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curved channel 
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a r t i c l e i n f o 
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a b s t r a c t 

We derive an expression for the velocity profile of a pressure-driven yield-stress fluid flowing around a two- 
dimensional concentric annulus. This result allows the prediction of the effects of channel curvature on the 
pressure gradient required to initiate flow for given yield stress, and for the width of the plug region and the 
flux through the channel at different curvatures. We use it to validate numerical simulations of the flow from 

a straight channel into a curved channel which show how the fluid first yields everywhere before reaching the 
predicted velocity profile. 
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. Introduction 

Yield stress fluids are found in many situations, from toothpaste to
rilling muds [1,2] . The property of the yield stress is often important,
or example in preventing fluid flow in the absence of applied forces,
nd on the other hand often complicates applications, for example in
equiring large stresses to be applied before a contaminated sludge can
e processed. In enhanced oil recovery [3] the yield stress of a foam
llows it to act as a displacement fluid, pushing oil in front of it. In such
n application it is necessary to predict in which parts of the fluid the
tress will exceed the yield stress, and the material will flow, and where
he stress is so low that either the material does not move at all, or moves
s a solid plug. 

A similar application is foam sclerotherapy [4] , a minimally-invasive
reatment for varicose veins. Varicose veins are not only unsightly but
lso painful, and can often lead to further medical complications. In-
tead of, for example, surgery, such veins can be removed by injecting
 sclerosant-laden foam into the affected vein, in much the same way as
n enhanced oil recovery. The sclerosant must be delivered to the vein
all, without mixing with the blood that is present, to cause the vein to

ollapse and at the same time the foam must push the blood out of the
ein. A foam with a high yield stress is therefore required for the treat-
ent: a large plug region is required for effective blood displacement

nd to prevent too much mixing in the yielded regions close to the vein
alls. 

Perhaps the simplest example of a continuum model for a yield stress
uid is due to Bingham [5] , almost a century ago. This model assumes
ero strain rate below a critical value of the stress, and is therefore in-
lastic; this is a visco-plastic model. This model has been extensively
∗ Corresponding author. 
E-mail address: sxc@aber.ac.uk (S.J. Cox). 
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tudied theoretically, for example for steady pressure-driven flow in
traight channels of different cross-sections [6–8] and for boundary-
riven flow in annuli [6,9] and numerically, for example for flow past
 sphere [10] . 

A great deal of work on Bingham fluids is concerned with Cou-
tte flow [6] , as in a Couette viscometer, in which the fluid is held
etween concentric cylinders and one of the cylinders moves tangen-
ially. Away from the laboratory, many flows of yield stress fluids are
ressure-driven, often in curved or bent pipes [11] . To the best of our
nowledge, closed form analytic solutions for pressure-driven flow in
n annulus have not been previously derived. Norouzi et al. [8] pro-
osed the use of an infinite series solution for the velocity profile in a
urved three-dimensional channel with a rectangular cross-section. We
ake a different approach and, for simplicity, consider the equivalent
D case, but seek a closed form expression for the velocity and stress
rofiles. 

We consider the slow 2D pressure-driven (Poiseuille) flow of a Bing-
am fluid in a curved duct. The Dean number is assumed to be small
 “creeping ” Dean flow), so that we neglect inertia, centripetal forces
nd any consequent secondary flows. In Section 2 we give the govern-
ng equations of the flow, the constitutive equation for the fluid, and
utline our solution, which requires determination of the radial posi-
ions of the yield surfaces. We describe predictions for the velocity and
tress fields in Section 3 . In Section 4 we describe numerical simulations
f the flow from a straight channel into an annulus, which describe the
istance over which the velocity profile makes the transition from one
olution to another. Finally, in Section 5 we discuss the implications of
ur work for flow in narrow curved channels, such as occurs during the
rocess of varicose vein sclerotherapy. 
ch 2020 

ticle under the CC BY-NC-ND license. 
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Fig. 1. The diagram indicates the geometry of the channel under consideration. 
Relative to plane polar coordinates r and 𝜃, the channel has inner radius R i 
and outer radius R o . Fluid flows in the positive 𝜃 direction due to a pressure 
difference 𝑝 in − 𝑝 out . An example of a velocity profile is shown in red, with a 
plug region between yield surfaces at 𝑟 = 𝑟 𝑖 and 𝑟 = 𝑟 𝑜 . 
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. Mathematical model 

.1. Governing equations 

We consider the steady, unidirectional flow of a Bingham fluid in the
nnular channel shown in Fig. 1 , described by polar coordinates r and
. The annulus has inner and outer radii R i and R o respectively, giving
 channel of width ℎ = 𝑅 𝑜 − 𝑅 𝑖 . 

The fluid moves in response to a constant pressure gradient G acting
n the 𝜃-direction, which can be written in terms of the inlet and outlet
ressures p in and p out and the position of the centreline of the channel,
 𝑐 = 

1 
2 

(
𝑅 𝑖 + 𝑅 𝑜 

)
as 𝐺 = ( 𝑝 𝑜𝑢𝑡 − 𝑝 𝑖𝑛 )∕ 𝜃𝑅 𝑐 . Note therefore that the pres-

ure gradient G always appears with the length-scale R c [8,12] to take
nto account that the distance between the ends of the annular region in-
reases with r , and therefore that the pressure gradient should decrease
ith increasing radial position. 

According to Stokes’ equations this pressure gradient is balanced by
he divergence of the stress. For this unidirectional flow the only non-
ero component of the stress tensor 𝜏 is 𝜏r 𝜃 , so this becomes 

 

𝑅 𝑐 

𝑟 
𝐺 = 

1 
𝑟 2 

𝜕 

𝜕𝑟 

(
𝑟 2 𝜏𝑟𝜃

)
. (1)

imilarly, the only non-zero component of the rate-of-strain tensor �̇�

s the r 𝜃 component and the fluid velocity is u 𝜃( r ). In consequence, the
ensorial form of the constitutive equation for a Bingham fluid [13] sim-
lifies and the condition for yielding no longer requires calculation of
he second invariant of the rate-of-strain tensor but becomes simply
 𝜏r 𝜃| > 𝜏y . The constitutive equation is therefore linear: 

𝑟𝜃 = ± 𝜏𝑦 + 𝜇𝑟 
𝜕 

𝜕𝑟 

( 𝑢 𝜃
𝑟 

)
for |𝜏𝑟𝜃| > 𝜏𝑦 

̇ 𝑟𝜃 = 0 for |𝜏𝑟𝜃| ≤ 𝜏𝑦 . 
(2)

e then consider three distinct regions in the flow. The sign in front of
he yield stress is positive in the inner yielded region, where the stress
s positive, and negative in the outer yielded region, where the stress
s negative. In the centre of the channel, where the magnitude of the
hear stress 𝜏r 𝜃 is below the yield stress, there is a “plug ” of fluid with
ero strain-rate. At the wall we impose a no-slip boundary condition,
 ( 𝑅 ) = 𝑢 ( 𝑅 ) = 0 , so that at each side of the plug region, close to the
𝜃 𝑖 𝜃 𝑜 
alls of the channel, the magnitude of the shear stress is greater and
he fluid yields. In these two regions the velocity profile is parabolic,
hile in the plug region the fluid undergoes solid body rotation with u 𝜃
roportional to r . 

We consider the governing equations in dimensionless form relative
o the length-scale h and the velocity scale 𝑈 = 𝐺ℎ 2 ∕ 𝜇. Denoting dimen-
ionless quantities with an asterisk we use 

 

∗ = 

𝑟 

ℎ 
, 𝑢 ∗ 

𝜃
= 

𝑢 𝜃𝜇

𝐺ℎ 2 
, ∇ 

∗ = ℎ ∇ , 𝜏∗ = 

𝜏

𝐺ℎ 
. (3)

ntroducing the channel curvature 𝜅 = ℎ ∕ 𝑅 𝑖 , the momentum balance
q. (1) becomes 

 

( 1 
𝜅
+ 

1 
2 

)
= 

1 
𝑟 ∗ 

𝜕 

𝜕𝑟 ∗ 

(
𝑟 ∗ 2 𝜏∗ 

𝑟𝜃

)
, (4)

here the left hand side arises from writing 𝑅 𝑐 = 𝑅 𝑖 + ℎ ∕2 . The consti-
utive Eq. (2) becomes 

∗ 
𝑟𝜃

= ± 

1 
2 𝐵 + 𝑟 ∗ 

𝜕 

𝜕𝑟 ∗ 

( 

𝑢 ∗ 
𝜃

𝑟 ∗ 

) 

for |𝜏∗ 
𝑟𝜃
| > 𝐵∕2 

̇ ∗ 
𝑟𝜃

= 0 for |𝜏∗ 
𝑟𝜃
| ≤ 𝐵∕2 . 

(5) 

he yield-stress 𝜏y and viscosity 𝜇 are absorbed into a dimensionless
ingham number, representing the ratio of the yield stress to the viscous
tresses [5] : 

 = 

2 𝜏𝑦 
𝐺ℎ 

. (6)

or small values of B the profiles of velocity and stress will be similar
o those for a Newtonian fluid of comparable viscosity. Increasing B at
xed pressure gradient causes a widening plug region to develop in the
entre of the channel and results in a decrease in the fluid flux. 

From this point onwards, we drop the asterisks denoting dimension-
ess quantities. 

.2. Analytic solution 

In the yielded regions, the solution to Eq. (4) takes the form 

𝑟𝜃 = − 

(2 + 𝜅

4 𝜅

)
+ 

𝐶 

𝑟 2 
, (7)

here C is a constant of integration. In principle the constant of inte-
ration could be different in each region of the flow, but matching the
tresses at each yield surface, or by applying a balance between pres-
ure and stress at a selected control volume [14] , indicates that they are
qual. Therefore the shear stress decreases quadratically across the gap,
aking its maximum value at the inner wall 𝑟 = 1∕ 𝜅, where the pressure
radient is greatest. In the absence of a yield stress, 𝐵 = 0 , the velocity
rofile for a Newtonian fluid in this geometry is 

 𝜃( 𝑟 ) = 

1 
4 

( 1 
𝜅
+ 1 

)2 
ln 
( 1 
𝜅
+ 1 

)(
𝑟 − 

1 
𝜅2 𝑟 

)
− 

1 
4 

( 1 
𝜅

)2 
ln 
( 1 
𝜅

)( 

𝑟 − 

( 1 
𝜅
+ 1 

)2 1 
𝑟 

) 

− 

( 2 + 𝜅

4 𝜅

)
𝑟 ln ( 𝑟 ) . (8) 

his profile provides a reference state for the more general case. 
According to the constitutive equation, Eq. (5) , the fluid yields when

he magnitude of the shear stress is equal to B /2. We can therefore find
he positions of the inner and outer yield surfaces, r i and r o , at the points
here 𝜏𝑟𝜃 = 𝐵∕2 and − 𝐵∕2 , respectively: 

 

2 
𝑖 
= 

2 𝐶 (
2+ 𝜅
2 𝜅

)
+ 𝐵 

, 𝑟 2 
𝑜 
= 

2 𝐶 (
2+ 𝜅
2 𝜅

)
− 𝐵 

. (9)

liminating C gives a relationship between the positions of the inner
nd outer yield surfaces, written in terms of modified Bingham numbers

 

± = 

1 
2 

((
2+ 𝜅
2 𝜅

)
± 𝐵 

)
: 

 

+ 𝑟 2 = 𝐵 

− 𝑟 2 . (10)

𝑖 𝑜 
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Fig. 2. The value of the critical Bingham number B c ( Eq. (20) ), above which 
flow ceases, decreases with increasing channel curvature 𝜅. The dashed line 
indicates the upper bound for B in Eq. (18) . 
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n addition, substituting for C in Eq. (7) gives two equivalent expressions
or the stress in terms of the position of either yield surface: 

𝑟𝜃 = − 

(2 + 𝜅

4 𝜅

)
+ 𝐵 

+ 𝑟 𝑖 
2 

𝑟 2 
and 𝜏𝑟𝜃 = − 

(2 + 𝜅

4 𝜅

)
+ 𝐵 

− 𝑟 𝑜 
2 

𝑟 2 
. (11)

hese only apply in each of the two yielded regions of the flow,
1 
𝜅
≤ 𝑟 ≤ 𝑟 𝑖 and 𝑟 𝑜 ≤ 𝑟 ≤ 

1 
𝜅
+ 1 , where substitution into the constitutive

q. (5) gives the velocity profile there. 
Between these regions the fluid moves in a solid-like plug. In this

egion of zero strain-rate, 𝜕 

𝜕𝑟 

( 𝑢 𝜃

𝑟 

)
= 0 , which implies 𝑢 𝜃 = 𝐴𝑟 with A a

onstant found by ensuring that the velocity is continuous at the yield
urfaces. 

Applying no-slip boundary conditions at the walls 𝑟 = 

1 
𝜅

and 𝑟 = 

1 
𝜅
+

 then gives the velocity profile itself: 

 𝜃( 𝑟 ) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝐵 

+ 

( 

𝑟 2 
𝑖 

2 

(
𝑟𝜅2 − 

1 
𝑟 

)
− 𝑟 ln ( 𝑟𝜅) 

) 

for 1 
𝜅
≤ 𝑟 ≤ 𝑟 𝑖 

𝐵 

+ 𝑟 
( 1 
2 
(
𝑟 2 
𝑖 
𝜅2 − 1 

)
− ln 

(
𝑟 𝑖 𝜅

))
for 𝑟 𝑖 ≤ 𝑟 ≤ 𝑟 𝑜 

𝐵 

− 

( 

𝑟 2 
𝑜 

2 

( 

𝑟𝜅2 

(1 + 𝜅) 2 
− 

1 
𝑟 

) 

− 𝑟 ln 
(

𝑟𝜅

1 + 𝜅

)) 

for 𝑟 𝑜 ≤ 𝑟 ≤ 

1 
𝜅
+ 1 ,

(12) 

s well as a condition to determine the position of the inner yield surface
 i : 

 

+ 
(
− ln 

(
𝑟 𝑖 𝜅

)
+ 

1 
2 
(
𝑟 2 
𝑖 
𝜅2 − 1 

))
= 𝐵 

− 

( 

− ln 

( √ 

𝐵 

+ 

𝐵 

− 
𝑟 𝑖 𝜅

𝜅 + 1 

) 

+ 

1 
2 

( 

𝐵 

+ 

𝐵 

− 
𝑟 𝑖 
2 𝜅2 

( 𝜅 + 1) 2 
− 1 

) 

) 

. (13) 

aving found r i , Eq. (10) gives the position of the outer yield surface r o .
To solve Eq. (13) for r i we collect terms in ln ( r i ) and 𝑟 2 

𝑖 
to write it in

he form 

2 𝛼 ln ( 𝑟 𝑖 ) + 𝑟 2 
𝑖 
+ 𝛽 = 0 . (14)

he constants are 

= 

2 𝐵( 𝜅 + 1) 2 

𝐵 

+ 𝜅3 ( 𝜅 + 2) 
, (15)

= 

2( 𝜅 + 1) 2 

𝐵 

+ 𝜅3 ( 𝜅 + 2 ) 

( 

− 𝐵 − 𝐵 

+ ln ( 𝜅) + 𝐵 

− ln 

( √ 

𝐵 

+ 

𝐵 

− 
𝜅

𝜅 + 1 

) ) 

. (16)

quations of the form (14) have an exact solution in terms of the Lambert
 function [15] : 

 𝑖 = 

√ 

− 𝛼 𝑊 

( 

−1 , − 

1 
𝛼
exp 

( 

𝛽

𝛼

) ) 

, (17)

here the −1 branch is used because the second argument is negative. 
Alternatively, it is straightforward to find the root r i numerically us-

ng a root-finding algorithm to solve Eq. (13) . 
This provides the necessary input to give the velocity profile u 𝜃( r ) in

q. (12) in terms of the channel curvature 𝜅 and the Bingham number
 . 

.3. Constraints on the solution 

A Bingham fluid flowing through a straight channel of width 1 due to
 unit pressure gradient will flow provided that B is less than 1. That is,
elow a critical Bingham number B c , the shear stress induced at the walls
f the channel will not exceed the yield stress, and then the material will
ot move. Using y for the cross-channel coordinate, the critical value is
ound when the yield surfaces at 𝑦 = ± 𝐵∕2 reach the walls at 𝑦 = ±1∕2 .
For a solution of Eq. (13) to exist we must have 𝐵 

− positive, giving
n upper bound for the Bingham number: 

 ≤ 

2 + 𝜅

2 𝜅
, (18)

ndicated by the dashed line in Fig. 2 . 
When the fluid is stationary everywhere the yield surfaces coin-

ide with the walls of the channel, i.e. 𝑟 𝑖 = 

1 
𝜅

and 𝑟 𝑜 = 

1 
𝜅
+ 1 . Then

q. (10) gives 

𝐵 + 

( 1 
𝜅
+ 

1 
2 

))( 1 
𝜅

)2 
= 

(
− 𝐵 + 

( 1 
𝜅
+ 

1 
2 

))( 1 
𝜅
+ 1 

)2 
. (19) 

his can be rearranged to give a critical Bingham number 

 𝑐 = 1 − 

𝜅2 

2(( 𝜅 + 1) 2 + 1) 
, (20)

hown in Fig. 2 , above which the flow stops. For small 𝜅, B c tends to one
nd we recover the result for the straight channel. As the channel curva-
ure increases, either through reducing the inner radius R i or increasing
he width h , the value of B c is reduced towards a value of 0.5, indicating
hat a larger pressure gradient is required to induce flow. Thus a small
mount of channel curvature has a surprisingly large effect on inhibiting
ow. 

. Results 

In presenting our results we scale the Bingham number B by its crit-
cal value B c , to represent the magnitude of the yield stress, and shift
adial position to represent distance from the inner wall of the channel,
̂ = 𝑟 − 

1 
𝜅

. 

.1. Velocity 

For a given Bingham number B and channel geometry set by 𝜅, we
an find the positions of both yield surfaces, which are discussed in
ection 3.2 , and hence plot the velocity profile, Eq. (12) , which is shown
n Fig. 3 . The result ( Fig. 3 (a)) is that the fluid velocity decreases and
he plug width increases as the yield stress is increased. As B approaches
 c , the flow stops. 

Fig. 3 (b) shows how the velocity profile is affected by changes in
hannel curvature with fixed fluid properties B . Increasing the channel
urvature 𝜅 reduces the velocity, particularly in the inner half of the
hannel. The slope of the velocity in the plug region is high for large
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Fig. 3. Velocity profile in a curved channel as a function of radial position: (a) for fixed channel curvature 𝜅 = 2 (for which 𝐵 𝑐 = 0 . 8 ) and different Bingham numbers; 
(b) for constant Bingham number 𝐵 = 0 . 5 for different channel curvatures 𝜅. The dots mark the positions of the yield surfaces. 

Fig. 4. The point of maximum velocity r max with fixed channel curvatures 𝜅 as a function of Bingam number B / B c . (a) The radial position of the maximum velocity 
(thick lines), compared with the position of the outer yield surface (thin lines) for several values of channel curvature 𝜅. (b) The value of the maximum velocity 
when 𝑟 = 𝑟 max . 
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urvatures 𝜅 corresponding to high curvature of the stress profile. In
he limit 𝜅 → 0 we obtain the velocity profile for the straight channel
ase [6] with position �̂� ∈ [0 , 1] : 

 𝑥 ( 𝑦 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 
2 �̂� ( 1 − �̂� ) − 

1 
2 𝐵 

(
1 
2 − |�̂� − 

1 
2 |) for |�̂� − 

1 
2 | ≥ 

𝐵 

2 

1 
8 

(
1 − 𝐵 

2 ) − 

1 
4 𝐵 ( 1 − 𝐵 ) for |�̂� − 

1 
2 | < 

𝐵 

2 , 
(21)

hich is included in Fig. 3 (b). 
The point of maximum velocity, close to 𝑟 = 𝑟 𝑜 , moves away from

he outer wall as 𝜅 increases, but the value of the velocity there does
ot change monotonically: for intermediate curvature (e.g. 𝜅 = 1 . 0 ) the
aximum velocity of the fluid exceeds the value in a straight channel. 

Fig. 4 (a) shows that the radial position of the point of maximum ve-
ocity is always greater than or equal to r . Differentiation of the velocity
o 
rofile ( Eq. (12) ) appropriate to radial positions 𝑟 𝑜 ≤ 𝑟 ≤ 

1 
𝜅
+ 1 gives: 

𝑑 

𝑑𝑟 
( 𝑢 𝜃( 𝑟 )) = 𝐵 

− 

( 

𝑟 2 
𝑜 

2 

( 

𝜅2 

( 𝜅 + 1) 2 
+ 

1 
𝑟 2 

) 

− 

(
ln 
(

𝑟𝜅

𝜅 + 1 

)
+ 1 

)) 

. (22)

quating this to zero gives an expression for the radial position of max-
mum velocity r max : 

n 
( 𝑟 max 𝜅

𝜅 + 1 

)
+ 1 = 

𝑟 2 
𝑜 

2 

( 

1 
𝑟 2 max 

+ 

𝜅2 

( 𝜅 + 1) 2 

) 

. (23)

sing the Lambert W-function in the same way as used to find the inner
ield surface r i in Eq. (17) , we can rearrange Eq. (23) into an equation
f the form: 

ln 

( 

1 
𝑟 2 
𝑚𝑎𝑥 

) 

+ 

1 
𝑟 2 
𝑚𝑎𝑥 

+ 𝜁 = 0 (24)
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Fig. 5. Yield surface positions as a function of Bingham number B / B c for dif- 
ferent values of channel curvature 𝜅. 
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Fig. 6. Plug width as a function of Bingham number B / B c for different values 
of channel curvature 𝜅. 
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here the constants 𝛾 and 𝜁 are 

= 

1 
𝑟 2 
𝑜 

, 𝜁 = 

1 
(1∕ 𝜅 + 1) 2 

+ 

2 
𝑟 2 
𝑜 

( ln (1∕ 𝜅 + 1) − 1 ) . (25)

hen the radial position of the maximum velocity is 

 𝑚𝑎𝑥 = 

1 √ 

𝛾 𝑊 

(
0 , 1 

𝛾
exp (− 𝜁∕ 𝛾) 

) , (26)

here the 0 branch is used because the second argument is positive. 
The value of 𝑟 max from Eq. (26) is shown in Fig. 4 (a). As channel

urvature 𝜅 decreases the point of maximum velocity approaches a lin-
ar interpolation between the midpoint of the channel for 𝐵 = 0 and
he outside of the channel for 𝐵 = 𝐵 𝑐 , as for a straight channel. As B in-
reases relative to B c the slope of the velocity profile in the plug region
s reduced (and the fluid velocity also decreases). Hence 𝑟 max approaches
he outer yield surface and they eventually coalesce ( Fig. 4 (a)). For less-
urved channels this coalescence is seen at smaller values of B / B c . 

The value of the maximum velocity itself, 𝑢 𝜃max , is shown in Fig. 4 (b)
or different channel curvatures 𝜅 as the Bingham number B changes.
or 𝐵 = 0 , i.e. a Newtonian fluid, the maximum velocity of the fluid
ncreases as the channel curvature decreases (smaller 𝜅). As B / B c is in-
reased, we notice a crossover where channels with greater curvature
nduce a flow with a higher maximum velocity, and this point occurs at
 radial position further away from the outer wall. 

At the crossover, the yield-stress is relatively small, but nonetheless
ndicates the competition between the curvature of the channel and the
ield stress of the fluid in determining the fluid motion. The position of
he point of maximum velocity is far enough from the outer wall that
he no slip condition is not dominant, but not so close to the inner wall
hat the higher curvature there induces larger stresses. 

.2. Yield surface positions and plug width 

The radial positions of the yield surfaces, from Eq. (17 ), are shown
n Fig. 5 . In the limit B → 0, the material behaves like a Newtonian
uid: there are no yield surfaces and the values r i and r o coincide at a
oint close to the middle of the channel. As the curvature of the channel
ncreases ( Fig. 5 ) this point moves towards the inner wall. As 𝜅 → 0 they
eet at �̂� = 

1 
𝜅
+ 

1 
2 , as in a straight channel. 

As B increases, the two yield surfaces move apart, reaching the inner
nd outer walls precisely when B reaches B c . For large channel curva-
ures 𝜅 the outer yield surface remains close to the centre of the channel
ntil B reaches about half of its critical value, while the position of the
nner yield surface is almost linear in B / B c in all cases. 

The distance between the yield surfaces is the plug width, the region
f low stress in which the material moves as a solid body, shown in
ig. 6 . As B → B c the plug width increases until it spans the whole chan-
el. For channels of larger curvature 𝜅, the plug width increases more
lowly with B and then sharply increases as B approaches B c . For weakly
urved channels (small 𝜅), the plug width becomes linear in B / B c . 

.3. Shear stress 

Eq. (11) shows that the shear stress decreases from the inner to the
uter wall, since the pressure gradient is greatest at the inner wall.
ig. 7 (a) shows the profile of stress in a channel with 𝜅 = 2 for different
alues of the Bingham number B . As B increases towards B c , the stress
ecreases everywhere. 

The effect on the stress of varying the channel curvature 𝜅 is sig-
ificant ( Fig. 7 (b)). As 𝜅 decreases, the plug width increases and the
tress profile becomes straighter, approaching the linear profile found
n a straight channel. As 𝜅 increases the stress on the inner wall in-
reases slightly and decreases significantly on the outer wall, resulting
n a smaller region of unyielded fluid, in agreement with Fig. 6 . 

.4. Flux 

A useful quantity to predict is the amount of fluid that flows through
he channel. We calculate the one-dimensional flux Q , i.e. the amount
f fluid which crosses a particular cross-section per unit time, by inte-
rating the velocity profile ( Eq. (12) ) with respect to radial position: 

 = ∫
1 
𝜅
+1 

1 
𝜅

𝑢 𝜃d 𝑟 

= ∫
𝑟 𝑖 

1 
𝜅

𝑢 𝜃d 𝑟 + ∫
𝑟 𝑜 

𝑟 𝑖 

𝑢 𝜃d 𝑟 + ∫
1 
𝜅
+1 

𝑟 𝑜 

𝑢 𝜃d 𝑟 

= 𝐵 

+ 

( 

𝑟 𝑖 
2 

2 

(1 
2 
− ln 

(
𝑟 𝑖 𝜅

))
− 

𝑟 𝑜 
2 

2 

(1 
2 
+ ln 

(
𝑟 𝑖 𝜅

))
− 

1 
4 𝜅2 

+ 

𝑟 2 
𝑜 
𝑟 2 
𝑖 
𝜅2 

4 

) 

+ 𝐵 

− 
( 

𝑟 2 
𝑜 
ln 
( 

𝑟 𝑜 

1∕ 𝜅 + 1 

) 

+ 

(1∕ 𝜅 + 1) 2 

4 
− 

𝑟 𝑜 
4 

4(1∕ 𝜅 + 1) 2 

) 

. (27) 

ecognising that the flux is the area beneath the velocity curves in Fig. 3 ,
e expect Q to tend to zero as the Bingham number approaches its crit-
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Fig. 7. Stress profiles as a function of radial position, with the position of the yield surfaces, at which the magnitude of the stress is equal to the Bingham number B , 
marked with dots. Thinner curves in the plug regions signify that the stress is not formally defined there. (a) For fixed channel curvature 𝜅 = 2 (for which 𝐵 𝑐 = 0 . 8 ) 
with different Bingham numbers B . (b) For fixed Bingham number 𝐵 = 0 . 5 , with different values of the channel curvature 𝜅. 

Fig. 8. The flux through the channel as a function of Bingham number B / B c for 
different channel curvatures 𝜅. 
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cal value B c , while for 𝐵 = 0 the flux Q is the value for a Newtonian
uid in the same channel. Fig. 8 shows that this is indeed the case. 

Fig. 8 also shows that at low Bingham number the flux is greatest for
eakly-curved channels: increasing curvature of the channel reduces the
mount of material moving through the channel. However, just as for
he maximum velocity ( Fig. 4 (b)), at a moderate value of B / B c close to
.2 there is a crossover, and the flow through a curved channel is greater
or given B / B c . (Note that B c depends on the channel geometry so this is
ot equivalent to an increase of flux due to increased channel curvature
or fixed B .) As the curvature increases the flux becomes almost linear
n B / B c . 

. Flow from a straight to a curved channel 

We have derived the velocity profile for a Bingham fluid in a curved
hannel ( Eq. (12) ), but the question remains as to how this profile is
stablished when fluid enters such a channel. We therefore consider a
eometry in which a straight channel is connected to a curved channel
f the same width ( Fig. 9 ). Fluid in the straight section, far from the join,
ows with the usual profile ( Eq. (21) ) with yield surfaces at 𝑦 𝑐 = 1∕2 ±
∕4 , while fluid in the annular section, again far from the join, flows
ith the velocity profile in Eq. (12) . In between, there is a transition

egion whose length may depend on Bingham number B and/or channel
urvature 𝜅. The flow is steady, but nonetheless we require a numerical
olution of the governing equations, described below, to determine the
ow in the transition region. 

.1. Simulation method 

Simulations were performed with the finite element software,
reeFem ++ [16] . The Stokes equations are written using the weak for-
ulation [17] with velocities in finite element space P 3 and pressures

n P 1. 
We model a Bingham fluid as a generalised Newtonian fluid with

iscosity given by the Papanastasiou approximation [18] , in which an
xponential function is used to smooth over the singularity in viscosity
t the yield surfaces: 

= 

⎛ ⎜ ⎜ ⎝ 1 + 

𝐵 |�̇�| ( 1 − exp ( − 𝑚 | �̇� |) ) ⎞ ⎟ ⎟ ⎠ . (28) 

ere m is a regularisation parameter and |�̇�| = 

√ 

( ̇𝛾 ∶ �̇�)∕2 denotes the

econd invariant of the rate-of-strain tensor. 
We first determine an appropriate value of m by simulating flow in a

urved channel with width ℎ = 1 , where Eq. (12) applies. For 𝑚 = 5000
he sum of the errors in the velocities is less than 10 −5 . The simulation
ommences with 𝐵 = 0 , and then B is slowly increased over 100 itera-
ions, allowing a profile of viscosity to develop according to Eq. (28) . 

We choose the straight channel length to be 𝐿 = 5 , i.e. five channel
idths long. The mesh for the joined straight and curved channel con-

ists of 154,392 triangles, with highest density close to the walls of the
hannel and around the region where the channels meet ( Fig. 9 ). We
ake a unit pressure gradient, which is achieved by setting the inflow
ressure to 𝑝 𝑖𝑛 = 5 + 

𝜋

2 

( 1 
𝜅
+ 

1 
2 

)
and outflow pressure to zero, and record

wo measures of the flow to determine the properties of the transition
egion: 
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3 4 5

6

1 2

L
7

h

Fig. 9. The channel geometry and finite element mesh used in 
the simulations to examine the transition between the velocity 
profile in a straight and a curved channel. The cross-sections 1–
7 are used to probe the development of the velocity profile as 
fluid flows through the channel. The mesh in the figure is made 
of around 15,000 triangles, approximately 10 times coarser than 
the meshes used in the simulations. 

Fig. 10. (a) Velocity profiles in the transition region, shown at the numbered cross-sections indicated in Fig. 9 . Channel curvature is 𝜅 = 0 . 4 and Bingham number 
is 𝐵 = 0 . 6 . (b) Difference between the simulation data and the appropriate analytical velocity profile. 
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• the velocity profile across different cross-sections of the channel.
From this we can find the distances upstream and downstream of
the join between channel sections at which the velocity profiles co-
incide with the analytic ones. 

• the area of the unyielded plug region, normalized by the channel
area. This gives a broader indication of the disruption to the flow
caused by the transition to a curved channel. 

The cross-sections are taken at three positions along the straight
hannel ( Fig. 9 ), at distances 2.5 h , 0.5 h and 0.25 h upstream of the join;
t one cross-section where they join; and at three further cross-sections
n the curved channel at angles of 𝜋/8, 𝜋/4 and 3 𝜋/8 from the join. 

.2. Velocity profiles 

We first set the Bingham number to 𝐵 = 0 . 6 and show the velocity
rofiles for fixed channel curvature 𝜅 = 0 . 4 in Fig. 10 (a). At cross-section
 the velocity profile takes the form of the straight channel velocity
rofile, symmetric about the channel centerline. At cross-sections 2 and
, closer to the start of the curved region, there is a clear deviation from
his profile and the beginning of a smooth transition towards the curved
hannel velocity profile, with fluid moving more slowly in the inner
ielded region. By cross-section 5 the velocity profile almost overlaps
he curved channel velocity profile, with just a small discrepancy near
he outer yield surface. In cross-sections 6 and 7 it is not possible to see
 difference between the curves. 

A more precise indication of convergence is given by the discrepancy
n the velocity along each cross-section, defined as 

 = 𝑢 sim − 𝑢 anal , (29)
here the superscript anal refers to the straight channel profile for
ross-sections 1–3 and to the curved channel profile for cross-sections
–7. Fig. 10 (b) shows that the main differences occur in the yielded
egions, close to the yield surfaces, and particularly (but not unexpect-
dly) around the join (cross-sections 3 and 4) between the two parts of
he channel. Cross sections 1 and 5–7 show very small values for 𝜀 , indi-
ating that a distance 2.5 h or an angle 𝜋/8 away from the join the fluid
s moving with an unchanging analytically-predictable profile. 

.3. Yielded regions 

Fig. 11 shows examples of the shape of the unyielded regions as the
uid moves from a straight to a curved channel for different Bingham
umbers B and curvatures 𝜅. Just after leaving the straight part of the
hannel the plug region narrows until the fluid is yielded. The plug then
eforms over roughly the same distance in the curved part of the chan-
el. The distance over which the fluid yields increases as the annulus
urvature 𝜅 increases and as the Bingham number decreases. The width
f the plug is smaller in the curved channel as expected from Fig. 6 . 

If there was an abrupt change from a uniform flow in the straight
art of the channel to a uniform flow in the curved part of the channel,
he area of the plug region between cross sections 2 and 6 would be 

 

anal 
𝑝 

= 0 . 5 ℎ𝐵 + 

1 
2 
( 𝑟 2 
𝑜 
− 𝑟 2 

𝑖 
) 𝜋
8 
. (30)

learly the actual area of the plug in this transition region is much less
han this. We therefore compare the area of the plug region found in
he simulations between these cross-sections, 𝐴 

sim 
𝑝 

, with this idealised

alue. In the limit 𝜅 → 0 we expect 𝐴 

sim 
𝑝 

→ 𝐴 

anal 
𝑝 

. 
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(a) B= 0.2, κ= 0.22 (b) B= 0.4, κ= 0.22 (c) B= 0.6, κ= 0.22

(d) B= 0.2, κ= 0.40 (e) B= 0.4, κ= 0.40 (f) B= 0.6, κ= 0.40

(g) B= 0.2, κ= 0.66 (h) B= 0.4, κ= 0.66 (i) B= 0.6, κ= 0.66

Fig. 11. The outline of the plug region between 
cross sections 2 and 6 is shown for three different 
values of the Bingham number B and three dif- 
ferent values of the channel curvature 𝜅. Note 
how the fluid yields just downstream of where 
the straight channel meets the curved channel. 

Fig. 12. The relative area of the plug region 1 − 𝐴 

sim 
𝑝 

∕ 𝐴 

anal 
𝑝 

as a function of chan- 
nel curvature 𝜅 in the region between cross-sections 2 and 6. The data for 𝜅 = 0 . 0 
is from a simulation of an equivalent area of a straight channel with ℎ = 1 . 0 . 
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Fig. 12 shows the relative plug area for three different Bingham
umbers as a function of channel curvature. We choose to show 1 −
 

sim 
𝑝 

∕ 𝐴 

anal 
𝑝 

, which is a measure of the “missing ” area of unyielded fluid

etween cross-sections 2 and 6. Relative to our naive prediction 𝐴 

anal 
𝑝 

,

his extra area of yielded fluid increases as the channel becomes more
urved, indicating that the transition region becomes longer, in agree-
ent with Fig. 11 . This effect is stronger for small Bingham numbers,

or which the plug is narrowest. 

. Discussion and conclusion 

Poiseuille flows of yield stress fluids in curved channels have at-
racted relatively little attention. It is clear that the scenario we describe,
f a pressure-driven flow in a curved channel, is difficult to implement
n an experiment in isolation. Instead, it could be thought of as one el-
ment of, for example, a network of pipes conveying some yield stress
uid, which due to certain constraints must be made to turn a corner. 

Our predictions allow the effect of such a situation to be determined,
or example the drop in flux associated with such a bend, as a function
f the material parameters of the fluid. This work also provides a more
tringent test against which to validate simulation codes for rheological
odels in non-trivial geometries and as a base flow which is perturbed
hen the flow-rate increases and secondary flows may arise. 

Our main result, Eq. (12) , provides detailed insight into the depen-
ence of the flow on the dimensions of the channel. It allows us to
dentify non-monotonicity in the flow, in particular in the region of
aximum velocity ( Fig. 4 (b)), stress ( Fig. 7 (b)) and flux ( Fig. 8 ) in the

hannel. 
In terms of the Bingham number B , we consider two extreme situa-

ions. For small B , the fluid behaves like a Newtonian fluid, with rela-
ively large velocity and large stress on the inner wall. Such a material
s likely to be ineffective at displacing a second fluid (in the example
f varicose vein treatments, this second fluid is the blood that initially
lls the vein), because it will be prone to instabilities such as viscous
ngering. 

In the other limit, as B → B c , the flow is dominated by the yield stress
f the fluid and is relatively slow. The majority of the material moves
s a large plug which almost completely spans the channel ( Fig. 6 ).
n applications, it is this plug region which is essential for displacing
nother fluid. So a large Bingham number is required in varicose vein
chlerotherapy. 

Our result also indicates that the degree of curvature of the channel
ffects the efficacy of a displacement flow. For a given Bingham num-
er B , the width of the plug region is smaller for channels with greater
urvature. In the varicose vein example, a vein that is manipulated in
uch a way to reduce its curvature should be treated more effectively. 

Our simulations of the transition in the velocity profile as fluid moves
rom a straight channel to a curved one indicate that in this region the
uid yields ( Fig. 11 ), albeit over a short distance. But in this yielded
egion there is likely to be a good deal of mixing between blood and
oam during sclerotherapy, which again highlights the importance of
eeping the vein as straight as possible during treatment. 
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