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 12 

Abstract 13 

A 10-year-long evolution of ice thickness and volume of the Marmolada glacier is presented. 14 

Quantitative measurements have been performed by using two different Ground Penetrating Radar 15 

(GPR) datasets. A ground-based survey using two different ground-coupled systems equipped with 16 

100 MHz and 35 MHz antennas was performed in 2004. In 2015 the dataset was collected by using a 17 

helicopter-borne step frequency GPR equipped with a 100 MHz antenna. Through a critical 18 

discussion of the two different methodologies, we show how both approaches are useful to estimate 19 

the ice volume within a glacier, as well as its morphological characteristics and changes with time, 20 

even if datasets are acquired in different periods of the year.  21 

The observed 2004-2014 ice volume reduction of the Marmolada glacier is equal to about 30%, while 22 

the area covered by ice decreased by about 22%. The glacier is now split in several separated units. It 23 

is very likely that the fragmentation of the Marmolada glacier observed in the period 2004-2014 was 24 

accelerated due to irregular karst topography. By applying the observed 2004-2014 ice-melting trend 25 
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for the future, the Marmolada glacier will likely disappear by the year 2050. Only few isolated very 26 

small and thin ice patches will eventually survive due to avalanche feeding at the foot of the north-27 

facing cliffs. However, the Marmolada glacier might behave slightly different compared to glaciers on 28 

non-karstic terrains owing to prevalently vertical subglacial karst drainage, though this aspect on 29 

glacier behaviour is still not fully understood. 30 

 31 

1. Introduction 32 

Glaciers are essential climate proxies, because they are very sensitive to climatic and environmental 33 

changes (Oerlemans, 2005). They react to external forcing by rapidly adjusting their shape and size 34 

and their evolution in time is extremely useful not only for glaciological studies and practical 35 

applications like e.g. hydrological modelling and touristic exploitation (Diolaiuti et al., 2006), but also 36 

for climate change assessment and future forecasts (Kaser et al., 2003; Zemp et al., 2013). Long-term 37 

glacier observation records are the basis for the understanding of physical processes leading to 38 

glaciers response to climatic change (Haeberli et al., 2013). In order to provide a worldwide collection 39 

of standardised data about glaciers’ changes and validate models of the possible forecasted future 40 

warming, programmes and organisations such as “Global Land Ice Measurements from Space” 41 

(GLIMS) and “World Glacier Monitoring Service” (WGMS) have allowed researchers to jointly collect 42 

data from across the globe (Haeberli et al., 2013; Zemp et al., 2008). In Italy, the Italian Glaciological 43 

Committee (CGI) has been monitoring selected Italian glaciers since the end of the 19th century by 44 

carrying out annual glaciological surveys. Although such a long record of measurements is a valuable 45 

source of information, it is unfortunately insufficient to quantify in detail the actual glacier evolution 46 

through time. Indeed, detailed information about volume and internal frozen units is required for 47 

any estimation of water equivalent and for a more realistic forecast of the future evolution of a 48 

glacier (Colucci et al., 2015). While measurements of terminus re-adjustment from fixed benchmarks 49 

are still carried out, surveys based on mass balance measurements are becoming increasingly 50 

common. The mass balance describes mass inputs and outputs during each glaciological (i.e. 51 
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hydrological) year and represents direct response of a glacier to atmospheric conditions of a certain 52 

period (Zemp et al., 2008). It supplies a quantitative expression of mass changes through time, in 53 

terms of water equivalent (w.e.), i.e. the glaciological parameter assessing “how much water” is 54 

actually stored within a frozen body. 55 

In order to calculate the glacier mass balance, different methods can be applied (Diolaiuti et al. 2001; 56 

Zemp et al., 2013; Beedle et al., 2014, Mercer, 2018;): from direct measurements of ablation and 57 

accumulation at individual points and the interpolation between them (Kaser et al.,2003; Fisher, 58 

2011) to indirect geodetic, as the use of satellite images and DEMs (Mercer, 2010; Zemp et al.,2010; 59 

Nistor, 2014;), and geophysical methods (Pavan et al., 2000; Booth et al., 2013; Godio and Rege, 60 

2015). One of the geophysical techniques to monitor the state and evolution of a glacier is the 61 

Ground Penetrating Radar (GPR) (Forte et al., 2014; Colucci et al., 2015; Dossi et al., 2016). This 62 

technique provides images of the internal structure of a glacier and allows to calculate the mass 63 

balance through time in case data from multiple surveys are available (Forte et al., 2014). The 64 

investigation depth reached by this technique in frozen materials is greater than in any other 65 

geological material owing to low electrical conductivity of ice, firn and snow, whereas a possibility to 66 

obtain high resolution imaging makes GPR an extremely effective tool in glaciological studies (Annan 67 

et al., 1994; Arcone et al., 1995). GPR surveys are applied in glaciology with different objectives, 68 

including ice volume estimation (Binder et al., 2009; Gabbi et al., 2012), imaging of the internal 69 

structure of a clean ice body (Arcone, 1996; Colucci et al., 2015) or covered by debris (e.g. 70 

Kozamernik et al., 2018), determination of the thermal regime (Bælum and Benn, 2011; Gacitùa et 71 

al., 2015) and quantification of snow seasonal melting and the characterization of the snow cover 72 

(Godio, 2009; Gusmeroli et al., 2014; Zhao et al., 2016). Moreover, there are several other specific 73 

glaciological applications spanning from sub-glacial lakes detection (Siegert et al., 2004), discovery 74 

and characterization of brines (Forte et al., 2016), to ice cave imaging (e.g. Hausmann and Behm, 75 

2010; Colucci et al., 2016), as well as permafrost monitoring (Wu et al., 2005), among the others. The 76 

use of GPR technique allows to characterize in detail the internal structure of ice bodies and to 77 
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quantify its volumetric change through time, making possible to insert the local glacial variations in 78 

the wider context of global warming. One effect of global warming, which is the most evident for 79 

large and medium size glaciers, is the fragmentation of ice bodies due to repeated and consecutive 80 

negative mass balance. As a consequence, an increasing bedrock outcrop divides a single ice body in 81 

smaller parts, resulting at the end in the extinction of the whole glacier through time (Carturan et al., 82 

2013a). This situation, in some cases, represents an obstacle to the continuation of long-term 83 

observations and it has been recently suggested, where possible, to start new observations on 84 

neighbouring glaciers located at higher altitude that have more likelihood of survival into the next 85 

few decades (Carturan, 2016). In addition to ice body fragmentation, another global-warming-related 86 

effect is the modification of the glacier geometry, mainly changes in convexity–concavity of the 87 

longitudinal profile (Scotti and Brardinoni, 2018). This, in turn, affects the net energy balance at a 88 

glacier surface and the accumulation and redistribution of snow by the wind (Hagg et al., 2017). 89 

At present, most GPR surveys are performed using ground-coupled systems, moved along the survey 90 

area manually or using dedicated vehicles. Ground-based GPR surveys may have relevant logistical 91 

challenges on rough terrain, and particularly over glaciers due to the presence of crevasses and the 92 

inherent risk of landslides or avalanches. In these conditions, airborne GPR surveys may be 93 

preferable, since they allow safely operating, and rapidly surveying large areas. Even more important, 94 

airborne GPR glaciological surveys are quite common because they exploit the generally low 95 

electrical conductivity of frozen materials, which in turn makes possible to reach penetration depths 96 

not achievable in most of other geological materials. Most airborne GPR surveys are performed using 97 

helicopters, which exhibit a better mobility and have lower logistical constraints when compared to 98 

aircrafts. In fact, the high agility of helicopters allows following more complex and tortuous paths, 99 

reaching a higher spatial data density. Some recent papers compared the performances of 100 

conventional commercial GPR mounted under a helicopter with the ones obtained exploiting radar 101 

systems specifically developed for airborne surveys (Merz et al., 2015a; Rutishauser et al., 2016). 102 

They concluded that besides some minor differences, the two strategies produce comparable results 103 
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in terms of the overall accuracy and attainable information. On the other hand, while some 104 

researchers concluded that airborne data quality outperforms the one of ground-based data sets 105 

(e.g. Merz et al., 2015b) other scholars reported opposite results (e.g. Rutishauser et al., 2016). In any 106 

case, the performances are strongly site-specific, also showing a significant dependency to 107 

temperature, water content and overall ice conditions, thus making such kind of comparisons 108 

inconclusive. In order to overcome such problems, we integrated two datasets acquired over the 109 

Marmolada glacier in the Dolomites (Italy) with different systems and/or by different platforms: the 110 

first was collected in 2004 with a ground based GPR equipment, the second in 2015 with a 111 

helicopter-borne GPR.  112 

Despite long data series and high number of measurements, no precise volume variations in time are 113 

available for the Marmolada glacier. Such estimates are indeed essential to evaluate the change of 114 

water stored in the glacier and in turn make possible realistic forecasts of its availability (Bahr et al. 115 

2015). This paper addresses in part this issue, trying also to obtain more general methodological 116 

achievements. The main aims of this work are: 1) to provide a multi-year geodetic mass balance of 117 

the Marmolada glacier within the 2004-2014 period through the comparison of two GPR datasets; 2) 118 

to create maps of ice thickness distribution in years 2004 and 2014 in order to highlight and discuss 119 

the fragmentation of the glacier, the change in its morphology and its relation with the bedrock; 3) to 120 

extrapolate some general methodological conclusions about ground and airborne based GPR surveys, 121 

the overall affordability of the results, and the possibility of integration with other techniques.  122 

 123 

1.1. Study area 124 

The Marmolada glacier (46°26'32” N, 11°51'53” E) is located in the northeastern Italy. The glacier is 125 

included in the Italian Glacier Inventory since 1959 with ID 941 (Smiraglia and Diolaiuti, 2015). It is a 126 

hanging glacier overlying the northern slopes of Marmolada (Fig. 1; highest peak Punta Penìa, 3343 127 

m), the highest massif of the Dolomites (Eastern Alps). Marmolada massif is composed of massive 128 
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Ladinian limestone, called Calcare della Marmolada, which belongs to the formation of Dolomia dello 129 

Sciliar (Antonelli et al., 1990). 130 

 131 

  132 

Figure 1. Location map of the Marmolada glacier, showing: a) the central glacier (ID 941.1) as seen 133 

from Punta Penia (photo taken by R.R. Colucci on August 16th, 2018) and b) the location of the 134 

Marmolada glacier as well as all other glaciers (marked with white polygons) in the Eastern European 135 

Alps after Randolph Glacier Inventory v.6.0 (RGI Consortium, 2017). The lower image shows the 3D 136 

view of the Marmolada massif, realized by projecting a free image taken from Bing Maps on the high-137 

resolution Digital Elevation Model obtained from a 1 m cell LiDAR acquired in October 2014 by Helica 138 
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srl. Here superimposed are the present IDs of the main glaciers after Smiraglia and Diolaiuti (2015). 139 

The stars highlight the area were protective blankets are located during the summer months in order 140 

to prevent ice melting, whereas sp1 and sp2 show the location of the snow pits. 141 

 142 

The glacier accumulation area is restricted by a sharp mountain crest running from west to east. The 143 

glacier flux is directed toward north, at present descending only part of the way to the main valley. 144 

Two former nunataks, named Sasso delle Undici (2770 m) and Sasso delle Dodici (2690 m), divide the 145 

ablation area in three small fronts namely the eastern, the central and the western front. According 146 

to Smiraglia and Diolaiuti (2015) and due to the dramatic shrinking the Marmolada glacier has 147 

undergone since the end of the Little Ice Age (LIA), but especially in the last 30 years, the glacier is 148 

divided in several sectors separated by rocky outcrops. The largest central sector is the Main Glacier 149 

(ID 941). Another sector is an isolated ice cap located on small plateau north of the highest summit of 150 

the Marmolada massif, the glacier of Punta Penìa (ID 941.2). Below Punta Penìa, there is the Central 151 

Glacier (ID 941.1) while the Western Glacier (ID 942) constitutes the westernmost part and was not 152 

considered in this study (Fig. 1). Part of the ID 941 glacier is interested by anthropic facilities and 153 

interventions, such as the ski run starting below Punta Rocca. Consequently, the slope of the glacier 154 

is modified in that sector. Moreover, white blankets are posed during summer to prevent ice melting 155 

and the degradation of the ski run in the easternmost sector of the glacier terminus (see Fig. 1), 156 

partially slowing down the retreat of the glacier in that small area. However, the effect of such 157 

mitigation strategy is negligible at the glacier scale and therefore it is not specifically considered in 158 

the present work.  159 

Carton et al. (2017) recently reconstructed the areal changes of the Marmolada glacier since the end 160 

of the 19th century by combining aerial and satellite photographs, historical maps, and direct 161 

measurements. In 1888, the glacier covered an area of 4.28 km2. Since the end of the LIA (approx. 162 

1860) the glacier showed a quite continuous decreasing trend, similarly to all the other alpine 163 
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glaciers. In the last century, the glacier advanced only during two short periods (1910-1920 and 1970-164 

1980), similarly to what has been observed on other small glaciers and ice patches in the south-165 

eastern Alps (Colucci and Žebre, 2016). In 2015, the Marmolada glacier covered 1.48 km2 (Carton et 166 

al., 2017) reducing its area by about 66% from first documented observations in 1888. The glacier 167 

retreat is also shown by the analysis of terminus position, carried out by the CGI during annual 168 

glaciological surveys. From 1971 to 2015 the fronts retreated several hundreds of meters, reaching 169 

650 m in the central part. At the end of the last century, the glacier retreat underwent a progressive 170 

increase, reaching 30 m per year (Mattana and Varotto, 2010; Carton et al., 2017). 171 

 172 

2. Methods 173 

GPR is a geophysical non-invasive technique, which allows imaging the subsurface at high resolution 174 

and characterizing materials by their electromagnetic (EM) properties. It is based on the transmission 175 

of EM waves and on the registration of the travel time of the reflections generated by EM impedance 176 

contrasts between different materials (Jol, 2009). GPR has various fields of applications, especially in 177 

geology, archaeology and engineering. This technique is particularly efficient in glaciology, where 178 

frozen materials are characterized by low overall electrical conductivity, which allows the EM signal 179 

to limit its attenuation and to reach penetration depths of even hundreds of meters in favourable 180 

conditions. Penetration depth depends also on the frequency used, the free water content, the ice 181 

characteristics, the presence of debris, and the antenna-ground coupling. In glaciology, snow, firn 182 

and ice are distinguished by density. Density affects EM parameters like electrical conductivity and 183 

dielectric permittivity, in turn producing relevant changes of the subsurface EM velocity (Forte et al., 184 

2013). Thus, in a GPR profile it is possible to identify the boundaries between different frozen layers 185 

because they exhibit different EM signatures. Pure ice is basically transparent from the EM point of 186 

view, while in snow (and somewhat in firn) the layering can be usually observed due to seasonal 187 

accumulation. In case of temperate glaciers, like the Marmolada glacier, the presence of free water 188 
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generates dispersive phenomena, resulting in diffractions that can be observed along GPR profiles 189 

and usually produces an overall decrease of the signal-to-noise ratio. Most GPR surveys are 190 

performed with ground-coupled antennas, dragged directly on the surface both manually or using a 191 

dedicate vehicle. Planning a survey in remote locations, like many alpine cirque glaciers, involves 192 

important logistical challenges. The presence of crevasses and risk of avalanches represent threats to 193 

operators’ safety. Moreover, if the investigation area is wide and a high spatial density of measures is 194 

mandatory, the survey time can be very long, also considering the unavoidable stops due to bad 195 

weather conditions. Airborne GPR surveys can be a valid solution, because they are less affected by 196 

terrain challenges and can rapidly cover extended areas, acquiring data up to several tens of 197 

kilometres per hour (Eisenburger et al., 2008; Gusmeroli et al., 2014; Merz et al., 2015b). In fact, 198 

airborne surveys have been performed since a long time using Radio Echo Sounding systems (e.g. 199 

Steenson, 1951; Cook, 1960), which are similar in principle to commercial GPR and are usually 200 

adopted in Arctic and Antarctic regions for ice sheet exploration and ice-bedrock interface detection 201 

(Hélière et al., 2007; Dall et al., 2010). A comprehensive review of such equipments, which are not 202 

the focus of this paper, is provided for instance by Plewes and Hubbard (2001). Further discussion 203 

about pros and cons of airborne GPR surveys can be found in Rutishauser et al. (2016) and Forte et al. 204 

(2019).  205 

The first GPR dataset analysed in this work was acquired on October 2nd and 3rd, 2004, using two 206 

different ground-coupled systems: a GSSI system equipped with a 35 MHz antenna pair and a 207 

monostatic PulseEKKO 4 (Sensors&Software) equipped with a 100 MHz antenna. At the end of the 208 

survey, an irregular grid composed of 44 profiles with an overall length of 21.321 km was collected. 209 

After a preliminary quality control, only the most informative profiles having an overall length of 210 

16.262 km were selected. The quality control focused on the identification of the boundary between 211 

ice and rock (i.e. glacier bed), usually characterized by a high reflectivity. We applied a standard 212 

processing flow, including zero-time correction, background removal, amplitude recovery, and 213 

velocity analysis by means of diffraction hyperbolas fitting. The mean EM velocity was estimated to 214 
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17 cm/ns, which equals the typical value for ice with negligible free water content. Then, we 215 

calculated the ice thickness along each profile and carefully checked the results at the crossing 216 

points. 217 

The second GPR dataset was acquired on June 5th, 2015. This period of the survey was chosen in 218 

order to test the potential of the method described in Forte et al. (2014) by using a GPR system 219 

placed on a helicopter. The survey was carried out using a step frequency Hera-G system (Radar 220 

SystemTechnik-RST) equipped with a 100MHz antenna, based on step frequency system. Details on 221 

step-frequency systems and specifically about Hera-G radar can be found in Hamran et al. (1995) and 222 

Krellmann and Trilzsch (2012), respectively. The equipment was set on a frame and suspended below 223 

an Eurocopter AS350 helicopter with a 10 m long cable. The time window for the acquisition was set 224 

to 2225.09 ns with a sampling interval equal to 1.087 ns. These setting resulted in a Nyquist 225 

frequency of 460 MHz, which is far higher than the highest frequency of the useful signal (about 160 226 

MHz). A total of 83 km of profiles were acquired. After a careful editing and quality control, 227 

necessary to highlight, and when possible, correct errors due to airborne acquisition, only 22 km of 228 

profiles imaging snow/ice have been used for the interpretation. Further details and a discussion 229 

dedicated to logistical and technical constraints on data acquisition in rugged mountainous areas 230 

with a focus on the 2015 survey are provided by Forte et al. (2019). We applied a basic processing 231 

flow encompassing band-pass filtering, datuming, topographic (static) corrections considering the 232 

variable flight elevation above the ground for each trace, and exponential amplitude recovery. The 233 

amplitude recovery considers a constant attenuation equal to 0.2 dB/m, which is higher than pure 234 

ice, and qualitatively takes into account the presence of free water and the scattering events within 235 

the frozen materials. In addition to this geophysical survey, two 2.70 m deep snow pits (Fig. 1) were 236 

dugin order to determine the snow density of the winter snow cover at the date of the GPR survey. 237 

Using Looyenga empirical equation (Looyenga, 1965), which relates frozen materials density to EM 238 

parameters, we estimated the EM velocity. From a mean density value of 482 kg/m3 within the snow 239 

pits, the velocity resulted equal to 21.2 cm/ns. A constant velocity of 17 cm/ns was deduced for the 240 
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ice by using diffraction hyperbolas fitting. All the 2004 and 2015 interpreted horizons using a semi-241 

automated picking procedure of Petrel® Suite (Fig. 2) have been imported into GIS environment 242 

(QGis and Surfer - Golden Software) after depth conversion in order to better manage the 243 

interpolated surfaces. The errors in the horizons time picking are in general limited to few ns due to 244 

the overall high data quality of both the analysed datasets and were carefully checked at all the 245 

crossing points. When larger discrepancies were present in particular in the 2015 survey, we decided 246 

to eliminate such data, as previously already pointed out. Local velocity variations are possible, so 247 

producing errors in the time-to-depth conversion step, but in present case such errors are always 248 

lower than 1 meter as verified in the analysis of crossing points and cross-validation of the data. 249 

During the gridding process we applied a Kriging algorithm preserving the original values at their own 250 

locations and obtaining a regular grid of square cells (20 m by 20 m). We set the same border for the 251 

joining information from Pasta et al. (2005), Crepaz et al. (2013) and Carton et al. (2017). For the 252 

2015 dataset we have not only reconstructed the glacier bed (Fig. 2b, 2c) but also the snow-ice 253 

horizon by subtracting the inferred snow thickness from the total thickness between the topographic 254 

surface and the glacier bed, as later on discussed. This processing was made possible due to the 255 

overall high quality and resolution of data, which allowed to clearly interpret the above described 256 

surface and even some other specific structures within the ice body. 257 

 258 

 259 
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 260 

Figure 2. Visual summary of the GPR interpretation process. a) Portion of 2015 interpreted GPR 261 

profile; b) 2D glacier bed TWT as interpreted on all the 2015 GPR profiles crossing the glacier; c) 3D 262 

view of the glacier bed interpolated surface, with three exemplary profiles. 263 

 264 

3. Results 265 

After data interpolation and gridding, we obtained the 2004 and 2014 ice thickness maps (Fig. 3). We 266 

highlight that the survey although performed in 2015, allows to infer the remaining ice thickness at 267 

the end of the 2014 glaciological year, and for this reason the comparison represents a 10-year-long 268 

evolution of ice volume. Therefore, for the sake of clarity, we hereafter refer to 2014 ice thickness as 269 

the result of the 2015 GPR survey analysis. Due to different spatial density of the two datasets (black 270 

and red lines in Fig. 3a and b, respectively), we excluded some areas from the analysis. These zones, 271 

located north-east and south-west of the glacier, are marked by green dashed polygons. Letter Z 272 

marks an unrealistically low ice thickness zone due to the lack of profiles acquired during the 2004 273 
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GPR survey. The same issue is apparent in the map provided by Pasta et al. (2005), as the analysis 274 

was performed on the same dataset. Analysing Fig. 3a, it was possible to estimate the mean 275 

thickness in 2004, which was equal to 18.0 m, while the maximum depths (equal to about 50 m and 276 

40 m) were located in the north-west and north-east border of the glacier, respectively. In 2014 (Fig. 277 

3b), the average ice thickness was 12.9 m, while the maximum thickness was calculated to about 40 278 

m. Because of the higher 2014 data coverage, the unrealistic 2004 Z-area revealed an ice thickness of 279 

35 m in the map of 2014. In addition to thickness reduction, the glacier retreat between 2004 and 280 

2014 is highlighted with black dashed zones in the ice thickness map (Fig. 3b), indicating the 281 

complete absence of any frozen material, as reported also by Carton et al. (2017). Table-1 282 

summarizes the estimated area, volume and w.e. derived from the two surveys. By comparing the 283 

2004 and 2014 glacier snapshots, we observed not only a remarkable change of the area, but also, 284 

and even more relevant, a change of the glacier volume. Indeed, the volume (and so the w.e.) 285 

declined by 30%, while the area covered by ice decreased by 22%. Details of the ice thickness 286 

variations from 2004 to 2014 are shown in Fig. 4. The whole glacier underwent a decrease in ice 287 

thickness with a mean variation of about 5 m, but with somehow unexpected different changes of its 288 

various portions. The maximum decrease in thickness, equal to about 25 m, was reached in the 289 

eastern part of the glacier and in a small area toward west. In the northern sector the ice thickness 290 

variation is smaller (Fig. 4) but sufficient for bedrock outcropping and the formation of small 291 

nunataks. The outcropping area corresponds to the black dashed zone highlighted in Fig. 3b. In the 292 

central part of the Main Glacier (ID 941), an area of ice thickness variation on average below 7.5 m 293 

can be observed toward south, i.e. uphill. Out of this sector, the ice thickness variation is generally 294 

greater than 10 m, locally up to 20 m.  295 

 296 



14 
 

 297 

Figure 3. 2004 (a) and 2014 (b) ice thickness maps showing GPR profile positions (black lines and red 298 

lines, respectively). In (b) only the portions of GPR profiles imaging snow or ice are shown.  Black 299 

dashed zones in (b) indicate absence of any frozen material (i.e. snow) in the late summer 2015, as 300 

reported by Carton et al. (2017). (nd) labels mark areas with no data coverage. A zone showing 301 

unrealistic low ice thickness in (a) due to low data coverage is labelled by letter Z. See text for further 302 

details. The black dots mark the glacier perimeter in 2004 obtained by combining information from 303 

Pasta et al. (2005), Crepaz et al. (2013) and Carton et al. (2017). 304 

 305 

Table-1 Synthesis of 2004 and 2014 calculated areas, ice volumes and w.e. of the Marmolada glacier. 306 
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*Considering an ice density equal to 900 kgm-3 and the 2004 area. 307 

 308 

 309 

Figure 4. Map of the calculated 2004-2014 ice thickness differences. (nd) labels mark areas with not 310 

enough data available for comparison. The zone (Z) with low data coverage in the 2004 survey (See 311 

also Fig. 3) was blanked. 312 

 313 

4. Discussion 314 

The volume changes with time can be estimated by both photogrammetric and LiDAR techniques 315 

(Barrand et al., 2009), while the total volume of frozen materials and their characteristics are a more 316 

challenging issue. Despite the large number of GPR glaciological studies, the ones focusing on time 317 

 2004 2014 Percentage 

variation 

AREA 1402000 m2 1097000 m2 -22% 

ICE VOLUME 25267000 m3 17499000 m3 -30% 

WATER EQUIVALENT* 16.2 m 11.5 m -30% 
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monitoring of volumetric variations (i.e. 4D analyses) are still rare. In recent years, some examples 318 

have been proposed focusing both on ice caps (Saintenoy et al. 2013) and glaciers at different scales 319 

applying both terrestrial and airborne surveys (Navarro et al., 2005; Machguth et al. 2006; Forte et 320 

al., 2014; Colucci et al. 2015), but the full potential of GPR for glaciological monitoring is probably still 321 

unexploited (Del Gobbo et al., 2016). 322 

Knowing in detail the actual area and volume of a glacier is in turn essential for the calculation of its 323 

mass and water equivalent. Using remote sensing data, such as aerial or satellite photographs, or 324 

LiDAR measurements, represent common techniques to obtain glacier outlines (Paul et al., 2013, 325 

Atwood et al., 2010), but there are specific issues to be taken into account. In particular, snapshots 326 

from the end of the ablation period with seasonal snow close to a minimum (Paul et al., 2013) are 327 

required in order to identify the ice limits without overestimations. Even with such favourable 328 

conditions, defining the actual ice limits is not always straightforward, especially where debris cover 329 

masks the ice or in areas where the transitions between ice, firn and snow are not clear. The 330 

observation time constraint of such techniques can be overcome by GPR surveys because ice, even 331 

when hidden below thick snow layers, can be detected relatively easily due to different EM signature 332 

with respect to the snow, in turn making possible accurate ice thickness estimation in any period of 333 

the year (e.g. Del Gobbo et al., 2016). Moreover, ice can be detected also under a debris cover, which 334 

is particularly convenient for mapping rock glaciers (Bernard et al., 2013) or debris inside glaciers, 335 

thus also improving ice volume estimates (Colucci et al., 2015). In addition, recognizing the snow 336 

layer allows to consider it for the w.e. calculation, hence obtaining a more realistic estimation of the 337 

water actually stored within the glacier. Fig. 5 shows the snow cover map derived from 2015 GPR 338 

survey. It is worth noting that the snow cover thickness was irregular, without any simple trend. As 339 

expected, the snow thickness was in general higher uphill, exceeding 10 m in the central part of the 340 

Main Glacier, while all the zones close to the front had a thickness lower than 5 m. This distribution is 341 

likely related to several factors: 1) the partitioning between rain and snow during the accumulation 342 

season; 2) the temperature lapse rate with altitude; 3) the snow redistribution by the wind; 4) the 343 
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avalanche feeding in the upper part of the glacier close to the cliffs. Moreover, the zones imaged 344 

either without any frozen material, or just characterized by a snow cover without any ice below 345 

(orange lines in Fig. 5) that were extracted from GPR data analysis, almost perfectly match the zones 346 

without any frozen material (i.e. with rocks or debris outcropping) in late 2015 summer that were 347 

independently derived from aerial photographs by Carton et al. (2017). This demonstrates that GPR 348 

can be used not only to recover the ice volume in any period of the year, but also to image and 349 

discriminate between different frozen materials, which is in turn essential for quantitative 350 

glaciological studies. 351 

 352 

 353 

Figure 5. Map of snow thickness obtained from 2015 GPR survey (June 5th, 2015). Orange lines mark 354 

portions of GPR profiles crossing (or very close to) the glacier without any frozen material or imaging 355 

just snow cover without ice below. The almost perfect correspondence between such zones and the 356 

black dashed areas indicating absence of any frozen material in late summer 2015, as reported by 357 

Carton et al. (2017) is apparent. (nd) labels mark areas with no data coverage. 358 

In order to highlight the reduction of the Marmolada glacier in the period between 2004 and 2014, 359 

we drew attention to the 15 m ice thickness line (15L) along the ablation area of the Main Glacier. In 360 
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Fig. 6 such thickness value is marked by green and yellow dashed lines for 2004 and 2014, 361 

respectively. In this 11-year period corresponding to 10 glaciological years (2004-2014), the 15L 362 

retreated uphill for about 90 m and the ablation area changed from an evident convex shape in 2004 363 

to a partially concave shape in 2014. In Fig. 6c, we can observe that the southern part of the Main 364 

Glacier (within an area of about 430*103 m2) shows thickness variations on average lower than 7.5 m. 365 

By comparing this areal value with the one reported in Table-1, which encompasses also other 366 

portions, it can be noted that the surface decrease is higher than 22%, actually exceeding 60%. In 367 

fact, by analysing Fig. 6, we noticed that while in 2004 the glacier was a single ice body (Fig. 6a), in 368 

2014 it disintegrated into three almost separated ice bodies (the MG and the two glaciers below 369 

Punta Rocca and Punta Penìa in Fig. 6b and Fig.7b). 370 

By integrating the GPR survey with the available 2014 LiDAR survey, it is possible to reconstruct the 371 

elevation changes along the glacier. For 2004 no LiDAR data were available, but it was still possible to 372 

calculate the topographic surface elevation by adding the ice thickness in 2004 to the elevation of 373 

the bedrock (obtained from the 2015 GPR dataset). From 2004 to 2014 the glacier was interested by 374 

large changes in morphology and hypsometry (Fig.7). Consequently, wind drifted snow now tends to 375 

accumulate more in the median and higher sector of the glacier, which could locally increase the 376 

accumulation rate in the future. This would be in agreement with what has been observed on some 377 

maritime glaciers in the Central Alps by Scotti and Brardinoni (2018). There, a climate-glacier 378 

decoupling leading to positive feedbacks in the snow accumulation pattern controlled by 379 

geomorphological changes in the convexity–concavity of the longitudinal profile led to a progressive 380 

increase in the amount of winter snow accumulated due to wind drift processes and avalanches. In 381 

this context, the recent abrupt modification of the Marmolada glacier might be seen as a change also 382 

in its behaviour. The Marmolada glacier is splitting in rather smaller glaciers that will soon likely 383 

become glacial ice patches (sensu Serrano et al., 2011). Therefore, these presently shrinking ice 384 

bodies are acquiring some of the peculiarities associated with those end-member type of glaciers 385 
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more resilient to the recent climate warming, especially in areas with high MAP (Carturan et al., 386 

2013b; Colucci and Guglielmin, 2015; Colucci, 2016; Scotti and Brardinoni, 2018).  387 

 388 



20 
 

 389 

Figure 6. 2004 (a), 2014 (b) ice thickness maps and 2004 and 2014 ice thickness difference (c). In all 390 

maps (nd) labels mark  areas with no data coverage, while black dashed zones in b indicate absence 391 
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of any frozen material in late summer 2015, as reported by Carton et al. (2017). Green (a, b, c 2004) 392 

and yellow (b 2014) dashed lines mark the 15m thickness along the Main Glacier (MG). The mean 393 

retreat in 2014 as compared to 2004 was equal to about 90 m. The red dashed line (in b and c) 394 

depicts the uphill glacier zone, mostly characterized by differences lower than 7.5 m. See text for the 395 

discussion. 396 

 397 

 398 

Figure 7. Changes in Marmolada glacier’s ice morphology from 2004 to 2014. (a) Altitudinal range 399 

plotted against cumulative glacier surface area (%) for the years 2004 and 2014; (b) Image of the 400 

westernmost part of the glacier in July 2018 showing almost all the remaining winter snow already 401 

melted. The only remaining snow is located at the foot of the cliffs owing the increased avalanche 402 

accumulation.  403 

 404 

 405 

Longer and warmer summers are strongly affecting the ablation season, which often reflects in 406 

earlier winter snow melting from most of the glacier surface (Fig. 7b). This is producing an 407 

accelerated retreat also due to change in albedo feedbacks. Moreover, increased portions of rocky 408 

outcrops in several parts of the glacier act as source of longwave radiation, which produces further 409 
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heating.  Although important heat waves with temperature anomaly greater than 3 standard 410 

deviations from the 1971-2000 mean has been recorded both in summer and in winter (Colucci et al., 411 

2017), the winter seasons 2008-2009 and 2013-2014 produced winter snow accumulation much 412 

higher than the average, able to influence the ice patches and very small glaciers for several years 413 

(Colucci, 2016). In the Italian Prealps a series of positive annual mass balance years was observed on 414 

few small maritime glaciers (Carturan et al., 2013a; Scotti et al., 2014, Colucci et al., 2015, Colucci and 415 

Guglielmin 2015; Scotti and Brardinoni, 2018). The same behavior was not only common for these 416 

prealpine glaciers, but also for some very small Mediterranean glaciers (Hughes, 2014; 2018) as is the 417 

case of Durmitor in Montenegro (Hughes, 2007), Prokletije mountains in Albania (Hughes, 2009) and 418 

Pirin mountains in Bulgaria (Nojarov et al., 2019). This behave apparently not in agreement with the 419 

ongoing climate warming and the response of the vast majority of all alpine glaciers (Zemp et al., 420 

2008), seems to be mainly related to change in the geometry of such ice bodies and precipitation 421 

variability.  422 

Marmolada is a glacier resting on permeable carbonate rocks (Calcare della Marmolada) where the 423 

karst morphology affected by subglacial erosion has developed. In several alpine areas, the combined 424 

action of glacial and fluvial erosion has formed the landscape, whereas in karst areas, most water 425 

drains underground. As a result, glacial landforms are normally less reworked by flowing waters and 426 

the effect of pure subglacial erosion can be observed (Gremaud and Goldscheider, 2010). In Fig. 8 the 427 

topography of the Marmolada glacier bed with a 20x20 m cell size, was obtained by subtracting the 428 

ice thickness inferred by 2004 ground based GPR data from the elevation measured along the GPR 429 

profiles. This was done in combination with data resulting by subtracting the whole thickness of 430 

frozen materials (inferred from helicopter-borne survey) from 2015 surface topography. The two 431 

independent results for 2004 and 2015 are in good agreement, suggesting that both ground based 432 

and helicopter-borne GPR surveys are equally effective in the glacier bed imaging. In detail, the 433 

Marmolada glacier bed morphology consists of depressions and mounds (Fig. 8), which resemble the 434 
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karst landscape immediately below the glacier front and also further down in the glacier forefield 435 

that has been exposed since the LIA. 436 

 437 

Fig. 8 Bed morphology of the Marmolada glacier inferred by combined GPR data sets. 438 

 439 

In this area, depressions are up to a few hundred of metres wide and tens of metres deep, some of 440 

them are enclosed by steep walls, suggesting a quarrying-dominated subglacial erosion. Similar 441 

irregular bed morphologies have been described from other glaciers resting on permeable carbonate 442 

lithologies, such as Tsanfleuron glacier in Switzerland (Sharp et al., 1989; Gremaud and Goldscheider, 443 

2010), Canin Eastern glacier in Italy (Colucci et al., 2015), glaciers in the Canadian Rocky Mountains 444 

(Ford, 1983; Smart, 1996). Although the geologic influence on glacier motion and overall glacier 445 

response to climate change is still not well understood, we assume that the fragmentation of the 446 

Marmolada glacier observed since the LIA, but especially in the period 2004-2014, was accelerated 447 

due to irregular karstic topography. Another important aspect is the influence of rock permeability 448 

on subglacial hydrology and the contribution of glacier melt to stream runoff. While it is important to 449 

evaluate the w.e. of a glacier in the context of the future water availability, one should also consider 450 
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the dispersive drainage paths peculiar of karstic terrains. The surface runoff network in the 451 

Marmolada glacier forefield is poorly developed, even during the melting season, when meltwater 452 

discharge is at its peak. This suggests that a great part of the meltwaters drains into the underlying 453 

karst underneath the glacier, which was also proposed for some paleoglaciers in a Mediterranean 454 

mountain karst (Adamson et al., 2014; Žebre & Stepišnik, 2015. Fedaia spring located at 2050 m a.s.l 455 

north of the glacier is probably the main drainage point of the Marmolada glacier (Dipartimento 456 

Territorio, Agricoltura, Ambiente e Foreste, 2015), although, to our knowledge, no dye tracing has 457 

been performed yet. This is indeed a critical point to be addressed in the future along with in-depth 458 

investigation of the rapidly deglaciating forefield forced by abrupt climate change. If the Marmolada 459 

glacier keeps reducing its volume at the same rate as observed in the 10 analyzed glaciological years, 460 

(i.e. about 750·103 m3/year, Table-1), it will likely disappear by 2050, eventually resulting in just a few 461 

isolated ice patches controlled by local topography such as at the foot of north-facing cliffs or 462 

hollows, where higher accumulation is granted by avalanches and wind-blown snow (Grunewald and 463 

Scheithauer, 2010). The current snapshot of how could the Marmolada glacier appear in 30 years 464 

from now, can be found in the appearance of the present ice patches of the Julian Alps, such as in the 465 

area of Mount Canin and Triglav (Triglav Čekada et al., 2014; Colucci and Žebre, 2016). 466 

5. Conclusion 467 

We analyzed and integrated a ground based GPR survey collected on the Marmolada glacier in 2004 468 

and a helicopter-borne survey performed in 2015. Both approaches are useful for estimating the 469 

volume of the glacier as well as its morphological characteristics. 470 

We estimate the mean ice thickness in 2004 to 18.0 m, with a maximum close to 50 m. In 2014 the 471 

average ice thickness decreased to 12.9 m, while the maximum thickness lowered to about 40 m. By 472 

integrating the two data sets, we observe a volume reduction equal to 30%, while the area covered 473 

by ice decreased by 22%, with new ice-free zones in 2014 not only related to the retreat of the front, 474 

but also within the glacier area. This caused a division of the previously unified glacier in separated 475 
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ice bodies especially in its western part. If the Marmolada Glacier keeps reducing its volume at the 476 

same estimated rate of the 10 glaciological years analyzed (2004-2014), it will likely disappear by the 477 

year 2050 (i.e. in 25-30 years from now). Few small ice patches fed by avalanches at the foot of the 478 

northern cliffs and at the highest elevation of the massif will eventually represent the residual 479 

Marmolada glacier. However, karst morphology and drainage of subglacial waters could result in a 480 

slightly different behavior of the glacier compared to non-karstic landscapes, but the relationship 481 

between glaciers and karst is still not fully understood. This is a critical point to be considered in 482 

future studies, since it has implications not only for the limited number of still surviving glaciers on 483 

Alpine and Mediterranean limestone terrains, but also for paleoglaciers resting on carbonate 484 

lithologies in the Mediterranean region (e.g. Picos de Europa, Taurus Mountains, Dinaric Mountains), 485 

which were important component of the Pleistocene cryosphere. 486 

GPR demonstrated its high versatility and applicability along the whole glaciological year. On the 487 

contrary, photogrammetric and LiDAR measurements, in order to be meaningful for glaciological 488 

purposes, should be performed only at the end of the ablation season and shortly before the first 489 

winter snowfall. We have shown how GPR can overcome such limitation, because it permits to 490 

discriminate and characterize not only different frozen materials, but also the presence of debris 491 

both within and above the glacier, in turn allowing to estimate the ice thickness (and volume) in any 492 

period of the year. 493 

 494 
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