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monic potential
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Abstract – A line of hard spheres confined by a transverse harmonic potential, with hard walls at
its ends, exhibits a variety of buckled structures as it is compressed longitudinally. Here we show
that these may be conveniently observed in a rotating liquid-filled tube (originally introduced by
Lee et al. [T. Lee, K. Gizynski, and B. Grzybowski, Adv. Mater. 29, 1704274 (2017)] to assem-
ble ordered three dimensional structures at higher compressions). The corresponding theoretical
model is transparent and easily investigated numerically, as well as by analytic approximations.
Hence we explore a wide range of predicted structures occurring via bifurcation, of which the
stable ones are also observed in our experiments. Qualitatively similar structures have previously
been found in trapped ion systems.

Introduction. – Particles confined in the vicinity of
a straight line by a transverse potential have been found
to exhibit a rich variety of structures, particular distorted
linear chains [1]. In detail they depend on the interactions
between the particles, the confining potential and any
boundary conditions at the end of a finite sample. Previ-
ous observations have been made with ion traps [2–8], but
also finite dust clusters [9], overdamped colloidal systems
[10] and microfluidic crystals comprising of droplets [11].
The complex scenario of the appearance of such structures,
induced by bifurcations upon increasing compression, has
been sketched by Landa et al. [12] for the case of quadripo-
lar confining potential and Coulomb interactions.

Here we introduce a much more elementary experimen-
tal system for such an investigation. Our theoretical model
is amenable to an analysis using simple numerical and an-
alytical methods.

The experimental system consists of N equal-size hard
polypropylene spheres in a horizontal liquid-filled tube,
rotating in a lathe. The spheres are buoyant, so that a
centripetal force drives them towards the central axis; the
rotational speed is high enough to make gravity negligi-
ble. This set-up was first introduced by Lee et al. [13] in
order to determine the equilibrium phases (ordered three
dimensional structures) over a wide range of dimensionless

compressions ∆

∆ = (Nd− L)/d = N − L/d , (1)

where d is the sphere diameter and L is the tube length.
The present application is at very low compression, where
the linear chain of contacting spheres is observed to buckle.
In this range, the structures are all planar. This is as-
sumed in the stepwise method described below, but not
in the method of energy minimisation, which indeed finds
planar configurations.

The rich scenario of structural transitions within this
regime under increasing compression is predicted in de-
tail by the analysis provided below. It uses two numerical
methods: an iterative stepwise solution for force equilib-
rium positions and a simulation based on energy minimi-
sation.

Theory and numerical analysis. –

Iterative stepwise method. In the experimental sys-
tem, detailed below, each sphere of mass m experiences a
centripetal force fc = mω2R, where R is the distance of
its centre from the central axis of the tube and ω the rota-
tional speed. For the case of no compression (∆ = 0) the
spheres align in a linear chain along the central axis. At a
finite compression (∆ > 0) the chain starts to buckle and
the equilibrium structures take the form of modulated zig-

p-1



J. Winkelmann et al.

L/d

θ1 = 0

n = 1
θ2

n = 2

θn−1

rn−1

θn

θn+1

Fn

Gn Gn+1

θN

1

n = N

θN+1 = 0

x

Fig. 1: Arrangement of spheres at the two walls and the interior of a modulated zigzag structure that is formed when N spheres
are compressed between hard walls, showing the notation used for the stepwise solution. Each sphere, displaced from the central
axis (horizontal dashed line) by the dimensionless distance rn, experiences a dimensionless centripetal force Fn = rn pulling it
towards this axis and a compressive force Gn. θn is the angle between the line connecting the centres of spheres n − 1 and n

and the central axis. At the wall the line of contact is in the x direction, i.e. θ1 = θN+1 = 0.

zag structures as illustrated in Fig 1. We developed an
elementary stepwise method to describe such structures
for low energies.

In the following we will use the dimensionless distance
from the central axis for each sphere r = R/d and the
dimensionless centripetal force F = fc/(mω

2d) = r.
Our aim is to calculate the dimensionless forces Fn = rn

and tilt angles θn, as defined in Fig 1, for n = 1 to N
spheres. Considerations of force equilibrium and geomet-
rical equations yield iterative relations for Fn (or rn) and
θn as follows.

The compressive forces Gn between contacting spheres,
are given by Gn cos θn = G0 from the condition of force
equilibrium in the x direction, which is that of the central
axis. G0 is the magnitude of the compressive force at each
end of the system.

The equilibrium of centripetal forces Fn on the nth
sphere gives

Fn = Gn sin θn +Gn+1 sin θn+1

= G0(tan θn + tan θn+1). (2)

The centres of contacting spheres are separated by their
diameter. Hence the radial distances and forces are

rn + rn+1 = sin θn+1 ,

Fn + Fn+1 = sin θn+1 . (3)

The above equations then relate θn+1 and Fn+1 to θn and
Fn, i.e.

θn+1 = arctan

(
Fn
G0
− tan θn

)
,

Fn+1 = sin

[
arctan

(
Fn
G0
− tan θn

)]
− Fn. (4)

These equations may be used in a “shooting method”
to find solutions for a specified value of G0. The hard-wall

boundary condition for sphere n = 1 requires the first tilt-
angle θ1 to be zero, with an arbitrary F1. Using eqs. (4)
we proceed iteratively to (FN+1, θN+1). The angle θN+1

corresponds to the contact of the Nth sphere with the
wall, as illustrated in Fig 1.

We search for values of F1 (in general more than one)
such that the angle θN+1 is zero, satisfying the second
hard-wall boundary conditions. This search is performed
by coarse graining the initial force F1 over a range of 0 <
F1 ≤ 0.01 in steps of 10−4. These values are then used as
brackets in a bisection method.

The non-dimensional total energy E of such a hard
sphere structure can be calculated as

E =
Erot

mω2d2
=

1

2

N∑
n=1

r2n , (5)

where as in [14] we have omitted the (constant) energy
contribution due to the moment of inertia of the spheres.
The compression ∆ from eq. (1) is given by

∆ = N −
N∑
n=1

cos θn . (6)

By performing the root search at varying compressive force
G0, we can accumulate a data set, for which we can cal-
culate the energies and compressions in this way.

In practice we encounter difficulties with the stepwise
method beyond a compression of ∆ ≥ 0.9 (for N = 20).
Above this point our implementation of the bisection
search method has problems to find all solutions. We ex-
pect to successfully extend the application of the stepwise
method to this regime in the future.

Simulations based on energy minimisation. To con-
firm and supplement the results of the stepwise method
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we also seek equilibrium configurations using energy min-
imisation starting from random configurations. These sim-
ulations are more general than the stepwise method since
they are not restricted to be planar. Results for larger
compressions can also be generated. We have used energy
minimisation on a system of soft spheres, extrapolating
to the limit of hard spheres, in order to corroborate the
results of the stepwise calculations.

In the soft sphere model, the overlapping spheres repel
each other according to Hooke’s law with a spring constant
k. This crude formalism is often used in the context of
foam structures and rheology [15].

The non-dimensional total energy ES for N soft spheres
(of diameter d), longitudinally confined between length L
is given by,

ES =
1

2

N∑
n=1

r2n +
1

2

(
k

mω2

) N∑
n,m=1
m<n

(
δnm
d

)2

+

[(
δ1
d

)2

+

(
δN
d

)2
])

. (7)

The first term is the rotational energy of each sphere. The
second term accounts for the overlap between any two
spheres, where the overlap between spheres n and m is
defined as δnm = |Rn −Rm| − d, where Rn and Rm are
the centre positions of two contacting spheres. The final
term accounts for the overlaps δ1 and δN of the two end
spheres with the two boundaries.

For any given values of compression ∆ and k/mω2 we
find equilibrium solutions (stable or metastable) by vary-
ing the coordinates of the sphere centres. Finally, by per-
forming a series of simulations with increasing values of
k/mω2 we can extrapolate to the hard sphere case (i.e.
k/mω2 → ∞) and compare directly with the stepwise
method.

The solutions from the stepwise method are only in force
equilibrium, i.e. they can be stable or unstable solutions.
We have also used energy minimisation to check the sta-
ble/unstable character of the solutions.

Numerical results. – We present results for a va-
riety of low energy structures. Many other equilibrium
structures could be found with higher energy, if we were
to extend the range of our search parameters. These may
be of limited physical significance and will not be pursued
in the present paper.

Typical profiles. For low compressions our search
yields only one structure that we will refer to as the sym-
metric structure S, since the profile for Fn (or displace-
ment rn) is symmetric around the midpoint of the system.
(Note that we have defined Fn and rn to be positive.)

Examples of such a profile for N = 20 are pre-
sented in Fig 2 for a low (green triangles) and high
(blue stars) compression where we show the displacement
rn from the central axis vs the (dimensionless) position
xn = 1/2 +

∑n
i=2 cos(θi).
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Fig. 2: Sphere displacements rn as function of position xn
for a symmetric (blue stars) and a stable asymmetric struc-
ture (red crosses) at a compression of ∆ = 0.65. Also shown
is the displacement rn for the symmetric structure at a lower
compression of ∆ = 0.08 (green triangles). (All quantities are
dimensionless, see definitions in main text.) The peak posi-
tion of the asymmetric structure for ∆ = 0.65, estimated by a
quadratic fit of the displacements around the maximum, is dis-
played by the vertical dotted red line. The vertical blue dashed
and the green solid line display the midpoint of the system. The

distance between x0 and xN is equal to N − ∆ − 1.

These results show perfect agreement with the symmet-
ric structure generated by energy minimisation and ex-
trapolated to the hard sphere limit. The structures ob-
tained by energy minimisation are necessarily confined to
stable cases.

For high compressions additional asymmetric structures
are obtained from the stepwise method. An example for
the displacement profile for such a structure is given by
the red crosses in Fig 2.

Bifurcation diagrams. We have used the iterative
stepwise method to search for low energy structures in the
range of the compressive forces between 0.2 ≤ G0 ≤ 0.25
and initial forces between 0 < F1 < 0.01. These structures
correspond to relative compression below ∆ < 0.9. They
were computed for both an even (N = 20) and an odd
(N = 19) number of spheres, for which the results differ
qualitatively.

In these parameter ranges the total energy ESymm of
the symmetric structure S increases from 0 to roughly
0.15, whereas the difference between the energies of al-
ternative structures is only of order 10−4. We therefore
computed the energy ∆E = E−ESymm relative to that of
the symmetric structure at the same compressive force G0

and plotted them against their compression for even (Fig
3(a)) and odd case (Fig 3(b)).

We present these relative energies in the vicinity of the
compression range where the first asymmetric structures
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Fig. 3: Bifurcation diagram: Relative energies ∆E = E −
ESymm (where ESymm is the energy of the symmetric structure
S), are plotted against compression ∆ around the first bifurca-
tion for the case of even number of spheres (a) and odd number
of spheres (b). Unstable structures are marked with an aster-
isk. Examples of all structures in the even case are displayed

in Fig 4.

are created by bifurcation. While both cases of even and
odd N feature an increasing number of bifurcations as
compression is increased, they are qualitatively different
and will thus be discussed separately.

For the even case N = 20 an increasing number of
asymmetric structures (A-F) are introduced by bifurca-
tion as compression increases. The unstable structures
are marked with an asterisk. The first two additional
branches A* and B emerge from an “out-of-the-blue” bi-
furcation at ∆ = 0.558 without any preceding structure.
Of these two branches, structures on branch B are stable,
whereas structures from A* are unstable, as verified by
energy minimisation.

Two further structures C* and D, appear via a pitch-
fork bifurcation out of the previous stable structure B at
∆ = 0.588. B and the additional branch of lower energy
D are stable, whereas the upper one C* is not. A similar
pitch-fork bifurcation of the D branch occurs for the next

two structures at ∆ = 0.622, from which the lower branch
F is again stable and E* unstable.

Examples of structures from all of the seven branches
for the even case in Fig 3(a) are given in Fig 4. The
vertical black solid line in these plots represents the mid-
point of the structure; the vertical red dashed line indi-
cates the peak position of the sphere profile, as estimated
by a quadratic fit to the sphere positions around the max-
imum. For unstable structures the peak position coincides
roughly with the centre position of a sphere. Note the de-
generacy: asymmetric structures may have the peak left
or right of the centre.

The energy diagram for the odd case of 19 spheres (in
Fig 3(b)) differs with respect to the first bifurcation. Here
only a single new stable structure (branch B) emerges.
From then on bifurcations follow the pattern of the even
case, in which previous structures remain stable and new
structures of lower energy are stable (i.e. D and F are
stable, while C* and E* are unstable).

While the structures that we have identified here ap-
pear to be the only equilibria within the specified range
in energy and compression, structures with a more com-
plicated profile occur at higher energy, which we have not
addressed here. The displacement profiles of these struc-
tures can contain two or more off-centred peaks.

Maximum angles. We have also computed the maxi-
mum angle θmax of the symmetric structure with varying
compression for the stepwise method and energy minimi-
sation, see Fig 5. This is a quantity that can readily be
extracted from experimental data, see below.

While our results for the stepwise method stop at a
compression of 0.9, the maximum angle θmax from the
energy minimisation was computed up to a compression
of ∆ . 1.3. At this point the modulated zigzag struc-
ture acquires an additional contact with the next-nearest
neighbour sphere.

At low compressions (∆ / 0.1), where the displacement
profile is of the type shown by the green triangles in Fig
2, θmax varies as

√
∆.

Linear approximation. – In order to better under-
stand the above results, we have developed an approx-
imate, linear analytic description as follows. For small
angles θn and forces Fn, linearisation of eq. (4) leads to(

Fn
θn

)
=

( 1
G0
− 1 −1
1
G0

−1

)(
Fn−1
θn−1

)
. (8)

Recursive substitution of Fn and θn and setting
1
G0

= 4 + ε for ε small and positive, results in:(
Fn
θn

)
=

(
3 + ε −1
4 + ε −1

)n−1(
F1

θ1

)
. (9)

The largest possible value for the compressive force is
G0 = 1/4, which, for the case of an infinitely long chain,
corresponds to the uniform zigzag structure (rn = −rn−1).
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Fig. 4: Examples of buckled chain structures from the S and
A-F branches, as labelled in Fig 3. The structures were created
by the stepwise method with N = 20 spheres at a compression
of ∆ = 0.65. Structures marked by an asterisk are unstable.
The solid black vertical line marks the midpoint of the system,
while the dashed red vertical line marks the peak position of
the position profile. Asymmetric structures (A-F) are doubly
degenerate (i.e. can have a peak on the left or on the right of

the centre).

A solution for (Fn, θn)T may be expressed in terms of
eigenvalues λ1,2 and eigenvectors V1,2 of the above matrix
as (Fn, θn)T = aλn−11 V1 + bλn−12 V2. To lowest order in
ε the eigenvalues are given by λ1,2 = 1 ± √ε with the

corresponding eigenvectors V1,2 =
(

1
2 (1±

√
ε

2 ), 1
)T

. The

prefactors a and b are obtained from the initial conditions
F1 and θ1.

The solution in the linearised approximation for θ1 = 0
is then given by

Fn =
F1

sinh(φ)
sinh(

√
ε(n− 1) + φ) (10)

θn =
4F1√
ε

sinh(
√
ε(n− 1)) , (11)

with the offset in the forces φ = arctanh(
√
ε/2). Note

that θn does not have an offset, since θ1 = 0.

A comparison of angles θn using the approximated lin-
earised equation (11) and the previously numerical exact
stepwise method is shown in Fig 6 for a compressive force
of G0 = 0.234, resulting in a compression of ∆ = 0.500.
The starting value F1 in the linearised scheme was taken
from the corresponding value in the stepwise method.
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Fig. 5: Maximum angle θmax of the symmetric structure as a
function of compression ∆ for an even number of spheres N .
Blue circles and the orange solid line are obtained from numer-
ical calculations (stepwise method and energy minimisation).
The green crosses with low opacity refer to the raw experimen-
tal data points. For the green crosses with high opacity, the
increased effective sphere diameter attributed to vibrations in
the system was taken into account in the compression calcu-
lation. The uncertainty in the value for θmax was obtained by
averaging the angles over five images of the structure at the

same compression.

We find excellent agreement between the linearised the-
ory and the stepwise method up to about n = 8. The
linear theory produces a monotonically increasing func-
tion (Fig 6), whereas the accurate solution “rolls over”
and decreases towards the second boundary. This can be
understood in terms of the role of nonlinearity, and ap-
proximated in an ad hoc manner: we will leave this to a
subsequent paper.

Comparison with experiment. – Our experimen-
tal procedure is similar to that of Lee et al. [13]. We placed
an even number of N = 34 polypropylene beads of den-
sity ρ = 0.900 g/cm3 and diameter d = 3.000 ± 0.001 mm
[16] in a cylindrical tube (inner diameter 15.91±0.01 mm;
outer diameter 20.17±0.01 mm; length 130.55±0.01 mm)
filled with water (density ρw = 1 g/cm3).

The tube is sealed on both ends with stoppers, making
sure that no air bubbles remain within the system. The
extent to which the stoppers intrude into the tube can be
varied, allowing us to adjust the compression ∆.

The tube is then mounted onto a commercial lathe
(Charnwood W824), for which we set the rotation fre-
quency to ω = 1800 ± 50 rpm. In order to record the
structures we used a stroboscopic lamp, whose frequency is
matched to that of the lathe. A slight off-set between both
frequencies is used so that recorded structures appear to
be slowly rotating (see example in the supplemental video
LatheExperiment.mp4).
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the linearised theory (11) (blue solid line) (for N = 20) at a
compression of ∆ = 0.500. Note that there are 21 angles, since

θN+1 is associated with the wall contact of sphere N .
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Fig. 7: Photographs of a variety of buckled structures for
N = 34, obtained by the rapid rotation of a water-filled tube
containing polypropylene beads (density ρ = 0.900 g/cm3), us-
ing a lathe. The structures S, B, D, and F are labelled as in
Fig 3. The vertical line represents the midpoint of the system

and the horizontal line the central axis of rotation.

Fig 7 shows images of the structures that we identified
with the branches S, B, D, and F by comparing them
with to the numerical results from 4. The experimental
structures can be identified by the distance of the peak
position to the structure centre. This is independent of N
for large number of spheres because the wall effects can be
neglected. The identified structures correspond to all the
stable structures of Fig 3. Structure S, as well as structure
B, were found at a compression of ∆ = 0.44± 0.02, while
the compressions for structure D was ∆ = 0.59± 0.02 and
for F, ∆ = 0.68± 0.02.

However, in order to reconcile these experimental re-
sults with the theoretical predictions of previous sections,
it is necessary to introduce an effective diameter for the
spheres, about 1 % greater than the true value. This in-
creases the effective compressions by a constant shift of
roughly 0.35. We attribute it to the effects of vibration
of the lathe, and will explore strategies for its mitigation

in future work. This shift also features in previous results
from Lee et al. [13, 14].

We extracted the maximum angle θmax for the symmet-
ric structure with varying compression for the experiments
(see Fig 5). It shows very clearly the necessity for the ad-
justment of sphere diameter. Due to the neglecting wall
effects, these results only depend on N being odd or even
for a large enough number of spheres.

Conclusion. – The compressed and confined sphere
chain presents a variety of fascinating observations, previ-
ously described in terms of “kinks” or “solitons” [6]. We
have succeeded in exploring many of its properties, using
simple apparatus and theoretical methods.

Recently we have found a yet simpler experimental
method which should be useful, at least for purposes of
demonstration. It consists of a horizontal tube into which
ball bearings are introduced. Slight agitation enables them
to settle in modulated zigzag structures similar to those
depicted above [17]. A further variation, which appears to
be promising, uses bubbles in a liquid-filled tube.

While we have so far investigated only simple struc-
tures with single peaks in the displacement profile, more
complicated structures exist at higher energies, and may
also be found with the stepwise method. Among these are
structures that can be created by concatenating one of
the single-peak structures with its mirrored counterpart.
Their compression and energy will be doubled.

Other extensions will include the case of soft (elastic)
spheres, for which we have already observed similar effects,
using hydrogel particles and bubbles. Also the observa-
tions can be extended to much higher compression, making
contact with the work of Lee et al. [13] and Winkelmann
et al. [14], for the 3d structures generated. It may also be
possible to take advantage of a technique that uses pho-
toelastic material to indicate the magnitude of the com-
pressive forces [18,19].

Considerable current interest in the compressed sphere
chain focusses on motion of kinks and the correspond-
ing Peierls–Nabarro potential. This may be estimated by
making a smooth interpolation of the energy values for
stable and unstable states as calculated here.

We hope that the results presented here will find direct
comparison with previous work, particularly with regards
to ions confined in traps [1–8, 12] as well as assemblies
of magnetic particles in a channel [20]. This work should
also be relevant to other systems in which buckling is a key
feature: for example localised buckling has recently been
observed in experiments involving an expanding (growing)
elastic beam pinned to a substrate [21].
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