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ABSTRACT 

Self-incompatibility (SI) in Papaver rhoeas triggers dramatic actin alterations in pollen. 

However, how actin alterations in SI pollen tubes are mechanistically achieved remains 

largely unexplored. Here we have used treatment with the calcium ionophore A23187 

to mimic the SI-induced elevation in cytosolic Ca2+ and trigger the formation of the 

distinctive F-actin foci. Live-cell imaging reveals that this remodeling involves F-actin 

fragmentation and depolymerization, accompanied by the rapid formation of punctate 

actin foci and subsequent increase in their size. We establish that actin foci are 

generated and enlarged from crosslinking of fragmented actin filament structures. 

Moreover, we show that villins associate with actin structures and are involved in this 

actin reorganization process. Notably, we demonstrate that Arabidopsis villin5 

promotes actin depolymerization and formation of actin foci by fragmenting actin 

filaments, and controlling the enlargement of actin foci via bundling actin filaments. 

Our study thus uncovers important, novel insights about the molecular players and 

mechanisms involved in forming the distinctive actin foci in pollen tubes. 
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INTRODUCTION 

The actin cytoskeleton is a complex dynamic network that undergoes rapid assembly 

and disassembly in response to various internal and external cues (Staiger, 2000). Well 

documented examples in plants include the rearrangement of the actin cytoskeleton in 

root hairs during Nod factor infection from Rhizobium bacteria (Cardenas et al., 2003; 

Cardenas et al., 1998), the rearrangement of the actin cytoskeleton during the cell cycle 

(Sano et al., 2005; Yu et al., 2006), pathogen infection (Takemoto et al., 2003), stomatal 

closure and opening (Eun and Lee, 1997; Gao et al., 2008; Hwang and Lee, 2001) and 

the dramatic depolymerization and rearrangement of the actin cytoskeleton in Papaver 

rhoeas pollen during the self-incompatibility (SI) response (Geitmann et al., 2000; 

Poulter et al., 2010; Snowman et al., 2002). These cellular changes are triggered by 

increases in cytosolic free Ca2+ (Ca2+cyt) to trigger a Ca2+-dependent signaling network 

involving increases in pH and reactive oxygen species to trigger programmed cell death 

(PCD) (Thomas et al., 2006; Wang et al., 2019; Wilkins et al., 2014). However, the 

molecular players and mechanisms underlying the rapid and dramatic actin alterations 

in pollen tubes in response to SI signaling remain largely unexplored.  

 

The pollen tube is a model cellular system to study tip growth and its regulation 

(Bedinger et al., 1994; Feijo et al., 2001; Hepler et al., 2001; Holdaway-Clarke and 

Hepler, 2003), and the actin cytoskeleton is known to play a critical role in regulating 

pollen tube growth (Gibbon et al., 1999; Qu et al., 2017; Vidali et al., 2001). It has been 

shown that Ca2+ signaling and the actin cytoskeleton are inherently correlated during 

pollen tube growth, as evidenced by the observations that both Ca2+ and F-actin levels 

oscillate during pollen tube growth (Diao et al., 2018; Fu et al., 2001; Holdaway-Clarke 

and Hepler, 2003; Hwang et al., 2005). SI is a genetically controlled pollen-pistil 

recognition system controlled by tightly linked polymorphic S-determinant genes 

expressed in the pollen and pistil. Interaction of cognate S-determinants results in 

inhibition of incompatible pollen tube growth. In P. rhoeas, the S-determinants are PrsS 
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(a small secreted signalling ligand, related to cysteine rich proteins) and PrpS, a small, 

novel transmembrane protein (Foote et al., 1994; Wheeler et al., 2010). Cognate PrsS 

and PrpS interact and trigger increases in [Ca2+]cyt in incompatible pollen tubes 

(Franklin-Tong et al., 1993). The rapid elevation in Ca2+cyt in the subapical and shank 

regions to ~1.5 M in incompatible pollen tubes is accompanied by the disappearance 

of the apical Ca2+ gradient (Franklin-Tong et al., 1997). During the SI response, actin 

filaments undergo dramatic reorganization; the distinctive longitudinal F‐actin bundles 

disappear and this is accompanied by a large reduction in actin polymer level 

(Snowman et al., 2002). Afterwards, fine fragments of actin reorganize into larger 

aggregates and form highly stable actin foci that increase in size over time in SI pollen 

tubes and persist for at least 3 h (Geitmann et al., 2000; Poulter et al., 2011; Poulter et 

al., 2010). There is good evidence that elevations in Ca2+cyt are upstream of SI-induced 

actin cytoskeletal rearrangements (Rudd and Franklin-Tong, 2003; Staiger and 

Franklin-Tong, 2003). Treatment of pollen tubes with the Ca2+ ionophore A23187 

mimics the SI response, inducing dramatic depolymerization and actin rearrangement 

into actin foci in pollen tubes (Geitmann et al., 2000; Snowman et al., 2002). The level 

in actin depolymerization was measured and shown to be far in excess of that required 

to arrest pollen tube growth (Snowman et al., 2002). Subsequent studies showed that 

both actin depolymerization and actin stabilization is sufficient to trigger PCD (Thomas 

et al., 2006). However, to date, the exact mechanisms involved in mediating the 

dramatic actin alterations and the molecular players involved in this response are 

largely unknown. 

 

Actin binding proteins (ABPs) are direct regulators of actin dynamics (Pollard, 

2016) and transduce cellular stimuli into alterations of the actin architecture, mediating 

actin cytoskeleton rearrangements in response to various stimuli (Li et al., 2015). Some 

of them are directly regulated by Ca2+ and several ABPs have been shown to bind 

directly to and be regulated by second messengers (Drøbak et al., 1994; Gungabissoon 
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et al., 1998; Janmey et al., 1987) or by phosphorylation and dephosphorylation events 

(Khurana et al., 1997; Zhai et al., 2001). Relevant to the Papaver system, a previous 

study found that that profilin, a G-actin sequestering  ABP that is abundant in pollen 

tubes, does not appear to have sufficient Ca2+-stimulated sequestering activity to 

account for the level of depolymerization measured during SI (Snowman et al., 2002). 

Moreover, two further ABPs: cyclase associated protein (CAP) and actin 

depolymerizing factor (ADF) have been implicated in the regulation of the formation 

of actin foci in SI pollen tubes, as they colocalize to the actin foci (Poulter et al., 2011; 

Poulter et al., 2010). Interestingly, fimbrin, a side-binding ABP (McCurdy et al., 2001) 

did not colocalize to actin foci (Poulter et al., 2011). Villin, a Ca2+-responsive ABP 

(Kumar et al., 2004; Markus et al., 1997), is a relevant player that mediates actin 

alterations in pollen tubes in response to the elevation in Ca2+cyt, but has not previously 

been studied in relation to the SI response in Papaver. Villin homologues were 

originally identified by biochemical means in plants (Yokota and Shimmen, 1999; 

Yokota et al., 2003). The function and mechanism of action of villins have been 

documented extensively in Arabidopsis (Huang et al., 2015). Apart from Arabidopsis 

VLN1, which is a simple actin bundler (Huang et al., 2005), other Arabidopsis villins 

have the full suite of villin-related actin regulatory activities, including nucleating actin 

assembly, capping, severing and bundling actin filaments (Bao et al., 2012; Khurana et 

al., 2010; Zhang et al., 2010; Zhang et al., 2011). Micromolar-range free Ca2+ is 

sufficient to trigger actin severing activity of Arabidopsis villins (Bao et al., 2012; 

Khurana et al., 2010; Zhang et al., 2010; Zhang et al., 2011), implying that the actin 

severing activity of villin is biologically relevant within the apical region of pollen 

tubes where free Ca2+cyt reaches about 1 M to 10 M (Messerli and Robinson, 1997; 

Pierson et al., 1994). Indeed, loss of function of VLN2 and VLN5 causes accumulation 

of actin filaments at pollen tube tips (Qu et al., 2013). However, to date, whether or 

how exactly villins contribute to the dramatic actin alterations induced by SI in pollen 

tubes lacks direct genetic and cytological evidence. 
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The demonstration that the Papaver SI S-determinants have been functionally 

transferred to Arabidopsis (de Graaf et al., 2012; Lin et al., 2015) suggests that the 

downstream signals and targets involved in modulating the SI response (e.g. alterations 

to the actin cytoskeleton and triggering of PCD), might be common and conserved 

among higher plants. Use of Arabidopsis as an experimental system enables the use of 

the powerful Arabidopsis genetic approaches and resources to uncover the signaling 

networks, cellular targets and genes/proteins involved in the SI response in 

incompatible pollen tubes. It also allows the use of advanced live-cell imaging 

technologies in conjunction with fluorescent actin markers. Indeed, recent studies 

suggest that the Arabidopsis pollen tube is a great cellular system to perform live cell 

imaging of actin dynamics (Qu et al., 2017). As many of the molecular players and 

mechanisms underlying the dramatic rearrangement of the actin cytoskeleton into the 

punctate actin foci in response to SI remain to be explored, we have made the first step 

by treating Arabidopsis thaliana pollen tubes with the Ca2+ ionophore A23187. This 

drug has previously been shown to increase Ca2+cyt in pollen tubes (Diao et al., 2018; 

Franklin-Tong et al., 1996) and also mimic the SI response in Papaver pollen tubes, 

stimulating the formation of distinctive actin alterations (Snowman et al., 2002) as well 

as triggering several other SI-related events (Wilkins et al., 2011). 

 

Here we perform live-cell imaging of actin filament dynamics in response to 

A23187 in Arabidopsis pollen tubes, and reveal that actin alteration during this process 

involves the rearrangement, fragmentation and depolymerization of actin filaments. We 

found that actin foci form at a very early stage and that they gradually enlarge with the 

incorporation of fragmented actin structures. We further identify that villin is involved 

in A23187-triggered actin depolymerization and formation of actin foci in pollen tubes, 

which requires its Ca2+-responsive actin severing activity. Our findings suggest that 

fragmentation of actin filaments is a key event during the formation of actin foci and it 
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is required for efficient actin depolymerization in pollen tubes. Strikingly, we found 

that villin is also involved in the enlargement of the distinctive punctate actin foci; this 

stage of remodeling requires villin’s actin bundling activity. Our study thus reveals 

novel molecular details and insights into mechanisms underlying actin alterations in 

response to A23187 in pollen tubes and provide evidence that villin is a major player 

in modulating this remodeling. 

RESULTS 

A23187 triggers alterations of the actin cytoskeleton in A. thaliana pollen tubes 

similar to those observed in the SI response in Papaver 

To initiate a detailed analysis of the molecular mechanisms potentially involved in 

mediating similar actin alterations to those triggered by the SI response, we used the 

ionophore A23187 as a tool to investigate actin reorganization in pollen tubes of 

Arabidopsis thaliana. We treated A. thaliana pollen tubes with the Ca2+ ionophore 

A23187 and they were fixed at different time points after treatment and then stained 

with Alexa-488-phalloidin to visualize F-actin. Untreated control pollen tubes had actin 

filaments arrayed in prominent actin cables oriented longitudinally in the shank region 

and a bright apical actin structure (Fig. 1A). After treatment with 10 M A23187 for 2 

min, 10 min and 60 min, respectively, dramatic rearrangements of actin filaments were 

observed in pollen tubes (Fig. 1A). Actin filaments became fragmented and the amount 

of thick actin bundles was reduced and actin foci started to form in the pollen tubes 

after being treated with 10 M A23187 for 2 min (Fig. 1A). The number of actin foci 

increased and the size of actin foci enlarged in pollen tubes after treatment with A23187 

for 10 min and 60 min compared to those treated with A23187 for 2 min (Fig. 1A).  

The observed actin rearrangements in Arabidopsis pollen tubes after the treatment with 

A23187 were very similar to those triggered in Papaver pollen tubes during the SI 

response (Geitmann et al., 2000; Poulter et al., 2010; Snowman et al., 2002) and to 

those observed in A. thaliana pollen tubes expressing the PrpS gene (line At-PrpS1) 

when challenged with recombinant PrsS proteins, reconstituting SI in this species (Fig 
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1B). With SI, actin filaments became fragmented and the amount of thick actin bundles 

was reduced after 2 min (Fig. 1B). The actin remodeling in response to SI was slower 

compared to A23187, but foci were forming at 60 min and the size of actin foci was 

increased at 3 h (Fig. 1B). These data clearly show the striking similarity between the 

dramatic actin remodeling stimulated by A23187 and SI.  

 

A23187 triggers fragmentation of actin filaments and recruitment of actin 

fragments to form actin foci in pollen tubes 

To trace the dynamic behavior of actin filaments during this process, we monitored 

Arabidopsis pollen tubes expressing Lat52:Lifeact-eGFP (Qu et al., 2013) in real-time 

after treatment with 10 M A23187. This revealed that, very soon after A23187 

treatment, actin filaments undergo rearrangements, exhibited as a conversion of 

longitudinally arranged actin cables into network-like structures in the pollen tube (Fig. 

2A; Fig. S1A). Although the starting time points of actin rearrangement vary between 

individual pollen tubes, actin rearrangement occurred within 1 min after A23187 

treatment. Subsequently, actin filaments became fragmented and these fragmented actin 

filaments appeared to depolymerize (Fig. 2A, B, Supplemental Movie 1; Fig. S1A, B). 

The depolymerization of actin filaments was revealed by determining the percentage of 

“occupancy” of actin filaments, which was evaluated by the parameter of density of 

actin filaments as described previously (Higaki et al., 2010). As shown in Fig. 2C and 

Fig. S1C, the percentage of “occupancy” of actin filaments decreased during the 

treatment of A23187, suggesting that actin filaments underwent depolymerization. 

 

These observations are very similar to previous observations of actin alterations and 

measurements of depolymerization during the SI response in Papaver pollen tubes 

(Snowman et al., 2002). Accompanied by the fragmentation and depolymerization of 

actin filaments, actin foci began to form. Soon after actin foci formed, they enlarged 

during the treatment with A23187 (Fig. 2D), quantified by an increase in fluorescence 
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intensity (Fig. 2E and Fig. S1D). Again, this is consistent with previous observations 

and measurements of formation of actin foci during SI in Papaver pollen tubes (Poulter 

et al., 2010), except the timing of actin remodeling is (unsurprisingly) faster with 

A23187.  

In terms of the formation of actin foci in response to A23187 treatment of pollen tubes, 

we observed several distinct patterns of actin reorganization. One of the patterns starts 

with the fragmentation of large actin bundles. After the large actin bundles were 

fragmented into a couple of pieces, these fragmented actin structures were used as 

templates to recruit small actin structures to promote the formation of the punctate actin 

foci structures (Fig. 2F, G). Another pattern of actin foci formation started with the 

greater fragmentation of actin bundles into tiny structures first, and these structures 

subsequently came together in a manner resembling some sort of aggregation or fusion, 

to form the large actin foci (Fig. 2H, I). These detailed observations suggest that the 

formation and enlargement of these actin foci mainly result from the cross-linking of 

fragmented actin structures. The common feature of these patterns of actin remodeling 

is that actin filaments or bundles need to be fragmented first, prior to the formation of 

actin foci. This suggests that A23187 triggers fragmentation or severing of actin 

structures, which appears to be a prerequisite for the formation of these punctate actin 

foci. Thus, our study reveals novel, key information about the underlying actin 

alterations involved in the formation of these distinctive punctate actin foci in pollen 

tubes in response to A23187. 

VLN2, VLN3 and VLN5 Associate with Different Actin Structures in Pollen Tubes 

after Treated with A23187 

To ask which ABP(s) might participate in this A23187-triggered actin alteration process 

in pollen tubes, the Ca2+-sensitive gelsolin/villin family proteins were considered good 

candidates, as A23187 is known to trigger increases in [Ca2+]cyt. In this regard, VLN2, 

VLN3 and VLN5 could potentially be involved in this actin alteration process, as they 

are expressed in pollen (https://www.genevestigator.com/gv/index.jsp; (Honys and 
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Twell, 2003; Pina et al., 2005)) and shown to be versatile Ca2+-responsive actin 

regulatory proteins including fragmenting actin filaments (Bao et al., 2012; Khurana et 

al., 2010; Zhang et al., 2010). We determined the localization of VLN2, VLN3 and 

VLN5 before and after the addition of A23187 in pollen tubes. We found that VLN2-

GFP, VLN3-GFP and VLN5-GFP associated with filamentous structures resembling 

actin to different extents in normally growing A. thaliana pollen tubes in the absence 

of A23187 (Fig. 3A; (Qu et al., 2013)). After the treatment of pollen tubes with A23187, 

within a few minutes the VLN2-GFP, VLN3-GFP and VLN5-GFP formed dot-like 

structures (Fig. 3A; Supplemental Movies 2-4). The formation of these structures 

started in the apical region and propagated backwards to the shank in pollen tubes and 

the number of dots increased over time (Fig. 3A). By monitoring the dot-like structures 

formed by VLN-GFP fusion proteins in real time, we established that their size 

increased over time (Fig. 3B; Fig. S2). The changes in the pattern of VLN-GFP fusion 

proteins resembled that of actin after treatment with A23187. In support of this notion, 

examination of fixed A23187-treated pollen tubes at a later time point revealed that the 

structures decorated with VLN-GFP fusion proteins in these pollen tubes colocalized 

with Alexa-568-phalloidin stained punctate actin foci. This demonstrates that the VLN-

GFPs colocalize with F-actin (Fig. 3C). Taken together, these data implicate the 

involvement of villins in these actin remodeling processes in pollen tubes.  

VLNs are Required for the Fragmentation and Depolymerization of Actin 

Filaments in Response to A23187 in Pollen Tubes 

To determine whether and to what extent villins contribute to actin alterations in 

response to A23187 in A. thaliana pollen tubes, we visualized the actin cytoskeleton in 

villin loss-of-function mutant pollen tubes treated with A23187 and compared it to that 

in WT pollen tubes. We found that actin alterations in villin loss-of-function mutant 

pollen tubes were perturbed when compared to that in WT pollen tubes (Fig. 4A). In 

particular, the loss of function of VLN5 had a more profound effect on A23187 

treatment-induced changes in the actin cytoskeleton in pollen tubes when compared to 
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that in WT or vln2 single mutant pollen tubes (Fig. 4A). Specifically, at 60 min after 

A23187 treatment, we found that there were more fragmented actin bundles in vln5 

pollen tubes, whereas most actin filaments were converted into actin foci in WT, vln2 

or vln5 single mutant pollen tubes (Fig. 4A). This suggests that loss of function of VLN5 

impairs the fragmentation of actin filaments or actin bundles after the treatment with 

A23187. In addition, we found that the relative amount of fragmented actin bundles 

versus actin foci is substantially higher in the vln2 vln5 double mutant pollen tubes 

when compared to that in vln5 pollen tubes (Fig. 4A). Strikingly, we found that the 

formation of actin foci was severely impaired in vln2 vln3 vln5 triple mutant pollen 

tubes (Fig. 4A), suggesting that these villins are redundantly required for these actin 

alterations in pollen tubes in response to A23187.  

 

To quantitatively determine the amount of actin filaments in pollen tubes derived from 

WT and villin loss-of-function mutants, we skeletonized actin filament staining images; 

representative skeletonized images after treated with A23187 for 60 min are shown in 

Fig. 4B. We found that the density of actin filaments was significantly higher in the 

villin loss-of-function mutant pollen tubes compared to that in WT pollen tubes, with 

the exception of vln2 (Fig. 4B, C). These data, showing that loss of function of villins 

impairs both actin depolymerization and the formation of punctate actin foci in pollen 

tubes in response to A23187 suggest that villins are involved in mediating these 

processes, acting in concert to remodel actin to form these structures. Moreover, this 

implicates villins are also involved in the highly similar actin remodeling observed 

during the SI response in Papaver.   

 

Severing-deficient VLN5 Has Reduced Activity in Fragmenting Actin Filaments 

or Bundles in Response to A23187 in Pollen Tubes 

Next, we wondered whether the severing activity of villins is involved in actin 

alterations in response to A23187 in pollen tubes. We decided to abolish the severing 
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activity of villins using VLN5 as the representative villin. The severing deficient 

version of VLN5, designated as VLN5SD, was generated as described previously (Fig. 

5A; (Revenu et al., 2007)). We initially performed dilution-mediated actin 

depolymerization experiments to determine the actin depolymerizing activity of 

recombinant VLN5 and VLN5SD proteins (Fig. 5B; (Zhang et al., 2010)). We found that 

VLN5 promotes actin depolymerization whereas VLN5SD lacked such activity (Fig. 

5C). Strikingly, in contrast, VLN5SD stabilizes actin filaments from dilution-mediated 

actin depolymerization (Fig. 5C). In addition, through direct visualization of individual 

actin filaments by total internal reflection fluorescence microscopy (TIRFM), we found 

that while VLN5 efficiently severed actin filaments, VLN5SD lacked such actin severing 

activity (Fig. 5D, E). These data demonstrate that VLN5SD fails to depolymerize and 

sever actin filaments. However, we found that VLN5SD retained a similar actin bundling 

activity compared to VLN5 at 0.4 M (Fig. 5F, G). Interestingly, VLN5SD had a slightly 

higher (P = 0.03) actin bundling activity than VLN5 at a lower concentration (0.2 M; 

Fig. 5G). Nonetheless, these data together demonstrate that VLN5SD retains virtually 

normal actin bundling activity but is defective in severing actin filaments. 

 

  

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

We next transformed VLN5 and VLN5SD into the vln2 vln5 double mutant under the 

control of VLN5’s native promoter (Fig. S3A) to determine how the actin severing 

activity of VLN5 might be involved in regulating actin alterations in response to 

A23187 in pollen tubes. We found that the introduction of VLN5 can rescue, whereas 

the introduction of VLN5SD cannot rescue, the defective fragmentation of actin 

filaments or bundles and the formation of actin foci in vln2 vln5 mutant pollen tubes 

(Fig. 5H). In addition, we found that the introduction of VLN5SD cannot rescue the 

defects in actin depolymerization in response to A23187 treatment in vln2 vln5 mutant 

pollen tubes by determining the percentage of occupancy of actin filaments (Fig. 5I, J). 

This suggests that the severing activity of VLN5 (which is known to be Ca2+-dependent 

(Zhang et al., 2010)) contributes to its role in driving A23187-triggered actin 

depolymerization. Our data shows that VLN5SD cannot fully rescue the defects in 

A23187-triggered actin alterations compared to VLN5 in pollen tubes, particularly in 

terms of actin filament fragmentation and the formation of actin foci (Fig. 5K). This 

suggests that the actin severing activity of VLN5 is required for the fragmentation and 

depolymerization of actin filaments in response to A23187 in pollen tubes. 

The Bundling Activity of VLN5 is involved in the Enlargement of Actin Foci 

To determine whether the bundling activity of villins might be involved in driving actin 

alterations responsible for the formation of the large punctate actin foci in pollen tubes 

in response to A23187, we used VLN5 as the representative villin to address this 

question. We decided to remove the bundling activity of VLN5 by deleting its linker 

and headpiece domain as previously done for VLN3 (van der Honing et al., 2012). The 

truncated version of VLN5 with the deletion of linker and headpiece domain was 

designated as VLN5ΔHL (Fig. 6A, B). We found that both VLN5ΔHL and VLN5 can 

bind to F-actin using high-speed F-actin cosedimentation experiments (Fig. S4A-D). 

However, using low-speed F-actin cosedimentation experiments, we found that the 

actin bundling activity of VLN5ΔHL was significantly reduced compared to VLN5 (Fig. 

6C, D), especially at higher concentrations, when the VLN5ΔHL mutant had only 12% 
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bundling activity (P = 0.000004) compared to VLN5 (Fig. 6D). The decrease in the 

bundling activity of VLN5ΔHL was also confirmed by direct visualization of 

filamentous actin structures with fluorescence light microscopy (Fig. 6E). However, 

using direct visualization of actin filaments with TIRFM, we found that VLN5ΔHL 

severed actin filaments just as efficiently as VLN5 (Fig. 6F, G). This demonstrates that 

its severing activity was not affected. 

 

We next transformed VLN5ΔHL into the vln2 vln5 mutant under the control of VLN5 

native promoter (Fig. S3B), and found that actin filaments or bundles could be 

fragmented and converted into actin foci (Fig. 6H). Interestingly, we found that the size 

of actin foci was smaller in VLN5p:VLN5ΔHL (vln2 vln5) pollen tubes when compared 

to that in VLN5p:VLN5 (vln2 vln5) pollen tubes under the same conditions (Fig. 6H, 

I). Visualization of the actin cytoskeleton in pollen tubes at different time points after 

treatment with A23187 showed the increase in the fragmentation of actin structures in 

pollen tubes within 2 min and subsequent accumulation of punctate actin foci (Fig. 6J), 

further demonstrating that VLN5ΔHL can fragment actin structures in vivo. 

Quantification of the “occupancy” of actin structures showed that VLN5ΔHL was able 

to depolymerize actin filaments in response to A23187 treatment of pollen tubes (Fig. 

6K). However, we do not currently know why VLN5ΔHL cannot depolymerize actin 

filaments as efficiently as VLN5 in pollen tubes after A23187 treatment (Fig. 6K). 

Pollen tubes with the VLN5ΔHL retained the capability to promote the formation of 

actin foci, but failed to enlarge actin foci in response to A23187 in pollen tubes. This 

was confirmed by direct visualization of actin filaments decorated with Lifeact-

mCherry after treated with A23187 in pollen tubes (Fig. 6L, M). These findings were 

also supported by data showing that VLN5ΔHL colocalizes with actin foci in A23187-

treated pollen tubes (Fig. S4E), but the enlargement of VLN5ΔHL-decorated structures 

was impaired severely (Fig. S4F). These observations demonstrate that the initial stages 

of actin foci formation in the VLN5p:VLN5ΔHL (vln2 vln5) pollen tubes compared to 
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either WT or VLN5p:VLN5 (vln2 vln5) pollen tubes are normal, while the enlargement 

of actin foci is impaired (Fig. 6N). Because VLN5ΔHL has dramatically reduced 

bundling activity due to removal of the linker and headpiece domains, these data 

implicate that the bundling activity of VLN5 is required for the enlargement of actin 

foci in response to the elevation in Ca2+cyt in pollen tubes. Thus, together our data 

suggest that the formation of the actin foci involves at least two steps, both involving 

villin: (1) the severing of actin filament bundles, which will allow rapid/efficient 

depolymerization and (2) bundling of actin filament fragments to form large actin foci.  

 

DISCUSSION 

The actin cytoskeleton is a major target of the signaling networks in eukaryotic cells 

(Li et al., 2015). How the actin cytoskeleton responds to upstream signaling events and 

achieves reorganization to meet cellular demands is a fascinating topic with many 

unanswered questions. ABPs are direct regulators of actin dynamics that transduce 

cellular stimuli into alterations of the actin architecture (Hussey et al., 2006; Smith and 

Oppenheimer, 2005; Staiger and Franklin-Tong, 2003). The SI response in Papaver 

rhoeas pollen tubes has a relatively well characterized Ca2+-mediated signal 

transduction network that induces dramatic alterations to the actin cytoskeleton in 

incompatible pollen tubes involving the formation of distinctive punctate actin foci 

(Geitmann et al., 2000; Poulter et al., 2010; Snowman et al., 2002) necessary and 

sufficient to trigger PCD in this system (Thomas et al., 2006; Wang et al., 2019; Wilkins 

et al., 2014). These actin foci are rather unusual as they are highly stable; once formed, 

they are resistant to disassembly by 1 M Latrunculin B (LatB) under conditions that 

remove virtually all detectable F-actin in normally growing pollen tubes (Snowman et 

al., 2002; Thomas et al., 2006). This sets them apart from many other actin-based 

structures reported. Currently, there are no explanations for the formation or unusual 

dynamic properties of these structures. The molecular players and mechanisms 

underlying the actin alterations in pollen tubes in response to SI signaling remains 
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largely unexplored, except for a study showing that ADF and CAP co-localize with 

these actin foci during their formation; somewhat surprisingly, fimbrin, which cross-

links and stabilizes actin filaments in plant cells (Kovar et al., 2000b) did not colocalize 

with the SI-induced actin foci (Poulter et al., 2010).  

Here we performed live-cell imaging of actin dynamics to investigate the formation of 

actin foci in Arabidopsis pollen tubes, using the calcium ionophore A23187 as a trigger. 

This drug, which has been shown to raise [Ca2+]cyt artificially in pollen tubes (Diao et 

al., 2018; Franklin-Tong et al., 1996), mimics the SI response in Papaver pollen tubes 

as it induces similar alterations to the actin cytoskeleton in Papaver pollen tubes as the 

SI response (Snowman et al., 2002). Because A23187 has previously been 

demonstrated to increase Ca2+cyt we infer that A23187 triggers increases in Ca2+cyt 

in these A. thaliana pollen tubes, even though we have not assessed this here. However, 

regardless of this, A23187 provides a useful, simple tool to trigger the formation of 

punctate actin foci in order to study both the nature of their formation and ABPs 

involved in this process. Use of Arabidopsis has enabled us to investigate the role of 

Ca2+-responsive villins using cytological and genetic approaches not available in 

Papaver. This has enabled us to show for the first time that villins are involved in 

mediating actin alterations very similar to those observed during the SI response in 

Papaver pollen tubes. Moreover, we provide important insights into the mechanistic 

details of what is involved in the formation of the distinctive punctate actin foci. 

Treatment with A23187 triggers the formation of punctate actin foci in A. thaliana 

pollen tubes, which is one of the characteristic features shown in Papaver SI pollen 

tubes (Rudd and Franklin-Tong, 2003; Staiger and Franklin-Tong, 2003), suggesting 

that A. thaliana might have all the components necessary for SI-triggered Ca2+-

dependent signaling network in Papaver pollen tubes. 

Based on our findings, we propose a simple model describing actin alterations in 

response to the A23187 treatment of the pollen tube incorporating the involvement of 

the Ca2+-responsive ABP, villin (Fig. 7). Specifically, we have imaged at least four 
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distinct configurations of actin: (i) normal actin configuration of longitudinal bundles 

in normally growing pollen tubes (Fig. 7A), (ii) fragmentation of longitudinal actin 

bundles involving the severing activity of villin, which will allow more effective 

depolymerization that drives the breakdown of filaments (Fig. 7B). Next the formation 

of actin foci from actin fragments involves (iii) a bundling activity, which involves 

villin (Fig. 7C) and (iv) enlargement of the foci, which also involves villin (Fig. 7D). 

Because the deletion of the linker and headpiece domains prevents the enlargement of 

actin foci, this provides evidence that this later stage is achieved by the crosslinking of 

fragmented actin structures. 

As A23187 has been shown to increase Ca2+cyt (Diao et al., 2018; Franklin-Tong et 

al., 1996) these data together suggest that an elevation in Ca2+cyt stimulates the initial 

fragmentation and depolymerization of actin filaments in pollen tubes. This could cause 

disruption of the normal actin configuration and a reduction in the amount of actin 

filaments observed here. Our data are consistent with previous findings from Papaver 

showing a severe reduction in the amount of actin filaments in pollen tubes after SI-

induction (Geitmann et al., 2000; Snowman et al., 2002; Thomas et al., 2006). An 

attempt was previously made to assess the potential contribution of profilin to the actin 

depolymerization in response to the elevation in Ca2+ in vitro, as actin monomer 

sequestering activity of profilin is stimulated by Ca2+ (Kovar et al., 2000a) and the 

concentration of profilin is almost equal molar to actin in pollen (Gibbon et al., 1999; 

Snowman et al., 2002; Vidali and Hepler, 1997). However, this study showed that the 

elevation in Ca2+ could only account for a 10-16% reduction in the amount of actin 

filaments (Snowman et al., 2002), implicating that other ABPs contribute to this actin 

depolymerization process, as the SI response can cause 60-70% depolymerization of 

actin in pollen (Snowman et al., 2002; Thomas et al., 2006).  

Based on the observations that actin filament fragmentation events observed are very 

frequent after A23187 treatment, the actin severing proteins ADF/cofilin or 

villin/gelsolin are likely contributors. As SI in Papaver triggers both increases in 
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Ca2+cyt (Franklin-Tong et al., 1997; Franklin-Tong et al., 1993; Wu et al., 2011) and 

acidification of cytoplasm (Wilkins et al., 2015) in SI-induced pollen tubes, ADF is an 

unlikely candidate for this actin fragmentation process as the severing activity of plant 

ADFs is reduced by Ca2+-dependent protein kinases (Allwood et al., 2001; Dong and 

Hong, 2013) and they prefer alkaline conditions for severing (Maciver and Hussey, 

2002). We considered the calcium-responsive villins/gelsolins as likely candidates for 

this depolymerization/fragmentation process as a previous study demonstrated that a 

gelsolin purified from Papaver pollen fragments actin filaments and acts in concert 

with profilin to promote substantial actin depolymerization (Huang et al., 2004). Thus, 

we wondered whether Arabidopsis villins might perform similar functions by 

fragmenting actin filaments and capping the barbed end of actin filaments to promote 

actin depolymerization via acting in concert with profilin in response to elevations in 

Ca2+cyt in pollen tubes. Since the Arabidopsis genome only encodes villin-like genes 

(Klahre et al., 2000), the pollen-expressed villins are likely candidates involved in this 

actin alteration process. Here we have established a clear role for villin in the early actin 

remodeling events involving severing activity in response to A23187. As the severing 

activity of villins is Ca2+-responsive (Bao et al., 2012; Khurana et al., 2010; Kumar et 

al., 2004; Markus et al., 1997; Wu et al., 2015; Yokota et al., 2005; Zhang et al., 2010; 

Zhang et al., 2011) and A23187 is known to increase Ca2+cyt (Diao et al., 2018; 

Franklin-Tong et al., 1996), this suggests that severing is an important early event 

triggered by increases in Ca2+cyt, responsible for breaking down long actin filament 

bundles to generate more filament ends for monomer dissociation. We propose that 

villin activity is likely to act in concert/cooperatively with the Ca2+-responsive 

monomer sequestering activity of profilin (Kovar et al., 2000a).  

 

Later another activity is evident, as the fragmented actin filaments or actin bundles were 

observed to be brought together to form the punctate actin foci. We provide evidence 

that villins mediate the formation and enlargement of the actin foci in pollen tubes. Our 
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observations suggest that this mainly results from the cross-linking of fragmented actin 

structures; this is further supported by our findings that villins associate with the actin 

foci during their formation and the actin bundling activity of villins is required for the 

enlargement of actin foci. Thus, our data also implicates a role for villins in a bundling 

activity involved in the formation of punctate foci in pollen tubes. It was previously 

shown that the SI-induced actin foci are highly stable, being resistant to 1 M LatB 

(Poulter et al., 2010). Our findings that the actin foci are decorated by villins helps 

explain why the actin foci are very stable, as it has been shown that villin 1-decorated 

actin filaments are resistant to the action of ADF and LatB (Huang et al., 2005). 

However, exactly how and why these structures form as well as what their function is 

still largely unknown. It is worth mentioning that a previous study revealed ADF co-

localizing with the actin foci (Poulter et al., 2010), which makes sense if there is a 

change in activity from severing to bundling due to pH. Therefore, it is possible that 

ADF and villins may act in concert/cooperatively. Moreover, CAP may also be involved 

in this remodeling together with villins, as CAP was previously colocalized with these 

actin foci (Poulter et al., 2010). In budding yeast (Saccharomyces cerevisiae) the 

formation of F-actin “bodies” is dependent on Srv2p/CAP activity (Gourlay et al., 

2004); moreover, this study showed that a decrease in actin dynamics can induce cell 

death involving reactive oxygen species (ROS). As it has been shown that both actin 

depolymerization and stabilization can stimulate PCD in pollen tubes (Thomas et al., 

2006), this further suggests that mechanistically, the stabilization of the actin 

cytoskeleton somehow plays a role in modulating PCD in these pollen tubes. Indeed, it 

has been shown that SI stimulates increases in ROS and that A23187 also does so; 

downstream, actin foci are formed and PCD involving a DEVDase activity is triggered 

(Wilkins et al., 2011). However, exactly what physiological functions these foci 

perform and how they achieve these outcomes is not known. Nonetheless, our study 

yields significant insights into the mechanisms involved in the formation and 

enlargement of actin foci in pollen tubes. 
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In summary, our study uncovers molecular details and mechanism underlying actin 

alterations in response to A23187 and assumed accompanying elevation in Ca2+cyt in 

pollen tubes. Because the events observed here are so similar to those observed during 

an authentic SI response, this study provides significant insights into the cellular 

mechanisms of the SI response in Papaver pollen tubes. Nevertheless, it will be 

important in the future to study the SI response in Arabidopsis lines expressing PrpS to 

investigate and confirm that these events are involved in authentic SI responses and to 

uncover further details of the mechanisms and ABPs involved in this actin remodeling.  

Methods 

Plant Materials and Growth Condition 

Arabidopsis Columbia ecotype (Col-0) was used as the wild type plant. The information 

of T-DNA insertion mutants of VLN2, VLN3 and VLN5 as well as the transgenic plants 

harboring GFP fusion constructs: pK7FWG2-VLN5p:VLN5-EGFP;vln2, 

pCambia1301-VLN3p:VLN3-EGFP;vln3 and pK7FWG2-VLN5p:VLN5-EGFP;vln5 

had been described previously (Bao et al., 2012; Zhang et al., 2010). Arabidopsis 

transgenic plants harboring VLN5 that was deficient in either severing or bundling actin 

filaments were generated as described below. The At-ntp303p::PrpS1-GFP transgenic 

lines are described in (de Graaf et al., 2012). Briefly, Col-0 A. thaliana was transformed 

with the Ti vector pGreen0029-ntp303p::PrpS1-GFP. The ntp303 is a pollen-specific 

promoter. This line is referred in the text as At-PrpS1 for simplicity. Arabidopsis plants 

were grown on half-strength Murashige and Skoog media or in soil at 22 °C under a 

photoperiod regime of 16 h light and 8 h dark. 

Plasmid Construction 

To generate the recombinant VLN5SD protein (severing deficient VLN5; Fig. 5A), we 

made a prokaryotic expression construct to produce, the necessary 934bp fragment, as 

described previously (Revenu et al., 2007). Briefly, this was amplified using pET23d-

VLN5 (Zhang et al., 2010) as the temperate with primer pair VLN5CDSF/VLN5CDSR 

(Table S1). The amplified fragment was subsequently moved into pMD19-T that was 
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used as the template for the subsequent PCR amplification using primer pairs 

VLN5SD
1F/VLN5SD

1R and VLN5SD
2F/VLN5SD

2R (Table S1). The fragment digested with 

KpnI/MluI was moved into pET23d-VLN5 restricted with the same enzymes to 

generate the pET23d-VLN5SD. To construct the pET23d-VLN5ΔHL plasmid, the PCR 

product was amplified with primer pair VLN5ΔHLF/VLN5ΔHLR (Table S1) using 

pET23d-VLN5 (Zhang et al., 2010) as the template and the error-free PCR fragment 

restricted with SacI/EcoRI was subsequently moved into pET23d to generate pET23d-

VLN5ΔHL. 

 

Protein Purification 

To generate VLN5, VLN5SD and VLN5ΔHL recombinant proteins, the plasmids 

pET23d-VLN5, pET23d-VLN5SD and pET23d-VLN5ΔHL were transformed into the 

Escherichia coli BL21 DE3 strain. After induction with the addition of Isopropyl ß-D-

1-thiogalactopyranoside (final concentration, 0.4 mM) at 16 °C for 12~16 h, the cells 

were collected by centrifugation. They were subsequently lysed by sonication, and the 

protein in the supernatant was precipitated with (NH4)2SO4 (final concentration = 45%). 

After centrifugation (10,000 g, 30 min, 4°C), the pellet was re-suspended in Binding 

Buffer (5 mM imidazole, 250 mM KCl, 25 mM Tris-HCl, pH 8.0). After clarification 

at 100,000 g for 30 min at 4°C, the supernatant was loaded onto a Nickel sepharose 

column, and purification was performed according to manufacturer’s instruction. The 

purified protein was dialyzed against 5 mM Tris-HCl, pH 8.0. The protein was 

aliquoted and freshly frozen in liquid nitrogen and stored at -80 °C. Skeletal muscle 

actin was purified according to previously published methods (Pollard, 1984; Spudich 

and Watt, 1971). To monitor the kinetic actin assembly and disassembly, actin was 

conjugated with pyrene iodoacetamide as described previously (Pollard, 1984). To 

directly visualize the dynamics of individual actin filaments, actin was labeled with 

Oregon-green as described previously (Amann and Pollard, 2001). 
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RT-PCR 

Pollen was collected from freshly opened Arabidopsis thaliana flowers as described 

previously (Chang and Huang, 2015; Chang and Huang, 2017). Total pollen RNA was 

extracted by Eastep® Super Total RNA Extraction Kit (Promega) following 

manufacturer’s instructions. 5 g RNA was used for reverse transcription by MMLV 

reverse transcriptase (Promega) to synthesize cDNA. To determine the transcript levels 

of VLN5SD and VLN5ΔHL, transcripts of VLN5SD and VLN5ΔHL were amplified with 

primer pair qVLN5 F/qVLN5 R (Table S1). eIF4A was amplified with primer pair eIF4A 

F/eIF4A R (Table S1) as the internal control. Amplification was completed using 

GenStar qPCR Green Mix (Genstar), running on an Applied Biosystems® 7500 fast 

Real-Time PCR System. The transcription levels of genes were calculated using the 2

ΔCt method (Livak and Schmittgen, 2001), in which ∆Ct = Ct(eIF4A) – Ct(gene). 

 

A. thaliana Pollen Germination, growth and treatment with A23187  

In vitro germination of A. thaliana pollen from wildtype and villin loss-of-function 

mutants was performed as described previously (Ye et al., 2009). For live-cell imaging, 

A. thaliana lines expressing Lat52:Lifeact-eGFP were used. Briefly, the newly open 

flowers were collected and dipped on the surface of pollen germination medium (GM: 

1 mM CaCl2, 1 mM Ca(NO3)2, 1 mM MgSO4, 0.01% (w/v) H3BO3, 18% (w/v) sucrose; 

solidified with addition of 0.8% (w/v) agarose) and incubated at 28 °C under high 

humidity for ~3 h to allow growth of pollen tubes. After the average length of pollen 

tubes reached ~150 μm, A23187 (10 or 50 μM in liquid GM) was added onto the surface 

of the solid GM containing pollen tubes. After incubation for various periods of time at 

28 °C, pollen tubes were fixed and subjected to staining with Alexa-488 phalloidin as 

described below. Alternatively, to visualize the dynamics of actin filaments in pollen 

tubes after treatment with A23187, pollen tubes expressing Lat52:Lifeact-eGFP were 

observed immediately after the application of A23187 with a spinning disk confocal 

microscope, as described below. 
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A. thaliana At-PrpS1 pollen treatment for the SI bioassay in vitro  

Full details of the the At-PrpS1-GFP line and reconstituting the SI response in an in 

vitro bioassay using this line are described in (de Graaf et al., 2012). Briefly, we grew 

the pollen from this line in vitro to obtain an average length of about 150 μm, before 

adding recombinant PrsS1 (Foote et al., 1994) at 20 ng.μl-1 to give a cognate PrpS1-

PrsS1 interaction to trigger a SI response. After incubation for various periods of time 

at 25 °C, pollen tubes were fixed and subjected to staining with Alexa-488 phalloidin 

as described below. 

Visualization of Actin Filaments in Fixed Arabidopsis Pollen Tubes 

For the A23187 experiments, actin filaments in A. thaliana pollen tubes were revealed 

by staining with Alexa-488 phalloidin as described previously (Wu et al., 2010). Briefly, 

when the average length of pollen tubes reached ~150 m, 300 μM N-

(maleimidobenzoyloxy)-succinimide (MBS) in liquid GM was added and incubated for 

1 h at 28 °C. The samples were subsequently washed with TBS-T (200 mM NaCl, 400 

mM sucrose and 0.05% Nonidet P-40 in 50 mM Tris-HCl, pH 7.5) three times. After 

washing, 200 nM Alexa-488 phalloidin (Invitrogen) was added to the sample and 

incubated at 4 °C, overnight. The samples of phalloidin-stained pollen tubes were 

observed under an Olympus FluoView FV1000 confocal microscope equipped with a 

100 UAPON objective (numerical aperture of 1.49). The z-series images were 

collected with the size of z-step set at 0.7 m. 

 

For the SI experiments, actin filaments in A. thaliana pollen tubes were revealed by 

staining with Alexa-488 phalloidin according to (Wilkins et al., 2011). Briefly, the SI 

response was stopped by adding MBS in liquid GM to a final concentration of 400 M 

and incubated for six minutes at room temperature. The samples were fixed with 2 % 

formaldehyde for 30 min, followed by washes in TBS (50 mM Tris-HCl, pH 7.4, 200 

mM NaCl). Pollen tubes were permeabilised by treatment in TBS + 0.1% of Triton X-

100 for 40 min. F-actin was labeled by adding 66 nM rhodamine phalloidin for >30 
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min at room temperature. Phalloidin-stained pollen tubes were observed under a Leica 

SP8 Inverted scanning confocal microscope equipped with a 100 CS2 objective 

(numerical aperture of 1.40). The z-series images were collected with the size of z-step 

set at 0.7 μm. 

Visualization of the Dynamics of Actin Filaments in Arabidopsis Pollen Tubes 

To visualize the dynamics of actin filaments, Arabidopsis pollen tubes expressing 

Lat52:Lifeact-eGFP were observed under a Olympus DSU-IX81 spinning 

disc confocal microscope equipped with a 100 oil objective (1.4 numerical aperture). 

The time-lapse z-series images were collected at 2 s intervals with the z step set at 0.5 

m. The excitation wavelength was set at 488 nm, and the emission wavelength was 

set at 505–545 nm. 

Image Analysis 

Image processing and measurements were performed using ImageJ software (version 

1.51s, http://imagej.nih.gov/ij). To analyze the size of the actin foci in pollen tubes, Z-

stack images of actin foci were selected using the “rectangle” tool and the mean grey 

value of the selected region was calculated by “Analyze-Measure” plugin. To illustrate 

the actin distribution after A23187 treatment (Fig 4B), Z-stack images were thresholded 

to create a binary image, followed by a skeletonization procedure (Process-Binary-

Skeletonize) so all actin filaments were shown as black, rather than grey-scale. Output 

images were subsequently made into full projections that were subsequently used for 

the quantification of the “occupancy” of actin filaments in pollen tubes. The regions of 

interest (r.o.i.) in pollen tubes were selected using the built in “Polygon selection tool”. 

The total number of pixels and the number of black pixels in the images was counted. 

Occupancy is defined as the ratio that the number of black pixels divided by the total 

number of pixels in the r.o.i.. Thus, number of black pixels gave a quantification of 

actin microfilaments.  

To measure the size of actin foci, Z-stack images were thresholded to create a binary 

image, then the region of interest in pollen tubes were selected by “Polygon selection 
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tool” in ImageJ. The outlines of foci were analyzed by the “Analyze particles” plugin 

in ImageJ, and the size of the actin foci was measured by “Measure” plugin in ImageJ. 

Foci with area smaller than 0.04 μm2 were dropped from the measurements in order to 

avoid the background noise. In addition, foci with area larger than 2 μm2 were also 

discounted in order to avoid the inclusion of multiple foci that cannot be separated 

automatically. 

High-speed and Low-speed F-actin Cosedimentation Assays 

High-speed and low-speed F-actin cosedimentation assays were performed according 

to previously published methods (Kovar et al., 2000b). Preassembled actin filaments at 

3 M were incubated with various concentrations of VLN5 or its variants in 1×KMEI 

reaction system (50 mM KCl, 1 mM MgCl2, 1 mM EGTA and 10 mM imidazole, pH 

8.0) at room temperature for 30 min, the mixtures were subsequently centrifuged at 

13,600 g at 4 °C for 30 min for low-speed F-actin cosedimentation experiments. For 

high-speed F-actin cosedimentation experiments, the mixtures were centrifuged at 

160,000 g at 4 °C for 1 h. The supernatants and the pellets were resolved by SDS-PAGE 

and stained with Coomassie Brilliant Blue R. The relative amount of protein in 

supernatants and pellets was quantified by densitometry. 
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Dilution-mediated Actin Depolymerization Assay 

Dilution-mediated actin depolymerization assay was performed as previously described 

(Huang et al., 2003; Shi et al., 2013). Briefly, preassembled actin filaments (50% 

pyrene-labeled) at 5 μM were incubated with VLN5 or its variants for 5 min at room 

temperature, the mixture was then diluted 50-fold with G buffer (5 mM Tris-HCl, pH 

8.0, 0.2 mM ATP, 0.1 mM CaCl2, 0.5 mM DTT, and 0.1 mM imidazole) to induce actin 

depolymerization. Actin depolymerization was traced by monitoring the changes in 

pyrene fluorescence with a QuantaMaster Luminescence QM 3 PH Fluorometer 

(Photon Technology International, Inc.) with the excitation and emission wavelengths 

set at 365 nm and 407 nm, respectively. 

Fluorescence Light Microscopy of Actin Filaments 

The experiment was performed according to previously published methods (Zhang et 

al., 2016; Zhang et al., 2019). Briefly, F-actin at 2 μM was incubated with 500 nM 

VLN5 or its protein variants in the presence of 2 μM rhodamine-phalloidin (Sigma-

Aldrich) in 1× KMEI for 30 min at room temperature. The mixtures were subsequently 

diluted to 50 nM in TIRF buffer before the observation under a BX53 microscope 

(Olympus) equipped with a 60×, 1.42–numerical aperture oil objective. The images 

were acquired with Olympus DP80 camera, using Cell Sens Standard 1.12 software. 

Direct Visualization of Actin Filament Severing by TIRFM in vitro 

This experiment was performed according to previously described methods (Jiang and 

Huang, 2017; Kuhn and Pollard, 2005). Briefly, 50% rhodamine labeled rabbit muscle 

actin was preclarified at 200,000g for 2 h at 4°C, and then this actin at 10 μM was 

preassembled at room temperature in the dark. The prepared flow chambers were 

coated with 10 nM NEM-myosin for 2 min, followed by consecutive washes with HS-

BSA buffer (50 mM Tris-HCl, pH 7.5, 600 mM NaCl, 1% BSA) and LS-BSA buffer 

(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% BSA) for 2 min. They were then washed 

with TIRF buffer (50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 10 mM imidazole, 100 

mM DTT, 0.2 mM ATP, 15 mM glucose, 0.5% methylcellulose, 20 mg·ml-1 catalase, 
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100 mg·ml-1 glucose oxidase, pH 7.4). After moving to the microscope stage, 

preassembled actin filaments at 500 nM in TIRF buffer were injected into the flow cell 

and incubated for 5 min in the dark. After finding the microscopic field of interest, 

VLN5 and its protein variants or the control buffer diluted in TIRF buffer containing 

1.0 μM free Ca2+ was injected into the flow chambers. Actin filaments were observed 

by Olympus IX-71 microscope equipped with a ×100, 1.45–numerical aperture 

Planapo objective (Olympus) by TIRF illumination. After finding the focal plane, time-

lapse images were captured at 3 s intervals by Hamamatsu ORCA-EM-CCD camera 

(model C9100-12) driven by Micro-Manager software (www.micro-manager.org; v1.4; 

MMStudio). The severing activity of VLNs were quantified by measuring the average 

actin filament severing frequency (at least 15 actin filaments ≥ 5 μm were chosen 

from each treatment), which was defined as the number of breaks per unit filament 

length, per unit time (breaks.μm-1.s-1) (Khurana et al., 2010; Zhang et al., 2010). 
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Figures 

 

Figure 1. A23187 Treatment Triggers similar Actin Alterations in Arabidopsis 

Pollen Tubes to that of SI Pollen Tubes 

(A) Confocal images of actin filaments in WT Arabidopsis thaliana pollen tubes treated 

with 10 M A23187. Treatment with 10 M A23187 allows us to see the alterations 

and difference in the actin cytoskeleton in pollen tubes during treatment. Actin 

filaments were stained with Alexa-488-phalloidin. Images of actin filaments in pollen 

tubes after the treatment with A23187 at different time points are presented. The bottom 

row shows full projections; the rows above show the associated optical sections. Bar = 

10 m for (A) and (B). 

(B) Confocal images of actin filaments in Arabidopsis pollen tubes expressing PrpS1 

(At-ntp303p::PrpS1-GFP) after SI induction. SI responses were triggered by the 

treatment with 20 ng.μl-1 recombinant PrsS1. F-actin was stained with rhodamine 

phalloidin. F-actin in pollen tubes during the SI response at different time points are 

shown. The bottom row shows full projections; the rows above show the associated 

optical sections. Note that the actin remodelling, though very similar, is slower than the 

response to A23187. 
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Figure 2. A23187 Treatment Induces Rearrangement, Fragmentation and 

Depolymerization of Actin Filaments as well as the Formation and Subsequent 

Enlargement of Actin Foci in Pollen Tubes 

(A) Time-series images of actin filaments in a living WT pollen tube expressing 

Lifeact-EGFP treated with 10 M A23187. Actin filaments were revealed by decoration 

with Lifeact-EGFP. Bar = 10 m. t = 0 represents the time point when the movie 

recording started, immediately after treatment. 

(B) Time-series images of actin filaments within the boxed region shown in (A). The 
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red, pink, blue and yellow dots mark different actin filaments, which underwent 

apparent depolymerization during A23187 treatment. The white arrows indicate actin 

filament fragmentation events. Bar = 2 m. 

(C) Quantification of the “occupancy” of actin filaments in pollen tubes. The 

occupancy of actin filaments was plotted versus the time after A23187 addition. 

(D) Kymographs of actin foci during A23187 treatment. The upper panel shows the 

actin foci of interest traced for kymograph analysis in the lower panels and the 

measurement of the fluorescence intensity in (E) (indicated by different colored boxes). 

(E) Quantification of the fluorescence intensity of actin foci. For time points prior to 

the formation of foci, the fluorescence intensity of actin filaments at the location where 

foci subsequently formed was measured. The plot shows that the fluorescence intensity 

of these actin foci increasing over time. 

(F) Time-lapse images of actin filaments showing the formation and enlargement of 

actin foci. Red, white, yellow and purple arrowheads indicate actin filament fragments 

that appeared to aggregate/fuse with other actin fragments. 

(G) Schematic describing the formation of the actin foci by aggregation/fusion. Actin 

filaments (indicated in blue) were first bundled and then fragmented into short 

fragments. These short actin fragments aggregated/fused together via the action of villin 

(indicated in red), while simultaneously being further fragmented and shortened, until 

they formed larger punctate foci. 

(H) Time-lapse images showing the formation of actin foci. White and pink arrows at 

0 s indicate actin foci before crosslinking; white and pink arrows at 32 s indicate actin 

foci after crosslinking. 

(I) Schematic describing the enlargement of actin foci by the crosslinking of small actin 

foci. Fragmented actin filament bundles (indicated in blue) crosslinked by villin 

(indicated in red) were fragmented; these were further fragmented, shortened and cross-

linked, until they formed larger punctate foci. 
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Figure 3. VLN2, VLN3 and VLN5 Colocalize with Actin Foci in Pollen Tubes 

(A) Time series of images showing the localization of VLN2, VLN3 and VLN5 (seen 

as black dots) in pollen tubes during treatment with A23187. Pollen tubes from lines 

VLN2pro:VLN2-EGFP;vln2, VLN3pro:VLN3-EGFP;vln3 and VLN5pro:VLN5-

EGFP;vln5 were subjected to treatment with A23187 when their average length 

reached about 150 m. Bar = 5 m. 

(B) Quantification of the fluorescence intensity of dots formed by VLN2-EGFP, VLN3-

EGFP or VLN5-EGFP showing an increase over time. The fluorescence intensity of 

dots was plotted versus time. VLN2, n = 9, VLN3, n = 6, VLN4, n = 7. 
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(C) Images showing colocalization of VLN-GFP fusion proteins with actin after 

treatment with 50 M A23187 for 60 min. Treatment with 50 M A23187 was 

performed in order to see the formation of obvious F-actin foci in pollen tubes. F-actin 

foci were stained with Alexa-568-phalloidin. Bar = 5 m. 
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Figure 4. Loss of Function of Arabidopsis VLNs Impair the Depolymerization of 

Actin Filaments and the Formation of Actin Foci in Response to A23187 

Treatment in Pollen Tubes 

(A) F-actin in pollen tubes visualized by staining with Alexa-488 phalloidin and 

confocal imaging. Pollen tubes from various lines: WT, vln2, vln5, vln2 vln5 and vln2 

vln3 vln5 mutants were treated with 10 M A23187 for 2 min, 10 min and 60 min. 

While on their own, the mutants had a relatively small effect on actin configuration, the 

double and triple mutants had much larger impact. Bar = 5 m. 

(B) Skeletonized images of actin filaments in WT, vln2, vln5, vln2 vln5 and vln2 vln3 

vln5 mutant pollen tubes after treatment with 10 M A23187 for 60 min show clear 

differences between the amount of actin filaments in different mutant lines. Bar = 5 m. 

(C) Quantification of the occupancy of actin filaments in WT and villin mutant pollen 

tubes after treatment with A23187. The occupancy of actin filaments in WT and villin 

mutant pollen tubes was plotted, showing significant differences between these. Values 

represent mean  SE, n > 8, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, by 

student’s t-test. 
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Figure 5. The Severing Activity of VLN5 is required for A23187-induced 

Fragmentation and Depolymerization of Actin Filaments and the Formation of 

Actin Foci in Pollen Tubes 

(A) A cartoon describing the severing deficient VLN5 protein VLN5SD generated 

according to (Revenu et al., 2007). A series of mutations, located in the boxed region, 

were introduced into VLN5 via comparison with CapG, as this region was shown to be 

crucial for the severing activity of villin. The amino acid sequences of VLN5, VLN5SD 

and CapG are shown. The mutated sequences in VLN5 are brown colored, and the 

corresponding sequences in CapG are light blue colored. Besides the point mutations, 

a histidine was inserted in VLN5SD. 

(B) SDS-PAGE analysis of purified recombinant VLN5 and VLN5SD proteins. Arrow 

indicates recombinant VLN5 and VLN5SD. 

(C) VLN5SD prevents whereas VLN5 enhances dilution-mediated actin 

depolymerization, suggesting that the severing activity of VLN5SD was impaired. 

Preassembled actin filaments at 5 μM (50% pyrene-labeled) were diluted 25-fold in G 

buffer in the presence of 0.2 mM free Ca2+. The decrease in pyrene fluorescence 

accompanying actin depolymerization was monitored over time. The two 

concentrations of VLN5SD mutant show lack of actin depolymerization. 

(D) Time-lapse images of actin filaments visualized by TIRFM. Red arrows indicate 

the fragmentation events of actin filaments. Bars = 5 m. 

(E) Quantification of actin filaments severing frequency. The severing frequency of 

VLN5SD is significantly lower than that of VLN5, suggesting that VLN5SD has 

decreased severing activity. Values represent mean  SE, n = 45, ****P < 0.0001, by 

student’s t-test. 

(F) SDS-PAGE analysis of the protein samples from F-actin low-speed 

cosedimentation experiments. Equal volume of protein samples from the supernatant 

(S) and pellet (P) were separated by SDS-PAGE. 
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(G) Quantification of the amount of actin in the pellet fractions. There was no large 

difference in the amount of actin in the pellet fractions of samples containing VLN5SD 

compared with samples containing VLN5, indicating that the bundling activity of 

VLN5SD was not greatly impaired. Values represent mean  SE, n = 3, *P < 0.05, by 

student’s t-test. n.s., not significant. 

 

(H) Images of actin filaments in pollen tubes. WT, vln2 vln5 and VLN5SD (vln2 vln5) 

pollen tubes were subjected to actin staining with Alexa-488 phalloidin after treatment 

with 50 M A23187 for 60 min. Using 50 M A23187 treatment allows the formation 

of obvious F-actin foci in WT pollen tubes. This shows that the VLN5 can rescue the 

defective actin reorganization found in vln2 vln5 mutant pollen tubes and the VLN5SD 

cannot do so. Bar = 5 m. 

(I) Images of actin filaments in the VLN5SD (vln2 vln5) mutant at different time points 

after treated with 50 M A23187. Bar = 5 m. 

(J) Quantification of the occupancy of actin filaments in pollen tubes after treatment 

with 10 M A23187 showing that the VLN5SD has a defective actin depolymerization 

response to A23187 similar to the vln2 vln5 mutant. Values represent mean  SE, n = 8. 

(K) Schematic diagram showing the alteration in the organization of actin filaments in 

WT or V5p:VLN5 (vln2 vln5) and VLN5SD (vln2 vln5) pollen tubes after the treatment 

with A23187. After A23187 treatment, in the WT or V5p:VLN5 (vln2 vln5) pollen 

tubes, actin filaments form large foci (upper panel). However, in the VLN5SD (vln2 vln5) 

pollen tubes, after A23187 treatment, a much weaker response is detected and the actin 

foci are sparse and small. 
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Figure 6. The Actin Bundling Activity of VLN5 is Required for the Enlargement 

of Actin Foci in Pollen Tubes 

(A) A cartoon showing the generation of VLN5ΔHL protein, with deletion of the 

headpiece domain and the linker. 

(B) SDS-PAGE analysis of purified recombinant VLN5 and VLN5ΔHL proteins. 

Arrow indicate the main bands of VLN5 and VLN5ΔHL. 
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(C) SDS-PAGE analysis of the protein samples from the low-speed F-actin 

cosedimentation experiment. S, supernatant; P, pellet. 

(D) Quantification of the amount of actin in the pellet fractions. The amount of actin in 

pellet significantly decreased in samples with VLN5ΔHL, indicating that the bundling 

activity of VLN5ΔHL is impaired. Values represent mean  SE, n = 3, *P < 0.05, ****P 

< 0.0001, by student’s t-test. 

(E) Images of F-actin stained with rhodamine phalloidin. F-actin, 2 M; VLN5 or 

VLN5ΔHL, 0.5 M. Bar = 20 m. 

(F) Time-lapse images of actin filaments captured by TIRFM. VLN5 and 

VLN5ΔHL, 3 nM; free Ca2+, 1.0 μM. Red arrowheads indicate the fragmentation 

events of actin filaments. Bar = 10 m. 

(G) Quantification of actin filament severing frequency. The severing frequency of 

VLN5ΔHL was not significantly different from that of VLN5, indicating that the 

severing activity of VLN5ΔHL remains unchanged. Data represent mean  SE, n = 45, 

the statistical comparison was performed with Student’s t-test. n.s., not significant. 

(H) Images of actin filaments in WT, vln2 vln5 and V5p:VLN5ΔHL (vln2 vln5) pollen 

tubes after treatment with 50 M A23187 for 60 min and subsequently stained with 

Alexa488-phalloidin. Using the treatment with 50 M A23187 enables the formation 

of obvious F-actin foci in pollen tubes at that time point. The actin foci formed in the 

VLN5p:VLN5ΔHL (vln2 vln5) pollen tubes were much reduced compared to those 

formed in the VLN5p:VLN5 (vln2 vln5) pollen tubes. Bar = 5 m. 

(I) Quantification of the size of actin foci in pollen tubes treated with 50 M A23187. 

Values represent mean  SE, n = 8. ****P < 0.0001, by student’s t-test. n.s., not 

significant. 

(J) Representative images of actin filaments stained with Alexa488-phalloidin in 

VLN5p:VLN5ΔHL (vln2 vln5) pollen tubes after treated with 10 M A23187, showing 

an increase in fragmentation of actin structures in pollen tubes within 2 min and 

formation of punctate actin foci afterwards. Treatment with 10 M A23187 was 
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performed in order to see the process of actin alterations in pollen tubes during 

treatment. Bar = 5 m. 

(K) Quantification of the occupancy of actin filaments in pollen tubes after treated with 

10 M A23187, showing that VLN5ΔHL pollen tubes could depolymerize actin 

filaments in response to A23187. Values represent mean  SE, n = 8. 

(L) Time-lapse images of VLN5ΔHL-mCherry in pollen tubes after treatment with 

A23187. Actin foci first formed at the pollen tube tip and then at sub-apical region after 

treatment with 10 M A23187. t = 0 is the time point when foci were formed but not 

enlarged. Bar = 5 m. 

(M) Quantification of the fluorescence intensity of VLN5ΔHL-mCherry during the 

treatment with 10 M A23187. The left panel shows the image of VLN5ΔHL-mCherry 

with the tracked dots indicated by different colored boxes. The right panel shows the 

plot of the fluorescence intensity of VLN5ΔHL-mCherry in the pollen tube over time 

in the presence of 10 M A23187. These pollen tubes with the VLN5ΔHL did not make 

enlarged actin foci. 

(N) Schematic description of the formation of actin foci in WT or V5p:VLN5 (vln2 

vln5) and V5p:VLN5ΔHL (vln2 vln5) pollen tubes treated with A23187. After 

treatment with A23187, compared with WT or V5p:VLN5 (vln2 vln5) pollen tubes, 

which form large actin foci, the actin foci in V5p:VLN5ΔHL (vln2 vln5) pollen tubes 

failed to enlarge. 
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Figure 7. Schematic Model Describing Actin Alterations in Response to the 

A23187 treatment of Pollen Tubes, showing the Proposed Role of Villin 

(A) In untreated growing pollen tube, actin filaments were organized in bundles. 

(B) With the addition of A23187 (and assumed elevation of Ca2+cyt) in the pollen tube, 

the actin cytoskeleton starts to be broken down by the increase in the fragmentation of 

actin filaments. Villin is involved in fragmenting actin filaments by its Ca2+–responsive 

actin severing activity. We assumed that the conformation of villin is altered after the 

addition of A23187. 

(C) With prolonged treatment with A23187, actin filaments start to depolymerize. 

Villin facilitates this process by severing actin filaments. Meanwhile, actin foci start to 

form in the pollen tube. Villin is involved in foci formation by cross-linking actin 

fragments. 

(D) The size of foci gradually increases over time. In this process, villin is involved in 

promoting the enlargement of actin foci via its actin bundling activity to link the 

fragmented actin structures together.  

 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Figure S1. A23187 Treatment Induces Rearrangement, Fragmentation and 

Depolymerization of Actin Filaments as well as the Formation and Subsequent 

Enlargement of Actin Foci in Pollen Tubes 

(A) Time-series of images showing remodeling of actin filaments in a living WT 

pollen tube expressing Lifeact-EGFP treated with 10 µM A23187. Actin filaments 

were revealed by decoration with Lifeact-EGFP. Bar = 5 µm. t = 0 represent the time 

J. Cell Sci.: doi:10.1242/jcs.237404: Supplementary information
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point when the rearrangement of actin filaments began. 

(B) Time-series images of actin filaments within the boxed region shown in (A). The 

red, pink and yellow dots mark different actin filaments, which underwent apparent 

depolymerization during A23187 treatment. The white arrows indicate actin filament 

fragmentation events. Bar = 2 µm. 

(C) Quantification of the occupancy of actin filaments in pollen tubes. (a) The 

occupancy of actin filaments was plotted versus the time after A23187 addition for the 

pollen tube shown in (A). (b) Plot of the occupancy of actin filaments versus the time 

after A23187 addition for 5 additional pollen tubes. 

(D) Quantification of the fluorescence intensity of actin foci. (a) The upper panel 

shows the actin foci of interest traced for the measurement of the fluorescence 

intensity, which was indicated by different colored boxes. The lower panel shows the 

plot of fluorescence intensity of actin foci versus time; the fluorescence intensity of 

foci was recorded once the foci started to form. (b) Plots of fluorescence intensity of 

actin foci versus time for 5 additional pollen tubes. 

J. Cell Sci.: doi:10.1242/jcs.237404: Supplementary information
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Figure S2. The Fluorescence Intensity of Actin Foci Decorated with VLN2-EGFP, 

VLN3-EGFP and VLN5-EGFP Increases Over Time 

The fluorescence intensity of dots formed by VLN2-EGFP, VLN3-EGFP and 

VLN5-EGFP was measured in two pollen tubes for each GFP fusion protein, and was 

plotted versus time. 

J. Cell Sci.: doi:10.1242/jcs.237404: Supplementary information
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Figure S3. Determination of the Relative Amount of Transcripts of VLN5 and Its 

Variants in Pollen 

(A) Analysis of the amount of VLN5 transcripts in pollen. Pollen derived from WT, 

vln2 vln5, VLN5p:VLN5 (vln2 vln5), VLN5p:VLN5SD (vln2 vln5) plants. 

VLN5p:VLN5 (vln2 vln5) are transgenic plant lines expressing VLN5 under control of 

VLN5 promoter in vln2 vln5 double mutant. 

(B) Analysis of the relative expression level of VLN5 transcripts in pollen from 

various lines. Pollen was collected from WT, vln2 vln5, VLN5p:VLN5 (vln2 vln5), 

VLN5p:VLN5ΔHL (vln2 vln5) plants; see M&M for details. 

J. Cell Sci.: doi:10.1242/jcs.237404: Supplementary information
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Figure S4. Actin Foci Decorated by VLN5ΔHL Fail to Enlarge 

(A) SDS-PAGE analysis of the protein samples from the high-speed F-actin 

cosedimentation experiment. 2 µM of VLN5 (with 0 µM as control) was incubated 

with 3 µM F-actin for 30 min at room temperature before centrifugation. S, 

supernatant; P, pellet. 

J. Cell Sci.: doi:10.1242/jcs.237404: Supplementary information
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(B) Quantification of the amount of sedimented VLN5. The amount of VLN5 in pellet 

significantly increased after incubation with F-actin, indicating that VLN5 possesses 

F-actin binding ability. Values represent mean ± SE, n = 3. ***P < 0.001 by Student’s 

t-test. 

(C) SDS-PAGE analysis of the protein samples from the high-speed cosedimentation 

experiment. 2 µM of VLN5ΔHL (with 0 µM as control) was incubated with 3 µM 

F-actin for 30 min at room temperature before centrifugation. S, supernatant; P, pellet. 

(D) Quantification of the amount of sedimented VLN5ΔHL. The amount of 

VLN5ΔHL in pellet significantly increased after incubation with F-actin, indicating 

that VLN5ΔHL possesses F-actin binding ability. Values represent mean ± SE, n = 3. 

**P<0.01, by Student’s t-test. 

(E) Images of actin and VLN5ΔHL-mCherry in A. thaliana pollen tubes after treated 

with A23187. Actin filaments were revealed by staining with Alexa-488 phalloidin. 

Actin foci and VLN5ΔHL-mCherry-decorated structures overlap substantially. Bar = 

5 µm. 

(F) Quantification of the dynamic behavior of VLN5ΔHL-mCherry in pollen tubes 

after treatment with A23187. The upper panel shows time-lapse images of 

VLN5ΔHL-mCherry in pollen tubes treated with 10 µM A23187. The lower panel 

shows the tracked VLN5ΔHL-mCherry dots (left) and quantification of their 

fluorescence intensities over time (right). Bar = 5 µm. 

J. Cell Sci.: doi:10.1242/jcs.237404: Supplementary information
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Supplemental Movies

Movie 2. Dynamic Formation of VLN2-EGFP Dots in a Pollen Tube after 

the Treatment with 10 µM A23187. VLN2-EGFP was tracked after the treatment 

with 10 µM A23187 showing the formation of dot-like structures. The movie is 

displayed at 5 frames per second. 

Movie 1. Dynamic Behavior of Actin Filaments in Pollen Tube Treated with 

10 µM A23187. Actin filaments decorated with Lifeact-EGFP were tracked after 

the treatment with 10 µM A23187. The movie is displayed at 5 frames per second. 

J. Cell Sci.: doi:10.1242/jcs.237404: Supplementary information
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http://movie.biologists.com/video/10.1242/jcs.237404/video-1
http://movie.biologists.com/video/10.1242/jcs.237404/video-2


Movie 3. Dynamic Formation of VLN3-EGFP Dots in a Pollen Tube after 

the Treatment with 10 µM A23187. VLN3-EGFP was tracked after the treatment 

with 10 µM A23187 showing the formation of dot-like structures. The movie is 

displayed at 2 frames per second. 

Movie 4. Dynamic Formation of VLN5-EGFP Dots in a Pollen Tube after 

the Treatment with 10 µM A23187. VLN5-EGFP was tracked after the treatment 

with 10 µM A23187 showing the formation of dot-like structures. The movie is 

displayed at 5 frames per second. 

J. Cell Sci.: doi:10.1242/jcs.237404: Supplementary information
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http://movie.biologists.com/video/10.1242/jcs.237404/video-3
http://movie.biologists.com/video/10.1242/jcs.237404/video-4


Table 1. Primers used in this study 
Primer name Primer sequence 

VLN5CDSF GGTACCGAGCTCCGATGACGTTTTCCATGAG 

VLN5CDSR CTGCAGCTTCAGTTGCGCTC 

VLN5SD
1F ACTATTAGGTGAACGTGCTGTTC 

VLN5SD
1R GTATTTAAATCAACAGTCATGACGGC 

VLN5SD
2F CACAACACTTCAAAGCCCGAGGA 

VLN5SD
2R GAACGCTGAAGCAACTCCACCT 

VLN5ΔHLF GGTACCGAGCTCCGATGACGTTTTCCATGAGAGATTT 

VLN5ΔHLR GAATTCTTACTCGAGATTTGTCAGGATCGCAAGCTTTC 

qVLN5 F TCGGTAAAGATTCCAGCCA 
qVLN5 R GAACCCTGAAGCAACTCCAC 

J. Cell Sci.: doi:10.1242/jcs.237404: Supplementary information
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