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Abstract 19 

Invasive alien plants are a worldwide problem, causing substantial damage to biodiversity as well as 20 

economies. Recent studies suggest invasive plants may also alter fundamental ecosystem processes 21 

such as nutrient and carbon cycling in soil by depositing chemically distinct leaf litter. Here, we used 22 

laboratory microcosms to test whether the chemical properties of Rhododendron ponticum litter, an 23 

invasive shrub in Britain, lead to slower decomposition than that of native (or naturalised) species with 24 

labile litter (Acer pseudoplatanus and Fraxinus excelsior), but not relative to the recalcitrant litter of 25 

Quercus petraea. Leading from this, we hypothesised that the labile native litter decomposition rate is 26 

reduced when mixed with R. ponticum litter in non-additive responses, with the strength of these 27 

responses increasing with the proportion of R. ponticum in litter mixes (25%, 50% and 75% R. ponticum). 28 

Over the incubation period, the decomposition (measured as the microbial respiration rate) of unmixed 29 

R. ponticum litter was significantly lower than that of A. pseudoplatanus and F. excelsior, but not Q. 30 

petraea. When mixed with R. ponticum (50%), F. excelsior litter decomposition was slowed, whilst no 31 

effect was seen for Q. petraea. However, A. pseudoplatanus litter decomposition was enhanced, 32 

contrary to expectation. The strength of the non-additive decomposition responses did not vary with 33 

different proportions of R. ponticum to the other species, with only the 50% mixtures showing 34 

significant non-additive respiration rates. Litter chemical properties were highly associated with 35 

decomposition rates, with both phenolic content and C:N ratio negatively correlated with microbial 36 

respiration. To test the influence of phenolics on litter decomposition, leachates of R. ponticum litter 37 

with phenolics present or removed (via activated carbon) were added to microcosms containing the 38 

native species litter. Microbial respiration in F. excelsior microcosms was lower when R. ponticum 39 

leachate contained phenolics. For A. pseudoplatanus and Q. petraea litter, no effect of leachate 40 

treatment was observed. Our results show that invasive litter chemistry can alter the decomposition of 41 

native litter, with the impact varying between species. Altered decomposition rates could cause plant-42 
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soil feedbacks, leading to altered soil nutrient concentrations. The novel soil conditions may favour the 43 

invader, increasing its dominance, whilst negatively influencing native species possessing greater 44 

nutrient demands.   45 

Keywords: Invasive; litter; decomposition; non-additive; phenolic; ecosystem; soil. 46 

1. Introduction 47 

Nutrient cycling is an essential ecosystem service and decomposition is a key component in this process 48 

(Delgado-Baquerizo et al., 2017). Decomposition involves soil organisms breaking down organic matter, 49 

releasing nutrients as soluble inorganic nutrients (Delgado-Baquerizo et al., 2017; Gartner and Cardon, 50 

2004). As a result, organic matter decomposition influences nutrient availability, therefore influencing 51 

the vegetation community that can inhabit the soil (Van der Putten et al., 2013).  52 

The rate of decomposition is determined by plant litter quality, along with the soil microbial community 53 

and physicochemical properties (Jewell et al., 2015). At the ecosystem level, litter chemistry is the main 54 

influence on decomposition (Aerts, 1999; Strickland et al., 2009). Plants adapted to low-nutrient 55 

environments, typically produce litter with high C:N ratios and polyphenol contents which protect leaf 56 

tissues by deterring herbivory (Aerts, 1999; Hobbie, 1992; Kuiters, 1990). Many phenolic compounds 57 

however inhibit decomposition and nutrient cycling, by suppressing microbial activity and complexing 58 

with proteins (Fanin et al., 2014; Horner et al., 1988). The resulting slow decomposition of the 59 

recalcitrant litter, leads to low soil concentrations of inorganic nitrogen, the main source of nitrogen for 60 

the majority of plant species (DeLuca et al., 2013; Hobbie, 1992; Michelsen et al., 1996; Nielsen et al., 61 

2009). By lowering nutrient availability in such plant-soil feedbacks, a species with low nutrient demands 62 

may enhance its competitiveness and become dominant (Van der Putten et al., 2013). Ericaceous 63 

species in particular are known to influence soil conditions via litter decomposition, leading to their 64 

dominance in low nutrient environments where inorganic nitrogen does not accumulate in sufficient 65 



4 
 

concentrations for species with higher nutrient demands (Aerts, 1999; DeLuca et al., 2013; Michelsen et 66 

al., 1998; Wurzburger and Hendrick, 2009).  67 

The litter of one species rarely occurs alone in the natural environment; litter layers usually contain a 68 

mixture of different species which decompose together (Gartner and Cardon, 2004). Since the 1980s 69 

there have been several studies comparing the decomposition rate of litter mixes with expected values 70 

calculated from the decomposition rates of the individual component species. Gartner and Cardon 71 

(2004) reviewed these studies, finding non-additive decomposition, that is responses which were 72 

different to calculated expected values, in many of the studies reviewed. Non-additive decomposition 73 

may be explained by many factors. Litter chemistry is important, as some species release nutrients or 74 

secondary metabolites as they decompose. Nutrient release may accelerate decomposition in more 75 

recalcitrant, adjacent material, a synergistic response (Hector et al., 2000; Salamanca et al., 1998). On 76 

the other hand, the inhibitory properties of leached phenolic compounds may cause antagonistic 77 

responses, where the decomposition rate of more labile adjacent litter is slowed (Hector et al., 2000; 78 

McArthur et al., 1994). Additionally, compounds leaching from litter may induce shifts in the soil 79 

microbial community, leading to such responses (Hector et al., 2000; Wardle et al., 1998). Finally, the 80 

greater diversity of habitats litter mixtures provide for decomposer organisms may also lead to 81 

synergistic responses (Hansen and Coleman, 1998; McArthur et al., 1994; Salamanca et al., 1998).  82 

Plant invasions are often associated with non-additive decomposition (Gartner and Cardon, 2004), with 83 

the strength of these interactions increasing with the proportion of invasive litter in the mixtures 84 

(Elgersma and Ehrenfeld, 2011; Hickman et al., 2013). The majority of studies have found invasive litter 85 

to accelerate native litter decomposition (e.g. Schuster and Dukes, 2014), with relatively few studies 86 

finding antagonistic decomposition following plant invasions (Hickman et al., 2013; Zhang et al., 2014). 87 

In one of the rare studies to find antagonistic responses following litter mixing, Rosemond et al. (2010) 88 

observed slower decomposition when Rhododendron maximum L. litter was mixed with Acer rubrum L. 89 



5 
 

and Liriodendron tulipifera L. in a freshwater stream. The inhibited decomposition was attributed to the 90 

high C:N ratio of R. maximum relative to the other two species, as the effect was alleviated where 91 

nitrogen was added to the water (Rosemond et al., 2010). 92 

Altering ecosystem processes in a similar way to R. maximum via non-additive decomposition may be a 93 

driver behind the success of the related Rhododendron ponticum L.. Following its introduction to Britain 94 

from Spain in 1763 as an ornamental shrub, R. ponticum has become a highly damaging invader of 95 

native habitats (Cross, 1975). It is particularly problematic in broadleaved woodlands, where the dense 96 

shade cast by its canopy prevents the regeneration of tree species such as Fraxinus excelsior L. and 97 

Quercus petraea Matt. (Liebl.) (Cross, 1975; Jackson, 2008; Peterken, 2001). In addition to the direct 98 

effect of canopy shading, Rhododendron spp. are known to deposit recalcitrant acidic litter, which is high 99 

in polyphenols and low in nitrogen (Monk et al., 2014; Wurzburger and Hendrick, 2007). Its slow 100 

decomposition leads to an accumulation of a thick litter layer and the formation of infertile soils which 101 

may disadvantage competing species with higher nutrient requirements (Monk et al., 2014; Plocher and 102 

Carvell, 1987). Therefore, the chemical properties of R. ponticum litter may suppress the decomposition 103 

of native tree species in invaded habitats (Nilsen et al., 1999; Rosemond et al., 2010; Wurzburger and 104 

Hendrick, 2009). Such non-additive responses have significant implications for vegetation communities 105 

post-invasion, as they influence nutrient availability (Richards et al., 2010), potentially shifting the 106 

natural balance of an ecosystem towards an altered state (Suseela et al., 2016). 107 

This investigation aims to determine whether the chemical properties of invasive R. ponticum litter 108 

contribute towards non-additive decomposition when mixed with three native (or naturalised) tree 109 

species commonly found in the invaded broadleaved woodlands; namely Acer pseudoplatanus L., F. 110 

excelsior and Q. petraea. Using microcosm assays, we test four hypotheses. Firstly, that initial litters vary 111 

in their phenolic compound and nutrient content between species. Secondly, that due to its chemical 112 

properties which are supposed to inhibit decomposition, the litter of R. ponticum decomposes more 113 



6 
 

slowly than the more labile litter of A. pseudoplatanus and F. excelsior, but similar to the recalcitrant 114 

litter of Q. petraea. Decomposition was monitored as microbial respiration and as dissolved organic 115 

carbon leached from the microcosms at various timepoints during the incubation. Thirdly, that due to 116 

compounds leaching from the polyphenol-rich R. ponticum litter, mixing R. ponticum litter with labile 117 

native litter in microcosms produces antagonistic decomposition responses, whilst having no effect on 118 

more recalcitrant litter. To further test the role of phenolic compounds in native litter decomposition, 119 

leachates from decomposing R. ponticum litter were added to single species microcosms containing one 120 

of the native species. Finally, we hypothesise that the strength of any non-additive responses increases 121 

with increasing proportions of R. ponticum in the litter mixes, due to the leaching of more phenolic 122 

compounds. To interpret the results, we analysed initial litter samples for chemical properties that 123 

influence decomposition (carbon content, nitrogen content, C:N ratio, phenolic content and pH).  124 

2. Materials and methods 125 

2.1. Sample collection and preparation 126 

During October 2017, freshly senesced, undecomposed leaf litter samples showing autumnal colours 127 

(Cornelissen, 1996) were collected for R. ponticum and three native or naturalised (referred to as native 128 

from here on) tree species from a broadleaved woodland in Ceredigion, Wales (52°25'11"N 4°4'12"W). 129 

A. pseudoplatanus, F. excelsior and Q. petraea were selected as tree species as they are commonly 130 

found in native broadleaved woodlands, a habitat threatened by R. ponticum invasion (Peterken, 2001), 131 

and due to the varying degrees of decomposability of their litters (Slade and Riutta, 2012). All three 132 

native species coexisted in the woodland invaded by R. ponticum. Litter samples were air dried to 133 

constant weight at 25 oC for 8 days, then homogenised using a benchtop ball mill (Retsh MM200, Haan, 134 

Germany) (particle size <500 µm). The low drying temperature was selected to minimise the 135 

degradation of secondary compounds which influence decomposition rates (Hoorens et al., 2003). 136 

Samples were milled following the microcosm method employed by Strickland et al. (2009) to remove 137 
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the effect of litter physical properties, in order to focus on the influence of litter chemical properties on 138 

non-additive responses in decomposition. Following this, 13 different litter treatments were prepared, 139 

which covered all possible combinations with R. ponticum. These consisted of unmixed litter for each 140 

individual species (100%), as well as mixtures of each native species (A. pseudoplatanus, F. excelsior or 141 

Q. petraea) with varying mass proportions of R. ponticum (25%, 50% and 75% R. ponticum) to replicate 142 

different litter layers at the interface with competing species.  143 

2.2. Litter chemistry 144 

Subsamples of initial litter for each of the four studied species were analysed for chemical properties 145 

that influence decomposition (Table 1). Litter carbon and nitrogen content, and C:N ratios were 146 

measured by igniting 200 mg of material in a Vario MAX cube analyser (Elementar, Langenselbold, 147 

Germany). Total phenolic content was measured using the Folin-Ciocalteu method (Makkar et al., 1996). 148 

Briefly, phenolics were extracted by shaking 30 mg of sample in 2 mL of 90% methanol for 10 minutes. 149 

The suspension was then centrifuged for 10 minutes at 13,000 rpm before decanting the supernatant. 150 

The extraction process was repeated by resuspending the pellet in 2 mL 90% methanol, resulting in 4 mL 151 

of extract solution. Absorbance was measured at 725 nm using a gallic acid calibration curve. Litter pH 152 

was analysed by suspending 1 g of ground litter in 5 mL of distilled water, before measuring with a pH 153 

meter (Fisherbrand Hydrus 500, Loughborough, UK). Total soluble organic carbon content of the 154 

microcosm leachates was measured using a carbon analyser (Thermalox TOC-TN, Analytical Sciences 155 

Ltd., Cambridge, UK). 156 

Table 1: Initial litter chemical properties of the four studied species included in the study (+ standard 157 

error) (n = 7). Total phenolic content was measured as gallic acid equivalent (GAE). Common letters 158 

denote statistically non-significant differences between the means (P < 0.05) following analyses in GLMs 159 

(further discussed in the results section).  160 
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Species C (%) N (%) C:N pH 

Total phenolics (µg 

GAE mg-1 dry weight) 

R. ponticum 46.06 + 0.05 a 1.01 + 0.01 a 45.56 + 0.34 a 5.26 + 0.01 a 98.18 + 1.15 a 

A. pseudoplatanus 45.68 + 0.07 b 1.20 + 0.01 b 38.01 + 0.28 b 5.52 + 0.03 b 68.24 + 0.67 b 

F. excelsior 44.42 + 0.04 c 2.14 + 0.01 c 20.80 + 0.11 c 5.26 + 0.02 a 34.77 + 0.52 c 

Q. petraea 47.15 + 0.05 d 1.04 + 0.01 a 45.58 + 0.39 a 4.57 + 0.04 c 126.99 + 0.65 d 

 161 

2.3. Litter decomposition microcosms 162 

Decomposition microcosms were constructed based on previous studies (Jones et al., 2016; Wardle et 163 

al., 2009). For each microcosm, 10 g of sterile acid-washed sand (250-500 µm) was placed in 50 mL 164 

syringe barrels (BD Plastipak, Madrid, Spain), which were held upright in a randomised design in a rack, 165 

their tips sealed with Suba Seals (no. 9). The acid-washed sand provided an inert media to place 200 mg 166 

of each of the 13 litter combinations (n = 7 per treatment).  167 

Litter decomposition was initiated by adding 3 mL of a homogeneous microbial inoculant solution, 168 

common to all treatments. This solution was extracted based on the methods of Jones et al. (2016) and 169 

Gehrke et al. (1995), where 50 g of recently senesced native litter, showing autumnal colours and 170 

collected from the same sampling site, was suspended in 1 L of distilled water for eight hours, a ratio 171 

representative of typical rainfall and litter cover in the area, before filtering twice through Whatman no. 172 

1 filter paper (Whatman Paper Ltd., Maidstone, UK). The litter used to make the inoculant solution 173 

contained equal amounts of all three native species, as a microbial community’s “perception” of litter 174 

quality is determined by the parent plant community, thus avoiding bias between native species 175 

(Strickland et al., 2009). R. ponticum litter was not included, resulting in a native microbial inoculant that 176 

had not yet been affected by its invasion, as the main aim of the study was to investigate how the 177 
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introduction of invasive litter influences native litter decomposition. Syringe barrels were then sealed 178 

with Suba Seals (no. 57) to prevent water loss and incubated in a darkened growth chamber for 12 179 

weeks at 22 oC, a temperature commonly used in such controlled microcosm experiments on litter 180 

decomposition (e.g. Jones et al., 2016; Wardle et al., 2009). The upper seals were removed for two 181 

minutes at seven-day intervals during the incubation to renew the air within the chambers and prevent 182 

anoxic conditions, following the method of Jones et al. (2016). 183 

At six fortnightly timepoints during the incubation, microbial respiration within the chambers was 184 

measured using a method based on that used by Gehrke et al. (1995). Briefly, this involved removing the 185 

upper seal, before flushing the chambers with air to lower the CO2 concentration to ambient levels. The 186 

initial CO2 concentration within the microcosms was measured by sampling 5 mL of air with a syringe, 187 

which was directly injected into an infra-red gas analyser (IRGA) (EGM-4, PP-systems, USA). The upper 188 

seal was then replaced, before a second 5 mL sample of air was taken after two minutes, using a needle 189 

which penetrated the Suba Seal septum. The air sample was subsequently injected into the IRGA, which 190 

measured the spike in CO2 concentration. Respiration, measured as the rate of CO2 accumulation, was 191 

calculated using the below equation (1), based on information given in the PP Systems soil respiration 192 

chamber manual (2005): 193 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟 =  𝐹𝐹−𝐼𝐼
𝑡𝑡

× 𝑃𝑃
1000

× 273
273+𝑇𝑇

× 44.01
22.41

× 𝑉𝑉
𝐴𝐴

                     (1) 194 

where F = final CO2 concentration, I = initial CO2 concentration, t = time in seconds, P = atmospheric 195 

pressure, T = a constant temperature of 22oC, V = chamber volume and A = chamber surface area. 196 

Respiration rate measurements were subsequently converted to g of CO2 m-2 h-1 for analyses and 197 

presentation, as this is the most commonly used form for field measurements.  198 

Following the respiration measurements at each timepoint, leachates were collected from the 199 

microcosms based on the method of Jones et al. (2016). This was done by adding 4 mL of distilled water 200 
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to each tube, before applying pressure with a syringe plunger to extract 4 mL of leachate from the tips. 201 

Leachates were stored at -80oC prior to analysing for total organic carbon.  202 

To investigate whether litter mixing resulted in non-additive responses, observed values were compared 203 

to expected values for each litter mix, as in previous studies reviewed by Lecerf et al. (2011). Expected 204 

values for 50% R. ponticum – 50% native mixes were calculated as: 205 

𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟𝐸𝐸 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟 = (𝑥𝑥+𝑦𝑦)
2

                               (2) 206 

where 𝐸𝐸 = observed value for R. ponticum and 𝑦𝑦 = observed value for native species. Equation (2) was 207 

adapted to equation (3) for litter mixtures which were 75% R. ponticum and 25% native, and equation 208 

(4) for 25% R. ponticum and 75% native litter mixtures. 209 

𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟𝐸𝐸 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟 = (3𝑥𝑥+𝑦𝑦)
4

                             (3)  210 

𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟𝐸𝐸 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟 = (𝑥𝑥+3𝑦𝑦)
4

                             (4)  211 

The strength of non-additive responses following litter mixing was estimated using an equation (5) 212 

based on Hoorens et al. (2003): 213 

𝑁𝑁𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝐸𝐸𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟 𝑟𝑟𝐴𝐴𝑟𝑟𝑟𝑟𝐴𝐴𝑠𝑠𝐴𝐴ℎ = �𝑂𝑂
𝐸𝐸
� − 1               (5)  214 

where O = the observed value for mean respiration and E = the expected value mean respiration, 215 

calculated as described above. The stronger the response, the greater the deviation from 0. Where 216 

there were synergistic responses, the strength values were positive, whilst the values were negative for 217 

antagonistic responses. 218 

Microcosm contents were removed after 12 weeks and oven-dried at 40oC to constant weight. Litter 219 

was separated from the sand by sieving, and then stored at -80 oC prior to chemical analyses.  220 
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2.4. R. ponticum leachate addition experiment 221 

A follow-up microcosm experiment was conducted to investigate the influence of compounds leaching 222 

from decomposing R. ponticum litter on microbial respiration in microcosms containing A. 223 

pseudoplatanus, F. excelsior or Q. petraea litter. To collect decomposing R. ponticum litter leachate, 224 

microcosms containing R. ponticum litter were incubated using the method described above. After two 225 

weeks, 2 mL of distilled water was added to each microcosm and leachate was collected as previously 226 

described. The collected leachate was split into two aliquots; one was left unaltered, whilst the other 227 

was treated with activated carbon, which lowered total phenolic content by over 97% (Table 1S). 228 

Activated carbon was added to leachate at 50 g L-1, and both batches were then stirred for 5 hours 229 

(Mukherjee et al., 2007). The leachates were then centrifuged at 13,000 rpm for 5 minutes to remove 230 

solids, before the supernatant was transferred to clean bottles.  231 

Microcosms containing either A. pseudoplatanus, F. excelsior or Q. petraea litter were subsequently 232 

prepared as previously described. Decomposition in these microcosms was initiated with either the 233 

unaltered leachate, activated carbon treated leachate or distilled water (n = 7). Microbial respiration in 234 

these native species microcosms was measured after one, five, ten and 15 days of incubation, using the 235 

method previously described.  236 

2.5. Statistical analyses 237 

All statistical analyses were conducted using R programming software version 3.5.3 (R Development 238 

Core Team, 2017). Generalised linear models (GLMs) were used to compare initial litter chemical 239 

properties between species (phenolic content, C:N and pH). Generalized linear mixed models (GLMMs) 240 

were used for repeated measures of microbial respiration and leached organic carbon over the duration 241 

of the incubation, using the lme4 package and the multcomp package for subsequent pairwise 242 

comparison. GLMs or independent sample t-tests were used to analyse data within individual 243 

timepoints. Pearson’s product moment correlation tests investigated the relationship between microbial 244 



12 
 

respiration and leached carbon, as well as between litter chemical properties and the cumulative 245 

respired CO2 and leached organic carbon, calculated using the area under the curves as in Strickland et 246 

al. (2009).  247 

3. Results 248 

3.1. Initial litter chemistry 249 

The C:N ratio of R. ponticum litter was significantly higher than both F. excelsior and A. pseudoplatanus 250 

(P < 0.001), but there was no significant difference relative to Q. petraea (P = 0.990) (Table 1). Phenolic 251 

compound concentration in R. ponticum litter was significantly higher than in A. pseudoplatanus and F. 252 

excelsior litter (P < 0.001), whilst Q. petraea litter had significantly higher concentrations than all three 253 

other species (P < 0.001). R. ponticum litter pH was significantly lower than that of A. pseudoplatanus (P 254 

< 0.001), but not F. excelsior (P = 0.390). Q. petraea litter pH was significantly lower than all other litters 255 

(P < 0.001).  256 

3.2. Single species litter microcosms 257 

Unmixed litter samples of the four species were compared to investigate decomposition between 258 

species. Repeated measures analysis showed respiration (g CO2 m-2 h-1) in microcosms containing R. 259 

ponticum litter was significantly lower than in those containing A. pseudoplatanus (P = 0.026) and F. 260 

excelsior (P < 0.001) litter, but not significantly lower relative to Q. petraea litter (P = 0.802) (Figure 1). 261 

Following on from this, microbial respiration in these microcosms was compared within specific 262 

timepoints, which revealed temporal variation. Microbial respiration in microcosms containing A. 263 

pseudoplatanus was significantly higher than for R. ponticum microcosms only at six (P = 0.047), eight (P 264 

< 0.001) and ten weeks into the incubation (P < 0.001). There was no significant difference between R. 265 

ponticum and F. excelsior microcosm respiration two weeks into the incubation (P > 0.05). Respiration 266 

was significantly higher during every subsequent timepoint in the F. excelsior microcosms relative to R. 267 
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ponticum (four, six, eight and ten weeks: P < 0.001, 12 weeks: P < 0.05), while R. ponticum and Q. 268 

petraea microcosm respiration did not significantly differ at any of these time points (P > 0.05). 269 

Cumulative respired CO2, measured as the area beneath the microbial respiration curve, was strongly 270 

and negatively correlated with both litter C:N ratio and phenolic content (P < 0.001, R2 = -0.89 and P < 271 

0.001, R2 = -0.84 respectively), whilst it also showed a weak, positive correlation with litter pH (P = 272 

0.034, R2 = 0.4). 273 

 274 

Figure 1: Mean microbial respiration (g CO2 m-2 h-1) for the microcosms containing the unmixed litter of 275 

R. ponticum, A. pseudoplatanus, F. excelsior and Q. petraea (n = 7). Error bars represent the standard 276 

error.  277 

Microbial respiration in the single species microcosms was significantly correlated to their leached 278 

carbon concentrations (P < 0.001, R2 = 0.73). Repeated measures analysis showed leachates from F. 279 

excelsior had significantly higher carbon concentrations than leachates from R. ponticum, A. 280 

pseudoplatanus and Q. petraea (P < 0.001) (Figure 2). No significant differences were observed between 281 
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the other species (P > 0.05). Higher dissolved organic carbon concentrations for F. excelsior leachates 282 

were also observed within timepoints; two weeks into the incubation, F. excelsior microcosm leachate 283 

carbon content was significantly higher than that of A. pseudoplatanus and Q. petraea (P < 0.001), but 284 

not R. ponticum (P = 0.383). After four weeks of incubation, the leachate carbon content of F. excelsior 285 

was significantly higher than all three other species (P < 0.001). No differences between any of the 286 

species were observed during weeks six and eight (P > 0.05). However, during weeks ten and 12, the 287 

carbon content of F. excelsior leachate was again significantly higher than all other species (P < 0.001). 288 

Cumulative leached carbon, measured as the area beneath the leachate carbon concentration curve, 289 

was negatively correlated with initial litter C:N (P < 0.001, R2 = -0.74) and phenolic content (P < 0.001, R2 290 

= - 0.61), however there was no relationship with litter pH (P = 0.489, R2 = 0.14). 291 

 292 

Figure 2: Mean leachate total organic carbon concentration (mg L-1) for the microcosms containing the 293 

unmixed litter of R. ponticum, A. pseudoplatanus, F. excelsior and Q. petraea (n = 7). Error bars 294 

represent the standard error.  295 
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3.3. Non-additive decomposition microcosm experiment 296 

Non-additive microbial respiration was only observed in 50% mixes with R. ponticum, being synergistic 297 

for A. pseudoplatanus (P < 0.001) and antagonistic for F. excelsior (P = 0.025) (Figure 3). No non-additive 298 

interactions were observed for these species when mixed at other percentages (25% or 75%), or in any 299 

litter mix with Q. petraea (P > 0.05). When comparing the 50% microcosms within timepoints (Figure 3), 300 

significant differences (P < 0.05) between observed and expected values were seen for A. 301 

pseudoplatanus only during the second week. For F. excelsior, observed and expected values differed 302 

only during weeks four, six and eight (P < 0.05).  303 

 304 

Figure 3: Expected and observed microbial respiration data (g CO2 m-2 h-1) for the microcosms containing 305 

A. pseudoplatanus, F. excelsior or Q. petraea litter, mixed with R. ponticum litter at different proportions 306 

(n = 7). Expected values were calculated from the microbial respiration of the individual component 307 

species, using the equations described in the methods section. Error bars represent standard error. 308 
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Overall significance between observed and expected values was tested using GLMMs, with the P value 309 

displayed in the top-left corner of each panel. T-tests were used to analyse data within timepoints, with 310 

significance denoted above the points (* P < 0.05; ** P < 0.01; *** P < 0.001). 311 

Antagonistic non-additive responses in leached carbon concentrations were observed for both A. 312 

pseudoplatanus and F. excelsior when mixed with R. ponticum at 50% (P < 0.001) (Figure 4). Antagonistic 313 

responses were also observed for A. pseudoplatanus when mixed with 25% and 75% R. ponticum litter 314 

(P = 0.027 and P < 0.001 respectively). No non-additive interactions were observed for the 25% and 75% 315 

F. excelsior litter mixtures (P = 0.340 and P = 0.068 respectively), or for any mixture containing Q. 316 

petraea litter (P > 0.05).  317 

 318 

Figure 4: Expected and observed leachate total organic carbon concentration (mg L-1) for the 319 

microcosms containing A. pseudoplatanus, F. excelsior or Q. petraea litter, mixed with R. ponticum litter 320 

at different proportions (n = 7). Expected values were calculated from the microbial respiration of the 321 
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individual component species, using the equations described in the methods section. Error bars 322 

represent standard error. Overall significance between observed and expected values was tested using 323 

GLMMs, with the P value displayed in the top-left corner of each panel. T-tests were used to analyse 324 

data within timepoints, with significance denoted above the points (* P < 0.05; ** P < 0.01; *** P < 325 

0.001). 326 

Non-additive response strength was calculated based on Hoorens et al. (2003) (see equation five in the 327 

materials and methods) (Table 2). The proportion of R. ponticum included in the litter mixture had no 328 

impact on the response strength for neither A. pseudoplatanus, F. excelsior nor Q. petraea (P = 0.468, P 329 

= 0.386 and P = 0.179 respectively). Furthermore, in a two factor GLM (species x litter proportion), the 330 

proportion of R. ponticum litter had no impact on response strength (P = 0.209), however species had a 331 

significant effect (P = 0.001). No significant interaction was observed between these two factors (P = 332 

0.510).  333 

Table 2: The strength of the non-additive response (+ standard error) in the mean respiration rate when 334 

mixing the native species with R. ponticum at varying proportions (n = 7), calculated according to the 335 

equation described in the methods section. Briefly, values are positive for synergistic responses and 336 

negative for antagonistic responses, and the stronger the response, the greater the deviation from 0. No 337 

statistically significant differences (P < 0.05) in non-additive response strength were observed for 338 

neither of the three native species when comparing the mixtures with varying proportions of R. 339 

ponticum litter.  340 

Species Litter 

proportion 

 Non-additive 

response strength 

A. pseudoplatanus 25%  0.526 + 0.271 

A. pseudoplatanus 50%  0.501 + 0.328 
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A. pseudoplatanus 75%  0.138 + 0.070 

F. excelsior 25%  -0.035 + 0.117 

F. excelsior 50%  -0.282 + 0.083 

F. excelsior 75%  -0.147 + 0.166 

Q. petraea 25%  0.280 + 0.217 

Q. petraea 50%  0.516 + 0.188 

Q. petraea 75%  0.040 + 0.124 

3.4. R. ponticum leachate addition experiment 341 

Leachates collected from microcosms containing R. ponticum litter were either left unaltered or treated 342 

with activated carbon which removed phenolics, before they were added to microcosms containing 343 

either A. pseudoplatanus, F. excelsior or Q. petraea litter. Overall, respiration in F. excelsior microcosms 344 

was significantly lower following the addition of unaltered leachate, relative to leachate with phenolics 345 

removed (P = 0.035) (Figure 5). This effect was not observed for microcosms containing A. 346 

pseudoplatanus or Q. petraea (P = 0.116 and P = 0.094 respectively). For all three species, respiration 347 

was significantly higher where phenolics were removed, compared to microcosms where distilled water 348 

was added (P < 0.05). However, there was no difference in respiration between unaltered leachate 349 

microcosms which included phenolics and distilled water (P > 0.05). 350 
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 351 

Figure 5: Mean microbial respiration (g CO2 m-2 h-1) (+ standard error) over the course of the follow-up 352 

experiment, where leachate from decomposing R. ponticum litter were added to microcosms containing 353 

either A. pseudoplatanus (a), F. excelsior (b) or Q. petraea (c). There were three treatments; one where 354 

leachate was left unaltered, another where the leachate was treated with activated carbon to remove 355 

phenolics, and a distilled water control treatment (n = 7).  356 

4. Discussion 357 

This study focused on whether the litter chemical properties of invasive R. ponticum causes non-additive 358 

native tree litter decomposition. Results showed that R. ponticum has recalcitrant litter, with a high C:N 359 

ratio and phenolic compound content, decomposing slower than native labile litter (A. pseudoplatanus 360 

and F. excelsior) and at a similar rate to native recalcitrant litter (Q. petraea). When mixed with native 361 

litter, R. ponticum showed species-specific non-additive effects on decomposition. Non-additive 362 

microbial respiration was observed in 50% litter mixtures with A. pseudoplatanus and F. excelsior, in 363 

synergistic and antagonistic interactions respectively. No effect on microbial respiration was observed 364 

when mixed with these species at other proportions (25% or 75%), or when mixed with Q. petraea. The 365 
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proportion of R. ponticum mixed with native litter did not impact combined decomposition; there was 366 

no difference in non-additive response strength when comparing the mix ratios containing different 367 

proportions of R. ponticum for any of the three native species tested.  368 

Litter chemical properties may explain the non-additive decomposition responses observed. 369 

Antagonistic responses in microbial respiration were observed when R. ponticum litter was mixed with 370 

F. excelsior, as hypothesised. R. ponticum litter had a higher C:N ratio than F. excelsior, which can cause 371 

non-additive decomposition (Rosemond et al., 2010), whilst there was a significant negative correlation 372 

between C:N and mean microbial respiration. This suggests that initial litter C:N may have contributed 373 

towards the faster decomposition of A. pseudoplatanus and F. excelsior relative to R. ponticum and Q. 374 

petraea, and the non-additive decomposition observed when mixing R. ponticum with F. excelsior. 375 

Phenolic compounds leaching from litter can also influence decomposition by altering the decomposer 376 

community (Fanin et al., 2014; Kuzyakov et al., 2000). Certain low-molecular weight phenolics stimulate 377 

fungal spore germination and microbial growth, whilst more complex polyphenols such as condensed 378 

tannins have a negative effect, inhibiting microbial activity (Hättenschwiler et al., 2005; Kuiters, 1990). 379 

Phenolics leaching from R. ponticum litter may therefore have inhibited microbial activity, leading to 380 

lower F. excelsior decomposition in mixed species microcosms.  381 

The antagonistic decomposition of mixed F. excelsior and R. ponticum litter may also have been caused 382 

by the formation of recalcitrant polyphenol-protein complexes (Hättenschwiler and Vitousek, 2000). 383 

Tannins extracts from the related species R. maximum have a strong tendency to complex with 384 

nitrogenous compounds (Wurzburger and Hendrick, 2007), including some enzymes, inhibiting 385 

decomposition (Hättenschwiler and Vitousek, 2000; Horner et al., 1988; Palm and Sanchez, 1990). Few 386 

organisms have the ability to degrade these complexes, with the exception of certain fungal species that 387 

can synthesise polyphenol oxidase (Hättenschwiler and Vitousek, 2000; Kuiters, 1990). The nitrogen 388 

content of F. excelsior litter was particularly high compared to the other three species, making microbial 389 
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activity in F. excelsior microcosms more likely to be affected by leaching polyphenols. Conversely, 390 

synergistic responses were observed when mixing R. ponticum with A. pseudoplatanus, whilst no effect 391 

was seen for Q. petraea. Both Q. petraea and A. pseudoplatanus litter had higher phenolic contents and 392 

C:N ratios than F. excelsior, potentially explaining why their decomposition was not suppressed when 393 

mixed with R. ponticum. 394 

The importance of litter phenolic content in non-additive decomposition is supported by the results of 395 

the follow-up experiment, where leachates from decomposing R. ponticum litter were added to 396 

microcosms containing either A. pseudoplatanus, F. excelsior or Q. petraea litter. The addition of 397 

unaltered R. ponticum leachate, which contained 218 µg mL-1 of phenolics (Table 1S), suppressed 398 

microbial respiration in F. excelsior litter microcosms relative to leachate where >97% of phenolics had 399 

been removed with activated carbon. This suggests that phenolics released from decomposing R. 400 

ponticum were responsible for the antagonistic responses observed when mixed with F. excelsior. These 401 

results are supported by those of De Marco et al. (2018), who found that water extracts from Robinia 402 

pseudoacacia L. (black locust) and Rubus fruticosus L. (blackberry) litter reduced microbial activity and 403 

biomass when added to soil. Removing phenolics from the leachate had no effect for A. pseudoplatanus 404 

and Q. petraea microcosm respiration, potentially as they had higher phenolic contents than F. excelsior 405 

and were therefore less affected. This lack of effect for A. pseudoplatanus may partially explain why no 406 

antagonistic effect was observed when mixed with R. ponticum litter.  407 

The strength of the observed non-additive effects did not increase with increasing R. ponticum 408 

proportions in litter mixes. This contrasts with the findings of Hickman et al. (2013), who suggested that 409 

the effect of invasive litter during the early phase of invasion is limited, with non-additive decomposition 410 

increasing in strength if invasion is allowed to progress. The effect of invasive litter on decomposition is 411 

likely to vary between species however; Elgersma and Ehrenfeld (2011) for example reported that small 412 

quantities of invasive Berberis thunbergii DC. (Japanese barberry) litter can cause substantial non-linear 413 
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shifts in decomposer communities. Our results could have important ecological implications, as they 414 

suggest that even small quantities of R. ponticum litter can have cause profound changes in litter 415 

decomposition for some native species.  416 

Whilst significant non-additive responses in microbial respiration were observed for two of the three 417 

native species when mixed with 50% R. ponticum, none of the six mixtures containing unequal 418 

proportions of R. ponticum and native litter showed non-additive responses. This was unexpected, as 419 

Mao and Zeng (2012) and Bonanomi et al. (2010) reported that having unequal proportions of litter led 420 

to higher incidence of non-additive decomposition. In the current study, samples were milled and 421 

incubated in darkness, whilst decomposition was monitored as microbial respiration and leached 422 

carbon. Not separating the mass loss of different species’ litters may mask small species-specific 423 

decomposition responses (Hättenschwiler et al., 2005), potentially explaining why non-additive 424 

responses were less common in the unequal mixtures. Despite this, we consider our approach to be 425 

informative, as it allowed us to focus on the effect of litter chemistry, removing the effect of variations 426 

in litter physical properties and photodegradation on decomposition. Photodegradation may not greatly 427 

influence decomposition in the field, however, due to the dense shade imparted by the R. ponticum 428 

canopy (Niinemets et al., 2003). Additionally, our approach allowed repeated measurements to be made 429 

over time rather than at one timepoint, which is advantageous given that decomposition is a dynamic 430 

and variable process (Hättenschwiler et al., 2005).  431 

The dynamic nature of the decomposition process was reflected in the results of the current study, with 432 

respiration declining over time for all species. This may be explained by soluble compounds leaching 433 

from litter. At the start of the incubation, labile carbon sources would be readily leached from the litter 434 

(Keuskamp et al., 2013), resulting in high microbial activity. Over time, the labile fraction of litter is 435 

depleted, leaving behind the more recalcitrant structural compounds, resulting in a decreased 436 

decomposition rate (Keuskamp et al., 2013). This was reflected in the decreasing leachate organic 437 
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carbon measurements observed over the incubation period in the current study, which were 438 

significantly correlated with the decreasing microbial respiration measurements. Under natural 439 

conditions, the effect of these compounds would be delayed and more prolonged, as the leaching of 440 

compounds from intact leaf litter would be slower due to lower litter surface area and temperature. In 441 

addition to the concentration, the composition of leachate carbon may also have an important influence 442 

on respiration. Microbial respiration in R. ponticum microcosms after two weeks was significantly lower 443 

than in F. excelsior microcosms, despite there being no difference in leachate total organic carbon 444 

concentration, possibly as R. ponticum litter was higher in inhibitory and recalcitrant phenolics. Litter 445 

phenolic content was negatively correlated with cumulative respired CO2, suggesting that the high 446 

phenolic content of R. ponticum and Q. petraea contributed towards their slower decomposition rates 447 

relative to A. pseudoplatanus and F. excelsior.  448 

Our results support observations made in the field of low nutrient turnover beneath Rhododendron spp. 449 

(Wurzburger and Hendrick, 2009, 2007), typical of ericaceous shrubs which are adapted for low-nutrient 450 

environments (DeLuca et al., 2013; Hobbie, 1992). Such plant-soil feedbacks are considered important 451 

drivers in the dominance of some plant species; litter inputs may change the soil’s chemical properties, 452 

making it less favourable for species with different nutrient demands and more favourable for 453 

conspecifics (Van der Putten et al., 2013). R. ponticum may therefore promote its invasion and increase 454 

its dominance by altering the decomposition of native litter. Crucially however, we show that this effect 455 

on native litter decomposition was species-specific; F. excelsior and other native species with higher 456 

nutrient demands may be negatively influenced by altered soil conditions. Conversely, those with similar 457 

nutrient demands to R. ponticum may be less influenced by alterations in soil properties. These findings 458 

could be particularly important when restoring cleared sites to native habitats, as altered soil conditions 459 

influence the vegetation community that can establish post-clearance of R. ponticum.  460 
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5. Conclusions 461 

This study highlights the strong influence of litter chemical composition on decomposition. Phenolic 462 

content, a group of compounds previously reported to inhibit decomposition, was particularly 463 

important, most likely explaining the slower decomposition of invasive R. ponticum litter relative to that 464 

of A. pseudoplatanus and F. excelsior, but not Q. petraea. Litter chemistry may also explain non-additive 465 

decomposition following litter mixing, with this effect varying between species. F. excelsior litter 466 

decomposition was slower than expected when mixed with R. ponticum. Conversely, combined 467 

decomposition for A. pseudoplatanus and R. ponticum was higher, whilst there was no effect for Q. 468 

petraea. The strength of the non-additive decomposition did not vary with increasing proportions of R. 469 

ponticum in litter mixtures. Following the removal of phenolics from R. ponticum litter leachates, 470 

microbial respiration was enhanced when added to microcosms containing F. excelsior litter, suggesting 471 

that these compounds may be responsible for antagonistic decomposition responses. This study 472 

highlights the potential for invasive shrubs to alter processes such as decomposition in plant-soil 473 

feedbacks, potentially shifting the natural balance of ecosystems. It also highlights that non-additive 474 

decomposition following invasive litter mixing is species-specific, being synergistic for some species and 475 

antagonistic for others.  476 
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