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Abstract. 

 

The Youngest Toba Tuff contains five distinct glass populations, identified from Ba, Sr and Y 

compositions, termed PI (lowest Ba) – PV (highest Ba), representing five compositionally distinct pre-

eruptive magma batches that fed the eruption. The PI-PV compositions display systematic changes, 

with higher FeO, CaO, MgO, TiO2 and lower incompatible element concentrations in the low-SiO2 

PIV/PV, than the high-SiO2 PI-PIII compositions. Glass shard abundances indicate PV/PIV were the 

least voluminous magma batches, and PI/PIII the most voluminous. Pressure estimates using 

rhyolite-MELTS indicate PV magma equilibrated at ~6 km, and PI magma at ~3.8 km. Glass 

population proportions in distal tephra and proximal (caldera-wall) material describe an eruption 

which commenced by emptying the deepest PIV/PV reservoirs, this being preferentially deposited in 

a narrow band across southern India (jet-stream and/or plinian eruption transport?), and as 

abundant pumice-clasts low in proximal ignimbrites. Later, shallower magma reservoirs erupted, 

with PI being the most abundant as the eruption ended, sourcing the majority of distal ash from co-

ignimbrite clouds (PI/PIII-dominant), where associated ignimbrites isolated earlier (PIV/PV-rich) 

deposits. This study shows how analysis of tephra glass compositional data can yield pre-eruption 

magma volume estimates, and enable aspects of magma storage conditions and eruption dynamics 

to be described.  
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Introduction 

 

The Toba Caldera Complex of northern Sumatra, the largest Quaternary caldera on Earth, has 

generated three voluminous and compositionally similar rhyolitic tuffs, viz. the Oldest, Middle and 

Youngest Toba Tuffs, respectively dated at ~800 ka (OTT), ~500 ka (MTT) and 75 ka (YTT) by various 

studies (Ninkovich et al., 1978; Chesner and Rose, 1991; Chesner et al., 1991; Dehn et al., 1991; 

Chesner, 1998; Chesner, 2012; Storey et al., 2012; Mark et al., 2013a; Mark et al., 2013b; Mark et al., 

2014; Mark et al., 2017). These tephra deposits, particularly from the YTT eruption, are widespread 

across Indonesia, Malaysia, India, South China Sea, Sea of Bengal, and Indian Ocean providing useful 

stratigraphic markers in oceanic and terrestrial environments. This is particularly true of the YTT 

across peninsular India, although there has been much debate about the dating of this deposit and 

its characterisation/identification in archaeological settings, as well as its possible impact on climate 

and human evolution (Rose and Chesner, 1987; Acharyya and Basu, 1993; Shane et al., 1995; 

Ambrose, 1998; Pattan et al., 1999; Rampino and Ambrose, 2000; Pattan et al., 2001; Oppenheimer, 

2002; Chen et al., 2004; Lee et al., 2004; Pattan et al., 2010; Gatti et al., 2011; Oppenheimer, 2011; 

Westaway et al., 2011; Gatti, 2012; Gatti and Oppenheimer, 2012; Petraglia et al., 2012; Williams, 

2012; Lane et al., 2013; Roberts et al., 2013; Costa et al., 2014; Neudorf et al., 2014). Assigning distal 

Toba tephra to a particular eruption using glass shard major element compositional data has proved 

difficult because OTT, MTT and YTT have almost identical compositions (Westgate et al., 1998; Smith 

et al., 2011; Gatti et al., 2014). Nonetheless, some have suggested that major element discrimination 

is possible, for example, using FeO (Westaway et al., 2011), but this has subsequently been 

discounted (Gatti et al., 2014; Pearce et al., 2014; Westgate and Pearce, 2017). Biotite major 

element composition provides a means to distinguish these eruptions (Smith et al., 2011), and 

biotite is often found in distal deposits, where small flakes travel easily within the eruption cloud. 

The clearest distinction of the main Toba eruptions comes from a comparison of glass trace element 

chemistry, although this was not recognised in early studies when only relatively small numbers of 

glass or single grain analyses (~20 per sample) were performed (Chesner, 1998; Chesner and Luhr, 

2010; Smith et al., 2011; Matthews et al., 2012). However, the accumulation of a substantial dataset 

of ~3400 laser ablation (LA) ICP-MS analyses of single glass shards from proximal and distal Toba 

deposits by some of the current authors led (i) to the recognition of differences in the trace element 

compositions of OTT, MTT, and YTT and (ii) defined several characteristic glass compositional 

populations within YTT and MTT, but only a single population in OTT. Both of these observations are 

useful in defining, correlating and discriminating the various Toba deposits and, for example, have 

excluded the presence of OTT in any known tephra occurrences in India (Westgate et al., 2013; 

Pearce et al., 2014; Westgate et al., 2014; Westgate and Pearce, 2017), and ruled out the presence 

of Toba tephra in similar aged sequences on Flores (Brumm et al., 2016).  

 

Here, the compositional differentiation between YTT, MTT and OTT is reviewed, and then the 

variation in composition within YTT tephra glass is used to describe the coexistence of multiple glass 

populations (and thus magma compositions) at the time of eruption. Analyses of the distribution of 

these glass populations allow inferences to be made about the architecture of the YTT magmatic 



system, and suggest aspects of the eruption process. Detailed petrogenesis of magmas within the 

Toba system or YTT are not considered, and will be discussed elsewhere. 

 

Samples and analytical methods 

 

Data from the analysis of many distal Toba tephra samples (Westgate et al., 2013; Pearce et al., 

2014; Westgate et al., 2014; Westgate and Pearce, 2017) and new analyses from a set of 

reconnaissance samples of proximal material have been compiled for this study. Figure 1 shows the 

distribution of reported Toba tephra occurrences, with named sites being those analysed for this or 

previous studies by the authors. The map excludes the two most distal  reported YTT occurrences,  

Lake Malawi, East Africa (Lane et al., 2013) and the southern coast of South Africa (Smith et al., 

2018). 

 

Data were acquired from individual glass shards, or glass from pumice fragments, predominantly 

from the Youngest Toba Tuff, with glass shards OTT and MTT. The large number of analyses required 

data acquisition over many sessions, which all included reference glasses to assess accuracy and 

precision, and these data are presented in Supplementary Table 1. Electron probe microanalyses 

(EPMA) were performed at the Department of Earth Sciences, University of Toronto, using a 

wavelength-dispersive Cameca SX50 (15 keV accelerating voltage, 6 nA beam current, 10 µm 

defocused beam) calibrated from mineral and glass standards. The Lipari rhyolitic obsidian, UA5831, 

was used to evaluate the calibration. All analyses are normalized to 100 wt% anhydrous and total 

iron calculated as FeO (FeOt). 

 

Trace element analyses were performed by laser ablation (LA)-ICP-MS in the Department of 

Geography and Earth Sciences, Aberystwyth University, using a Coherent GeoLas ArF 193 nm 

Excimer LA system coupled to a Thermo Finnegan Element 2 sector field ICP-MS. Most shards 

allowed analyses to be performed using 20 μm ablation craters, but some, particularly more distal 

material and some pumice clasts, were analysed from a mixture of 20 µm and 10 μm ablation 

craters. Laser fluence was 10 J cm-2 with a repetition rate of 5 Hz, and acquisition was 24 seconds. 

The internal standard was 29Si, using the SiO2 concentration determined by EPMA, after 

normalization to an anhydrous basis, for those shards with electron microprobe analyses. For those 

shards analysed only by LA-ICP-MS, 77.2 wt% SiO2 was used as the internal standard concentration. 

Trace element calibration was against the NIST612 reference glass (Pearce et al., 1997) with element 

fractionation related to matrix differences between the reference glass and the sample being 

corrected (Pearce et al., 2011). The MPI-DING reference glass ATHO-G (Jochum et al., 2006; Jochum 

and Stoll, 2008) was routinely analysed as an unknown, and indicates analytical precision typically 

±2-10%, and accuracy around ±2-5% against the published composition (GeoReM, 2014). LA-ICP-MS 

operating conditions are presented in more detail elsewhere (Westgate et al., 2013; Pearce, 2014; 

Pearce et al., 2014; Westgate and Pearce, 2017). Pumice clasts were initially crushed to separate 

coarser glass for analysis, however the presence of more than one glass compositional population 

within some pumices suggested the possible incorporation of matrix glass (i) during sample 



preparation, (ii) by ballistic injection during eruption, or (iii) by mixing or mingling of magma 

compositions. Where all analyses from a crushed pumice clast belonged to a single glass population, 

these data were retained, but where more than one glass population was present, individual (whole) 

pumice fragments were re-prepared, with only contiguous glass being analysed.  All glass analyses 

were inspected to remove those which showed contamination from the ablation of phenocrystic 

material (e.g. elevated CaO and Sr from plagioclase, or Zr and HREE from zircon) following Pearce 

(2014). 

 

Distinguishing between OTT, MTT and YTT 

 

It is not possible to distinguish unequivocally between YTT, OTT or MTT using just major element 

glass shard chemistry, but they can be separated using glass trace element compositions, biotite 

compositions or spontaneous fission track density (Smith et al., 2011; Westgate et al., 2013; Pearce 

et al., 2014; Westgate et al., 2014; Westgate and Pearce, 2017).  

 

Figure 2 shows single shard analytical data from YTT, MTT and OTT to illustrate the major element 

similarities and trace element differences between these deposits. SiO2 vs Al2O3 (Figure 2A) shows 

how all three compositions overlap, with no discernible differences. All other oxide pairs behave 

similarly, although minor differences in the range of some elements (e.g. CaO, Figure 2B) are 

apparent, there are insufficient to discriminate individual eruptions. All three of these tephra beds 

were derived from high-silica rhyolite magmas. These evolved towards the “granite minimum” 

composition (Figure 2C) with similar normative compositions (YTT – 35.6% Q',  20.9% Or', 43.5% Ab'; 

MTT – 35.8% Q',  22.0% Or', 42.2% Ab'; OTT – 36.0% Q',  21.3% Or', 42.8% Ab') when projected into 

the granite system using the method of Blundy and Cashman (2001). These magmas thus 

equilibrated in similar conditions, with an assemblage including high-silica rhyolitic melt, quartz and 

two feldspars at pressures between ~100 to 200 MPa, i.e. shallow crustal depths of <7 km (Tuttle 

and Bowen, 1958; Hamilton and MacKenzie, 1965; Blundy and Cashman, 2001; Gualda and Ghiorso, 

2013b).  

 

Glass trace element compositions however clearly separate YTT, MTT and OTT (Figures 2D and 2E), 

and while there are significant overlaps, the range and distribution of glass compositions within an 

eruption clearly identifies each unit: a single shard may not have a uniquely identifiable composition, 

but several to tens of shards will define fields which are characteristic. (Westgate et al., 2013; Pearce 

et al., 2014; Westgate and Pearce, 2017): In terms of Ba vs Y, OTT has a single low-Ba population, 

rarely exceeding 300 ppm, and while both MTT and YTT also contain glass shards with low Ba 

contents, their compositions extend to >1500 ppm Ba. When Ba and Sr concentrations are plotted 

against many other incompatible elements (e.g. Rb, Cs, Nb, Ta, Zr, Hf, U, Th, REE), MTT and YTT 

consist of several glass shard populations (Westgate et al., 2013; Pearce et al., 2014; Westgate and 

Pearce, 2017). These are distinct within individual eruptions, but show some overlap between 

eruptions (e.g. Figure 2D, where YTT glass compositions cluster at ~100 ppm, ~400 ppm, and ~700 

ppm Ba, which sandwich MTT glass populations at ~250 ppm and ~450 ppm Ba).  In addition to Ba-Y 



or Sr-Y to define individual Toba eruptive units, some element ratios can be effective discriminators 

(Figure 2E), including ratios of U/LREE and Th/Nb, while many other incompatible element ratios do 

not distinguish the units (e.g. Zr/Nb, Hf/Ta, Nb/Y, Zr/Y). 

 

 

The present-day YTT caldera encompasses the MTT caldera (now destroyed) at the north end of the 

modern caldera, and much of the OTT caldera to the south (Chesner, 1998; Chesner, 2012). The 

differences in selected trace element ratios between OTT and MTT may reflect subtle differences in 

the composition of magma sources, and their subsequent evolution, and the YTT eruption, with its 

broader composition, may have incorporated magma from earlier (and newer?) sources. Whatever 

the exact source and disposition of magmas feeding the main Toba eruptions, there has been a long-

lived magma source, generating melts of a similar composition episodically over the last ~800 ka, 

and leading to the assembly of eruptible volumes of melt every few hundred thousand years. Below, 

the discrimination of five glass populations in YTT is discussed, and the glass population data from 

proximal and distal tephra deposits is considered in relation to the storage and eruption of YTT 

magma.  

 

Defining five glass populations within YTT 

 

Compiling  ~700 glass trace element analyses, Westgate et al. (2013) showed for the first time that 

compositional clusters/gaps existed within YTT which had not been previously recognised, and 

defined four separate glass populations (PI-PIV) using Ba/Y, Sr/Y and Ba concentrations (see Table 2 

in Westgate et al., 2013). Whilst earlier bulk sample analyses had been performed on proximal 

(whole-rock or glass separates) and distal samples (tephra glass concentrates), these frequently 

included phenocrysts, pumice fragments, lithic contaminants etc, which obfuscate the glass 

variation, presenting instead either a broad continuum of compositions related to large-scale 

magmatic evolution, or similarities in “bulk tephra” (Shane et al., 1995; Chesner, 1998; Westgate et 

al., 1998; Pattan et al., 2002). In early trace element studies of single-shards or glass (e.g. melt 

inclusions), where only ~25 analyses per sample were performed, these were too few to display the 

compositional groupings (Chesner and Luhr, 2010; Smith et al., 2011; Matthews et al., 2012), despite 

~25 analyses being considered appropriate (Pearce et al., 2004; Pearce et al., 2007). Once several 

individual glass populations had been recognised, trace element analyses of other Toba tephras 

included, where possible, 60 to 100 shards per sample, to allow better definition of the population 

distributions. With 830 analyses of YTT glass available to Pearce et al. (2014) from additional 

analyses of some Indian samples, a small glass population between PIII and PIV of Westgate et al. 

(2013) was recognised, defined at the time as PIVa, with the remainder of PIV renamed PIVb. 

Acquisition and analysis of further YTT samples continued, adding data from the Indian Ocean and 

Malaysia, with further analyses of selected samples from India and analyses of proximal materials 

(matrix glass and pumice clasts) from Sumatra, to provide >2500 trace element analyses available for 

this study. Of these, 443 grains of glass have both major and trace element analyses.  

 



Figure 3 shows Ba vs Y, Sr vs Y and Ba vs Sr for all single grain analyses of YTT. The data separate into 

five individual glass populations, which are clear in Ba vs Y and Sr vs Y, with  three populations 

evident at lower concentrations of Ba vs Sr. The adjacent histograms (Ba/Y, Sr/Y and Ba/Sr) show 

minima in the abundance of analyses which reflect some of the compositional gaps in the bivariate 

plots. For this larger dataset, it is clear that the simple ratio or concentration criteria used by 

Westgate et al. (2013) to define populations are no longer appropriate, and thus here a new series 

of glass population definitions have been chosen (see Table 1). These are based on either (i) the 

minima in Ba/Y or Sr/Y ratios (the solid lines in Figure 3) or (ii) where element ratios do not bisect 

the gap between populations, the line separating the densest regions of data (dashed lines not 

intersecting the origin in Figure 3). These were used to assign each YTT glass shard to a population. 

Where a contradictory assignment was generated by different criteria, inspection of the data was 

undertaken such that (i) for PIV and PV (i.e. for higher Ba and Sr concentrations), Ba vs Y and Sr vs Y 

were used to assign a population, and not Ba vs Sr; (ii) between PIII and PIV, Ba/Y was used 

preferentially to Sr/Y; (iii) between PIV and PV, Sr/Y was used preferentially to Ba/Y. Inevitably, some 

analyses sit close to boundaries between populations, and, if distributions within each population 

are near normal, it is inevitable that a few grains will be assigned to a neighbouring population. In 

addition, the presence of ablated phenocrystic material, which may not be apparent immediately 

from the analyses, could also affect the assignment of a few shards. In particular high Sr associated 

with high CaO and lower incompatible elements is an indication of feldspar ablation, and Ba may 

indicate ablation of biotite or feldspar too, and Y would be added to an analysis (with Zr) from zircon 

or allanite (Pearce, 2014). In some cases, some of these may go unrecognised because of the 

extensive range of Sr and Ba shown by the glass shards from YTT. In some LA-ICP-MS analyses it is 

not entirely obvious whether for example the high Sr, accompanied by a near-typical CaO, relates to 

feldspar ablation, or to a high Sr glass grain, and where this doubt exists the analyses have been left 

in the dataset. Inspection of trace element data after assignment into populations suggests that 

these issues probably affect <1% of the >2500 analyses, some of which may well be part of the 

normal variation within different populations. 

 

YTT glass population compositions and abundances.  

 

Table 2 shows the average composition of each glass population within YTT and gives the numbers 

of analysed shards per population. The shard abundances per population from proximal, distal and 

pumice glass analyses are given in Table 3. The change from element ratios or concentrations to 

define populations in earlier studies (Westgate et al., 2013; Pearce et al., 2014) makes little 

difference to the population abundances. 

 

Many trace elements show a steady, systematic variation between populations, not only for Ba, Sr 

and Y, but for almost all other elements (see Table 2). PI has the lowest Ba and Sr and PV the 

highest. From PI to PV concentrations of the LREE (La – Sm), and Eu increase, whilst Rb, Y, Zr, Nb, Cs, 

the MREE and HREE (Gd – Lu), Ta, Th, and U decrease. Average Pb and Hf remain almost constant 

across the five populations. Figure 4 presents a selection of compositional data, including Zr vs Y and 



Rb vs Cs, illustrating some of these changes. Within an individual population some elements show 

constant ratios, which differ between populations. These often overlap and are generally inadequate 

to define populations, although PI is often almost distinct (e.g. Zr-Y, Figure 4A). In contrast, other 

elements (e.g. Cs-Rb, Figure 4B) show a gradual change in concentration from one population to the 

next, retaining a constant ratio (Cs/Rb) across all populations. Selected element ratios are presented 

in Table 2.  The REE show a systematic change from PI, with low LREE, high HREE (and thus 

shallowest normalised REE pattern) and the deepest negative Eu anomaly, to PV, with the steepest 

REE pattern (i.e. high LREE, low HREE), and the shallowest negative Eu anomaly (see Figure 4C).  

 

From the major element analyses of YTT glass alone, it is not possible to recognise distinct 

populations, although some differences are evident in reported analyses associated with post-

depositional environmental variation, e.g. sea water induced leaching  (Gatti et al., 2014).  However, 

those glass shards analysed for both major and trace elements display a systematic change in major 

element composition when assigned to populations (see Figures 4E to 4H and Table 2). Here, almost 

0.5 wt% SiO2 separates the average compositions of PI and PV, which varies systematically across the 

populations (see histograms in Figure 4).  PIV and PV have the lowest SiO2 and show subtly higher 

FeO, CaO, MgO, TiO2 and K2O than PI and PII, with PIII compositionally in the middle. Additionally, 

the lower SiO2 in PIV and PV is associated with generally lower incompatible element concentrations 

(Y, REE, Th, U) than PI-PIII, and higher Ba and Sr, indicating a systematic variation in the range of 

magma compositions released during the YTT eruption (see Table 2). 

 

The division of YTT glass into five populations is based on the analysis of proximal and distal material 

from 30 widely spaced sites across Sumatra, Malaysia, the Indian Ocean and peninsular India. This 

includes distal ash fall glass (1554 analyses), and from proximal ignimbrites matrix glass (165 shards) 

and individual pumice lapilli glass (778 analyses). It seems probable that this array of analyses gives a 

first approximation of the relative volumes of magma which were erupted, as it covers a range of 

materials and environments. Indeed considering only distal or proximal glass analyses (see Table 3) it 

is apparent that there are significant differences in abundance between these regions (presumably 

related to eruption processes and modes of deposition, see below). Whilst the proximal sampling is 

relatively limited (8 sites), it can be assumed that all analyses combined closely approximate the 

proportions of erupted magma types. Taking the dense rock equivalent (DRE) volume of the YTT 

eruption as 5300 km3, comprising 3800 km3 DRE of tephra fall deposits and 1500 km3 of proximal 

ignimbrite (Costa et al., 2014), the volume of each magma composition can be calculated from glass 

population proportions (GPP) (see Table 3). Even the “smaller” glass populations (PII, PIV and PV) 

then represent ~500 km3 DRE of magma, an order of magnitude more than the ejecta from Crater 

Lake, Oregon, or the Santorini caldera. The more abundant PI and PIII (~2000 km3 DRE) compare 

with the largest described Quaternary super-eruptions from Yellowstone or Taupo Volcanic Zone.  

 

  



Magma storage conditions from YTT glass populations 

 

The YTT glass compositions record equilibration of high-silica rhyolite melt with quartz, plagioclase, 

sanidine, and a fluid phase, which can be used to yield information on magmatic equilibration 

conditions (Tuttle and Bowen, 1958; Blundy and Cashman, 2001; Gualda and Ghiorso, 2013b; Gualda 

and Ghiorso, 2014). Experimental studies of the haplogranite system show that the position of the 

quartz-feldspar cotectic varies with pressure, moving towards more silica-rich compositions at lower 

pressures (Tuttle and Bowen, 1958); thus, granitic melts in equilibrium with quartz and feldspar are 

more silicic at lower pressure (shallower crustal levels). Plotting the position of granitic melts onto 

the water saturated Q’-Ab’-Or’ system (see Figure 2) thus can determine equilibration pressures 

(Tuttle and Bowen, 1958; Luth et al., 1964; Hamilton and MacKenzie, 1965; Blundy and Cashman, 

2001). This relationship links variations in SiO2 concentrations with pressure (Gualda and Ghiorso, 

2013b) whereby the SiO2 content provides a geobarometer for quartz and feldspar saturated silicic 

magmas in middle to upper crustal settings (Gualda and Ghiorso, 2013). However, errors associated 

with a graphical approach may be of ~0.35 wt% SiO2 for a given pressure, which almost covers the 

compositional range of the five YTT glass populations. Better is a numerical approach, which can give 

a more accurate estimate of the pressure of equilibration between rhyolitic magmas (represented by 

glass in tephra deposits) and quartz and feldspar. This is achieved by calculation of the quartz and 

feldspar saturation surfaces as a function of pressure using rhyolite-MELTS (Gualda et al., 2012), 

which reveals the pressure at which each glass composition may have equilibrated with quartz, 

sanidine, and plagioclase (as observed in the natural samples). The pressure obtained is that at 

which the melt last equilibrated with the observed crystal assemblage; for pyroclastic rocks this is an 

excellent proxy for the pressure of crystallization in the pre-eruptive magma body (Bégué et al., 

2014; Gualda and Ghiorso, 2014; Pamukcu et al., 2015). 

 

Using the average major element composition for each YTT glass population, equilibration pressures 

(with quartz and two feldspars) were calculated using rhyolite-MELTS for water saturated conditions, 

with oxygen fugacity at the Ni-NiO (NNO) buffer (appropriate for granite magmas), and these are 

presented in Table 4. Calculated equilibration pressures range from 102 MPa for PI to 158 MPa for 

PV, with a steady decrease in pressure with increasing SiO2 content (cf. Gualda and Ghiorso, 2013b). 

These pressures equate to depths of magma storage between ~3.8 km (PI) to ~6 km (PV) assuming 

an average crustal density of 2.7 g cm-3 (see Table 4).  The range in SiO2 concentrations for each 

population (1 s.d. ranging between 0.23 to 0.29 wt%) is approximately the same as that derived 

solely from analytical variation from homogeneous media, for example ATHO-G 75.46±0.31 wt% (1 

s.d., n=91) (Westgate et al., 2019). However, the compositional trends evident in the major element 

data (e.g. increasing SiO2 with decreasing  Na2O+K2O, see Figure 4H) suggest the variation within 

each population represents both a combination of EPMA analytical precision and real SiO2 variation 

associated with magmatic evolution within each population. Thus to estimate the potential depth 

range over which each magma batch may have been stored, the relationship between calculated 

depth and SiO2 content has been applied to the average ± 1 standard deviation SiO2 content for each 

population (see Figure 5 and Table 4). This suggests the individual magma bodies may have had a 



thickness of around 2 – 2.5 km. This is greater than the magnitude of errors in calculated pressure 

estimates for rhyolite-MELTS, which are typically ~20 MPa (~0.75 km), which generally derive from 

analytical uncertainties related to alkali mobility in glass, minimised here by optimising EPMA 

conditions (Kuehn et al., 2011; Westgate et al., 2013; Pearce et al., 2014; Westgate and Pearce, 

2017).  The calculated depths of YTT magma storage coincide with the seismically near-isotropic 

zone below the caldera at depths less than ~7 km, this being the region that can be assumed to have 

been affected and disrupted by the YTT eruption (Jaxybulatov et al., 2014). Additionally, these 

pressure estimates conform to others derived from H2O and CO2 gas saturation from melt inclusions 

in quartz of 100-140 MPa (Chesner and Luhr, 2010) and from experimental studies which suggest 

magmas resided at between 100-150 MPa immediately prior to eruption (Gardner et al., 2002).  

 

Zircon saturation temperatures (TZS) have been calculated following Watson and Harrison (1983) – 

WH83 – and Boehnke et al., (2013) – B13 – for  each of the YTT glass populations (see Table 4). 

Resulting temperature ranges for PI-PV are 766-782 °C (WH83) or 719-736 °C (B13). In general, 

temperatures based on the calibration of Watson and Harrison (1983) agree better with 

independent geothermometers (see Pamukcu et al., 2015). These TZS represent the final 

equilibration between melt and zircon, under zircon-saturated conditions; as such, they likely 

represent the pre-eruptive conditions just prior to eruption, similar to the pressures calculated using 

the rhyolite-MELTS geobarometer. Temperatures calculated here are 40-50 °C higher than the 

lowest TZS calculated from matrix- or melt-inclusion glass by Reid and Vasquez (2017) of 726-757 °C 

(WH83) or 670-706 °C (B13) using compositional data from Chesner (1998) and Chesner and Luhr 

(2010). The cause for the discrepancy is unknown. In general, the temperatures obtained are 

consistent with those observed for other high-silica rhyolite magmas equilibrated at shallow crustal 

levels (e.g. Gualda and Ghiorso, 2013a; Bégué et al., 2014; Pamukcu et al., 2015). Our results suggest 

small (<15 °C) differences in temperature between the various glass populations – PIV and PV show 

the highest temperatures, while PI-PIII show slightly lower temperatures. This is consistent with the 

idea that the different compositional groups represent distinct magma batches, each one 

characterized by its own storage conditions.   

 

Spatial distribution of glass population proportions (GPP) within YTT 

 

Figures 6 and 7 show the glass population proportions (GPP) of PI-PV in samples of YTT, including 

shards from distal tephra deposits, and matrix shards (eight sites) or individual pumice fragments 

(seven sites) from proximal ignimbrites near to/within the YTT caldera. GPP are presented as pie 

charts from each site, which vary in the number of analyses (see Supplementary Table 2). Selected 

“average” glass compositions are illustrated for comparison. In some cases, a few samples from the 

same site or region have been pooled to represent the lower abundance populations accurately. 

Reworking of distal deposits in fluvial systems (e.g. Malaysia, India) will average the regional 

deposition (Gatti, 2012; Gatti and Oppenheimer, 2012) and justifies grouping local deposits. For the 

various deposit types GPP are summarised in Table 3, with GPP for all samples given in 

Supplementary Table 2.  



 

Distal glass shards: Figure 6 shows the GPP within distal tephra, but this shows no strikingly obvious, 

broad-scale geographical variation. Nonetheless, subtle but significant variations in GPP do exist. 

Overall, the distal tephras contain much less PV glass than proximal deposits (both matrix glass and 

pumice, see Table 3, cf. Figure 7). Across northern and eastern India, PIII glass is abundant (~50%) 

whereas in Malaysia and the eastern Bay of Bengal, PI is the most abundant population (~50%), and 

PIV and PV are lowest. PV is generally low abundance to the north of the equator with the exception 

of a series of samples which run in a rough line northwest from the Toba caldera across peninsular 

India, including Kurnool (the most abundant occurrence of distal PV, at 23% of 70 analyses, and the 

lowest PI at 11%), as well as relatively high amounts of PIV and PV at Morgaon, Bori, and from the 

marine core sample SO138-269 KL in the northern Arabian Sea (see Figure 1 for locations). The 

sample from Jawalapuram resembles the sites in NE India, with low PV. Two sites ~3000 km 

southwest of the Toba caldera in the Central Indian Ocean Basin (CIOB) (ABPII/90 and ABPII/111) 

also have higher than average PV glass (from 40-80 analyses per sample). The core SO93-51KL 

intercepted a 20 cm thick deposit of YTT, from which three sub-samples were analysed (see Figure 6 

and Supplementary Table 2), which shows very low PIV and PV throughout, and a 20% increase in PI 

towards the top of the layer, concomitant with a decrease in PII and PIII. Marine tephra deposition 

can be complicated by rafting and subsequent density current sinking  (Carey, 1997), which may 

affect the compositional profile recorded in thick ash layers; nonetheless, the SO93-51KL core does 

show some vertical variation.  

 

Proximal glass shards: Figure 7 shows GPP for free matrix shards and pumice clasts from proximal 

deposits near the Toba caldera. Samples containing pumice were collected from different elevations 

above the base of the YTT ignimbrite, i.e. near Muara (at ~20 m above YTT base), above Haranggaol 

(40 m and 130 m above base), Siguragura (~55 m), and near Sipisupisu (~65 m). Samples from 

Ajibatar (950 m ASL), Lontung (at 1433 m ASL), and the matrix-only samples UT1298 (Bakara), 

UT2319 (east-central shore of Lake Toba) and UT2320 (Balige) are all from unknown elevations 

above the YTT base. Whilst modest in number, these samples provide a first look at glass and pumice 

compositional variation with location and stratigraphic height above the base of YTT. This approach, 

as described below, has potential to elucidate some of the eruptive history.  

 

The GPP of proximal matrix glass (165 analyses, 8 samples) is dominated by PI, with >60% in all but 

two samples (Figure 7, Table 3). Matrix glass samples from Muara (~20 m above base), and Balige 

however are dominated by PV glass, with no PI glass, and occur in the southeastern caldera walls 

where limited PIV proximal matrix glass occurs (5 shards only). The proximal GPP thus differ 

markedly from distal shards, containing around three times more PV and ~50% more PI glass, and 

less than half the PII, PIII and PIV glass. The lower Haranggaol sample (H1270m) contains some PII 

matrix glass (also Sipisupisu) which is not present in the younger Haranggaol (H1360m) sample. 

Thus, despite modest numbers of analyses, a geographical division in GPP is evident.  

 



Pumice clasts: As with proximal matrix glass, the GPP of individual pumice clasts also show spatial 

and stratigraphic variation in the ignimbrites (Figure 7). Analyses of crushed or contiguous pumice 

clasts show only negligible differences (see Table 3 and Supplementary Table 2), arguing against 

significant incorporation of matrix glass into the analysed crushed pumices. Nonetheless, in Figure 7, 

only contiguous or single-population crushed pumice analyses are presented. 

 

Pumice clasts from Muara (~20 m above YTT base) are dominated by PV glass, and about 50% of the 

glass in pumices from H1270m (~40 m above YTT base) is PV, with both sites showing pure PV 

pumice clasts. Restriction of PV pumice to low levels indicates (i) that PV magma was erupted early 

and (ii) upward reworking of material was not significant, suggesting original stratigraphy is largely 

maintained, a situation seen in many other ignimbrites (e.g. the Tshirege Member of the Bandelier 

Tuff, where flow units are well stratified both compositionally and thermally, with little reworking, 

Westgate et al., 2019). Abundant pure PI pumices occur at H1270m, Sipisupisu and H1360m, and in 

the latter two localities, they are accompanied by many pure PIII pumices, suggesting the onset of 

the eruption of PIII magmas may have been later than for PI, PIV, and PV magma. The sole pure PIV 

pumice comes from Lontung (Samosir), at an unknown elevation above the YTT base, and here 

remaining pumices are pure PI. The only pure PII pumice comes from Siguragura, occurring with 

several pure PI and the only pure PIII clast. PII comprises only 4% of pumice glass. PIII pumice 

appears more abundant in the northern/eastern caldera walls, with several pure PIII clasts at 

Sipisupisu and Haranggaol, and one from Siguragura.  

 

Most pumices containing more than 1 population are from the mingling of two compositions. Table 

5 shows numbers of pumice clasts (from 40) with only one or two glass populations: pure PI, PIII and 

PV pumices are most abundant. Most commonly, PIV and PV, and PIII and PIV occur together 

indicating that these compositions interacted extensively during eruption. Two pumice clasts from 

Ajibata contain PIII, PIV, and PV glass. PI occurs in 16 pumice clasts, of which 14 are pure PI, with 

remaining two are from Haranggaol 1270 m (PI, PII, PIV, PV, 15 analyses) and Muara (PI, PII, PIII, 6 

analyses). Mingling of magmas was only visible in one pumice clast (from Sipisupisu) where dark and 

light portions were analysed separately and contained differing proportions of PII and PIII glass (see 

Figure 7).  

 

Implications for magma storage and eruption from tephra glass compositions 

 

From the identification of five separate glass populations representing compositionally distinct 

magma batches within YTT, which equilibrated at different depths, and from the spatial distribution 

of these glass populations in both proximal and distal tephra and pumice deposits, an initial attempt 

can be made to synthesize these data into a model for the eruption which produced the YTT.  

 

The presence of abundant PV pumice and matrix glass, alongside PIV matrix glass in the oldest 

(lowest) proximal YTT ignimbrites indicates that these compositions were plentiful in early erupted 

material.  PIV and PV magmas equilibrated at the highest pressures (~150-160 MPa), and their early 



eruption may relate to the destabilisation of the entire Toba system as one/both of these reservoirs 

gradually became primed and started to erupt, or that the eruption process was initiated by the 

arrival of hot magma from depth (Bachmann et al., 2014; Wolff et al., 2015; Bachmann and Huber, 

2016; Tramontano et al., 2017). The frequent mingling of PIV and PV in pumices (see Table 5), and 

their compositional association (Figures 4 and 5), may indicate a physical proximity or connection 

between the two magma batches, and mingling with PIII may also indicate interaction between 

these magma bodies on eruption.  In contrast, the marked compositional separation of PI from PII 

(Figures 4 and 5), and paucity of mingled PI pumice clasts (see Table 5), might suggest that PI magma 

existed both chemically and physically separate from the other magma compositions. 

 

PV glass is also unusually abundant in tephra deposits between Kurnool and Bori (India) and from 

core SO93-289KL (Arabian Sea), and these also contain elevated quantities of PIV glass, whereas 

abundances of PIV and PV glass are low NE and SW of this band. This early erupted material must 

have been transported as a fairly tightly constrained plume, NW from the Toba caldera, possibly 

within high level easterly (summer) jet-stream winds (cf. Valles caldera deposits, Westgate et al., 

2019), consistent with a suggested northern hemisphere summer eruption (Schulz et al., 1998; 

Bühring and Sarnthein, 2000). The early erupted PIV/PV material may have been either an early 

plinian phase to the eruption, or elutriated material forming a co-ignimbrite plume, transported by 

prevailing tropospheric  or stratospheric winds (Schulz et al., 1998; Schott and McCreary Jr, 2001). 

Two samples from the Central Indian Ocean Basin (~10 °S), ~ 3000 km from the caldera also contain 

elevated PIV/PV and low PI, again suggesting an association with the early part of the eruption. 

Transport to produce these more southerly deposits may have been either from co-ignimbrite ash, 

or the migration of a plinian eruption plume, but is unlikely to be related to migration of equatorial 

jets so far south (Schott and McCreary Jr, 2001).  

 

PIV and PV are absent from pumice from the higher stratigraphic levels (H1360m and Siguragura), 

indicating that PI, PII and PIII magmas, released from shallow to intermediate depth reservoirs, 

dominated the later erupted material. Across India, PIII glass is most abundant in areas away from 

those where the PIV/PV glass is abundant. These PIII-rich deposits (containing little or no PV) are 

likely to be derived from co-ignimbrite plumes associated with eruption of the large-volume PI and 

PIII magma bodies, with lesser amounts of PII, and the continuing eruption of small volumes of PIV 

magma. Ignimbrites associated with the eruption of large, shallow magma reservoirs would have 

buried and isolated any early erupted PV glass. As the eruption proceeded, the upwards increase in 

the PI:PIII ratio within the YTT deposit from SO93-51KL suggest either the eruption of PIII magma 

declined, or PI increased, with PI, the most voluminous composition, continuing to be ejected until 

late in the eruption. This may reflect generally decreasing intensity/mass eruption rates later in the 

eruption, with more PI-rich co-ignimbrite ash deposited closer to Sumatra, eastern Bay of Bengal and 

the Malaysian peninsula. Because of the complexity of the atmospheric circulation in this region 

(Bühring and Sarnthein, 2000; Schott and McCreary Jr, 2001), and order of magnitude variations in 

estimates of YTT mass eruption rates and duration (Woods and Wohletz, 1991; Costa et al., 2014), 

detailed modelling of ash dispersal has not been attempted here. 



  

The draining of the sub-caldera magma reservoirs thus appears to have commenced with eruption of 

the smaller and deepest magma bodies (PV and PIV), and proceeded to the eruption of larger and 

shallower bodies (PIII, PII and PI) until the end of activity. The abundances of mixed population 

pumice clasts suggests that PIII, PIV and PV were closely connected during eruption, but that PI 

erupted with limited interaction with other magma reservoirs. This also appears to reflect the 

chemical “proximity” of individual populations.  Nonetheless, relatively early in the eruption limited 

mingling of all magma reservoirs occurred (giving a few pumices with 3 or 4 populations of glass, 

Table 5). The YTT eruption must thus have occurred from several vents and linear or ring-fracture 

segments across the present caldera (Knight et al., 1986; Chesner and Rose, 1991; Chesner, 1998; 

Chesner, 2012), involving both vertical and lateral magma movement (Gravley et al., 2007; Cashman 

and Giordano, 2014; Kennedy et al., 2018a; Kennedy et al., 2018b).   

 

Combining equilibration pressures, GPP (to give relative magma volumes) and compositional 

features of all three major Toba eruptions, a cartoon of the magmatic system below the YTT caldera 

shortly before eruption can be generated (Figure 8). The illustrated vertical extent of each magma 

body is based on the depths calculated from their SiO2 contents, with areas being proportional to 

their volumes based on a 5800 km3 eruption (Costa et al., 2014). The difference between OTT and 

MTT in U/Ce and Th/Nb suggests possible differences in source compositions for these magmas, and 

a broadly similar variation is seen in U/Ce for glass from YTT, with PIV and PV having the lowest 

ratios, similar to MTT, and PI the highest, similar to OTT. Combined with variations in other elements 

(e.g. Ba, Sr, Rb) and ratios (e.g. Zr/Y) these factors may suggest that PIV and PV magmas were 

sourced/accumulated under the NW of the current caldera (and can be loosely regarded as more 

MTT type), with PI accumulating in the SE, underlying the OTT caldera and similar to OTT magma 

compositions in many respects (low Ba, high U/Ce). PIII may be a mixture of both low and high U/Ce 

and Th/Nb sources. 

 

The abundant PIII magma (29.6%), an intermediary composition in terms of U/Ce and Ba (~750 ppm 

Ba), is not observed in MTT or OTT deposits, appearing first during the YTT eruption. PIII may thus be 

either a mixture of new magma batches from earlier OTT and MTT sources, or remelting of crystal 

mushes in the sub-caldera complex associated with intrusion of basic material at depth (Bachmann 

et al., 2014; Wolff et al., 2015; Bachmann and Huber, 2016; Reid and Vazquez, 2017), to generate a 

composition intermediate between PI and PV. Magma production/accumulation under the Toba 

caldera has clearly continued post-YTT eruption, as evidenced by post caldera lava domes., and the 

dramatic uplift of Samosir Island in the last 30 ka (Chesner, 2012; Mucek et al., 2017). Geophysical 

studies suggest a large magma body exists to ~10 km depth under the southern two thirds of the 

caldera (Samosir and south), with a smaller body to the north (Masturyono et al., 2001). More 

recently a sub-crustal/lower crustal basic magma reservoir feeding upwards into a radially 

seismically anisotropic layered sill  complex, extending to depths of about 7 km, has been suggested, 

immediately underlying a seismic low velocity zone that was potentially disturbed by the YTT 

eruption (Koulakov et al., 2009; Jaxybulatov et al., 2014; Koulakov et al., 2016). The various depths 



for magma storage proposed in these studies and the structure and disposition of magma bodies are 

consistent with the pressure estimates of magma equilibration from the tephra glass compositions.  

 

Conclusions  

  

The YTT eruption at 75 ka erupted five discrete magma compositions (PI-PV), identified by glass 

shard Ba, Sr and Y contents from tephra deposits. This aspect of the YTT eruption had not been 

recognised in bulk analysis of proximal deposits. Major element compositions of YTT glass shards 

show systematic variation associated with equilibration at different depths. The low volume, high-Ba 

PV magma equilibrated at ~ 6 km, and the low-Ba, largest volume PI magma equilibrated at ~3.8 km, 

depths similar to magma storage in other large caldera systems e.g. Yellowstone (Swallow et al., 

2018); Taupo Volcanic Zone  (Bégué et al., 2014; Gualda et al., 2019); Bishop Tuff (Wallace et al., 

1999; Gualda and Ghiorso, 2013a); Peach Spring Tuff (Pamukcu et al., 2015); among many others. 

The YTT eruption commenced by emptying the deepest magma reservoirs, perhaps as a plinian 

eruption, with abundant PV magma (±PIV) being carried in a relatively narrow plume across parts of 

India, as well as proximal ignimbrite deposition at lower stratigraphic levels.  

 

The eruption proceeded to expel magma from higher crustal levels, initially PIII, as deeper reservoirs 

gradually emptied, with PI becoming most abundant towards the end of the eruption. During later 

stages of the eruption, distal tephra was deposited from co-ignimbrite clouds. The presence of 

multiple magma reservoirs under large calderas is widely recognised from studies in the proximal 

realm (Gravley et al., 2007; Cooper et al., 2012; Gualda and Ghiorso, 2013b; Bégué et al., 2014; 

Alloway et al., 2015; Cooper et al., 2016; Swallow et al., 2018), and is evident in the YTT glass 

compositional data from both proximal ignimbrites and distal tephra fall deposits. Here, the 

abundance and distribution of individual glass populations in both distal and proximal YTT deposits 

provides details of magma equilibration conditions, and clearly links tephrochronology to the 

petrogenesis of the magmas, the evolution of the eruption, and the possible distribution processes 

of tephra. This approach offers a roadmap to link tephra analyses and stratigraphy to magma 

chemistry and petrogenesis, and to storage and eruption dynamics, thereby extending the scope of 

tephrochronological studies.   
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TABLES 

Table 1. Ratios or linear divisions between clusters of compositions used to discriminate between 
the five glass populations observed within YTT, based on Ba vs Y, Sr vs Y, and Ba vs Sr. Ba vs Y and Sr 
vs Y are used to identify PI-PV, with Ba vs Sr also used for PI – PIII. Italicised ratio values in 
parenthesis indicate the minima in Sr/Y or Ba/Y from the histograms in Figure 3, used previously  to 
separate populations (Westgate et al., 2013; Pearce et al., 2014).  Element concentrations in ppm. 

 

YTT pop’n 
boundary 

 

Ba vs Y Sr vs Y Ba vs Sr 

PI-PII 
 

Ba = 4.5 Y Sr = 0.8 Y Ba = 2.817 Sr + 126.8 

PII-PIII Ba = 6.375 Y + 122.5 
(ratio min. Ba/Y = 10) 

 

Sr = 1.039 Y + 14.225 
(ratio min. Sr/Y = 1.35) 

Ba = 3.636 Sr + 265.5 

PIII-PIV Ba = 13 Y + 290 
(ratio min. Ba/Y = 22) 

 

Sr = 1.538 Y + 19.23 
(ratio min. Sr/Y = 2) 

Ba = 6.633 Sr + 280 

PIV-PV Ba = 27 Y Sr = 2.091 Y + 16.182 
(ratio min. Sr/Y = 2.55) 

Not used 

  



Table 2. Average major and trace element composition of individual glass populations (I-V) within 
YTT (assigned according to criteria in Table 1), and the overall YTT average. Major elements 
normalised to an anhydrous basis with H2Od the average water content calculated by difference from 
the original analytical total. “n” is the number of glass analyses within each population, and for 
major element populations this is where both EPMA and LA-ICP-MS were performed on the same 
grain. “All” is the average of all major or trace element analyses on glass shards, and for major 
elements includes those grains (104 analyses) with no trace element analyses. 

Glass  
pop’n I 

 
II 

 
III 

 
IV 

 
V 

 
All 

 Major elements, wt % 
           n= 192 s.d. 56 s.d. 87 s.d. 15 s.d. 77 s.d. 531 s.d. 

SiO2 77.376 0.281 77.314 0.264 77.175 0.287 76.969 0.279 76.914 0.226 77.229 0.312 
TiO2 0.087 0.056 0.102 0.057 0.074 0.051 0.091 0.086 0.097 0.088 0.089 0.061 
Al2O3 12.555 0.147 12.607 0.152 12.622 0.133 12.723 0.134 12.729 0.134 12.606 0.155 
FeOt 0.854 0.058 0.867 0.057 0.891 0.053 0.911 0.073 0.913 0.095 0.881 0.070 
MnO 0.086 0.047 0.070 0.032 0.082 0.039 0.064 0.030 0.072 0.039 0.079 0.042 
MgO 0.047 0.020 0.056 0.021 0.061 0.022 0.057 0.022 0.080 0.028 0.057 0.025 
CaO 0.682 0.055 0.741 0.049 0.787 0.070 0.823 0.066 0.897 0.072 0.756 0.098 
Na2O 3.166 0.182 3.112 0.175 3.106 0.166 3.089 0.104 3.104 0.117 3.159 0.179 
K2O 5.030 0.155 5.027 0.210 5.103 0.195 5.174 0.206 5.109 0.152 5.040 0.185 
Cl 0.152 0.046 0.136 0.046 0.129 0.043 0.128 0.045 0.111 0.038 0.136 0.046 

-O=F,Cl -0.034 
 

-0.031 
 

-0.029 
 

-0.029 
 

-0.025 
 

-0.031 
 H2Od 3.380 1.468 3.811 1.652 3.757 1.459 3.882 1.264 3.105 0.656 3.670 1.391 

Total  100.000 
 

100.000 
 

100.000 
 

100.000 
 

100.000 
 

100.000 
 Trace elements, ppm 

           n= 954 s.d. 326 s.d. 743 s.d. 213 s.d. 262 s.d. 2507 s.d. 
Rb 292 31 255 23 232 28 216 27 200 31 253 45 
Sr 28.9 7.4 57.2 9.1 75.4 12.6 96.2 14.7 113 18 61.0 31.3 
Y 69.8 12.0 53.9 10.0 49.0 9.0 45.4 8.7 36.9 6.7 56.1 15.1 
Zr 116 20 117 18 131 25 143 26 144 29 126 26 
Nb 23.9 3.2 20.2 2.8 19.6 3.7 18.7 2.8 17.5 2.8 21.0 4.1 
Cs 10.8 1.6 8.26 1.00 6.98 1.20 5.96 0.87 5.12 1.15 8.34 2.53  
Ba 94.5 30.7 392 52 701 107 1025 137 1191 188 507 402 
La 34.3 5.0 38.6 5.6 45.1 7.1 54.9 11.5 68.0 14.9 43.3 13.4 
Ce 66.0 8.8 70.5 8.1 77.8 10.7 88.3 13.4 106.6 19.1 76.2 16.9 
Pr 8.02 1.89 8.08 1.36 8.78 1.52 9.93 2.07 11.1 2.07 8.74 2.05  
Nd 30.9 6.7 30.2 6.3 32.3 7.0 35.8 9.6 37.4 8.5 32.3 7.5 
Sm 8.24 2.35 7.03 2.00 7.13 2.29 7.71 2.60 7.09 2.37 7.59 2.32  
Eu 0.36 0.38 0.53 0.36 0.63 0.43 0.71 0.48 0.75 0.51 0.53 0.50  
Gd 8.89 2.95 7.02 2.45 6.87 2.94 6.92 2.88 6.14 3.19 7.60 3.13  
Tb 1.58 0.44 1.23 0.36 1.11 0.35 1.09 0.39 0.94 0.38 1.29 0.46  
Dy 10.6 2.4 8.46 2.15 7.83 2.20 7.62 2.53 6.30 2.16 8.81 2.72  
Ho 2.37 0.57 1.86 0.47 1.72 0.47 1.63 0.50 1.37 0.47 1.94 0.62  
Er 7.65 1.70 5.98 1.64 5.49 1.50 5.21 1.55 4.20 1.24 6.23 1.97  
Tm 1.29 0.36 0.99 0.32 0.90 0.31 0.83 0.29 0.71 0.30 1.04 0.39  
Yb 8.93 2.01 6.83 1.45 6.35 1.62 5.93 1.51 4.86 1.41 7.21 2.21  
Lu 1.44 0.42 1.11 0.34 1.02 0.35 0.96 0.33 0.77 0.35 1.16 0.44  
Hf 6.05 1.58 5.48 1.51 5.92 1.86 5.88 1.67 5.60 1.73 5.88 1.65  
Ta 3.76 0.75 2.89 0.55 2.77 0.85 2.49 0.59 2.15 0.67 3.08 0.93  
Pb 60.9 15.8 62.9 16.5 59.1 21.1 58.3 19.9 57.1 17.5 60.0 18.9 
Th 64.3 11.8 52.5 9.2 50.5 9.2 49.6 9.4 45.8 9.2 55.5 12.1 
U 10.5 1.5 8.07 1.09 7.02 1.32 6.33 1.78 5.28 0.93 8.25 2.32  

Selected trace element ratios          
Sr/Y 0.42 0.10 1.08 0.17 1.57 0.27 2.16 0.43 3.09 0.43 1.27 0.90  
Ba/Y 1.36 0.40 7.41 1.02 14.6  2.4 23.0  2.9 32.7  4.1 11.2  10.5  
Zr/Y 1.67 0.15 2.19 0.17 2.69 0.30 3.18 0.46 3.91 0.50 2.40 0.79 

Zr/Ce 1.76 0.22 1.66 0.17 1.70 0.36 1.62 0.23 1.35 0.18 1.68 0.30 
Zr/Nb 4.88 0.69 5.85 0.80 6.74 0.92 7.66 1.10 8.24 1.29 6.15 1.49 
U/Ce 0.16 0.02 0.12 0.01 0.09 0.02 0.07 0.02 0.05 0.01 0.12 0.04 
Ce/Th 1.04 0.13 1.36 0.14 1.57 0.24 1.81 0.26 2.36 0.31 1.44 0.46 

             Rb/Th 4.66 0.81 4.97 0.86 4.73 0.96 4.49 0.91 4.55 1.16 4.70 0.92 
Cs/Th 0.17 0.04 0.16 0.03 0.14 0.03 0.12 0.03 0.12 0.03 0.15 0.04 
Th/Nb 2.69 0.39 2.61 0.37 2.60 0.38 2.66 0.38 2.62 0.39 2.65 0.38 

U/Y 0.15 0.03 0.15 0.03 0.15 0.03 0.14 0.03 0.15 0.03 0.15 0.03 

 



Table 3: Proportions (as percentage of all analyses) of the different glass compositional populations 
(PI-PV) in YTT, i.e. distal glass shards (i.e. not from Sumatra), proximal matrix glass shards (from YTT 
ignimbrite deposits in the Toba caldera walls) and pumice (from clasts within YTT ignimbrites 
exposed in the caldera). Population compositions are defined using the criteria in Table 1 (see also 
Figure 3). * - Magma volume is calculated from the 5300 km3 estimate for the DRE of the YTT 
eruption from Costa et al. (2014). In earlier studies, using the criteria in Westgate et al. (2013) the 
population distributions were PI - 38.7%, PII - 14.0%: PIII -37.4%: PIV - 9.8% (where their PIII has 
since become PIII and PIV, and their PIV is now PV). Pearce et al. (2014) population distributions 
would have been PI - 38.7%, PII - 14.0%: PIII -29.0%: PIVa – 8.4%: PIVb - 9.8% (where their PIVa has 
since become PIV, and their PIVb is now PV). 

  

Glass 
pop’n 

All glass 
analyses 
(shards/ 
pumice) 

Magma 
volume* 
DRE, km3 

Glass shard analyses 
 
 
 

 Pumice clast analyses 

 
All  Distal  

Proximal 
matrix  

 
Contiguous/ 
single pop 

Only 

 
All 

(contiguous/ 
crushed 

         

PI 38.1% 2017 38.9% 36.6% 60.6%  35.1% 36.2% 

PII 13.0% 689 17.2% 18.0% 9.1%  3.6% 3.9% 
PIII 29.6% 1571 31.1% 33.1% 12.1%  27.3% 26.5% 
PIV 8.5% 450 7.6% 8.0% 3.0%  11.3% 10.5% 
PV 10.5% 554 4.8% 3.7% 15.2%  22.7% 22.8% 

         
Shards 

analysed 2507 
 
 1719 1554 165 

 
670 

 
788 



Table 4. Magma storage conditions calculated for each of the five glass populations in YTT, by 

various methods based on aspects of the composition of the different glass populations. r-MELTS: 

calculations of equilibration pressures  (with quartz and two feldspars) from average major element 

composition calculated using rhyolite-MELTS for water saturated conditions, and oxygen fugacity at 

the Ni-NiO (NNO) buffer(Gualda and Ghiorso, 2014). Depth calculated using an average crustal 

density of 2.7 g cm-3. Zircon satn: Zircon saturation temperatures calculated from Zr content and 

aspects of the major element composition of each glass population, based on the two widely used 

models of zircon solubility, WH83 (Watson and Harrison, 1983) and B13 (Boehnke et al., 2013). 

Glass 
pop’n 

SiO2 wt%  
(avg ± s.d.) 

P (MPa) 
(avg ± s.d.)  

r-MELTS 

Depth km 
 (avg ± s.d.)  

(ρ=2.7 gcm-3) 

Zr ppm 
(avg ± s.d.) 

Zircon  
satn T °C  

(WH83) 

Zircon  
satn T °C 

(B13) 
 

PI 77.376 ± 0.281 102 ± 34 3.8 ± 1.3 116 ± 20 766 719 

PII 77.314 ± 0.264 107 ± 32 4.0 ± 1.2 117 ± 18 767 720 

PIII 77.175 ± 0.287 127 ± 35 4.8 ± 1.3 131 ± 25 775 729 

PIV 76.969 ± 0.279 148 ± 34 5.6 ± 1.3 143 ± 26 782 737 

PV 76.914 ± 0.226 158 ± 28 6.0 ± 1.0 144 ± 29 782 736 

  



Table 5. Numbers of individual pumice clasts that show either one or two populations of glass (i.e. 
40 single or dual population pumice clasts in total) are shown in the table (e.g. there are 6 pure PIII 
clasts, and 6 clasts containing PIV and PV glass). Only four additional pumice clasts (making the total 
pumice clasts analysed = 44) show more than two populations of glass and these are from; Ajibata 
(two clasts with PIII, PIV, PV); Haranggaol 1270 m (PI, PIII, PIV, PV); Muara (PI, PII, PIII, but from a 
very small sample with n=6).   

Glass pop’n PI PII PIII PIV PV 
PI 14     
PII 0 1    
PIII 0 2 6   
PIV 0 0 4 1  
PV 0 0 1 6 5 



FIGURES.  

 

  

Figure 1. Distribution of Toba tephra occurrences, including those samples analysed as part of this 

study from named sites.  - YTT occurrences:  - OTT occurrences. MTT only recorded at ODP-Site 

758. Location of Toba caldera T . Marine occurrences prefixed “SO” are from the Sonne-93 cruise 

(Weber et al., 2003). Map excludes YTT occurrences from Lake Malawi, East Africa (Lane et al., 2013) 

and on the southern coast of South Africa (Smith et al., 2018). For locality information, see 

Supplementary Table 2. 

 

 



 

Figure 2. Selected compositional data for YTT, MTT and OTT. A and B: SiO2 vs Al2O3 and SiO2 vs CaO 

(all wt %) show the similarity in composition of the three major Toba eruptive units, although subtle 

differences in the range of CaO can be seen. C: Normative compositions plotted in the granite 

system following the method of Blundy and Cashman (2001) Q’ – quartz, Ab’ – albite, Or’ – 

orthoclase, calculated to include the effects of An (anorthite) on equilibria in the granite system. D: 

Ba vs Y (ppm) shows the fields of composition occupied by YTT, MTT and OTT, which can be used to 

identify the three units. E: U/Ce vs Th/Nb shows a clear separation of MTT (Layer C of ODP 758 and 

the MTT Vitrophyre) from OTT, but YTT glass more or less encompasses the range of the other units. 

Similarly U/other LREE, Th, U and Rb also show good compositional separation between MTT and 

YTT. See text for discussion and sources. 

  



 

Figure 3. Bivariate plots of Ba vs Y, Sr vs Y and Ba vs Sr (all as ppm), and histograms of Ba/Y, Sr/Y and 

Ba/Sr for 2507analyses of glass from YTT performed by LA-ICP-MS, to show the criteria for 

separation of glass into different populations (PI – PV). The axes on the x-y diagrams have been 

scaled to show the clearest spread in the data – about 15 analyses exceed 1500 ppm Ba and 150 

ppm Sr (and all belong to PV), and about 10 analyses exceed 100 ppm Y (all PI). On the histograms a 



few ratios exceed the maximum bin value shown on the x axis, and the “Frequency” axis has been 

scaled to show detail for the lower frequencies. Solid lines on the Ba vs Y and Sr vs Y plots which 

intersect the origin are ratios taken from the minima in the Ba/Y and Sr/Y histograms, and are used 

to separate PI-PII and PIV-PV (Ba vs Y) and PI-PII (Sr vs Y). Dashed lines on all plots are fitted visually 

through the lowest density regions of data points and are used to separate the remaining 

populations, although the continuum in Ba vs Sr compositions at high Ba and Sr makes separation of 

PIV and PV difficult using these elements. 

  



 

Figure 4. Selected bivariate compositional plots (trace and major element) for YTT glass shards 

subdivided into their separate populations. Concentrations in ppm (trace elements) and wt% (major 



element oxides).  A: Zr vs Y shows individual glass populations have different ratios of Zr/Y, and 

similar behaviour is seen for many other HFSE element pairs including Zr/LREE, Zr/U, Zr/Nb, Zr/Th, 

U/Ce (U/LREE), LREE/Nb, and LREE/Th. B: Rb vs Cs  show a near-constant element ratio across all 

populations, although the average compositions of each population vary systematically (cf. Table 2). 

Similar behaviour is seen for many other incompatible element pairs including Rb/Th, Cs/Th, U/Cs, 

Th/Nb, U/Y (U/HREE) as well as from the compatible elements Sr/Ba. C: Chondrite normalised 

average REE composition of each glass population within YTT, displaying a steady and systematic 

change from PI to PV. Chondrite compositions from Sun and McDonough (1989). D: U/Ce vs Th/Nb 

for the 5 glass populations of YTT compared to MTT and OTT (see also Figure 2).  E-H: Selected major 

element oxides from YTT glass shards, grouped into their respective glass populations (PI-PV) from 

the trace element analyses of the same shards. Note the steady decrease on CaO, K2O, FeO and 

(Na2O + K2O) with increasing SiO2. Histograms show the distribution of SiO2 within the five glass 

populations, with PI having the highest SiO2, and PV the lowest. 

  



 

Figure 5. Relationship between the SiO2 content (wt%) and depth of equilibration (given as Elevation 

in km) for each of the individual glass populations (marked I – V), calculated from the pressure 

modelled in rhyolite-MELTS, and converted to depth assuming crustal density is 2.7 g cm-3. 

Horizontal error bars show ±1 standard deviation for the SiO2 concentration of each population, 

which has been converted to an equivalent elevation (depth) range (vertical error bars) using the 

best-fit line between SiO2 and elevation through the five average population compositions (equation 

given, r=0.9976).  

  



 

 

Figure 6. Glass population proportions (GPP) as pie-charts from distal YTT tephra deposits across the 

Indian Ocean, peninsular India and Malaysia centred (where possible) above their point of 

occurrence, with arrows indicating otherwise (cf. Figure 1).  Boxed insets show the GPP all YTT free 

glass shard analyses, all proximal glass shards, and all distal glass shards, but not pumice glass 

analyses (see Figure 7). Reworking of the distal deposits in fluvial systems (e.g. Malaysia, India) will 

“average” the regional deposition. Inset diagram of a core shows variation in GPP from three 

analysed sub-samples from core SO93-51KL, which contains a 20 cm thick YTT deposit (depth ranges 

sampled are indicated). The average data for this core is shown on the map. This core sample is 

dominated by PI and PIII, however PI shows a marked increase from ~40% in the lower samples to 

~60% in the upper sample, concomitant with a dramatic decrease in PII and PIII. See Supplementary 

Table 2 for individual sample location information, numerical shard counts and GPP.   

  



 



Figure 7. Proximal glass population proportions (GPP) from YTT ignimbrite samples around the Toba 

caldera. Upper diagram: Free glass shards from the sample matrix. Lower diagram: Glass from 

individual pumice clasts within the ignimbrites. Samples were collected at various distances above 

the base of the YTT ignimbrite, where it contacts MTT in the north and OTT in the south (Knight et 

al., 1986; Chesner and Rose, 1991), and within the caldera. Sample positions are listed below with 

ascending stratigraphic height above the local base of the YTT ignimbrites:-  

H1360m Haranggaol: 130 m YTT base (1230 m), sample from 1360 m  

Sipisupisu: 65 m above YTT base (1335 m), sample from 1400 m  

H1270m Haranggaol:  40 m above YTT base (1230 m), sample from 1270 m 

Muara:  20 m above YTT base (1450 m), sample from 1470 m 

At Siguragura, the YTT base is much lower (800 m) and samples were collected from 855 m (+55 m). 

At Sipisupisu, the two overlapping pie charts are two sets of analyses from dark (left pie-chart) and 

light (right pie-chart) portions of a single pumice clast showing varying proportions of PII and PIII. 

See Supplementary Table 2 for individual sample location information, numerical shard counts and 

GPP. 

  



 

Figure 8. Cartoon cross section of the possible configuration of magma bodies under the YTT caldera 

at 75 ka. Note 2x vertical exaggeration. Surface topography represents roughly the present day 

landform, with the resurgent Samosir Island at the centre of the caldera. Magma reservoirs of the 

different populations are labelled I – V, and their areas are in proportion to the numbers of analyses 

of each glass population (see Table 3), with equilibration depths given in Table 4. The shaded area 

under the caldera represents material disrupted by the YTT eruption with the sub-caldera sill 

complex indicated below this (Jaxybulatov et al., 2014). 
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