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A B S T R A C T

Context and background: Breast cancer is one of the most common diseases threatening the human lives globally,
requiring effective and early risk analysis for which learning classifiers supported with automated feature se-
lection offer a potential robust solution.
Motivation: Computer aided risk analysis of breast cancer typically works with a set of extracted mammographic
features which may contain significant redundancy and noise, thereby requiring technical developments to
improve runtime performance in both computational efficiency and classification accuracy.
Hypothesis: Use of advanced feature selection methods based on multiple diagnosis criteria may lead to im-
proved results for mammographic risk analysis.
Methods: An approach for multi-criterion based mammographic risk analysis is proposed, by adapting the re-
cently developed multi-label fuzzy-rough feature selection mechanism.
Results: A system for multi-criterion mammographic risk analysis is implemented with the aid of multi-label
fuzzy-rough feature selection and its performance is positively verified experimentally, in comparison with re-
presentative popular mechanisms.
Conclusions: The novel approach for mammographic risk analysis based on multiple criteria helps improve
classification accuracy using selected informative features, without suffering from the redundancy caused by
such complex criteria, with the implemented system demonstrating practical efficacy.

1. Introduction

Female breast cancer has an occurrence rate of 8% to 13% [1,2].
The cause of breast cancer is still unknown and currently, there is not
any effective prevention measure. Breast cancer cannot be easily vi-
sualised with naked eyes or physically palpated with bare hands.
Doctors had to make diagnosis based on their own experience before
the emergence of computer-aided diagnosis (CAD) systems. Conse-
quently, early development towards breast cancer had often been left
unattended, leading to serious consequences to human lives. With the
support of CAD, mammograms have been widely used in clinical
practice. In particular, with the support of artificial intelligence (AI)
technologies, automated CAD systems have been developed to detect
the abnormality of breast masses, greatly improving the effectiveness of
risk analysis and early diagnosis.

1.1. Background

Most of CAD systems are based on the strong correlation between
breast cancer risk and breast tissue density or texture features, such as
Boyd [3], BI-RADS [4], Tabár [5], Wolfe [6], but they vary in the single,
underlying criterion used. For instance, Boyd evaluates the proportion
of dense breast tissue in reference to the overall breast area, while BI-
RADS directly exploits the density of the entire breast to determine the
risk. Different AI techniques have been applied to building CAD sys-
tems, usually based on a single criterion, in an attempt to enable au-
tomated early diagnosis of breast cancer.

Typically, existing approaches firstly extract the features of mam-
mograms using a labelled mammogram dataset, then, a learning clas-
sifier or risk assessment method [7–9] is trained with the dataset. For
example, a technique based on multi-scale wavelet transformation for
textural feature extraction was proposed in [10], which subsequently
used the k nearest neighbour method (kNN) for classification. Also,
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histogram equalisation and morphological operation were applied to
enhance the mammograms, followed by an Otsu's thresholding me-
chanism for region of interest (ROI) segmentation in [11]. This work
uses gray level co-occurrence matrix (GLCM) for feature extraction, and
kNN, support vector machine (SVM) and artificial neural network
(ANN) for classification. An evolutionary fuzzy extreme learning ma-
chine was employed for mammographic risk analysis [12], which
combined evolutionary computation and extreme learning machine to
efficiently build fuzzy classifiers. A kernel-based fuzzy-rough nearest-
neighbour classification was used for mammographic risk analysis as
well [13], which significantly improved the classification performance
using kernels.

Such CAD systems work generally by predicting the occurrence
probability of cancer or cancer risk, through exploiting a fixed set of
features (usually representing the texture, brightness, shape, etc.) of
captured mammograms. However, redundancy and noises are often
present in the extracted features. This may adversely affect the final
classification accuracy and runtime complexity. Feature selection can
enhance CAD systems by choosing the most informative feature subset
from the extracted feature set, as has been shown in the relevant lit-
erature. In particular, the work of [14] initially extracted 14 statistical
features, but only 3 of them were selected using an ANN based on a
simple try-and-employ strategy. Also, the approach presented in [15]
extracted 61 original features from both spatial and spectral domain,
while using just 25 and 11 selected features as the input of a general
regression neural network classifier and a SVM classifier, respectively.
On a larger scale, the t-test method was utilised to select 333 optimal
features from those 46,080 extracted via curvelet transformation in
[16], the selected features were fed into an SVM classifier for abnormal
detection. Whilst being successful in their own right, all these systems
are based on a single criterion or one fixed set of class labels (e.g., Boyd
and BI-RADS, as mentioned previously).

1.2. Motivations

Although the existing CAD systems are normally based on one single
criterion, there are many different criteria for evaluating the risk of
breast cancer risk. Moreover, in real life, the eventual diagnosis for a
certain case is often determined by multiple doctors from different
perspectives. In order to investigate the potential underlying relations
amongst the evaluation indicators for mammographic risk assessment,
this paper proposes a computational intelligence system using multi-
label fuzzy-rough feature selection (MLFRFS). It allows decision making
based on multiple criteria, without introducing unnecessary re-
dundancy to predict the breast cancer risk. This is developed on the
basis of the seminal work as reported in [17].

Briefly, there are three categories of multi-label feature selection
approaches: filter, embedded and wrapper. The wrapper and embedded
approaches interact with the learning classification method to a full or
large extent. Particularly, wrappers are directly integrated as part of the
classification algorithm to evaluate the importance of features, while
the embedded methods incorporate feature selection during the
training process of a learning classifier, such as kNN. In contrast, filters
are independent of the learning classifiers, especially with regard to
feature evaluation during the selection process. Thus, the embedded
approach appears to be one that compromises between wrappers and
filters. MLFRFS is indeed such an approach, implemented by con-
sidering the inherent relationships between features and class labels
while performing association rule learning.

1.3. Contributions

This proposed approach for multi-criterion mammographic risk
analysis benefits from the novel MLFRFS algorithm which works in the
following way. Given a dataset constrained with multiple criteria, the
conventional method for label power set learning (LP) is adopted to

integrate the multiple criteria into one unified binary label re-
presentation [18]. From this, the association rules are learned on the
basis of pre-defined support and confidence thresholds [19], which are
then exploited to reduce the number of binary labels. This is enables a
direct application of fuzzy-rough feature selection since the original
multi-criterion classification problem has now been transformed to a
single criterion one.

The resulting approach is fully implemented, supported with sys-
tematic experimental validation and evaluation. To reflect the potential
in helping perform real-world breast cancer risk analysis, the dataset
run is derived from images archived in the Mammographic Image
Analysis Society (MIAS) database [20]. A comparative study is con-
ducted in reference to popular and powerful feature selection methods
such as FRFS [21], Consis [22], CFS [23] and FDMFS [21], using a
range of learning classifiers, including: Naive Bayes (NB) [24], Logistic
[25], Random Forests (RF) [26], and kNN [27]. The experimental re-
sults demonstrate the efficacy of the approach in offering effective risk
analysis to aid in early diagnosis of breast cancer.

The remainder of the paper is structured as follows. The founda-
tional theoretical aspects of this work are outlined in Section 2. The
proposed approach and its implementation are detailed in Section 3.
The experimental investigations are reported in Section 4 with results
analysed. The paper concludes in Section 5 together with a brief dis-
cussion regarding relevant further research.

2. Technical underpinnings

The underpinning fundamentals of the research presently reported,
including association rule learning, fuzzy-rough feature selection, and
typical mammographic image analysis criteria are reviewed in this
section.

2.1. Association rule learning

In general, association rule learning concerns with the computa-
tional mechanism that may be exploited to identify interesting asso-
ciation relations, termed association rules, between variables in a given
dataset. The particular learning mechanism addressed herein was first
proposed in [19], where the degrees of support and confidence are two
important indicators which are defined below for completeness.

Definition 1. Let A be an item set, B another item set, A⇒ B an
association rule and � a set of instances of a given dataset. |A|
represents the number of instances which contains A. The degree of
support of A with respect to � is defined as the proportion of instances
in the dataset which contains the item set A, similarly, the degree of
support of A⇒ B is defined as the proportion of instances in the dataset
which contains the item set A and B:

�
=A Asupp( ) | |

| |
.

(1)

�
⇒ =

∩A B A Bsupp( ) | |
| |

.
(2)

Definition 2. The degree of confidence of a rule, A⇒ B, with respect to
a set of instances �, is the proportion of the instances which contains A
and also contains B to the instances including A:

⇒ =
∩

A B
A B

A
conf( )

supp( )
supp( )

.
(3)

The association rules meet certain pre-specified thresholds on the
degrees of support and confidence are called strong rules, which reflect
the most representative relations between the items in the dataset
considered. Association rule learning in a dataset involves two proce-
dures. Firstly, all frequent item sets are identified, which incurs most of
the computation cost during the overall learning process. Denote a k-
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item set as a collection containing k items. If the frequency of a k-item
set is greater than the minimum support, the set is returned a frequent
k-item set. Secondly, strong association rules are generated from fre-
quent item sets, which are usually implemented by the Apriori algo-
rithm as detailed in Algorithm 1 (taken from [28]).

Algorithm 1. Apriori

Apriori (� , ε)
Input:

� , set of instances;
ε, support threshold.

Output: F, Frequent item sets.
1 F1⟵ {1-item sets} ; k⟵ 2
2 while Fk−1≠∅
3 Fk⟵∅
4 Ck⟵ {c= a ∪ {b}|a∈ Fk−1 ∧ b∉ a}− {c|{s|s⊆ c ∧ |s|= k− 1}⊈ Lk−1}
5 for c in Ck

6 count[c]⟵ 0
7 for n in �

8 if c⊆ n
9 count[c]⟵ count[c]+ 1
10 end
11 end
12 if count[c]≥ ε

13 Fk⟵ Fk ∪ {c}
14 end
15 end
16 k⟵ k+1
17 end
18 F ⟵ ∪ kFk
19 return F

This association rule learning algorithm works based on the apriori
property that all non-empty subsets of frequent item sets are frequent.
That is, if a collection of instances is an infrequent item set, any superset
of this set must not be frequent. According to this property, Apriori can
efficiently generate association rules from given instances by creating
super-frequent item sets while pruning those with non-frequent subsets.
As outlined in Algorithm 1, given a set of instances and the support
threshold, the first action of this algorithm scans the dataset to identify
all frequent 1-item sets F1. The loop in Lines 2 to 17 generates all the
frequent item sets. In particular, Line 4 creates the candidate set Ck

based on Fk−1. The support count of the candidate set is calculated in
Lines 5 to 11, which are then filtered with respect to the threshold in
Lines 12 and 13 to generate Fk. From this, k is incremented in Line 16 to
facilitate the creation of the frequent item set of size k+1.

2.2. Fuzzy-rough feature selection

Fuzzy-rough feature selection (FRFS) is developed based on fuzzy-
rough set theory, which can be defined by an axiomatic approach or a
constructive approach. The most common definition of fuzzy-rough set
uses the fuzzy T norm and implication operator I as follows [21]:

�
=

∈
μ x I μ x y μ y( ) inf ( ( , ), ( )),R X y R XP P (4)

�

=
∈

μ x T μ x y μ y( ) sup ( ( , ), ( )),R X
y

R XP̄ P (5)

where RP(x, y) represents the fuzzy similarity relation induced by the
subset of features P, and μ x y( , )RP is the fuzzy similarity of instance x
and instance y:

= ∈μ x y T μ x y( , ) { ( , )}.R a P RP a (6)

In traditional rough set approach, given a decision table
�=T P D( , , ), the P-positive domain of D is defined as:

�

= ⋃
∈

D P XPOS ( ) ( ),P
X D/ (7)

which is the positive domain of the equivalence class �/D with respect
to P. That is, the knowledge expressed by �/P can be assigned to the

instance set of �/D.
Similar to the above case for crisp rough sets, the fuzzy positive

region of the decision criteria D on an feature subset P can be defined by

�

=
∈

μ x μ x( ) sup ( ).D
X D

R XPOS ( )
/

RP P (8)

From this, the fuzzy-rough dependency is introduced as follows:

�

�
′ =

∑ ∈γ D
μ x

( )
( )

| |
.

P

x DPOS ( )RP

(9)

As interpreted in the underlying mathematical theory for FRFS, this
dependency measure signifies the importance of the feature subset upon
which the relevant decision relies. The higher the dependency is mea-
sured, the more able the corresponding feature subset is to distinguish
amongst the decision classes.

Note that FRFS is a heuristic feature selection method, so different
search strategies can be used. For instance, the popular fuzzy rough fast
reduction algorithm [21] is implemented by best first search, as sum-
marised in Algorithm 2. It attempts to calculate the optimal feature
subset incrementally without generating all possible subsets, starting
with an empty set and iteratively adding the feature that returns the
highest dependency measure amongst the remaining ones. As the
number of features increases, the dependency of the feature subset will
increase monotonically. When the dependency of the decision attribute
upon the current feature subset is equal to that upon the entire feature
set (Line 10), the algorithm terminates and outputs that feature subset
as the selected subset. This selected feature subset can then be used to
replace the original full set of features in any subsequent application.

Algorithm 2. Fuzzy-rough feature selection (FRFS)

FRFS (C, D)
Input:

C, all conditional features set;
D, set of decision attributes.

Output: R, Reduced feature subset.
1 R=∅
2 do
3 T⟵ R
4 foreach x∈ (C− R)
5 if ′ > ′∪γ D γ D( ) ( )R x T{ }

6 T⟵ R ∪ {x}
7 end
8 R⟵ T
9 end
10 until ′ = = ′γ D γ D( ) ( )R C
11 return R

2.3. Mammographic image analysis

A number of evaluation indicators have been developed for breast
cancer risk assessment, and the most common ones include Boyd, BI-
RADS, Tabár, and Wolfe. In particular, Boyd introduces a quantitative
classification of mammographic density, based on measuring the pro-
portion of dense breast tissue relative to the overall breast area. The
classification is known as Six-Class-Categories (SCC) where the density
proportions are: Category 1: 0%, Category 2: (0–10%), Category 3:
(10–25%), Category 4: (25–50%), Category 5: (50–75%) and Category
6: (75–100%). The increase in the level of breast tissue density is pro-
portionally associated with an increase in the risk of developing breast
cancer, specifically the relative numeric risk values for SCC 3–6 are 1.9,
2.2, 4.6 and 7.1, respectively.

The BI-RADS indicator categories a mammogram into one of four
classes. BI-RADS I indicates the breast density is low; BI-RADS II re-
presents certain fibroglandular tissue; BI-RADS III expresses high breast
density; and BI-RADS IV reports extremely high density. Numerically,
the risk values for BI-RADS II–IV are 1.6, 2.3 and 4.5, respectively.

Tabár describes breast composition using four building blocks:
nodular density, linear density, homogeneous fibrous tissue and
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radiolucent adipose tissue, which also define mammographic risk
classification. Patterns I–III each represent a lower breast cancer risk
and Patterns IV–V represent the higher risks as summarised below:

• Pattern I mammograms are composed of 25%, 16%, 35% and 24%
of the four building blocks, respectively;

• Pattern II has approximate compositions of: 2%, 14%, 2% and 82%;

• Pattern III is quite similar in composition to Pattern II, except that
the retroareolar prominent ducts are often associated with peri-
ductal fibrosis;

• Pattern IV is dominated by proniment nodular and linear densities,
with compositions of 49%, 19%, 15%, and 17%;

• Pattern V is dominated by extensive fibrosis and is composed as 2%,
2%, 89% and 7% of the building blocks.

Wolfe uses four categories (N1, P1, P2, DY) to represent mammo-
gram risks, these four have occurrence rates of 0.1, 0.4, 1.7, 2.2 in
developing breast cancer, respectively:

• N1 mainly concludes fatty tissue and a few fibrous tissue stands;

• P1 shows a prominent duct pattern, and a beaded appearance can be
found either in the subareolar area or the upper axillary quadrant;

• P2 indicates server involvement of a prominent duct pattern which
may occupy from one-half up to all of the volume of the par-
enchyma, and often the connective tissue hyperplasia produces
coalescence of ducts in certain areas;

• DY features a general increase in density of the parenchyma and
there may, or may not, be a minor component of prominent duct.

Fig. 1 illustrates example results of using the aforementioned eva-
luation indicators.

3. Multi-criteria mammographic risk analysis

Mammographic images can be analysed in multiple ways from dif-
ferent perspectives, such as Boyd, BI-RADS, Tabár and Wolfe as in-
troduced in the last section. In order to make more reliable decisions,
multiple evaluation criteria should be considered collectively, whilst at
the same time highly co-related ones should be pre-processed to avoid
duplicated information processing. A new multi-criterion mammo-
graphic risk analysis approach is therefore proposed herein. Briefly, the
proposed framework adapts the recently proposed multi-label fuzzy-
rough feature selection approach [17] with the support of either of the
following four popular classifiers: NB, Logistic, RF and kNN.

The proposed framework is illustrated in Fig. 2. Given a mammo-
graphic training dataset, a feature extraction method is applied first to
represent images as feature values. Then, the multiple criteria problem
is transformed into a concise single label problem using MLFRFS in
three steps:

1 The multiple labels due to multiple evaluation criteria are trans-
formed to a single-label problem using power set learning which
captures every possible combination of label values as a new label in

the transformed space.
2 Association rule learning is employed to remove redundant labels in
the transformed single label space.

3 The fuzzy-rough feature selection process (as per Section 2.2) is
applied to generate a concise set of features appearing in the learned
associations to support the application of classifiers for breast cancer
classification tasks.

From this, classifiers are trained recursively, with respect to the
selected feature subset and each criterion. After this system is built,
given any mammographic image, it will produce a risk criterion value
as its risk analysis outcome. The key steps of system development is
detailed in the following subsections.

3.1. Feature extraction

Image features can be divided into underlying features and semantic
features. The underlying features include image intrinsic features such
as color, texture and shape. Semantic features include advanced fea-
tures such as behavior, emotion and spatial relationship. Most of the
image extraction techniques for breast images are based on the un-
derlying features. Of course, the underlying and semantic features can
also be combined to achieve better image processing results by jointly
using their advantages. A simple feature extraction process is illustrated
in Fig. 3, where a square represents a pixel in the original image. In this
example, if the gray value in the square is not 0, it is marked as 1.
Subsequently each pixel is combined into one column vector.

Many feature extraction approaches for mammogram are available.
For instance, visual features of the mammogram can be extracted as per
the work of [29]. These may the relative position of the mass, the
distance from the mass to the nipple, the size of the mass, the linear
texture characteristics, and whether a glitch in included. Also, so-called
bag of words features can be introduced using Latent Dirichlet Alloca-
tion for mammographic analysis [30], especially regarding image edges
in divided image blocks in support of lesion diagnosis. The shape and
margin of the breast mass are considered as important features to assist
breast cancer diagnosis in [31], where 17 effective shape features are
extracted. Advanced shape features may include eccentricity, equiva-
lent diameter, entropy, standard deviation of mass edge, etc., and a
tumor image can be divided into round, oval, lobulated shape, and four
irregular shapes. In [32], to extract useful information for tumor di-
agnosis, K-means is utilised to recognise the hidden patterns of the
benign and malignant tumors separately, with the computed member-
ship of each tumor to these patterns treated as a feature.

The feature extraction method used in this paper is taken from the
established work of [33]. Prior to extract features, all mammograms are
preprocessed to determine the area of the breast while removing the
background, label and pectoral muscle areas. See Fig. 4a and b for
example results of such a segmentation process. Also, with the aim of
avoiding adverse effects from microtexture that could appear in certain
regions, the breast region is smoothed using a median filter of size
5×5. Gray-level information in combination with fuzzy C-means
clustering is employed to group pixels into two separate categories:

Fig. 1. Example mammogram analysis based on Boyd, BI-RADS, Tabár, Wolfe, with results: (a) SCC 0%, I, Pattern II, N1; (b) SCC 0–10%, II, Pattern III, P1; (c) SCC
11–25%, II, Pattern III, P1; (d) SCC 26–50%, II, Pattern I, P1; (e) SCC 51–75%, III, Pattern IV, P2; (f) SCC>75%, IV, Pattern V, DY; respectively.

Y. Qu, et al. Artificial Intelligence In Medicine 100 (2019) 101722

4



fatty and dense tissues (see Fig. 4c). While running fuzzy C-means, the
placement of the initial seed points is one of the central issues in the
variation of segmentation results. Two classes are herein initialised
with the gray-level values that represent 15% and 85% of the accu-
mulative histogram of the breast pixels per mammogram (representing
fatty and dense tissue, respectively). Morphollogical and texture fea-
tures for both clusters are extracted. In particular, for morphological
features, the relative area and the first four histogram moments are
calculated, with the four histogram moments being related to the mean
intensity, the standard deviation, the skewness, and the kurtosis per
cluster. Another set of features derived from co-occurrence matrices are
used as texture features. In so doing, each mammogram object is re-
presented by 280 features, 10 derived from morphological character-
istics, and the remaining 270 from the extracted texture information.

3.2. Multi-label fuzzy-rough feature selection

The MLFRFS algorithm is shown in Algorithm 3. Label encoding that
uses power set learning transforms the multiple criteria into one unified
set of label as per Line 2 in the algorithm Then, the multi-label dataset
for each instance is converted into a single-label dataset through Line 3.
This transformed single-label feature selection problem is then resolved
by applying FRFS, with the final reduced feature subset as output. These
key steps are detailed in the following.

Algorithm 3. Multi-label fuzzy-rough feature selection (MLFRFS)

MLFRFS (� , ε, δ)
Input:

� , raining instances;
C, feature sets;
D, criteria sets;
ε: minimum threshold of support;
δ: minimum threshold of confidence.

Output: R, Reduced feature subset.
1 Initialise R=∅ ;

2 L ⟵ Label Encoding(� D, )
3 Lt ⟵ Label Transformation ({� , C, L}, ε, δ) //Algorithm 4
4 R⟵ FRFS({C, Lt}) //Algorithm 2
5 return R

3.2.1. Label encoding by power set learning
Label powerset (LP) is a method which transforms a multi-label

learning problem into a problem of a single class label. Suppose that a
multi-criterion training set �=T C D( , , ) is given, where � is the in-
stances set, C the features set and D the decision criteria set; and dj is a
criterion within D with lk being a certain specification of dj. For in-
stance, if two criteria are used, criterion d1 with three possible values l1,
l2 or l3, and criterion d2 with two possible values l4 or l5, then each
image is labeled by one label out of {l1, l2, l3}, and another out of {l4,
l5}, as illustrated in Table 1. In this illustrative example, each possible
label can be represented by a binary number as shown in Table 2.

Without losing generality, let L denote a multi-label set, consisting
of all labels lk representing each and every evaluation criterion con-
cerned, and consider each label combination in the power space that

Fig. 2. Architecture of utilising MLFRFS for mammographic risk analysis.

Fig. 3. Example of feature extraction.

Fig. 4. Preprocessing steps for feature extraction: (a) Original mammogram; (b)
Mammogram with redundant areas removed; (c) Mammogram with fuzzy c-
mean applied.
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appears in the training set as a new class. Let →σ L( ): 2 ℕL| | be the in-
jective function from the power space of the label space L to the space
of natural numbers. Continue the simple illustrative example above,
then, the papping results of the given instances are those listed in the
rightmost column of Table 2.

The LP method effectively converts the multi-label training set L
into the following single-label training set:

′ = ⩽ ⩽T σ L i ux{( , ( ))|1 },i i (10)

where Li⊆ L and u is the number of instances with the following new
classes:

 ′ = ⩽ ⩽T σ L i u( ) { ( )|1 }.i (11)

3.2.2. Label redundancy removal
Dependency between class labels may appear when a problem is

transformed from multi-label space to a combined single-label space,
which may cause unnecessary computation. In general, there are three
cases regarding whether a potential correlation exists between any pair
of labels in a multi-label dataset: (1) label l exists but l′ does not; (2)
labels l and l′ appear together; and (3) labels l and l′ exist but never
occur together. Such relationships can be revealed using association
rules. Based on discovered associations, the labels, which can be in-
ferred by any other label, will be removed to reduce the size of the label
set, thereby saving unnecessary computation. Following the running
example in Section 3.2.1, suppose that two association rules have been
generated: r1 ({l3}→ {l4}) and r2 ({l3}→ {l5}), with their effect shown
in Table 3. Since the labels that are inferrable by the others need to be
removed, label l4 of data instance 3 and label l5 of data instance 4 are
both eliminated given these two discovered rules.

The label transformation method is summarised in Algorithm 4.
Firstly, the internal variables of the algorithm are initialised in Line 1,

and frequent item sets are calculated in Line 2 by calling Apriori. In
Lines 3 and 4, the association rules that satisfy minimum support and
minimum confidence are generated by calculating the conditional
probabilities according to the obtained frequent item sets and the given
parameters. Then, the discovered association rules are sorted by their
confidence levels. Lines 5 to 11 represent an iterative process of de-
crementing the label set size with regard to the association rules. In Line
12, the reduced label set for each instance is transformed into a single
label by mapping them onto natural numbers. Finally, the algorithm
returns the generated concise set of single labels as output.

Algorithm 4. Label transformation (LT)

Label Transformation (� , ε, δ)
Input:

� , instances set;
L, set of encoding labels;
ε, minimum threshold of support;
δ, minimum threshold of confidence.

Output: Lt, Tranformed label set.
1 F=∅ , Rules=∅ ;
2 F = Apriori( � L{ , }, ε) //Algorithm 1
3 Generate Rulesby F and δ
4 Order Rules by confidence
5 for Li in �

6 for Ru (A, B) in Rules
7 if A⊆ Li
8 Li= Li− B
9 end
10 end
11 end
12 Transform labels L into decision class Lt in natural numbers space
13 return Lt

3.2.3. Feature selection
Having run the multiple label encoding and transformation pro-

cesses, a concise set of single labels is generated. This completes the
change of the originally multi-label problem into an equivalent single
label problem. Therefrom, the FRFS method, as introduced in Section
2.2, is applied for feature selection. Note that, if preferred, any ad-
vanced feature selection approach may be applicable. However, FRFS is
particularly chosen herein thanks to its popularity and availability, as
well as due to its ability to support the handling of uncertain problems
which breast cancer risk analysis always involves.

3.3. Classification

As the anomaly analysis based on multiple evaluation criteria has
been converted into a concise single label classification problem, any
single-label classifier can be applied to carry out the analysis of breast
cancer risk. Various AI classifiers have been applied to evaluate breast
cancer risks. In this work, four different learning classifiers, namely, NB
[24], Logistic Regression [25], RF [26], and kNN [27], are utilised,
which are trained using a benchmark mammographic dataset (see
later). All these learning classifiers are commonly used in the relevant
literature and their workings are generally well-understood. Hence,
descriptions of the algorithm details are omitted here, but can be found
in the respective references given (and indeed in many other sources).

3.4. Time complexity

The following presents an analysis of all key aspects affecting the
time complexity for MLFRFS. Note that the effect of using a combina-
tion of different criterion specifications on time is mainly reflected in
the Apriori algorithm. Obviously, the time required to run Apriori in-
creases along with the number of criteria used.

• For each instance, suppose that d is the number of criteria to be
involved, then generating these item sets requires O(nd) time, where
n is the total number of instances.

Table 1
A simple original dataset.

Instance Features Criteria

f1 f2 f3 f4 d1 d2

1 0.4512 0.5488 0.3103 0.3732 l1 l4
2 0.5084 0.4916 0.3103 0.3567 l2 l4
3 0.4956 0.5044 0.3103 0.3275 l3 l4
4 0.1647 0.8353 0.4113 0.3897 l3 l5
5 0.2533 0.7467 0.3972 0.2625 l1 l4

Table 2
Simple dataset after preprocessing.

Instance d1 d2 Label power space Natural number space

l1 l2 l3 l4 l5

1 1 0 0 1 0 l1, l4 1
2 0 1 0 1 0 l2, l4 2
3 0 0 1 1 0 l3, l4 3
4 0 0 1 0 1 l3, l5 4
5 1 0 0 1 0 l1, l4 1

Table 3
Converted concise single label.

Instance Label power
space

Natural
number space

Reduction by
rules

Re-aligned natural
number space

1 l1, l4 1 l1, l4 1
2 l2, l4 2 l2, l4 2
3 l3, l4 3 l3 3
4 l3, l5 4 l3 3
5 l1, l4 1 l1, l4 1
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• In order to generate a k-item set, all (k− 1)-item sets need to be
considered for possible merging. Whether or not to merge depends
on whether they have (k− 2) items that are in common. Each
merging process requires at most (k− 2) comparisons. In the best
case, each merge produces a viable candidate k-item set. In the
worst case, the algorithm needs to merge all pairs of (k− 1)-item
sets [34]. Thus, the overall cost is

∑ ∑− < < −
= =

−k C k F( 2)| |) Cost of merging ( 2)| | ).
k

d

k
k

d

k
2 2

1
2

(12)

A hash tree is constructed to store the candidate sets. Because the
maximum depth of the tree is k, so the cost of generating the hash
tree is ∑ =O k C( | |)k

d
k2 . For candidate set pruning, the (k− 2) subsets

of the k-item set need to be confirmed to be frequent, so the pruning
step requires ∑ −=O k k C( ( 2)| |)k

d
k2 .

• For d criterion specifications, Apriori may produce Cd
k item sets of

size k, the cost for support counting is therefore, ∑O N C( )k d
k .

• Each frequent k-item set Fk, can lead up to the creation of (2k− 2)
association rules, ignoring those that have an empty antecedent or
consequent (∅→ Fk or Fk →∅). Hence, the total cost for producing
association rules is O(N∑k(2k− 2)).

• For a dimensionality of p, (p2+ p)/2 evaluations of the dependency
function may be performed in the worst case, indicating that the
cost for computing FRFS is O((p2+ p)/2).

4. Experimentation

Four different evaluation criterion, including Boyd, BI-RADS, Tabár,
and Wolfe as introduced in Section 2.3 are used in conducting this
experimentation to validate and evaluate the proposed framework for
breast cancer risk analysis.

4.1. Data sets and experimental set-up

All data used in this work is derived from images contained within
the Mammographic Image Analysis Society (MIAS) database [20]. It
includes a set of Medio-Lateral Oblique (MLO) left and right mammo-
grams of 161 woman (322 samples). Each mammogram has been pre-
processed and represented by 280 features. The spatial resolution of the
image is 50 μm×50 μm, which is quantised to 8 bits with a linear
optical density in the range of [0–3.2].

In order to investigate the efficacy of the proposed approach, sys-
tematic comparative studies have been carried out, based on different
sets of selected features involving an exhaustive set of combinations of
criteria considered. In particular, the dataset using the labels with re-
spect to the Boyd criterion is named as dataset Boyd; similarly, those
using the labels regarding the BI-RADS, Tabár and Wolfe criteria are
named as datasets BI-RADS, Tabár and Wolfe, respectively. Also, the
dataset labeled on the basis of joint criteria Boyd and BI-RADS is de-
noted as Bo_BI; and that labeled with regards to the conjunctive use of
the criteria Boyd, BI-RADS and Tabár is denoted as Bo_BI_Ta. In fact,
many other combinations are examined and they are named in a similar
manner as these examples, without being explicitly listed here to save
space.

Note that in all experimental results reported here, stratified
10×10-fold cross-validation is used for testing. In each 10-FCV, a
given dataset is randomly partitioned into 10 subsets, with one single
subset retained as the testing data while the remaining 9 subsets for
training. The 10× 10-fold validation represents this process for 10
times. More specific details on the experimental set-up are given in the
relevant subsections below.

4.2. Practical significance of mammographic datasets

The application of the four criteria (namely, Boyd, BI-RADS, Tabár,

Wolfe) in deriving the associate rules has significant practical im-
plications. To illustrate this and for clarity, Table 4 lists all possible
decision labels in accordance to these criteria.

Running the implemented system using the above data and setting,
52 association rules are selected. The confidence levels of the resulting
rules can be measured, with the several top-ranked rules listed in
Table 5 as an example. Consider the first rule (l2, l12→ l7, l16). In this
rule, l2 represents the proportion of dense breast tissue in reference to
the overall breast area is 10–25%; l12 shows the instance is composed by
2% in nodular density, 14% in linear density, 2% in homogeneous fi-
brous tissue and 82% in radiolucent adipose tissues, respectively; l7
expresses the breast is almost entirely fatty; and l16 states that the in-
stance mainly includes fatty tissue and a few fibrous tissue stands. The
first two items indicate that the breast tissue density of this instance is
relatively low, and the risk of breast cancer is low, while the latter two
indicate that the breast is relatively fatty and the risk is also low. Other
rules have their own meaningful practical interpretation too, showing
the practical significance of these learned association rules that are well
in line with the reality concerning beast cancer risks.

4.3. Effects of multiple criteria

The effects of using different combinations of 1 up to 4 evaluation
criteria are looked at in this experiment, by the use of: learning clas-
sifier NB, best first search [35] (as the default search strategy of
MLFRFS) and 10×10-fold cross validation. The results are shown in
Fig. 5, where the line styles and colours encode different pathways to
growing the combinations from one criterion to four. For instance, the
green dot-dash line in Fig. 5(a) represents the classification accuracies
achieved on the Boyd dataset by the use of: only the Boyd criterion,
then both Boyd and Tabár, then three crieria of Boyd, Tabár and BI-
RADS, and finally, all four criteria, in the process of selecting feature
subsets.

The predicted results are directly compared with each underlying
criterion for checking on accuracy. As an example, take the case while
using the Boyd dataset. The classification accuracy is 53.41% when
only the criterion Boyd is used. There are three ways to add one more
criterion, BI-RADS, Tabár, or Wolfe, with the resultant classification
accuracies being 55.59%, 53.41%, and 54.34%, respectively.
Depending on which is the second criterion used, there are two separate
cases when adding the next, or the third, criterion. Once the fourth
criterion is added, the accuracy is raised to 55.59% for all four different
routes. In general, it can be seen that for most cases, the use of more
evaluation criteria leads to a higher classification accuracy, and that
when all four criteria are combined, the classification accuracy is the
highest for all datasets except Boyd.

Table 4
Labels per criterion.

Criterion Labels

Boyd l1, l2, l3, l4, l5, l6
BI-RADS l7, l8, l9, l10
Tabár l11, l12, l13, l14, l15
Wolfe l16, l17, l18, l19

Table 5
Top association rules ranked by confidence.

Order Association rules Confidence

1 l2, l12→ l7, l16 0.97
2 l14, l18→ l9, l5 0.90
3 l7, l12→ l2, l16 0.88
4 l12, l16→ l7, l2 0.84
5 l7, l2→ l12, l16 0.83
6 l2, l16→ l7, l12 0.80

Y. Qu, et al. Artificial Intelligence In Medicine 100 (2019) 101722

7



4.4. Comparative study

4.4.1. Compared approaches
To further evaluate the performance of the proposed approach on

the mammographic dataset, experimental comparisons are carried out
against the use of the following popular single criterion feature selec-
tion methods, in addition to FRFS itself.

Fig. 5. Classification accuracy using different numbers of criteria.

Table 6
Feature subset size/time (second) for classifying each dataset.

Criterion Search MLFRFS FRFS Consis CFS FDMFS ORI

BF 7/28 6/26 14/1 35/1 3/19 280
GS 7/18 6/16 14/1 32/1 3/10 280

Boyd LF 7/6 7/7 29/1 14/1 3/4 280
PSO 8/27 8/27 31/1 48/1 5/417 280
ME 6/19 6/19 15/1 35/1 3/437 280

BF 7/28 7/28 15/1 35/1 4/22 280
GS 7/18 7/18 14/1 35/1 4/13 280

BI-RADS LF 7/6 6/6 19/1 24/1 4/5 280
PSO 8/27 7/28 26/1 59/1 9/422 280
ME 6/19 6/20 15/1 39/1 4 /426 280

BF 7/28 6/26 15/1 43/1 4/25 280
GS 7/18 6/16 15/1 31/1 4/14 280

Tabár LF 7/6 8/7 18/1 17/1 4/6 280
PSO 8/27 8/28 18/2 48/1 6/414 280
ME 6/19 6/19 14/1 43/1 4 /425 280

BF 7/28 6/25 14/1 30/1 4/25 280
GS 7/18 6/16 14/1 30/1 4/13 280

Wolfe LF 7/6 7/6 22/1 20/1 4/6 280
PSO 8/27 8/27 24/1 55/1 5/418 280
ME 6/19 6/20 13/1 35/1 4 /415 280

Table 7
Classification accuracy (%) and T-test on Boyd.

Classifier Search MLFRFS FRFS Consis CFS FDMFS ORI

BF 56.45 53.13 58.74 59.39 38.36 * 57.02
GS 56.45 53.13 * 58.74 v 58.92 v 38.36 * 57.02

NB LF 59.27 55.45 * 52.99 * 59.01 38.36 * 57.02 *
PSO 49.60 51.40 v 57.03 v 58.40 v 56.01 v 57.02 v
ME 53.11 55.12 v 59.48 v 60.44 v 38.36 * 57.02 v

BF 59.12 58.39 59.44 52.54 41.53 * 53.34
GS 59.12 58.39 59.44 56.21 * 41.53 * 53.34 *

Logistic LF 58.05 59.56 v 57.08 56.14 * 41.53 * 53.34 *
PSO 50.90 55.46 v 56.54 v 52.56 57.15 v 53.34 v
ME 54.03 56.18 v 59.11 v 53.68 41.53 * 53.34

BF 53.00 52.85 60.24 58.61 33.73 * 58.36
GS 53.00 52.85 60.24 v 59.63 v 33.73 * 58.36 v

RF LF 54.54 53.30 54.07 58.17 v 33.73 * 58.36 v
PSO 46.89 49.51 v 58.37 v 59.63 v 53.11 v 58.36 v
ME 51.40 53.94 v 59.66 v 59.34 v 33.73 * 58.36 v

BF 57.96 52.05 60.24 59.08 35.81 * 58.12
GS 57.96 52.05 * 60.24 v 58.84 35.81 * 58.12

kNN LF 58.15 58.20 55.94 * 56.20 * 35.81 * 58.12
PSO 49.29 51.55 v 59.98 v 59.92 v 56.57 v 58.12 v
ME 52.66 54.01 59.29 v 59.42 v 35.81 * 58.12 v

BF (v/ /*) (0/4/0) (0/4/0) (0/4/0) (0/0/4) (0/4/0)
GS (v/ /*) (0/2/2) (3/1/0) (2/1/1) (0/0/4) (1/2/1)

Summary LF (v/ /*) (1/2/1) (0/2/2) (1/1/2) (0/0/4) (1/1/2)
PSO (v/ /*) (4/0/0) (4/0/0) (3/1/0) (4/0/0) (4/0/0)
ME (v/ /*) (3/1/0) (4/0/0) (3/1/0) (0/0/4) (3/1/0)
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• [22]: This consistency-based approach evaluates the worth of a
subset of features by the level of consistency with regard to the class
values when the training instances are projected onto a subset of
features. Consistency of any subset can never be lower than that of
the original full set of features. Hence, the usual practice is to use
this subset evaluator in conjunction with a random or exhaustive
search to look for the smallest subset with consistency equal to that
of the full set.

• [36]: Correlation feature selection is used to evaluate the worth of a
subset of features, by considering the prediction ability of individual

features along with the degree of redundancy between them. Subsets
of features that are highly correlated with the class while having low
inter correlation are preferred.

• [37]: In the field of feature selection with fuzzy rough sets, apart
from utilising dependency measures to select features, state-of-the-
art techniques also include those exploring fuzzy discernibility
matrices [21,38]. In FDMFS, a fuzzy identification matrix is con-
structed first. The initially empty feature subset is then in-
crementally enriched, by adding the best feature which is evaluated
according to a certain heuristic measure over those features ap-
pearing in the discernibility function.

4.4.2. Classification accuracy
In order to evaluate the performance of the proposed approach, four

different learning classifiers are utilised, namely, NB, Logistic, RF, kNN.
This helps give a flavour of utilising MLFRFS to support diverse clas-
sification methods. At the same time, different search strategies such as
Best First (BF) [35], Greedy Stepwise (GS) [39], Linear Forward (LF)
[40], Particle Swarm Optimisation (PSO) [41] and Multi-objective
evolutionary (ME) [42] are also used to run the experiments. The re-
sults are summarised in Tables 7–10.

Running MLFRFS requires the determination of the parameters of
minimum support (minSup) and minimum confidence (minConf) within
the interval [0,1]. Based on empirical investigations, these parameters
are set such that minSup=0.1 and minConf=0.7. Recall previously
reported results, MLFRFS works best using all four criteria. Thus, the
experimental studies described herein are those obtained when MLFRFS
uses the feature subset selected under all four criteria jointly. The
number of features selected by different feature selection methods and
the run time consumed are presented in Table 6.

Comparing the use of different search strategies in conjunction with
that of different feature selection methods, the number of selected
features by MLFRFS is much smaller than that returned by methods not
based on fuzzy-rough sets (i.e., those except FRFS and FDMFS). This
shows that MLFRFS is able to select a smaller number of features. In
terms of runtime performance, MLFRFS and FRFS are similar while
Consis and CFS both spend a shorter time. Nonetheless, a relatively
rather large number of features selected by Consis and CFS will greatly

Table 8
Classification accuracy (%) and T-test on BI-RADS.

Classifier Search MLFRFS FRFS Consis CFS FDMFS ORI

BF 71.12 72.07 69.17 * 71.87 57.91 * 70.13
GS 71.12 72.07 67.99 * 71.87 57.91 * 70.13

NB LF 69.98 68.57 * 63.70 * 72.82 v 57.91 * 70.13
PSO 59.57 61.43 v 68.85 v 71.18 v 69.57 v 70.13 v
ME 65.58 73.02 v 67.48 v 72.30 v 57.91 * 70.13 v

BF 72.71 75.53 v 74.68 v 70.81 * 62.54 * 65.01 *
GS 72.71 75.53 v 75.79 v 70.81 * 62.54 * 65.01 *

Logistic LF 74.51 74.63 74.04 72.09 * 62.54 * 65.01 *
PSO 62.34 65.12 v 72.23 v 70.61 v 74.07 v 65.01 v
ME 67.44 75.66 v 74.32 v 71.05 v 62.54 * 65.01 *

BF 71.25 71.89 72.71 74.35 v 62.19 * 73.02 v
GS 71.25 71.89 72.89 74.35 v 62.19 * 73.02 v

RF LF 71.39 70.96 70.69 75.13 v 62.19 * 73.02
PSO 59.82 61.75 v 73.49 v 74.26 v 71.75 v 73.02 v
ME 63.46 71.02 v 72.87 v 74.66 v 62.19 73.02 v

BF 72.08 70.65 * 71.24 74.07 v 62.59 * 71.43
GS 72.08 70.65 * 72.73 74.07 v 62.59 * 71.43

kNN LF 70.09 72.82 * 68.88 74.48 v 62.59 * 71.43
PSO 58.23 58.36 72.05 v 73.63 v 71.98 v 71.43 v
ME 64.52 72.64 v 72.21 v 74.80 v 62.59 * 71.43 v

BF (v/ /*) (1/2/1) (1/2/1) (2/1/1) (0/0/4) (1/2/1)
GS (v/ /*) (1/2/1) (1/2/1) (2/1/1) (0/0/4) (1/2/1)

Summary LF (v/ /*) (0/2/2) (0/3/1) (3/0/1) (0/0/4) (0/3/1)
PSO (v/ /*) (3/1/0) (4/0/0) (4/0/0) (4/0/0) (4/0/0)
ME (v/ /*) (4/0/0) (4/0/0) (4/0/0) (0/1/3) (3/0/1)

Table 9
Classification accuracy (%) and T-test on Tabár.

Classifier Search MLFRFS FRFS Consis CFS FDMFS ORI

BF 62.59 58.17 * 60.21 * 61.65 54.63 * 60.28 *
GS 62.59 58.17 * 60.21 * 62.49 54.63 * 60.28 *

NB LF 57.92 58.18 60.31 v 58.73 54.63 * 60.28 v
PSO 54.27 54.27 63.28 v 62.06 v 61.10 v 60.28 v
ME 57.14 59.46 v 62.95 v 62.27 v 54.63 * 60.28 v

BF 62.71 59.58 * 64.33 v 58.36 * 56.84 * 55.90 *
GS 62.71 59.58 * 64.33 v 61.33 56.84 * 55.90 *

Logistic LF 61.12 63.63 v 65.54 v 65.35 v 56.84 * 55.90 *
PSO 53.75 53.75 62.16 v 57.27 v 58.88 v 55.90 v
ME 60.45 62.28 v 64.56 v 59.80 56.84 * 55.90 *

BF 60.78 58.12 * 62.77 v 65.57 v 54.69 * 61.03
GS 60.78 58.12 * 62.77 v 64.49 v 54.69 * 61.03

RF LF 58.74 59.45 62.50 v 62.64 v 54.69 * 61.03 v
PSO 54.57 54.57 62.93 v 64.42 v 60.64 v 61.03 v
ME 54.35 60.10 v 61.14 v 64.08 v 54.69 61.03 v

BF 62.76 55.72 * 62.95 64.17 57.09 * 60.87 *
GS 62.76 55.72 * 62.95 64.32 v 57.09 * 60.87 *

kNN LF 60.45 59.26 * 63.30 v 61.52 57.09 * 60.87
PSO 53.58 53.58 63.61 v 63.31 v 60.14 v 60.87 v
ME 54.11 60.85 v 63.05 v 62.99 v 57.09 v 60.87 v

BF (v/ /*) (0/0/4) (2/1/1) (1/2/1) (0/0/4) (0/1/3)
GS (v/ /*) (0/0/4) (2/1/1) (2/2/0) (0/0/4) (0/1/3)

Summary LF (v/ /*) (1/2/1) (4/0/0) (2/2/0) (0/0/4) (2/1/1)
PSO (v/ /*) (0/4/0) (4/0/0) (4/0/0) (4/0/0) (4/0/0)
ME (v/ /*) (4/0/0) (4/0/0) (3/1/0) (1/1/2) (3/0/1)

Table 10
Classification accuracy (%) and T-test on Wolfe.

Classifier Search MLFRFS FRFS Consis CFS FDMFS ORI

BF 64.11 62.54 * 66.36 v 68.18 v 51.89 * 66.21 v
GS 64.11 62.54 * 66.36 v 68.18 v 51.89 * 66.21 v

NB LF 65.29 52.46 * 61.99 * 63.48 51.89 * 66.21
PSO 54.94 57.38 v 66.83 v 68.60 v 53.54 66.21 v
ME 61.15 60.45 65.39 v 68.58 v 51.89 * 66.21 v

BF 67.84 67.23 67.58 66.59 58.52 * 60.57 *
GS 67.84 67.23 67.58 66.59 58.52 * 60.57 *

Logistic LF 65.15 62.18 * 69.87 v 59.36 * 58.52 * 60.57 *
PSO 55.84 62.65 v 68.16 v 64.09 v 63.29 v 60.57 v
ME 65.66 61.55 * 69.16 v 65.89 58.52 * 60.57 *

BF 63.48 60.01 * 65.57 v 67.03 v 54.47 * 65.11
GS 63.48 60.01 * 65.57 v 67.03 v 54.47 * 65.11

RF LF 63.95 53.79 * 64.00 60.03 * 54.47 * 65.11
PSO 54.72 57.32 v 65.56 v 67.28 v 51.95 * 65.11 v
ME 58.68 56.54 64.90 v 67.72 v 54.47 * 65.11 v

BF 65.52 60.28 * 64.44 67.36 v 53.10 * 65.54
GS 65.52 60.28 * 64.44 67.36 v 53.10 * 65.54

kNN LF 63.17 53.71 60.28 * 61.88 53.10 * 65.54 v
PSO 54.54 57.92 v 68.19 v 67.17 v 53.89 65.54 v
ME 58.11 61.80 v 64.42 v 67.80 v 53.10 * 65.54 v

BF (v/ /*) (0/1/3) (2/2/0) (3/1/0) (0/0/4) (1/2/1)
GS (v/ /*) (0/1/3) (2/2/0) (3/1/0) (0/0/4) (1/2/1)

Summary LF (v/ /*) (0/1/3) (1/1/2) (0/2/2) (0/0/4) (1/2/1)
PSO (v/ /*) (4/0/0) (4/0/0) (4/0/0) (1/2/1) (4/0/0)
ME (v/ /*) (1/2/1) (4/0/0) (3/1/0) (0/0/4) (3/0/1)
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increase the time required to run the associated classifiers (e.g.,
Logistic).

Tables 7–10 show the classification performance of MLFRFS re-
garding different learning classifiers, with different feature selection
methods and search strategies. In these tables, a result associated with
the symbol “v” or “*” indicates that the corresponding approach per-
forms better or worse in comparison to that utilises the feature subset
selected by MLFRFS, given the same environment otherwise (in terms of
what feature selection, search mechanism and learning classifier to use
or whether the full original dataset is used). Where there is no symbol
attached the result implies a statistical tie between the approaches
compared.

While using the NB classifier for the dataset Boyd, MLFRFS sur-
passes all other feature selection methods and over the original dataset,
run through the LF search strategy, with an accuracy of 59.27%.
Unfortunately, this classifier does not show good classification results
when used with other search strategies for the same dataset. Regarding
NB for BI-RADS, employing MLFRFS ensures it surpassing the use of the
other three feature selection methods when run with BF, GS and LF
search strategies (having an accuracy of 71.12%, 71.12%, and 69.98%,
respectively). Yet, if run with either PSO or ME search strategy, there is
no favourable classification result attained. Using the NB classifier for
Tabár, MLFRFS surpasses all other feature selection methods and also,
over the original dataset with the BF or GS search strategy (both having
an accuracy of 62.59%). However, it does not achieve good classifica-
tion results using either of the other three search strategies. For NB and

Wolfe, in the LF search strategy, MLFRFS surpasses all other methods
with an accuracy of 65.29%, but the use of selected feature subset does
not beat that of the original dataset with full features. Although
MLFRFS does not manage to return a good classification outcome when
used with PSO, it surpasses two of the three alternative feature selection
methods while used with either BF, GS or ME, MLFRFS.

For the classifier Logistic and dataset Boyd, adopting one of the BF,
GS and LF search strategies, MLFRFS is able to surpass the other three
feature selection methods and over the use of the full original dataset,
with an accuracy of 59.12%. Running on ME, MLFRFS surpasses two
other methods and over the original dataset, with an accuracy of
54.03%. For Logistic and BI-RADS, using the LF search strategy,
MLFRFS surpasses the other three methods and over the original da-
taset, with an accuracy of 74.51%. With the use of BF or GS, MLFRFS
exceeds two other methods and over the original dataset, with an ac-
curacy of 72.71%. For Logistic and Tabár, running the BF or GS search
strategy, MLFRFS surpasses the other three methods and the original
dataset with an accuracy of 61.71%. For Logistic and Wolfe, using BF or
GS, MLFRFS surpasses all other methods and over the original dataset
with an accuracy of 67.84%. With LF and ME, MLFRFS also exceeds
most of the rest.

Now, consider the RF classifier, run over different datasets and with
different search strategies, MLFRFS still generally outperforms two of
the other three feature selection methods. However, it does not offer a
better solution when used with the PSO search strategy. This is likely
because using this classifier for this particular dataset, a good number

Table 11
Confusion matrices and classification accuracies on Boyd.
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of complicated features may be required to perform classification,
whilst the number of features selected by MLFRFS is rather small.
Owing to the initial population of PSO being randomly set, running the
particle swarm search strategy may be more capable of returning the
required complex features though in bigger sizes.

For the kNN classifier and dataset Boyd, using the LF search
strategy, MLFRFS exceeds three feature selection methods and over the
use of the full original dataset, with an accuracy of 58.15%. With BF or
GS search, MLFRFS exceeds two other methods, having an accuracy of
57.96%. For kNN and BI-RADS, adopting BF or GS, MLFRFS surpasses
most of the other methods with an accuracy of 72.08%. However, when
using other either of the other three search strategies, MLFRFS does not
lead to significantly better classification results. For kNN and Tabár,
MLFRFS outperforms the two other methods and the original dataset
with an accuracy of 62.76% when using the BF or GS search strategy.
For kNN and Wolfe, utilising LF, MLFRFS exceeds all other feature se-
lection methods with an accuracy of 63.17%, though the use of selected
features does not beat the use of the original full dataset. Using BF or
GS, MLFRFS exceeds the three other methods with an accuracy of
65.52%.

Generally speaking, MLFRFS entails better classification results
when the BF, GS or LF search strategy is adopted, while using its own
returned feature subset. Such feature subsets are of a much smaller
cardinality as compared to the full size of the original features. Using
fewer features also saves run time for classification. However, in certain
cases where the search strategy PSO or ME is adopted, MLFRFS does not
show to offer excellent results. This is mainly because the number of
features selected by MLFRFS may be too small, not sufficient to support
such search which involves an initial randomly set population.

4.4.3. Confusion matrices
The above experimental results show that MLFRFS consistently of-

fers superior results when used with the Logistic classifier, across a

range of search strategies and datasets. In order to better understand
how MLFRFS performs particularly with respect to different datasets,
confusion matrices obtained from the results of running Logistic with
10× 10-FCV are computed, as given in Tables 11–14.

Compared to the alternatives regarding the Boyd dataset, MLFRFS
has reduced confusions amongst classes II, V and VI, as shown in
Table 11. It successfully classifies 80%, 65.93% and 65.91% instances,
for classes II and V and VI, respectively, beating other feature selection
methods (with FRFS correctly classifying 78.33%, 70.33% and 56.82%;
Consis 73.33%, 62.64% and 59.09%; CFS 70%, 60.44% and 47.73%;
FDMFS 60%, 57.14% and 65.91%; and using the full original feature set
only reaching 68.33%, 59.34% and 54.55%).

Regarding other datasets, MLFRFS also helps reduce confusions
between classes I and III on BI-RADS; between II and IV on Tabár; and
between I and III on Wolfe.

4.4.4. Area under ROC curve
Classification accuracy is not the only measure for performance

evaluation and may sometimes fail to provide a comprehensive view of
a learning classifier, especially for data involving imbalanced classes. A
helpful alternative assessment is the receiver operating characteristic
curve (ROC). It can be used to analyse and evaluate the predictive
power of the learning algorithm through computing the Area-Curve
(AUC) metric [43]. Being a statistically consistent measure, it can be
particularly effective in assessing class discrimination outcomes
[44,45]. Having recognised this, AUC is herein used to analyse the
overall classification performance of utilising the feature subsets se-
lected by different feature selection methods. To reduce repetition, this
investigation is focussed on the use of the Logistic classifier, supported
again with 10×10-fold FCV. The results of the AUC exercise are pre-
sented in Table 15, noting that a high value of AUC indicates a better
performance. It can be seen from this table that in a great majority of
cases, the use of MLFRFS leads to better results.

Table 12
Confusion matrices and classification accuracies on BI-RADS.
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4.4.5. T-test
As conventionally adopted in the literature [46], paired t-test is used

throughout the present experimental studies to show any statistically
significant differences between different approaches. This helps ensure
that the results are not obtained by chance. As indicated previously, the
baseline reference for the tests is the result obtainable by the feature
subset selected by MLFRFS. In particular, for Tables 7–10 and 15,
paired t-test results are summarised at the end of each table, counting
the number of statistically better (v), equivalent (space) or worse (*)
cases for each method in comparison to MLFRFS. In all experiments
reported, the threshold of significance is set to 0.05 (as normally done
in the literature).

T-test reveals significant differences in the classification accuracies
between the use of MLFRFS and that of other feature selection methods
(comparing with regard to the employment of the same learning clas-
sifier for the same dataset, of course). For example, in Table 10, (0/1/3)
in the FRFS column indicates that the feature subset returned by this
classical method performs better than MLFRFS in no case, equivalently
well in one case, and worse than MLFRFS in three cases.

As shown in Tables 7–10, for search strategies BF, GS and LF, the
number of occurrences of “*” in almost every table is much higher than
that of “v”. That is, MLFRFS leads to better performances in most cases,
though the situation is less positive when the PSO or ME search strategy
is utilised. Overall, the T-test shows that MLFRFS always entails better
classification if there is statistical difference between compared ap-
proaches, unless no statistical significance (i.e., a tie) is detected. Note
that the sizes of MLFRFS-returned feature subsets tend to be small.
Together, the results demonstrate the efficacy of MLFRFS and thus, the
potential of employing MLFRFS to perform mammographic risk ana-
lysis.

5. Conclusion

The risk analysis of mammographic images is of great practical
significance to discover the potential danger of developing breast
cancer, supporting doctors in performing generally rather difficult de-
cision-making. The previous studies usually only used a single criterion,
as a decision class, to forecast cancer risks. By taking the advantage of
multiple criteria, this paper has introduced a novel approach to aiding
in automated mammographic risk analysis, with the support of fuzzy
rough sets theory. The approach combines feature selection, power set
learning, and association rule learning to efficiently exploit the multiple
criteria for better risk classification. In so doing, while reflecting a
range of domain expertise, the implemented system has the ability of
minimising redundancy otherwise caused by the use of such complex
criteria. Comparative experimental results have positively demon-
strated the efficacy of the proposed approach, in reference to popular
existing techniques.

Topics for further research include a more comprehensive in-
vestigation into the hierarchical structure between the criteria to ana-
lyse their impact upon the performance of feature selection. A granu-
lated representation of the decision indicators may further reveal any
underlying relationships between the criteria. With granular re-
presentation of the class labels, effective search strategies that may
optimise the selected feature subset, in terms of both subset size and
quality of selected features for handling multi-label datasets are also
very interesting to develop. In addition, to achieve improved risk
analyses, how the proposed framework could be better integrated with
state-of-the-art fuzzy-rough classifiers [13,47] forms a piece of active
research.

Table 13
Confusion matrices and classification accuracies on Tabárt.
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