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Fuzzy-rough set bireducts for data reduction
Neil Mac Parthaláin, Richard Jensen, and Ren Diao

Abstract—Data reduction is an important step which helps
to ease the computational intractability for learning techniques
when data is large. This is particularly true for the huge datasets
which have become commonplace in recent times. The main
problem facing both data preprocessors and learning techniques
is that data is expanding both in terms of dimensionality and
also in terms of the number of data instances. Approaches based
on fuzzy-rough sets offer many advantages for both feature
selection and classification, particularly for real-valued and noisy
data; however, the majority of recent approaches tend to address
the task of data reduction in terms of either dimensionality or
training data size in isolation. This paper demonstrates how the
notion of fuzzy-rough bireducts can be used for the simultaneous
reduction of data size and dimensionality. It also shows how
bireducts and therefore reduced subtables of data can be used
not only as a preprocessing tool but also for the learning of
compact and robust classifiers. Furthermore, the ideas can also
be extended to the unsupervised domain when dealing with
unlabelled data. The experimental evaluation of the various
techniques demonstrate that high levels of simultaneous reduction
of both dimensionality and data size can be achieved whilst
maintaining robust performance.

Keywords—Fuzzy-rough sets, bireducts, instance selection, fea-
ture selection

I . I N T R O D U C T I O N

The continual archiving of information, facilitated by ever-
increasing ease in doing so, has meant that vast amounts of data
are drawn from ever-expanding networks of sensors, streamed
content, and interconnected devices. This has led to a situation
where the ratio of growth in the amounts of available data to the
growth of suitable tools for data analysis is huge. Collections
of data are also becoming ever-expansive; both with respect
to the dimensionality (number of features), and the number
of training data instances. Methods that serve to reduce data
to a size that is more tractable computationally are therefore
becoming increasingly necessary. Traditional tools for dealing
with data dimensionality such as feature selection (FS) are
only part of the solution to this problem, as the numbers of
data instances also continue to grow apace. Techniques which
therefore focus upon reducing the number of data instances,
such as instance or object selection [10] and prototype selection,
are also becoming increasingly important. It is this dual focus
on both aspects of data size which has resulted in approaches
which attempt to combine both dimensionality reduction and
instance selection techniques [4], [14].

Great interest has developed in data mining in recent years
on rough set theory (RST) [16] and its related extensions.
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The increase in the popularity of rough sets is largely the
result of a series of desirable theoretical aspects. Indeed, the
grouping of information into equivalence classes is intuitive and
offers a certain universal appeal. Additionally, RST possesses
other properties that are advantageous. Parameters are not
needed, thus obviating any requirement for user input, which
is subjective and potentially erroneous. RST also determines
a representation of the data that is minimal. However, the
primary obstacle for traditional rough set theory is that it can
only be applied to crisp or discrete-valued data. This inability
to handle real-valued and noisy data has led to the exploration
of approaches which hybridise RST with other techniques. One
of these hybridisations is fuzzy-rough sets [3] which offer the
ability to model fuzzy uncertainty in both the conditional and
decision attributes.

In the areas of both rough and fuzzy-rough sets, a con-
siderable amount of work has been published relating to FS
[8]. Indeed, much of this work focuses on the search for and
discovery of decision reducts. Reducts are subsets of attributes
that can fully characterise the knowledge present in datasets.
More recently, the concept of rough set bireducts [20], [21] have
emerged that extend further the concept of decision reducts.
Bireducts draw upon the ideas that underpin bi-clustering and
focus on two aspects: attribute subsets that are consistent
with decision concepts and the instance subset where this
summarisation is consistent. Bireducts thus represent a subtable
of the data, which is described by a reduced set of features
and a corresponding reduced set of instances. These definitions
have been further extended to the fuzzy-rough set framework
in order to apply bireducts to data which possess real-valued
information [14]. Work such as [21] and [14] offer a solid basis
for further extension of the fundamental concepts. Some initial
attempts have also been made to quantify the optimality of any
given bireduct using the idea of ε-bireducts [22], and heuristic
search strategies [7].

This paper describes the further extension of the notion of
fuzzy-rough bireducts as a general approach that can perform
dimensionality reduction and data size reduction simultaneously.
Note that most existing techniques can only perform reductions
as discrete individual data preprocessing steps. The approach
therefore can be framed in several ways; as a pre-processor, a
means to learn robust, accurate and compact ensemble classifiers
or for dealing with unsupervised data, where no decision labels
are present. The structure of the rest of this paper is as follows:
Section II presents the theoretical underpinnings that are at
the heart of rough and fuzzy-rough sets and bireducts. The
implementation of a fuzzy-rough framework for data reduction
is given in Section III. Some worked examples of the proposed
techniques for data reduction are also included. Section IV
presents the experimental evaluation that demonstrates the
effectiveness of the different techniques; and finally, Section



V concludes the paper and proposes some ideas for further
development of the work.

I I . T H E O R E T I C A L B A C K G R O U N D

A. Concepts
The notion of indiscernibility is core to rough set theory [16].

Consider: I = (U,S) - an information system, where U (the
universe of discourse) is a non-empty set of finite instances
and S is a non-empty finite set of features so that a : U→ Va
for every a ∈ S. Va is the set of values that a may take.
For any subset P ⊆ S, there exists an equivalence relation
IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)}. The partition
produced by IND(P ) can be denoted U/IND(P ). If (x, y) ∈
IND(P ), then instances x and y cannot be discerned by the
features contained in P . For the P -indiscernibility relation, the
equivalence classes are denoted [x]P . Let X be a subset of the
instances in the universe. Using only the information contained
in P , X can be approximated via the P -lower and P -upper
approximations:

PX = {x : [x]P ⊆ X} (1)
PX = {x : [x]P ∩X 6= ∅} (2)

Based on the lower approximation, the concept of the positive
region can be defined for two feature subsets P and Q:

POSP (Q) =
⋃

X∈U/Q

PX (3)

The positive region contains those instances in the universe
that belong to the P -lower approximation of granules produced
by the partition generated by Q. For decision systems, the
decision feature(s) correspond to Q. A measure of dependency
between sets of features is useful to determine their utility. In
rough set theory, the degree of dependency is calculated using
the positive region above. For P ,Q ⊆ S, Q depends on P to
degree k (with 0 ≤ k ≤ 1):

k = γP (Q) =
|POSP (Q)|
|U|

(4)

In order to better handle vagueness and uncertainty in data,
crisp rough set theory can be extended to fuzzy-rough set
theory. The crisp definitions in (1) and (2) are replaced by the
fuzzy lower and upper approximations which define a fuzzy-
rough set [3]. For the traditional crisp definition, instances that
belong fully to the lower approximation can be said to definitely
belong to a concept. However, by extending the definitions,
instances can belong to the approximations with varying degrees
(between 0 and 1 inclusive). This range of values facilitates
better robustness and modeling in the presence of noise and
uncertainty.

The basis of the work presented in this paper are the
definitions of the approximations found in [18], where a fuzzy
similarity relation is employed in order to approximate the
fuzzy concept X:

µRPX(x) = inf
y∈U
I(µRP

(x, y), µX(y)) (5)

µRPX
(x) = sup

y∈U
T (µRP

(x, y), µX(y)) (6)

In this case, I is a fuzzy implicator and T a t-norm. The feature
subset P induces the fuzzy similarity relation RP :

µRP
(x, y) = Ta∈P {µRa

(x, y)} (7)

µRa
(x, y) is the degree of similarity based on one feature a

between objects x and y. This can be defined in a number of
different ways, e.g.:

µRa(x, y) = 1− |a(x)− a(y)|
|amax − amin|

(8)

µRa
(x, y) = exp(− (a(x)− a(y))2

2σa2
) (9)

µRa
(x, y) = max(min(

(a(y)− (a(x)− σa))
σa

,

((a(x) + σa)− a(y))
σa

), 0) (10)

where σa2 denotes the variance of the feature a. It has been
found that (10) is best for FS and (8) is better for classification.
There are a number of other alternative fuzzy relation definitions
which are applicable and these are presented in detail in [12].

The fuzzy positive region [8] can be defined in a similar way
to the crisp approach, as:

µPOSP (D)(x) = sup
X∈U/D

µRPX(x) (11)

One key issue in data reduction is the discovery of feature
dependencies, particularly between the conditional and decision
feature(s) for decision systems. For fuzzy-rough set theory,
this is achieved through the extension of the crisp dependency
degree and is defined:

γ′P (D) =

∑
x∈U

µPOSP (D)(x)

|U|
(12)

which is the degree of dependency of D upon the feature subset
P . A reduct R in this framework can be defined as a subset
of features that maintains the degree of dependency of the
unreduced data, i.e. γ′R(D) = γ′C(D), whilst not possessing any
extraneous features. Using this measure, algorithms may be
defined that search through the space of feature subsets to find
reducts or superreducts.

B. Fuzzy Discernibility Matrices
In crisp RST-based approaches, there are two primary

branches of research; dependency degree-based approaches and
discernibility matrix-based approaches. The bireduct approach
presented later relies on the fuzzy extension of discernibility
matrices [2], [8].

1) Fuzzy Discernibility: Crisp discernibility matrices can
be extended to the fuzzy case and this is implemented by
using fuzzy clauses. A fuzzy discernibility matrix entry can be
considered to be a fuzzy set, with features belonging to certain
degrees. For a feature a, the membership degree to a clause
Cij can be computed as follows:

µCij (a) = N(µRa(i, j)) (13)
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Here N stands for fuzzy negation and the fuzzy similarity of
i and j is denoted µRa

(i, j). If µCij
(a) = 1 then i and j are

fully distinct for feature a; if µCij
(a) = 0, then the instances

are considered to be identical. When µCij (a) ∈ (0, 1), the
instances have partial discernibility. Each clause in the matrix
is a set of features along with their associated memberships:

Cij = {ax|a ∈ C, x = N(µRa(i, j))} i, j = 1, ..., |U| (14)

For example, a clause Cij in the matrix could be:
{a0.35, b0.6, c0.17, d0.0}, representing the memberships
µCij (a) = 0.35, µCij (b) = 0.6, etc. These memberships can
be considered to indicate the significance of the features.

2) Fuzzy Discernibility Function: The fuzzy discernibility
function can be constructed using the matrix entries in a manner
similar to the RST-based discernibility matrix approach:

fD(a
∗
1, ..., a

∗
m) = ∧{∨ C∗ij |1 ≤ j < i ≤ |U|} (15)

where C∗ij = {a∗x|ax ∈ Cij}. This function takes values in
[0, 1] and can be thought of as a measure of the satisfaction of
the function for an assignment of truth values to the variables
representing the features. The process for finding reducts in
this context is to search through the space of truth assignments
to variables to find the smallest assignment that satisfies the
formula maximally. Note that the largest satisfaction degree
can be calculated by setting all the variables to true.

3) Decision-relative Fuzzy Discernibility Matrix: When con-
sidering data with one or more decision features, the decision-
relative matrix must be constructed. For the fuzzified version,
this can be described:

fD(a
∗
1, ..., a

∗
m) = {∧{{∨ C∗ij} ← qN(µRq (i,j))

}|
1 ≤ j < i ≤ |U|}

(16)

for the decision attribute q. Here,← denotes a fuzzy implicator.

C. Definition and Formulation

Given a feature subset P , the satisfaction degree for Cij is
defined as follows:

SATP (Cij) = Sa∈P {µCij
(a)} (17)

where S is an s-norm. To illustrate this, consider the earlier
mentioned clause {a0.35, b0.6, c0.17, d0.0}. Given P = {c, a},
the satisfaction degree is SATP (Cij) = S{0.17, 0.35} = 0.52
for the Łukasiewicz s-norm. Note that a clause can be satisfied
to a certain extent depending on the truth assignments. In the
crisp case, clauses are either fully satisfied or not. The maximum
satisfiability of a clause can be calculated thus:

maxSATij = SATC(Cij) = Sa∈C{µCij (a)} (18)

With this configuration, reducts are variable truth assignments
that maximally satisfy each clause.

D. Bireduct definitions
The authors in [20] introduce the initial concept of a rough set

bireduct, an idea similar to approximate reducts [21]. A bireduct
and its definition focus upon feature subsets that describe the
decision feature(s), with a corresponding subset of data objects
for which such descriptions are valid.

In [20], the authors define decision bireducts in the following
way. For a decision system I = (U,S ∪ {d}), a tuple (B,X),
where B ⊆ S and X ⊆ U is a decision bireduct iff B discerns
all pairs of instances i, j ∈ X , where d(i) 6= d(j), and:

1) There is no proper subset C ⊂ B such that C discerns
all pairs i, j ∈ X , where d(i) 6= d(j)

2) There is no proper superset Y ⊃ X such that B discerns
all pairs i, j ∈ Y , where d(i) 6= d(j)

This definition depends on two properties: that the subset of
features is minimal and the coverage of instances is maximal.
This idea is central to the work proposed in this paper, as this
can be framed as a satisfiability problem.

E. Fuzzy-Rough Bireducts
The work described previously laid the foundations and

formalised the concepts of crisp bireducts. These concepts have
since been extended and fuzzified, which led to the definition of
fuzzy-rough bireducts [14]. The RST approach to discovering
reducts, using rough set discernibility, generates each clause by
comparing pairs of instances. Attributes will appear in clauses
if they differ between instances. Therefore, at least one feature
that appears in a clause must be selected in order to discern
between a particular instance pair.

In the case of bireducts however, a clause can also be satisfied
by removing either (or indeed both) of the data instances that
resulted in the generation of that clause. The rationale for the
removal of a data instance is that one of either of the pair of
instances under consideration can be viewed as ‘noisy’ or even
an outlier. The inclusion of such data instances may therefore
not be useful. Hence, it could be more advantageous to remove a
problematic instance rather than choosing a number of features
to discriminate between this instance and the rest of the data.
The previous definition of the fuzzy discernibility function can
thus be extended as follows:

fD(a
∗
1, ..., a

∗
m) = ∧{i∗ ∨ j∗ ∨ C∗ij |1 ≤ j < i ≤ |U|} (19)

The discernibility function fD is a boolean function of
boolean variables corresponding to the membership of attributes
a1, ..., am to a given entry of the discernibility matrix generated
by instances i and j. The operator ∨ represents logical OR,
and ∧ represents logical AND. Further detail regarding fuzzy
discernibility matrices can be found in [11].

A clause is satisfied if i∗ or j∗ are chosen (i.e. deleted from
the data) or if C∗ij is maximally satisfied. The goal is then to
remove a set of instances Z and choose a set of features B to
satisfy maximally all of the clauses, ultimately resulting in a
fuzzy bireduct. This is the case as no proper subset of B will
discern all instances in X , and no proper superset of X will
be discernible by B.

Fuzzy-rough bireducts offer a way of generalising the concept
of bireducts such that it is applicable to real-valued domains.

3



This offers many new possibilities for application to different
tasks. Indeed in the work of [14] fuzzy-rough bireducts can
be framed in the context of simultaneous feature and instance
selection. Furthermore by combining ensembles of bireducts, the
size and complexity of data models can be reduced considerably.

I I I . D ATA R E D U C T I O N U S I N G F U Z Z Y- R O U G H
B I R E D U C T S

Fuzzy-rough bireducts essentially represent subtables of the
data for which the conditions described in section II-D hold.
Ostensibly, the generation of fuzzy-rough bireducts appears
to be of little use since the result of the process as described
in [20] depends wholly on which particular feature or data
instance is chosen as the starting point (and whether a feature
or data object is chosen first). Also, it is noted in [21] that even
small-sized datasets can contain large numbers of bireducts.
The work detailed here attempts to formalise some approaches
which can be used in a targeted way to generate fuzzy-rough
bireducts, which are then assessed using some heuristic methods
in order to perform data reduction.

A. Simultaneous Fuzzy-rough Instance and Feature Selection
In conventional discernibility matrix-based approaches,

clauses are produced by comparing pairs of objects, where
attributes appear only if their values for these two objects
differ. Hence, in order to distinguish object pairs, one or
more features must be chosen. For the fuzzy-rough bireduct
formulation (as noted previously), a clause can also be satisfied
by removing either (or both) of the instances that are responsible
for generating it. The underlying rationale for this, is that either
of the data instances may be noisy or perhaps even outliers.
Therefore, it may prove more valuable to remove these instances
entirely. This is the basis for the method proposed in this
section that can undertake simultaneous fuzzy-rough instance
and feature selection (SFRIFS).

When fuzzy discernibilty is extended to the bireduct case, as
shown in equation (19) and discussed in the previous section,
then the removal of either data instances or features results
in the generation of fuzzy-rough bireducts. In order for this
to be used for feature and instance selection, it is clear that
some systematic heuristic search method is required. Here, a
simple heuristic frequency-of-occurrence approach is adopted
[14] although there are many alternative appropriate search
mechanisms. In order to provide an understanding of how this
process works, a toy example (Table I) is described below.

TABLE I. E X A M P L E D ATA S E T

Instance a b c q
1 -0.4 -0.3 -0.5 no
2 -0.4 0.2 -0.1 yes
3 -0.3 -0.4 -0.3 no
4 0.3 -0.3 0 yes
5 0.2 -0.3 0 yes
6 0.2 0 0 no

The Łukasiewicz s-norm (min(x+y, 1)) and the Łukasiewicz
fuzzy implicator (min(1− x+ y, 1)) are used for this example.
Using the fuzzy similarity measure in (10), the relations can

be computed for each feature in the dataset. For example, for
feature a:

Ra(x, y) =
1.0 1.0 0.699 0.0 0.0 0.0
1.0 1.0 0.699 0.0 0.0 0.0

0.699 0.699 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.699 0.699
0.0 0.0 0.0 0.699 1.0 1.0
0.0 0.0 0.0 0.699 1.0 1.0


The matrix is then calculated using equation (13).

For instances 2 and 3, the resulting fuzzy clause is:
{2∗ ∨ 3∗ ∨ a0.301 ∨ b1.0 ∨ c0.964} ← q1.0. This means that the
discernibility of these two instances is 0.301 for a, therefore
they are considered to be somewhat discernible for this feature,
and are fully discernible for the decision (hence q1.0). Due
to the properties of implicators, all entries with q0.0 can be
eliminated as this will not alter the final bireduct:

C12 : {1∗ ∨ 2∗ ∨ a0.0 ∨ b1.0 ∨ c1.0} ← q1.0
C14 : {1∗ ∨ 4∗ ∨ a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C15 : {1∗ ∨ 5∗ ∨ a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C16 : {1∗ ∨ 6∗ ∨ a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C23 : {2∗ ∨ 3∗ ∨ a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C26 : {2∗ ∨ 6∗ ∨ a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C34 : {3∗ ∨ 4∗ ∨ a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C35 : {3∗ ∨ 5∗ ∨ a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C46 : {4∗ ∨ 6∗ ∨ a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {5∗ ∨ 6∗ ∨ a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

The next step of the algorithm is to evaluate the features
via the sum of fuzzy discernibilities, choosing the feature with
the highest value. These are determined to be: a = 6.602,
b = 6.725, c = 7.446. Therefore c is chosen as it has the
highest value, and the satisfied clauses are eliminated:

C23 : {2∗ ∨ 3∗ ∨ a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C26 : {2∗ ∨ 6∗ ∨ a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C46 : {4∗ ∨ 6∗ ∨ a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {5∗ ∨ 6∗ ∨ a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

As can be seen, the list of clauses is not empty and so the
algorithm will continue its execution. Instances are considered
next: as instance 6 is most frequent it is removed and the
corresponding clauses are eliminated:

C23 : {2∗ ∨ 3∗ ∨ a0.301 ∨ b1.0 ∨ c0.964} ← q1.0

Now, C23 is the only clause remaining, so the algorithm
will proceed. This time, the feature with the highest fuzzy
discernibility sum will be chosen: feature b. With the satisfaction
of this clause the algorithm can stop and return the bireduct
consisting of features {b, c} and instances {1, 2, 3, 4, 5}.

1) Problems with SFRIFS: The initial implementation of
SFRIFS used the approach where the frequency of occurrence
was used as a heuristic for the removal of both features and
instances. The use of such a strategy soon highlighted a
particular problem where the underlying class representation (of
data instances) was unbalanced in terms of the ratio. Take, for
instance, the extreme situation where the data may contain only
two classes: class A may be represented by five data instances,
and class B by a single data instance. Recall from section II-C
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that a clause may be generated for a pair of objects when they
are considered to be similar but belong to different decision
classes. For this example, if the single instance of class B is
similar to those instances of class A, this will result in the
generation of a comparatively large number of clauses with
a corresponding high frequency of the object that represents
class B. This will make the selection of the minority instance
certain, and the minority class B will not be present in the
final reduced dataset. Thus, when it comes to applying this
as a strategy for the reduction of data instances, the situation
can arise where minority class instances are removed from the
dataset as their pairwise comparison results in the generation
of a large number of clauses where the single object of class
B is present.

In order to address this problem, a modified fitness propor-
tional selection strategy for the instance selection/removal phase
is employed. The basic probability relating to the removal of
an object of a particular class is defined in equation (20) and
is based on the overall class distribution in the original dataset:

pi =
fi∑N
j=1 fj

(20)

However, some datasets contain relatively large numbers of
classes, and varying numbers of representative instances. If a
particular class contains a very small number of instances, then
it is effectively ignored for the approach used here. Essentially
if a single class represents more than 60% of the total data and
the number of classes ≥ 3, then all other smaller classes will
be ignored such that the probability of selection of instances
of the larger classes increases accordingly. For the problem at
hand, rather than simply searching for any clause generated
as a result of any instance from a majority class, it is better
to find a clause which is the result of a comparison of the
selected majority class and one of the minority class instances.
A clause is only satisfied if this criterion is fulfilled and the
corresponding majority class instance is then removed from
the dataset. This extension is denoted SFRIFSMCP hereafter.

2) Bireducts for Unsupervised Data: The concepts of fuzzy-
rough bireducts have, up until now, been limited to supervised
domains where the decision labels/concepts are known [14].
They can also, by definition, be extended to the unsupervised
domain - see Equation (19). This can be achieved in a few
different ways, but an approach based upon that of [15] is
described below where each data instance is allowed to belong
to its own decision class and thus discernibility only needs to
be preserved with respect to each data instance.

B. Heuristic Search for Fuzzy-Rough Bireducts
In the previous section it was shown how fuzzy-rough

bireducts form the foundation for approaches that can perform
simultaneous feature and instance selection. This section
describes how ensembles of fuzzy-rough bireducts (and thus
subtables of data) can be used for the task of classification and
data reduction. This is advantageous since it means that the
full dataset is not required in order to build accurate and stable
models. The difficulty of the reduction task requires effective
and efficient search strategies, without exhaustively searching

through all possibilities [13]. Several such approaches are based
on phenomena or patterns observed in nature. For these, fitness
functions play an important role as they help to guide the search
to areas where better candidate solutions may be discovered.

How to evaluate what constitutes an optimal bireduct (B, Y )
is not straightforward as this can be considered from alternative
viewpoints, such as the number of features chosen in B,
the number of instances covered, and the ratios of these.
Additionally, B may lead to several bireducts as different object
combinations could equally satisfy the formula in equation (19).
To evaluate bireduct quality, ε-bireducts have been proposed
[22]:

|Y | ≥ (1− ε)|U|, 0 ≤ ε < 1 (21)

This parameter, ε, tries to constrain bireducts so that at least a
certain proportion of the original instances will be chosen. This
will also have a bearing on the size of the subsets of features
that are selected. Intuitively, by setting a high value for ε, the
number of covered instances will be small, and the feature
subset sizes will also be small. Setting ε to 0 will produce a
traditional reduct as all instances will be covered.

To focus the search for ε-bireducts on smaller feature subset
sizes, in the approach described below the fitness of a subset
B is defined as follows:

fitness(B) =

{
cov(B) , 1− cov(B) ≤ ε
2− 2ε− cov(B) , 1− cov(B) > ε

(22)

with the maximum fitness attainable being 1− ε and cov(B)
representing the coverage of instances by B:

cov(B) = max
Y ∈YB

(
|Y |
|A|

) (23)

The sizes of the subsets of features are compared, as the
objective of the approach is to find feature subsets of small
cardinality that cover a sufficiently large number of instances.
Hence any search mechanism and fitness function must take
into account this dual-objective nature of the problem.

Harmony search (HS) [6], is a technique that is inspired by
music and its performance. Central to HS are the notions of
notes, musicians, harmonies, and a harmony memory. These
can be mapped to the feature selection problem but will not
be explored here due to space constraints. However, specific
detail on how this is achieved is shown in [6]. Instead, the
modifications required to re-frame the original algorithm (HSFS)
[6] as a method to search for optimal bireducts in a fuzzy-rough
context are described below.

The harmony search-based algorithm for discovering
bireducts (referred to hereafter as HSFSBR) employs four
parameters: 1) the harmony memory size (|H|), 2) the number of
musicians |P | (each one selects a single feature), 3) the harmony
memory consideration rate (denoted δ), and 4) the number of
iterations (gmax). A musician pi has its own domain of notes
ℵi from which it selects, but can also randomly choose from
the set of possible features. This is controlled by δ, 0 ≤ δ ≤ 1.

The proposed algorithm is given in Algorithm 1. The initial
values of the parameters |H|, |P |, δ, and gmax are set to their
defaults for feature selection. The harmony memory |H| is
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initialized randomly. For these subsets, corresponding fuzzy-
rough bireducts are produced and evaluated via Equations (22)
and (23). Each selector has a note domain ℵ of |H| features,
which may include identical or empty choices.

If a randomly generated number rδ is less than δ, each pj
in P nominates a random feature from the full feature set.
Otherwise, a note is chosen from its own note domain ℵj .
This generates a new harmony H ’ and a corresponding new
subset of features, BH ’ . If the new subset obtains a higher
score than the weakest subset in the memory, or if it has an
equal evaluation but is of a smaller size, then the new subset
replaces the worst one. This process of improvization and
updating repeats until the maximum number of iterations is
reached. Finally, the best harmony in the harmony memory
Ḣ = argmaxH∈H fitness(BH) is determined, and its associated
ε-bireduct (BḢ , Y ) is returned as the final search output.

Algorithm 1: The HSFSBR Algorithm

1 pi ∈ P , with |P | musicians;
2 Hj ∈ H, j = 1 to |H|;
3 ℵi =

⋃|H|
j=1H

j
i ;

4 δ;
5 C, fuzzy clauses;

6 for g = 1 to gmax do
7 H ’ = ∅;
8 for i = 1 to |P | do
9 if rδ < δ then

10 ar = randomFeature(A);
11 H ’ = H ’ ∪ {ar};
12 else
13 r = randomInteger(|H|);
14 H ’ = H ’ ∪ {ℵir};

15 for ∀Cij ∈ C do
16 if SATBH’ (Cij) = SATmax(Cij) then
17 C = C− Cij

18 Determine O (outliers) satisfying the remaining
clauses;

19 Construct bireduct (BH ’ ,U−O);
20 if fitness(H ’) ≥ minH∈H fitness(H) then
21 H = H ∪ {H ’};
22 H = H− {arg minH∈H fitness(H)}

23 return best ε-bireduct;

Note that both randomFeature and randomInteger
functions are used in the decision to choose the next feature; a
musician pj may choose to add a random feature from the full
set of features, or only from its own note domain.

1) Walkthrough: The previous dataset (Table I) is once again
used for the illustration of the main aspects of HSFSBR. In the
interests of brevity, the construction of the fuzzy similarity
matrices Ra(x, y), x, y ∈ U, a ∈ A, and lists of clauses are not
repeated since they are the same as those shown in the previous

section. For HSFSBR, the number of musicians (single-feature
selectors) is 3. The harmony memory is generated randomly
at first, populating the note domains ℵi of each musician pi

with a random selection of features. For this example, a new
harmony is improvised H ’ which could be {c, c,−}. This
represents the feature subset BH ’ = {c}. Having generated
this, the satisfied clauses are removed (i.e. those clauses that
are maximally satisfied by setting only c∗ = true). This
leaves the following set of clauses:

C23 : {2∗ ∨ 3∗ ∨ a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C26 : {2∗ ∨ 6∗ ∨ a1.0 ∨ b0.863 ∨ c0.483} ← q1.0
C46 : {4∗ ∨ 6∗ ∨ a0.301 ∨ b0.301 ∨ c0.0} ← q1.0
C56 : {5∗ ∨ 6∗ ∨ a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

The maximum coverage for this subset {c} is therefore
{x1, x3, x4, x5} or {x1, x2, x4, x5}, if the instances {2, 6} or
{3, 6} are outliers and cov(BH ’) = 4

6 = 0.66. If ε is set to 0.4,
then H ’ will evaluate to 2− 2× 0.4− 0.66 = 0.54. This will
replace the current weakest harmony if its fitness is better or
if the fitness is equivalent but the corresponding subset size is
smaller. This continues until gmax iterations have been reached.

It can be seen that the worst case complexity of the algorithm
is O(gmax(|P |+ |C|+ |H|)). In each iteration of the algorithm,
the |P | musicians generate notes, forming subsets of features.
Then, each clause in C is considered for potential removal
if satisfied. Determining outliers (i.e., instance removal) and
constructing the bireduct are linear processes. Finally, the
fitnesses of the harmonies in H are calculated.

2) Ensembles of Classifiers using ε-Bireducts: Stochastic
search algorithms may discover many good quality subsets B
for large datasets. Any one of these subsets B ∈ B can be used
in training classifiers. Therefore, an ensemble of classifiers can
be constructed [26] which may well attain a higher classification
performance due to the diversity of the internal models [24]. The
approach presented here investigates the utility of ensembles
constructed from ε-bireducts via fuzzy-rough sets. Bireducts
are particularly useful for this as the instances in Y are known
to be consistent with the set of features in B. These instances
should be the most relevant ones for constructing models with
the feature subset B and can be adjusted via ε, controlling the
respective ‘footprints’ of the resultant models.

The overall process of learning classifier ensembles from
ε-bireducts is illustrated in Fig. 1. To develop a classifier
ensemble E = {El | l = 1, · · · , |E|}, a number of bireducts
{(Bl, Y l)|l = 1, · · · , |E|} must first be determined. Note that
in the diagram, each subsystem is a single ε-bireduct classifier
El, l ∈ {1, · · · , |E|}. The execution process for this approach
is similar to traditional ensemble methods for FS classifier
learning, e.g. [26] and [21]. Hence, for the sake of brevity,
further explanation and detail is not included. Aggregation
of the results is achieved via majority vote [23], but other
aggregators can be used.

I V. E X P E R I M E N TAT I O N

An experimental evaluation is detailed here in order to
show how fuzzy-rough bireducts can be employed in different
ways for data reduction, using the methods described in the
previous sections. Here, the results are presented along with a
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Fig. 1. Overview of learning classifier ensembles via ε-bireducts.

discussion of how such methods can offer useful and compact
representations.

A. Experimental Setup
Four sets of experiments are included here representing

the respective approaches and variants described earlier. In
total, 14 benchmark datasets drawn from [5] are employed and
summarised in Table II. The respective unreduced classification
accuracies generated using 10 × 10-fold cross-validation are
also shown. For SFRIFS, three different similarity relations (as
defined in equations (8), (9), and (10)) are employed in order
to assess their effects on the simultaneous selection of features
and instances. Whilst for brevity in the later comparison with
FRFS, only sim3 is used for SFRIFSMCP and unsupervised
SFRIFS.

The parameter settings for HSFSBR are: |H| = 10, |P | = |A|,
and gmax = 2000. In addition, three different values for ε are
used: 0.1, 0.2, 0.3 to generate different levels of covering for the
ε-bireduct. The ensemble size is set to 10 (i.e. |E| = 10) since
this provided a good trade-off between relatively fast execution
and good quality results. The classifier learners adopted include:
J48 [17], JRip [1], PART [25], and VQNN [9]. The use of these
classifiers enables a diversity in model construction, which
should enable a more complete knowledge of the quality of the
discovered bireducts and therefore the resulting performance.

The results are validated using stratified 10-fold cross-
validation. This is to ensure that the decision classes have
an appropriate number of instances to learn from. For HSFSBR,
the ε-bireducts are constructed in each training fold and the
resulting reduced data used for training the classifiers for each
fold.

B. Results: SFRIFS
The SFRIFS experimental results are illustrated in Tables

III–V. The average sizes of the feature subsets and instances

TABLE II. D ATA S E T S

No. of Accuracy (unreduced) (%)
Dataset feats. insts. classes J48 JRIP PART VQNN

cleveland 14 297 5 53.39 54.22 52.44 59.21
ecoli 8 336 8 82.83 81.65 81.79 85.92
glass 9 214 6 68.08 67.05 69.12 72.73
heart 13 270 2 78.15 79.19 77.33 81.93

ionosphere 35 230 2 86.13 87.09 87.39 87.96
libras 91 360 15 69.31 54.53 68.14 78.89
olitos 26 120 4 65.75 68.83 67.00 80.83
sonar 61 208 2 73.61 73.40 77.40 83.36

water2 39 390 2 83.18 82.08 83.85 85.31
water3 39 390 3 81.59 82.26 82.72 82.82

web 2557 149 5 57.63 55.09 51.50 38.71
wine 14 178 3 93.97 92.75 92.24 96.51

wisconsin 10 683 2 95.44 96.08 95.68 96.66
vehicle 19 846 4 72.28 68.31 72.21 72.15

selected for the bireducts are given first. The accuracies for the
classifiers are presented next. Clearly the choice of similarity
measure has a large impact on bireduct size, particularly with
respect to the number of features chosen. It can be seen that
sim3 tends to produce smaller subset sizes. There is less of a
difference for the number of instances selected, though sim1
generally removes slightly more instances.

TABLE III. S F R I F S R E S U LT S F O R sim1

Dataset Bireduct size Accuracy (%)
subset insts. J48 JRip PART VQNN

cleveland 12.98 255.30 53.57 53.97 53.44 58.25
ecoli 6.00 297.02 82.57 80.88 82.42 85.84
glass 9.00 184.60 67.85 65.20 67.31 67.55
heart 12.72 231.24 77.00 76.07 79.48 83.44

ionosphere 11.99 195.54 87.35 87.78 87.65 87.48
libras 17.69 305.87 64.24 49.71 66.07 65.70
olitos 11.01 97.53 63.25 63.33 64.08 75.00
sonar 11.61 176.26 72.72 71.69 71.54 76.98

water2 16.95 334.47 83.72 83.56 83.26 83.72
water3 16.22 335.26 81.92 82.69 82.23 83.36

web 25.67 109.05 46.16 46.30 45.27 39.20
wine 10.08 150.73 92.86 90.96 92.24 97.06

wisconsin 9.00 621.10 94.49 95.61 95.11 95.72
vehicle 18.00 744.40 72.53 67.76 71.90 71.05

When considering the results for the classification accuracy,
no single similarity relation seems to offer any clear advantage
over the others. It would seem that sim3 does have lower overall
accuracies (albeit marginally). This seems to be particularly true
for both the heart and the wine dataset. Despite this however,
it should be emphasised that the size of the bireducts are much
smaller than the bireducts obtained for these data for similarity
relations sim1 and sim2.

Overall, sim1 and sim2 favor instance reduction over feature
selection for the discovered bireducts. The average reduction
for the number of instances for example, is in the range: 9-
26.8% for sim1, 9-22.6% for sim2 but only 8.7-13% for sim3.
Those figures are contrasted sharply however by the level of
dimensionality reduction that is achieved when using sim3
with a mean reduction of 66% whereas sim1 and sim2 only
offer average reductions of 42% and 47%, respectively.

Overall, sim3 offers the best average dataset reduction (39%)
with sim1 and sim2 demonstrating similar performance: 28-
31%. As mentioned previously, sim1 and sim2 offer marginally
better classifier performance. However, for some of the datasets,
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sim3 produces bireducts that offer higher accuracy along with a
greater reduction both for the number of features and instances;
for example in the case of the water2 and wisconsin datasets.

TABLE IV. S F R I F S R E S U LT S F O R sim2

Dataset Bireduct size Accuracy (%)
subset insts. J48 JRip PART VQNN

cleveland 11.35 256.72 55.33 54.36 53.11 57.37
ecoli 6.00 296.95 82.20 81.93 83.78 86.46
glass 9.00 184.60 68.19 66.90 68.91 67.44
heart 9.88 233.58 80.89 76.48 79.96 83.30

ionosphere 12.05 195.36 87.17 86.30 88.52 87.30
libras 18.44 305.07 63.17 49.83 64.26 63.67
olitos 8.74 99.89 61.17 63.50 61.25 72.42
sonar 10.02 177.95 73.35 72.02 72.25 75.26

water2 10.62 340.95 81.87 82.56 82.77 83.90
water3 10.70 340.91 80.95 82.79 80.33 83.59

web 19.47 115.30 46.85 48.82 47.93 42.48
wine 7.92 152.96 90.91 89.81 91.20 96.94

wisconsin 9.00 621.10 94.64 95.34 95.34 95.69
vehicle 18.00 744.40 73.05 68.17 72.31 71.31

TABLE V. S F R I F S R E S U LT S F O R sim3

Dataset Bireduct size Accuracy (%)
subset insts. J48 JRip PART VQNN

cleveland 6.98 261.22 52.91 54.19 52.62 58.34
ecoli 5.91 297.40 82.38 81.49 83.52 86.52
glass 8.15 185.16 67.51 64.96 68.20 67.70
heart 6.44 237.09 72.37 72.19 73.52 76.67

ionosphere 6.02 201.59 85.43 84.74 85.26 87.00
libras 6.91 316.76 56.18 43.94 57.81 62.27
olitos 4.97 103.98 60.83 60.00 60.58 67.42
sonar 5.12 182.85 72.51 73.01 71.29 75.48

water2 5.91 345.99 81.54 81.72 81.51 83.79
water3 5.88 346.02 80.85 81.10 81.05 82.69

web 12.60 122.11 45.01 46.62 44.25 38.35
wine 4.26 156.48 92.42 90.34 92.20 94.72

wisconsin 6.13 623.45 94.67 95.35 94.89 95.47
vehicle 7.99 754.08 66.67 60.86 65.92 65.41

There are no current existing approaches for simultaneous
feature and instance selection, and therefore it becomes difficult
to provide a comparative analysis of SFRIFS. However, the
series of experiments presented here attempts to address
this by offering a comparison with the state-of-the-art stand
alone feature selection and instance selection approaches. The
evaluation has three different parts: 1) In the first an FS step is
performed initially, using FRFS [8] with a hillclimbing search.
The reduced dimensionality dataset is then passed to an instance
selector, FRIS [10]. Finally, the reduced datasets (dimensionality
and data size) are then passed to the same classifier learners
that have been used previously to assess the performance of
SFRIFS and compared statistically using a paired t-test. This
is termed FS-IS hereafter. 2) A further set of experiments is
also conducted where FRIS is employed initially before being
passed to FRFS (again using a hillclimbing search), and then
finally to the classifier learners. This is termed IS-FS hereafter.
The results of these experiments can be seen in Tables VI and
VII. 3) Finally, the execution time per-fold for each of these
methods is also examined and compared with SFRIFS in Table
VIII.

Tables VI-VII show a number of different trends. The first
is that all of the models built by SFRIFS are either statistically
comparable or better than those of either of the FS-IS or IS-FS

results. This is independent of the similarity relation employed
by SFRIFS, however sim3 does offer the best reductions whilst
also outperforming both FS-IS and IF-FS.

Interestingly, both the FS-IS and IS-FS methods perform
poorly on the ecoli, glass, and vehicle datasets - the reductions
are better than SFRIFS (hence the lower execution times for
IS-FS) but the models generated as a result are not sufficient.
Also, for IS-FS, there is no reduction in data size for six of the
14 datasets, i.e. no instance selection takes place (highlighted
in bold typeface in Table VII). Whilst SFRIFS may not always
return the smallest number of instances, the models generated
and the reductions obtained are consistent and outperform those
of FS-IS and IS-FS.

Of particular note is the execution time of SFRIFS. It is
obvious that the execution times of FS-IS and IF-FS will simply
be the aggregation of their respective complexities (which is
considerably more complex than SFRIFS). Indeed, this is borne
out in the results shown in Table VIII where it is clear that
SFRIFS outperforms both methods. There are two particularly
interesting results in Table VIII for libras and web. Both of
these datasets have relatively high feature:instance ratios when
compared to the other datasets. The results returned for these
datasets suggest that SFRIFS is particularly effective in dealing
with such situations and can do so effectively and much more
quickly.

In summary, SFRIFS will return more consistent reductions
that generalize better and have lower execution times when
compared to the trivial combination of either standalone FS or
IS methods.

TABLE VI. F S - I S : D I S C R E T E F E AT U R E S E L E C T I O N
F O L L O W E D B Y I N S TA N C E S E L E C T I O N

Average Accuracy (reduced) (%)
no. of

Dataset feats. insts. J48 JRIP PART VQNN
cleveland 7.62 131.88 51.60 55.77 52.01 57.54

ecoli 6.00 61.07 59.43* 64.31* 59.01* 73.00*
glass 9.00 80.72 46.94* 37.29* 44.36* 47.47*
heart 7.07 134.42 73.41 74.41 74.15 78.33

ionosphere 6.99 105.75 74.26 68.74 75.13* 69.57*
libras 7.73 121.94 29.33* 20.08* 29.06* 30.17*
olitos 5.00 35.71 55.50 55.33 53.67 57.00
sonar 5.24 54.35 61.48* 60.73* 61.87 62.59*

water2 5.99 204.65 82.10 81.72 82.36 81.85
water3 6.00 169.99 79.87 80.67 79.10 82.00

web 19.08 92.15 50.96 48.20 50.52 45.63
wine 5.00 114.11 85.73* 87.07 85.68* 97.35

wisconsin 6.75 361.36 92.97 92.98* 92.01 96.79
vehicle 8.45 155.17 52.35* 41.58* 52.11* 46.65*

* indicates statistically inferior result to that of SFRIFS for the same learner

To avoid situations described previously in section III-A1,
where SFRIFS may remove instances of a minority class (due
to the fact that they can result in the generation of a larger
number of clauses), a series of experiments was also conducted.
Two additional datasets which have poorly represented minority
classes are also included for this evaluation, and are listed in
Table IX. These particular additional datasets were chosen
because they had a relatively large number of decision classes
(anneal:6, arrhythmia:16) when compared with the other data.
Some of the datasets have distributions of classes such that some
decision classes are only represented by two data instances.
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TABLE VII. I F - F S : D I S C R E T E I N S TA N C E S E L E C T I O N
F O L L O W E D B Y F E AT U R E S E L E C T I O N

Average Accuracy (reduced) (%)
no. of

Dataset feats. insts. J48 JRIP PART VQNN
cleveland 7.00 268.01 53.24 53.83 50.70 57.23

ecoli 3.85 64.43 51.84* 59.47* 51.65* 62.65*
glass 5.30 80.72 38.24* 30.01* 35.89* 36.56*
heart 6.49 253.29 72.22 72.89 71.22 77.67

ionosphere 6.40 221.34 86.70 86.09 86.35 87.96
libras 6.35 357.50 57.67 42.67 56.47 62.47
olitos 5.00 120.00 62.92 62.75 61.75 67.17
sonar 5.24 208.00 70.85 71.63 70.03 75.84

water2 5.99 390.00 83.79 84.23 84.44 85.64
water3 6.00 390.00 81.05 81.90 80.36 83.54

web 19.08 149.00 51.20 49.87 52.45 45.57
wine 5.00 178.00 94.71 93.25 93.53 96.67

wisconsin 5.32 448.96 94.41 95.49 95.43 96.76
vehicle 6.98 478.98 62.33* 58.80* 62.16* 61.70*

* indicates statistically inferior result to that of SFRIFS for the same learner
bold indicates that instance selection did not perform any reduction for this dataset

TABLE VIII. T I M E TA K E N P E R T R A I N I N G F O L D

Average execution time (s)
Dataset SFRIFS FS-IS IS-FS

cleveland 0.225 0.385 0.295
ecoli 0.215 0.185 0.034
glass 0.125 0.125 0.020
heart 0.1675 0.295 0.254

ionosphere 0.420 0.723 0.635
libras 2.625 5.455 4.5375
olitos 0.095 0.124 0.117
sonar 0.600 0.865 0.861

water2 1.42 2.15 2.032
water3 1.45 2.11 2.067

web 6.982 84.91 86.28
wine 0.100 0.112 0.118

wisconsin 0.780 1.176 0.7935
vehicle 3.177 5.338 5.385

The preservation of such classes therefore becomes even more
important. In order to assess the impact of SFRIFS on minority
class instances, a metric based on the mean of the class
distributions and their contribution to the overall score is
proposed. This is termed Class Distribution Distortion (CDD)
and is defined as:

CDD =
1

|C|

|C|∑
i=1

(
n∗i
ni

)
(24)

where |C|, is the number of decision classes in the dataset,
ni represents the number of data instances of class i, and n∗i
represents the number of instances in class i for the SFRIFS
reduced dataset. Higher values of CDD indicate lower levels
of overall distortion of the class distribution. Clearly, decision
classes which have fewer representative data instances have a
greater impact on this score.

It can be seen that when the CDD scores of the reductions of
both approaches are compared, SFRIFSMCP is able to achieve
higher scores than SFRIFS. Note that scores are lower, or indeed
zero, when the class representations in the data are closer to
being equal (e.g. ionosphere, wine and vehicle). Also, when the
number of instances in the data for the SFRIFSMCP reduced data
are examined and compared with those of SFRIFS in Table X,
it can be seen that there is no significant difference indicating

TABLE IX. C L A S S D I S T R I B U T I O N D I S T O R T I O N

Dataset SFRIFS SFRIFSMCP +/-
arrhythmia 0.8967 0.9935 0.0968

anneal 0.9538 0.9968 0.0431
cleveland 0.9483 0.9880 0.0397

ecoli 0.8685 0.9925 0.1240
glass 0.9454 0.9803 0.0349
heart 0.9741 0.9758 0.0017

ionosphere 0.9738 0.9740 0.0002
libras 0.9821 0.9843 0.0022
olitos 0.9243 0.9248 0.0005
sonar 0.9800 0.9800 0.00

water2 0.9727 0.9871 0.0144
water3 0.9487 0.9894 0.0407

web 0.8630 0.8822 0.0192
wine 0.9793 0.9793 0.00

wisconsin 0.9884 0.9903 0.0019
vehicle 0.9916 0.9919 0.0003

that SFRIFSMCP does not negatively impact on the ability to
reduce the data size. In fact, in some cases, SFRIFSMCP results
in a slightly better reduction.

TABLE X. E X A M P L E O F T O TA L O V E R A L L R E D U C T I O N I N D ATA
S I Z E : % ( U S I N G S I M 3 )

Dataset SFRIFS SFRIFSMCP
arrhythmia 3.95 4.06

anneal 37.98 37.98
cleveland 3.86 3.86

ecoli 1.74 1.74
glass 3.57 4.02
heart 4.58 4.58

ionosphere 12.83 12.45
libras 19.96 19.51
olitos 15.86 15.86
sonar 21.93 21.93

water2 8.62 8.62
water3 8.62 8.62

web 94.42 94.31
wine 5.76 5.76

wisconsin 1.15 1.15
vehicle 1.97 1.97

C. Results: HSFSBR
Tables XI to XIII provide the results for the classifier

ensembles, built using both J48 and VQNN, for ε = 0.1, 0.2, 0.3.
A value of 0.2 for this parameter means that there must be
80% coverage of the training data for any generated bireduct.
To confirm that the algorithm has indeed found such coverage,
the final column in these tables gives the average number of
instances covered, AVG( |Y ||U| ). Due to the extra runtime incurred
for the ensemble approach, not all datasets are considered in
this section. For J48, it can be seen that the performance is
improved for most of the datasets compared to the original data.
For VQNN, an improvement can be seen for the cleveland,
heart, and wine datasets. With higher values of parameter ε,
the average subset size decreases with little improvement of
classifier accuracy compared to the original data. This can be
expected as the data have been significantly reduced, meaning
that the subtables of data are much smaller.

It should be noted that the base classifiers have only been
exposed to instances chosen by the discovered ε-bireducts
with the dimensionality significantly reduced also. Hence,
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TABLE XI. C L A S S I F I E R E N S E M B L E R E S U LT S W I T H ε = 0.1 (90% I N T E N D E D O B J E C T C O V E R A G E )

Dataset J48 accuracy (%) VQNN accuracy (%) Bireduct coverage (%)

Ensemble AVG Base Unreduced Ensemble AVG Base Unreduced AVG( |B|
|C| ) AVG(

|Y |
|U| )

cleveland 52.25 52.43 53.85 56.98 53.85 52.22 45.57 89.90
ecoli 79.73 79.91 80.61 84.52 84.75 84.48 63.75 90.58
glass 68.25 68.16 67.79 64.90 63.19 64.87 94.33 90.29
heart 81.48 76.33 74.81 78.89 75.41 75.93 47.08 90.12
ionosphere 89.13 83.17 81.30 80.87 76.43 82.61 14.29 89.86
libras 70.56 48.42 64.72 63.61 49.44 65.28 6.91 90.12
sonar 76.45 65.43 74.57 74.95 67.07 76.00 9.33 89.85
water3 82.05 78.18 81.28 78.97 78.33 81.79 14.49 90.03
wine 94.31 84.62 93.73 93.86 87.53 93.20 30.36 90.01

TABLE XII. C L A S S I F I E R E N S E M B L E R E S U LT S W I T H ε = 0.2 (80% I N T E N D E D O B J E C T C O V E R A G E )

Dataset J48 accuracy (%) VQNN accuracy (%) Bireduct coverage (%)

Ensemble AVG Base Unreduced Ensemble AVG Base Unreduced AVG( |B|
|C| ) AVG(

|Y |
|U| )

cleveland 55.57 52.54 53.85 56.23 52.06 52.21 44.36 80.17
ecoli 77.65 77.97 80.62 81.53 81.41 84.48 64.38 80.09
glass 67.45 65.32 65.43 63.18 62.76 68.23 69.44 80.27
heart 74.82 73.37 74.82 75.93 70.37 75.93 32.54 80.25
ionosphere 89.13 79.65 81.30 79.13 72.83 83.04 11.57 80.19
libras 71.67 43.69 64.72 61.94 43.36 64.72 6.62 79.94
sonar 73.14 62.80 74.57 73.07 64.13 75.60 6.56 80.23
water3 77.69 76.15 81.28 74.87 76.10 81.54 11.31 80.06
wine 88.17 78.53 93.73 85.29 78.68 93.20 27.36 80.02

TABLE XIII. C L A S S I F I E R E N S E M B L E R E S U LT S W I T H ε = 0.3 (70% I N T E N D E D O B J E C T C O V E R A G E )

Dataset J48 accuracy (%) VQNN accuracy (%) Bireduct coverage (%)

Ensemble AVG Base Unreduced Ensemble AVG Base Unreduced AVG( |B|
|C| ) AVG(

|Y |
|U| )

cleveland 57.25 54.17 50.59 57.61 54.15 54.94 37.50 70.07
ecoli 72.26 71.54 80.62 74.06 73.47 84.48 50.75 70.45
glass 57.49 56.95 65.82 55.63 56.42 65.48 57.78 70.09
heart 67.41 68.15 77.78 66.67 65.07 75.56 26.92 70.03
ionosphere 76.52 72.48 85.65 73.04 67.04 83.04 9.37 70.05
libras 62.50 41.50 70.83 58.61 40.58 67.78 5.80 70.06
sonar 77.81 66.33 73.12 75.45 66.14 76.93 6.80 70.09
water3 76.38 73.33 83.09 78.17 76.00 81.54 11.84 70.12
wine 80.35 75.42 93.73 74.15 73.70 93.20 25.50 70.06

the performance of the individual classifiers seems to be
poorer than those for the original datasets. In most of the
cases, the accuracies can be significantly improved through the
combination of weaker classifiers. The results for the libras
dataset are worth further consideration. This dataset has a larger
number of features (91) and 15 decision classes. The combined
performance of the base classifiers, which have only seen a
small proportion of the data (less than 7%), is better than that
obtained with J48 for the original full dataset. This is a strong
indicator that the algorithm is effective and that the discovered
bireducts provide enough diversity.

As mentioned previously in section III-A1, there is a
potential problem with maintaining representative instances
from minority classes and this appears to be overcome by an
ensemble approach. Also, not only does the parameter ε affect
object coverage but it also affects the resulting feature subset
sizes. This is worth noting as reductions that have been made
by a bireduct result in a subtable of the unreduced dataset. The
results would indicate that ensembles of these subtables can

improve the performance compared to the use of the full data
and support the theoretical assumptions made in section III-B.

D. Results: SFRIFS for unsupervised data
Table XIV shows the results obtained by applying SFRIFS to

the datasets outlined previously. Essentially, the decision feature
is ignored and discernibility is preserved by removing instances
and features which have no effect on the overall discernibility.
The results show that for unsupervised data SFRIFS is able to
achieve good reductions. For the majority of the results, the
number of selected features is greater than the equivalent number
of features for the supervised approach. A slight increase in
the number of selected data instances is also evident for some
datasets. This can be expected as the decision class encodes
much discriminatory information.

V. C O N C L U S I O N

This paper has demonstrated a number of different ways in
which fuzzy-rough bireducts can be used for the reduction of
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TABLE XIV. U N S U P E RV I S E D S F R I F S R E S U LT S U S I N G sim3

Dataset Bireduct size Accuracy (%)
subset insts. J48 JRip PART VQNN

cleveland 8.88 258.94 53.02 53.88 52.72 57.49
ecoli 6.00 297.40 82.86 81.08 82.74 86.97
glass 9.00 184.60 68.68 66.63 69.77 68.77
heart 8.51 235.00 75.33 73.93 75.67 80.41

ionosphere 13.50 193.96 86.52 82.96 86.65 88.26
libras 10.96 312.65 61.06 45.59 59.35 64.93
olitos 5.40 103.23 62.25 61.67 62.83 68.75
sonar 6.40 181.46 70.88 71.55 68.66 72.72

water2 7.04 344.73 82.54 81.95 81.26 84.49
water3 7.00 344.86 76.18 77.41 76.28 80.10

web 14.58 120.11 43.57 45.79 43.52 41.70
wine 6.63 154.24 89.62 87.66 89.61 93.37

wisconsin 9.00 621.10 94.88 95.48 95.08 96.20
vehicle 10.33 751.43 67.09 65.79 65.50 68.49

data, both in terms of features selected and numbers of objects.
These reductions show that the data can be reduced whilst
still retaining the useful predictive aspects, as reflected in the
performance. Furthermore by combining ensembles of fuzzy-
rough bireducts, classifiers which are compact and robust can
be built. The introduction of ε-bireducts is important for the
discovery of the best solutions because this allows the partial
quantification of the balance between instance and feature
reduction. Harmony search was employed for the purpose of
generating several bireducts of similar quality but different
enough to make their use in ensemble classification constructive.
An ensemble approach also helps to reduce the impact of
bireducts that are too restrictive, producing a system with higher
accuracy and greater robustness.

There are several ways in which the present work could be
improved. The time and space complexity when generating
the list of clauses is prohibitive when applying the proposed
approach to very large datasets. Some optimization can be
achieved by applying grouping or absorption [11], but alterna-
tive and more efficient approaches to the representation and
generation of clauses may be desirable. Also, a better approach
to handling class imbalance (such as [19]) would be beneficial.

A further investigation would be to assess the stability and
diversity of ensembles, as the performance may be improved
somewhat by the removal of unhelpful members. The identifica-
tion of such redundant members could potentially be achieved
through an automated approach based on feature selection that
could find the best subset of classifiers from the ensemble.
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[7] R. Diao, N. Mac Parthaláin, R. Jensen, and Q. Shen, “Heuristic search for
fuzzy-rough bireducts and its use in classifier ensembles”, In Proceedings
of 23rd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE

’14), pp. 1504–1511, 2014.
[8] R. Jensen and Q. Shen, “New Approaches to Fuzzy-Rough Feature

Selection”, IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 824–
838, 2009.

[9] R. Jensen and C. Cornelis, “Fuzzy-rough nearest neighbour classification
and prediction”, Theoretical Computer Science, vol. 412, no. 42, pp.
5871–5884, 2011.

[10] R. Jensen and C. Cornelis, “Fuzzy-rough instance selection”, Proceedings
of the 19th International Conference on Fuzzy Systems (FUZZ-IEEE ’10),
pp. 1776–1782, 2010.

[11] R. Jensen, A. Tuson, and Q. Shen, “Finding Rough and Fuzzy-Rough
Set Reducts with SAT”, Information Sciences, vol. 255, pp. 100–120,
2014.

[12] D. Li, and C. Cheng, “New similarity measures of intuitionistic fuzzy
sets and application to pattern recognitions”, Pattern Recognition Letters,
vol. 23, no. 1–3, pp. 221–225, 2002.

[13] H. Liu and H. Motoda, “Feature selection for knowledge discovery and
data mining”, Springer Science and Business Media, vol. 454, 2012.
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