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Abstract—Takagi-Sugeno-Kang (TSK) Systems form one type
of conventional fuzzy rule inference system, providing an effective
approach for performing prediction and regression tasks. In a
real-world application, the inputs are usually varying against
time, thereby requiring dynamically maintaining the rule base
in order to maintain and possibly improve the efficacy of such a
system. Situations may become more complicated if the training
data does not sufficiently cover the problem space. Fuzzy Rule
Interpolation (FRI) systems may help, whilst most of which
follow a static approach, tending to process a large amount
of interpolated rules which are generally discarded once the
results are derived. Yet, the interpolated rules may contain
potentially useful information. This paper presents a dynamic
TSK system by exploiting such rules to support subsequent
inference and promote rule bases. The obtained intermediate
rules are directly added into the sparse rule base until it reaches
a certain size. Afterwards, a clustering algorithm is employed
to categorise rules into different groups so that an interpolated
conclusion can be computed using the closest rules selected from
a small number of closest rule clusters. Through systematic
experimental comparisons with the conventional static approach,
it is demonstrated that the proposed dynamic TSK system not
only improves the overall reasoning accuracy but also reduces the
interpolation overheads by avoiding the need for interpolations
of experienced similar observations.

Index Terms—TSK systems, fuzzy rule interpolation, dynamic
fuzzy interpolation, rule clustering, closest rule clusters.

I. INTRODUCTION

Fuzzy rule based inference systems are one successful
representative of knowledge-based systems, the basic idea of
which is to express domain knowledge in the form of “if-
then” production rules involving variable values represented
with fuzzy sets [1]. There are several types of fuzzy systems
popularly applied in the literature. Takagi-Sugeno-Kang (TSK)
models [2] are one of conventional and most widely exploited
types. TSK models use fuzzy sets as rule antecedents and
polynomials as the consequents, directly resulting in crisp
conclusions and thereby, being particularly suitable for solving
regression and prediction problems.

In fuzzy rule based systems, when the input domain is not
fully covered, it is possible that an observation does not match
any rule in the given rule base and hence, no conclusion can
be produced using traditional rule-firing mechanisms. This is
independent of what rule models are employed. Rule bases in
this situation are named as sparse rule bases (not necessarily

literally but signifying incompleteness of such a rule base).
Fuzzy rule interpolation (FRI) has been introduced to deal
with this issue. When an observation does not overlap with
any rule antecedent, FRI helps generate an intermediate rule
by the approximation of neighbouring rules to the observation
in order to obtain a potentially relevant conclusion [3] [4].

In real-world applications of fuzzy systems, the inputs are
usually varying against time and the requirements of fuzzy
systems may change over time. If the frequently appearing
unmatched observations are of high similarity, the use of a
static rule base (one that does not change over time) will
repeat similar work and hence, adversely affect the efficacy of
fuzzy inference systems. Therefore, dynamically maintaining
the rule base is required in an effort to greatly improve the
efficacy of the system concerned through enhanced coverage
of the rule base. Additional information is necessary to design
a dynamic TSK system. Fortunately, FRI offers such potential.
This is because most existing FRI systems tend to produce
a large amount of interpolated rules over time, which are
generally discarded once the results have been derived. Such
interpolated rules may contain potentially useful information,
particularly in terms of the information that reflects the input-
output relationships which were not covered by the original
sparse rule base. Exploiting these interpolated rules may help
update the original sparse rule base, thereby constructing a
dynamic system.

There are many approaches which make the creation of a
real-time rule base possible, in the areas of adaptive fuzzy
control [5] [6] [7] and optimization-based fuzzy rule gen-
eration [8] [9] [10]. Unfortunately, all these techniques are
developed for dense (fully covered) rule bases. They cannot be
applied to sparse rule bases directly due to the inherent pattern-
matching mechanisms used by them, where no conclusion can
be drawn when an observation does not (partially or fully)
match any of the rules in the rule base. Dynamic fuzzy rule
interpolation (D-FRI) [11] provides a novel methodology to
exploit the interpolated rules generated by FRI. However,
it has been particularly designed for Mamdani-type models
whose consequents are fuzzy sets. To construct a dynamic
TSK model, the corresponding interpolation method and rule
promoting process for polynomial consequents are required.

Most existing FRI methods are developed for Mamdani
models rather than for TSK models. However, the initial work
of [12] has introduced a novel framework for performing FRI



with TSK fuzzy inference models, but it relies upon the use of
a static sparse rule base still. In extending the underlying ideas
of this initial interpolation method and D-FRI, a dynamic TSK
system is proposed in this paper. In particular, when running
on a small sized sparse rule base, the outcomes with respect to
unmatched observations are inferred by interpolating a small
number of closest rules with the interpolated results directly
added into the original sparse rule base. When the number of
rules, be they original or interpolated, reaches a certain thresh-
old, rules are clustered first and then, given an unmatched
observation the corresponding conclusion is computed using
the nearest neighbouring rules selected from a small number of
closest rule clusters. The interpolated rules are subsequently,
also integrated into the rule base. Systematic experimental
comparisons against the static approach demonstrate that the
proposed dynamic TSK system can both improve the overall
reasoning accuracy and reduce the interpolation overheads by
extending the rule base coverage.

The rest of this paper is structured as follows. For com-
pleteness, Section II-B outlines the two background techniques
utilised to implement the proposed work: D-FRI and FRI with
TSK models. Section III details the framework of the dynamic
TSK inference systems with a sparse rule base. Section IV
discusses the results of comparative experimental evaluations.
Finally, Section V concludes the paper with future research
pointed out.

II. BACKGROUND

The basic foundations upon which to develop the present
work are outlined in this section.

A. D-FRI

D-FRI [11] presents a Genetic Algorithm (GA)-based dy-
namic FRI method for Mamdani models. The overall inference
process of D-FRI is summarised in Fig. 1. In implementing
this system, scale and move transformation-based fuzzy rule
interpolation (T-FRI) [13] is employed to conduct interpolative
reasoning, producing interpolated rules. The input domain
is divided into a set of hyper-cubes, which are filled with
candidate rules based on their antecedents. Non-empty cubers
are selected as input to a GA-based optimisation process which
is intended to obtain the “best” clustering arrangement of the
non-empty hyper-cubes. In so doing, a set of strong hyper-
cubes which form the candidate clusters and another set of
weak ones which will be merged into the strong hyper-cubes
are generated. Finally, for each of the selected clusters, an
aggregation process is utilised to construct and promote one
new rule which will be added into and hence, enrich the
original rule base.

D-FRI is a well established technique whose details are
beyond the scope of this paper. Note however, that the interpo-
lation and rule promotion process of D-FRI is particularly de-
signed for Mamdani type of fuzzy models whose consequents
are fuzzy sets. To establish a dynamic TSK model, an adapted
approach for polynomial consequents is required. This has led
to the development of a static TSK fuzzy inference system
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that includes interpolation with TSK rules as one of its main
components, as briefly reviewed below.

B. Static TSK Inference System with Interpolation

The overall procedure of the static TSK inference system
that includes rule interpolation is presented in Fig. 2. Due
to the fact that the rule base is sparse, it is possible that
a new observation does not match any rule. Thus, the first
step is to determine whether an observation matches any rule
in the sparse rule base. For the matched input observations,
the conventional TSK inference mechanism is fired to obtain
the conclusion; as for the unmatched ones, TSK interpolation
approach will be applied, which is outlined in the following.
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Fig. 2. Inference process of static TSK system with interpolation
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The framework of interpolation with K neighbours for
TSK models, as recently proposed in [12], provides two
novel implementations: interpolation with K Closest Rules
(KCR) for sparse rule bases of a small size and that K
Closest Rule Clusters (CRC) for large sized rule bases. The
work was motivated by the seminal method of TSK inference
extension (TSK+) [14], which had utilised a similarity measure
to evaluate relationships between unmatched observations and
the given rules, involving all rules in the sparse rule base.
As TSK+ fundamentally requires the use of all given rules,
redundant or even possibly irrelevant rules are also included



in an attempt to compute the final conclusion, which may
introduce an undesirable bias into the results while incurring
significant computational overheads.

To extend the diversity of rules used for interpolation
without involving far too many similar rules (relative to the
size of a given rule base), KCR and CRC are introduced. KCR
is a method that simply imposes a threshold (of K nearest
neighbouring rules to an unmatched observation) for rule bases
that are rather sparse (containing a small number of rules).
CRC is built to deal with rule bases of a large size, where
rules in the sparse rule base are firstly clustered into different
groups based on their representative values of the antecedent
variables, using a conventional clustering algorithm. Those in
the same cluster are deemed to contain similar information.
As such, K closest clusters are selected so that only one rule
which is the nearest to the observation within each cluster is
selected for use as an element of the set of K closest rules. The
conclusion is interpolated by such resulting K closest rules.
In so doing, rules not necessarily having the higher similarity
measures to the observation may be able to participate in the
generation of the final interpolated consequent.

The working of a static TSK system that includes rule in-
terpolation consists of the following key inference procedures.

1) Conventional TSK inference: For a matched input in-
stance, compute the matching degree with respect to each
matched rule. Then, compute a sub-conclusion using the rule
consequent polynomial per matched rule. Finally, integrate all
sub-conclusions to obtain the final outcome in response to this
given input by finding weighted average.

2) Interpolation with K Closest Rules: In KCR, only a
small number (X) of closest neighbouring rules to an un-
matched observation are involved in the interpolated rule
generation, rather than involving all the rules in the sparse
rule base as TSK+ does. Comparing with TSK+, KCR obtains
better results and significantly reduces the time complexity.
It relies on a usual distance metric to gauge the distance
between an observation and a rule and an empirically specified
threshold for K, which in the extreme may be just 2 as with
many FRI approaches for Mamdani models [15].

Note that TSK+ presents a modified similarity measure
based on Euclidean distance [16] to evaluate relationships
between an observation and the given rules, instead of using
the overlapping degrees that conventional TSK models utilise.
A distance factor (DF) is employed to increase the sensitivity
of the similarity measure with regard to the distance between
an observation and a rule antecedent. KCR exploits the same
similarity measure.

Without losing generality, suppose that for simplicity, there
are two normalised fuzzy sets, represented by triangular mem-
bership function A = (aj,a2,a3) and A’ = (a},db,a}),
respectively, their similarity degree S(A, A’) can be defined
as follows:

3 4
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where d is the Euclidean distance between the gravity centres
(or alternatively, representative values [13]) of the two fuzzy
sets and s represents a sensitivity factor, with a smaller
value of which making DF more sensitive to the distance
measure. According to the definition, the greater the value of
S(A, A"), the closer and more similar the two fuzzy sets A
and A’. S(A,A’) =1 if and only if A and A’ are identical,
and S(A,A") = 0 if A and A’ are deemed completely
dissimilar [14]. Similarity between an unmatched observation
and a rule antecedent is assessed through direct extension of
this measure.

Given the above similarity measure, the inference process
of KCR can be outlined as follows. It first selects K closest
rules between the unmatched observation and each of the given
rules according to their similarity degrees. Then, run a TSK+
interpolation process using just the K selected rules to find
the conclusion (through weighted average using the similarity
measure as the weights). Note however that any interpolated
result (which may be viewed as an interpolated rule between
the observation and the result) is abandoned once derived,
despite that many such results may be obtained over time
which may be utilised to perform direct rule firing in future.

3) Interpolation with K Closest Clusters: When applying
KCR in large size sparse rule bases (e.g., for a rule base
consisting of more than 100 rules), it is empirically observed
that the K closest rules with the greatest similarity degrees
may appear to be very similar. This may result in the in-
terpolated rule is also similar to those closest neighbouring
rules (a kin to the over-fitting problem in other data-driven
learning mechanisms). In TSK+, despite that all rules are
involved in rule interpolation, this problem remains because
the similarities of the K rules are much larger than the rest
and the final result is thus still mainly determined by those
closest ones.

To address this important problem, CRC is introduced.
It builds on top of KCR, by first clustering the given rule
base into K clusters using the representative values of the
antecedent variables. Then, only the rule whose antecedent
in each cluster is the most similar to the given observation is
chosen to form a set of K rules to perform the same inference
process as KCR. Unfortunately, as with KCR, information re-
garding interpolated rules is lost after deriving the interpolated
result, which should instead be utilised to improve inference
efficiency in future. This observation leads to the core of the
development of this research.

III. DYNAMIC TSK INFERENCE: AN INITIAL APPROACH

The flow chart of the proposed dynamic TSK fuzzy infer-
ence system is shown in Fig. 3. The system checks whether
an input instance overlaps with any rules in the sparse rule
base at the beginning. If so, it applies conventional TSK
inference mechanism to obtain the outcome. Otherwise, the
FRI process becomes active, with the size of the rule base
being checked first. For a small sized sparse rule base, the
KCR method is employed to compute the interpolated result,
with the interpolated rule directly inserted into the rule base.



) Sparse Rule Base ¢

Observation
Data stream :
atching rulesy,
Yes

Rule Inference

Conclusion

Adding new rules
into rule base

[ )

Number o
rules smaller than
threshold?

No, Clustering rules and selecting &
rule clusters closest to observation

v

Representative rules generated
from selected clusters

Selecting & rules
closest to observation

!

Newly interpolated rules |-

Fig. 3. Inference process of dynamic TSK fuzzy inference system with interpolation

If the number of rules reaches a certain threshold, it signifies
that the rule base is of a large size. In this case, CRC is applied
to obtain the interpolated conclusion. Such interpolated rules
are also added into the rule base.

In so doing, with the increase of the number of rules in
the sparse rule base, the overall system’s coverage will rise
and the interpolation overheads will reduce. The dynamic
rule interpolation and promotion processes are detailed in the
following, in relation to whether KCR or CRC is to be used.
To ease the description, in general, suppose that a sparse rule
base is given, containing m rules with n antecedent variables
each, with each rule represented by:

Ri :if T is Ail, ey Ty is Ai'm

then fi(x1,...,2n) = aio + @121 + ... + Qin%n

(@)

where A; are fuzzy sets assigned as the conditional values of
the input variables x;,7 = 1, ..., n, respectively. Also, suppose
that an (unmatched) observation O = (B, ..., B,,) is present,
with B;,i = 1,...,n being the values taken by Xj.

A. Dynamic KCR Procedure
The procedure of KCR is detailed as follows:

1) Calculate the Euclidean distance between the observa-
tion O and each given rule R;, defined over the rep-
resentative values of the individual variables within the
observation and those of the corresponding antecedent
variables.

2) Select K closest rules by the Quickselect algorithm
[17] (which is utilised purely for efficiency while any
alternative selection mechanism may be employed if
preferred), guided by the Euclidean measures.

3) Calculate the similarity between O and R; that belongs
to the set of the selected K closest rules:

S(Aj1,B1), ..., S(Ajn, Bp)
4) Determine the weight of rule R;:

5) Integrate all K similarities to obtain a working in-
terpolated rule with the following parameters for its
consequent:

S akakn

n = —x—— 3
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D277
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6) Take the observation O as the input to fire the interpo-
lated rule such that the consequent is computed by

f(By, .

7) Construct n triangular fuzzy sets as the antecedents of
the interpolated rule:

,Bn)=ao+a1B1+ ... + a, B,

(B1—¢€,B1,B1+¢€),....,(Bn, —€,Bpn, Bp +€) %)

with € being a small number.
8) Add the interpolated rule into the rule base.

B. Dynamic CRC Procedure

The inference process of CRC is detailed in the following:

1) Cluster all rules into C' different groups by their repre-
sentative values, using fuzzy c-means [18].

2) Calculate the Euclidean distance between the observa-
tion O and the core of each of the C clusters and select
K (K < C) closest clusters.

3) Compute the distance between O and each rule within
each of the chosen K clusters.

4) Find the closest rule R; in each selected cluster as the
representative of that cluster.

5) Calculate the similarity between O and R; that belongs
to the set of the selected K closest rules:

S(Ajl, Bl)7 ceey S(Ajn, Bn)
6) Determine the weight of the rule R;:
a; = S(Ajh Bl) A A S(A]n,Bn)

7) Integrate all K similarities to obtain the interpolated
rule, with the parameters of the consequent being:
S akain

oy = SRR 5)
Zleak

K
a0 — Yp—10kak0
0 - K 9.
Ekzlozk



8) Take the observation O as the input to fire the interpo-
lated rule and compute the final consequent outcome:

F(Bu, ..

9) Construct n triangular fuzzy sets as the antecedents of
the interpolated rule:

(Bi—€¢B1,B1+¢€),....,(By, —€,Bn,Bn+€) (6)

,Bn) =ag + a131 + ...+ aan

with € being a small number.
10) Add the interpolated rule into the rule base.

Note that as CRC is built on top of KCR, it is not surprising
that the key subroutine of CRC (namely, steps 5-10) are the
same as that of KCR (steps 3-8). They are herein presented
separately for clarity.

IV. EXPERIMENTAL EVALUATION

In this section, the performance of the proposed Dynamic
TSK inference system is experimentally compared against the
static system over three benchmark datasets.

A. Three Datasets Used

The datasets run include one consisting of random samples
taken off a nonlinear mathematical model and two real-world
datasets (Stock and Plastic [19]).

1) Nonlinear Function: This dataset comprises two thou-
sand points randomly sampled from the following 3-
dimensional nonlinear function, with the output domain being
[-1, 1: " y

F(a,y) = sin(2) - sin(X) ™

Note that random sampling has been popularly employed
in the literature (e.g., in [21] and [22]), and that the nonlinear
function applied herein has been used in [14] and [23].

2) Stock Dataset: This dataset concerns with stock prices
for ten aerospace companies. The task is to predict the price
for the 10th company given the prices for the rest [19].
The dataset consists of 950 instances and 9 features (i.e.,
antecedent variables), with the output in the range of [34, 62].

3) Plastic Dataset: This dataset contains 1650 instances
and 2 antecedent variables. The task is through regression to
predict how much pressure the plastic materials can hold ac-
cording to their strength in different temperature settings [19].
The output values are in the domain of [10.0, 20.0].

B. Experimental Setup

In the present experimental study, a simple data-driven
fuzzy rule base generation method is employed to create the
rules, given a dataset. Data instances are firstly clustered into
different categories through fuzzy c-means. In general, fuzzy
c-means allows a data point to belong to more than one
cluster with different membership values. For simplicity, in
this work, for simplicity an instance is permitted to belong
to just two clusters (which involve two largest membership
values). As mentioned earlier, rule antecedent variables take
fuzzy values represented by triangular membership functions.
The three parameters of a triangular membership function are
implemented by the infimum, centre and supremum of the

corresponding cluster. The consequent of a rule, which is a
polynomial, is then derived by the popular linear regression
approach as per the work of [20].

Throughout this initial experimental investigation, to sim-
ulate the sparse rule base, observations are regarded as un-
matched if the matching degree is less than 0.3 for all rules.
Also, in the following experiments, 20 rules created from the
training data constitute the original (sparse) fuzzy rule base.
Note that naturally, whether a rule base is large depends on
the actual problem (or dataset provided). Here, the threshold
on the number of rules used to determine the reach of a large
sized rule base is set to 100. Regarding KCR, the number of
closest rules K is empirically set to 3, and regarding CRC, the
number of clusters C' is set to 10 with the number of closest
rule clusters K set to 3. Last but not least, the e value applied
to define triangular fuzzy sets in the process of constructing
interpolated rules is empirically set to 0.01.

C. Results and Discussion

The results are evaluated with respect to the following two
criteria: 1) the accuracy of the computed consequents, in terms
of RMSE (root-mean-square error) in relation to the ground
truth; and 2) the coverage of the rule bases, in terms of the
percentage of the number of instances matching the rules out
of the number of instances in the whole testing set. To enable
a fair comparison, 10 x 5-fold cross-validation is employed.

The t-test is applied to detect whether there is any statisti-
cally significant difference between the results of the dynamic
and static systems. The corresponding null hypothesis is that
the results obtained by the two types of system have no
statistical difference. P-values represents the probability to
accept the null hypothesis. Thus, if the p-value is smaller
than a predefined significance level, the null hypothesis will be
rejected, which indicates that there is a significant difference
between the results of the two systems. The significance level
is herein set to 0.005.

1) RMSE: The mean values and variances are utilised to
describe the distribution of all cross-validation results, as listed
in Table I. These results show that for all three datasets, the
conclusions obtained by the proposed dynamic TSK inference
system are more accurate and robust than those generated by
the static one.

TABLE I
PERFORMANCE IN TERMS OF RMSE

Mean + Variance

Datasets Dynamic Static
Nonlinear model 0.20140.0155 0.23540.0175
Stock Dataset 1.116+£0.161 1.818+0.283
Plastic Dataset 1.536£0.107 1.617£0.164

2) Coverage of rule bases: Table II lists the coverage of the
rule bases by running the dynamic and static TSK inference
systems. As reflected by these experimental outcomes, more
instances overlap with the rules in the dynamic rule base than
those in the static one. The dynamic system can gradually



improve the coverage over time as new rules are promoted and
added into the rule base. Benefiting from this, the dynamic
TSK inference system avoids the need for interpolations
when new observations which are similar to those previously
experienced are presented, thereby reducing computational
overheads.

TABLE II
PERFORMANCE IN TERMS OF COVERAGE

Coverage
Datasets Dynamic Static
Nonlinear model 32.0% 26.0%
Stock Dataset 21.1% 15.7%
Plastic Dataset 36.4% 21.2%

3) T-tests: By examining the experimental results of t-
tests as given in Table III, it can be seen that for all three
datasets, the p-values are all smaller than the predefined
significance level (0.005). Thus, the null hypothesis that there
is no statistical difference between the results of the dynamic
system and those of the static one is rejected. From this,
together with previous conclusions on accuracy and coverage,
it can be said that the proposed dynamic TSK inference system
significantly improves the performance of the static one.

TABLE III
EXPERIMENTAL RESULTS OF T-TEST

Datasets p-value Hypothesis (0.005)
Nonlinear model 1.613e-11 Reject
Stock Dataset 9.825e-8 Reject
Plastic Dataset 4.27e-3 Reject

V. CONCLUSION

This paper has presented an initial investigation into a
novel dynamic TSK inference system suitable for working
with sparse rule bases. Experimental results have demonstrated
that compared to the existing static TSK inference approach,
the proposed system increases the overall reasoning accuracy
while being able to decrease the interpolation overheads by
avoiding the need for interpolations for observations similar
to those experienced.

The proposed work offers many opportunities for further
development. For instance, CRC directly employs the original
fuzzy c-means algorithm in performing rule clustering, but it
may not generate the most appropriate categories since the
rule bases are sparse in the first place. Modified fuzzy c-
means algorithms, e.g., the kernel fuzzy c-means [24] and
suppressed fuzzy c-means [25] may be adopted as the al-
ternative to strengthening the performance. More advanced
clustering methods (e.g., [26] [27]) may help even more. Also,
the parameters required to carry out interpolation, such as the
number of closest rules and that of the clusters are herein
set manually. Introducing an automated way to decide on
these parameters from the training data remains a challenge.
Furthermore, all antecedent variables are treated equally in the

present implementations, how weighted representations as per
the most recent work of [28] may be extended to accommodat-
ing interpolation with TSK models forms another interesting
piece of active research. Last but not least, currently, the
dynamic FRI process repeats itself whenever a new unmatched
observation is interpolated and all newly interpolated rules
are added into the existing rule base. However, it may not
be completely necessary to add all such interpolated rules
as many of them may be clustered and merged as done in
the work of D-FRI. This should help further simplify any
subsequent rule-firing process without making a rule base
overly complicated.
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