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Abstract

We introduce the Lie algebra of super-operators associated with a
quantum filter, specifically emerging from the Stratonovich calculus. In
classical filtering, the analogue algebra leads to a geometric theory of
nonlinear filtering which leads to well-known results by Brockett and by
Mitter characterizing potential models where the curse-of-dimensionality
may be avoided, and finite dimensional filters obtained. We discuss the
quantum analogue to these results. In particular, we see that, in the
case where all outputs are subjected to homodyne measurement, the Lie
algebra of super-operators is isomorphic to a Lie algebra of system op-
erators from which one may approach the question of the existence of
finite-dimensional filters.

1 Introduction

The aim of this paper is to extend to the quantum domain some fruitful ap-
proaches to the problem of gauging the complexity of the estimation problem
coming from classical filtering theory. We recall the basic problem in nonlinear
filtering. A system has state variable X (¢) on R™, say, which undergoes a noisy
evolution, and we wish to obtain the conditional expectation, 7;(f), of the ran-
dom variable f(X(¢)) based on noisy observations of a process Y up to time ¢,
for arbitrary twice differentiable bounded functions f. Let us take the model
equations to be

dX(t) = (X)) dt+v0dW(2),
dY (1) = h(X(t))dt+dZ(t),

where W (t) and Z(t) are independent Wiener processes.



The filter may then be written in the form m(f) = Zig{)) where o;(f) =

| f(z)o(z,t)dx and the non-normalized density satisfies the Duncan-Mortensen-
Zakai equation (Stratonovich form)

do = L{o dt + h(z)o o dY (t)
Here we encounter the dual generator

1 1
L= 573& - V.(v) = ih(a:)Z.
In order to study the algebraic features of the filter, Brockett [2] and Mitter
[1, 3] independently introduced the notion of an estimation algebra defined to
be the Lie algebra

& =Lie{L}, h}

where h is understood as the operator of multiplication by the function A point-
wise. For instance, if £ is has a finite basis X1, -, X,,, then one may hope to
find a solution locally around ¢ > 0 of the Wei-Norman form

o(z,t) = e ®OX1 .. eun®Xn g (g (),

with further hope that this may be global if the estimation algebra is solvable.
We remark that one may introduce a form of gauge covariant derivative
D=V - 71211(:1:) which allows us to complete the squares so that
0

1
5= L2000
where ®(z) = 5 [h(z)? + V.v(z) + %v(x)Tv(x)] The derivative D has a gauge
0
field given by
8’Uz' 6vj

Fyj =Dy, Dj| = — .
= Do D=5~ b,

The filtering problem is said to be exact when F' = 0 and this implies that the
drift v is gradient in R™. The Benes filters, for example, are the family of finite
filters associated with an exact problem for which the function h(z) is linear
and ®(z) is at most quadratic. Brockett and Mitter also initiated the study of
models for which the gauge field is constant and non-zero. For more details, see
the excellent review [4].

One of our aims is to find a suitable quantum analogue to the estimation
algebra for the quantum filters associated with homodyne measurements. Of
necessity, we deal with super-operators in place of vectors, and here we make
some observations and proposals.

First of all, tangent vector fields are the derivations on the algebra of smooth
functions. If we replace this with the algebra, %(h), of bounded operators on



a Hilbert space then we encounter the following. For a super-operator, L, its
dissipation is the map D, from B (h) x B () to B (h) given by

Dp(X,Y) = L(XY) - L(X)Y — XL(Y).

The derivations are the super-operators for which the dissipation vanishes iden-
tically. A well-known Theorem of Sakai, [5], tells us that the derivations on
a C*-algebra are precisely the super-operators of the form —i[-, H| for some
H € %B(h), and for a *-map we require that the H be self-adjoint. The Lie
bracket of two derivations with Hamiltonians H; and Hs is again a derivation
with Hamiltonian % [Hy, Hs].

One may be suspicious that the quantum derivations are not the most general
analogue of tangent vectors - rather they are somehow only the analogues of
Hamiltonian vectors fields on some manifold with a Poisson Brackets structure.
However, there is a larger class of super-operators than just the derivation *-
maps that possesses good Lie algebraic closure properties and may be a more
natural analogue of a vector fields. We refer to these a (-type super-operators
and they are defined as maps of the form

(k(X)=K*X + XK. (1)
These generate the semigroups e® X eX*. The key Lie identity that motivates
us is

[Cx1s Cical = =iy ez (2)

The Lindblad generators arise as the naturally quantum analogue of 2nd order
generators of Markov diffusions, and the pure form is

1
Sl

1
£X = JLX. L+ 5L, X]L —i[X, H]

= L'XL—Cipepyin(X). (3)

Traditionally, one considers the first form as the splitting into a 2nd order term
(the L, L* parts) and a 1st order derivation (the H part). However, the second
form encourages us to split into a decoherent term (L*X L) and a coherent term
(the ¢ part).

2 The Belavkin-Zakai Equation

2.1 The Filter Equations

Let us fix a Hilbert space h and denote by 9B () the C*-algebra of bounded
operators on ). We consider a QSDE model with coupling operators G = (L, H)

where L = [Lq, -+, L,] is a column vector of operators on B(h) and H is self-
adjoint [6] -[8]:
dUg (t) = {Z Ly, ®dB;,(t) — L, ®dBy (t) + K ® dt} Ug () (4)
k



where
1 . .
K = —3 Ek LiLy —iH (5)

and we initialize with U (0) = I.
Let A be a subset of {1,---,n} then for each index a € A we measure the
output quadrature Y, (t) = Ug ()" [I @ ("2 B, (t) + e~"= B (t))] Uc (t) with

dY, (t) = €% dB, (t) + e 2 dB, (t)* + ji (Lae™ + Lie %) dt, (6)
and denote the set of quadrature phases as
O ={0,:ac A} (7)

The filtered estimate, (X ), of any system observable, X € B(h) at time ¢
is defined to be the conditional expectation of Ug(t)*[X ® I|Uq(t) onto the von
Neumann algebra generated by the quadratures {Y,(7) : 0 <7 <t,a € A} and
may be written as

ot (X)

Tt (X) = oy (I) (8)

where o, (X) satisfies the Belavkin-Zakai equation (see [9]- [11] and in particular

[12])
doy (X) =0y (LaX)dt+ Y or (XL + e Lo X) Yy (1), (9)

with og (X) = tr {poX}, where pg is the initial state of the system. Here, the
dynamical part of the filter involves the associated Lindbladian

1 1
Lex =% {L;XLk — SLiLiX — 2XL;;Lk} —i[X, H]. (10)
k

For this case, when the initial state of the system is a pure state (pg =
[10){tpo|) we may write the filter as o; (X) = (x¢|X x¢) where the non-normalized
conditional state vector, |x;), satisfies

dlx:) = Klxa)dt + ) €% Lo|xs)dYa (1), (11)

with |xo) = [tbo)-

2.2 Lie Algebraic Formalism for Super-Operators

A super-operator is a linear map from B () to itself and we may endow it with
a Lie bracket given by

[ﬁl,ﬁg]é£10£2—£20£1, (12)



where o denotes composition. As the composition is associative, it follows that
these Lie brackets automatically satisfies the Jacobi identity. For a collection of
super-operators {Ly, -+, Ly}, we write Lie {Lq,--, Ly} for the Lie algebra of
super-operators generated using this bracket. We say that a super-operator is
a *-map if £L(X*) = L(X)* for every X.

Definition 1 For each A € B (h) we define a super-operator (4 : B (h) —
B (h) by

(A(X)2 XA+ A*X. (13)

For 2 a subset of B (h), we write (y for the set {4 : A € A} of super-operators.
We note that if A= A"+ 4iA” with A" and A” self-adjoint, then

Ca(X) = [X, A]4 +i[X, A", (14)

where the anti-commutator is [X,Y]; = XY + Y X.
The maps (4 have the following properties:

1. (4 is a derivation if and only if A is skew-adjoint, indeed the dissipation
is

D, (X.Y) = —X (A+A")Y (15)
for all X,Y € B (h);
2. (4 is a *-map, that is, (4 (X)* = Ca (X*);
3. the map : A — (4 is also linear;

4. the adjoint of (4 (with respect to the dual set of trace-class operators:
tr{L*(p) X} = tr{pL(X)}) is

A =Car
5. we have
CaoCa=2A"XA+ XA% + A?X. (16)
6. the Lindblad generator may be written as

La(X) = LiXLy+ (kX (17)
k

7. we have that L*XL = %(CL o(r — CLz) and so the Lindblad generator
may also be written as

1
La(X) = 5 ZCLk oCrL, — C% zk(LHL;)LHiH(X)» (18)
k
or as
Lo=5 % (G o - a(0) + (19)
k



Proposition 2 We have the Lie bracket identity
[Ca, (Bl = —Ca,B)- (20)

The property (20) yields a Lie algebra homomorphism from the set of oper-
ators B (h) with the commutator as bracket to the set of super-operators with
the super-operator Lie bracket. Indeed, we then have

Lie {Ca,, -+ ,Ca, } = CLiefAy, A} (21)
The (-type super-operators are not derivations, they do provide a nontrivial
class of “Lie vectors” by virtue of the identity (20).
2.3 Stratonovich Form of The Belavkin-Zakai Equation

In order to extract the Lie algebraic features of Belavkin-Zakai equation (9)
we change to the Stratonovich form. The Stratonovich derivative is X odY =
XdY + $dXdy.

Proposition 3 The Stratonovich form of the Belavkin-Zakai equation (9) is

a0 (X) = o1 (La,o(X)) dt + 3 01 (Coa . X) 0 dYa (1) (22)
acA
where
; 1
Loeo=Lc—5 ;Cewa Lo ©CeitaL, (23)

Proof. The Belavkin-Zakai equation may be written as

doy (X) =0y (LaX)dt+ Y 04 (Cppeivn X) dYa ()

and we make the ansatz that its Stratonovich form is do; (X) = oy (EQ@X ) dt+

Y aca 0t (Cr,eita X)odY, (t). Converting to Ito form, we see that we must have
= 1
LeX = LoeX+5) Cunar,oCunr,X.

from which we obtain the stated form for £~G7@. ]
We note, using identity (16), that

; * Lo, L .
LoeX = Ek: {LkXLk = S LiLeX — 2XLkLk} —i[X, H]
1 . .
= <2L* XLy + XL2e*% 4 L*ze_MaX)
2 (e «@ «
a€cA
- CK(G,@) + EunobSAa (24)



where the (-term involves
1 )
K(G,©@)=--)" (L;La - Lge%> —iH, (25)
2
a€cA
and the Linbdladian associated with the unobserved, k ¢ A, channels is
Lunobs, = ;%;; LiXL — iLkLkX — §XLkLk ) (26)

Definition 4 Given the open quantum system described by G ~ (L, H) and
the quadrature measurement scheme determined by the subset A of outputs with
quadrature phases ©, we define the Estimation Algebra associated with the
corresponding quantum filter to be

Z(G,0) 2 Lie {EG@, Coitar, 0 € A} (27)

with La.e as given by (23).

The term estimation algebra is taken from Brockett [2]. Note that dissipative
super-operators exponentiate to give semi-groups only. Typically, we should
consider only a cone inside the estimation algebra.

3 Complete Homodyne Observations

We shall refer to the special case where we perform a homodyne measurement
on all the output channels, so that A = {1,--- ,n}, as complete homodyne
detection. Here we find that Lynobs. = 0 which leads to the remarkable fact that
the Stratonovich operator [:GQ is now a purely to a (-type super-operator:

L= Ck(c,0) (complete homodyne) (28)

where
1 )
K(G,©) =~ > (L;;Lk - Lﬁe%"k) —iH. (29)
k

Note that here the Stratonovich form (22) of the Belavkin-Zakai equation in-
volves only the super-operators (i and the C.ioy, as the term ), Ly X Lj, cancels
exactly from the Lindbladian irrespective of the values of the phases. Specifi-
cally we have

doy(X) = o01(Crc.e)X)dt+ > 0e(Cun, X) 0 dYi(t)
k

(complete homodyne). (30)



Proposition 5 If A = {1,--- ,n}, then the pure state equation (11) has the
Stratonovich form

dlxt) = (K(G, ®)dt + Y e LydY; (t)> ° [xt)- (31)
k

As the Stratonovich calculus observes the Leibniz rule, we see that the corre-
sponding Belavkin-Zakai equation will involve only (-type super-operators and
no Ito correction, in agreement with Proposition 5.

(We remark that the same class of equations as (31) have been studied by
Rebolledo, Mora and Fagnola, [13] and [14], but with the Y} taken as Wiener
processes. In [14], they obtain an interesting Lie algebra rank condition for
controllability of the equations when the Y} are replaced by piecewise contin-
uous functions and relate this to irreducibility of the corresponding quantum
dynamical semi-group generated by the Lindbladian.)

Putting together the fact that we only have (-type super-operators in the
filter and the fact that we have the Lie-algebra homomorphism (20), we obtain
the following observation.

Theorem 6 Given an open quantum system determined by G = (L, H) where
we perform a complete homodyne observations measurement (on quadratures of
all the output channels), the estimation Lie algebra associated with the filter is

Z(G,0) = (o0 (complete homodyne), (32)
where
£(G,0) £ Lie {K(G,©),Ly,--- ,L,}, (33)
with given by (29).

This follows from the Lie-algebra homomorphism (20) and so £(G, ®) is
identified with Lie { K(G, ©),e"" Ly, -+ ,e"" L, } = Lie {K(G,©), Ly, , Ly}

Example 7 Consider a harmonic oscillator with annihilator operator a. The
Hamiltonian may be fized as H = wa*a and we consider linear damping with a
single channel where L = \/ya. We effectively measure the oscillator position
q=a-+a* when we set § = 0. In this case K(G,0©) = 1va® — (37 +iw)a*a. In
this case we have [K(G,®),a] — (37 + iw)a so the Lie algebra £(G,O) closes
and is just the span of K(G,®) and a. Indeed, for a Gaussian initial state one
can find an analogue of the Kalman filter [15].

In contrast, a Hamiltonian such as H = wa*a + xa*?a?, which arises in
the case of a Kerr nonlinearity, would lead to the estimation Lie algebra mow
being infinite-dimensional. In this case, the filtering problem must be infinite
dimensional.



4 Conclusion

We introduced the concept of an estimation Lie algebra for quantum homodyne
detection problems. We have restricted our interest to homodyne detection
where the all the noise channels are measured and where the measurements are
ideal. However, in this case we see that the quantum filter in the Stratonovich
calculus is described entirely through the class of (-superoperators introduced.
This class possesses a nice closure property for the Lie bracket of commutators
of superoperators and through the Lie-algebra homomorphism (20) we obtain a
simple form for the corresponding estimation Lie algebra for the filter. Clearly
a necessary condition for the filter to be finite is that the associated Lie algebra
£(G,®) appearing in Theorem 6 be finite. We will look at applications in a
future publication, however, believe that the estimation algebra of the quantum
filter will be a useful conceptual device for studies.
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