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Abstract

Background

Praziquantel represents the frontline chemotherapy used to treat schistosomiasis, a

neglected tropical disease (NTD) caused by infection with macro-parasitic blood fluke schis-

tosomes. While this drug is safe, its inability to kill all schistosome lifecycle stages within the

human host often requires repeat treatments. This limitation, amongst others, has led to the

search for novel anti-schistosome replacement or combinatorial chemotherapies. Here, we

describe a repositioning strategy to assess the anthelmintic activity of epigenetic probes/

inhibitors obtained from the Structural Genomics Consortium.

Methodology/Principle findings

Thirty-seven epigenetic probes/inhibitors targeting histone readers, writers and erasers

were initially screened against Schistosoma mansoni schistosomula using the high-through-

put Roboworm platform. At 10 μM, 14 of these 37 compounds (38%) negatively affected

schistosomula motility and phenotype after 72 hours of continuous co-incubation. Subse-

quent dose-response titrations against schistosomula and adult worms revealed epigenetic

probes targeting one reader (NVS-CECR2-1), one writer (LLY-507 and BAY-598) and one

eraser (GSK-J4) to be particularly active. As LLY-507/BAY-598 (SMYD2 histone methyl-

transferase inhibitors) and GSK-J4 (a JMJD3 histone demethylase inhibitor) regulate an epi-

genetic process (protein methylation) known to be critical for schistosome development,

further characterisation of these compounds/putative targets was performed. RNA interfer-

ence (RNAi) of one putative LLY-507/BAY-598 S. mansoni target (Smp_000700) in adult

worms replicated the compound-mediated motility and egg production defects. Further-

more, H3K36me2, a known product catalysed by SMYD2 activity, was also reduced by

LLY-507 (25%), BAY-598 (23%) and siSmp_000700 (15%) treatment of adult worms.
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Oviposition and packaging of vitelline cells into in vitro laid eggs was also significantly

affected by GSK-J4 (putative cell permeable prodrug inhibitor of Smp_034000), but not by

the related structural analogue GSK-J1 (cell impermeable inhibitor).

Conclusion/Significance

Collectively, these results provide further support for the development of next-generation

drugs targeting schistosome epigenetic pathway components. In particular, the progression

of histone methylation/demethylation modulators presents a tractable strategy for anti-

schistosomal control.

Author summary

Human schistosomiasis is caused by infection with parasitic blood fluke worms. Global

control of this NTD is currently facilitated by administration of a single drug, praziquantel

(PZQ). This mono-chemotherapeutic strategy of schistosomiasis control presents chal-

lenges as PZQ is not active against all human-dwelling schistosome lifecycle stages and

the evolution of PZQ resistant parasites remains a threat. Therefore, new drugs to be used

in combination with or in replacement of PZQ are urgently needed. Here, continuing our

studies on Schistosoma mansoni epigenetic processes, we performed anthelmintic screen-

ing of 37 epigenetic probes/epigenetic inhibitors obtained from the Structural Genomics

Consortium (SGC). The results of these studies highlighted that schistosome protein

methylation/demethylation processes are acutely vulnerable. In particular, compounds

affecting schistosome SMYD (LLY-507, BAY-598) or JMJD (GSK-J4) homologues are

especially active on schistosomula and adult worms during in vitro phenotypic drug

screens. The active epigenetic probes identified here as well as their corresponding S. man-
soni protein targets offers new starting points for the development of next-generation

anti-schistosomals.

Introduction

Amongst human infectious diseases caused by macro-parasitic organisms, schistosomiasis is

the most significant in terms of its negative impact on both individual health and population-

driven socio-economic outputs [1–3]. The current cornerstone of schistosomiasis control in

endemic communities is preventative chemotherapy with praziquantel (PZQ), a pyrazinoiso-

quinoline-like compound that induces minimal side effects and demonstrates a highly-favour-

able absorption, distribution, metabolism and excretion (ADME) profile [4]. However, as PZQ

has been the primary anti-schistosomal used across the globe for the past three decades [5] and

its currently unknown mechanism of action (possibly modulating serotonin signalling; [6, 7])

is variably effective against intra-human schistosome lifecycle stages [8], the search for PZQ

replacement or combinatorial drugs is under intense investigation should drug resistant schis-

tosomes develop.

One recent approach applied to schistosome drug discovery is based on the concept of com-

pound repositioning or repurposing, where new indications for existing drugs are sought [9].

Two benefits of such a repositioning strategy for schistosomiasis include: 1) accelerating the

drug discovery pipeline due to pre-existing safety and ADME data being available for the
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repositioned compound and 2) identifying putative anti-schistosome candidate proteins due

to target-based aspects of pharmaceutical-led, drug developmental programmes [10]. Sourcing

of repositionable compounds, from industrial suppliers, for use in academic laboratories

engaged in anthelmintic research has been recently facilitated by the efforts of not—for—profit

organisations including the World Intellectual Property Organisation Re:Search—BioVentures

for Global Health consortium [11] and the Structural Genomics Consortium (SGC) [12]. It is

expected that these academic/industry private—public—partnerships will build upon previous

repositioning successes in the identification of new leads for treating schistosomiasis [13–16].

Due to our (and other research groups) continued interest in deciphering how schistosome

epigenetic processes shape schistosome lifecycle progression [17–27] and the SGC’s ability to

supply epigenetic probes (EPs)/epigenetic inhibitors (EIs) (compounds that have been

designed to modulate human epigenetic targets) [28, 29], we herein have conducted a reposi-

tioning campaign focused on the anti-schistosomal activity (against S. mansoni) of thirty-four

SGC-supplied EPs (compounds that display in vitro potency of< 100 nM, > 30 fold selectivity

vs other subfamilies and on-target cellular activity at 1 μM) and three EIs (compounds that do

not display these specific epigenetic probe traits) [30]. Using both a high-throughput platform

for measuring schistosomula motility and phenotype as well as a low-throughput assay for

quantifying adult schistosome motility and egg production [31–33], we have determined that

compounds targeting bromodomain (BRD)–containing proteins, histone methyltransferases

(HMTs) and histone demethylases (HDMs) are amongst the most potent anti-schistosomals

within the tested SGC epigenetic probe collection. As the schistosome histone methylation

machinery has recently been shown to be critical for developmental processes including egg

production, miracidium to sporocyst transformation and adult worm motility [34–36], we spe-

cifically pursued the SGC epigenetic probes (LLY-507/BAY-598 and GSK-J4) involved in

HMT/HDM inhibition for follow-on functional investigations.

RNA interference (RNAi) and molecular modelling methods were used to functionally vali-

date the most likely S. mansoni target (Smp_000700) of the HMT inhibitors LLY-507 [37] and

BAY-598 [38]. Here, drug treatment or RNAi of smp_000700 in adult worms both led to

decreases in dimethylated (me2) H3K36 (Histone 3, Lysine 36), a known substrate of SMYD

activity. Furthermore, inhibition of the most likely S. mansoni target (Smp_034000) by cell per-

meable GSK-J4 (but not GSK-J1) [39] led to egg production deficiencies and vitellocyte pack-

aging defects when adult worm pairs were co-cultured with this compound at concentrations

as low as 390 nM. As such, these particular epigenetic probes and their corresponding molecu-

lar targets represent exciting new leads in the identification and development of next genera-

tion anthelmintics for combating a major NTD of low to middle income countries.

Materials and methods

Ethics statement

All procedures performed on mice adhered to the United Kingdom Home Office Animals

(Scientific Procedures) Act of 1986 (project license PPL 40/3700) as well as the European

Union Animals Directive 2010/63/EU and were approved by Aberystwyth University’s Animal

Welfare and Ethical Review Body.

Compound acquisition, storage and handling

All epigenetic probes, epigenetic inhibitors and chemotype matched controls (where available)

were received from the SGC and solubilised in DMSO (Fisher Scientific, Loughborough, UK)

at stock aliquot concentrations of 1.6 mM and 10 mM for schistosomula and adult worm

screening respectively. Auranofin (AUR) and praziquantel (PZQ) were purchased from
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Sigma-Aldrich and reconstituted similarly to the SGC compounds. All reconsituted com-

pounds were stored at -80˚C.

Parasite material

A Puerto Rican strain (NMRI) of S. mansoni was used throughout the study and passaged

between Mus musculus (Tuck Ordinary; TO) and Biomphalaria glabrata (NMRI albino and

pigmented hybrid [40]) hosts. Cercariae were shed from both B. glabrata strains by exposure

to light in an artificially heated room (26˚C) for 1 h and used to percutaneously infect M. mus-
culus (200 cercariae/mouse) [41] for generation of adult schistosomes or to mechanically

transform into schistosomula [42] for in vitro compound screening. Adult schistosomes were

obtained from M. musculus at 7 wks post-infection and used for in vitro compound screening

and RNA interference (RNAi).

Bioinformatics

The specific Homo sapiens target (histone reader, writer or eraser) of the SGC-provided epige-

netic probes/inhibitors initially was derived from the SGC website and corresponding refer-

ence literature [30]. Uniprot IDs of the representative H. sapiens epigenetic target were

obtained from Uniprot [43] and their downloaded protein sequences were used as queries for

protein BLAST (BLASTp) searches against the predicted protein database derived from the S.

mansoni genome hosted in NCBI [44] and Wormbase-Parasite [45] using default settings. For

the BLASTp searches, both full-length and catalytic domain peptide sequences were used as

queries against the S. mansoni genome (v7.0). The most closely related S. mansoni protein (as

compared by E values) and their sequence similarity were reported. Multiple sequence align-

ments (MSAs) of the amino acid sequence of the catalytic domain amino acid sequences

within the identified SmSMYD and human SMYD proteins were performed with MUSCLE

v3.8 (Multiple Sequence Comparison by Log Expectation) using the default parameters [46]

and selecting ClustalW as the output format [47]. The alignments were then analysed in Jal-

view v2.9 [48] and visually inspected to check for ambiguities and sequences not aligning cor-

rectly. Phylogenetic trees were constructed by MEGA7 using the neighbour-joining method

based on the JTT matrix-based model with default settings [49]. A total of 1000 bootstrap repli-

cations were run to estimate the confidence of each node.

In vitro schistosomula screening

Mechanically transformed schistosomula phenotype and motility metrics were assessed at 72 h

post compound incubation as previously described [50], with minor modifications. Briefly,

384-well tissue culture plates (Perkin Elmer, cat 6007460), containing 20 μl of Basch medium

[51], were wet-stamped using a Biomek NXP liquid handling platform (Beckman Coulter, UK)

with negative (0.625% dimethyl sulfoxide, DMSO) and positive controls (AUR and PZQ at

10 μM final concentration in 0.625% DMSO) as well as 37 SGC compounds (at 10 μM final

concentration in 0.625% DMSO). Two-fold titrations of 14 SGC compounds, which were con-

sistent hits at 10 μM, were also conducted at 10 μM, 5 μM, 2.5 μM, 1.25 μM and 0.625 μM to

generate approximate EC50s using GraphPad Prism. To each pre-loaded well (single concen-

tration or titration screens), a total of 100–120 mechanically transformed schistosomula (in

60 μl) were deposited via a WellMate (Thermo Scientific, UK). Schistosomula/compound co-

cultures (80 μl in total) were then incubated at 37˚C for 72 h in a humidified atmosphere con-

taining 5% CO2. At 72 h, tissue culture plates (containing schistosomula/compound co-cul-

tures) were imaged under the same conditions (37˚C in a humidified atmosphere containing

5% CO2) using an ImageXpressXL high content imager (Molecular Devices, UK) with

Epidrugs against schistosomes
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subsequent images processed for phenotype and motility as previously reported [50] and suc-

cessfully implemented by us at Aberystwyth University [7, 32–34, 52]. Single point schistoso-

mula screens (10 μM) were repeated two or three times whereas dose response titrations were

performed once. Z´ values obtained from all schistosomula screens ranged from 0.27–0.48

(mean = 0.40) for phenotype and 0.41–0.56 (mean = 0.48) for motility.

In vitro adult schistosome screening

The anthelmintic effect that selected SGC compounds (i.e. those 14/37 compounds that dem-

onstrated anti-schistosomula activity at 10 μM) had on adult male and female schistosome

pairs as well as egg production was assessed according to the methodology described by

Edwards et al. [31]. In vitro screening was replicated three times on different dates to account

for any biological variation. Briefly three adult worm pairs/well (48-well tissue culture plate

format) were placed into DMEM (Gibco, Paisley, UK) supplemented with 10% (v/v) FCS

(Gibco, Paisley, UK), 1% (v/v) L-glutamine (Gibco, Paisley, UK) and an antibiotic mixture

(150 Units/ml penicillin and 150 μg/ml streptomycin; Gibco, UK). DMSO (0.5% negative con-

trol), AUR (10 μM concentration in 0.5% DMSO; positive control) and two-fold titrations of

SGC compounds (50 μM– 6.25 μM or 50 μM– 0.05 μM; in 0.5% DMSO max) were added, and

together, these adult worm/compound co-cultures were incubated at 37˚C for 72 h in a

humidified atmosphere containing 5% CO2. Following compound incubation, WHO/TDR

readouts of adult worm motility [53], abundance of H3K36me2 (LLY-507 and BAY-598

treated worms only) in histone extracts and egg counts/well were recorded at 72 h.

RNA interference (RNAi)

Following the perfusion of 7 wks infected mice, adult worms were recovered and RNAi per-

formed as previously described [20, 21]. Briefly, smp_000700 and non-specific luciferase
siRNA duplexes were purchased from Sigma (siSmp_000700 = sense: GGUAAUCGGUCAUG

UGUAU[dT][dT] and anti-sense: AUACACAUGACCGAUUACC[dT][dT]; siLuc = sense

CUUACGCUGAGUACUUCGA[dT][dT] and anti-sense UCGAAGUACUCAGCGUAAG

[dT][dT]) and used at a final concentration of 50 ng/μl. Mixed sex adult worm pairs (for

knockdown assessment by quantitative reverse transcription PCR, qRT-PCR) were cultured at

37˚C in DMEM supplemented with 10% FCS, 2 mM L-glutamine, 10% v/v HEPES (Sigma-

Aldrich, UK), 100 Units/ml penicillin and 100 μg/ml streptomycin in an atmosphere of 5%

CO2 with a 70% media exchange performed every 48 h. The experiment was replicated three

times (21 worm pairs/replicate). Quantitative reverse transcription PCR (qRT-PCR) of

smp_000700 abundance was performed at 48 h and adult worm motility [53] as well as egg

counts were quantified at 168 h. Levels of H3K36me2 detected in schistosome histone extracts

were assessed at 72 h.

Quantitative reverse transcription PCR (qRT-PCR)

Following RNAi with siSmp_000700 and siLuc, mixed-sex adult worms were incubated for a

total of 48 h before processing them for RNA isolation. Briefly, worms were homogenised

using a TissueLyser LT (Qiagen, UK) in TRIzol Reagent (Invitrogen, UK) before isolation of

total RNA using the Direct-zol RNA Kit (Zymo, UK). cDNA was then generated using the

SensiFAST cDNA synthesis kit (Bioline), qRT-PCR performed and data analysed as previously

described [54]. qRT-PCR primers for amplifying smp_000700 (Forward primer 5’-GTCTTGC

ATGTATAGAGGATTGGTC-3’, Reverse 5’-GCAGTCAACCGATTCAATTAAAGT-3’) and

internal standard alpha tubulin (SmAT1; Forward primer 5’-CGAAGCTTGGGCGCGTCTA

GAT -3’, Reverse 5’-CTAATACTCTTCACCTTCCCCT -3’) were purchased from Sigma.
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Homology modelling and epi-drug docking

Homology modelling of Smp_000700 was prepared as previously described [34] with some

minor modifications. The homology model of full length Smp_000700 was constructed using

the crystal structure of the human SMYD3 (PDB ID: 5EX3 [55]) as a template containing a

substrate peptide and S-adenosyl homocysteine (SAH), the demethylated metabolite of the

cofactor S-adenosyl methionine (SAM). Although the sequence similarity between the parasite

target and the homologous human protein is not very high (32%), it’s still above the critical

level (30%) in producing homology models [56].

The FASTA amino acid sequences for the protein to be modelled was obtained from Uni-

prot [57] and then used to perform a protein BLAST (BLASTp) search in NCBI [44] to obtain

a homologous sequence of a protein to be used as a template. The crystal structure of the

selected protein (H. sapiens SMYD3, PDB ID: 5EX3) suitable as a template was downloaded

from PDB. The homology model was built using the homology modelling tool and a single

template approach with Amber99 force field in MOE2018.10 [58]. Briefly, the primary

sequence of Smp_000700 to be modelled was loaded into MOE together with the 3D structure

of HsSMYD3, both sequences were aligned and the final 3D model of Smp_000700 was pro-

duced as a single output structure. The model was subsequently refined by energy minimiza-

tion with RMSD of 0.1. MOE-Homology (developed by Chemical Computing Group, Inc.)

combines the methods of segment-matching procedure and the approach to the modelling of

insertion/deletion regions [59]. Using default parameters, four different softwares (Ramachan-

dran plot analyses, ProSA-web, ERRAT and Verify3D) were used to validate the robustness of

the homology model [60–63].

Docking simulations of BAY-598 and LLY-507 were performed using the Glide docking

software within Maestro (Schrödinger Release 2017 [64]) as previously discussed [34]. The

model was pre-processed using the Schrödinger Protein Preparation Wizard by assigning

bond orders, adding hydrogens and performing a restrained energy minimisation of the

added hydrogens using the OPLS_2005 force field. The docking site was identified over

the substrate binding pocket of each homology model and a 12 Å docking grid (inner-

box 10 Å and outer-box 22 Å) was prepared using, as a centroid, the substrate peptide.

Glide SP precision was used keeping the default parameters and setting 5 as number of

output poses per input ligand to include in the solution. The output poses were saved as a

mol2 file. The docking results were visually inspected for their ability to bind the active

site.

H3K36me2 detection

LLY-507 (6.25 μM), BAY-598 (25 μM) or siSmp_000700 treated male and female worms

(alongside DMSO or siLuc controls; 21 individuals per condition) were homogenized with a

TissueLyser (Qiagen) and total histones extracted using the EpiQuikTM Total Histone Extrac-

tion Kit (Epigentek). Levels of H3K36me2 in adult histone extracts were measured using the

EpiQuikTM Global Di-Methyl Histone H3-K36 Quantification Kit (Fluorimetric, Epigentek).

Technical duplicates of three biological replicates of each treatment were analysed according

to the manufacturer’s instructions. Fluorescent readings (530EX/590EM nm) were obtained

using a POLARstar Omega (BMG Labtech, UK) microtiter plate reader. Fluorescent values of

the samples were corrected by subtracting the fluorescent readings of the blank (buffer only,

provided in the kit). The mean of the adjusted control values (DMSO for LLY-507/BAY-598

treated worms and siLuc for siSmp_000700 treated worms) was set at 100% H3K36me2 and

the standard deviation (SD) was calculated from the normalised values.
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Vitellocyte and egg volume quantification

Prior to laser scanning confocal microscopy (LSCM) visualisation, the total number of eggs

produced by GSK-J4 (0.2 μM), GSK-J1 (6.25 μM) or DMSO treated adult worm pairs were

enumerated and subsequently immersed in PBS supplemented with DAPI (4’,6-diamidino-

2-phenylindole, 2 μg/ml). Fluorescent microscopic images (10 eggs per treatment) were cap-

tured on a Leica TCS SP8 super resolution laser confocal microscope fitted with a 63 X (water

immersion) objective using the Leica Application Suite X. Green (egg autofluorescence) fluo-

rescence was visualised with an argon or diode-pumped, solid state (DPSS) laser at 488 nm.

DAPI was visualised using a 405 nm blue diode laser. The number of vitellocytes (DAPI+ cells)

and overall volume (mapped by the green autofluorescence) for individual eggs were calcu-

lated using IMARIS 7.3 software (Bitplane).

HepG2 cell culture and MTT assays

Human Caucasian Hepatocyte Carcinoma (HepG2) cells (Sigma Aldrich, UK) were utilized to

assess SGC epigenetic probe cell cytotoxicity in the application of the MTT (3-(4,5-dimethylthia-

zol-2-yl)-2,5-diphenyltetrazolium bromide) assay [52]. Briefly, cells were passaged at 70–80%

confluence and seeded (20,000 cells/ 50 μL per well) in a 96-well, black-sided, clear-bottomed fal-

con plate (Fisher Scientific, UK) with the final plate column (8 wells) being treated as a blank

(media only). Following a 24 h incubation (5% CO2, 37˚C, humidified), HepG2 cells were then

treated with 50 μL of pre-warmed media (37˚C) containing SGC EPs/EIs at 200 μM to 0.02 μM

(final concentration 100 μM, 10 μM, 1 μM, 0.1 μM and 0.01 μM). Three positive (1% Triton

X-100) and negative (1% DMSO) control wells per plate were additionally included.

After addition of compounds, each plate was then incubated for a further 20 h before appli-

cation of MTT for assessment of overt compound cytotoxicity using the MTT assay [52, 65].

The MTT assay was read using the POLARstar Omega (BMG LabTech, UK) plate reader at an

absorbance of 570 nm. CC50s were calculated in GraphPad Prism.

Statistical analysis

All statistical analyses were performed using a Student’s t-test (two samples) or a two-way

ANOVA followed by Least Significant Difference post-hoc correction (more than two sam-

ples). A p value less than 0.05 was considered statistically significant.

Results and discussion

Compounds obtained from the Structural Genomics Consortium (SGC)

display anti-schistosomal activity

Continuing our search for novel anti-schistosomal drug targets from within the parasite’s epi-

genetic machinery has led to the acquisition of 34 EPs and 3 EIs targeting histone modifying

enzyme (HME) readers, writers and erasers from the SGC (S1 Table). The difference between

EPs and EIs is based on the compound’s in vitro activity (EPs display in vitro potency > 100

nM; EIs do not), selectivity (EPs display > 30-fold selectivity vs other subfamilies; EIs do not)

and on-target cell activity (EPs display activity > 1 μM; EIs do not) [30]. These EPs and EIs

have initially been developed for oncology research and inflammatory disorders in humans or

animal models [30]. Because of this, the human target is well characterised allowing us to iden-

tify the most likely S. mansoni target of each of these EPs and EIs by BLASTp analysis of the

parasite’s genome (Table 1).

In most cases, a clear one to one S. mansoni homolog (E values less than 1E-10) could be

identified for all EP and EI targets. However, no support for a schistosome PAD-4 (Uniprot
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Q9UM07) homolog was found in the S. mansoni genome (v7.0) and only weak support for a

SMYD2 (Uniprot Q9NRG4) protein lysine methyltransferase (PKMT) homolog could be

identified. In this later case, both Smp_342100 and Smp_000700 contained moderate sequence

similarity (over the full-length or main catalytic domain sequences) to HsSMYD2 suggesting

that this particular SMYD homolog may present unique (non-human) features useful from a

drug development standpoint. In cases where EPs or EIs are unable to distinguish between

family members such as PFI-1, JQ1 and BSP antagonists targeting the BET (Bromo and Extra-

Terminal domain protein) family, IOX1 targeting the JMJD (JuMonJi C Domain-containing)

protein demethylase family or LAQ824 and CI-994 targeting the class I HDACs (Histone DeA-

Cetylases), homologous schistosome families were the presumed targets. Therefore, a single

Smp could not be identified for these compounds. Following on from this comparative

sequence analysis, a single-point (10 μM) schistosomula screen of these 37 compounds was

implemented to assess their anthelmintic properties (Table 1 and Fig 1).

Using the Roboworm platform [52], 13 EPs and 1 EI (LAQ824) were classified as hits (14/

37; 38% hit rate) affecting both schistosomula phenotype (Fig 1A) and motility (Fig 1B) at

10 μM. These hits consisted of 5 compounds targeting epigenetic readers, 6 targeting epige-

netic writers and 3 targeting epigenetic erasers. Reassuringly, GSK343 was identified as a hit in

these screens, supporting previous anti-schistosomal investigations [66] and providing further

confidence in the results obtained for the additional EPs and EIs. In one (out of three) JQ1 rep-

licate screen, the motility result was not considered a hit as the value fell above the ‘hit’ cut-off

(-0.35). However, as the other two replicates were identified as motility hits and all three repli-

cates were within the phenotype hit threshold (below -0.15), JQ1 was included as an anti-schis-

tosomal EP. Roboworm ‘hit’ cut-off boundaries are fully defined by Paveley et al [50] and have

been successfully applied in our laboratory during other anthelmintic projects [7, 32–34, 52].

Furthermore, not all EPs targeting the same protein (or family) were equally active in these

studies (Table 1 and Fig 1) [30]. For example, while JQ1 was a hit, PFI-1 and BSP were not;

these compounds are all promiscuous BET bromodomain inhibitors [67–69]. Similarly, PFI-4

was a hit, but the promiscuous EPs NI-57 and OF-1 were not; these compounds all target

human BRPF1/2/3 (BRomodomain and PHD Finger containing) members [70]. Likewise,

SGC-CBP30 demonstrated activity against schistosomula, but I-CBP112 did not; both com-

pounds were developed against the bromodomains within human CREBBP (cAMP Respon-

sive Element Binding protein Binding Protein) and EP300 transcriptional co-activators [71,

72]. Finally, the BRomoDomain-9 epigenetic probe I-BRD9 [73], but not LP99 [74] and BI-

9564 [75] was active against schistosomula. These results, and others including the pan-acting

HDAC inhibitors LAQ824 (hit) vs CI-994 (non-hit), would suggest that not all EPs designed

against the same human targets (or families) are equally effective against S. mansoni homo-

logues. Two exceptions to this interpretation exist as both GSK343 [76] and UNC1999 [77]

(EZH1/H2 EPs) as well as BAY-598 [38] and LLY-507 [37] (SMYD2 EPs) are hits against schis-

tosomula. Therefore, in these cases, the use of complementary EPs may provide stronger sup-

port for schistosome target validation and progression during further investigations.

Microscopic assessment of affected schistosomula demonstrated a range of abnormal phe-

notypes including granulation, swelling, elongation and other irregular shape modifications

(Fig 1C). Some compounds (NVS-CECR2-1, LLY-507 and GSK-J4) induced phenotypes com-

parable to auranofin. Where chemotype-matched negative (or less active) control compounds

for hits were available (A-197 for A-196, BAY-369 for BAY-598, UNC2400 for UNC1999,

GSK-J1/GSKJ5 for GSK-J4), they were also tested against schistosomula at 10 μM (S1 Fig).

None of these chemotype controls demonstrated anti-schistosomula activity suggesting that

specificity of the hits for the S. mansoni homologue is similar to that found for the original

human target. Further SAR of the chemotype-matched controls and their related hit EPs/EIs
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Table 1. The Structural Genomics Consortium (SGC) epigenetic probes (EPs) and epigenetic inhibitors (EIs) used in this study.

S. mansoni Homologue (Smp_xxxxxx) ident. by BLASTp analysis Hit on schisto-

somula (10μM)
SGC Compound

ID

H. sapiens target Uniprot Full-length based E value Main catalytic domain

based

E value

READERS NI-57 BRD1 (BRPF1/2/3) P55201 Smp_246920 7.20E-89 Smp_246920 1.10E-29

OF-1 O95696 1.80E-88 4.50E-18

PFI-4 Q9ULD4 7.40E-87 3.00E-22 X

LP99 BRD9/7 Q9H8M2/Q9NPI1 Smp_246920 1.20E-19 Smp_246920 2.80E-18

BI-9564 8.30E-21 2.70E-20

I-BRD9 BRD9 Q9H8M2 Smp_246920 1.20E-19 Smp_246920 2.80E-18 X

PFI-1 BET family�� - - - - -

JQ1 BET family�� - - - - - X

NVS-CECR2-1 CECR2 Q9BXF3 Smp_070190 4.10E-16 Smp_070190 1.40E-15 X

GSK2801 BAZ2A/2B Q9UIF9/Q9UIF8 Smp_170760 4.20E-37 Smp_170760 4.50E-27

BAZ2-ICR Smp_147950 5.10E-13 Smp_147950 2.10E-14

I-CBP112 CREBBP/EP300 Q92793 (CREBBP) Smp_127010���� 1.20E-102 Smp_127010���� 1.30E-105

SGC-CBP30 X

PFI-3 SMARCA2/4 P51531/P51532 Smp_158050 0 Smp_158050 2.10E-32

1.70E-164 4.20E-35

BSP BET family�� - - - - -

UNC1215 L3MBTL3 Q96JM7 Smp_159100 1.50E-23 Smp_159100 2.10E-24

WRITERS A-196 SUV420H1/H2 Q4FZB7/Q86Y97 Smp_062530 7.40E-30 Smp_062530 7.40E-31

X

4.50E-15 3.30E-15

MS023 PRMT type I (PRMT1, 2, 3,

4, 6 and 8)

Q99873/P55345/O60678/

Q86X55/Q96LA8/Q9NR22

Smp_029240 (SmPRMT1 and 8)

Smp_337860 (SmPRMT3)

1.1E-82

5.9E-23

Smp_029240

(SmPRMT1 and 8)

Smp_337860

(SmPRMT3)

2.2E-83

2.1E-23

X

MS049 PRMT4 and 6 Q86X55/Q96LA8 Smp_070340 (SmPRMT4) 1.00E-72 Smp_070340

(SmPRMT4)

3.90E-45

6.00E-27 4.80E-27

SGC707 PRMT3 O60678 Smp_337860 5.90E-23 Smp_337860 2.1E-23

GSK591 PRMT5 O14744 Smp_171150 2.00E-78 Smp_171150 1.70E-78

LLY-507 SMYD2 Q9NRG4 Smp_342100 (Smp_000700���) 0.0000098

(0.00046���)

Smp_342100

(Smp_000700���)

0.0000047

(0.00022���)

X

BAY-598 X

SGC0946 DOT1L Q8TEK3 Smp_165000 2.60E-67 Smp_165000 3.40E-67

UNC0642 G9a/GLP Q96KQ7/Q9H9B1 Smp_158310 3.70E-25 Smp_158310 5.30E-26

UNC0638

A-366 1.00E-25 1.40E-26

GSK343 EZH1/H2 Q92800/Q15910 Smp_078900 2.10E-81 Smp_078900 2.60E-83 X

UNC1999 1.90E-79 4.90E-81 X

(R)-PFI-2 SETD7 Q8WTS6 Smp_190140 6.00E-11 Smp_190140 6.00E-11

C646� EP300 Q09472 Smp_127010���� 5.70E-102 Smp_127010���� 1.40E-104

ERASERS GSK484 PAD-4 Q9UM07 No homologue identified - No homologue

identified

- X

GSK-J4 JMJD3/UTX O15054/O15550 Smp_034000 2.30E-128 Smp_034000 4.00E-124 X

9.70E-137 3.00E-130

GSK-LSD1 LSD1 O60341 Smp_150560 2.80E-31 Smp_150560 1.10E-31

IOX1 2-oxoglutarate oxygenase

(JMJD) family��
- - - - -

LAQ824� class I HDAC (HDAC1, 2,

3 and 8)��
- - - - - X

CI-994�

All compound structures can be found in S1 Table.

� = Not an SGC defined epigenetic probe as it does not display in vitro potency of < 100 nM, does not display >30-fold selectivity vs other subfamilies and does not

have significant on-target cell activity at 1μM. These chemicals are classified as epigenetic inhibitors (EIs).

�� Broad activity against family. Therefore, specific Smp targets are not listed.

��� Lowest sequence similarity amongst BLAST analyses. Therefore, the top two Smps are indicated.

���� Smp_127010 contains both a bromodomain (of CREBB) and a histone acetyl transferase domain (of EP300).

https://doi.org/10.1371/journal.pntd.0007693.t001
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with the schistosome target or whole organism could help provide evidence to support this

contention. Nevertheless, encouraged by these single-point schistosomula screens (and the

results of the chemotype controls), follow-on dose-response titrations of the 14 hits against

schistosomula, adult schistosome pairs and a surrogate human cell line (HepG2) were next

pursued (Table 2).

Upon dose-response titrations of these 13 EP and one EI (LAQ824) anti-schistosomula hits,

several of the results warranted further comment. Firstly, several compounds had some degree

of general cytotoxicity against HepG2 cells. While HepG2 cytotoxicity is a flag, it is not consid-

ered a no-go output in our compound triaging scheme. Nevertheless, the cytotoxicity results

are unsurprising as these EPs were primarily developed for use in humans as anti-cancer

agents [30], and, as HepG2 cells are derived from a hepatocellular carcinoma, varying sensitiv-

ity to these EPs was expected (and, as an example, confirmed for LLY-507, [37]). However,

PFI-4, SGC-CBP30, A-196, BY-598 and GSK-J4 had minimal activity on this cell line’s viability

(CC50s > 50 μM) in these studies. Secondly, low μM anti-schistosomula EC50s were generally a

good predictor for low μM adult worm EC50s (e.g. NVS-CECR2-1, LLY-507, GSK-J4). How-

ever, this was not always the case (e.g. I-BRD9, SGC-CBP30, MS023) and indicated that stage

specific expression of the target may be an important consideration for compound progres-

sion. Thirdly, while LLY-507 may contain some off target activity in schistosomes (similar to

what has been reported for human cells [30]), the anti-schistosomal potency and selectivity of

BAY-598 were similar. These results suggested that both LLY-507 and BAY-598 (likely target-

ing a schistosome SMYD protein lysine methyltransferase homologue, Table 1) could be

exchangeable in further progression of these anti-schistosomal compounds and their predicted

target (s). Finally, these dose response titrations revealed that the best anti-schistosomal hit,

when considering schistosomulum and adult worm potencies alongside HepG2 cytotoxicity,

was GSK-J4. Because our previous investigations have independently identified crucial devel-

opmental roles for the schistosome protein methylation machinery [34, 36], we decided to fur-

ther our investigations of LLY-507/BAY-598 and GSK-J4.

Protein lysine methyltransferase (LLY-507 and BAY-598) and demethylase

(GSK-J4) modulators are amongst the most selectively-potent, anti-

schistosomal epigenetic probes within the SGC collection

To provide a mechanistic context associated with the anti-schistosomal activity of LLY-507

and BAY-598, a combination of homology modelling, in silico molecular docking and detec-

tion of H3K36 dimethylation (me2) was performed (Fig 2).

Phylogenetic analyses of the three putative S. mansoni SMYD family members (Smp_1216

10, Smp_000700 and Smp_342100 [34]) alongside the five characterised H. sapiens SMYD

(SMYD 1–5) proteins (using the SET domain only) indicated that S. mansoni does not contain

a close HsSMYD2 homolog (supporting the findings in Table 1) (S2 Fig). However, as the

substrate competitive inhibitors of HsSMYD2 (BAY-598 and LLY-507) are both active

against schistosomula (but BAY-369, the negative control of BAY-598, is not, S1 Fig), these

Fig 1. Epigenetic probes/inhibitors targeting histone modifying enzymes negatively modify schistosomula phenotype and motility metrics. A collection

of 37 EPs/EIs targeting histone modifying enzymes (readers, writers and erasers) as well as controls (PZQ and AUR) were screened against S. mansoni
schistosomula at 10 μM for 72 h using the Roboworm platform as described in the Materials and Methods. (A) Parasite phenotype and (B) Parasite motility

were both negatively affected by fourteen (38%) of these compounds upon repeat screening (each filled circle represents average phenotype or motility scores

derived from ~ 80–120 schistosomula; n = 2–3; horizontal bars represent average scores derived from replicates). (C) Representative images of schistosomula

phenotypes affected by the fourteen active EPs/EIs, compared to controls (Media only, DMSO, Auranofin and Praziquantel). Z´ values obtained from these

screens ranged from 0.27–0.48 (mean = 0.40) for phenotype and 0.41–0.56 (mean = 0.48) for motility. Table 1 (closest S. mansoni homolog) and S1 Table

(structures, SMILES, MW, etc.) provide further information related to EPs/EIs screened and their putative S. mansoni targets.

https://doi.org/10.1371/journal.pntd.0007693.g001
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Table 2. Dose response titrations of the 14 active SGC compounds against schistosomula and adult schistosome pairs.

SGC

COMPOUND ID

SCHISTO-

SOMULA

EC50 (μM)

ADULT EC50 (μM)

(95% Confidence

Intervals)

CC50 (HepG2)

(μM)

(95% Confidence

Intervals)

SELECTIVITY INDEX

Phenotype Motility Females Males Schistosomula

Phenotype

Schistosomula

Motility

Adult

Females

Adult

Males

READERS PFI-4 5.22

NC

5.12

NC

31.22

(19.11–

43.32)

30.05

(12.87–

47.2)

100� 19.18 19.52

3.20 3.33

I-BRD9 1.29

NC

4.13

NC

24.00NC 28.50

(13.66–

43.33)

31.43

(31.38–31.48)

24.44 7.61

1.31 1.10

SGC CBP30 3.19

NC

4.99

NC

31.22

(19.11–

43.32)

33.49

(29.61–

37.36)

50�� 15.69 10.03

1.6 1.49

NVS-CECR2-1 1.81

NC

2.5

NC

5.21 (0.86–

9.55)

2.90 (2.25–

3.55)

9.03 (6.60–11.46) 4.98 3.60 1.73 3.11

JQ1 4.72

NC

3.04

NC

22.84

(11.87–

33.81)

18.27 (5.34–

31.20)

16.78 (15.95–

17.60)

3.56 5.53

0.73 0.92

WRITERS A-196 1.39

NC

4.78

NC

15.96

(8.57–

23.36)

22.29

(12.40–

32.18)

50��

NC

36.00 10.45

3.13 2.24

MS023 3.92

NC

6.45

NC

26.26

NC

26.16

(5.30–

47.01)

16.25

(13.62–18.89)

4.14 2.52

0.62 0.62

LLY-507 2.88

NC

2.81

NC

7.59 (4.79–

10.40)

9.32

(2.77–

15.87)

23.77

(13.9–33.7)

8.24 8.47 3.13 2.55

BAY-598 4.81

NC ���

16.54

NC

22.35NC 50��

NC

10.40 ��� 3.02 2.24

GSK343 3.17

NC

��� 25.29

(23.99–

26.59)

25.04

(23.76–

26.32)

29.23

(23.58–34.87)

9.24 ���

1.16 1.17

UNC1999 4.2

NC

2.82

NC

16.08

(2.91–

29.25)

13.53

(6.69–

20.37)

31.41

(31.4–31.4)

7.48

11.16 1.95 2.32

ERASERS GSK484 1.18

NC

4.94

NC

23.11

(11.58–

34.63)

21.84

(13.04–

30.64)

31.43

(31.4–31.5)

26.75 6.36 1.36 1.44

GSK-J4 5.37

NC

6.04

NC

11.39 (4.11–

18.67)

3.92

NC

100�

NC 18.62 16.55 8.78 25.49

LAQ824 2.22

NC

2.45

NC

16.46

NC

25

NC

15.64

(13.88–17.41)

7.04 6.40 0.95 0.63

As described in the Materials and Methods, two-fold compound titrations were performed for schistosomula (10 μM– 0.625 μM) and adult worms (50 μM– 6.25 μM or

50 μM– 0.05 μM) to calculate EC50 values. Schistosomes and HepG2 cells were co-cultured with compounds at 37˚C in a humidified environment containing 5% CO2

for 72 h and 20 h respectively.

Z´ values obtained from the schistosomula titrations were 0.44 for phenotype and 0.41 for motility.

� Cell cytotoxicity not observed at highest dose performed, therefore these compounds have a CC50 of > 100 μM. Selectivity index calculations for these compounds

were calculated with a CC50 value set at 100 μM.

�� CC50 was not obtainable due to inaccurate slopes generated due to the requirement of further titrations > 100μM. Therefore, the predicted CC50 is estimated to

be > 50 μM. All selectivity indices for these compounds were calculated with a CC50 of 50 μM.

��� EC50 and selectivity indices could not be calculated due to the requirement of further compound titrations

NC—EC50, CC50 or 95% confidence intervals could not be calculated due to limited number of titration points, or in the case of schistosomula, due to only single

replicates being performed.

https://doi.org/10.1371/journal.pntd.0007693.t002
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compounds are likely acting on one of these SmSMYDs (best estimate is Smp_000700 or

Smp_342100, Table 1). As smp_000700 is more consistently expressed in 0–72 h schistosomula

compared to smp_342100 [34], we, therefore, chose to specifically examine the putative bind-

ing of LLY-507/BAY-598 to a homology model of Smp_000700 (built from HsSMYD3, PDB

5EX3) (Fig 2A). Initial assessment of the homology model by Ramachandran plot analysis,

ProSA-web, ERRAT and Verify3D indicated a high-quality structure (S3 Fig) surpassing

agreeable standards defined in the literature [60–63]. Together, these tools verified that

Smp_000700 adopted a similar three-dimensional arrangement to that of the structurally-

solved human template and was suitable for predicting the binding organization of LLY-507

and BAY-598.

Fig 2. The HMT inhibitors LLY-507 and BAY-598 significantly reduce adult worm H3K36me2 levels. Homology modeling of Smp_000700, using H. sapiens
SMYD3 (PDB 5EX3) as the template, was performed according to the Materials and Methods. (A) Domain architecture and homology model of Smp_000700 showing

the tetratricopeptide repeat (TPR, gold, AA 76–195), the SET N-terminal domain (red, AA 279–312), the myeloid, nervy and DEAF-1 domain (MYND, blue, AA 313–

370) and the SET C-terminal domain (green, AA 371–642). SAH (S-adenosyl homocysteine) and histone H3 are indicated. (B) Predicted binding of LLY-507 to

Smp_000700 substrate binding pocket. (C) Predicted binding of BAY-598 to Smp_000700 substrate binding pocket. (D) Adult schistosome pairs (21 pairs/biological

replicate; n = 3; 63 worm pairs in total) were co-cultured for 72 h in a sub-lethal concentration of LLY-507 (6.25 μM) or BAY-598 (25 μM) in 0.625% DMSO. After co-

cultivation, schistosomes were separated by sex (males and females), histones extracted and total levels of H3K36me2 quantified by ELISA according to Methods.

https://doi.org/10.1371/journal.pntd.0007693.g002
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Smp_000700’s SET domain contains a series of β strands, which fold into three discrete

sheets around a unique knot-like structure. In this structure, the C-terminal SET domain

threads though a loop region, which is formed by a hydrogen bond between two segments of

the protein chain [78]. The MYND domain is a putative zinc-finger motif, mainly involved in

proline-rich protein interactions, and defines a distinctive class of histone writer called the

SMYD proteins [79, 80]. The N-terminal SET domain is flanked by an additional domain

known as tetracopeptide repeat domain (TPR). Smp_000700 contains two distinct binding

sites within its SET domain: one for the substrate (histone protein, H3) and one for the

demethylated cofactor (SAH). These two pockets are located on opposite faces of the SET

domain and are connected by a deep channel running though the SET domain core. This

architecture allows the side chain of the substrate (H3K36) to be close to the cofactor, which

facilitates the transfer of a methyl group.

From the analysis of LLY-507 docking to Smp_000700, this compound adopted a similar

binding confirmation to what was previously reported for HsSMYD2 bound to LLY-507

(deposited under the code 4WUY [37]). Specifically, LLY-507 is predicted to bind the substrate

binding pocket with the pyrrolidine group (highlighted in yellow, Fig 2B) extending into the

lysine channel (Phe184, Tyr240 and Tyr258 of HsSMYD2; His554, Tyr642 and Tyr662 of

Smp_000700; S4 Fig, panels A and B) and connecting to the cofactor (represented here as

SAM for HsSMYD2 and the product SAH, after donating a methyl group from SAM for

Smp_000700) binding pocket. Furthermore, the nitrogen atom of LLY-507’s pyrrolidine ring

is predicted to form a hydrogen bond with Smp_000700 Ser555 (S4 Fig, panel B). The benzoni-

trile group (as well as the piperazine; both highlighted in brown, Fig 2B) binds to the periphery

of the substrate binding pocket (Thr185 for HsSMYD2 and Gly643 for Smp_000700; S4 Fig,

panels A and B). This interaction putatively prevents the natural substrate (histone or other

target protein) from binding to Smp_000700 and supports LLY-507’s mechanism of action as

a substrate competitive inhibitor. Finally, this model suggests that the indole group of LLY-507

stacks into an accessory pocket of Smp_000700, just flanking the substrate binding pocket

(area in blue, Fig 2B; S4 Fig, panel B). A similar indole confirmation is also observed for

HsSMYD2/LLY-507 interactions (S4 Fig, panel A)

Regarding BAY-598, the docking simulation revealed a good occupation of Smp_000700’s

substrate binding site (Fig 2C). However, in contrast to the binding mode of this compound

with the human target (HsSMYD2) where the lysine binding channel is occupied by the 3,

4-chloro phenyl residue involved in π-stacking interactions with two aromatic residues

(Phe184 and Tyr240, S4 Fig, panel C) [38], this particular BAY-598 feature is predicted to bind

to an adjacent hydrophobic pocket of Smp_000700 (S4 Fig, panel D). Furthermore, the 3 -

(difluoromethoxy) phenyl ring of BAY-598 (in yellow, Fig 2C) is predicted to insert into the

channel interconnecting the two binding pockets (substrate and cofactor) of Smp_000700 with

the difluoromethoxy group pointing toward the cofactor (in this case the SAM demethylated

derivative, SAH). Two Smp_000700 aromatic amino acid residues (His554 and Tyr642, S4 Fig,

panel D) are likely essential for positioning BAY-598’s hydroxyacetamide substituent

(highlighted in green, Fig 2C) in the lysine binding channel with support from two hydrogen

bonds donated by Asn641 (S4 Fig, panel D). These hydrogen bonds are donated by Thr185 in

HsSMYD3 (S4 Fig, panel C) as previously shown [38]. The variation in predicted binding

modes of LLY-507 and BAY-598 to Smp_000700 (i.e. LLY-507 adopting a confirmation analo-

gous to the human homolog; BAY-598 binding to an adjacent hydrophobic pocket) may

explain the difference in anti-schistosomal activity observed (LLY-507 > BAY-598). Further

SAR could be helpful in providing answers to the differential activity of these two putative

Smp_000700 interactors.
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The homology model and in silico docking analyses suggested that both LLY-507 and BAY-

598 could inhibit the protein lysine methyltransferase activity of Smp_000700. Therefore, as

H3K36 is a specific target of SMYD2 dimethylation (me2) [81], we specifically examined this

epitope (H3K36me2) in histone preparations derived from adult schistosome pairs incubated

with sub-lethal concentrations of LLY-507 (6.25 μM) or BAY-598 (25 μM) (Fig 2D). Here, a

significant reduction in the amount of H3K36me2 was detected in drug-treated parasites com-

pared to controls (DMSO) with LLY-507 slightly more effective than BAY-598 (25% vs 23%)

in mediating this activity. LLY-507 and BAY-598 mediated reductions in H3K36me2 were

equivalent between the sexes. Together, these data provided evidence that both SMYD2

Fig 3. Schistosome motility, egg production and H3K36me2 are regulated by Smp_000700. RNAi of adult schistosome pairs (21 worm pairs/biological replicate;

n = 3 replicates) using siRNAs directed against smp_000700 and luc was performed as described in the Materials and Methods. (A) qRT-PCR analysis of smp_000700
RNA levels in siLuc vs siSmp_000700 treated worms at 48 h. (B) Quantification of adult schistosome worm motility at 168 h. (C) Enumeration of in vitro laid egg (IVLE)

production at 168 h. (D) Detection of H3K36me2 in adult schistosome nuclear extracts at 168 h. Statistical significance is indicated (Student’s t test, two tailed, unequal

variance). ��� represents p< 0.001.

https://doi.org/10.1371/journal.pntd.0007693.g003
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inhibitors affected H3K36me2 in schistosomes presumably via their inhibitory activity on

Smp_000700. To verify this contention, RNAi of Smp_000700 was subsequently performed on

adult schistosome pairs (Fig 3).

Here, short interfering RNAs (siRNAs) targeting smp_007000 (siSmp_000700) significantly

reduced mRNA abundance by 66% when compared to siLuc controls (Fig 3A). This knock-

down was also associated with a significant reduction in adult worm motility as well as egg

production defects at 7 days post-treatment (Fig 3B and 3C). When H3K36me2 was examined,

knockdown of smp_000700 led to a significant reduction in this epitope in both male and

female schistosomes when compared to the controls (Fig 3D). This functional genomics data

broadly recapitulates the drug studies using LLY-507/BAY-598 and provides supporting evi-

dence that Smp_000700 is an active SMYD protein lysine methyltransferase required for schis-

tosome motility, egg production and H3K36me2. Adult worm [34] and gonad (ovaries >

testes) [82] expression of smp_000700 further provides a spatial temporal context as to how

inhibition (chemical or functional genomics) of this gene product’s activity may negatively

affect egg-production.

Amongst the EPs/EIs studied in this investigation, GSK-J4 demonstrated the most selective

activity on schistosomes (schistosomula and adults, Table 2). This EP is a cell-permeable pro-

drug (likely processed into GSK-J1 by intracellular schistosome esterases [39]) that is predicted

to target a schistosome JMJD3 homolog (Smp_034000, Table 1) responsible for Fe (II) and

2-oxoglutarate-dependent demethylase activities. As IVLE production defects were consis-

tently observed in adult worm screens (even at drug concentrations where worm motility was

unaffected), we initiated an extensive titration (50 μM—0.05 μM) of GSK-J4 on adult schisto-

some pairs (Fig 4).

A direct comparison of GSK-J4 vs GSK-J1 (the cell impermeable parent of GSK-J4 [39]) on

adult schistosome motility and egg production revealed the importance of an ethyl ester modi-

fication (found in GSK-J4, but not GSK-J1) in these in vitro phenotypic metrics (Fig 4A and

4B). For example, whereas GSK-J4 at 3.13 μM and 6.25 μM led to adult worm motility and

IVLE deficiencies, GSK-J1 at these concentrations did not substantially alter these phenotypes

when compared to DMSO controls. LSCM of IVLEs derived from schistosome cultures co-

incubated with GSK-J4 (0.2 μM) vs GSK-J1 (6.25 μM) revealed further details about these dif-

ferentially membrane permeable EPs (Fig 4C, 4D, 4E and S5 Fig). Of those phenotypically nor-

mal IVLEs found in GSK-J4 and GSK-J1 cultures at these concentrations, there was no

difference in surface autofluorescence (Fig 4C and S5 Fig) or overall egg volume (Fig 4D and

S5 Fig) measurements. However, when the number of vitellocytes was quantified, GSK-J4 sig-

nificantly inhibited the packaging of this critical cell population into IVLEs whereas GSK-J1

did not (Fig 4C, Fig 4E and S5 Fig). Together, these data provided evidence that the specific

anthelmintic activity of a JMJD3 EP is directly related to cellular (or in this case, schistosome)

permeability. Alongside the results obtained with both LLY-507 and BAY-598, these findings

additionally supported the important role of histone (protein) methylation/demethylation pro-

cesses in schistosome development (Fig 1, Table 2) and adult worm phenotypes (Table 2, Figs

3 and 4).

Conclusions

The active compounds identified here from within the SGC epigenetic probe/epigenetic inhib-

itor collection represent exciting new starting points for the pursuit of next-generation anti-

schistosomals. As many of these compounds are currently being explored for the treatment of

non-communicable diseases in humans [83], their direct repositioning as schistosomiasis con-

trol agents could be rapid (depending upon medicinal chemistry improvements in selectivity).
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Specifically, our collective results suggest that compounds (LLY-507, BAY-598, GSK-J4) affect-

ing protein methylation homeostasis in schistosomes are amongst some of the most potent

agents from within the tested SGC collection. Therefore, and in agreement with other studies

[17, 34, 36, 66], members of the schistosome protein methyltransferase/demethylase families

should be considered validated anthelmintic targets for progression.

Supporting information

S1 Table. Structural Genomics Consortium (SGC) epigenetic probes (EPs) and epigenetic

inhibitors (EIs) used in this study.

(XLSX)

S1 Fig. Activity of SGC chemotype-matched negative control compounds on schistosomula

phenotype and motility. Chemotype-matched control compounds of EPs UNC1999

(UNC2400), A-196 (A-197), BAY-598 (BAY-369) and GSK-J4 (GSK-J1 and GSKJ5) as well as

Auranofin were screened against S. mansoni schistosomula at 10 μM for 72 h using the Robo-

worm platform as described in the Methods. (A) Compounds were listed as a hit if they fell

within both phenotype and motility cut-off thresholds (-0.15 and -0.35, respectively) [50]. (B)

Representative images of schistosomula phenotypes induced by co-cultivation with these EPs

and chemotype matched controls, compared to schistosomula co-cultivated with media only,

DMSO (0.625%) and Auranofin.

(PDF)

S2 Fig. Phylogenetic analysis of S. mansoni and H. sapiens SMYD protein members. The

phylogeny outlined in the tree is derived from multiple sequence alignment of the SET domain

of 3 SmSMYDs (Smp_000700, Smp_121610 and Smp_342100) and 5 HsSMYDs (SMYD1-5).

The consensus tree is constructed in MEGA using the neighbor joining method. An unrooted

dendogram represents the bootstrap analysis of the HsSMYD and SmSMYD members accom-

plished using 1000 iterations. The taxa name (sequence name) is reported at the tip of each

branch and the bootstrap value (supportive value) is indicated for each node. The branch

length is proportional to the distance calculated between the various SMYD family members

with the scale reported as reference at the bottom of the dendrogram.

(PDF)

S3 Fig. Catalytic domain of Smp_000700 homology model evaluation. (A) Ramachandran

plot showing the dihedral Psi and Phi angles of amino acid residues within the catalytic

domain of Smp_000700 (SET domain, 413 aa in length). This analysis illustrates that 98.6% of

modelled residues satisfy stereochemical parameters. In fact, various residues lie in the general

favoured regions (black symbols in blue and orange areas on the graph) and the allowed

regions (orange symbols in blue and orange areas on the graph). Very few residues lie within

the white field, which represents disallowed regions. (B) Z-score of Smp_000700’s SET domain

provided by ProSA-web. The black dot (highlighted by the arrow) represents this Z-score

(-7.11) in relation to all protein chains in PDB determined by X-ray crystallography (light blue

area) or NMR spectroscopy (dark blue area) with respect to their length (x-axis representing

Fig 4. The cell-permeable JMJD3 inhibitor GSK-J4, but not cell impermeable GSK-J1, significantly affects IVLE production and

vitellocyte packaging. Adult schistosome pairs (3 pairs/well; n = 3 or 6) were co-cultured for 72 h in GSK-J4 (50 μM– 0.05 μM), GSK-J1

(6.25 μM or 3.13 μM) or DMSO (0.625%) as described in the Materials and Methods. (A) Adult worm motility scores (red circles–males;

blue circles–females). (B) Number of IVLEs produced. (C) Representative IVLE phenotypes (autofluorescence; Ex = 488 nm, Em = 519 nm

and DAPI; Ex = 405 nm, Em = 458 nm) from schistosome pairs co-cultivated in GSK-J4 (0.2 μM), GSK-J1 (6.25 μM) or 0.625% DMSO for

72 h. (D) Quantification of egg volumes between treatment groups (n = 10 per group; GSK-J4–0.2 μM, GSK-J1–6.25 μM). (E) Number of

vitellocytes per egg (n = 10 per group) between treatment groups (GSK-J4–0.2 μM, GSK-J1–6.25 μM). �, p< 0.05; ���, p< 0.001.

https://doi.org/10.1371/journal.pntd.0007693.g004
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the protein length in terms of number of residues). Our model is located within the space

occupied by protein structures solved by X-ray crystallography. (C) Smp_000700 model qual-

ity (over SET domain) assessed by the protein verification tool ERRAT. Error values are plot-

ted as a function of a sliding 9-residue window; poorly supported model residues (highest bars

on the Errat Plot) are coloured red (rejected at 99% confidence level or above) or yellow

(between 95% and 99% confidence levels). Regions of the structure not rejected are shown in

green. Overall ERRAT score of Smp_000700’s SET domain is 88.15%. (D) Evaluation of

Smp_000700 homology model (SET domain) was additionally conducted by Verify3D, which

determines the compatibility of an atomic tertiary model (3D) from its own primary amino

acid sequence (1D). As a result, 81.90% of the SET domain residues have a good score (> =

0.2) compatible with the formation of a stable 3D structure. (E) Quality structure assessment

summary of Smp_000700 homology model (SET domain) and the corresponding human tem-

plate (SMYD3, PDB ID: 5EX3). This final table summarises the results of the structural valida-

tion of both structures compared to the expected values for the four tools.

(PDF)

S4 Fig. Binding of LLY-507 and BAY-598 to HsSMYD2 and Smp_000700. Views of the co-

crystal structure of LLY-507 with HsSMYD2 (PDB ID: 4WUY; Panel A) compared to the pre-

dicted binding of LLY-507 with the homology model of Smp_000700 (Panel B). Similar com-

parisons were made between the co-crystal structure of BAY-598 with HsSMYD2 (PDB ID:

5ARG; Panel C) and the homology model of Smp_000700 (Panel D). SAM (S-adenosyl methi-

onine, for HsSMYD2), SAH (S-adenosyl homocysteine, for Smp_000700) and the compound

structures are shown as ball-and-stick diagrams, coloured by atom type: grey for carbons, red

for oxygen, blue for nitrogen. The human and parasite proteins are shown as green and blue

ribbon, respectively. Residues interacting with the compounds are shown in stick mode and

the relative numeration refers to their positions on the full-length protein sequence. For clar-

ity, hydrogens, small portion of the ribbon and protein side chains and backbones (except for

the highlighted residues) are not shown.

(PDF)

S5 Fig. Representative egg phenotypes derived from adult worm cultures co-incubated

with GSK-J1 and GSK-J4. Representative IVLE phenotypes (GFP = eggshell surface autofluor-

escence; Ex = 488 nm, Em = 519 nm and DAPI = vitellocytes; Ex = 405 nm, Em = 458 nm)

from schistosome pairs co-cultivated in GSK-J4 (0.2 μM), GSK-J1 (6.25 μM) or 0.625% DMSO

for 72 h.

(TIF)
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