
Aberystwyth University

ANFIS Construction With Sparse Data via Group Rule Interpolation
Yang, Jing; Shang, Changjing; Li, Ying; Li, Fangyi; Shen, Qiang

Published in:
IEEE Transactions on Cybernetics

DOI:
10.1109/TCYB.2019.2952267

Publication date:
2019

Citation for published version (APA):
Yang, J., Shang, C., Li, Y., Li, F., & Shen, Q. (2019). ANFIS Construction With Sparse Data via Group Rule
Interpolation. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2019.2952267

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

https://doi.org/10.1109/TCYB.2019.2952267
https://pure.aber.ac.uk/portal/en/persons/jing-yang(fc8ffb68-4551-493f-b2ea-94b858fed192).html
https://pure.aber.ac.uk/portal/en/persons/changjing-shang(b892bfaa-ae7f-45c2-9082-7bfbf2b70a5e).html
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/anfis-construction-with-sparse-data-via-group-rule-interpolation(94748856-81f1-4300-a7e8-a90bb84a4dc0).html
https://pure.aber.ac.uk/portal/en/publications/anfis-construction-with-sparse-data-via-group-rule-interpolation(94748856-81f1-4300-a7e8-a90bb84a4dc0).html
https://doi.org/10.1109/TCYB.2019.2952267


IEEE TRANSACTIONS ON CYBERNETICS 1

ANFIS Construction with Sparse Data
via Group Rule Interpolation

Jing Yang, Changjing Shang, Ying Li, Fangyi Li and Qiang Shen

Abstract—A major assumption for constructing an effective
ANFIS (Adaptive-Network-based Fuzzy Inference System) is that
sufficient training data is available. However, in many real world
applications, this assumption may not hold, thereby requiring
alternative approaches. In light of this observation, this research
focusses on automated construction of ANFISs in an effort to
enhance the potential of Takagi-Sugeno fuzzy regression models,
for situations where only limited training data is available. In
particular, the proposed approach works by interpolating a group
of fuzzy rules in a certain given domain with the assistance of
existing ANFISs in its neighbouring domains. The construction
process involves a number of computational mechanisms, includ-
ing: a rule dictionary which is created by extracting rules from
the existing ANFISs; a group of rules which are interpolated
by exploiting the local linear embedding algorithm to build an
intermediate ANFIS; and a fine-tuning method which refines
the resulting intermediate ANFIS. Experimental evaluation on
both synthetic and real world datasets is reported, demonstrating
that when facing the data shortage situations, the proposed
approach helps significantly improve the performance of the
original ANFIS modelling mechanism.

Index Terms—ANFIS construction, data shortage, group rule
interpolation, transfer learning, rule dictionary, locally linear
embedding.

I. INTRODUCTION

OWING to the simplicity and explainability in represent-
ing human knowledge, fuzzy rule-based systems have

become one of the most popular tools for finding solutions
to various real world problems (e.g., [1], [2], [3]). There
are typically two forms of knowledge representation in fuzzy
rule-based inference systems: Mandani type models [4] and
Takagi-Sugeno (TSK) type models [5]. Mandani models are
classical fuzzy systems which have been popular in many
real world applications [6], while TSK ones have also played
an increasingly important role in such applications, including
for example, stock market prediction [7] and EGG signals
recognition [8]. The success of TSK type fuzzy inference
systems is largely owing to their capability of approximating
complex nonlinear functions [9].
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ANFIS (Adaptive-Network-based Fuzzy Inference System)
with TSK type fuzzy rules is one of the most successful
in implementing TSK type fuzzy models, performing fuzzy
reasoning with an adaptive network-based architecture. It
works by equivalently extracting useful knowledge in terms of
a set of fuzzy rules directly from training data, and has proven
to be simple but powerful for highly nonlinear problems. In
learning such an ANFIS model, a main assumption is that there
is sufficient data for training. However, in dealing with certain
real situations, it is difficult or even impossible to obtain
sufficient data to perform the required training procedure. The
shortage of training data significantly restricts the potential of
such systems.

In the relevant literature, a typical approach to addressing
this practical issue (of training data shortage) is to conduct
the learning process through a so-called transfer learning
procedure [10], [11], [12], [13], [14]. Such techniques exploit
the knowledge accumulated from data in an auxiliary domain
(termed source domain, SD) to support predictive modelling
in the problem domain at hand (termed target domain, TD).
Particularly, transfer learning usually works, by constructing
non-linear mappings between the target and the source domain
and transferring the data or the model parameters between
certain SD and a TD via the learned mappings. In so doing,
it is feasible to utilise the knowledge regarding a given source
model to approximately perform fuzzy inference in the target
domain.

An alternative solution to this challenging problem is
through the use of fuzzy rule interpolation (FRI) [15], [16],
[17]. In general, FRI techniques work by interpolating new
rules from the existing ones, of a sparse rule base that do not
match a given observation. Typically, FRI interpolates a fuzzy
rule by selecting and averaging given rules that are the closest
to an unfired observation, thereby enabling fuzzy systems to
perform inference even if no rules can be fired by pattern
matching. Based on the general FRI idea, transformation
based FRI (T-FRI) [18], [19] has been proposed for improved
performance through scale and move transformation. This
greatly increases the accuracy of the interpolated rule and also,
has led to a number of advanced theoretical and applicational
developments over the past decade (e.g., [20], [21], [22], [23],
[24], [25], [26], [27]). However, the existing literature of FRI is
mainly focussed on Mandani type models, apart from limited
initial attempt as reported in [28], [29], the research on FRI
with TSK type models is still rather rare.

As an original contribution towards developing a novel
approach to use FRI techniques for building TSK type mod-
els, this study focusses on the introduction of a transfer-
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learning based approach to FRI for ANFIS. It combines the
aforementioned ideas underlying the two distinct approaches
to learn ANFISs for situations where there is only limited
training data available in the given target domain. Particularly,
to construct a new ANFIS in a TD, the proposed approach
seeks the assistance of two neighbouring ANFISs that have
been generated from two source domains (where sufficient
training data is available). It is different from existing FRI
techniques for TSK-type models which are concerned with
individual rule interpolation within one fixed problem area,
and which are designed to interpolate a rule for an unmatched
observation, with just one TSK rule interpolated, using its clos-
est neighbouring rules. This work focusses on the interpolation
of an entire fuzzy inference system, where a group of fuzzy
rules are interpolated simultaneously for a certain area, using
ANFISs learned in the neighbourhood areas. Therefore, this
group based work shows a radical departure from the usual
focus of FRI, offering a new FRI mechanism with improved
abilities in nonlinear adaptation and rapid learning.

Fundamentally speaking, FRI techniques are developed by
performing similarity-based analytic reasoning, assuming that
if the rule conditions are similar, then the consequents should
also be similar. Reflecting this intuitive presumption, the
present work is established by exploiting the relationships
between a TD and its neighbouring SDs, by the use of the
locally linear embedding (LLE) algorithm [30]. This is due
to the recognition that LLE is a promising manifold learning
algorithm, capable of capturing hidden relationships between
TD and SDs in a certain rule antecedent space. From this,
by adopting similarity-based inference, hidden relationships
within the rule consequent space can be subsequently learned.
To aid in this learning process, a rule dictionary is generated
firstly by extracting fuzzy rules from source ANFISs that
are known. Next, a set of new rules are interpolated using
LLE to construct an intermediate ANFIS. Finally, the resulting
intermediate ANFIS is utilised as an initial network for fine
tuning to obtain a more accurate one. Whilst ANFIS is chosen
in this work to demonstrate the ideas (owing to its popularity,
representativeness and availability), the insights gained from
devising and running the ANFIS-based implementation can be
extended to other TSK-type fuzzy inference systems.

The rest of this paper is structured as follows. Section
II reviews the relevant background on ANFIS and LLE. In
Section III, the proposed approach to ANFIS construction is
described in detail. Experimental results are presented and
analysed in Section IV. Finally, Section V concludes the paper
and points out directions for further research.

II. BACKGROUND

This section presents an overview of the most relevant work
that will be used to develop the present research, including
ANFIS and LLE.

A. ANFIS – Adaptive Network-based Fuzzy Inference System

ANFIS [31] is a fuzzy inference system that implements
approximate reasoning within the general framework of an
adaptive network. Thanks to its simplicity and effectiveness,

it has been widely applied to various kinds of real world
problems (e.g., [32], [33], [34], [35]). The following gives a
brief introduction to the basic concepts of ANFIS, including
an illustrative network structure and the associated data-driven
process for learning the parameters of such networks.

1) Network Architecture: A general ANFIS network con-
tains five layers of computing elements. For easy understand-
ing, a simple ANFIS with two-input (x1 and x2) and one-
output (y) is used here for illustration (whilst more complex
structures can be readily expanded from this basic form). In
particular, suppose that there are two fuzzy if-then rules of
Takagi and Sugeno’s type [36] in the rule base of this example
ANFIS, as follows:

Rule 1: If x1 is A1 and x2 is B1,
then y1 = p1x1 + q1x2 + r1

Rule 2: If x1 is A2 and x2 is B2,
then y2 = p2x1 + q2x2 + r2

The network structure of such a TSK type ANFIS can be
shown in Fig. 1, where square nodes stand for adaptive
computing units with modifiable parameters, and circle nodes
represent those fixed units without parameters. Further details
of the individual layers within this ANFIS are outlined below.

Fig. 1. ANFIS structure representing two TSK rules

Layer 1: Each node i in this layer is a square unit defined by
a fuzzy set Oij of the membership function: µOij

(xi), i, j ∈
{1, 2}, where xi denotes the input variable to node i, and
Oi1 ∈ {Ai|i = 1, 2} and Oi2 ∈ {Bi|i = 1, 2} denote the fuzzy
sets defined on the domains of x1 and x2, respectively. Such
a membership function can be specified as any continuous
or piecewise differentiable, convex and normal functions such
as trapezoidal, triangular, bell-shaped ones. For simplicity, the
popularly applied triangular membership functions are adopted
here. In general terms, a triangular fuzzy set is defined by

µO(x) =

 k1x+ b1 a0 ≤ x ≤ a1
k2x+ b2 a1 ≤ x ≤ a2

0 otherwise
(1)

In ANFIS terms, k1, k2, b1, b2 are called premise parameters as
they are associated with the underlying input variable (which
appears in the antecedent part of a rule). Incidentally, the
notion of representative value that is often used in FRI for
such a triangular-shaped fuzzy set (a0, a1, a2) can be simply
defined as Rep(O) = (a0 + a1 + a2)/3, where a0 and a2
are the two extreme points delimiting the fuzzy set with a
membership value of 0, and a1 stands for the normal point of
the set whose membership value is 1.



IEEE TRANSACTIONS ON CYBERNETICS 3

Layer 2: Each node in this layer is a circle unit which
multiplies the incoming membership of each attribute and
gives the product as its (local) output, denoted by wi, acting
as the firing strength of the ith rule (i = 1, 2):

wi = µAi
(x1)× µBi

(x2) (2)

Layer 3: Each node in this layer is also a circle unit,
calculating the relative proportion of the ith rule’s firing
strength to the total of both rules’ firing strengths:

w̄i =
wi

w1 + w2
(3)

where again, i = 1, 2. To reflect the underlying semantics, the
outputs of this layer are termed as normalised firing strengths.

Layer 4: Each node i in this layer is a square unit imple-
menting the following linear function:

w̄i(pix1 + qix2 + ri) = w̄iyi (4)

where w̄i is the output of the previous layer, and pi, qi, ri are
the parameters associated with the rule consequents and hence,
are termed consequent parameters hereafter.

Layer 5: This layer is the (global network) output layer,
which consists of a single circle unit, computing the overall
output in response to the current input to the network, defined
as the summation of all its incoming values from the previous
layer, namely,

y =
∑
i

w̄iyi = w̄1y1 + w̄2y2 (5)

2) Parameter Training: The key point for constructing an
effective ANFIS is to learn the unknown parameters in the
network, including both the premise parameters describing the
fuzzy sets and the consequent ones specifying the linear func-
tions. In the original work reported in [31], these parameters
are trained using a hybrid learning method combining gradient
descent and Least Square Estimation (LSE). More specifically,
the hybrid learning algorithm can be divided into forward pass
and backward pass. In running the forward pass, the premise
parameters are set to be fixed, the input values are fed forward
till Layer 4, with the errors over the consequent parameters
being identified by LSE. In the backward pass, the error
rates are propagated backward with the consequent parameters
being fixed, and the premise parameters are updated using
the gradient descent method. More detailed description of this
training process can be found in [31].

B. Locally Linear Embedding

The locally linear embedding algorithm (LLE) [30] is one
of the most classical manifold learning methods. Although
originally developed for tackling dimensionality reduction
problems, it has now been widely utilised in performing
different types of machine learning task (e.g., [37], [38]).

LLE generates a neighbourhood preserving mapping be-
tween a high-dimensional data space (denoted as D) and a
low-dimensional data space (represented by d), assuming that
the data of these two spaces lie on or near the same manifold.
Without losing generality, suppose that each data point Xi in
the high dimensional data space is expected to be reconstructed

by its K nearest neighbours {Xj}, and that the reconstruction
error is measured by the following cost function:

ε(W ) = |Xi −
∑
j

wjXj |2 (6)

where the weight wj modifies the contribution of the jth
neighbour to the current data point Xi.

For each data point Xi in D, LLE involves the following
implementation steps as summarised in Alg. II-B, in an effort
to construct the corresponding data point Yi in d (thereby
reducing the data dimensionality). This summary is given for
completeness, but further details regarding this algorithm can
be found in [30].

Algorithm II-B: Locally Linear Embedding (LLE)
Input:

Xi: Data point in D-dimensional data space
K : Number of closest neighbours

Step 1: Find K nearest neighbours {Xj} to Xi in D
Step 2: Compute weights {wj} of selected neighbours
by minimising cost function Eqn. (6) subject to

1. that Xi is reconstructed only from its neighbours,
while setting wj = 0 if Xj does not belong to the set of
neighbours; and

2. that
∑

j wj = 1.
Step 3: Compute corresponding data point Yi regarding
Xi in d using weights {wj} and corresponding
neighbours {Yj} regarding Xj such that

Yi =
∑

j wjYj
Output:

Yi: Data point in d-dimensional data space

Note that as reflected above, being a theoretically well-
formed method (as proven in [30]), LLE provides a systematic
means for calculating the weights that are required to construct
an intermediate ANFIS during the interpolation process. This
differs from traditional FRI methods that compute the weights
with the ad hoc use of Euclidian distance measures, whilst any
other distance metric may be used as an alternative.

III. PROPOSED APPROACH

In this section, the main idea underlying the proposed
approach and the procedures implementing the idea are pre-
sented. At the highest level, this approach can be stated as
follows. Without losing generality, suppose that sparse training
data (not sufficient for learning an effective ANFIS) in the
target domain TD is given, expressed in a collection of input-
output pairs {(x, y)}, and that two ANFISs (denoted as A1 and
A2 respectively) are already trained over the source domains
SD1 and SD2. Then, the goal of this work is to generate a
new ANFIS Aint over TD, through an innovative way of rule
interpolation. Note that here, x stands for the vector of all
input variables.

To be concise, the overall algorithm implementing the
proposed approach is shown in Fig. 2, with detailed steps
summarised in Alg. III. The entire process of constructing
an effective ANFIS with sparse data over TD involves three
stages:
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Fig. 2. Flowchart of proposed approach

Algorithm III: ANFIS Construction via Group Rule Interpolation
Input:

1. Two source ANFISs in SDs: A1,A2

2. Sparse training data in TD
Step 1: Rule Dictionary Generation

1. Extract fuzzy rules {Ri} from A1 and A2;
2. Construct antecedent part of dictionary Da by Eqn. (9);
3. Construct consequent part of dictionary Dc by Eqn. (10);

Step 2: Intermediate ANFIS Construction
1. Divide sparse training data into C clusters, C is decided by Eqn. (11);
2. For each cluster centre c(k), interpolate new rule Rk using Alg. II-B:

(a) Select K closest atoms in Da;
(b) Compute weights w(k) for chosen atoms using Eqn. (13) and (14);
(c) Generate new rule Rk using weights w(k):

(c-1) Create rule antecedent using chosen atoms with index set K in Da by Eqn. (16);
(c-2) Create rule consequent using atoms in Dc with the same index set K by Eqn. (17);

3. Integrate all interpolated rules.
Step 3: ANFIS Fine-tuning

Use sparse training data to fine tune intermediate ANFIS.
Output:

Interpolated ANFIS in TD: Aint

1) Rule dictionary generation,
2) Intermediate ANFIS construction,
3) ANFIS fine-tuning.

In stage 1, a rule dictionary is firstly generated by separating
and reorganising rules extracted from source ANFISs A1

and A2. After that, in stage 2, an intermediate ANFIS is
interpolated by the following procedure: a) clustering the
sparse data of TD into C clusters; b) interpolating a new
rule for each cluster using LLE; and c) integrating all the
newly generated rules in a network (to form the intermediate
ANFIS). Finally in stage 3, the sparse training data is reused
to refine the resulting intermediate ANFIS through retraining.
The specifications for these three stages are further described

below.

A. Rule Dictionary Generation

To support interpolation of (groups of) fuzzy rules that are
to be subsequently used for building an intermediate ANFIS
(once a certain unmatched observation is given), a rule
dictionary is firstly constructed. Such a dictionary consists of
an antecedent unit Da and a consequent unit Dc, which are
designed as two separate memories devised to respectively
store collected rule antecedent parts and consequent parts
that are extracted from given ANFISs. In general, it can
be assumed that A1 and A2 consist of n1 and n2 rules
respectively. Thus, the extracted rules can be expressed in the



IEEE TRANSACTIONS ON CYBERNETICS 5

following format:

RA1
i : if x1 is A

A1
i1 and . . . and xm is AA1

im ,

then yi =

m∑
j=0

pA1
ij xj

(7)

RA2
i : if x1 is A

A2
i1 and . . . and xm is AA2

im ,

then yi =

m∑
j=0

pA2
ij xj

(8)

where m denotes the number of input variables, and pAt
i0 , t ∈

{1, 2} is a coefficient within the linear combination in a con-
sequent part (with a set value of x0 = 1 for the representation
to meet the eye).

The rule dictionary D = {Da, Dc} is generated by separat-
ing and reorganising the rule antecedents and rule consequents
of the aforementioned rules. In particular, Da ∈ Rm×N ,
consisting of all the rule antecedent parts:

Da =[da1 d
a
2 · · · daN ]

=


AA1

1,1 AA1
2,1 · · · A

A1
n1,1

AA2
n1+1,1 · · · A

A2

N,1

AA1
1,2 AA1

2,2 · · · A
A1
n1,2

AA2
n1+1,2 · · · A

A2

N,2
...

...
...

...
...

AA1
1,m AA1

2,m · · · AA1
n1,m AA2

n1+1,m · · · A
A2

N,m

 (9)

where each column dai = [AAt
i,1 AAt

i,2 · · ·A
At
i,m]T , t ∈ {1, 2},

(each AAt
i,j , j = 1, 2, . . . ,m, contains a fuzzy set value for a

given input variable within a certain rule) forming an atom of
the dictionary unit Da, and N = n1 +n2 denotes the number
of atoms in the rule dictionary. Similarly, the consequent unit
Dc ∈ R(m+1)×N , consisting of the consequent parts of each
and every rule (of the source domains), which can be expressed
by

Dc =[dc1 d
c
2 · · · dcN ]

=


pA1
1,0 pA1

2,0 · · · p
A1
n1,0

pA2
n1+1,0 · · · p

A2

N,0

pA1
1,1 pA1

2,1 · · · p
A1
n1,1

pA2
n1+1,1 · · · p

A2

N,1
...

...
...

...
...

pA1
1,m pA1

2,m · · · pA1
n1,m pA2

n1+1,m · · · p
A2

N,m

 (10)

with each atom dci = [pAt
i,0 p

At
i,1 p

At
i,2 · · · p

At
i,m]T , t ∈ {1, 2}.

B. Intermediate ANFIS Construction

An intermediate ANFIS is a set of new rules interpolated
with the assistance of the rule dictionary created as above.
The sparse training data given in the form of {(x, y)} within
the target domain are partitioned into C clusters on a variable
by variable basis by using K-means clustering algorithm. The
number of clusters C which is also the expected number of
rules in the intermediate ANFIS is decided by Eqn. (11) below:

C =

m∏
j=1

bn
(j)
1 + n

(j)
2

2
c (11)

where n
(j)
1 is the number of fuzzy sets of the jth variable

in A1, n1 =
∏m

j=1 n
(j)
1 ; and similarly, n(j)2 is that of A2,

n2 =
∏m

j=1 n
(j)
2 .

With respect to the resulting centroid of each cluster, a
single newly interpolated rule is generated using LLE through
three steps, as outlined in Fig. 3. These three steps are
described as follows.

Fig. 3. Illustrative implementation of single rule interpolation: (a) Choosing
K closest neighbours. (b) Calculating weights of chosen neighbours. (c)
Generating new rule.

1) Choosing K closest neighbours: For each cluster Ck,
its centroid regarding the m antecedent attributes is denoted
by c(k) = (c1, c2, · · · , cm)T . With the previously obtained
antecedent dictionary Da, K closest atoms to c(k) is firstly
selected using the Euclidian distance metric (though any other
distance metric can be utilised as an alternative if preferred):

di = d(dai , c
(k)) =

√√√√ m∑
j=1

d(AAt
ij , cj)

2 (12)

where d(AAt
ij , cj) = |Rep(AAt

ij )−cj |, t ∈ {1, 2}. The K atoms
{dai } in Da which have the smallest distances are chosen as
the closest neighbours, whose index set is denoted by K.

2) Calculating construction weights: Based on the obtained
closest atoms {dai |i ∈ K}, the aim of step 2 is to find the best
construction weights that indicate the relative significance of
each selected atom. This is achieved by resolving the following
optimisation problem:

w(k) = min
w(k)
||c(k) −

∑
i∈K

Rep(dai )w
(k)
i ||

2, s.t.
∑
i∈K

w
(k)
i = 1

(13)
where w(k)

i is the relative weighting of dai as compared to the
rest, Rep(dai ) = [Rep(AAt

i,1) Rep(AAt
i,2) · · ·Rep(AAt

i,m)]T , t ∈
{1, 2}. Essentially it is a constrained least square optimisation
problem which has the following solution:

w(k) =
G−11

1TG−11
(14)

where G = (c(k)1T −X)T (c(k)1T −X) is a Gram matrix, 1
denotes a column vector of ones, and X denotes an m ×K
matrix whose columns are the chosen atoms {dai |i ∈ K}.

3) Generating new rules: The underlying assumption for
generating a new rule is that its antecedent part and consequent
part lie on the same manifold. That is, if the centroid c(k)

can be represented as a linear combination of the K selected
atoms indexed by K in the antecedent dictionary Da, then
the corresponding consequent can be expressed as the linear
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combination of the atoms (whose locations are also indexed
by K) in the consequent dictionary Dc. Based on this (prac-
tically working) presumption, a newly interpolated rule RA

′

k

in response to cluster Ck is generated by applying the weight
w(k) on both the antecedent and the consequent part, with the
following format:

RA
′

k : if x1 is A
A′
k1 and . . . and xm is AA

′

km,

then yk =

m∑
j=0

pA
′

kj xj
(15)

where the antecedent part is obtained by

AA
′

kj =
∑
i∈K

w
(k)
i AAt

ij , j = 1, 2, · · · ,m, k = 1, 2, · · · , C.

(16)
t ∈ {1, 2}, and similarly the consequent part is obtained by

pA
′

kj =
∑
i∈K

w
(k)
i pAt

ij , j = 0, 1, 2, · · · ,m, k = 1, 2, · · · , C.

(17)
The above completes the process of producing a newly

interpolated rule. By integrating all such interpolated rules, the
intermediate ANFIS A′ results. This is operated by putting all
the newly generated rules into an ANFIS network, which is
an inverse procedure of extracting rules from a given network.
A simple and generic example is given here to show this
procedure.

Suppose that there are two input variables x1 and x2, and
that a small number of training data associated with each
variable is divided into two clusters. Thus, the sparse training
data can be divided into 2× 2 = 4 clusters as follows:

Cluster 1: {(x1)1, (x2)1}
Cluster 2: {(x1)1, (x2)2}
Cluster 3: {(x1)2, (x2)1}
Cluster 4: {(x1)2, (x2)2}

where {(x1)u, (x2)v} represents the cluster including the u-
th portion of x1 and the v-th portion of x2, with u, v ∈
{1st, 2nd}, e.g., {(x1)1, (x2)1} represents the cluster includ-
ing the first portion of x1 and the first portion of x2. From
these clusters, the following four rules are newly generated
according to the above three steps:
Rule 1: If x1 is A1, x2 is B1, then y = p11x1 + p12x2 + p10
Rule 2: If x1 is A1, x2 is B2, then y = p21x1 + p22x2 + p20
Rule 3: If x1 is A2, x2 is B1, then y = p31x1 + p32x2 + p30
Rule 4: If x1 is A2, x2 is B2, then y = p41x1 + p42x2 + p40
These rules form the specification for a new (intermediate)
ANFIS network to be constructed, by assigning the premise
parameters {Aq, Br}, q, r ∈ {1, 2} in Layer 1, and the
consequent parameters {pij} in Layer 4, as shown in Fig. 4.

C. ANFIS Fine-tuning

In the final stage, the intermediate ANFIS A′ is employed as
an initial network here to train the final interpolated ANFIS
Aint, using the sparse training data provided. The training
procedure is basically the same as the traditional ANFIS

Fig. 4. Integrating newly generated rules as an (intermediate) ANIFS

training algorithm summarised in Section II-A, with just one
exception as described below.

The traditional procedure for ANFIS learning takes ‘zeros’
or ‘random values’ as the initial parameters of the network.
This is practically acceptable for problems where a large
amount of data is available. However, this is a rather inefficient
strategy under the data shortage situations as for the present
consideration. In general, a good initial setting is important to
the performance of a learning algorithm. Thus, instead of using
random initials, the parameters embedded in the interpolated
intermediate ANFIS are herein utilised to populate the initial
network setting. In so doing, the final interpolated ANFIS in
the target domain is one that is obtained through a fine-tuning
procedure over the intermediate ANFIS that is derived from
source domains. As such, the entire ANFIS construction can
be performed with little training data.

D. Distinctions from Existing Work

In comparison with existing work on FRI involving the use
of TSK-type representation, this wok exhibits the following
distinct innovations:

1) As reflected above, rule interpolation is done at the level
of a group of rules, instead of at the individual rule
level as per the existing techniques. That is, unlike the
existing FRI methods where only one intermediate rule
is produced at a time, here by one run of the algorithm a
group of rules are interpolated. This is because an ANFIS
generally represents a set of TSK rules.

2) Learning is accomplished with the use of a dictionary
purposefully introduced to facilitate ANFIS interpolation.
In existing FRI techniques, there exists a sparse rule base
from which individual closest rules are directly selected
for interpolation, but this does not apply to interpolation
of a group of rules in a TD. The rule dictionary is there-
fore designed for extracting rules from source ANFISs,
acting as a sparse rule base for the selection of the closest
rules in the TD.

3) Weights required for performing interpolation are com-
puted differently. For instance, the active set algo-
rithm [39] is employed in the existing work, which is
an iterative method; whilst the LLE algorithm is utilised
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here, which is a one-step method without involving
iterations. Different from traditional techniques that rely
on the use of Euclidian distance measures to work, the
proposed approach provides a theoretically well-formed
and systematic method for calculating the weights.

E. Complexity Analysis

The time complexity of Alg. III is estimated here. As
Step 3 is the same as that for conducting traditional ANFIS
training, only the complexity of the procedures regarding rule
interpolation (i.e., that of Steps 1 and 2) is addressed. As
indicated before, for computational simplicity, triangular fuzzy
sets with three characteristic points each are used for imple-
mentation. Note that the following notations are employed for
the complexity analysis:
m : number of antecedent attributes
n : number of fuzzy rules in rule dictionary
K : number of chosen closest rules
C : number of clusters in training data
In Step 1 (rule dictionary generation), the main task is to

extract all the parameters from the given ANFIS networks (in
the source domains). All the parameters of an ANFIS appear
in either the first layer or the forth layer, with the premise
parameters in layer one and the consequent parameters in
layer four. Premise parameters are fuzzy sets, each of which
contains three sub-parameters (say, a0, a1, and a2), so the
number of premise parameters is 3m. Similarly, the number of
consequent parameters is m+1. Thus, the time complexity for
extracting one rule is O(4m+1), and the time complexity for
computing the entire Step 1 is n×O(4m+1) = O(4mn+n).

In Step 2 (intermediate ANFIS construction), the sequence
of three sub-steps (a), (b) and (c) repeats C times. Particularly,
sub-step (a) involves two operations: 1) computing the Euclid
distances, of a complexity O(n); and 2) sorting the distances,
of a complexity O(n2). Then, in sub-step (b), the weight
is calculated once for each chosen rule, thereby being of a
complexity O(K). Finally, sub-step (c) takes a complexity of
O(4m+ 1), in which the weighted average is calculated once
for each parameter. Thus, the time complexity for Step 2 is
estimated to be C × [O(n) +O(n2) +O(K) +O(4m+ 1)] =
O(Cn2).

Together, the overall time complexity for group rule inter-
polation bar that required by Step 3 (for running the standard
procedure to perform ANFIS fine-tuning with a small number
of training data) is estimated to be O(4mn+n) +O(Cn2) =
O(Cn2). This is practically doable since both n and C are
not a very large number.

IV. EXPERIMENTATION

Both synthetic and real world data are considered in the
experiments to qualitatively and quantitatively evaluate the
proposed ANFIS construction approach. Section IV-B vali-
dates the approach by looking into two synthetic function
modelling cases, and in Section IV-C, its effectiveness in
dealing with real world situations is shown. Section IV-D
discusses the model parameters, and examines the robustness
of the proposed approach in response to the use of different

amounts of training data. Finally, Section IV-E represents an
initial real world application of the proposed method.

A. Experimental Setup

For all experiments carried out, triangular membership func-
tions are employed due to their popularity and simplicity. The
number of selected closest atoms is empirically set to 3 unless
otherwise stated (and a further investigation into the potential
impact of different settings for this value will be reported
towards the end of this paper). To reflect the capability of the
proposed approach in handling different data, both normalised
and unnormalised data are investigated. In particular, for
the experiments on synthetic data, the original data without
normalisation is used despite that the data involves signifi-
cantly skewed distributions over different magnitudes. In the
experiments on the problem involving real world data, the
input variables are normalised to [0, 1].

The RMSE (Root-Mean-Squared Error) index is chosen to
evaluate the performance of different ANFISs on both the
source and the target data. Particularly, the RMSE measured
from the source ANFIS A1 on the SD data S1 is denoted by
EA1(S1); that from A2 on S2 by EA2(S2); and that from A1

and A2 on the TD data T by EA1(T ) and EA2(T ) respectively.
These RMSEs are computed as below:

EAt(∗) =

√∑N∗
k=1(g∗k −At(x

∗
k))2

N∗
(18)

where N∗ is the number of the testing data points {x∗k} in the
domain S1, S2 or T ; g∗k is the relevant ground truth of the kth
data point; At(x

∗
k), t ∈ {1, 2, ori, int} stands for the output

value of an ANFIS on the data point x∗k. Obviously, smaller
RMSEs indicate better performance.

An original ANFIS developed using only the sparse training
data in TD is also generated here for comparison, denoted by
Aori. The RMSE of Aori on the testing data T is denoted
as EAori(T ), and the RMSE of the interpolated ANFIS Aint

using the proposed approach on T is denoted by EAint(T ).

B. Experiments on Synthetic Data

Two numerical functions are utilised here to test the pro-
posed approach for working on highly nonlinear one and
two dimensional data. Further experiments are also included
to show the case where absolutely no training samples are
available for the target domain.

1) One dimensional input: As the first illustrative experi-
mentation, a one-dimensional input function is used, which is
generated by sampling the non-linear function as given below:

y =
sin(2x)

e
x
5

(19)

where x ∈ [0, 9], the shape of this function is plotted in Fig.
5(a).

In this experimentation, to illustrate the proposed approach,
the input domain x ∈ [0, 9] is divided into three parts,
representing two source domains and one target domain. As
indicated previously, samples read off the underlying non-
linear function are treated as the data as depicted in Fig. 5(a).
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In particular, the left part x ∈ [0, 3] is used as the first SD
for training the first source (or given) ANFIS A1, and the
right part x ∈ [6, 9] is used as the second SD for training
the second source ANFIS A2. The middle part data x ∈ [3, 6]
forms the TD, which is divided into two sub-parts, with a small
portion (20% randomly taken from the TD, one fold training
data is shown in triangles as an example for illustration) as
the sparse training data (which is to artificially simulate the
situation where little target domain data is available), with the
rest used as testing data (80%, shown in pentagrams).

The two source ANFISs are trained using the standard
method for ANFIS model learning as outlined in Section II-A.
The rules embedded within the trained source ANFISs A1

and A2, form the atoms of the rule dictionary. Here, the
numbers of membership functions are set to 5 and 6 for A1

and A2, respectively. This is to demonstrate a case that is
more complex than the usual (where quantity spaces tend to
be defined with an equal number of fuzzy sets), making the
experiments more challenging. 5×5-fold cross validation is
utilised to evaluate the performance of different approaches.
Note that conventional 10×10-fold cross validation is not
adopted here due to the extremely small number of samples
for training, especially for the target domain. The mean and
standard deviation values of different methods compared are
listed in Table I, and the visual results of 5 folds within the
total 5×5 folds are shown in Fig. 5(b)-(f).

TABLE I
EXPERIMENTAL RESULTS ON ONE-DIMENSIONAL FUNCTION

Mean ± Standard deviation

EA1(S1) 0.003± 0.000

EA2(S2) 0.0006± 0.000

EA1(T ) 0.287± 0.013

EA2(T ) 0.255± 0.014

EAori(T ) 0.121± 0.067

EAT (T ) 0.089± 0.039

By examining the experimental results in both Fig. 5 and
Table I, it can be seen that the two source ANFISs A1 and
A2 perform quite well in the corresponding source domains
(as EA1(S1) and EA2(S2) are quite small). However, these two
ANFISs do not work in the target domain (as EA1(T ) and
EA2(T ) are rather large). This is of course, not surprising since
they have been trained using the data for the source domains
in the first place. Yet, if the standard training method is used
to build an ANFIS for the target domain, it does not work
well either, as the performance of the original ANFIS Aori

is poor. Again, this may be expected due to data shortage of
the target domain. Fortunately, with the assistance of its two
neighbouring source ANFISs, the interpolated ANFIS Aint

improves the results significantly. As shown in the middle part
of Fig. 5(b)-(f), its outcome is much closer to the ground truth.

2) Two dimensional input: The two-dimensional synthetic
data used in this experimentation is sampled from the follow-
ing function:

y = sin(
x1
π

)sin(
x2
π

) (20)

where x1 ∈ [−30, 30], x2 ∈ [−10, 10]. Fig. 6(a) displays the
shape of this function in one period. Similar to the previous
experiments on one-dimensional data, the entire underlying
domain is divided into 3 parts. Without any particular bias, this
is implemented with respect to the first variable x1. That is,
the region covered by x1 ∈ [−30,−10], x2 ∈ [−10, 10] (with
step = 1 in each dimension, totally 441 data points sampled
from the function) forms the first source domain, the region
by x1 ∈ [10, 30], x2 ∈ [−10, 10] (the amount of sampled data
is the same as the first source domain, 441 data points in total)
forms the second source domain, and the region covered by
x1 ∈ [−10, 10], x2 ∈ [−10, 10] forms the target domain. There
are also 441 data points in the target domain, in which 88 data
points (20%) are used for training while 353 points (80%) are
used for testing. Experiments on splitting the data with respect
to the second variable are also carried out, with similar results
achieved as to be reported later.

TABLE II
EXPERIMENTAL RESULTS ON TWO-DIMENSIONAL FUNCTION

Mean ± Standard deviation
splitting x1 splitting x2

EA1(S1) 0.024± 0.000 0.023± 0.000

EA2(S2) 0.023± 0.000 0.023± 0.000

EA1(T ) 1.176± 0.029 1.079± 0.030

EA2(T ) 1.331± 0.022 1.586± 0.035

EAori(T ) 0.372± 0.063 0.489± 0.264

EAT (T ) 0.070± 0.016 0.103± 0.087

The middle column of Table II lists the results of 5×5-
fold cross validation for this two dimensional function ap-
proximation problem using different ANFISs. As an example,
Fig. 6 shows the visual result of one randomly picked fold,
where Fig. 6(a) displays the ground truth view of this two-
dimensional function in TD; Fig. 6(b) illustrates the result
based on the original ANFIS directly learned from the sparse
training data; and Fig. 6(c) is that of the interpolated ANFIS.

As reflected by these experimental outcomes, the result
of the interpolated ANFIS is much more similar to the real
view of the underlying highly non-linear two-dimensional
function. Without the assistance of group rule interpolation,
the outcome from running the ANFIS directly trained by
the limited samples is rather different from the ground truth.
Again, these results indicate that the ANFIS learned by the
proposed interpolation method performs much better than
the original ANFIS under the situations where only highly
restricted training data is provided.

Note that the above results are obtained using SDs and TD
defined by splitting the domain of the first input variable x1.
However, similar results can also be obtained via specifying
the SDs and TD with regard to the second variable x2 of this
function, as listed in the third, i.e., the right-most column of
Table II.

Consider a more general situation where both input variables
x1 and x2 are divided into three regions. As such there are
totally nine subregions, as shown in Fig. 7. This gives rise to
a general case in which there may be more than two source
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Fig. 5. Five folds taken from 5×5-fold cross validation for one-dimensional nonlinear function approximation. (a) Source data and target data used (only
one fold of training and testing data is shown here for illustration). (b)-(f) Each of 5 folds cross validation results taken, respectively.

Fig. 6. One fold of the two-dimensional function-approximation results: (a) Ground truth. (b) Result based on Aori. (c) Result based on Aint.

ANFISs for use to interpolate an ANFIS within a given target
domain. For instance, if insufficient training data appears in
the central subregion of Fig. 7, whilst an ANFIS is required
to be constructed, then this will be a problem of interpolating
multiple ANFISs from given ANFISs within the neighbouring
source domains. It is straightforward to extend the proposed
work to such a situation as the only difference is regarding rule
dictionary generation, where the rules are extracted from mul-
tiple source ANFISs. For this particular example, the result of
taking the central subregion as TD and the other 8 subregions
as SDs can be computed, such that the average and standard
deviation values of RMSE (over 5×5-fold cross validation) for
the original ANIFS EAori(T ) is 0.215± 0.178, whilst that for
the interpolated ANFIS is EAint(T ) = 0.177±0.081, showing

a remarkable improvement.

Fig. 7. Function approximation with more than two source domains

3) Situation with no target training data: Consider a further
situation where no training data is available in the target
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domain, using the problem of approximating the function
as expressed in Eqn. (19). In the area where x ∈ [0.5, 2],
this one dimensional non-linear function may be interpreted
approximately as linear, as shown in Fig. 8. Suppose that the
data covered within the left part delimited by x ∈ [0.5, 1] is
used to train the first source ANFIS A1, and that the data
within the right part x ∈ [1.5, 2] is used to train the second
source ANFIS A2. The data of the middle part x ∈ [1, 1.5]
is fully reserved for testing and hence, no training samples
are available over the target domain. Since no target training
data is provided, each test data point is seen as a centroid, and
the new rule interpolated for this data point forms a special
intermediate ANFIS containing just one rule, which is then
directly used for inference without retraining. The visual result
is also shown in Fig. 8.

Fig. 8. Function approximation with no target training data

From the results shown, it can be seen that the proposed
approach performs very well over this particular problem,
even though no target training data is available. However, this
should not be overly generalised since for the same underlying
function, if the source domains are [1.5,2] and [2.5,3], and no
information is present in support of the training of the target
domain delimited by [2,2.5], the proposed approach will only
produce an approximate model as depicted in Fig. 9. This
does not seem to perform well, due to the high non-linearity
of the function to be approximated within this region. As
shown in the target domain of this figure, the interpolated
outcome is far away from the ground truth in the bottom area
surrounding the minimum point, around which the function
shape of TD and SDs are totally different. Quantitatively, the
mean value of RMSE is 0.0948, which is fairly large for this
problem. Nevertheless, as previously demonstrated, once there
are a small number of training samples provided for the target
domain, the approach can result in an accurate ANFIS.

C. Experiments on Real World Benchmark Data

Twelve popular benchmark regression datasets taken from
the KEEL data repository [40] are used here to evaluate the
performance of the proposed ANFIS construction algorithm on
real world problems. The datasets used in this experimentation
are summarised in Table III.

Fig. 9. Performance with no target training data under non-linear situation

TABLE III
PUBLIC DATASET USED

Dataset No.(Attributes) No.(Instances)
Diabetes 2 1650
Plastic 2 43
Quake 3 2178
Laser 4 993
AutoMPG6 5 392
Delta-ail 5 7129
Friedman 5 1200
Dee 6 365
Delta-elv 6 9517
AutoMPG8 7 392
Concrete 8 1030
Stock 9 950

The generation of the SDs and TD is similar to the cases
where the synthetic data are used, by dividing each dataset
into three parts according to one of the input variables. For
example, the Quake Dataset has three input variables: ’Lon-
gitude’, ‘Latitude’ and ‘Depth’. This dataset is divided into
three sub-datasets using the values of the variable ‘Longitude’.
In particular, those instances with this variable value being
smaller than -40 jointly form the first SD S1 (of a subtotal of
593 instances), instances with ‘Longitude’ value larger than
92 form the second SD S2 (1253 instances), and instances
with ’Longitude’ value between [−40, 92] form the TD T
(332 instances). Similar to the experiments on synthetic data
reported earlier, 20% (66 instances) of the data in the TD are
used as training data, with the remaining 80% (265 instances)
used as testing data. 5×5-fold cross validation results of this
experimentation are shown in Table IV. The average values of
all twelve datasets are shown in the bottom row, with the best
results shown in bold.

As reflected by these results as per Table IV, a similar
conclusion to what is previously learned from the experiments
on synthetic data can be drawn. Both EA1(T ) and EA2(T ) are
very large, indicating that the ANFISs trained in the SDs are
not suitable for the regression problem in the TD. Again, this
is not surprising. However, those target domain models Aori
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TABLE IV
EXPERIMENTAL RESULTS ON REAL WORLD DATASETS

Datasets
Mean ± Standard deviation of ANFISs

EA1(T ) EA2(T ) EAori(T ) EAT (T )

Diabetes 7.045±0.514 10.166±2.045 1.527±0.829 1.058±0.497
Plastic 5.824±0.128 8.654±0.173 2.003±0.246 1.843±0.105
Quake 0.563±0.014 1.624±0.063 1.264±0.641 0.542±0.248
Laser 71.142±0.687 18.514±0.438 12.087±4.739 3.757±2.726

AutoMPG6 17.672±1.082 18.781±0.886 12.770±1.431 5.120±1.038
Delta-ail 2.36×10−4±1.41×10−5 4.76×10−4±5.52×10−4 3.53×10−4±1.09×10−4 1.78×10−4±1.06×10−5

Friedman 5.583±0.120 4.571±0.091 5.177±0.633 3.004±0.409
Dee 3.059±0.080 5.614±0.201 1.017±0.339 0.870±0.225

Delta-elv 0.0023±3.011×10−5 0.0074±7.229×10−5 0.0034±6.195×10−4 0.0020±1.690×10−4

AutoMPG8 13.175±0.412 20.823±0.726 5.801±1.707 5.695±1.199
Concrete 85.764±2.633 28.918±0.778 27.228±10.894 14.058±2.813

Stock 37.357±0.797 26.129±0.484 3.843±2.080 2.314±0.803

Average 20.598±0.539 11.984±0.490 6.060±1.962 3.189±0.838

trained over the limited amounts of data perform significantly
better than their counterparts. Since the the number of training
data is so small for each of the twelve cases, the resultant
ANFIS Aori is still not very stable (as indicated by the large
standard deviation value in Table IV), though its mean RMSE
is significantly better. Despite this limitation, the interpolated
ANFISs following the proposed approach remarkably min-
imise the inference error caused by data shortage, as the mean
values and the standard deviation values of EAint(T ) are much
smaller than those of EAori(T ).

D. Experiments with Different Background Settings

The parameter K controls the number of selected closest
neighbours in running the LLE algorithm. In the experimental
results reported above, this number is empirically set to
be 3. In order to investigate the relationship between the
parameter K and the experimental outcome, the performance
over different K using the ‘Quake’ dataset is given, as shown
in Fig. 10. The conclusion is that for most cases, a smaller
K will lead to better result, this finding is similar to what
is established in [41] (though that piece of existing work is
concerned with a weighted approach to FRI).

Fig. 10. Performance vs. number of selected closest neighbours

It may be expected that if the number of training data
becomes smaller, the performance of the trained ANFINs
will generally become worse. To verify this hypothesis with
experimental investigation, Fig. 11 shows the outomes under
the condition where a different percentage of training data is
employed over the ‘Quake’ dataset.

It can be induced from examining this figure that: 1) inde-
pendent of what percentages of training data used, interpolated
ANFISs outperform the original ANFISs; 2) the less training
data is involved the more improvement the interpolated ANFIS
makes over its counterpart which is trained just by the use of
the sparse set of training samples. An interesting observation
is that as reflected by the triangular-marked line (which is
the plot for interpolated ANFISs), the performance using 30%
data is very close to that using 90% data. This is very different
from the trend of the results attained using the ANFISs trained
without the aid of interpolation. In summary, through the use
of the proposed approach, a much improved inference outcome
can be achieved while requiring much less training data.

Fig. 11. Performance vs. amount of training data

E. Image Super-resolution: An Initial Application

This section presents an initial practical application of the
proposed approach on image super resolution (SR). Image SR
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aims to generate a high resolution (HR) image using a low
resolution (LR) one. Amongst various existing SR algorithms,
fuzzy rule based SR such as that of [42] learns non-linear
mappings from LR images to HR ones through the use of a
set of fuzzy rules. To strengthen SR performance, TSK-type
ANFISs have recently been utilised [43], where the training
images are grouped into a small number of sub-sets, then an
individual ANFIS mapping is learned for each sub-set.

In real world, different characteristics of an image may
co-exist, be it an LR or HR image. However, the number
of training samples between different sub-sets can be rather
imbalanced. That is, for certain sub-sets there may be sufficient
training samples available whilst for others there may not.
For those with sufficient training samples, it is easy to learn
effective ANFIS mappings. Yet, for those without sufficient
samples, it can be rather difficult to derive quality models. The
proposed approach provides an effective solution to such data
shortage problems, by choosing two most relevant sub-sets
as the SDs and using the corresponding two source ANFISs
to support the ANFIS construction in the sub-set (TD) that
lacks training samples. The outline of this initial application
approach is shown in Alg. IV-E.

Algorithm IV-E: Initial application on image SR
Input:

Training image data set {Z}; Testing LR image X
(Training)
1: Divide training set into P sub-sets using K-Means;
2: for i = 1 to i = P do
3: if Pi contains sufficient data
4: Train ANFIS Ai with standard training method;
5: else
6: S ← {S, i}
7: end if
8: end for
9: for each j ∈ S do
10: Choose 2 closest ANFISs as source ANFISs;
11: Interpolate ANFIS using proposed approach;
12: end for
(Training Output: Multiple learned ANFIS models {Ai})
(Testing)
13: Pre-processing: Upscale X by bicubic interpolation;
14: for each pixel of upscaled image do
15: Choose relevant ANFIS model;
16: Inference using corresponding ANFIS;
17: end for
18: Integrate HR pixels to form HR image Y;
Output:

HR image Y

For simplicity, in this initial experimental study for this
real-world application, the number of sub-sets is set to be
P = 3. That is, Sub-sets 1 and 3 are assumed with sufficient
training samples where standard ANFIS learning procedure
can be applied, while for Sub-set 2 only sparse training data is
available where the corresponding ANFIS is to be constructed
using the proposed approach. The visible results are shown
in Fig. 12. It can be observed from these results that in the

resulting image using the original ANFIS, there are obvious
noise and bad edges, and that running the interpolated ANFIS
leads to significant improvement. Quantitative performance
indices used are those commonly adopted in image super
resolution literature, namely, PSNR (Peak Signal-to-Noise
Ratio) and SSIM (Structure SIMilarity), whose mathematically
definitions are omitted here to save space. The results are
given at the bottom of the respective images, conforming to
the visual observation.

Fig. 12. Super-resolution results using different ANFISs.

V. CONCLUSION

How to construct an effective fuzzy inference system with
insufficient training data is a practically important and chal-
lenging issue. This paper has proposed a new ANFIS con-
struction method through the use of group rule interpolation.
To the best of our knowledge, this is the first time that
the interpolation of ANFIS models is proposed (using two
source ANFISs to assist the construction of the target one). It
significantly differs from the general transfer learning methods
in the literature where only one source domain is involved; in
this work there are at least two source domains. The work
effectively resolves the data shortage problem for training
ANFISs in the target domain. Experiments on both synthetic
data and real world data have been carried out, including
variations of the experimental background settings. The results
have consistently demonstrated that the proposed approach
greatly improves the performance in learning ANFIS models
for problems where only sparse training data is available.

The proposed approach has been evaluated with two syn-
thetic and twelve real world benchmark datasets, plus a
practical application for image super resolution. It would
be interesting to extend the experimental investigations with
more complicated problems (e.g., consolidating image super
resolution application for face recognition). Currently, the
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simplest K-means algorithm is used for clustering; using an
automated data clustering method such as those proposed in
[44] would help derive more accurate interpolative results.
Also, the present results of devising and running the ap-
proach with ANFISs may be extended to other TSK-type
fuzzy inference systems. Similarly, instead of using LLE,
it is worth examining how other optimisation mechanisms
may be adapted for integrated use within the interpolation
process. Finally, the current interpolation method terminates
once an interpolated ANFIS covering an originally sparse data
area is obtained. If the interpolation process iterates, it can
be expected that more interpolated ANFIS models may be
attained. Thus, it would be very useful to consider extending
the existing ideas on dynamic generalization and promotion
of interpolated rules as of [25] to create novel ANFIS models
on the fly, gaining overall inference efficiency as well as
effectiveness.
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