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Abstract
Biological vision incorporates intelligent cooperation between the sensory and the motor systems, which is facilitated
by the development of motor skills that help to shape visual information that is relevant to a specific vision task. In this
paper, we seek to explore an approach to active vision inspired by biological systems, which uses limited constraints for
motor strategies through progressive adaptation via an evolutionary method. This kind of approach gives freedom to
artificial systems in the discovery of eye movement strategies that may be useful to solve a given vision task, but are not
known to us. In the experiment sections of this paper, we use this type of evolutionary active vision system for more
complex natural images in both 2D and 3D environments. To further improve the results, we experiment with the use
of pre-processing the visual input with both Uniform Local Binary Patterns (ULBP, Ojala et al. 2002) and Histogram
of Oriented Gradients (HOG, Dalal and Triggs 2005) for classification tasks in the 2D and 3D environments. The 3D
experiments include application of the active vision system to object categorisation and indoor vs outdoor environment
classification. Our experiments are conducted on the iCub humanoid robot simulator platform.

Keywords
Active Vision System, Neural Network, Evolutionary Robotics, Uniform Local Binary Patterns, Histogram of Oriented
Gradients, Humanoid Robot

Introduction

Active vision is the process of exploring a visual scene
to obtain relevant features for subsequent meaningful and
intelligent processing. Such visual systems require a form
of control, and are intelligently guided to only those areas
that have relevant and valuable information to the task at
hand. Vision is not a passive process as has been known
in conventional computer vision (see Ojala et al. 2002;
Belongie et al. 2002), but is action dependent (see Avraham
and Lindenbaum 2010; Kagan and Hafed 2013). In most
traditional computer vision, the local image sample does not
guide the scanning process, but instead use an exhaustive
search (e.g window sliding method, Osuna et al. 1997).
However, research shows that the use of action in perception
can reduce the computational cost of vision tasks, and at
the same time simplify very difficult tasks (see Nolfi 1998;
Tsotsos 1992; Mirolli et al. 2010; Kato and Floreano 2001).
Consequently, as action has been shown to be an integral
part of perception, the challenge in developing active vision
models is finding intelligent action strategies that will enhance
the vision task at hand (Croon 2008).

In some models the assumption made is that vision is
an iterative process of state estimation and the selection of
relevant actions (Denzler and Brown 2002; Borotschnig
et al. 1999). However, in this work we present an active
vision system that has the following properties: (i) it uses
limited assumptions or constraints for its action strategy (eye
movement); and (ii) it does not need any kind of ground
truth for the eye control. This is because such assumptions or
ground truth may not allow the model to discover strategies
that are not known to the designer but may exist in biological

agents. We have therefore chosen an evolutionary adaptive
model used in the field of evolutionary robotics for the control
of active vision (see Tuci 2014; Marocco and Floreano
2002, for similar methods). This technique delegates the
strategies used for eye movement to the adaptation process of
the evolutionary method. Also, given the strong dependency
between eye movements and perception, we also investigated
two preprocessing techniques (ULBP, Ojala et al. 2002)
and (HOG, Dalal and Triggs 2005). We have chosen ULBP
and HOG because they are simple to implement as well
as their usefulness as feature descriptors in many computer
vision applications, such as face recognition (Ahonen et al.
2006) and object detection (Stefanou and Argyros 2012). The
novelty of our framework is not only in the problems that are
solved and methods that are used (pre-pocessing techniques),
however, it is the novelty of these problem domains in
the investigated active vision systems (evolutionary active
systems); and the originality in the combination of existing
pre-processing methods (ULBP and HOG) with the active
vision system.

Therefore our research objectives are:
(i) To use evolutionary active vision systems in more

complex scenes and environments for categorisation tasks.
(ii) To improve the performance of the categorisation tasks

through pre-processing techniques.
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We further list the contributions in this paper below.

1. This type of active vision system (evolutionary method)
is used for more complex images taken from the camera
of the iCub robot.

2. We demonstrate the effectiveness of the active
vision system in a more realistic setting for 3D
object categorisation using the humanoid robot iCub)
platform.

3. We extend the applicability of the system to the
3D environment for indoor and outdoor environment
classification task using the iCub platform.

4. We extend the system with pre-processing using
Uniform Local Binary Patterns (ULBP, Ojala et al.
2002) in both 2D and 3D environment categorisation
tasks.

5. We further extend the system with pre-processing using
Histogram of Oriented Gradients (HOG Dalal and
Triggs 2005)) for classification tasks in the 2D and
3D environments.

In the next sections, we first briefly review active vision
systems, then describe our system and experimental methods,
followed by results, discussion and finally conclusions.

Active Vision Models

Various active vision models have been proposed in the
literature that select their actions (eye movements) in different
ways and mostly for a specific task. For instance, there are
models for detecting edges (e.g. Kass et al. 2008), for
controlling the gaze of a simulated fish (e.g. Terzopoulos
and Rabie 1995) and for detecting an object in a visual
scene (e.g. Minut and Mahadevan 2001). However, there are
also others that are instances of a more general approach such
as the probabilistic approach (see Vidal-Calleja et al. 2010;
Guerrero et al. 2010; Dame and Marchand 2013; Davison
2005) and adaptive approach (see Mirolli et al. 2010; Kato
and Floreano 2001; Croon 2008; Tuci 2014).

The central aim of the probabilistic models is to reduce
uncertainty in the world state. It regards active vision as a
series of iterative steps of state estimation and action selection,
and therefore uses a pre-determined probabilistic framework
for action selection. All the probabilistic models have one
thing in common: they take action with the goal of reducing
uncertainty in the belief state.

On the other hand, adaptive approaches do not use
assumptions or pre-determined framework for their action
(eye movement) strategy, but they are progressively adapted
in order to optimise the performance of the task at hand. That
aside, there are additional predefined attributes which also
impose some limitations, such as the choice of the controller
(e.g neural network) and the optimisation technique. However,
in this model the goal is not to predetermine what the active
vision system does internally.

Our approach (evolutionary active vision) is an instance of
the adaptive approach that makes use of fewer assumptions for
its eye movement, by delegating the matter to the adaptation
process of the evolutionary method for neural network control.

Evolutionary Active Vision System
Various evolutionary active vision systems have been
investigated based on the complexity of the controller. For
instance, there are those that rely solely on sensory-motor
coordination and are also known as reactive systems. These
reactive systems are not common in most vision tasks because
of their complexity. For example, Nolfi and Marocco (2000)
evolved an active vision system in which mobile robots were
able to visually discriminate between different landmarks.
Similarly, Schembri and Belardinelli (2015) implemented
an active vision system using a simple 3-layer feed-forward
neural network controller evolved with a genetic algorithm.
The goal of the agent was to hit as many small circles as
possible and to avoid the big ones over the course of a
lifetime. The common features shared by these systems was
that, despite their very simple architecture they were able
to use their intelligent sensory-motor coordination to select
sensory patterns that were favourable to the given vision tasks.

More complex systems have been developed that have a
form of memory determined by the recurrent connections
or feedback provided in the controllers, that may include
hidden layers (see Kato and Floreano 2001; Marocco and
Floreano 2002). The evolved active vision system described
in (Kato and Floreano 2001) autonomously discriminates
between different shapes irrespective of their locations and
sizes. The controller of the system has a very simple discrete
time recurrent neural network architecture, with no hidden
nodes, and was evolved by a genetic algorithm. The system
exhibited a behavioural strategy of exploring different areas
of the shapes in order to enhance the categorisation task.

In the same vein, Marocco and Floreano (2002) extended
the simple active vision model in (Kato and Floreano 2001)
for a navigation problem posed for a mobile robot equipped
with a pan and tilt camera. The evolved robots were able
to navigate an arena by exhibiting a behaviour where they
select simple visual features and maintain the edge between
the floor and the wall in sight of the camera. The common
theme with these active vision systems is that even though
the controllers have very reduced internal states in the form
of only recurrent connections or memory feedback, by their
dynamic interactions with the environment, they were able to
generate behaviours that allowed them to exploit regularities
in ways appropriate to the vision tasks.

There are also active vision systems that have more
complex internal states, such as those that are provided by
Continuous Time Recurrent Neural Networks (CTRNN, see
Mirolli et al. 2010; Croon 2008; Lanihun et al. 2014). In
this case, in addition to the recurrent connections, the neurons
also have some dynamics that realises internal states. For
instance, Mirolli et al. (2010) used an active vision system
with a 3-layer CTRNN, which was evolved by a genetic
algorithm. The active vision system was given the task of
categorising five types of italic letters (‘l’, ‘u’, ‘n’, ‘o’, ‘j’)
of five different sizes, with a variation of ±10% and ±20%
with respect to the intermediate size. The movement of the
artificial eye was controlled by motor neurons of the output
units, which determined the eye displacement per time step, in
order to capture relevant input features for the neural network
controller. The system was rewarded only for its ability to
discriminate between the shapes of the letter and left free
to determine how to explore the visual scene. Subsequent
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analysis based on the best individual of all replications of the
evolutionary run showed that the agent was able to solve
the problem by: (i) using sensory-motor co-ordination to
generate behaviours that allowed the agent to experience
visual regularities in different categorical contexts; and (ii)
integrating perceptual and motor information over time.

By way of further example, Croon (2008) developed an
active vision model that uses CTRNNs for a car-driving
simulation. Unlike the active vision system in (Mirolli et al.
2010), the system had a modular structure of two CTRNNs, i.e.
one controlling the eye movement and the other for controlling
the movement of a simulated car. The output units of the eye
controller determined the visual features that were extracted
as the car moved through a simulated road per time step,
which formed the corresponding inputs to the two controllers.
The task of the agent was to drive over a simulated track as
quickly as possible, while avoiding various obstacles on the
way. The controller parameters were optimised with a genetic
algorithm. Subsequent analysis showed that the system used
the gaze shifts: (i) to find relevant features that contributed to
successful driving; (ii) to keep relevant features in sight; and
(iii) to avoid disruptive visual inputs while driving.

The common trend among these systems that used more
complex internal states was that the increased complexity
helped the system to generate more complex dynamics for
integrating sensory-motor information over time.

However, our work is different from the previously
mentioned evolutionary approaches in the following respects:

1. We aim to show the plausibility of biological active
vision systems in complex artificial systems using our
evolutionary method for categorisation tasks. As such,
we have extended our method for categorisation to more
realistic natural 2D images and to 3D environments
using a humanoid robot platform.

2. We investigated two pre-processing techniques
commonly used in computer vision, i.e. HOG (Dalal
and Triggs 2005) and ULBP (Ojala et al. 2002), so as
to show how active vision can be enhanced by low level
processing (Magnussen 2000; Le Meur et al. 2004;
Diamant 2008).

Methods
The active vision framework is inspired by the model
in (Mirolli et al. 2010) and is supplemented with the
continuous neural network update equations illustrated
in (Tuci 2014). We have built our framework on their
periphery-only architecture, Fig. 1, which gave the best
performance among all the architectures experimented with
in (Mirolli et al. 2010). We extend this framework for
classification in 2D and 3D using the iCub humanoid robot
platform (Tsagarakis et al. 2007), and further used pre-
processing to enhance the categorisation tasks.

The active vision system autonomously takes an input from
a visual scene restricted by the active window. The visual
stimuli are processed by a visual extraction method and are
mapped by an evolved neural network controller to gaze shifts
and classification units. In the output layer, 2 of the neurons
determine the movement of the eye per time step either in x
and y directions in the 2D experiments, or pan and tilt in the
3D experiments. The other output neurons are for labelling

Figure 1. The neural network architecture. The number in the
boxes is the number of neurons and N is the number of object
categories.

Figure 2. A simple illustration of the iCub vision kinematics
(image from (Leitner et al. 2017)).

the N possible categories. It also has 5 internal neurons, 2
neurons representing copies of activation values of the gaze
shifts and N classification units from the previous time step.
The visual extraction module is processed by either a grey-
scale averaging method as used in (Mirolli et al. 2010) or pre-
processing techniques such as HOG (Dalal and Triggs 2005)
or ULBP (Ojala et al. 2002) are adopted. The gaze shifts
which enhance the performance of the task are determined by
the visual features, previous gaze shifts/categorisation outputs
at time t− 1, and/or the internal state of the controller.

The Robot
We use the iCub humanoid robot platform (Tsagarakis et al.
2007) for the implementation in the 3D experiments. However,
we use a simple iCub simulator described in (Tuci 2016). This
is to minimise the computational overhead that would have
been involved in using the original iCub simulator for our
evolutionary method. The iCub eye control has 3 degrees of
freedom (DOF), for vergence, pan and tilt (Fig. 2). However,
because of the computational complexity, we only make use
of 2 degrees of freedom for the right eye (pan and tilt). Also
for simplicity and because of the computational overhead, we
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exclude head, neck and other proprioceptive information from
our experiments.

In each time step of every trial in the evolutionary run, we
calculate the tilt (Tiltstep, see Eq. 1) and pan (Panstep, see
Eq. 2) by mapping the outputs O1 and O2 (with range 0 to 1)
to the range [−2.5◦,+2.5◦] as follows:

Tiltstep = (O1 − 0.5) ∗MAXstep (1)

Panstep = (O2 − 0.5) ∗MAXstep (2)

where MAXstep = 5◦ is the maximum step for the pan
and tilt. The pan and tilt are then updated using:

Tiltnew = Tiltnew−1 + Tiltstep (3)

Pannew = Pannew−1 + Panstep (4)

The updated pan and tilt are then normalised back to the
range [0, 1], representing the range from the lower and upper
limit for each angle, and fed back into the network using:

Tiltinput =
Tiltnew − Tiltlow limit

Tilthigh limit − Tiltlow limit
(5)

Paninput =
Pannew − Panlow limit

Panhigh limit − Panlow limit
(6)

To map the output pan and tilt onto the iCub we use the
Denavit-Hartenberg convention, with the tilt being link 6 and
the pan being link 7 in the kinematic chain (i.e. Tiltnew = θ6
and Pannew = θ7). The full set of link parameters (Table 1)
are used to calculate the forward kinematics for the iCub right
eye.

Adaptive Tasks
Here we present the details of the tasks solved by the evolved
active vision system. First, we investigate categorising natural
images of objects taken from the iCub camera, and evaluate
the impact of the pre-processing techniques. Secondly, we
move to a 3D iCub simulator and evaluate the system for
3D object categorisation. In 3D object categorisation, the
visual field often covers much of the object in a single time-
step, making the active behaviour less essential. So in our
final experiment we investigate indoor/outdoor categorisation,
where scene exploration is essential to achieving the task.

iCub images Categorisation In this experiment we use the
grey-scale averaging for the more complex natural images
taken from the camera of the iCub, as compared to artificially
generated hand-written italic-letter images used in (Mirolli et
al. 2010). We further tested the proposed feature extraction
methods, i.e. ULBP (Ojala et al. 2002) and HOG (Dalal and
Triggs 2005) to investigate the impact on the performance of
the active vision system.

Table 1. Table showing the link parameters a, d, α, θ of the iCub
right eye (for the tilt i=6 and pan i=7), where a and d are in
millimetres, and α and θ are in radians.

Link(i) ai di αi θi
i=6 0 34 −π/2 θ6
i=7 0 0 π/2 θ7 − π/2

Figure 3. Pictures showing the images of the objects, from left
to right: soft toy, TV remote control, microphone, board wiper and
hammer. Top row, the greyscale images. Bottom row, the images
after processing with Canny edge detection and a masking
rectangle.

The original images are coloured, and of size 320× 240
pixels of five different objects, namely: soft toy, TV remote
control, microphone, board wiper, and hammer. The data-set
consists of 350 images divided into two folds for training
and validation. The first fold of 7 different sizes for each
object varying between [−20%, 20%] with respect to the
original size; and each of these is given 5 different orientations
varying between [−4, 4] degrees with respect to the original
orientation. The second fold also of 7 different sizes varying
between [−30%, 30%] of the original size; and each of these
rotated by 5 different orientations varying between [−9, 9]
degrees with respect to the original orientation. We used a
larger range of scale and orientation in the second fold so as
to make the categorisation task more challenging.

The original coloured images are first converted into grey-
scale. We then evaluate the agent for 350 trials, and at the
beginning of each trial: (i) one of the 175 images (in a fold)
is presented to each individual (i.e. network weights set
according to the genes); (ii) the state of the internal neurons
of the agent’s controller is initialised to 0.0; and (iii) the eye
is initialised in a random position within the central third of
the image. During the 100 time steps of each trial, the agent
is left free to explore the image.

Also, in order to terminate trials when the active window of
(50× 50 pixels) no longer includes any part of the object
for three consecutive time steps, we use a Canny Edge
Detector (Canny 1986) to detect the edges in each image
presented. A rectangular mask is set on the object in the
image, and every white (edge) pixel outside the boundary of
the rectangular mask are set to black. Through this means,
we are able to get edge images that are black outside object
boundaries, and objects of white and black. Fig. 3 shows
the grey-images, and the images after setting the rectangular
masks on the Canny Edge Detector processed images. It
should be noted that the above processing is only used to
terminate each trial after the active window has lost focus on
the object for more than 3 consecutive time steps and as a
result time is saved during training. The input vector into the
neural network is obtained from the grey-images processed
by the visual extraction methods (grey-scale, ULBP or HOG),
and the copies of the movement and categorisation units at
previous time step t− 1.

3D Object Categorisation This experiment is designed to
investigate how a simulated agent (the iCub) can exploit
its eye movement to improve object categorisation and how
this categorisation capability can be further improved with
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Figure 4. Pictures showing the iCub agent presented with the
four objects: top left, cone; top right, sphere; bottom left cube
and bottom right torus. On the top right of the scene shows the
objects from the iCub view.

pre-processing techniques. The agent is situated in a 3D
environment in-front of a coloured object on a coloured table
against a black background (Fig. 4).

We chose four objects; a sphere, cube, cone and torus,
in which the stimuli have similar appearance, rendering
the categorisation task more challenging. The four different
coloured objects are presented to the agent for categorisation
one at a time. (Fig. 4).

The agent is evaluated for 48 trials in which each of the
four objects (sphere, cube, cone and torus) is presented to the
iCub agent 12 times; and each trial lasted 100 time steps.

At the beginning of each trial: (i) each object is uniformly
randomly scaled with a variation of [-10%,10%] to the
original size, and uniformly randomly rotated within the range
[−10◦, 10◦] on the y axis; (ii) the state of the internal neurons
of the agent’s controller is initialised to 0.0; and (iii) the eye
is initialised in each quadrant of the iCub gaze-space, but
randomly located in each initialisation within a quadrant, and
with the object within the eye view. During each time step of a
trial, we calculate the panstep and tiltstep and normalise their
updates and input as proprioceptive feedback (paninput, and
tiltinput) along with the categorisation outputs at the previous
time step into the network. In each trial the eye is left to freely
explore the environment; however, in order to save time and
improve exploration, a trial is terminated when the eye (pan
or tilt) reached the iCub pan limit ([-0.523616, 0.523616]
radians) or tilt limit ([-0.663243, 0.314177] radians) for three
consecutive time steps. In each trial, the agent’s eye perceives
each object presented with visual extraction from grey-scale
averaging (Mirolli et al. 2010), ULBP (Ojala et al. 2002) or
HOG (Dalal and Triggs 2005).

Indoor-Outdoor Environment Categorisation In this experi-
ment, the agent is situated in various 3D indoor and outdoor
environments.

The environments are represented with 20 texture
images, which were downloaded from Google’s image
database (Google Images 2017). The texture images are
dynamically mapped to the interior of a 3D sphere containing
the iCub (Fig. 5). Half of the images represented indoor
environments and the other half were outdoor environments.
The entire data-set of 20 texture images representing the
environments are divided into 2-equal halves for training

Figure 5. Pictures showing the iCub agent in the outdoor
environment (left) and outdoor environment (right). Top right
shows the environments from the iCub view.

and validation sets for a 2-fold cross-validation. The rotation
of the environment ensures that the agent is always seeing
different part of the environment in any given trial. The visual
information perceive with the retina is processed with one
of the visual extraction methods, i.e. grey-scale averaging,
ULBP or HOG.

The agent is evaluated for 20 trials, and at the beginning
of each trial: (i) the agent is situated in an environment
(outdoor or indoor) that is randomly rotated within the range
[−40◦, 40◦] on the z axis with a uniform distribution, and
subsequently, the agent uses its pan and tilt movement to
explore the environment in each time step.; (ii) the states of the
internal neurons of the agent’s controller are initialised to 0.0;
and (iii) the eye is initialised in each quadrant of the iCub gaze-
space, although randomly located in each initialisation within
a quadrant. Also, in each time step of a trial, the panstep and
tiltstep values are calculated and their normalised updates are
input as (paninput, and tiltinput) as proprioceptive feedback
along with the categorisation outputs at previous time step
into the network. In each trial, the eye is left to freely explore
the environment; however, in order to save time and improve
exploration, a trial is terminated when the eye (pan or tilt)
reached the iCub pan limit ([-0.523616, 0.523616] radians) or
tilt limit ([-0.663243, 0.314177] radians) for three consecutive
time steps.

Neural Network Controller

The gaze control model is a 3-layer continuous neural
network architecture: (i) an input layer, whose vector size
is determined by the visual feature extraction method, and a
copy of the motor/gaze control units and classification units
at the previous time step; (ii) recurrent hidden layer units;
and (iii) an output layer of motor/gaze control units and
classification units. The activations of the input neurons are
normalised between 0 and 1, however with 0 representing a
fully white visual field, while 1 represents fully black for the
2D grey-scale (as it was done in (Mirolli et al. 2010)). A
random value with a uniform distribution within the range
of [-0.05,0.05] is added to the input activation values in each
time step, in order to take into account that sensor data are
subject to noise.

The values of the input, hidden, and output neurons are
updated using equations 7, 8 and 9 respectively:

yi = gIi; i = 1, ..., n− 1 (7)
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Figure 6. Original
active window area of
soft-toy object
grey-image.

Figure 7. The active
window area after
grey-scale averaging
method was applied.

τiẏi = −yi +

j=k−1∑
j=1

wjiσ(yj + βj); i = n, ..., k − 1 (8)

yi =

j=k−1∑
j=n

wjiσ(yj + βj); i = k, ..., u (9)

In these equations, using terms derived from an analogy
with real neurons, yi represents the cell potential, g is a gain
factor, τi the decay constant. Ii (with i = 1, ..., n− 1) is
the activation of the ith input neuron. Neurons n, ..., k − 1
and k, ..., u are the hidden and output neurons respectively.
wji is the weight of the synaptic connection from pre-
synaptic neuron j to post-synaptic neuron i. βj is the bias
term and σ(yj + βj) is the firing rate, where σ(x) is the
sigmoid function. All input neurons share the same bias
βI , and the same holds for all output neurons βO. The
decay constants, bias terms, weights and gain factor are
genetically specified network parameters. We approximated
the dynamics of differential equation 8 using the standard
forward Euler method with an integration time step ∆T = 0.1.
In the next section, we discuss the three methods that are used
for processing visual stimuli inputs into the neural network
controller.

Visual Feature Extraction The following methods are used
to extract the visual stimuli for the neural network controller
in all the experiments in this paper: the grey-scale averaging
method (Mirolli et al. 2010), ULBP (Ojala et al. 2002) and
HOG (Dalal and Triggs 2005).

We allowed the active vision to dynamically select an
area to be processed per time step and then used one of the
visual extraction methods to process the pixels within the
active window. As such, we still keep to our philosophy of an
active vision model that does not process the entire image but
instead allows the system to actively select features through
the dynamic interaction of sensory-motor components (Croon
2008).

Grey-scale averaging In the grey-scale averaging method,
the coloured image is first converted to a grey-scale image.

The active vision model then takes visual input from a
window of s× s pixels extracted from the grey-image of
m×m in each time step. The window is sub-divided into
k × k input cells and the average value calculated in each cell,
resulting in k2 visual inputs.

Figure 8. Active-ULBP histograms of the cells of the active
window, and the concatenated histograms.

Fig. 6 shows an example active window grey-scale image
patch (i.e. soft toy image) and Fig. 7 shows the average pixels
of the active-window that were input into the neural network.

Active Uniform Local Binary Patterns method ULBP is an
extension of Local Binary Patterns (LBP Ojala et al. 1996)
that considers only uniform patterns. The basic LBP approach
considers the 8 neighbours of each pixel in a fixed rotational
order and assigns 0 or 1 to a bit string if the central pixel
intensity is larger or smaller than its neighbour. This produces
an 8-bit unsigned integer for each pixel, and histograms of
these values over different regions have proved effective in
various computer vision tasks. Many extensions of the basic
LBP approach have been considered, here we use uniform
LBPs. Uniform patterns of texture units are those that have
a maximum of 2 bit-wise transitions, i.e. from 0 to 1. For
instance, in an eight-circle neighbourhood texture unit, bit
patterns 00000000 (0 transition), 00110000 (2 transitions)
are uniform patterns, while non-uniform patterns such as
00010100 (4 transitions) and 00101010 (6 transitions)
are not. In ULBP, there is a separate output label for each
uniform pattern and one output label for all the non-uniform
patterns. Thus, the number of output labels for the mapping of
patterns P is P (P − 1) + 3. For instance, ULBP produces 59
output labels for an eight-neighbourhood texture unit and 243
for 16 circular neighbourhood sampling points (Pietikainen
et al. 2011; Tapia et al. 2014).

However, because of the peculiar nature of active vision
systems and the computational cost of evolutionary methods
in training, we have implemented the ULBP method so that it
will be suitable for the model. For instance, all forms of pre-
processing have to be done within the active window (retina
region) per time step, instead of processing the entire image.
We also have to use a considerably reduced number of cells
(4 cells). We therefore prefer to term it Active-Uniform Local
Binary Patterns (Active-ULBP), because of its adoption to
the Active Vision System. The Active-ULBP algorithm is
implemented as follows:
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Figure 9. Active-HOG histograms of the active window image
patch and the concatenated histograms.

1. An image is presented to the active vision model in
each trial of the evolutionary run.

2. In each time step of a trial:
(a) a Gaussian blur function is used to reduce the
noise within the active window (retina region); (b) the
retina region is divided into 4 cells and a histogram
of uniform patterns of size 59 is constructed for each
cell; (c) the histogram of each cell is normalised with
an L2− norm scheme; (d) the normalised histograms
of all cells are concatenated to form a feature vector of
size 236; (e) the feature vector is combined with the
copies of the movement and categorisation output units
at the previous time step which formed the input vector
for the neural network.

Fig. 8 shows the histograms and the concatenated
histograms of the 4-cells of the active-window of a patch
of the soft-toy image for the Active-ULBP method.

Active Histogram of Oriented Gradients method The HOG
descriptor was originally developed by Dalal and Triggs
(2005) for describing edges and gradients over a local image
region using a sliding window over an entire image. It
computes histograms over dense grids of uniformly spaced
cells and normalises contrast for improved performance. In
their work Dalal and Triggs (2005) used HOG as a feature
descriptor for pedestrian recognition data and used a Linear
Support Vector Machine as the classifier for the normalised
histogram features.

The fundamental idea is that object appearance and shape
over a local region can be characterised very well with
intensity gradients distribution. The image window is divided
into small spatial cells over dense grids. Histograms are
computed for the cells and contrast normalised to form the
feature sets.

However, in the adoption of HOG in our model
we considered two major factors: (i) the computational
complexity of the pre-processing, since evolving a neural
network will only be practicable with lower dimensional

feature vectors; and (ii) suitability for the active vision
concept, which processes a part of the image scene at each
time step. Consequently, the HOG used in our model is a
very simple version of the original algorithm and we prefer to
call it Active-Histogram of Oriented Gradients (Active-HOG)
because of its adoption to the Active Vision System. We list
the complete steps of the Active-HOG algorithm applied each
time step below:

1. compute the gradients for each pixel in the active
window in x and y direction i.e dx and dy

2. divide the active window into 2× 2 cells giving a total
of 4 cells;

3. in each cell compute gradient magnitudes
as

√
dy2 + dx2 and gradient directions as

Θ = arctan( dy
dx );

4. quantize gradient orientations into 9 bins with a bin
size of 40 degrees of orientation space between 0− 360
degrees;

5. add magnitude into each bin;
6. concatenate all histograms into a feature descriptor of

dimension 4 cells × 9 bins giving a feature vector of
size 36;

7. normalise the feature vector with L2− norm, i.e. V =
V
||V || ;

8. input a normalised feature vector into the neural
network along with the copies of motor and
categorisation outputs from the previous time step.

Fig. 9 shows the concatenated histograms of a patch of the
soft toy image of the Active-HOG method.

Evolutionary Algorithm
The free parameters of the agent’s neural controller are
adapted through an evolutionary algorithm using roulette
wheel selection scheme (see Goldberg 1999). The initial
population for each generation of the evolutionary process
consists of 100 or 60 randomly-generated genotypes (for
2D and 3D experiments respectively); sampled from a
uniform distribution in the range [0, 1], each encoding the
free parameters of the corresponding neural controller, which
includes all the connection weights, gain factors, biases, and
the time constants of the hidden neurons. In order to generate
the phenotypes, weights and biases are linearly mapped in
the range [−10, 10] and [−5, 5] respectively, while the time
constants are exponentially mapped into [10−1, 101.8] for
the 2D and into [10−1, 102.2], for the 3D experiments, with
the lower bounds corresponding to the integration step-size
used to update the controller. Generations following the first
are produced by a combination of selection with elitism,
recombination and mutation (Goldberg 1999). For each new
generation, the genotype with the highest fitness value (“the
elite”) from the previous generation is retained unchanged.
The remaining 99 and 59 genotypes of the new generation
for both 2D and 3D tests are formed by randomly selecting
two genotypes from the older generation from the best 70
and 50 genotypes using roulette wheel selection, and a new
genotype is created by combining the genetic material of
these two old genotypes with a probability of 0.3 with cross-
over point selected during the recombination. Mutation which
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entails that a random Gaussian offset is applied to each real-
valued component encoded in the genotype is done with the
probability of 0.05 in the 2D and 0.04 in the 3D. The mean is
0 and its standard deviation is 0.1.

Fitness Function
In each trial of the evolutionary adaptation process, the
artificial eye (active window) is left to freely explore the visual
scene in the first part of the trial. The task of the active vision
agent is to correctly classify an object when it has explored
the image for a sufficient length of time, that is during the
second half of a trial.

The agent is evaluated by the by the fitness function F
as used in (Mirolli et al. 2010), and is comprised of two
components: the first, F1 (t, c) rewards the agent’s ability to
rank the correct category higher than the other categories; the
second, F2 (t, c) rewards the ability to maximise the activation
of the correct unit while minimising the activations of the
wrong units, with both terms given equal weighting:

F =

T∑
t=1

C∑
c=S

(0.5 ∗ F1 (t, c) + 0.5 ∗ F2 (t, c))

T ∗ (C − S)
(10)

F1 (t, c) = 2−rank(t,c) (11)

F2 (t, c) = 0.5 ∗ yt,cr +
∑
w∈W

(
1− yt,cw

)
∗ 0.5

N − 1
(12)

where F1 (t, c) and F2 (t, c) are the values of the two fitness
components at time step c of trial t, rank (t, c) is the ranking
of the activation of the categorisation corresponding to the
correct category (that is, from 0, meaning the most activated
and l, meaning the least activated: where l is 1 less than
number of categories), yt,cr is the activation of the output
corresponding to the current (correct) category, yt,cw is the
activation output of the wrong category w at trial t and time
step c (where W is the set of wrong categories). N is the
number of categories, T is the number of trials, C is the
number of time steps in a trial and S is the time step in which
we start to compute fitness.

Implementation
Due to the high cost of evolving the main parameters
of the neural network and evaluating each phenotype
for multiple trials and time-steps, we employ a parallel
computing cluster. We use High-Performance Computing
Wales infrastructure (Super Computing Wales, see SCW
2019)). The Message Passing Interface (MPI) (Gropp et al.
1999) is used to parallelise the implementation using a

root and individual sub-processes. Each individual runs its
evaluation as a separate process and the respective fitness
is communicated to the root process, which in turn carries
out the evolution and subsequent generation of a new set of
controllers.

Results
In this section, we present the results and analysis for all
the experiments in the 2D and the 3D environments (i.e.
object and indoor-outdoor categorisation). First, we present
the fitness graphs for all runs and the best run for each
visual extraction method. Second, we show the results of
the re-evaluation tests. In all experiments, categorisation
performance is based on the percentage of times in which
the categorisation unit corresponding to the correct category
is the most activated in all trials of the re-evaluation.

For each experiment we statistically compare the 3
extraction methods.

To compare the three techniques, we apply ANOVA tests,
with a p-value<0.05 and a more stringent p-value<0.01.
Where a significant difference is detected, further pairwise
evaluation of the three possible pairs is performed using t-
tests. Bonferroni correction is used in the t-tests to account for
the greater chance of a significant result occurring by chance
among the three methods.

To further evaluate the dynamic behaviour of the systems,
we use the Modified Geometric Seperability Index (MGSI),
for a quantitative behavioural analysis. The Geometric
Separability Index (GSI) was originally proposed by
Thornton (1998), while the MGSI is a modified version of
the GSI and was proposed by Mirolli et al. (2010). The GSI
computes the percentage rate at which the nearest pattern
of each experienced pattern belonged to the same category;
however the MGSI is more demanding in that it takes into
account not only the nearest neighbour but all the stimuli
belonging to the same category. We chose to use this more
demanding measure because the nature of our problem is very
similar to that of (Mirolli et al. 2010). The MGSI is defined
by the equation below:

MGSI(P ) =

∑
s∈P

∑
n∈Ns

ICs(n)

|Cs|

|P |
Which is defined as the average proportion of patterns

belonging to the same category, that are in the |Cs| nearest
patterns (computed from Euclidean distance), where |Cs|
represents the total number of patterns in the same category
as pattern s. Where P is the set comprising all the patterns,
|P | is the cardinality of the set P , Cs is the set of all patterns
belonging to the same category as pattern s (s does not belong
to Cs), Ns is the set of the |Cs| patterns nearest to pattern s,
and ICs (n) is the indicator function of set Cs, that returns 1
if n is in set Cs and 0 otherwise. If the system is intelligently
guiding the visual system we would hope to see an increase
in the MGSI over time during the evaluation, indicating that it
is moving to locations that improve the discrimination ability
(Ferrauto et al. 2009; Tuci et al. 2010).

2D iCub Images
This section presents the results of the three methods of visual
representation for active vision on 2D images from the iCub
camera. In the 2D experiment, we performed 20 evolutionary
runs, with 10 runs for each fold of the 2-fold cross validation
and each evolutionary run lasted 3000 generations. We then
re-evaluated the best genotypes of the last 1000 generations
of the evolutionary runs for the categorisation task for the
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Figure 10. 2D iCub images: The fitness graphs of the best
evolutionary runs of the three visual extraction methods in the
2-fold cross-validation.

Figure 11. 2D iCub images: Shows the graph of the mean
(average) of all fitness in each generation of the 3000
generations for 20 evolutionary runs and their positive (+ve stdev)
and negative (-ve stdev) standard deviation in each generation
for the three methods of visual extraction.

three methods of visual extraction. This is simply because the
last 1000 generations should have a relatively higher fitness
pattern than the other generations and as a result yield better
performance in the categorisation tasks.

The best performing genotype in each run for all the
evolutionary runs are presented and used in our statistical
analysis.

Figure 10 (for the best runs) shows that fitness patterns
for the three methods improve over all generations, while the
grey-scale and Active-ULBP show greater improvement than
the Active-HOG.

Also, observing standard deviation from the mean for the
three methods in (Figure 11), one can deduced that all three
methods produce a best fitness that is very close to the mean
in the first few generations; however larger deviations are
observed in the remaining generations. Moreover, Active-
HOG exhibits a larger deviation from the mean at an earlier
stage than the other two methods. Overall, the fitness patterns
of all runs seems to be closer to the mean for the Active-ULBP
than for the other two methods, especially from approximately
700 generations onwards. By contrast, the fitness patterns for
the grey-scale and Active-HOG methods are very similar.
This suggests that the fitness patterns for all runs of the
Active-ULBP in general seem to progressively improve in all
generations as compared to the other two visual extraction
methods.

In the re-evaluation, a total of 700 trials were done, with
each image of each fold (175 images) presented 4 times to
the agent with a random initial eye position in each trial.

The results of revaluation are presented in Table 2 for the
best performing genotypes (20 genotypes) in all evolutionary
runs (20 runs)for the three visual extraction methods.

The ANOVA shows a significant difference between the
three methods (p=0.0106), Table 3. Further evaluation with
Bonferroni corrected t-tests shows a significant difference
between the Active-ULBP and the Active-HOG, but not
between the grey-scale and either of the other two methods
(Table 4). The good performance of Active-ULBP, though
not significantly better than the grey-scale, may lend support
to ULBP as an effective feature descriptor for texture
information. The performance of Active-HOG also shows
that it can be an effective feature representation for images
characterised by some level of structural information.

Also, we computed the MGSI of the best performing
re-evaluated evolved genotypes (3 genotypes) for all three
visual extraction methods for 1750 trials during which the
agent experiences the five different categories (i.e. soft toy,
remote control set, microphone, board wiper and hammer)
of the 35 different samples for each category, 10 times each
with different initial eye positions. For each type of visual
extraction method of the sensory patterns the MGSI has been
calculated for each of the 100 time steps of a trial (Figure
12).

The results show that the MGSI increase for all visual
extraction methods and for all objects, i.e. the system moves
away from very ambiguous to less ambiguous stimuli. The
MGSI never reached a value of 1, so the system never
managed to discover completely unambiguous stimuli for any
of the visual extraction methods. The Active-ULBP method
generates less ambiguous stimuli (i.e. the highest peak in the
MGSI graph) than the grey-scale and Active-HOG methods,
however grey-scale is more consistent. For the Active-HOG,
the system did not exhibit as great a tendency to move towards
less ambiguous stimuli when compared with the other two
methods. For some objects, the system managed to generate
less ambiguous patterns than for other objects. This means
the system produced more discriminative patterns for those
objects than for others. On the whole in the 2D experiments,
the MGSI results indicates that system used some form of eye
movements in improving the categorisation tasks.

Table 2. 2D iCub images: The statistics of the best performing
re-evaluated genotypes (20 genotypes) in all runs for each visual
extraction methods.

Visual extraction methods Max Average Worst Stdev
Grey-scale averaging 99.65 95.77 87.26 ±4.13
Active-ULBP 99.77 96.82 91.75 ±2.49
Active-HOG 98.16 92.87 77.81 ±5.26

Table 3. 2D iCub images: The results of the ANOVA test.
ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 167.29 2 83.65 4.93 0.0106 3.16
Within Groups 967.33 57 16.97
Total 1134.62 59

Table 4. 2D iCub images: The significant test results using a
paired t-test with test conditions of ∗p-value<0.05 (Bonf. corr =
0.0167) and ∗∗p-value<0.01 (Bonf. corr = 0.003).

Compared Groups Mean
Difference t-value p-value

Active-ULBP and Greyscale 1.05 0.81 0.2862
Active-ULBP and Active-HOG 3.95 3.03 0.0052∗
Greyscale and Active-HOG 2.9 2.23 0.0354
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(a) Modified Geometric Separability (MGSI) of the stimuli provided by the
greyscale averaging method

(b) Modified Geometric Separability (MGSI) of the stimuli provided by the
Active-ULBP method.

(c) Modified Geometric Separability (MGSI) of the stimuli provided by the
Active-HOG method.

Figure 12. 2D iCub images: Modified Geometric Separability
(MGSI) of the stimuli provided by the visual extraction methods
for the 2D images: an increase over time indicates the agent is
moving the system towards regions that increase discrimination
ability.

3D Object Categorisation
We performed 6 evolutionary runs for each of the visual
extraction methods, and each run was for 5000 generations.

However, in this experiment, we assessed the performance
of the system using the best evolved genotypes of 100
consecutive generations that had a relatively higher and more
stable fitness pattern as compared to the other generations in
all evolutionary runs. This differs from the 2D experiment,
where we took a more systematic approach by re-evaluating
the best genotypes of the last 1000 generations. The number
of genotypes chosen for re-evaluation has been reduced

Figure 13. 3D object categorisation: The fitness graphs of the
best evolutionary runs of the three visual extraction methods.

Figure 14. 3D object categorisation: Shows the graph of the
mean (average) of all fitness in each generation of the 5000
generations for 6 evolutionary runs and their positive (+ve stdev)
and negative (-ve stdev) standard deviation in each generation
for the three methods of visual extraction.

in order to keep the re-evaluation time within reasonable
limits, considering the high computational costs of the 3D
experiments.

Figure 13 shows that the fitness pattern of the
three methods of visual extraction generally goes up
in all generations of the best evolutionary runs for the
three methods, with that of Active-HOG showing more
improvement than the other two.

Also, comparing the pattern of fitness of all runs of the
three visual extraction methods (Figure 14), one can observe
that the mean fitness pattern of the Active-HOG is generally

Table 5. 3D object categorisation: The statistics of the best
performing re-evaluated genotypes (6 genotypes) in all runs for
each visual extraction methods.

Visual extraction methods Max Average Worst Stdev
Grey-scale averaging 93.76 74.47 66.19 ±12.01
Active-ULBP 88.03 68.53 49.36 ±13.32
Active-HOG 99.48 98.07 95.08 ±1.9

Table 6. 3D object categorisation:The results of the anova test
ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 2930.97 2 1465.49 13.51 0.0004 3.68
Within Groups 1626.59 15 108.44
Total 4557.56 17

Table 7. 3D object categorisation: The significant test results
using a paired t-test with test condition of ∗p-value<0.05 (Bonf.
corr=0.0167) and ∗∗p-value<0.01 (Bonf. corr=0.003)

Compared Groups Mean
Difference t-value p-value

Active-HOG and Greyscale 23.6 3.93 0.0014∗∗
Active-HOG and Active-ULBP 29.54 4.91 0.0002∗∗
Greyscale and Active-ULBP 5.94 0.99 0.2371
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(a) Modified Geometric Separability (MGSI) of the stimuli provided by the
greyscale averaging method

(b) Modified Geometric Separability (MGSI) of the stimuli provided by the
Active-ULBP method.

(c) Modified Geometric Separability (MGSI) of the stimuli provided by the
Active-HOG method.

Figure 15. 3D object categorisation: Modified Geometric
Separability (MGSI) of the stimuli provided by three visual
extraction methods for the 3D objects: an increase over time
indicates the agent is moving the system towards regions that
increase discrimination ability.

higher than that of the other two methods in all generations
of the evolutionary runs, while that of the grey-scale is a bit
higher than that of the Active-ULBP. This suggest that Active-
HOG fitness values over all generations in all evolutionary
runs are generally higher than those of the other two methods.

In the re-evaluation, the system was tested on the four
categories of object used in the training by randomly scaling
and rotating each object presented in a trial. The objects were
randomly scaled within the range [-15%, 15%] relative to
their original size and rotated in the range [−10◦, 10◦] on the
y axis, with a uniform distribution. A total of 200 trials were

performed, with each object presented 50 times to the agent
in all trials and the eye was initialised in each quadrant of the
iCub gaze space.

The re-evaluated best 100 genotypes, shows that the best
performance was by the Active-HOG method, followed by
the grey-scale method and then the Active-ULBP (Table
5). Statistical evaluation of these results using ANOVA
(Table 6) shows a highly significant difference between the
results (p = 0.0004). Further investigation using pairwise,
Bonferroni corrected t-tests (Table 7) shows a significantly
better performance of the Active-HOG method than both of
the other 2 methods.

The fact that Active-HOG performed better than grey-scale
and Active-ULBP in the 3D object classification scenario may
be due to the more structural nature of object categorisation
problem. This boosts the credentials of HOG as an effective
feature descriptor for applications that involve structures,
e.g. object detection (Zaytseva et al. 2012) and human
recognition (Dalal and Triggs 2005). The fact that Active-
ULBP also demonstrated good performance, though not as
good as the ggrey-scale, may also provides further evidence of
ULBP as an effective feature descriptor in many applications
(Pietikainen et al. 2011; Tapia et al. 2014).

The MGSI has been computed for the best performing
re-evaluated evolved genotypes (3 genotypes) for the three
visual extraction methods in all evolutionary runs. This was
done for 200 trials during which the agent experienced the
stimuli from the four categories (i.e. sphere, cube, cone, and
torus), where each object was uniformly and randomly scaled
between [10%, -10%] to the original size and rotated within
the range [−10◦, 10◦] relative to the original orientation with
50 different initial eye positions. For each type of visual
extraction method using the sensory patterns, the MGSI was
computed for each of the 100 time steps of a trial (Fig. 15).

The MGSI increased for grey-scale, showing that the
system moved away from very ambiguous to more
discriminative stimuli but showed only modest improvement
for the Active-ULBP. The Active-HOG generated less
ambiguous stimuli than grey-scale and Active-ULBP but
generally did not show improvement over time and even
deteriorated in the case of cone object, and also exhibited
oscillatory behaviour in most time steps for all the objects.
This might have been due to the reduced ambiguity provided
by the Active-HOG stimuli from the start, and, as such, there
was not much need in this case to use the eye movements to
reduce ambiguity. On the whole in the 3D object classification
experiments, the active vision system showed some form of
movements in improving the discriminative tasks, but Active-
HOG seems not to evolve movement strategies because it did
very well in the early stages of the evolution.

3D Environment Categorisation
We performed 12 evolutionary runs, i.e. 6 runs for each of
the 2-fold cross-validation, and each run lasted for 5000
generations. However, in the re-evaluation, we assessed the
performance of the system using the best evolved genotypes
of 100 consecutive generations that had a relatively higher
and more stable fitness pattern as compared to the other
generations in all evolutionary runs as was mentioned in the
previous section for the 3D object categorisation.
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Figure 16. 3D indoor-outdoor classification: The fitness
graphs of the best evolutionary runs of the three visual extraction
methods.

Figure 17. 3D indoor-outdoor classification: Shows the
graph of the mean (average) of all fitness in each generation of
the 5000 generations for 12 evolutionary runs and their positive
(+ve stdev) and negative (-ve stdev) standard deviation in each
generation for the three methods of visual extraction.

The fitness graphs of the best evolutionary runs (Figure
16) and all runs (Figure 17) for all three visual extraction
methods shows that they exhibit a common fitness pattern
in which fitness growth reached close to the optima value
of 1.0 in the early stage of the evolutionary run from about
generation 1000.

Table 8. 3D indoor-outdoor classification: The statistics of
the best performing re-evaluated genotypes (12 genotypes) in all
runs for each visual extraction methods.

Visual extraction methods Max Average Worst Stdev
Grey-scale averaging 88.31 69.82 58.55 ±9.74
Active-ULBP 91.48 75.17 54.78 ±11.23
Active-HOG 99.15 85.39 70.34 ±9.74

Table 9. 3D indoor-outdoor categorisation: The results of the
anova test.

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 1502.35 2 751.17 7.13 0.0027 3.29
Within Groups 3475.31 33 105.31
Total 4977.66 35

Table 10. 3D indoor-outdoor categorisation: The significance
test result using paired t-test with test conditions of
∗p-value<0.05 (Bonf. corr. = 0.0167) and ∗∗p-value<0.01 (Bonf.
corr.=0.003).

Compared Groups Mean
Difference t-value p-value

Active-HOG and Greyscale 15.57 3.72 0.0010∗∗
Active-HOG and Active-ULBP 10.22 2.44 0.0237
Greyscale and Active-ULBP 5.35 1.28 0.1742

(a) Modified Geometric Separability (MGSI) of the stimuli provided by the
grey-scale averaging method

(b) Modified Geometric Separability (MGSI) of the stimuli provided by the
Active-ULBP method.

(c) Modified Geometric Separability (MGSI) of the stimuli provided by the
Active-HOG method.

Figure 18. 3D indoor-outdoor classification: Modified
Geometric Separability (MGSI) of the stimuli provided by the
three visual extraction methods for the 3D indoor and outdoor
environments: An increase over time indicates the agent is
moving the system towards regions that increase discrimination
ability.

The early convergence to optimal solutions of the three
visual extraction methods as reflected in the training may be
due to the system formulating easy solutions to the problem
because of the small number of images used and trials that
were done in order to reduce the time complexity of the
evolutionary method. Therefore, the importance of the re-
evaluation is to test the robustness of the model by introducing
more variability into the system. For examples, changing
the initial position of the eye in each trial, rotations of
the environment/stimuli and increasing the number of trials.
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This is not possible in the evolutionary runs because of
computational cost. For this reason, the complexity of the
problem was in the generalisation of the skills learned by
the evolved genotypes to unseen images coupled with the
additional variability introduced in the re-evaluation.

We re-evaluated the 100 best evolved genotypes of the
three visual extraction methods of all evolutionary runs for
200 trials during which the agent experienced 10 different
indoor and outdoor environments (2 classes) in 2-fold cross-
validation (20 images), with each environment uniformly and
randomly rotated within the range [−40◦, 40◦] to the original
orientation with 20 different initial eye positions. We present
the result of the best performing genotypes (12 genotypes)
from the 12 evolutionary runs (Table 8). As shown in the
table, even though reasonable results were obtained in the re-
evaluation stage, the lowered performance did not reflect the
early optima fitness reached by the system (grey-scale, Active-
ULBP and Active-HOG) in the evolutionary (training) stage.
Active-HOG shows the best performance, followed by Active-
ULBP and then the grey-scale method. The ANOVA shows
a highly significant difference between these means (Table
9) and further investigation using Bonferroni corrected t-tests
shows a significant difference between the Active-HOG and
grey-scale, but not between the other method combinations
(Table 10).

The improvement shown by Active-ULBP in the
environment categorisation problem may be due to the fact
that ULBP is a good feature descriptor for detecting local
binary texture patterns in texture images (Ojala et al. 2002).
HOG may also work well for texture images, especially if
there are a lot of structures in the images (Dalal and Triggs
2005).

Finally for the indoor-outdoor environment categorisation,
the MGSI of the best performing re-evaluated evolved
genotypes (3 genotypes) of the three visual extraction
methods of all evolutionary runs was computed for 200 trials
during which the agent experienced 10 different indoor and
outdoor environments, with each environment uniformly and
randomly rotated within the range [−40◦, 40◦] to the original
orientation with 20 different initial eye positions. For each
type of visual extraction method of the sensory patterns, the
MGSI was computed for each of the 100 time steps (Fig. 18).

The fact that the MGSI did not show much improvement
either for all conditions (visual extraction methods) or the
two environments (indoor and outdoor) shows that the system
did not make much use of coordinated sensory-motor control
in order to disambiguate the ambiguous visual information.
This actually was not a problem given the performance of
the three visual extraction techniques. The system must have
relied heavily on the internal states of the controller for the
integration of sequences of experienced sensory states over
time.

Discussion

In this paper we have investigated three visual extraction
methods, that is, the grey-scale averaging (Mirolli et al.
2010), Uniform Local Binary Patterns (Ojala et al. 2002),
and Histogram of Oriented Gradients (HOG, Dalal and Triggs
2005), in the context of an active vision system.

Our first objective is to show that evolutionary based active
vision systems can work in more complex scenes. This was
demonstrated by using the grey-scale averaging method for
more complex natural images taken from the camera of the
iCub robot, as compared to synthetically generated hand-
written italic-letter images with simple white background
that were used in Mirolli et al. (2010). We also used this
grey-scale method in the 3D iCub robot simulator platform
for object categorisation and indoor-outdoor categorisation
tasks. This was a more complex scenario, when compared to
the (Mirolli et al. 2010) letter experiment and our 2D iCub
images experiment. In our 3D environment experiments, the
agent (i,e. iCub) was confined within the environment, with
the virtual camera located in the right eye position, which
was extended to encourage more exploration of the scene. For
instance, in the 3D indoor-outdoor environment categorisation
experiment, the agent could only see a small fraction of the
environment at the same time, encouraging the development
of the ability to integrate sensory information over time to
complete the task.

In addition to categorisation performance, the active vision
system using the grey-scale method was able to use sensory-
motor coordination for learning in the 2D images and 3D
object categorisations. However, the system could not use
intelligent control for learning the categorisation of the 3D
outdoor-indoor environments and might have relied heavily on
the internal states of the network, given the good performance
of the system.

The second objective is to show that this active vision
system can be further enhanced with pre-processing
techniques for categorisation tasks.

In the 2D-image categorisation experiment, our proposed
pre-processing technique, Active-ULBP had better average
performance than the grey-scale, but was not significantly bet-
ter. However, the grey-scale had better average performance
than the Active-HOG, but also was not significantly better.

On the other hand, in the 3D object categorisation, Active-
HOG showed better average performance than grey-scale,
and was significantly better. While, the grey-scale out-
performed the Active-ULBP in average performance but was
not significantly better.

Also, in the 3D indoor-outdoor environment categorisation,
Active-HOG showed better performance than the grey-scale
and was significantly better. While, the Active-ULBP was
also better on the average than the grey-scale, but was not
significantly better.

However, the active vision system, using pre-processing
techniques has not demonstrated much use of intelligent
control in the categorisation tasks, as evidenced by the MGSI.
The Active-ULBP showed some evidence of intelligent
control in the 2D and 3D object categorisation, and no
evidence in the indoor-outdoor classification. While, Active-
HOG showed some evidence of learning in the 2D but no
significance evidence in the 3D experiments.

We will further discuss in the next sections: (i) the visual
representation and active vision categorisation tasks; (ii)
dynamics of the categorisation process.
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The Visual Representation and Active Vision
Categorisation Tasks
We investigated an active vision system based on Mirolli et
al. (2010) for categorisation of more complex 2D images and
3D objects and indoor-outdoor environment categorisation.

All conditions in the categorisation tasks were the
same, apart from the visual extraction methods (grey-scale
averaging, ULBP, and HOG). Although, the size of visual
inputs varied significantly between grey-scale (25) and ULBP
(236), the number of inputs for HOG (36) was closer to that of
the grey-scale; which works the best in some of the exeriments.
This implies the number of inputs was not the only factor in
the categorisation performance.

We used the iCub simulator platform as the basis for our 3D
experiments. However, because of computational complexity,
we only made use of 2 degrees of freedom for the right
eye (pan and tilt) as we are not interested in calculating any
depth information, and have excluded the vergence. Also for
simplicity and because of the computational overhead, we
excluded head, neck and other proprioceptive information
from our experiments, where extending to the neck joints
introduces redundancy into the degrees of freedom. For
instance, in the 3D object categorisation, the objects were
small enough that moving too much would lead to the objects
being lost completely. Of course, if we introduce the torso
then we could look at the object from different view points,
but this will also introduce additional computational cost for
the evolutionary method and goes well beyond the aims of
this work. The focus is therefore on the eye movements alone
exploring a scene.

In the experiment of object categorisation in 3D, the first
challenge was the randomly varied size and orientations in
each trial, and the second challenge was the high ambiguity
of the stimuli of the objects that were investigated (i.e, sphere,
cube, cone, and torus). Despite, the complexity of the problem,
the three visual extraction methods that were investigated
performed well.

On the other hand, the complexity of the indoor and
the outdoor environment classification may be due to the
following reasons: (i) In contrast to the object categorisation
problem in which categorisation involves one category of
object in each trial, environment categorisation can involve
many objects within the same environment, which may or
may not belong to shared category, and each of which may
be in different spatial locations. Apart from this structural
information, there is also textural information to be processed.
(ii) The system therefore may have to use the totality of
contextual information within each environment to complete
the discrimination task, coupled with random rotation in each
trial.

In spite of the complexity of the problem, the active vision
system also performed well over the course of testing for all
the visual extraction methods under investigation.

The improvement in performance of Active-HOG in
the 3D object categorisation may be due to the more
structural nature of the object categorisation problem. Equally
the good performance of Active-HOG also in indoor-
outdoor environment categorisation may have been due to
more structural information in the datasets. Typically, in
most indoor and outdoor environments, the objects and

structures are more conspicuous. For instance, a typical indoor
environment may have conspicuous objects, such as tables,
chairs, beds, and so on, while outdoor environments may
have structures, such as houses, cars, trees and the like. On
the other hand, the fact that Active-ULBP performed well in
categorisation tasks irrespective of the environmental context
(2D images or 3D indoor-outdoor) is evidence that ULBP
is a good feature descriptor for detecting patterns in texture
images, and a good feature descriptor in many applications
(Pietikainen et al. 2011; Tapia et al. 2014).

Dynamics of the Categorisation Process
The categorisation performance of an active vision system
may not depend as much on the complexity of the system
design as on the extent to which the agent may use the
dynamic interaction of the sensory-motor components to
exploit regularities that pertain to the different categories
in the sensor input-space. We investigated the dynamics using
the Modified Geometric Separability Index (MGSI) in order
to analyse the extent to which the active vision system used
its intelligent motor control to experience sensory stimuli that
could be unambiguously associated with a particular category
for each of the three visual extraction methods in the input
space.

In the 2D environment in particular, the MGSI results
showed that all three visual extraction methods generated
sensory patterns that allowed the system to move from very
ambiguous to less ambiguous stimuli. Active-ULBP also
provided less ambiguous stimuli (i.e. the highest peak in the
MGSI graph) than the other methods. However, grey-scale
was a little bit more consistent over time than Active-ULBP.

In the 3D object categorisation, grey-scale was able to use
sensory-motor coordination over time to experience more
discriminative stimuli than the other two visual representation
methods. Active-ULBP also showed some slight use of
motor responses in moving to less ambiguous stimuli over
time. However, even though Active-HOG generally had less
ambiguous stimuli from the start, it was not to a great extent
able to use eye movements to experience less ambiguous
sensory stimuli. The low ambiguity of Active-HOG in most
time steps may be due to the highly structural nature of the
problem, and this may also have enhanced its recognition
capability. That said, the inability to use sensory-motor
coordination to experience less ambiguous stimuli over time,
might have been due to the low ambiguity experienced by
the system from the outset, and if the system can get good
results from random eye movements it won’t tend to evolve
intelligent control. In this context, there was little need to
make use of eye movements to reduce ambiguity over time.

Also, the occurrence of oscillatory behaviour by the Active-
HOG stimuli, may in part be due to the best genotypes
that were used for the computation of the MGSI. As
the use of HOG only transforms the input pixels into a
different representation, and of itself does not perform any
classification. Hence the agent was learning to perform the
classification but was not relying much on active vision to do
so. This points to the need for further work to investigate the
best combinations of representation and active learning.

On the whole, in both the 2D and 3D object categorisation,
grey-scale used more eye movements than the other
two methods to influence the performance of the active
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vision system. Active-ULBP also showed more use of eye
movements to reduce visual ambiguity in 2D than in 3D and
outperformed Active-HOG in both environments.

On the other hand, in both indoor and outdoor environment
categorisation experimental contexts, the active vision system
seems to have relied heavily on the internal dynamics of
the neural network controller. This was because there was
only a slight improvement in the MGSI values for the three
visual extraction methods over time. Since the performance of
the three visual extraction methods was good, the system
must have used the internal states to integrate the very
ambiguous perceptual information over time. However, we
are not committed to this view and this may be a subject of
future research.

Also, the probable reason for the poor learning of
the active vision system as compared to the object
categorisation experiments may be due to the different
context of categorisation. In the object categorisation
experiments there was only one object to be categorised in
an image/environment, whereas in the indoor and outdoor
environment categorisations there was more variability. For
example, there were many structures, each of varying sizes
and spatial locations. There were also other variables such as
texture, and some of the variables may not be peculiar to a
particular environment, which is to say that some structures
are common to both indoor and outdoor environments. It may
therefore be difficult for the system to discover regularities
that are particular to an environment (indoor or outdoor)
through dynamic sensory-motor interaction alone.

Conclusion and Future Works
We have extended the architecture described in (Mirolli et al.
2010) using grey-scale averaging feature extaction method

to more complex scenes for 2D object categorisation and 3D
object and outdoor-indoor environment categorisation.

We further sought to improve the categorisation
performance of the active vision system with pre-processing
techniques using Uniform Local Binary Patterns (ULBP,
Ojala et al. 2002), and Histogram of Oriented Gradients
(HOG, Dalal and Triggs 2005), in the 2D and the 3D
environments.

In each experiment the performance of the 3 visual
extraction methods were compared statistically, and the
dynamics was evaluated using the MGSI measure of
separability.

The results showed a mixed picture, dependent on the
particular problem. For the 2D iCub images, the Active-ULBP
showed the best average performance, and was significantly
better than the other methods at the p = 0.05 level, but
not at the p = 0.01 level, and all methods showed some
evidence of intelligent control of the eye movement in the
MGSI. For the 3D object experiment Active-HOG showed a
significantly better performance than the other two methods
at the stricter significance level of p = 0.01, but seemed to
require less intelligent control due to high discrimination
in the early stages of the re-evaluation trials. For the 3D
environment experiments, again the Active-HOG showed
the best performance, significantly better than the grey-scale
method at the p = 0.01 level, but not significantly better than
the Active-ULBP method, and the behaviour of the system

exhibited virtually no evidence of intelligent selection of
stimuli, according to the MGSI results.

In summary, the investigation has demonstrated that
evolutionary active vision system using greyscale averaging
extraction method can work in complex scenes. However,
the optimal choice of feature extaction technique is highly
dependent on the specific problem. Also, the evidence for
intelligent control is also dependent on the specific problem
and choice of pre-processing, with some systems showing
good performance, but little evidence of guiding the agent
towards more easily discriminated stimuli. If the agent can
solve the problem without intelligent movement the system
will not evolve such behaviours. Thus, we demonstrate that
simple pre-processing step can also increase categorisation
performance in some scenarios, and that the reliance on active
control is lower as the agents (non-active) categorisation
performance increases. Such understanding could help focus
research on developing the best combination of active and
non-active components.

It should be noted that other form of behavioural analyses
can be performed apart from the Modified Geometric
Separability Index (MGSI) to understand more of the
categorisation process. However, the focus of this research
paper is in investigating the impact of representation on active
learning and classification accuracy and not on underlying
phenomena beyond the categorisation process.

In the future, it would be interesting to evaluate more
of the behaviours of the currently used pre-processing
techniques by using other behavioral analyses tools, so as
to understand more of their categorisation process. Also, to
better understand the internal dynamics of the system, neural
analysis can be carried out to understand the patterns of the
neuron activation over time using the best evolved genotypes
of the three visual extraction methods used for the MGSI
in the re-evaluation stage and under the same experimental
conditions.

Similarly, one can fix the eye movement for the outdoor-
indoor environment classification, so as know if the
performance of the system (grey-scale, ULBP and HOG)
was mainly as a result of internal states of the system. If the
performance still remains at a level comparable to the system
that uses adaptive eye movement, it will be a further indication
of systemic reliance on the internal states of the controller to
complement sensory-motor coordination.

Furthermore, one can investigate other pre-processing
techniques for the problem at hand to know the best
combinations of representation and active learning. For
example, convolution neural networks have shown excellent
results on object recognition and other problems in computer
vision, but adapting them and their training to the active
vision framework is challenging, particularly due to the high
computational cost of the evolutionary training. Another area
for future work is to implement the active vision system on
a physical robotic hardware platform in order to see if the
system could replicate the same level of performance in the
real system. Although, we tried to simulate the conditions of
the real world as much as possible, it is not automatic that the
algorithms will perform as well in the real system.
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