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1  | INTRODUC TION

Computer‐aided skin condition assessment has been mostly ad‐
dressed using two‐dimensional texture analysis techniques on skin 
images or coarse geometrical features extracted from the skin's 
three‐dimensional macro‐structures. The first trend ignores the 
three‐dimensional nature characterising most skin conditions, and 
the latter mainly deals with geometrical features that are not fine 
enough to capture skin structures at the meso‐ and micro‐scales. 

However, advances in three‐dimensional surface imaging have re‐
cently opened up the possibility of capturing the fine geometrical 
structures of human skin, along with its reflectance properties. 
These can now be recovered with unprecedented quality and reso‐
lution (down to the level of individual pores).

The methods proposed in this work aim at exploiting these ad‐
vances and revisiting the formulation of texture analysis as a three‐
dimensional problem. For data collection, we have used a light stage 
to capture high‐resolution facial normal fields along with their 
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Abstract
Background: This paper investigates the use of a light stage to capture high‐resolu‐
tion, 3D facial surface textures and proposes novel methods to use the data for skin 
condition assessment.
Materials and Methods: We introduce new methods for analysing 3D surface texture 
using high‐resolution normal fields and apply these to the detection and assessment 
of skin conditions in human faces, specifically wrinkles, pores and acne. The use of 
high‐resolution normal maps as input to our texture measures enables us to investi‐
gate the 3D nature of texture, while retaining aspects of some well‐known 2D tex‐
ture measures. The main contributions are as follows: the introduction of three novel 
methods for extracting texture descriptors from high‐resolution surface orientation 
fields; a comparative study of 2D and 3D skin texture analysis techniques; and an ex‐
tensive data set of high‐resolution 3D facial scans presenting various skin conditions, 
with human ratings as “ground truth.”
Results: Our results demonstrate an improvement on state‐of‐the‐art methods for 
the analysis of pores and comparable results to the state of the art for wrinkles and 
acne using a considerably more compact model.
Conclusions: The use of high‐resolution normal maps, captured by a light stage, and 
the methods described, represent an important new set of tools in the analysis of 
skin texture.
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reflectance properties. The collected data are photo‐realistically 
rendered and presented to the general public for annotations indi‐
cating the presence of the studied skin conditions. These constitute 
the ground truth upon which the proposed methods are applied in 
order to learn models for detecting and assessing facial skin condi‐
tions. We compare our three methods on this new data set, including 
BTF Texton results as a gold‐standard method, and classical 2D‐tex‐
ture measures (with 3D enhancements) as a baseline method.

2  | LITER ATURE RE VIE W

2.1 | 2D texture analysis

Texture characterisation is key to a number of visual computing‐re‐
lated applications such as object recognition, content‐based image 
retrieval and computer graphics. A number of efficient and powerful 
2D texture analysis methods have been proposed in the literature. 
These methods can be divided into three categories:

•	 Statistical methods which assume that the texture is fully deter‐
mined by the spatial distribution of pixel values in the image. 
Examples of statistical methods include the use of the Grey 
Level Co‐occurrence Matrix,1 the Autocorrelation function, the 
Symmetric Auto‐correlation function (SAC) and its extensions 
(SRAC and SCOV)2 and the well‐known Local Binary Patterns 
(LBPs).3-5

•	 Structural methods that consider texture as a structured layout 
of texture primitives also called texture elements. Such methods 
divide into geometrical and topological approaches. In geometri‐
cal approaches, coarse geometrical properties such as perimeter 
and compactness are used to characterise texture primitives.6 
Topological approaches use various filtering methods to extract 
primitives such as lines, edges and blobs. The texture descriptor 
is then made of different properties of these extracted primitives, 
namely number, orientation and density.7,8

•	 Model‐based methods in which the texture is represented with ei‐
ther a probabilistic model or a projective decomposition along a 
set of basis functions. These representations require the determi‐
nation of a certain number of parameters or coefficients to charac‐
terise the texture. The Markov model‐based methods constitute 
an important subset of these methods. Hidden Markov Models 
(HMMs) have been extensively used to characterise texture.9,10 
Cohen et al used a Gaussian Markov Random Field (GMRF) to 
model rotated and scaled texture.11 Methods using sub‐band de‐
composition techniques include the wavelet transform,12,13 the 
steerable pyramid14 and the Gabor Bank of filters.13,15,16

The approach chosen generally depends upon the aspect of texture 
one wishes to capture. All 2D methods make the implicit assumption 
that apparent texture is independent of illumination and viewpoint. 
While this assumption can be approximated when studying smooth 
surfaces, the apparent texture of surfaces involving rough relief is 
more obviously illumination‐ and viewpoint‐dependent.

2.2 | 3D surface texture analysis

The appearance of a natural surface is not only determined by intrin‐
sic reflectance properties (colour or albedo), but is also considerably 
affected by the interaction between geometrical structure, light and 
viewpoint. Various methods have been proposed to capture aspects 
of this variability. In the rest of this paper, we will refer to these types 
of texture methods, responsive to illumination/view changes, as 3D 
Surface Texture. These can be categorised into three families: 3D 
Texton‐based methods, Bidirectional Texture‐based methods and 
Geometrical methods.

•	 3D Texton‐based methods: The notion of a 3D Texton was in‐
troduced by Leung and Malik 17 and has been widely used and 
extended to represent natural surfaces’ visual appearance. The 
main idea is to simultaneously encode the two attributes that 
most affect how a surface is visually perceived; these are the 
surface normals and reflectance properties. To characterise a 
given surface's texture, the approach exploits filter responses 
on several images of the same surface taken in different imaging 
conditions (illumination and viewpoint). In addition, these filter 
responses are quantised into a reduced set of texture proto‐
types. This results in a dictionary of tiny texture patch repre‐
sentations called 3D textons that cover all possible local surface 
configurations.

•	 Bidirectional Texture‐based methods: In contrast to the 3D texton‐
based methods, the Bidirectional Texture Function (BTF) operates 
at a higher level of abstraction representing surface properties 
that affect the apparent texture. This makes them useful for an‐
alysing as well as for synthesising natural texture (when used for 
analysis, they are generally combined with a texton‐based quanti‐
sation layer). The notion of a BTF was first introduced by Dana et 
al 18 and has been called the most advanced and accurate repre‐
sentation of natural surfaces visual properties to date.19 The BTF 
models a surface's texture as a function of illumination and view‐
point. It is a seven‐dimensional function and represents texture as 
a function of the spectral band, the planar position, the view and 
light directions:

where rx and ry are the horizontal and vertical positions, respectively, 
� is the spectral band, �i and �i are the elevation and azimuthal an‐
gles of the light direction, respectively, and �v and �v the elevation 
and azimuthal angles of the viewing direction, respectively.

BTF measurement generally involves a complex capture set‐up in 
which automated devices coordinate changes in either the lighting 
conditions or the camera viewpoint or, in some systems, both.18,20-

22 Although BTF is extensively used in Computer Graphics, gener‐
ally for photo‐realistic texture synthesis and rendering purposes, 
it is also used to create and evaluate texture features that are ro‐
bust to imaging conditions. Dana et al analysed skin texture using 

(1)BTF
(
rx,ry,�,�i ,�i ,�v,�v

)
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a BTF made of more than 3500 images to discriminate between 
skin disorders such as acne and psoriasis.23

Suen and Healey introduced the notion of dimensionality surface as 
a measure of appearance variability due to the effects of view‐
point and illumination changes on fine surface geometry.24 From 
the CURet Bidirectional Texture database,18 they applied a set of 
multi‐band correlation functions Rij (m,n) on each image of each 
material sample ( i  and j being spectral bands and 

[
m;n

]
 an image 

region).
Caputo et al introduced the KTH‐TIPS2 material database (11 ma‐

terials each with four different imaging conditions) and used it 
to test the robustness of various state‐of‐the‐art texture de‐
scriptors to pose and illumination change.25 They experimented 
with including various numbers of pose and illumination condi‐
tions in their training set, and testing with samples from unseen 
pose/illumination conditions. One of their findings was that the 
more sample groups they add to the training set the better the 
classification method performs. More recent studies include 
the work of Liu et al in which they propose learning discrimi‐
native models for determining optimal texture filters for given 
illumination conditions.26 The authors collected a BTF database 
using a dome of controllable LEDs and a fixed camera. The ac‐
quired database consists of 90 material samples captured under 
6 spectral bands and 25 lighting directions.

Geometric methods: The methods presented in the two preceding 
sections are image‐based as the intrinsic geometry of the ma‐
terial's surface is not known. The considerable number of image 
samples needed by these methods in order to capture the three‐
dimensional properties of the studied surfaces makes their use 
demanding in storage capacity. Some recent works have looked 
at characterising 3D texture directly from measured fine geom‐
etry, providing a more compact representation of the intrinsic 
three‐dimensional properties. Smith et al propose computing a 
co‐occurrence matrix from the orientation of measured surface 
normals.27 Their method involves quantising the normals’ orien‐
tation into a discrete space. For each normal, the slant and tilt an‐
gles are discretised in three equal intervals. This result in 9 levels 
upon which the co‐occurrence matrix is constructed. Sandbach et 
al extracted Local Binary Pattern features from two different 2D 
representations of 3D geometrical data to classify 3D facial action 
units.28 The two representations are a simple depth map and the 
Azimuthal Projection Distance Image. This latter representation 
encodes the 3D surface orientation in a 2D greyscale image, by 
projecting each surface normal onto the tangent plane and taking 
the L norm of the projected point as a grey level.

2.3 | 3D skin micro‐structure imaging

There are a family of techniques which concentrate not on gen‐
eral 3D surface texture, but on the specific problem of human skin 
micro‐structure, motivated by medical (dermatological) applica‐
tions and the increasing demand for photo‐realistic solutions from 
the game and film industry. Cula et al used a bidirectional imaging 

system to capture the micro‐structure of skin regions affected by 
diverse dermatological disorders (psoriasis, acne, contact dermatitis 
etc)23 and released these 3500 images as the Rutgers Skin Texture 
Database. They used two different mechanical set‐ups that allowed 
them to capture skin regions in various viewpoints and light direc‐
tions. Hong and Lee29 used a mobile phone and a mirror system to 
capture and analyse acne in 3D. Zhou et al30 captured 3D data of 
skin surfaces using a photometric stereo device and analysed them 
using differential geometry features and a linear classifier to classify 
malignant melanomas and benign lesions.

Ma et al use a light stage to capture three‐dimensional facial skin 
structure down to the level of the pores.31 They combined this with 
a polarised light technique to separate the diffuse and specular sur‐
face properties. The resulting data are in the form of normal maps. 
They have shown that specular normal maps capture most of the 
surface detail while the diffuse maps are more subject to subsurface 
scattering. These polarisation and wavelength‐dependent measure‐
ments constitute very useful data for understanding how the human 
skin interacts with light as well modelling its micro‐structure.

Many improvements and applications have been added to the 
capture system since. Graham et al proposed a measurement‐based 
synthesis of facial microgeometry.32 The authors measure the micro‐
structure of skin patches using a twelve‐light hemisphere able to emit 
cross‐polarised light. The acquired skin micro‐structure images are 
processed to extract displacement maps. Another skin reflectance 
measurement using a light stage is conducted by Weyrich et al.33 
They augment their data with an extra skin subsurface scan using 
a fibre optic spectrometer which is a device allowing measurements 
of subsurface properties such as haemoglobin or glucose concen‐
trations. The authors also fitted the analytic BSSRDF (Bidirectional 
Subsurface Reflectance Distribution Function) proposed by Jensen 
et al34 to their measured data and conducted analysis on the rela‐
tions between the BSSRDF parameters (scattering and absorption 
coefficients) and various attributes of the subject such as age and 
skin type.

PRIMO (http://www.gfm3d.com/) is a commercial solution for 
3D skin measurements used in some automated skin disruption de‐
tection studies such as Choi et al.35 It is a hand‐held optical‐based 
system using structured light and a high‐resolution sensor allowing 
measurements of skin micro‐topography and roughness with a field 
of view of 45×30×30mm. The Anterra 3D (http://mirav​ex.com/
antera-3d/) is another hand‐held commercial system for 3D skin 
imaging and measurement. Messaraa et al36 compared skin health 
measurements such as roughness and wrinkle length/depth from 
Anterra 3D with a 2D imaging and image analysis (using DermaTOP 
and image analysis on parallel‐polarised images). The results showed 
good correlation between the 3D and 2D measurements, and the 
ability to detect changes due to application of a cosmetic product.

2.4 | Literature review summary

In the previous sections, the state of the art in 2D/3D texture 
analysis and human skin micro‐structure imaging techniques were 

http://www.gfm3d.com/
http://miravex.com/antera-3d/
http://miravex.com/antera-3d/
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introduced. It is clear that advances have been made in face imaging 
technology as it is now possible to capture the skin's three‐dimen‐
sional micro‐structure down to the level of pores. However, it seems 
that these newly available possibilities for data capture are not fully 
exploited on the analysis side, as most of the studies presented 
above use either two‐dimensional image‐based texture features or 
rather coarse three‐dimensional surface properties. One of the few 
studies that exploited the skin three‐dimensional micro‐structure 
used a BTF representation 18 which takes into account changes in 
illumination and viewpoint, but is still an image‐based representation 
as the underlying surface geometry is not known.

3  | 3D ME A SURES FOR SKIN TE X TURE 
CHAR AC TERISATION

In this paper, we introduce here three novel 3D surface texture 
analysis methods: the rotation fields pyramid; Local Orientation 
Patterns; and Multi‐scale Azimuthal Projection distance. These take 
full advantage of the recent advances made in photometric stereo 
imaging techniques. In contrast to image‐based methods, these op‐
erate directly on the skin geometrical fine structure captured in the 
form of surface normal fields captured using a light stage. We com‐
pare our novel 3D methods with both classic 2D texture descriptors 
and simplistic 3D extensions of these.

3.1 | Extensions of existing 2D descriptors to 3D

Before introducing our three proposed 3D texture descriptors, we 
describe here how a number of standard 2D feature extraction 
methods can be extended to 3D analysis, in order to provide a set 
of comparable baseline methods. We experiment with two widely 
used 2D texture descriptors, namely the Gabor filter bank 16,37 and 
rotation invariant LBPs.2 Although the normal map estimated by the 
light stage can be represented in a 3‐channel image, with the RGB 
channels being used to store the normal's x, y and z components, 
operating on them with filters etc does not correctly account for the 
non‐linear manifold on which the normals lie. Instead of calculat‐
ing the texture measures introduced above directly on the normal 

maps, we propose deriving these from either the slant‐tilt space or 
the tangent space.

3.1.1 | Slant‐tilt space

The normal's slant and tilt are extracted at each position (Figure 1). 
This results in a map which contains two values corresponding to the 
normal's elevation and azimuth at each position. We keep the tan‐
gent values so the slant‐tilt map is normalised in 

[
−1,1

]
. Considering 

n=
(
nx,ny,nz

)
 denoting a normal, the slant and tilt tangent values are 

obtained with:

3.1.2 | Tangent space

In this approach, the normals are considered as elements of a 
Riemannian manifold and these are unfolded about the local means 
using a logarithmic mapping (Figure 1). This results in a tangent map 
whose elements are 2‐dimensional coordinates and are obtained with:

where �= �

2
−�. �0 and �0 are the spherical coordinates of the local 

normal mean �. At each neighbourhood, the local normal mean is 
the one that minimises the mean of the geodesic distances to all the 
other normals in the same neighbourhood.

3.2 | 3D surface texture characterisation

We adopt a multi‐scale scheme where at each level, the texture filter 
(either Gabor filters 16,37 or rotation invariant LBPs2) is applied on 
either the slant‐tilt map or the tangent map. This results in two re‐
sponses, one for each channel. The responses are normalised to the 
interval 

[
0,1

]
. Assuming Rc,l denotes the response on the channel c at 

the level l , the normalisation is performed with:

(2)tan�=
n2
x
+n2

y

nz
,tan� =

ny

nx

(3)log��0 ,�0

�
n�,�

�
:

⎧
⎪⎨⎪⎩

x� =k cos � sin
�
�−�0

�

y� =k cos �0 sin �−sin �0 cos � cos
�
�−�0

�
)

F I G U R E  1   On the left, the normal's 
slant σ and tilt τ. On the right, projection 
of a normal onto the local tangent 
plane
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The histograms of the two normalised responses are computed 
and concatenated to form the texture descriptor at level l . The same 
process is repeated at the subsequent level with a down‐sampled 
version of the current normal map. As previously mentioned, a con‐
volution should not be done directly on the normals (because they 
do not occupy a linear space), so the down‐sampling is done in the 
tangent plane with a Gaussian low pass, followed by projecting the 
result back into the original 3‐dimensional space using the manifold 
exponential chart.

3.3 | Feature extraction and classification

For each sample, we build a 3‐level multi‐scale feature pyramid. 
The Gabor filter bank and R‐LBPs are applied on the albedo sam‐
ples, and their extensions to 3D are used on the corresponding 
normal map samples in the slant/tilt and tangent spaces. The fea‐
ture pyramid size depends on the texture measure used and their 
parameter settings. SVM Ranking is used to reduce the number 
of features for all the descriptor to 64. A more detailed presen‐
tation of the experimental procedure and data set are given in 
Section 4.

3.4 | Proposed Method I: Rotation fields pyramid

The first proposed new approach is based on multi‐resolution ro‐
tation fields. Rotation Fields are a very good means of capturing 
high frequency information from surface orientation. Nehab et al 
employed these to correct the three‐dimensional position of 3D 
mesh vertices with accurate high frequency data from normal maps 
captured with photometric stereo.38 Frequency separation has been 
extensively used in the literature to represent two‐dimensional 
texture.39,40 This generally involves a pyramidal multi‐resolution 
representation, which allows the capture of texture information at 
different scales. At each level of the pyramid, the low frequency in‐
formation is separated from the high frequency; the former is related 
to global shape, and the latter can be a good representation of local 
texture. We propose a multi‐resolution analysis scheme, where at 
each level of the pyramid the low frequency information in the nor‐
mal map is separated from the high frequency in the form of rotation 
fields.

3.4.1 | Rotation fields

Let N denote a normal map and Ni,j, the normal vector at the pixel 
pi,j. A smoothed version Ns of N is found by computing at each pixel 
either a weighted geodesic or Euclidean mean over a neighbourhood 
with a radius r . A post‐normalisation of the resulting normal is re‐
quired in the case of the Euclidean mean. The weights wi,j are deter‐
mined by a Gaussian with a same radius r as the neighbourhood. The 
geodesic mean is defined as:

With d
(
Ni,j,N

′
)
 the geodesic distance between Ni,j and N′. 

Pennec41 show that this can be recursively approximated by:

Introducing the Gaussian weights wi,j, gives:

where Exp�t and log�t are the exponential and logarithm map 
about the geodesic mean �t. The rotation field R is obtained by 
computing the rotation to apply to the original normals to match 
the smoothed ones at each pixel. An axis‐angle representation 

[
e⃗,𝜃

]
 

can be adopted to characterise each rotation with four parameters 
(three for the axis e⃗ and one for the angle �). Denoting Re⃗ as the 
axis component of the rotation field and R� the angle component, 
we obtain:

The rotation axis Re⃗ can be normalised to a unit vector so the 
rotation parameters can be brought down to three:

For visualisation purposes, these three parameters are encoded 
in an RGB image. The smoothing radius r controls the level of de‐
tail extracted. Small values of r allow the extraction of very fine 
skin texture (down to the level of pores) while higher values tend 
to capture medium frequency structures such as acne and wrinkles. 
Figure 2 shows the rotation maps and corresponding low frequen‐
cies of a wrinkly normal map patch computed with three different 
radius values.

3.5 | Rotation fields pyramid

Given a normal map N, we perform a sub‐band decomposition by 
building an image pyramid where at each level, the low frequency 
information is separated from the high frequency. The initial step 
applies a low pass filter G0, namely a Gaussian (with geodesic or 
Euclidean averaging). The result is a normal map L0 representing the 
low frequency surface variation of the original one. Then, the high 
frequency information is extracted by calculating the rotation field 
that brings it back to the original normal map. After extracting the 
high frequency in the form of rotation field H0, the low frequency 
normal map L0 is then down‐sampled and passed on to the next level 
where the same process is repeated.

(4)R
c,l

normalized
=

Rc,l−minRc,l

maxRc,l−minRc,l (5)�=argminN�

∑
pi,j∈Ω

d
(
Ni,j,N

�
)

(6)�t+1=Exp�t

(
1

card (Ω)

∑
Ω

log�t

(
N (i,j)

))

(7)�t+1=Exp�t

(
1

card (Ω)

∑
Ω

wi,j log�t

(
N (i,j)

))

(8)Re⃗
i,j
=Ni,j×N

�

i,j
and R𝜃

i,j
=Ni,j ⋅N

�

i,j

(9)Ri,j=
Re⃗
i,j

||Re⃗
i,j
||R

𝜃
i,j
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In the two‐dimensional case, most of the studies that use a 
pyramidal representation extract the high frequency information 
in several sub‐bands. The main motivation for this is to capture 
different spatial configurations and orientations of the texture. 
For example, Heeger and Bergen39 employed steerable filters to 
capture anisotropic texture with the presence of elongated or ori‐
ented structures. However, in contrast to individual pixels in a 2D 
image, each surface orientation in the normal map encodes infor‐
mation about the surface gradient within its immediate neighbour‐
hood. So, at each level of the pyramid, we use three sub‐bands 
that correspond to the three components of the rotation vector, 
respectively. Figure 3 shows a 3‐level rotation field pyramid of a 
wrinkly normal map patch.

3.5.1 | Riemannian distance on the rotations group 
SO3

After having represented the three‐dimensional surface texture as 
an n‐level pyramid of rotation fields, a metric is needed in the rota‐
tion space in order to analyse their spatial distribution. This problem 
has been well studied by Pennec42 Rotations can be represented not 
only by axis‐angle, but also by 3×3 orthogonal matrices which form 
the Rotation Group SO3 and constitute a smooth manifold.42 This 
means that the set of rotation matrices is differentiable and support 
a Riemannian metric allowing to compute distances between rota‐
tions. If 1 and 2 are two rotation matrices and R1 and R2, respec‐
tively, the corresponding axis‐angle representations (the conversion 
can be easily done with the Rodriguez formula), the Riemannian dis‐
tance between 1 and 2 is given by42:

Although the composition of rotations can be calculated by the 

dot product of the two matrices 
(
R2◦R1∼T

2
1

)
, Pennec42 showed 

that it is more advantageous to use unit quaternions as an intermedi‐
ate step because the result is easier to differentiate. The idea is to 
convert the axis‐angle representation of the rotations to unit quater‐
nions, multiply these and convert back into axis‐angle representa‐
tion. Let R be an axis‐angle rotation (axis denoted by Re⃗ and angle by 
R� and its corresponding unit quaternion Q represented by its scalar 
s and vectorial v parts, the conversions are given by:

And for two unit quaternions Q1

(
s1,v1

)
 and Q2

(
s2,v2

)
, the non‐

commutative multiplication is given by:

Equations 10, 11 and 12 give:

Replacing s and v from equation 11 in equation 13 yields:

(10)d:
SO3×SO3→ℝ

(
1,2

)
→d

(
1,2

)
=
(
R2◦R1

)

(11)Q:

⎧
⎪⎨⎪⎩

s=cos
R𝜃

2

v=Re⃗ sin
R𝜃

2

and R:

⎧
⎪⎨⎪⎩

R=2a tan 2 (�v� ,s)
Re⃗=

v

sin 𝜃

2

(12)Q1 ∗Q2:

⎧
⎪⎨⎪⎩

s1s2−v1 ⋅v2

s1v2+s2v1+v1×v2

(13)d
(
1,2

)
=atan2

(||s1v2+s2v1+v1×v2
|| ,s1s2−v1v2

)

(14)

d
�
1,2

�

=a tan 2

⎛⎜⎜⎜⎝

����R
e⃗

2
cos

R𝜃

1

2
sin

R𝜃

2

2
+Re⃗

1
cos

R𝜃

2

2
sin

R𝜃

1

2
+

�
Re⃗
1
×Re⃗

2

�
sin

R𝜃

1

2
cos

R𝜃

2

2

���� ,
cos

R𝜃

1

2
sin

R𝜃

2

2
−

�
Re⃗
1
⋅Re⃗

2

�
sin

R𝜃

1

2
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F I G U R E  2   Rotation maps (top row) and corresponding low frequencies (bottom row) with different radius values (r=7,15,30) of a wrinkly 
normal map patch
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For the sake of simplicity, we assume that the two rotation axes 
Re⃗
1
 and Re⃗

2
 are parallel. This simplifies equation 14 to:

In our application, this simplification does not alter the cap‐
tured information in terms of surface irregularities. Indeed, on the 
rotation map, each pixel represents the rotation of the original sur‐
face normal from the smooth one and hence is characterised by 
two parameters: the axis and the angle of rotation. The angle quan‐
tifies how much the two normals deviate from each other whereas 
the axis determines the plane in which the rotation happens. Now 
when we compute the distance between two rotations, we are 
more interested in capturing the deviation component than the ori‐
entation component of the rotation. This leads us to assume that 
the two rotations have the same axis which considerably simplifies 
the calculation without losing the deviation information we want 
to capture.

3.5.2 | Feature extraction and classification

For a given Normal Map patch, we compute an l ‐level rotation 
field pyramid. For each level of the pyramid, we compute at each 
pixel the distances between the corresponding rotation and each 
of the neighbouring pixels within a N×M neighbourhood using 
Equation 15. This gives a vector of length N×M−1 at each pixel. 
We complete this vector with the rotation vector at the central 
pixel yielding then a vector N×M+2 long. A vector quantisation 
algorithm is used to map each of these N×M+2 vectors to a sca‐
lar value. In this work, we use K‐means which introduces another 
parameter k representing the number of clusters. Each cluster is 
associated with a symbolic label (a scalar value). We then compute 
the histogram of the resulting map of symbolic labels. The size of 
the histogram is given by the number of clusters k. The process is 

repeated at each level in the pyramid, and the histograms from all 
the levels are concatenated to form the l×k feature vector associ‐
ated with the patch.

The method is tested on classifying the three skin conditions 
from our collected 3D facial data set. We experimented with two 
different K‐means configurations, k=100 and k=200, yielding, re‐
spectively, with a 3‐level pyramid, 300 and 600 long feature vec‐
tors. SVM ranking is then used to reduce both feature vectors to 
64 components. Also, various sample sizes were tried: 20×20 pixels, 
50×50 pixels and 80×80 pixels. Section 4 gives a more detailed pre‐
sentation of the data set and experimental set‐up.

3.6 | Proposed new method II: 
Local orientation patterns

The second approach we propose for analysing 3D surface texture 
from normal maps is based on the generalised Texture Spectrum,43 
introduced by Wang and He, and defined as the distribution of 
texture entities called Texture Units over an image. In the original 
formulation, a Texture Unit is a 3×3 pixel neighbourhood forming 
a window of 8 pixels (pi)1≤i≤8 surrounding a central one p0. Each of 
the 8 surrounding pixels may be associated with 3 possible patterns 
defined by the function (fi)1≤i≤8:

The value of the Texture Unit associated to p0 is determined from 
the 8 surrounding patterns by:

(15)d
�
1,2

�
=a tan 2

⎛⎜⎜⎝
sin

�
R�

1

2
+

R�

2

2

�
,

cos
�
R�

1

2
+

R�

2

2

�
,

⎞⎟⎟⎠

(16)(fi)1≤i≤8=

⎧
⎪⎪⎨⎪⎪⎩

0 if pi<p0

1 if pi=p0

2 if pi>p0

(17)f
(
p0
)
=

8∑
i=1

fi×3
i−1

F I G U R E  3   A 3‐level Rotation Fields 
Pyramid of a Wrinkly Normal Map 
Patch
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The notion of Texture Spectrum can be generalised by extend‐
ing the definition of a Texture Unit to n possible patterns between 
two pixels and an arbitrary number of N pixels uniformly surrounding 
a central pixel p0 with an arbitrary radius of r . In these cases, the 
Texture Unit function (Equation 17) becomes:

The patterns (fi)1≤i≤N can be defined with any discrete two‐di‐
mensional function that has only n possible values in ℤ+.

A Texture Unit is associated with each pixel contained in the 
image, and the Texture Spectrum is defined as the distribution of 
Texture Units over the whole image. This is represented by a his‐
togram counting the frequency of each possible Texture Unit value 
over the image.

The main task here is to find good pattern functions that can rep‐
resent the normals’ orientation distribution over a Texture Unit. We 
propose two pattern functions for representing the normals’ orienta‐
tion distribution. The first function computes the dot product of two 
normals and compares the result with a threshold. The second func‐
tion compares the azimuthal and polar angles of the normals directly.

3.6.1 | 1st pattern function

The first pattern function we propose evaluates the dot product be‐
tween the central normal and one of the surrounding normals, and 
compares the result to a threshold. Formally, it is given by (with a 
threshold �):

With this pattern function, the number of bins needed for the 
histogram is given by 2N as in Local Binary Patterns. As the normals 
are normalised in 

[
−1,1

]
, the dot product depends only on the angle 

between the two normals. However, the problem here is to find a 
good threshold. It is clear that a good threshold depends on the local 
orientation distributions in the normal map; a good threshold for 
a dense and/or more or less uniform normal map may not be suit‐
able for a sparser normal map. The threshold choice also depends 
on the application; for the same normal map, we may use different 
thresholds depending on whether we want to capture high or low 
frequency variations (although this would need to be combined with 
an adequate radius setting).

We have tried two techniques for choosing the threshold. The 
first averages the dot products of all pairs of normals. The second 
method computes a threshold map by locally averaging the dot 
products between each normal in a Texture Unit with the cen‐
tral normal. Our experiments show that the first method achieves 
better results than the second, although a good threshold map 
may provide additional robustness in cases where the distribution 

of the normal orientations varies considerably from one place to 
another. Figure 4 shows the Local Orientation Pattern Images of 
three skin patches using the first pattern function with a radius of 
1, 2 and 4.

3.6.2 | 2nd pattern function

In the second proposed pattern function, the azimuthal and polar 
angles of the normal are compared directly. The function has four 
possible values and is defined by:

�i and �i are, respectively, the azimuthal and polar angle of the 
normal i. Here, the required size of the histogram is given by 4N

. This function does not need the extra threshold parameter that 
the first one does, although it generates a much bigger feature 
vector. While the first function generates (for the standard 8‐pixel 
neighbourhood) a feature vector of length 256, this function gen‐
erates a 65536‐element feature vector. Figure 5 shows the Local 
Orientation Pattern Images of three skin patches using the second 
pattern function with a radius of 1, 2 and 4. The visualisations are 
produced by converting the binary pattern at each pixel to a scalar 
value.

3.6.3 | Feature extraction and classification

A glance at the LOP (Local Orientation Patterns) images in Figure 4 
and Figure 5 gives a first idea of the behaviour difference between 
the two proposed pattern functions. The second pattern function 
tends to produce LOP images with higher frequency. This is probably 
due to the level of detail generated by using four patterns instead 
of just two. The important point here is that when using the second 
pattern function for capturing low frequency properties of a sur‐
face, a certain amount of noise, depending on how fine the surface 
structure is, can be detected. In our applications, we think that it is 
more appropriate to use this second function for high frequency skin 
properties such as pores and some lines and wrinkles, while the first 
function is more appropriate for capturing lower frequency condi‐
tions such as acne.

3.7 | Proposed Method III: Multi‐scale Azimuthal 
projection distance

The third novel method we propose is an extension of the Azimuthal 
Projection Distance Image (APDI) introduced by Sandbach et al as 
a 3D surface descriptor for facial Action Unit detection.28 In their 

(18)f
(
p0
)
=

N∑
i=1

fi×n
i−1

(19)f𝜏
i

�
0,i

�
=

⎧
⎪⎨⎪⎩

0 if0 ⋅i<𝜏

1 if0 ⋅i≥ 𝜏

(20)fi
�
0,i

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if 𝜃0<𝜃i and 𝜙0<𝜙i

1 if 𝜃0<𝜃i and 𝜙0≥𝜙i

2 if 𝜃0≥𝜃i and 𝜙0<𝜙i

3 if 𝜃0≥𝜃i and 𝜙0≥𝜙i
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work, the authors used the APDI for coarse scale and extracted 
facial macro‐structure. However, while these facial macro‐struc‐
tures are adequate for discriminating Action Units, they do not hold 
enough surface fine‐scale detail to accurately characterise the skin 
conditions we are interested in (wrinkles, large pore and acne). We 
thus extend the APDI with three main additions:

•	 We work with local surface normal means instead of a fixed sur‐
face mean as reference for the azimuthal projection.

•	 We have modified the APDI formula to take into account the sur‐
face normal azimuthal orientation, which is not considered in the 
original formulation.

•	 We have introduced a multi‐resolution analysis scheme in order to 
capture different scales of skin deformations.

In the original formulation,28 the APDI is a 2D image where the pixels 
are the projections of the surface normals onto the tangent plane. Given 
a surface normal at a pixel (i,j), the azimuthal projection is given by:

where �i,j and �i,j are the polar and azimuthal angles of the surface nor‐
mal, respectively, and 𝜃̄i,j and 𝜙̄i,j are the polar and azimuthal angles of 
the mean surface normal over a fixed neighbourhood around (i,j), re‐
spectively. Finally, k� = c

sin(c)
 with c= sin𝜃̄i,jsin𝜃i,j+cos𝜃i,jcos

[
𝜙i,j− 𝜙̄i,j

]
.

Sandbach et al fixed a constant mean surface normal 
(
0,0,1

)
 (z

‐axis direction) which leads to 𝜃̄= 𝜋

2
, 𝜙̄=0 and c= sin�i,j. Thus equation 

21 become:

Each pixel value of the APDI is given by the L2 norm of 
(
xi,j,yi,j

)
:

3.7.1 | Modified APDI

As stated above, in the original formulation, the authors set a con‐
stant surface normal mean 

[
0,0,1

]
 over the whole face, thus project‐

ing about a constant vector across the face. A direct consequence of 
(21)

xi,j = k� cos 𝜃i,j sin
[
𝜙i,j− 𝜙̄i,j

]

yi,j = k�
{
cos 𝜃̄i,j sin𝜙i,j−sin 𝜃̄i,j cos 𝜃i,j cos

[
𝜙i,j− 𝜙̄i,j

]}

(22)
xi,j = k� cos �i,j sin�i,j

yi,j = k� cos �i,j cos�i,j

(23)APDIi,j=

√
x2
i,j
+y2

i,j

F I G U R E  4   Local Orientation Pattern 
of skin normal maps with different radius 
using the first pattern function
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this is the presence of considerable low frequency information in the 
APDI, as the mean surface normal constitutes the reference about 
which the normals are projected (the tangent plane that the normal 
are projected onto is the plane orthogonal to the mean surface nor‐
mal). While this is suitable for coarse features such as facial Action 
Units, it would introduce notable low frequency bias to the fine skin 
structures we are interested in. Thus, we compute at each pixel a 
local mean surface normal over a specified neighbourhood and use 
it as projection reference. Hence, in this work we use equation 21 
instead of the simplified versions of Sandbach et al

Figure 6 shows some example outputs from the original and our 
proposed modified APDI. On the output image from the original 
APDI, the low frequency is still very noticeable whereas in the modi‐
fied version only the high frequency information is kept.

Another modification made to the original APDI formulation is 
the introduction of the azimuthal orientation of the surface normal 
in Equation 23 which only takes into account the polar orientation. 
This is illustrated in Figure 7, where the mean surface normal is as‐
sumed to be aligned to the z‐axis. It is easy to see that the distance 
r from the centre of projection, which corresponds to the original 
formula, stays constant for all normals with the same polar angle � 

even though the azimuthal angle � varies. This is overcome by chang‐
ing Equation 23 to:

This corresponds to the arc c in the projection plane going from 
the x‐axis to the projected point and varies with � as well as �.

Figure 8 shows the difference between using the L2 norm (dis‐
tance from the centre of projection) or the arc from the X‐axis. In the 
first case (L2 norm), the APDI appears less contrasted in comparison 
with the second case (arc) which presents more disparity and hence 
will be more discriminative as shown in the classification results in 
Section 4.

3.7.2 | Multi‐resolution scheme

We employ a multi‐scale APDI scheme for analysing the 3D skin 
texture from dense surface orientations. For a given normal map, 
a multi‐scale APDI pyramid is built by computing the normal map's 
APDIs at different resolutions. This involves scaling (down‐ or up‐
sampling) the normal map. Since the surface normals do not satisfy 

(24)APDIm
i,j
=arctan2

(
xi,j,yi,j

)√
x2
i,j
+y2

i,j

F I G U R E  5   Local Orientation Pattern 
of skin normal maps with different radius, 
using the second pattern function
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the linearity condition required by classical convolution methods, we 
use a geodesic‐based normal map scaling algorithm.

We use Riemannian differential geometry elements to introduce 
a new metric (geodesic distance) which will allow us to perform lin‐
ear operations on the normals. We assume the normals to be on a 
Riemannian manifold and compute all linear operations on a tangent 
plane that is chosen to be constant for all the normals.42 Let Exp� and 
Log� be the Riemannian Exponential and Logarithm operations with 
� as projection axis, the linear combination of N normals (ni)1≤i≤N with 
coefficients (�)1≤i≤N can be computed as:

By the definition of the exponential mapping, the result will al‐
ways be a unit vector. Our scaling algorithm is based on Equation 25. 
As we are only interested in down‐sampling, we present an overview 
of the down‐sampling algorithm below.

3.7.3 | Algorithm 1: Normal map down‐
sampling algorithm

The full implementation includes border checking and index 
checking which has been omitted here for brevity. We have tested 
the proposed method by comparing a normal map with the result 

of down‐sampling and up‐sampling it back. The geodesic method 
achieves 0.027 mean angular error, while using a classical sampling 
method on each channel and renormalising back the result gives a 
mean angular error of 0.183.

To characterise the 3D skin texture, we build a multi‐resolution 
pyramid of APDIs by down‐sampling the normal map to different 
levels. At each level, the APDI is re‐computed from the correspond‐
ing down‐sampled normal map. The high levels contain higher fre‐
quency details adequate for texture analysis. The lower levels lose 
high frequency detail, but the low frequency changes related to the 
overall shape are highlighted. Figure 9 shows examples of image out‐
put of the modified multi‐resolution APDI for 3 skin patches with 
presence of wrinkles, large pores and acne, respectively. It is inter‐
esting to notice how, at different scales, the level of high frequency 
information that is captured changes. For example, considering the 
patch with acne, one can see that on the first level, only the fine skin 
structure is captured. It is clear that stopping the texture extraction 
at that level would capture only partial information about the skin 
disruption and would certainly miss the big skin spots. These are 
captured better by the subsequent levels as shown Figure 9.

(25)f
(
ni,�i

)
=Exp�

(
N∑
i=1

�i×Log�

)

F I G U R E  6   Example of output from the 
original and modified APDI

F I G U R E  7   The distance from the centre of projection r is the 
same for all the normals with the same polar angle, while the arc c 
from the X− axis varies with both the azimuthal and polar angles

Inputs: normal map N, scale factor S, window size [u,v] 
nw = width(N)/S 
nh = height(N)/S 
for i=1 to nw 
 for j=1 to nh 
 tmp = 0 
 w = i-u/2 
 for k=1 to u 
 y = j-v/2 
 for l = 1 to v 
 tmp = tmp + Logμ(N(w,y)) 
 y = y+1 
 end 
 w = w+1 
 end 
 M(i,j) = Expμ(tmp/(u*v)) 
 end 
end 
Return: down-sampled normal map M
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F I G U R E  8   Example of output from 
considering the L2 norm (original) and 
the arc (modified)

F I G U R E  9  A four level APDI Pyramid for 3 Skin Patches
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3.7.4 | Feature extraction and classification

To extract features from a given normal map patch, the multi‐resolu‐
tion APDI pyramid is built. Then, a grey level histogram is computed at 
each level of the pyramid and concatenated together. This produces 
a relatively big feature vector depending on the number of levels and 
the histogram resolution (eg number of bins). For example, an 128‐
bin histogram with a 4‐level pyramid will produce a feature vector of 
length 512. This can be reduced using feature selection techniques.

4  | E XPERIMENTAL SET‐UP

4.1 | Data set

The algorithms described in this paper are intended to work with 
data acquired in a light stage. A light stage is a 3D surface acqui‐
sition device first proposed by Debevec et al31 which is to date 
the most advanced set‐up for capturing surfaces’ fine structure. 
Existing 3D face data sets that use photometric stereo include the 
Photoface database 44 and the 3D Relightable Facial Expression 
(ICT‐3DRFE) database.45 While the first was captured with low‐
cost cameras, the latter is captured using a light stage. Despite 
providing highly detailed 3D data, the ICT‐3DRFE database is not 
suitable for this work as the age range and skin types covered by 
the data set is limited.

To cover a wider age range and skin type, we have collected a 
new data set using our own light stage. The capture and processing 
of the acquired data are detailed here.46 Briefly, the data set com‐
prises facial captures from 50 subjects ranging in age and skin con‐
dition. The subjects’ ages ranged from 19 to 68 years old. In addition 
to the facial images, various extra information about the subjects 
(age, sex, height, weight, eye colour, hair colour, makeup, ethnic or‐
igin etc) were collected. Male participants were more represented 
than female, with 41 men and 9 women. Various ethnic groups were 
represented, although the majority were Caucasian.

Each subject was captured from 3 directions (front, left and 
right), and the resulting textures were stitched together using a 
Poisson blending algorithm. The geometry is captured from 8 SLR 
cameras and is calculated across the 3 views, giving 24 images in 
total. 42 LEDs arranged on a geodesic dome are used to provide gra‐
dient pattern illumination, providing an additional 13 photometric 
images per view. Polarising filters are used on half of the photomet‐
ric images in order to remove specular reflections. In total, 63 images 
are captured per subject and used to create the geometry, diffuse 
and specular texture maps, diffuse and specular normal maps.

4.1.1 | Region segmentation

Each face was segmented into 14 regions using a 3D template (set of 
landmarks) manually adjusted on the face (Figure 10). As all process‐
ing (analysis or synthesis) is done on the measured normal maps, this 
segmentation is projected on the 2D texture space of each of the 
3 photometric poses using the corresponding camera parameters.

For each region, we first project its corresponding landmarks 
onto each of the poses using the camera parameters and a visibility 
calculation. This results in a set of 2D points in the texture space on 
each pose. We then use a winding number algorithm47 to compute 
the polygon formed by this set of points for each pose. This poly‐
gon is used as a mask for the corresponding region in a given pose. 
Figure 11 shows an example of region mask construction of the left 
cheek on the frontal pose.

4.2 | Data annotation

For data annotation, an experiment was conducted in which human 
participants were presented with skin patches from different regions 
of the face and asked to rate them on a scale of 1 to 5 according to 
the presence and visibility of wrinkles, acne and pores. We considered 
three regions of interest: cheek, forehead and eye corner, as these are 
the regions in which the skin conditions we are interested in occur 
most. All faces were segmented using the generic template shown in 
Figure 10. A photo‐realistic animation was rendered for each patch 
showing it at different angles with a fixed point light. The photo‐real‐
ism of this animation was critical to the rating process as the apparent 
texture of the skin is strongly affected by the lighting and viewing con‐
ditions. Figure 12 shows two skin patches rendered with two different 
viewing angles and the difference in apparent texture is clearly evident.

Our rating platform was set as a web application (Figure 13). The 
pre‐rendered animation of each skin patch was played to the partic‐
ipant at least once before any rating could be entered. The partici‐
pant has the option to re‐run the animation as many times as they 

F I G U R E  1 0   Template used to segment the captured 
face in regions of interest
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wish and to change the viewing angle manually using a slider control. 
To reduce potential ordering bias, the sequence allocated to each 
participant is randomised.

We assume that most of the skin conditions we are interested in 
are more or less symmetrical across the face (ie if a subject presents 
acne or large pores on the left cheek, it is likely that the same condi‐
tion will be found on the right cheek). Thus, for each subject, instead 
of presenting both the left and right cheeks or eye corners to the 
raters, one side is picked randomly.

To reduce the rating time and minimise the risk of having partic‐
ipants withdraw before finishing a session, the patches were cate‐
gorised in blocks according to their location on the face. Thus, we 
had three blocks (cheek, eyelid and forehead) of 50 patches each. 
A participant chose a block to start with, with the option of rating a 
second or third block upon completion.

Judgement of facial skin texture is a rather subjective task. 
The way people perceive and quantify the skin conditions that 
we are interested in will certainly be affected by many factors 
related to their own personal experience. Therefore, for our data 
set to be reliable, it was necessary to get it rated by many indi‐
viduals. This also allowed analysis of the correlations between 
how different people perceive these skin conditions. A total of 
25 participants rated the data set, with almost all of them having 
rated at least two blocks.

4.3 | Inter‐rater agreement

As the data were rated by 25 participants, each sample has a set of 
ratings given by different individuals. Therefore, we can measure the 
data set's consistency by investigating agreement between ratings 

F I G U R E  11   Example of region mask construction (left cheek on frontal pose)

F I G U R E  1 2   Change in apparent 
texture when viewpoint varies
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provided by different participants. Table 1 presents various correla‐
tion and agreement measures computed on the raw ratings. These 
show relatively low correlation and agreement between the raters 
on eye corner and forehead, but a strong agreement in the Cheek 
region.

The low correlation measures on the raw data suggest some 
disagreement between raters. This can be due to differences in 
judgement, raters not understanding the instructions, or raters 
not providing genuine ratings. To achieve higher inter‐rater agree‐
ment, we experimented with excluding those participants who 
correlate the least with the rest. Participants are excluded succes‐
sively by ascending order of correlation to the rest, starting with 
the one with the weakest correlation value. However, excluding 
too many participants would result in decrease of confidence 
even though the apparent correlation obviously increases. Hence, 
the exclusion policy we used was as follow: we keep the maximum 
number of raters that achieves a correlation greater than or equal 
to 0.5.

5  | RESULTS SUMMARY

We summarise here the classification results yielded with the 3D 
texture descriptors proposed in this paper. We also compare these 
against the performances of a BTF texton‐based method which, to 
date, is one of the most advanced ways used to represent illumina‐
tion/view independent texture. We implemented the BTF texton‐
based method by applying a bank of 14 filters (with six orientations, 
four differences of Gaussian and four Gaussian) to the collected 
specular intensity images. The filtering is done at three scales, 
which yields at each pixel a response vector of 42 elements. The 
input images are taken from three viewpoints for forehead patches, 
2 viewpoints for cheek patches and all under seven different light 
directions, that is 14 or 21 images per patch. The resulting 882 
(forehead) or 588 (cheek) responses per pixel per patch of all the 
images in the data set are then clustered using a K‐means algorithm, 
where k is fixed to 200. Each cluster is associated with a label that 
corresponds to a unique texton. The histogram of textons is then 

F I G U R E  1 3   Rating Platform for the Psychophysical Experiment

Region Nb. Rater

Correlation Agreement

Spearman's Kendall's Fleiss Kappa Kripp alpha

Cheek 8 0.639 0.610 0.170 0.403

Eye corner 11 0.207 0.200 0.087 0.104

Forehead 8 0.273 0.260 0.074 0.073

TA B L E  1  Various correlation and 
agreement measures on raw ratings
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computed. This represents the feature vector associated with the 
corresponding sample.

In this work, we use the Weka implementation of the multi‐layer 
perceptron for training and classification, and we use a 10‐fold cross‐
validation approach. This choice has been motivated by preliminary 
investigations with other classifiers including Random Forests and 
Support Vector Machine that both yielded poorer results. The num‐
ber of network layers is set to Weka's default which is the mean of 
the number of classes and the number of attributes. The output of 
the classifier is a discrete rating of the presence or absence of the 
considered skin condition and, as defined in the ground truth, is a 
discrete number between “1” (meaning very low) and “5” (meaning 
very high). The results presented in Table 2 show the performances 
of each descriptor in terms of the F‐measure, which represents the 
harmonic mean of the precision and recall.

The overall results show that the 3D descriptors clearly out‐
perform the 2D descriptors. First, on comparing R‐LBPs and Gabor 
filtering on 2D and 3D data, both texture characterisation methods 
show a clear improvement when used in a 3D configuration (slant/
tilt or tangent space) for the classification of both wrinkles, acne and 
pores. The classification performances vary with the chosen patch 
size, which also seems to depend on the skin condition being clas‐
sified. The results show that for all the descriptors the performance 
increases with the patch size when classifying wrinkles. However, 
this pattern does not seem to appear as regularly when classifying 
acne or large pores.

Further analysis of Table 2 shows a clear improvement of the mod‐
ified Multi‐scale Azimuthal Projection Distance Image over the origi‐
nal formulation. The M‐APDI with depth 1, where the sole difference 
from the original formulation is the introduction of a new way of com‐
puting the pixels as a function of the two projection coordinates, intro‐
duces improvement in the classification results. These improvements 
become even more significant as the M‐APDI pyramid goes deeper.

The Local Orientation Patterns, even though not multi‐scale, 
produce comparable results to the M‐APDI. Furthermore, compar‐
ing the results yielded by the first and second proposed pattern 
function show clear improvement using the second pattern function 
over the first on classifying wrinkle and pore visibility while the first 
pattern function does slightly better on classifying acne.

The BTF Texton and our proposed Rotation Fields methods yield 
the highest performance rates. The BTF Texton gives somewhat better 
classification of wrinkles and acne than the Rotation Fields, with aver‐
age improvements of 0.050 on wrinkle and 0.046 on acne. However, 
the Rotation Fields yield slightly better results on classifying pore vis‐
ibility with an average improvement of 0.033. This can be explained 
by the high and low frequency separation performed in the Rotation 
Fields and not in the BTF Texton. Furthermore, the data needed to 
compute the Rotation Field (ie normal map) have a more compact rep‐
resentation. Even though it is trivial to recover surface normals from 
BTF data or generate BTF data from surface normals, it is more practi‐
cal to store or distribute a data set in the form of normal maps as BTF 
databases are known to be demanding in storage capacity.

TA B L E  2   Classification results

 

Wrinkles Pores Acne

Sample size

Features 20 50 80 20 50 80 20 50 80

2D R‐LBPs Radius = 2 0.53 0.59 0.62 0.61 0.63 0.62 0.59 0.63 0.60

Radius = 5 0.60 0.67 0.70 0.73 0.73 0.72 0.62 0.70 0.70

2D Gabor Radius = 2 0.60 0.65 0.72 0.58 0.58 0.59 0.60 0.62 0.61

Radius = 5 0.64 0.70 0.75 0.71 0.70 0.71 0.71 0.73 0.71

3D R‐LBPs Slant/tilt 0.75 0.78 0.81 0.79 0.81 0.80 0.71 0.73 0.72

Tangent 0.70 0.73 0.79 0.73 0.75 0.73 0.66 0.69 0.65

3D Gabor Slant/tilt 0.78 0.80 0.82 0.83 0.85 0.85 0.75 0.76 0.77

Tangent 0.74 0.78 0.81 0.77 0.79 0.79 0.70 0.74 0.72

APDI — 0.62 0.61 0.65 0.63 0.60 0.62 0.60 0.63 0.63

M‐APDI Depth = 1 0.62 0.65 0.68 0.62 0.62 0.64 0.61 0.65 0.64

Depth = 2 0.69 0.70 0.73 0.71 0.70 0.72 0.68 0.67 0.70

Depth = 4 0.75 0.78 0.81 0.74 0.76 0.73 0.72 0.74 0.75

BTF Texton K = 100 0.81 0.85 0.88 0.85 0.86 0.86 0.86 0.89 0.88

K = 200 0.89 0.91 0.93 0.87 0.90 0.86 0.90 0.92 0.90

LOP 1st PF 0.71 0.70 0.76 0.63 0.66 0.63 0.75 0.79 0.81

2nd PF 0.72 0.72 0.77 0.79 0.81 0.80 0.73 0.78 0.83

Rot. Fields K = 100 0.78 0.80 0.84 0.87 0.89 0.87 0.79 0.83 0.83

K = 200 0.82 0.86 0.90 0.91 0.90 0.92 0.84 0.87 0.87

Bold values indicates the best performing method in each column
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6  | CONCLUSIONS

In this paper, we have explored three new methods of character‐
ising the 3D nature of surface texture and have applied these to 
facial skin texture analysis. In contrast to image‐based methods, 
which use BTF data, the surface texture descriptors proposed in 
this paper operate directly on the captured surface microgeometry 
in the form of dense surface normals. The performances of these 
are evaluated on classifying common skin conditions (wrinkles, 
large pores, acne) and compared against state‐of‐the‐art methods 
represented by a BTF Texton‐based approach. We have also com‐
pared the performances of traditional two‐dimensional texture 
measures (LBPs and Gabor filter banks) and simplistic extensions 
of these to the 3D space.

The experiments show that, of the three proposed methods, 
Rotation Fields produce the best classification results with aver‐
age F‐measures of 0.86, 0.91 and 0.86 classifying, respectively, 
wrinkles, pores and acne. The BTF Texton‐based method per‐
forms better than the Rotation Fields on classifying wrinkles and 
acne with, respectively, F‐measures of 0.91 and 0.90. However, 
on classifying pores the Rotation Fields give somewhat better 
results with 0.91 against 0.87. This suggests that the Rotation 
Fields are more efficient at characterising conditions associ‐
ated with high frequency visual presentation, such as pores. 
Conditions associated with coarser, lower frequency visual 
features such as wrinkles and acne are better classified using 
the BTF Texton. This can be explained by the high and low fre‐
quency separation performed in the Rotation Fields method and 
not in the BTF Texton method. Other benefits of the Rotation 
fields should be considered: these include a more compact rep‐
resentation of both feature vectors and data sets and the ability 
to take advantage of recent advances made in 3D surface cap‐
ture techniques.

The good classification results yielded by the multi‐layer per‐
ceptron hints at potential extra gain if, instead of hand crafting the 
3D surface texture descriptors, techniques such as a Convolutional 
Neural Network were used to learn these. It is indisputable that 
the back propagation involved in such a network considerably ben‐
efits the features learnt in the convolutional layers. But training a 
Convolutional Neural Network requires a much more extensive 
data set than our limited set of facial region captures, hence, the 
relevance of hand crafting our convolutional layer and passing the 
results on to a multi‐layer perceptron. However, extending our data 
set and trying to learn a set of meaningful convolutional nodes for 
3D surface texture analysis and synthesis remains a very good can‐
didate for future work.

ACKNOWLEDG EMENTS

This work was sponsored by Unilever Research and by an 
Aberystwyth University PhD Scholarship. This work was completed 
while A. Seck was a PhD student at Aberystwyth University and is 
not affiliated with his current employer (Arm ltd).

ORCID

Hannah Dee   https://orcid.org/0000-0003-2573-9541 

William Smith   https://orcid.org/0000-0002-6047-0413 

Bernard Tiddeman   https://orcid.org/0000-0001-7570-1192 

R E FE R E N C E S

	 1.	 Haralick RM. Statistical and structural approaches to texture. Proc 
IEEE. 1979;67(5):786‐804.

	 2.	 Pietikäinen M, Ojala T, Xu Z. Rotation‐invariant texture classi‐
fication using feature distributions. Pattern Recognit. 2000;33: 
43‐52.

	 3.	 Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray‐scale and 
rotation invariant texture classification with local binary patterns. 
IEEE Trans Pattern Anal Mach Intell. 2002;24(7):971‐987.

	 4.	 Zhang L, Chu R, Xiang S, Liao S, Li SZ. Face Detection Based on 
Multi‐block LBP Representation. In: Proceedings of the 2007 
International Conference on Advances in Biometrics. ICB’07. Berlin, 
Heidelberg: Springer‐Verlag; 2007:11‐18. http://dl.acm.org/citat​
ion.cfm?xml:id=23916​59.2391662

	 5.	 Trefny J, Matas J. Extended set of local binary patterns for rapid 
object detection. In: Proceedings of the Computer Vision Winter 
Workshop; 2010.

	 6.	 Goyal RK, Goh WL, Mital DP, Chan KL. Scale and rotation invari‐
ant texture analysis based on structural property. In: Industrial 
Electronics, Control, and Instrumentation, 1995, Proceedings of 
the 1995 IEEE IECON 21st International Conference On. Vol. 2.; 
1995:1290‐1294.

	 7.	 Eichmann G, Kasparis T. Topologically invariant texture descriptors. 
Comput Vis Graph Image Process. 1988;41(3):267‐281.

	 8.	 Duda RO, Hart PE. Use of the hough transformation to detect lines 
and curves in pictures. Commun ACM. 1972;15(1):11‐15.

	 9.	 Jia‐Lin CH, Kundu A. Unsupervised texture segmentation using 
multichannel decomposition and hidden Markov models. IEEE Trans 
Image Process. 1995;4(5):603‐619.

	10.	 Wen‐Rong W, Shieh‐Chung W. Rotation and gray‐scale transform‐
invariant texture classification using spiral resampling, subband de‐
composition, and hidden Markov model. IEEE Trans Image Process. 
1996;5(10):1423‐1434.

	11.	 Cohen FS, Fan Z, Patel MA. Classification of rotated and scaled 
textured images using gaussian markov random field models. IEEE 
Trans Pattern Anal Mach Intell. 1991;13(2):192‐202.

	12.	 Miyamoto Y, Shirazi M, Uehara K. Texture Analysis and Classification 
Using Bottom‐Up Tree‐Structured Wavelet Transform. In: PRICAI 
2000 Topics in Artificial Intelligence, Vol. 1886, Lecture Notes in 
Computer Science. Berlin, Heidelberg: Springer; 2000:802‐802.

	13.	 Porter R, Canagarajah CN. Robust rotation‐invariant texture classi‐
fication: wavelet, Gabor filter and GMRF based schemes. IEEE Proc. 
1997;144:180‐188.

	14.	 Greenspan H, Belongie S, Goodman R, Perona P. Rotation in‐
variant texture recognition using a steerable pyramid. In: Pattern 
Recognition, 1994. Vol. 2‐Conference B: Computer Vision Image 
Processing, Proceedings of the 12th IAPR International. Conference 
on. Vol. 2. IEEE; 1994:162‐167.

	15.	 Fogel I, Sagi D. Gabor filters as texture discriminator. Biol Cybern. 
1989;61(2):103‐113.

	16.	 Jain AK, Farrokhnia F. Unsupervised texture segmentation using 
Gabor filters. In: Systems, Man and Cybernetics, 1990. Conference 
Proceedings. IEEE International Conference on; 1990:14‐19

	17.	 Leung T, Malik J. Representing and recognizing the visual appear‐
ance of materials using three‐dimensional textons. Int J Comput 
Vision. 2001;43(1):29‐44.

https://orcid.org/0000-0003-2573-9541
https://orcid.org/0000-0003-2573-9541
https://orcid.org/0000-0002-6047-0413
https://orcid.org/0000-0002-6047-0413
https://orcid.org/0000-0001-7570-1192
https://orcid.org/0000-0001-7570-1192
http://dl.acm.org/citation.cfm?xml:id=2391659.2391662
http://dl.acm.org/citation.cfm?xml:id=2391659.2391662


18  |     SECK et al.

	18.	 Dana KJ, van Ginneken B, Nayar SK, Koenderink JJ. Reflectance 
and texture of real‐world surfaces. ACM Trans Graph. 1999;18(1): 
1‐34.

	19.	 Filip J, Haindl M. Bidirectional texture function modeling: 
a state of the art survey. IEEE Trans Pattern Anal Mach Intell. 
2009;31(11):1921‐1940.

	20.	 Muller G, Bendels GH, Klein R. Rapid Synchronous Acquisition 
of Geometry and Appearance of Cultural Heritage Artefacts. In: 
Proceedings of the 6th International Conference on Virtual Reality, 
Archaeology and Intelligent Cultural Heritage. VAST’05. Eurographics 
Association; 2005:13‐20.

	21.	 Han JY, Perlin K. Measuring bidirectional texture reflectance with a 
kaleidoscope. ACM Trans Graph. 2003;22(3):741‐748.

	22.	 Jing W, Dana KJ. Relief texture from specularities. IEEE Trans Pattern 
Anal Mach Intell. 2006;28(3):446‐457.

	23.	 Cula OG, Dana KJ, Murphy FP, Rao BK. Bidirectional im‐
aging and modeling of skin texture. IEEE Trans Biomed Eng. 
2004;51(12):2148‐2159.

	24.	 Suen PH, Healey G. The analysis and recognition of real‐world 
textures in three dimensions. IEEE Trans Pattern Anal Mach Intell. 
2000;22(5):491‐503.

	25.	 Caputo B, Hayman E, Mallikarjuna P. Class‐specific material cat‐
egorisation. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE 
International Conference on, Vol. 2; 2005:1597‐1604.

	26.	 Liu C, Yang G, Gu J. Learning discriminative illumination and filters 
for raw material classification with optimal projections of bidirec‐
tional texture functions. In: CVPR’13. 2013: 1430‐1437.

	27.	 Smith M, Anwar S, Smith L.3D texture analysis using co‐occur‐
rence matrix feature for classification. In: Fourth York Doctoral 
Symposium on Computer Science; 2011.

	28.	 Sandbach G, Zafeiriou S, Pantic M. Binary Pattern Analysis for 3D 
Facial Action Unit Detection. In: Proceedings of the British Machine 
Vision Conference; 2012

	29.	 Hong G, Lee O. Three‐dimensional reconstruction of skin 
disease using multi‐view mobile images. Skin Res Technol. 
2019;25(4):434‐439.

	30.	 Zhou Y, Smith M, Smith L, Warr R. Using 3D differential forms 
to characterize a pigmented lesion in vivo. Skin Res Technol. 
2010;16:77‐84.

	31.	 Ma WC, Hawkins T, Peers P, Chabert CF, Weiss M, Debevec P. 
Rapid acquisition of specular and diffuse normal maps from polar‐
ized spherical gradient illumination. Eurographics Symposium on 
Rendering. 2007.

	32.	 Graham P, Tunwattanapong B, Busch JO, et al. Measurement‐based 
Synthesis of Facial Microgeometry. In: ACM SIGGRAPH 2012 Talks. 
SIGGRAPH ’12. New York, NY: ACM; 2012:9:1.

	33.	 Weyrich T, Matusik W, Pfister H, et al. Analysis of human faces 
using a measurement‐based skin reflectance model. ACM Trans 
Graph. 2006;25(3):1013‐1024.

	34.	 Jensen HW, Marschner SR, Levoy M, Hanrahan P. A practical 
model for subsurface light transport. In: Proceedings of the 28th 

Annual Conference on Computer Graphics and Interactive Techniques; 
2001.

	35.	 Choi KM, Kim SJ, Baek JH, Kang S‐J, Boo YC, Koh JS. Cosmetic ef‐
ficacy evaluation of an anti‐acne cream using the 3D image analysis 
system. Skin Res Technol. 2011;18(2):192‐198.

	36.	 Messaraa C, Metois A, Walsh M, et al. Wrinkle and roughness mea‐
surement by the Antera 3D and its application for evaluation of cos‐
metic products. Skin Res Technol. 2018;24(3):359‐366.

	37.	 Varma M, Zisserman A. Classifying images of materials: achieving 
viewpoint and illumination independence. In: Proceedings of the 7th 
European Conference on Computer Vision‐Part III. ECCV ’02. London, 
UK: Springer‐Verlag; 2002:255‐271.

	38.	 Nehab D, Rusinkiewicz S, Davis J, Ramamoorthi R. Efficiently com‐
bining positions and normals for precise 3D geometry. ACM Trans 
Graph. 2005;24(3):536.

	39.	 Heeger DJ, Bergen JR. Pyramid‐based texture analysis/synthesis. 
In: Proceedings of the 22nd Annual Conference on Computer Graphics 
and Interactive Techniques. SIGGRAPH ’95. New York, NY: ACM; 
1995:229‐238.

	40.	 Portilla J, Simoncelli EP. A parametric texture model based on joint 
statistics of complex wavelet coefficients. Int J Comput Vision. 
2000;40(1):49‐70.

	41.	 Pennec X.Statistical Computing on Manifolds: From Riemannian 
Geometry to Computational Anatomy. In: Nielsen F, ed. Emerging 
trends in visual computing, Vol. 5416. Lecture Notes in Computer 
Science. Berlin, Heidelberg: Springer; 2009:347‐386.

	42.	 Pennec X.L'incertitude dans les problèmes de reconnaissance et de 
recalage – Applications en imagerie médicale et biologie molécu‐
laire. 1996. https​://tel.archi​ves-ouver​tes.fr/tel-00633175

	43.	 Wang L, He DC. Texture classification using texture spectrum. 
Pattern Recogn. 1990;23:905‐910.

	44.	 Zafeiriou S, Hansen M, Atkinson G, et al. The Photoface database. 
In: Computer Vision and Pattern Recognition Workshops (CVPRW), 
2011 IEEE Computer Society Conference On; 2011:132‐139.

	45.	 Stratou G, Ghosh A, Debevec P, Morency L. Effect of illumination 
on automatic expression recognition: A novel 3D relightable facial 
database. IEEE Int Conf Autom Face Gesture Recognit Workshops. 
2011;611‐618.

	46.	 Seck A, Smith W, Dessein A, Tiddeman B, Dee H, Dutta A.Ear‐
to‐ear Capture of Facial Intrinsics; 2016. https​://arxiv.org/
pdf/1609.02368v1

	47.	 Hormann K, Agathos A. The point in polygon problem for arbitrary 
polygons. Comput Geom Theory Appl. 2001;20(3):131‐144.

How to cite this article: Seck A, Dee H, Smith W, Tiddeman 
B. 3D surface texture analysis of high‐resolution normal 
fields for facial skin condition assessment. Skin Res Technol. 
2019;00:1–18. https​://doi.org/10.1111/srt.12793​

https://tel.archives-ouvertes.fr/tel-00633175
https://arxiv.org/pdf/1609.02368v1
https://arxiv.org/pdf/1609.02368v1
https://doi.org/10.1111/srt.12793

