides were eluted with 10 µL of 50% acetonitrile/0.1% 545 

trifluoroacetic acid. Samples were dried down to remove the acetonitrile, and re-suspended 546 

in 0.1% formic acid solution. Chemicals were from Sigma (Gillingham, Dorset, UK), Fisher 547 

Scientific (Loughborough, Leicestershire, UK) and J.T. Baker (Philipsburg, NJ).  548 

 549 

LC-MS/MS peptide analysis 550 

UltiMate® 3000 nano HPLC series (Dionex, Sunnyvale, CA USA) was used for peptide 551 

concentration and separation. Samples were trapped on µPrecolumn Cartridge, Acclaim 552 

PepMap 100 C18, 5 µm, 100Å 300µm i.d. x 5mm (Dionex, Sunnyvale, CA USA) and 553 

separated in Nano Series™ Standard Columns 75 µm i.d. x 15 cm, packed with C18 554 



 

20 

 

PepMap100, 3 µm, 100Å (Dionex, Sunnyvale, CA USA). Using a 3.2% to 44% solvent B 555 

(0.1% formic acid in acetonitrile) gradient for 30 min. Peptides were eluted directly (~ 350 nL 556 

min-1) via a TriVersa®NanoMate nanospray source (Advion Biosciences, NY) into the LTQ 557 

Velos with Orbitrap™ ETD mass spectrometer (ThermoFisher Scientific, Germany). The 558 

data-dependent scanning acquisition was controlled by Xcalibur™ 2.1 software (Thermo 559 

Fisher Scientific Inc. USA). The mass spectrometer alternated between a full FT-MS scan 560 

(m/z 380 – 1600) and subsequent collision-induced dissociation (CID) MS/MS scans of the 561 

20 most abundant ions. Survey scans were acquired in the Orbitrap™ with a resolution of 30 562 

000 at m/z 400 and automatic gain control (AGC) 1x106. Precursor ions were isolated and 563 

subjected to CID in the linear ion trap with AGC 1x105. Collision activation for the experiment 564 

was performed in the linear trap using helium gas at normalized collision energy to precursor 565 

m/z of 35% and activation Q 0.25. The width of the precursor isolation window was 2 m/z 566 

and only multiply-charged precursor ions were selected for MS/MS. 567 

 568 

Identification of modified peptides and criteria for identifying modified proteins  569 

Oxidation modifications of tryptic peptides from CID MS/MS mass spectra were analysed 570 

against the NCBInr Green Plant database using the SEQUEST algorithm (Thermo 571 

Scientific). As a complete and annotated genome sequence for Papaver rhoeas is not 572 

currently available, identifications were limited to peptides identical to those found in this 573 

database or the few sequences of P. rhoeas submitted to EMBL (European Molecular 574 

Biology laboratory). Two missed cleavages were allowed and were accepted as real hit 575 

proteins with at least two high confidence peptides. The precursor mass tolerance 5 ppm, 576 

MS/MS mass tolerance 0.8 Da and FDR 1% were used. The criteria for ‘real hit proteins’ 577 

were accepted as those containing at least two high confidence peptides. Peptides were 578 

analysed to identify irreversible and reversible oxidative modifications to amino acids.  579 

 580 

For the counts we disregarded the carbamidomethyl modifications as these are an artefact 581 

of iodoacetamide treatment. [However they are shown in the Supplemental Tables for 582 

clarity]. We also counted the number of unique amino acid modifications to oxidatively 583 

modified peptides and grouped these according to protein function using the PANTHER 584 

classification system; https://www.ncbi.nlm.nih.gov/pubmed/27899595 (Mi et al., 2017). 585 

Where a particular ID (GI number) was not in the PANTHER database, we based the protein 586 

identify and protein class according to its classification in NCBI, either directly (the same ID) 587 

or through the identification of similar proteins by BLAST searches and/or the PANTHER 588 

https://www.ncbi.nlm.nih.gov/pubmed/27899595


 

21 

 

protein class for a very similar protein. The remaining proteins were labelled “unclassified”, 589 

but were placed in a functional class if this was obvious from the protein identified.  590 

 591 

p26 analysis and PPase assays 592 

Recombinant His-tagged p26 sPPase proteins (p26.1a and p26.1b) and their triple 593 

substitution phospho-mutant versions: phosphomimic with a glutamic acid [E] substitution 594 

(p26a/b(3E) and the corresponding phosphonull with an alanine [A] substitution (p26a/b(3A) 595 

were for p26a [S13E, T18E and S27E, named p26a(3E)] and p26b [T25E, S41E and S51E, 596 

named p26b(3’E)]. They were prepared as described previously (Eaves et al., 2017). The 597 

p26 protein was diluted to 10 µM in 50 mM Hepes-KOH, pH 8.0, 50 µM EGTA, 2 mM MgCl2.  598 

250 ng aliquots were assayed for free phosphate production using a discontinuous PPase 599 

assay and 2 mM sodium pyrophosphate as substrate (Fiske, 1925); n>3 for each assay. The 600 

assay buffer was supplemented with 10 mM H2O2 as appropriate. Duplicate assay samples 601 

were sent for LC-MS/MS analysis. 602 

 603 

Poppy pollen protein extractions for proteasome and caspase assays  604 

Papaver pollen was collected and snap-frozen in liquid nitrogen. Proteins extracts were 605 

prepared by grinding pollen using a glass homogenizer in proteasome assay buffer [50 mM 606 

Tris-HCl, pH=7.5; 5 mM MgCl2; 250 mM sucrose; 1 mM DTT; 0.05 mg mL-1 bovine serum 607 

albumin (BSA)]. ATP was freshly added to the buffer to a final concentration of 5 mM before 608 

use(Kisselev and Goldberg, 2005). Lysates were sonicated at 10 000 amp for 2×5 s, 609 

incubated on ice for 20 min and centrifuged at 13,200 rpm at 4oC for 20 min. The 610 

supernatant was collected and protein concentration was determined by the Bradford assay. 611 

Protein extracts were aliquoted and stored at -20 oC for use in the proteasome activity 612 

assays. Protein samples for caspase activity assay were extracted using caspase extraction 613 

buffer (50 mM Na-Acetate; 10 mM L-Cysteine; 10% (v/v) Glycerol; 0.1% (w/v) CHAPS; 614 

pH=6.0)(Bosch and Franklin-Tong, 2007). 615 

 616 

Proteasome and caspase activity assays using fluorogenic peptide substrates 617 

Each activity assay (100 μL) contained 10 μg protein lysates and 100 μM of either Z-GGL-618 

amc or Ac-nLPnLD-amc as fluorogenic probes for PBE and PBA1 (both 20S proteasome 619 

subunits) activity measurements respectively. Fluorescence was monitored with the 620 

excitation at 380 nm and emission at 460 nm every 10 mins over a period of 4 h using a 621 

time-resolved fluorescence plate reader (FLUOstar OPTIMA; BMG LABTECH).  622 
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Caspase activity was assayed in caspase activity assay buffer (50 mM Na-Acetate; 10 mM 623 

L-Cysteine; 10% (v/v) Glycerol; 0.1% (w/v) CHAPS; pH=5.0). Each activity assay (100 μL) 624 

contained 10 μg protein lysates and 100 μM fluorogenic probes Ac-DEVD-amc. Caspase 625 

activity was monitored in the plate reader as described(Bosch and Franklin-Tong, 2007). 626 

 627 

REFERENCES 628 

Aiken CT, Kaake RM, Wang X, Huang L (2011) Oxidative Stress-Mediated Regulation of Proteasome 629 
Complexes. Molecular &amp; Cellular Proteomics 10: R110.006924 630 

Akter S, Huang J, Bodra N, De Smet B, Wahni K, Rombaut D, Pauwels J, Gevaert K, Carroll K, Van 631 
Breusegem F, Messens J (2015a) DYn-2 Based Identification of Arabidopsis Sulfenomes. Mol 632 
Cell Proteomics 14: 1183-1200 633 

Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J (2015b) Cysteines 634 
under ROS attack in plants: a proteomics view. Journal of Experimental Botany 66: 2935-635 
2944 636 

Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr 637 
C, Wendehenne D (2011) S-nitrosylation: An emerging post-translational protein 638 
modification in plants. Plant Science 181: 527-533 639 

Berlett BS, Stadtman ER (1997) Protein Oxidation in Aging, Disease, and Oxidative Stress. Journal of 640 
Biological Chemistry 272: 20313-20316 641 

Bosch M, Franklin-Tong VE (2007) Temporal and spatial activation of caspase-like enzymes induced 642 
by self-incompatibility in Papaver pollen. Proceedings of the National Academy of Sciences 643 
USA 104: 18327-18332 644 

Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein 645 
damage in Saccharomyces cerevisiae. Journal of Biological Chemistry  646 

Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, Keller JN (2007) Protein oxidation 647 
and cellular homeostasis: Emphasis on metabolism. Biochimica et Biophysica Acta (BBA) - 648 
Molecular Cell Research 1773: 93-104 649 

Chai L, L Tudor R, S Poulter N, Wilkins K, Eaves D, Franklin C, E Franklin-Tong V (2017) MAP Kinase 650 
PrMPK9-1 contributes to the Self-Incompatibility Response, Vol 174 651 

Cooperman BS, Baykov AA, Lahti R (1992) Evolutionary conservation of the active site of soluble 652 
inorganic pyrophosphatase. Trends in Biochemical Sciences 17: 262-266 653 

Couturier J, Chibani K, Jacquot J-P, Rouhier N (2013) Cysteine–based redox regulation and signaling 654 
in plants. Frontiers in Plant Science 4: 105 655 

Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R (2001) The actin cytoskeleton response 656 
to oxidants: from small heat shock protein phosphorylation to changes in the redox state of 657 
actin itself. Free Radical Biology and Medicine 31: 1624-1632 658 

de Graaf BHJ, Rudd JJ, Wheeler MJ, Perry RM, Bell EM, Osman K, Franklin FCH, Franklin-Tong VE 659 
(2006) Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. 660 
Nature 444: 490-493 661 

Eaves DJ, Haque T, Tudor RL, Barron Y, Zampronio CG, Cotton NPJ, de Graaf BHJ, White SA, Cooper 662 
HJ, Franklin FCH, Harper JF, Franklin-Tong VE (2017) Identification of phosphorylation sites 663 
altering pollen soluble inorganic pyrophosphatase activity. Plant Physiology 173: 1606-1616 664 

Farah ME, Amberg DC, Boone C (2007) Conserved Actin Cysteine Residues Are Oxidative Stress 665 



 

23 

 

Sensors That Can Regulate Cell Death in Yeast. Molecular Biology of the Cell 18: 1359-1365 666 
Farah ME, Sirotkin V, Haarer B, Kakhniashvili D, Amberg DC (2011) Diverse protective roles of the 667 

actin cytoskeleton during oxidative stress. Cytoskeleton 68: 340-354 668 
Fiske CH, Subbarow, Y. (1925) The colorimetric determination of phophorous. Journal of Biological 669 

Chemistry 66 670 
Foote HCC, Ride JP, Franklintong VE, Walker EA, Lawrence MJ, Franklin FCH (1994) Cloning and 671 

Expression of a Distinctive Class of Self- Incompatibility (S) Gene from Papaver rhoeas L. 672 
Proceedings of the National Academy of Sciences of the United States of America 91: 2265-673 
2269 674 

Franklin-Tong VE, Gourlay CW (2008) A role for actin in regulating apoptosis/programmed cell 675 
death: evidence spanning yeast, plants and animals. Biochemical Journal 413: 389-404 676 

Geitmann A, Snowman BN, Emons AMC, Franklin-Tong VE (2000) Alterations in the actin 677 
cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver 678 
rhoeas. Plant Cell 12: 1239-1251 679 

Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and 680 
tube growth. The Plant Cell Online 11: 2349-2363 681 

Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR (2004) A role for the actin cytoskeleton 682 
in cell death and aging in yeast. The Journal of Cell Biology 164: 803-809 683 

Grune T, Reinheckel T, Davies KJ (1996) Degradation of oxidized proteins in K562 human 684 
hematopoietic cells by proteasome. J Biol Chem 271: 15504-15509 685 

Hancock JT, Henson D, Nyirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ (2005) 686 
Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory 687 
target of hydrogen peroxide in Arabidopsis. Plant Physiology and Biochemistry 43: 828-835 688 

Henry E, Fung N, Liu J, Drakakaki G, Coaker G (2015) Beyond Glycolysis: GAPDHs Are Multi-689 
functional Enzymes Involved in Regulation of ROS, Autophagy, and Plant Immune Responses. 690 
PLOS Genetics  691 

Jacques S, Ghesquière B, De Bock P-J, Demol H, Wahni K, Willems P, Messens J, Van Breusegem F, 692 
Gevaert K (2015) Protein methionine sulfoxide dynamics in Arabidopsis thaliana under 693 
oxidative stress. Molecular & Cellular Proteomics 14: 1217-1229 694 

Jacques S, Ghesquière B, Van Breusegem F, Gevaert K (2013) Plant proteins under oxidative attack. 695 
PROTEOMICS 13: 932-940 696 

Kisselev AF, Goldberg AL (2005) Monitoring Activity and Inhibition of 26S Proteasomes with 697 
Fluorogenic Peptide Substrates. In Methods in Enzymology, Vol 398. Academic Press, pp 698 
364-378 699 

Kornberg A (1962) On the Metabolic Significance of Phosphorolytic and Pyrophosphorolytic 700 
Reactions  Academic Press, New York 701 

Kunz S, Pesquet E, Kleczkowski L (2014) Functional Dissection of Sugar Signals Affecting Gene 702 
Expression in Arabidopsis thaliana. . PLoS ONE 9: e100312 703 

Lamotte O, Bertoldo JB, Besson-Bard A, Rosnoblet C, Aimé S, Hichami S, Terenzi H, Wendehenne D 704 
(2015) Protein S-nitrosylation: specificity and identification strategies in plants. Frontiers in 705 
Chemistry 2 706 

Li S, Samaj J, Franklin-Tong VE (2007) A Mitogen-Activated Protein Kinase Signals to Programmed 707 
Cell Death Induced by Self-Incompatibility in Papaver Pollen. Plant Physiol. 145: 236-245 708 

Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-Nitrosylated proteins in 709 
Arabidopsis. Plant Physiol. 137: 921-930 710 

Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: 711 
expanded annotation data from Gene Ontology and Reactome pathways, and data analysis 712 
tool enhancements. Nucleic acids research 45: D183-D189 713 



 

24 

 

Møller IM, Jensen PE, Hansson A (2007) Oxidative Modifications to Cellular Components in Plants. 714 
Annual Review of Plant Biology 58: 459-481 715 

Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants–where do 716 
we stand? Physiologia Plantarum 138: 372-383 717 

Pajares M, Jiménez-Moreno N, Dias IHK, Debelec B, Vucetic M, Fladmark KE, Basaga H, Ribaric S, 718 
Milisav I, Cuadrado A (2015) Redox control of protein degradation. Redox Biology 6: 409-719 
420 720 

Poulter NS, Staiger CJ, Rappoport JZ, Franklin-Tong VE (2010) Actin-binding proteins implicated in 721 
formation of the punctate actin foci stimulated by the self-incompatibility response in 722 
Papaver. Plant Physiology 10.1104: pp.109.152066 723 

Pradelli LA, Villa E, Zunino B, Marchetti S, Ricci JE (2014) Glucose metabolism is inhibited by 724 
caspases upon the induction of apoptosis. Cell Death & Disease 5: e1406 725 

Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T (1998) Comparative resistance of 726 
the 20S and 26S proteasome to oxidative stress. The Biochemical journal 335 ( Pt 3): 637-727 
642 728 

Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives 729 
for the detection of protein oxidation in plants. Journal of Experimental Botany 59: 3781-730 
3801 731 

Rudd JJ, Franklin FCH, Lord JM, FranklinTong VE (1996) Increased phosphorylation of a 26-kD pollen 732 
protein is induced by the self-incompatibility response in Papaver rhoeas. Plant Cell 8: 713-733 
724 734 

Rudd JJ, Osman, K., Franklin, F. C. H., Franklin-Tong V. E. (2003) Activation of a putative MAP kinase 735 
in pollen is stimulated by the self-incompatibility (SI) response. FEBS Letters 547: 223-227 736 

Sirover MA (2012) Subcellular dynamics of multifunctional protein regulation: Mechanisms of 737 
GAPDH intracellular translocation. Journal of Cellular Biochemistry 113: 2193-2200 738 

Smirnoff N, Arnaud D (2018) Hydrogen peroxide metabolism and functions in plants. New Phytol 739 
221: 3 740 

Snowman BN, Kovar, D.R., Shevchenko, G., Franklin-Tong, V.E., and Staiger, C.J. (2002) Signal-741 
mediated depolymerization of actin in pollen during the self-incompatibility response. Plant 742 
Cell 14: 2613-2626 743 

Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. 744 
Molecular biology of the cell 12: 2534-2545 745 

Villa E, Ricci J-E (2016) How does metabolism affect cell death in cancer? The FEBS Journal 283: 746 
2653-2660 747 

Wang Y, Yun B-W, Kwon E, Hong JK, Yoon J, Loake GJ (2006) S-nitrosylation: an emerging redox-748 
based post-translational modification in plants. Journal of experimental botany 57: 1777-749 
1784 750 

Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, Van Molle I, De Smet B, 751 
Vertommen D, Gevaert K, De Jaeger G, Van Montagu M, Messens J, Van Breusegem F 752 
(2014) Sulfenome mining in Arabidopsis thaliana. Proceedings of the National Academy of 753 
Sciences 111: 11545-11550 754 

Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F (2015) Oxidative post-755 
translational modifications of cysteine residues in plant signal transduction. Journal of 756 
Experimental Botany 66: 2923-2934 757 

Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Harper A, 758 
Franklin FCH, Franklin-Tong VE (2009) Identification of the pollen self-incompatibility 759 
determinant in Papaver rhoeas Nature 459: 992-995 760 

Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE (2011) ROS and NO mediate 761 



 

25 

 

actin reorganization and programmed cell death in the Self-Incompatibility response of 762 
Papaver. Plant Physiology  763 

Yang SS, Zhai QH (2017) Cytosolic GAPDH: a key mediator in redox signal transduction in plants. 764 
Biologia Plantarum 61: 417-426 765 

Zaffagnini M, Fermani S, Costa A, Lemaire S, Trost P (2013) Plant cytoplasmic GAPDH: redox post-766 
translational modifications and moonlighting properties. Frontiers in Plant Science 4 767 

 768 

Acknowledgements 769 

The Advion Triversa Nanomate and Thermo Fisher Orbitrap Velos mass spectrometer used 770 

in this research were funded through the Birmingham Science City Translational Medicine:  771 

Experimental Medicine Network of Excellence project, with support from Advantage West 772 

Midlands (AWM). HJC is funded by EPSRC (EP/L023490/1). The Biotechnology and 773 

Biological Sciences Research Council (BBSRC) provided funding for research to NS 774 

(BB/I020004/1 and BB/N001311/1) and MB & NF-T (BB/P005489/1). This projected was 775 

funded by BBSRC grant BB/G003149/1. TH was funded by a Commonwealth PhD 776 

studentship. ZL was funded by a PhD studentship from the China Scholarship Council 777 

(C.S.C.). 778 

 779 

 780 

Supplementary data supporting this research is openly available from the University of 781 

Birmingham data archive at http://findit.bham.ac.uk/.   782 

 783 

Author contributions: VEFT, DJE, TH and ZL designed the research; TH, DJE and ZL, 784 
performed research; HJC contributed mass spectrometry expertise, reagents and analytic 785 
tools; DJE, TH, VEF-T, MB, NS and CGZ analysed data; NS, VEFT and MB wrote the paper.  786 

Competing interests The authors declare no conflict of interest. 787 

Materials & Correspondence 788 
Correspondence: VEF-T: School of Biosciences, College of Life and Environmental 789 
Sciences, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 790 
2TT, UK. Email: v.e.franklin-tong@bham.ac.uk and NS: Biosciences, College of Life and 791 
Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK. Email: 792 
N.Smirnoff@exeter.ac.uk 793 
 794 
Materials: MB: Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth 795 
University, Gogerddan, Aberystwyth, SY23 3EB, UK 796 
 797 
 798 
 799 
 

 

 

http://findit.bham.ac.uk/
mailto:v.e.franklin-tong@bham.ac.uk
mailto:N.Smirnoff@exeter.ac.uk


 

26 

 

Tables 

Table 1.  Overlap between oxidatively modified peptides in SI-induced and H2O2 
treated pollen. Peptides containing the same oxidatively modified amino acids in both SI and H2O2 
treated pollen are listed in column 3. Peptides identified in the H2O2 treated pollen are listed in column 
4; those highlighted in grey have additional oxidative modifications. Modified amino acids are 
indicated by small bold letters, with the type of oxidative modification indicated by superscript  
numbers as follows: 

1
Glu y-semialdehyde (I), 

2
AASA (I), 

3
Met sulfone (I), 

4
Kynurenine (I), 

5
Cysteic 

acid (I), 
6
2-oxohistidine (I), 

7
Met sulfoxide (R), 

8
Carbamidomethyl (R) produced by reaction with 

iodoacetamide during sample preparation, 
9
Deamidation (R), 

10
S-nitrosocysteine (R). Most proteins 

were identified using PANTHER, except a few that were “unclassified” in PANTHER (indicated by *) 
and identified using a BLAST search. 

 

Protein protein 
class 

Modified peptide in SI pollen Modified peptide in H2O2 pollen 

Actin 

 

c
y
to

s
k
e

le
to

n
 

DLYGNIVLSGGSTMFp
1
GIADR  DLYGNIVLSGGSTMFp

1
GIADR 

Actin  EITALAPSSm
3
K EITALAPSSm

3
K  

Actin YPIEHGIVSNWDDm
3
EK YPIEHGIVSNWDDm

3
EK 

Actin  YPIEHGIVTNw
4
DDMEK YPIEHGIVTNw

4
DDm

3
EK  

Actin  DLYGNIVLSGGTTm
3
FPGIADR DLYGNIVLSGGTTm

3
FPGIADR  

Alpha-tubulin  k
2
LADNc

8
TGLQGFLVFNAVGGGTGSGLGSLLLER k

2
LADNc

8
TGLQGFLVFNAVGGGTGSGLGSLLLER 

Alpha-tubulin TIQFVDWc
4
PTGFK TIQFVDWc

4
PTGFk

2
 

Beta tubulin GHYTEGAELIDSVLDVVRk
2
 GHYTEGAELIDSVLDVVRk

2
 

Beta tubulin NSSYFVEw
4
Ip

1
NNVk

2
 NSSYFVEw

4
Ip

1
NNVk

2
 

Beta tubulin m
3
MLTFSVFPSPK m

3
MLTFSVFPSPK 

GAPDH 

  m
e

ta
b

o
lis

m
 

 

  

VALQRDDVELVAVNDPFITTDYMTYMFk
2
 VALQRDDVELVAVNDPFITTDYMTYMFk

2
 

GAPDH DAp
1
MFVVGVNEK DAp

1
MFVVGVNEK 

sPPase AIGLm
3
p

1
MIDQGEKDDK AIGLm

3
p

1
MIDQGEKDDK 

sPPase RSVAAHp
1
w

4
h

6
DLEIGPGAPSVVNAVVEITk

2
 RSVAAHp

1
w

4
h

6
DLEIGPGAPSVVNAVVEITk

2
 

Enolase KYGQDATNVGDEGGFAPNIQENk
2
EGLELLK KYGQDATNVGDEGGFAPNIQENk

2
EGLELLK 

Enolase SFVSDYPIVSIEDPFDQDDw
4
Eh

6
YSk

2
 SFVSDYPIVSIEDPFDQDDw

4
Eh

6
YSk

2
 

HSP70   stress NQVAMNp
1
INTVFDAK NQVAMNp

1
INTVFDAK 

Elongation Factor 2* 

  
 

  
 S

ig
n

a
lli

n
g

/r
e

g
u

la
to

ry
 

GVQYLNEIKDSVVAGFQWASk
2
 GVQYLNEIKDSVVAGFQWASk

2
 

Elongation Factor 2* GVQYLNEIKDSVVAGFQw
4
Ask

2
 GVQYLNEIKDSVVAGFQw

4
ASk

2
 

Predicted EF2-like Nc
8
DPDGPLm

3
LYVSK Nc

8
DPDGPLm

3
LYVSK 

Predicted EF2-like LYMEARp
1
LEDGLAEAIDDGR LYMEARp

1
LEDGLAEAIDDGR 

Eukaryotic initiation 
factor 4 

VQVGVFSATMp
1
PEALEITR VQVGVFSATMp

1
PEALEITR 

RAB GTPase LLLIGDSGVGk
2
 LLLIGDSGVGk

2
 

RAB GTPase  FADDSYLESYISTIGVDFk
2
 FADDSYLESYISTIGVDFk

2
 

RAB GDP 
dissociation inhibitor 

NDYYGGESTSLNLIQLWk
2
 

 

NDYYGGESTSLNLIQLWk
2
 

 

14-3-3-like protein QAFDEAISELDTLGEESYk
2
DSTLIm

3
QLLR  QAFDEAISELDTLGEESYk

2
DSTLIm

3
QLLR  

Methionine synthase 

 

P
ro

te
in

  

b
io

-s
y
n

th
e
s
is

 k
2
LNLPILPTTTIGSFPQTIELR k

2
LNLPILPTTTIGSFPQTIELR 

Methionine synthase GMLTGp
1
VTILNWSFVR GMLTGp

1
VTILNWSFVR 

Serine hydroxyl 
methyl-transferase* 

GIELIASENFTSFAVIEALGSALTNk
2
 

 

GIELIASENFTSFAVIEALGSALTNk
2
 

Serine hydroxyl 
methyl-transferase* 

IMGLDLp
1
SGGHLTHGYYTSGGk

2
 IMGLDLp

1
SGGHLTHGYYTSGGk

2
 

SKS  (SKU5 similar)  
Redox 

 
 

YALNGVSHTDp
1
ETPLK YALNGVSHTDp

1
ETPLKSGKGDGSDAp

1
LFTLKp

1
GK 

2-oxoacid 
dehydrogenase 
acyltransferase  

RTPVSGPKGk
2
PQALQVk

2
 

 
RTPVSGPKGk

2
PQALQVk

2
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Table 2. Oxidative modifications identified by LC/LC MS on the recombinant sPPase 

proteins p26a and p26b after H
2
O

2 
treatment. Oxidative modifications identified on the 

recombinant proteins p26.1a/b and their phosphomimic mutants p26a(3E) and p26b(3E) and their 

phosphonull mutants p26a(3A) and p26b(3A) without and after H2O2 treatment. Irreversible (I), or 

reversible (R).   

 

 800 

p26b  untreated H2O2 treated 

Residue p26b p26b p26b(3’E) p26b(3’A) 

M1 Met sufoxide (R) Met sufoxide (R) Met sufoxide (R) 
Met sulfone (I) 

Met sufoxide (R) 
 

M150 - Met sufoxide (R) Met sufoxide (R) Met sufoxide (R) 

M152 - - Met sufoxide (R) - 

M223 Met sufoxide (R) 
- 

Met sufoxide (R) 
Met sulfone (I) 

Met sufoxide (R) 
Met sulfone (I) 

Met sufoxide (R) 
Met sulfone (I) 

 

 

 

  

p26a   untreated H2O2 treated 

Residue p26a p26a p26a(3E) p26a(3A) 

C99 - - Cysteic acid (I) Cysteic acid (I)  

M111 - - Met sulfone (I) Met sufoxide (R) 
Met sulfone (I) 

C119 - - Cysteic acid (I) 
Nitrosyl (R) 

- 

M129 Met sufoxide (R) 
 

Met sufoxide (R) 
 

Met sufoxide (R) 
 

Met sufoxide (R) 
 

M131 - - Met sufoxide (R) Met sufoxide (R) 

C145 - - - Sulfinic acid 

M202 - - Met sufoxide (R) 
Met sulfone (I) 

Met sufoxide (R) 
 

M210 Met sufoxide (R) - Met sufoxide (R) Met sufoxide (R) 

M211 Met sufoxide (R) - Met sufoxide (R) Met sufoxide (R) 
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Supplemental data 

Table S1. Oxidative modifications of pollen proteins after SI induction 

Table S2. Oxidative modifications found in proteins from untreated pollen 

Table S3. Oxidative modifications of pollen proteins after treatment with H2O2  

 

Additional supplementary data (raw data) supporting this research is openly available from 

the University of Birmingham data archive at http://findit.bham.ac.uk/ 

http://findit.bham.ac.uk/

