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 Extents of piedmont palaeoglaciers were reconstructed in Bosnia and 

Herzegovina 

 Last Glacial Maximum (LGM) moraine age reported from the Dinaric Mountains 

 5 boulders from hummocky moraines yielded 36Cl ages of 22.7 ± 3.8 ka (LGM) 

 3 boulders from a lateral moraine gave 36Cl ages of 13.2 ± 1.8 ka (Younger 

Dryas) 

 4 boulders from a terminal moraine gave 36Cl ages of 13.5 ± 1.8 ka (Younger 

Dryas) 

 Boulder ages reflect complex exhumation and denudation histories 
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Abstract 

The highest parts of the Dinaric Mountains along the eastern Adriatic coast of the southern 

Europe, known for their typical Mediterranean karst–dominated landscape and very humid 

climate, were glaciated during the Late Pleistocene. Palaeo–piedmont type glaciers that 

originated from Čvrsnica Mountain (2226 m a.s.l.; above sea level) in Bosnia and 

Herzegovina deposited hummocky, lateral and terminal moraines into the Blidinje Polje. 

Twelve boulder samples collected from these moraines were dated by cosmogenic 36Cl 

surface exposure dating method. Using 40 mm ka–1 bedrock erosion rate due to high 

precipitation rates, we obtained 36Cl ages of Last Glacial Maximum (LGM; 22.7 ± 3.8 ka) 

from the hummocky moraines, and Younger Dryas (13.2 ± 1.8 ka) from the lateral moraine in 

Svinjača area. The amphitheater shaped terminal moraine in Glavice area also yielded a 

Younger Dryas (13.5 ± 1.8 ka) age within the error margins. Because our boulder ages reflect 

complex exhumation and denudation histories, future work is needed to better understand 

these processes and their influence on the cosmogenic exposure dating approach in a karstic 

landscape. Our results provide a new dataset, and present a relevant contribution towards a 

better understanding of the glacial chronologies of the Dinaric Mountains. 

Keywords: Dinaric Karst; Cosmogenic Surface Exposure Dating; Piedmont Glaciation; 

Bosnia and Herzegovina; Balkans; Last Glacial Maximum, Younger Dryas 

 

1. Introduction 

The Dinaric Mountains extend along the eastern Adriatic coast for about 650 km along the 

western Balkan Peninsula, from the Alps in Slovenia to the Korab Mountains in Albania and 

is highly influenced by the Mediterranean climate. Western part of the mountain range is a 

karst landscape with high–elevated plateaux, which characterise highest segments of the 
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Dinaric Mountains with elevations reaching 2522 m a.s.l. (above sea level) in Durmitor and 

2694 m a.s.l. in Prokletije mountains, where small glaciers still exist (Gachev et al., 2016). 

The Dinaric Mountains were also glaciated in the past. First studies related to the glaciations 

of the Dinaric Mountains were carried out in Bosnia and Herzegovina and Montenegro (e.g. 

Cvijić, 1899; Grund, 1902, 1910; Penck, 1900; Liedtke, 1962; Riđanović, 1966). Pleistocene 

glaciers were reported from the coastal Dinaric Mountains bordering the Adriatic Sea (Cvijić, 

1899, 1900). Because of likely high moisture supply during cold periods (e.g. Hughes et al., 

2010), moraines were encountered below 1000 m a.s.l., and glacial deposits were described 

even at sea level in northern Dalmatia (Croatia) (Marjanac and Marjanac, 2004). Sawicki 

(1911) reported moraines on Mount Orjen (1894 m) in Montenegro, ~500 m a.s.l., 

overlooking present level of the Adriatic Sea. Although wars and political instabilities during 

the last century prevented further research in the countries surrounding the Dinaric 

Mountains, there is now an increasing interest in the description and understanding of past 

glacial deposits and events (e.g. Hughes et al., 2010, 2011; Petrović, 2014; Krklec et al., 

2015). For instance, the Late Pleistocene glacial landforms and glaciokarst of Mount Orjen 

were described in detail (Marković, 1973; Stepišnik et al., 2009). Ice caps and valley glaciers 

also developed elsewhere in the Dinaric Mountains, e.g. in the mountains of Albania (e.g. 

Milivojević, 2007; Milojević et al., 2008), Montenegro (e.g. Hughes et al., 2011), and 

Slovenia (e.g. Žebre and Stepišnik, 2015a; Žebre et al., 2016).  

Recent interest is focussed on the dating of glacial landforms and their palaeoclimatic 

interpretations. Although the U–series method lacks the precision needed to constrain the 

timing of moraine deposition, it can nevertheless bracket moraines within certain glacial 

cycles, where a first attempt was made on Mount Orjen (Hughes et al., 2010). By dating 

secondary cements within moraines and outwash fans, Middle Pleistocene (MIS 12; 480–430 

ka), and later MIS 6 (190–130 ka) and MIS 5d–2 (110–11.7 ka) glaciations were reported by 
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Hughes et al. (2010). Cosmogenic 36Cl surface exposure dating is now a well–established 

method for dating moraines (Dunai, 2010; Gosse and Phillips, 2001), and became a standard 

tool in dating especially carbonate lithologies and carbonate–derived sediments (e.g. Gromig 

et al., 2018; Pope et al., 2015; Sarıkaya et al., 2014; Styllas et al., 2018). However, karst 

denudation rates in extremely moist climatic settings, such as in southwestern Bosnia and 

Herzegovina, where this study is carried out, limit the confidence in the 36Cl exposure dating 

technique to rocks older than ~40 ka (Hughes and Woodward, 2017; Levenson et al., 2017 

and references therein). A recent study in Bosnia and Herzegovina by Žebre et al. (2019) 

succesfully tackled this challenging problem and obtained first 36Cl ages from the Dinaric 

Mountains. A total of 20 moraine boulders yielded ages spanning from Oldest Dryas in Velež 

Mountain (14.9 ± 1.1 ka) to Younger Dryas in Crvanj Mountain (11.9 ± 0.9 ka) (Žebre et al., 

2019).  

This paper focuses on the glacial chronology of the Blidinje area in Bosnia and Herzegovina. 

We therefore aim (a) to overview the geomorphological evidence for glaciation in the Blidinje 

area, (b) to constrain the timing of the largest recognized glacier extent on Svinjača and 

Glavice piedmont glaciers by applying the cosmogenic 36Cl surface exposure dating method 

on lateral, terminal and hummocky moraines, (c) to discuss the formation of hummocky 

moraines in a karstic landscape, and (d) to compare the existent chronology with the 

sourrounding mountains in the Dinaric Mountains and also in wider Balkan Peninsula. 

2. Regional setting 

The Blidinje area (43° 40'–43° 35' N and 17° 25'–17° 40' E) is located in the central Dinaric 

Mountains in southern Bosnia and Herzegovina. The central lowered relief, known as Blidinje 

Polje (Blidinjsko Polje or Dugo Polje), was recently mapped and described by Stepišnik et al. 

(2016). Blidinje Polje is a southwest–northeast elongated polje ~20 km long and 2–5 km 

wide, surrounded by Vran Mountain (2074 m a.s.l.) to the northwest, and by Čvrsnica 
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Mountain (2226 m a.s.l.) to the southeast. The study area is part of Bosnia and Herzegovina 

high karst (Buljan et al., 2005), mainly composed of more or less permeable Cretaceous and 

Jurassic carbonate rocks and their Quaternary re–depositions (Sofilj and Živanović, 1979); 

Stepišnik et al., 2016). 

 

Figure 1: a) Study area location map in Bosnia and Herzegovina (BIH); b) Glacial deposits of 

Svinjača (Figure 2) and Glavice (Figure 4) are located within the Blidinje Polje. Location of 

glacial deposits after Stepišnik et al. (2016) and Sofilj and Živanović (1979). 
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According to the Köppen–Geiger climate classification (Kottek et al., 2006) the study area 

has characteristics of a warm temperate climate, fully humid, with cool summers (Cfc). The 

Blidinje area is located within a transition zone between the Mediterranean and continental 

climate. Precipitation is distributed throughout the year due to the moisture originating from 

the Adriatic Sea towards west as well as due to orographic precipitation effect. The closest 

comparable meteorological station is in Nevesinje (891 m a.s.l.), located ~40 km southeast, 

where mean annual precipitation over the period 1961–1990 was 1795 mm, while the mean 

annual air temperature for the same 30–year period was 8.6 °C (Data courtesy Federal 

Hydrometeorological Institute, Sarajevo). Precipitation amount at higher altitudes, such as the 

Blidinje area and surrounding mountains, is expected to reach more than 2000 mm per year 

(Vojnogeografski institut, 1969). 

3. Methods 

3.1. Geomorphological mapping 

The geomorphological map of the Blidinje Polje (~100 km2) was performed in detail by 

Stepišnik et al. (2016), who used a 20 m–resolution digital elevation model (DEM), Google 

Earth images and topographic maps at a scale of 1: 25,000 and orthophotos (Geoportal Web 

Preglednik, 2016). Limited geomorphological and geological descriptions of the area 

(Milićević and Prskalo, 2014; Milojević, 1935; Roglić, 1959), and maps of landmine 

contamination from the 1992–1995 war, obtained from Bosnia and Herzegovina Mine Action 

Centre, were also essential while performing the fieldwork. We based our study on the results 

of Stepišnik et al. (2016) and sampled 2 areas where the moraines were most promising for 

cosmogenic 36Cl surface exposure dating because of their degree of preservation. 

3.2. Cosmogenic nuclide dating 
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In the karstic Blidinje Polje moraines, we applied 36Cl cosmogenic surface exposure dating 

method to estimate the retreat timing of the glaciers. The length of time that the boulder has 

been exposed on the moraine surfaces can be estimated using certain cosmogenic nuclides 

(such as 36Cl, 10Be and 26Al) (Davis and Schaeffer, 1955; Dunai, 2010). Here, we used 36Cl 

because the carbonates suit well to the production of 36Cl. 

Dating carbonates with 36Cl depends on the interactions of secondary fast neutrons, thermal 

and epithermal neutrons and negative slow muons with the nuclides in rocks (mainly, 40Ca, 

39K and 35Cl). Measured 36Cl concentrations in rocks can be used to quantify the time–length 

of boulder exposition (Gosse and Phillips, 2001; Owen et al., 2001).  

3.2.1. Sample collection and preparation 

We collected 12 samples for cosmogenic 36Cl dating from the top of the boulders on the crests 

of lateral, terminal and hummocky moraines. Large embedded boulders on moraine crests 

were preferred to sustain stability and preservation of boulders. We concentrated on the 

largest moraines that were reasonably away from the minefields; hence safe enough to 

accomplish the fieldwork. A few cm thick rock samples were chipped out from boulder tops 

by hammer and chisel (Table 1). Shielding of surrounding topography was measured by 

inclinometer from the horizon at each sample location (Gosse and Phillips, 2001). 

 

Table 1: Sample locations, attributes and local corrections to production rates. 
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The samples were prepared at Istanbul Technical University’s (ITU) Kozmo–Lab 

(http://www.kozmo–lab.itu.edu.tr/en) facility according to procedures described in Sarıkaya 

(2009). The crushed samples at appropriate grain size (0.25–1 mm) were leached with 

deionized water and 10% HNO3 to remove secondary carbonates, dust and organic particles. 

Aliquots of leached samples were used to measure the major and minor element 

concentrations at the Acme Lab (ActLabs Inc., Ontario Canada) (Table 2). Spiked (~99% 35Cl 

enriched Na35Cl from Aldrich Co., USA) samples were digested with excess amount of 2 M 

HNO3 in 500 ml HDPE bottles (Sarıkaya et al., 2014; Schlagenhauf et al., 2010). ~10 ml of 

0.1 M AgNO3 solution was added before the digestion to precipitate AgCl. Sulphur was 

removed from the solution by repeated precipitation of BaSO4 with addition of Ba(NO3) and 

re–acidifying with concentrated HNO3. Final precipitates of AgCl were sent to the ANSTO, 

Accelerated Mass Spectrometer (AMS) in Sydney, Australia for isotope ratio measurements 

given in Supplementary Table S1. Total Cl was determined by isotope dilution method 

(Desilets et al., 2006; Ivy–Ochs et al., 2004) after AMS analysis (Table 2). 

 

Table 2: Geochemical analytical data. 
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3.2.2 Determination of 36Cl ages 

The CRONUS Web Calculator version 2.0 (http://www.cronuscalculators.nmt.edu) (Marrero 

et al., 2016a) was used to calculate sample ages. Cosmogenic 36Cl production rates of Marrero 

et al. (2016b) [56.3 ± 4.6 atoms 36Cl (g Ca)–1 a–1 for Ca spallation, 153 ± 12 atoms 36Cl (g K)–

1 a–1 for K spallation and 743 ± 179 fast neutrons (g air)–1 a–1] were scaled using the time–

dependent Lifton–Sato–Dunai schema (also called “LSD” or “SF” scaling) (Lifton et al., 

2014). We used 190 µ g–1 a–1 for slow negative muon stopping rate at land surface at sea–

level high–latitude (Heisinger et al., 2002). ~95% of 36Cl production is due to the spallation 

and negative muon capture reactions on 40Ca. Because of the low Cl concentration of our 

samples (<57 ppm), thermal neutron capture reactions by 35Cl constitute only ~5% of the total 

36Cl production. Lower Ca spallation production rates suggested by Stone et al. (1996) or 

Schimmelpfennig et al. (2011) will make our ages ~10% older. All essential information to 

reproduce resultant ages is given in Supplementary Table S1. 

All surface exposure ages include corrections for thickness and topographic shielding. We 

reported both zero–erosion and 40 mm ka–1 erosion corrected boulder ages and preferred to 

use the latter, as the study area is located in one of the highest precipitation regions of Europe 
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(>2000 mm yr-1), and boulder surfaces show up to several cm deep solution grooves. Snow 

thicknesses were estimated based on meteorological data from the Nevesinje weather station 

(Data courtesy Federal Hydrometeorological Institute, Sarajevo) (Table 3). Thus, snow 

correction factor for spallation reactions of 0.9539 was applied to all samples based on 

snowpack of 25, 100, 100, 100, 50, 25 cm of snow on Nov, Dec, Jan, Feb, Mar and Apr on 

top of boulders (Table 3) using the snow density of 0.25 g cm–3, and spallation attenuation 

length of 170 g cm–2. Please note that these estimates are minimum snowpack values since the 

precipitation at sampling elevations might be higher that the precipitation measurements at 

Nevesinje station. Doubling the snowpack make the correction factor 0.9131, and make the 

ages ~9% older. 

Table 3: Meteorological data obtained from measurements at Nevesinje station (~40 km 

southeast of the study area) used to estimate the snow depth on top of the sampled boulders. 

 

4. Results 

4.1. Glacial geomorphology 

The Blidinje Polje is filled with different types of sediments derived from the steep slopes of 

Vran Mountain (2074 m a.s.l.) to the northwest and Čvrsnica Mountain (2226 m a.s.l.) to the 

southeast (Figure 1). In detail the Blidinje Polje can be further classified as a border–type 

polje because of inflows from fluviokarst areas as well as a piedmont–type polje due to 

former inflows from glaciated areas (Ford and Williams, 2007; Gams, 1978). The Blidinje 

Lake (1180 m a.s.l.) in the south has abrasion terraces up to 7 m above the mean lake level 

indicating its larger extent in the past. The reader is referred to Stepišnik et al. (2016) for a 
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detailed geomorphological map and description of the Blidinje Polje and surrounding areas. 

Postglacial subsurface drainage into karst is well developed in the areas of palaeoglaciers, 

therefore products of past glaciations are well preserved (Smart, 2004; Žebre and Stepišnik, 

2015). Glacial deposits in form of lateral, terminal and hummocky moraines, mostly in north 

and northwest facing slopes of Vran and Čvrsnica mountains, are present in the study area 

(Stepišnik et al., 2016). Few km2 large proglacial fans, with glacial outwash sediments, are 

also found just below these moraines. Out of six major moraine depositional areas, we have 

chosen only two sample areas, where moraines were most promising for a chronological 

reconstruction. The presence of different types of moraines, boulder availability and 

accessibility, and clear evidence of multiple glacial advances also influenced our choice. 

4.1.1. Svinjača area 

The area southwest of Blidinje Polje is known as Svinjača and is surrounded by the foothills 

of Vran Mountain to the north and western Čabulja Mountain to the south (Stepišnik et al., 

2016) (Figure 2). Svinjača area is ~3.5 km long and up to 1.5 km wide, with a flat floor at an 

elevation of ~1170 m. A palaeoglacier, ~6 km long, that originated from a small ice cap 

(estimated to ~8x5 km) above 1400 m a.s.l., occupied the glacial valley at the southwestern 

part of the Čvrsnica Mountain, and is responsible for the deposition of the hummocky 

moraines found at Svinjača area (Figure 3a). The hummocky moraine morphology left behind 

by gradually melting piedmont glacier is characterized by more or less equally–distributed, 

randomly–oriented chaotic mounds and depressions, which do not show any specific 

organization (e.g. knob and kettle topography described by Gravenor and Kupsch, 1959). Up 

to 10 m high and 10–50 m wide mounds, with ~20o upper surface slopes, are separated by 10–

50 m wide and several meters deep irregular depressions. Hummocky moraines are composed 

of Cretaceous limestone pebbles and cobbles (10 to 50 cm in diameter), but larger blocks of 1 

to 3 m in diameter are also observed. The latter were preferred for sampling, although having 
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signs of surface weathering. The depressions are filled by finer material and a thin veneer of 

black soil is present with grassy vegetation. 

A left lateral moraine ~400 m long and ~30 m high (to 1265 m a.s.l.) is also found at the 

termination of the glacial valley (Figure 3b–d). The lateral moraine extends from 1300 m a.s.l. 

down to 1265 m a.s.l., and is composed of diamicton characterized by unsorted and 

unstratified sandy–silty matrix with subangular to subrounded boulders of limestone. 

At the northwestern limit of the palaeo–piedmont lobe, which is represented by the 

hummocky morphology, a proglacial fan, with flatter topography and finer grained sediments, 

covers a large section of the Svinjača floor. As no surface streams are found in the Svinjača 

depression, Stepišnik et al. (2016) interpreted the area as a combination of piedmont and 

border–type polje owing to the presence of fluviokarst and proglacial deposits filling the polje 

(Ford and Williams, 2007; Gams, 1978). 
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Figure 2: Geomorphological map of glacial landforms in the Svinjača area. Samples for 36Cl 

cosmogenic nuclide dating were collected from the hummocky (SV16–01 to SL16–05) and 

left lateral (SV16–06 to SL16–08) moraines. The samples ID`s along with the ages (ka) 

corrected for 40 mm ka–1 of erosion are also shown on the map. 
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Figure 3: Svinjača area moraines; a) Typical view of the hummocky moraines (HM) with 

knob and kettle topography. Blidinje Lake is seen at the horizon (photo looking to northeast), 

b) left lateral (LLM) and hummocky moraines (HM) (photo looking to W), c) exit of the 

glacial and the left lateral moraine (LLM) (photo looking to E), d) cross section of the lateral 

moraine with unsorted and unstratified limestone boulders floating in a sandy matrix. White 

and red arrows indicate palaeo–ice flow directions. Houses (a, b, c) and person (d) for scale. 
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4.1.2. Glavice area 

A typical amphitheater shaped terminal moraine, here named as Glavice moraine, oriented in 

a southeast to northwest direction and ~3 km in diameter, constitutes one of the largest 

moraine complexes of the Blidinje Polje (Figures 4 and 5a–c). This moraine complex that 

descends down to 1260 m a.s.l. at its lowermost northeastern extent, was probably deposited 

by a small outlet glacier originating from the Čvrsnica ice cap. Although the moraine is well 

preserved, dense dwarf mountain pine vegetation with a thick black soil cover makes a 

detailed observation and sampling rather difficult. Cretaceous and Jurassic limestone and 

dolostone boulders (1 to 3 m in diameter) can be observed between the trees and were 

sampled when adequate. Today, two major but inactive streambeds, formed by proglacial 

streams flowing towards northwest, dissect the outer rim of the moraine loop. To the 

northwest and north of the moraine, outwash fans cover parts of Blidinje Polje.  
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Figure 4: Geomorphological map of glacial landforms in the Glavice area. Samples for 36Cl 

cosmogenic nuclide dating were collected from the terminal moraine complex (GL16–01 to 

GL16–04). The samples ID`s along with the ages (ka) corrected for 40 mm ka–1 of erosion are 

also shown on the map. 
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Figure 5: Glavice terminal moraine pictures; a) a typical amphitheater shaped terminal 

moraine (overgrown by forest) covering part of the Blidinje Polje (view from northeast 

towards southwest), b) the frontal view of terminal moraine with Stećak –monumental 

Medieval (12th – 15th Century) tombstones found scattered across BIH, inscribed as 

UNESCO’s World Heritage Site since 2016– at the foreground, c) close–up view of the 

terminal moraines. 

 

4.2. 36Cl exposure ages and Blidinje area chronology interpretation 

We collected a total of 12 glacial boulder samples from Svinjača and Glavice areas for 36Cl 

cosmogenic nuclide dating purposes (Table 1). We used 40 mm ka–1 as the most 

representative erosion rate for the correction of all sample ages as denudation rates of 

carbonate rocks can be very high and are enhanced with increasing mean annual precipitation 

(MAP) (Levenson et al., 2017; Ryb et al., 2014). This seemingly high denudation rates are to 

be expected in areas where very high mean annual precipitations are observed (Levenson et 

al., 2017), such as Nevesinje nearby the study area. Comparable denudation rates (30–60 mm 

ka–1) were also measured in the Mediterranean karst in southeastern France (Thomas et al., 

2018) independently of the precipitation amount. We preferred to use the same erosion rate as 

in Velež and Crvanj mountains (Žebre et al., 2019), only ~40 km away. However, we 

recognize that such high erosion rates (40 mm ka–1) will inevitably limit the confidence in the 

corrected ages, especially for older periods. We present age uncertainties at the 1–sigma level 

(i.e. one standard deviation), which include both the analytical and production rate errors (i.e. 

total uncertainties). We used the oldest moraine boulder age as the age of that landform, 

which represent the beginning of glacier retreat (Figure 8). 

4.2.1. Svinjača glacial chronology 
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Five samples from the hummocky moraines and 3 samples from the left lateral moraine were 

collected at the exit of the glacial valley (Figure 6). The chemical analysis of all samples 

collected from this area is almost identical; limestone, showing similar concentrations of CaO 

(~55%) and very low K2O (0.01%) and Cl (5.6–12.8 ppm), thus the main production 

mechanism (>97%) is spallation of Ca (Table 2, Supplementary Table S1). Five boulders 

from the hummocky moraines yielded 36Cl ages of 12.2 ± 1.4 ka (SV16–01), 22.7 ± 3.8 ka 

(SV16–02), 16.6 ± 2.4 ka (SV16–03), 16.4 ± 2.4 ka (SV16–04) and 22.5 ± 3.8 ka (SV16–05) 

(Table 4). The oldest moraine boulder age is 22.7 ± 3.8 ka and indicates the Last Glacial 

Maximum (LGM; the time period when ice masses reached their last maximum global extent 

at around 23–19 ka (Hughes et al., 2013)) as the retreat time of the piedmont glacier (Figure 

8). On the other hand, boulders from the left lateral moraine gave 36Cl ages of 10.6 ± 1.3 ka 

(SV16–06), 11.5 ± 1.5 ka (SV16–07) and 13.2 ± 1.8 ka (SV16–08) (Table 4). Here, the oldest 

moraine boulder age is 13.2 ± 1.8 ka, and indicates the moraine formation during the Younger 

Dryas stadial within error. As expected, the left lateral moraine is younger than the 

hummocky moraines as it is found on higher elevation at the exit of the glacial valley. 
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Figure 6: Photos of the sampled boulders and their ages from the Svinjača hummocky (SV16–

01 to SV16–05) and lateral moraines (SV16–06 to SV16–08). 
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4.2.2. Glavice glacial chronology 

We also collected 4 samples from the terminal moraine of the Glavice area (Figure 7). 

Boulders have similar carbonate lithologies (55% CaO) with slightly higher Cl concentrations 

(~37 ppm) than samples from Svinjača. Four boulders of the terminal moraine complex 

yielded 36Cl ages of 9.7 ± 1.1 ka (GL16–01), 8.2 ± 1.5 ka (GL16–02), 9.0 ± 1.0 ka (GL16–03) 

and 13.5 ± 1.8 ka (GL16–04) (Table 4). Here we applied the same approach as in Svinjača 

and chose the oldest boulder age (13.5 ± 1.8 ka) from the terminal moraine as the most 

representative time of moraine emplacement. This age indicates the Younger Dryas stadial 

within error in the Glavice area. 

 

Figure 7: Photos of the sampled boulders and their ages from the Glavice terminal moraine 

complex (GL16–01 to GL16–04). 
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Table 4: Cosmogenic 36Cl inventories and ages of boulders considering 0 mm ka–1 and 40 mm 

ka–1 erosion rates. Landform ages of moraines are based on the oldest sample’s 40 mm ka-1 

erosion corrected age in the Svinjača and Glavice areas. 

 

The proposed boulder and moraine ages should be considered as minimum ages as suggested 

also by other studies (e.g. Ivy–Ochs and Schaller, 2009; Lukas, 2011; Lüthgens et al., 2011) 

(Figure 8). We also think that the dated left lateral and terminal moraines in both areas belong 

to the same glacial period within error (Younger Dryas) not only because they have very close 

cosmogenic ages (13.2 ± 1.8 ka and 13.5 ± 1.8 ka, respectively), but also because they are 

found at similar elevations (~1300 m a.s.l.). 
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Figure 8: Cosmogenic 36Cl ages of the boulders from (a) hummocky moraines and left–lateral 

(LLM) moraines of Svinjača and (b) terminal moraines of Glavice areas. Upper panels show 

the individual sample ages with 1–sigma uncertainties, and the lower panels show the 

probably density functions (PDF) of the samples. Oldest age of the moraines (indicated by 

thick PDF curves) from both data sets were shown and assigned to the age of the landforms. 

 

5. Discussion 

5.1. Interpreting the moraine age from the boulders 

Numerous studies suggest different approaches (i.e. taking the oldest boulder age within a 

cluster or weighted average age of boulders after the exclusion of outliers etc…) for the 

interpretation of a moraine landform age from the dated boulders (e.g. D’Arcy et al., 2019; 

Applegate et al., 2010, 2012; Çiner et al., 2017; Davis et al., 1999; Dortch et al., 2013; Hallet 

and Putkonen, 1994; Heyman et al., 2011; May et al., 2011; Putkonen and Swanson, 2003; 

Žebre et al., 2019; Zech et al., 2017). In our study we prefer to use the oldest boulder age as 
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the most representative age of the landform, because the exhumation and erosion of boulders 

are the main geological uncertainties to be considered while interpreting exposure ages in 

very humid environments, such as our study area. However, further discussion of these 

methods is out of the scope of this paper and we refer the readers to Žebre et al. (2019) for a 

detailed discussion related to this problematic, especially focused on the climatic conditions 

specific to the Dinaric Mountains. Other discussions on the interpretation of boulder ages 

within a moraine can be found in Palacios et al. (2019), and in the Appendix of D’Arcy et al. 

(2019).  

5.2. Piedmont glaciers and hummocky moraines 

The term “hummocky moraine” is very useful for describing the overall appearance of many 

areas of moraines in formerly glaciated areas (Hughes, 2004). The supraglacial debris cover is 

at the origin of the hummocky moraines, which is a descriptive term that designates moundy, 

irregular morainic knob–and–kettle (convex and concave) topography (e.g. Gravenor and 

Kupsch, 1959; Aario, 1977; Sharp, 1985; Çiner et al., 1999; Benn and Owen, 2002). 

Hummocky moraines have been described in several locations in the world; e.g. in Scotland 

(Sissons (1967), in Turkey (Çiner, 2003; Çiner et al., 1999, 2015), in Tajikistan (Zech et al., 

2005) and in Norway (Knudsen et al., 2006). 

Different interpretations exist about the formation of hummocky moraines; they can result 

from locally isolated patches of melting glaciers (Clapperton and Sugden, 1977), melting of 

debris–covered ice in ice–cored moraines (Lukas, 2011), or subglacial deformation of coarse 

debris including older till deposits (Hodgson, 1982). For instance Sissons (1967, 1979) 

described hummocky moraines in Scotland as “chaotic mounds that lack any systematic 

arrangement” and interpreted this as evidence of in situ glacier stagnation. This view was later 

challenged by several other studies, which argued that the hummocky moraine topography 

could be also formed by the decay of detached ice–blocks from an actively retreating glacier 
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(Eyles, 1983; Bennett and Glasser, 1991; Bennett and Boulton, 1993; Bennett, 1990, 1994). 

Hummocky moraines can be also the result of combined processes, such as in Lenin Peak 

(Pamir Mountains, Kyrgyzstan), where two different geomorphic events have been inferred 

from hummocky terrain (landslide, glacier) even if they look very similar (Oliva and Ruiz–

Fernández, 2018). Some authors even argue that hummocky moraines could also form 

subglacially by the overburden pressure of stagnant ice (e.g. Boone and Eyles, 2001).  

Hummocky accumulations in the Svinjača area are likely the result of the melting debris–

covered glacier snout. Ice ablation caused transport of debris away from topographic heights 

on the glacier surface by mass movement resulting in an irregular mounds and ridges 

topography. Sedimentology of hummocky moraines is normally complex due to multiple 

cycles of re–deposition during their formation and parallel reworking with meltwater streams 

(Benn and Evans, 2010). Lack of glaciofluvial and lacustrine deposits interbedded with 

supraglacial till in the outcrops in the case of Svinjača area is probably the result of reduced 

meltwaters action due to active vertical drainage into karst. Additionally, part of knob–and–

kettle topography in the area is due to suffusion process, where till is evacuated trough 

underlying pipes into karst (Ford and Williams, 2007). Boulders from the hummocky 

moraines in the Svinjača area indicate the LGM as the formation time of the piedmont glacier. 

On the other hand, boulders from the left lateral moraine in the Svinjača area and terminal 

moraine in the Glavice area are younger and indicate a deglaciation during the Younger 

Dryas. Although a two–phase interpretation might hold true, we should also take into account 

different moraine degradation rates and their effect on the exhumation processes. Sharp–

crested and steep lateral moraines are normally affected by higher degree of post–glacial 

degradation and boulder exhumation than small, flat crested hummocky moraines (Applegate 

et al., 2010; Putkonen and Swanson, 2003). As a result, the cosmogenic age does not always 

reflect a true moraine age, but instead the age of the boulder exhumation, especially in the 
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case of steep lateral moraines. 

It should also be noted that even though the oldest ages obtained from the lateral and terminal 

moraines in both areas overlap within error with the Younger Dryas stadial, they could also 

fall within the preceding Allerød, which was a warm and moist interstadial that occurred 

between ~13.9 ka to ~12.9 ka ago. For instance in Scotland’s last ice fields a similar age 

dataset was reinterpreted as indicating a larger Allerød glacier extent and retreat during the 

Younger Dryas stadial (Bromley et al. 2014, 2018). However, as the Younger Dryas stadial is 

recorded throughout the Mediterranean mountains glacial records (e.g. Çiner and Sarıkaya, 

2017; Hughes et al., 2018), it seems likely that this was also the case in our study area. 

5.3 Glacial chronologies in the Balkans 

Glaciation extent of the western Balkan Mountains has been adequately studied, but there is 

relatively little morphochronologic data to associate with the Blidinje area. Some of the 

glacial records in the Balkans have been dated using U–series (Adamson et al., 2014; Hughes 

et al., 2006, 2007, 2010, 2011) that gives a minimum age for the glacial deposits by dating 

secondary carbonates, which are formed after the formation of the host moraines (Figure 9 

and Table 5). Unlike U–series, cosmogenic dating has the potential to obtain the depositional 

age of a moraine and thus can provide a more precise geochronology for the Late Pleistocene 

glaciations. This method has been applied to some areas in the western and southern Balkans 

(Kuhlemann, 2009, 2013; Pope et al., 2015; Styllas et al., 2018). However, there is a 

considerable scatter in dataset between and amongst U–series and cosmogenic dating (Table 

5).  
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Figure 9: (a) All locations in the Balkan Peninsula where moraines and outwash deposits have 

been dated so far. Base layer of mountain belts is from 

https://ilias.unibe.ch/goto.php?target=file_1049915, based on the mountain definition by 

Kapos et al. (2000). Bathymetric data is from the European Marine Observation and Data 

Network (http://www.emodnet.eu/), while the sea level data for LGM and Younger Dryas is 

from Lambeck et al. (2011).  
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Table 5: A list of different dating methods applied to glacial landforms in the Balkan 

Peninsula (modified from Žebre et al., 2019). 

                

  Mountain Dating method Age 
Erosion 

rate 

Number of 

samples 

Referenc

e 
  

  

Snežnik (Croatia) 14C LGM (18.7 ±1.0 cal kyr BP*) / 
1 (animal bone in 

outwash fan) 

Marjanac 

et al., 

2001   

  

Pindus (Greece) U–series 
MIS 12 (>350–71 ka), MIS 6 

(131.3–80.5 ka) 
/ 

28 from at least 

11 landforms 

(calcite cement 

from moraines 

and alluvial 

deposits) 

Hughes et 

al., 2006; 

Woodwar

d et al., 

2004 
  

  

Šar Planina 

(FYROM) 

10Be cosmogenic 

exposure dating 

LGM (19.4 ± 3.2 ka to 12.4 ± 

1.7 ka), Younger Dryas (14.7 ± 

2.1 to 11.9 ± 1.7 ka) 

10 mm/ka 

8 from at least 6 

landforms 

(moraine 

boulders) 

Kuhleman

n et al., 

2009 
  

  

Orjen 

(Montenegro) 
U–series 

MIS 12 (>350–324.0 ka), MIS 

6 (124.6–102.4 ka), MIS 5d–2 

(17.3–12.5 ka), Younger Dryas 

(9.6–8.0 ka) 

/ 

12 from 7 

landforms (calcite 

cement from 

moraines) 

Hughes et 

al., 2010 

  

  

Central 

Montenegro 
U–series 

MIS 12 (>350 ka; 396.6–38.8 

ka), MIS 8 or 10 (231.9–58.8 

ka), MIS 6 (120.2–88.1 ka) MIS 

2 (13.4 ka), Younger Dryas 

(10.9–2.2 ka) 

/ 

19 from 11 

landforms (calcite 

cement from 

moraines) 

Hughes et 

al., 2011 

  

  

Velebit mountain, 

Velebit channel 

(Croatia) 

U–series MIS 12–6 (>350–61.5 ka) / 

 9 from at least 6 

landforms (calcite 

cement from 

moraines, 

paleocaverns, 

former ice 

wedges) 

Marjanac, 

2012 

  

  

Rila (Bulgaria) 
10Be cosmogenic 

exposure dating 
LGM (23.5–14.4 ka) 0 mm/ka 

10 from at least 6 

landforms 

(moraine 

boulders) 

Kuhleman

n et al., 

2013 
  

  

Chelmos (Greece) 
36Cl cosmogenic 

exposure dating 

MIS 3 (39.9 ± 3.0 ka to 30.4 ± 

2.2 ka), LGM (22.9 ±1.6 ka to 

21.2 ± 1.6 ka), Younger Dryas 

(12.6 ± 0.9 ka to 10.2 ± 0.7 ka) 

0 mm/ka 

7 from 4 different 

landforms 

(moraine 

boulders) 

Pope et 

al., 2015 

  

  

Galičica 

(FYROM) 

36Cl cosmogenic 

exposure dating 

Younger Dryas (12.8 ± 1.4 ka 

to 11.3 ± 1.3) 
5 mm/ka 

5 from 1 landform 

(moraine 

boulders) 

Gromig et 

al., 2018 
  

  

Pelister (FYROM) 
10Be cosmogenic 

exposure dating 

Oldest Dryas (15.56 ± 0.85 to 

15.03 ± 0.85) 
0 mm/ka 

3 from 1 landform 

(moraine 

boulders) 

Ribolini 

et al., 

2018   
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Olympus (Greece) 
36Cl cosmogenic 

exposure dating 

Lateglacial (3 phases: 15.5 ± 

2.0 ka, 13.5 ± 2.0 ka, 12.5 ± 1.5 

ka), Holocene (3 phases: 9.6 ± 

1.1 ka, 2.5 ± 0.3 ka, 0.64 ± 

0.08ka) 

0 mm/ka 

20 from 11 

landforms 

(moraine 

boulders, 

bedrock) 

Styllas et 

al., 2018 

  

  

Velež and Crvanj 

(Bosnia and 

Herzegovina) 

36Cl cosmogenic 

exposure dating 

Oldest Dryas (14.9 ± 1.1 ka) 

Younger Dryas j (11.9 ± 0.9 ka)  
40 mm/ka 

20 from7 

landforms 

(moraine 

boulders) 

Žebre et 

al., 2019 

  

                

 

Recent studies using 36Cl cosmogenic dating from the adjacent massifs yielded ages spanning 

from Oldest Dryas (14.9 ± 1.1 ka) for the Velež Mountain to Younger Dryas (11.9 ± 0.9 ka) 

for the Crvanj Mountain with maximum extent of glacial deposits located as low as ~900 m 

a.s.l. (Žebre et al., 2019). 

Another area where the 36Cl cosmogenic nuclide dating technique was used is Mount 

Chelmos in Greece, which yielded the last phase of moraine building within local cirques at 

the Younger Dryas to Early Holocene (13–10 ka). Lower glacial deposits at ~2100 m a.s.l. 

indicate that the glacial maximum of the last cold stage occurred during MIS 3 (40–30 ka), 

several thousand years before the global LGM at MIS 2 (Pope et al., 2015). On the contrary, 

ground moraines at the same elevation in a parallel valley yielded optically stimulated 

luminescence (OSL) ages of MIS–5b (89–86 ka) (Pavlopoulos et al., 2018). The lowest 

glacial deposits reaching elevations of ~1200 m a.s.l. were not dated, but they are assumed to 

be of Middle Pleistocene age (Pope et al., 2015). On Mount Olympus in Greece at an 

elevation of ~2200 m a.s.l., glacier retreat phases were dated within cirque moraines by 36Cl 

cosmogenic method that can be correlated to the Oldest Dryas (~15.5 ka) and Younger Dryas 

(~12.5 ka). Although, there are no chronological data for the maximum glacial extent the 

LGM moraines were assumed to be a short distance away at the entrance to the cirque (Sytllas 

et al., 2018). The older Middle Pleistocene glaciations were found in much lower altitudes 

extending well beyond the high mountain area down to the piedmont (Smith et al., 1997). 
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Glacial chronologies, based on the cosmogenic nuclide dating were established also for the 

Galičica, Šar Planina, and Pelister mountains in North Macedonia. In the Galičica Mountain, 

36Cl ages of moraine boulders at an elevation of ~2050 m a.s.l. indicate a moraine formation 

in the course of the Younger Dryas (12.0 ± 0.6 ka), while moraines further down valley at an 

elevation of 1550 m a.s.l. were not dated (Gromig et al., 2018). Results of 10Be cosmogenic 

exposure dating applied to the cirque moraine in the Pelister Mountain (North Macedonia) at 

an elevation of 2215 m a.s.l. demonstrate the Oldest Dryas age (15.24 ± 0.85 ka), whereas 

stratigraphically older moraines were not dated (Ribolini et al., 2018). The age of moraine 

boulders in the Šar Planina Mountain was determined by 10Be cosmogenic exposure dating 

(Kuhlemann et al., 2009). The maximum glacier advances that reached elevations between 

1100 and 1500 m a.s.l. were correlated to the LGM (22.5–20 ka). Moraines at altitudes 

between 1600 and 2200 m were linked with the Oldest Dryas (16.5–15 ka), while moraines at 

altitudes between 2100 and 2400 m with the Younger Dryas (~12 ka). Small local moraines at 

higher elevation, close to the crest, were tentatively attributed to the 8.2 ka event (Kuhlemann 

et al., 2009). 10Be cosmogenic exposure dating was used to date the moraine boulders also in 

the Rila Mountain in Bulgaria. The maximum glaciation extent at an elevation between 1150 

and 2000 m a.s.l. yielded ages prior (~25–23 ka) and after (~18–16 ka) LGM (Kuhlemann et 

al., 2013).  

U–series dating technique was applied to date glacial deposits in Montenegro and Greece, 

where the two largest most palaeoglacier extents were correlated with MIS 12 (480–430 ka) 

and MIS 6 (190–130 ka) Middle Pleistocene cold stages (Hughes et al., 2006, 2007, 2010, 

2011). Glaciers of the last cold stage have been recorded only in the form of limited–extent 

cirque glaciers, which is consistent with the findings using the same dating technique from the 

northern Greece (Hughes et al., 2007).  
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Our glacial chronological data from the Blidinje area are in good agreement with other 

cosmogenic nuclide dating data from other parts of the Balkan Peninsula. 36Cl ages from 

hummocky moraines in the Svinjača area indicate first ever–reported LGM age of the 

glaciers in Bosnia and Herzegovina, which roughly corresponds to the established 

cosmogenic 10Be chronologies from the Rila and Šar Planina mountains (Kuhlemann et al., 

2009, 2013). Younger Dryas ages from the lateral and terminal moraines in Blidinje are in 

good agreement with the dating results from the Velež Mountain (Žebre et al., 2019), Mount 

Olympus (Styllas et al., 2018), and Galičica Mountains (Gromig et al., 2018). 

In the future special priority should be given to quartz–rich lithologies in the dating of 

moraine boulders in prevalently carbonate mountains in the Balkans, such was done by 

Ribolini et al. (2018) in Mount Pelister in North Macedonia. This would then test and verify 

36Cl–based ages, and help confirm the validity of 40 mm ka–1 erosion rate that we used in our 

study. On that regard, it is interesting to note that Mount Pelister’s quartz rich schist 

moraines (no boulder erosion assumed) yield an Oldest Dryas age, whereas limestone 

moraines in very closely situated Galičica Mountains at similar altitude, where 5 mm ka–1 

boulder erosion rate was assumed, are Younger Dryas in age (Gromig et al., 2018). Whether 

this difference is due to variations in lithologies and/or erosion rates, or indicates a real 

difference in glacial chronology is an open question that needs to be answered by future 

research. Therefore, it is clear that more quantitative age results are needed from 

neighbouring countries in order to better understand the glacial history of the Dinaric 

Mountains. 

6. Conclusions 

The Blidinje Polje in the Dinaric Mountains of Bosnia and Herzegovina along the eastern 

Adriatic coast was glaciated during the Late Pleistocene. A piedmont glacier that originated 

from the Čvrsnica Mountain (2226 m a.s.l.) descended down to 1250 m in the Svinjača area, 
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and covered a surface of ~1.5 km2. Hummocky and lateral moraines composed of limestone 

boulders up to 3 m in diameter, were later deposited by the melting of this glacier lobe. 

Because of dissolution susceptible limestone lithology and very high precipitation in the area, 

we used 40 mm ka–1 bedrock erosion rate, and dated the moraine boulders by cosmogenic 

36Cl surface exposure method. The results indicate the first ever reported LGM (22.7 ± 3.8 

ka) extent of glaciers from the Dinaric Mountains in Bosnia and Herzegovina. The lateral 

moraine of this piedmont lobe apparently developed during the Younger Dryas (13.2 ± 1.8 

ka) stadial within error. Within the Blidinje Polje in Glavice area, another amphitheater 

shaped terminal moraine, at similar altitudes, yielded a similar Younger Dryas (13.5 ± 1.8 ka) 

age within error, confirming the importance of this stadial in this part of Dinaric Mountains. 
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landform surface instability on hummocky moraines in the Pamir Mountains 

(Tajikistan) from 10Be surface exposure dating. Earth and Planetary Science Letters 237, 

453– 461. 
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Figures 

Figure 1: a) Study area location map in Bosnia and Herzegovina (BIH); b) Glacial deposits of 

Svinjača (Figure 2) and Glavice (Figure 4) are located within the Blidinje Polje. 

Location of glacial deposits after Stepišnik et al. (2016) and Sofilj and Živanović 

(1979). 

Figure 2: Geomorphological map of glacial landforms on the Svinjača Mountain. Samples for 

36Cl cosmogenic nuclide dating were collected from the hummocky (SV16–01 thru 05) 

and left lateral (SV16–06, 07 and 08) moraines. The samples ID`s along with the ages 

(ka) corrected for 40 mm ka–1 of erosion were presented. 

Figure 3: Svinjača area moraines; a) Typical view of the hummocky moraines (HM) with 

knob and kettle topography. Blidinje Lake is seen at the horizon (photo looking to 

northeast), b) left lateral (LLM) and hummocky moraines (HM) (photo looking to W), 

c) exit of the glacial and the left lateral moraine (LLM) (photo looking to E), d) cross 

section of the lateral moraine with unsorted and unstratified limestone boulders floating 

in a sandy matrix. White and red arrows indicate palaeo–ice flow directions. Houses (a, 

b, c) and person (d) for scale. 

Figure 4: Geomorphological map of glacial landforms on the Glavice Mountain. Samples for 

36Cl cosmogenic nuclide dating were collected from the terminal moraine (GL16–01 

thru 04). The samples ID`s along with the ages (ka) corrected for 40 mm ka–1 of erosion 

were presented. 

Figure 5: Glavice terminal moraine pictures; a) a typical amphitheater shaped terminal 

moraine (overgrown by forest) covering part of the Blidinje Polje (view from northeast 

towards southwest), b) the frontal view of terminal moraine with Stećak –monumental 

Medieval (12th – 15th Century) tombstones found scattered across BIH, inscribed as 
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UNESCO’s World Heritage Site since 2016– at the foreground, c) close–up view of the 

terminal moraines. 

Figure 6: Photos of the sampled boulders from the Svinjača hummocky (SV16–01 to SV16–

05) and lateral moraines (SV16–06 to SV16–08). 

Figure 7: Photos of the sampled boulders from the Glavice terminal moraine complex. 

Figure 8: Cosmogenic 36Cl ages of the boulders from (a) hummocky moraines and left–lateral 

(LLM) moraines of Svinjača and (b) terminal moraines of Glavice areas. Upper panels 

show the individual sample ages with 1–sigma uncertainties, and the lower panels show 

the probably density functions (PDF) of the samples. Oldest age of the moraines 

(indicated by thick black PDF curves) from both data sets were shown and assigned to 

the age of the landforms. 

Figure 9: (a) All locations in the Balkan Peninsula where moraines/outwash have been dated 

so far. Base layer of mountain belts is from 

https://ilias.unibe.ch/goto.php?target=file_1049915, based on the mountain definition 

by Kapos et al. (2000). Bathymetric data is from the European Marine Observation and 

Data Network (http://www.emodnet.eu/), while the sea level data for LGM and 

Younger Dryas is from Lambeck et al. (2011). 

 

Tables 

Table 1: Sample locations, attributes and local corrections to production rates. 

Table 2: Geochemical analytical data. 

Table 3: Meteorological data obtained from measurements at Nevesinje station (~40 km 

southeast of the study area) used to estimate the snow depth on top of the sampled 

boulders. 
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Table 4: Cosmogenic 36Cl inventories, production rates, ages of boulders considering 0 mm 

ka–1 and 40 mm ka–1 erosion rates and ages of glacial landforms in the Svinjača and 

Glavice areas. 

Table 5: A list of different dating methods applied to glacial landforms in the Balkan 

Peninsula (modified from Žebre et al., 2019). Note that calculations of 36Cl cosmogenic 

exposure ages from Mount Chelmos and Mount Olympus are based on the production 

rates from Stone et al. (1996) and Schimmelpfennig et al. (2011), respectively. For 

comparison, two boulder–ages from Mount Chelmos (CH10 (11.03 ± 0.9 ka), CH11 

(8.76 ± 0.70 ka)) (Pope et al., 2015) and two boulder–ages from Mount Olympus (TZ03 

(12.44 ± 1.07 ka), MK12 (12.37 ± 1.07 ka)) (Styllas et al., 2018) were recalculated 

using the production rates of Marrero et al. (2016b). The two ages from Mount 

Olympus were also corrected for snow and erosion, using the same values as in the 

paper of Styllas et al. (2018). The recalculated ages are 13–14% younger for Mount 

Chelmos and 23–24% younger for Mount Olympus with respect to the published ages. 

14C ages from Sneznik were recalculated according to the IntCal13 calibration (Reimer 

et al., 2013). Recalculated ages are marked with asterisk.  

Supplementary Table S1: Supplementary laboratory and AMS data. 
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°N (DD) °E (DD) (m) (m) (cm)

1 SV16-01 43.5929 17.4654 1252 3x1.5x1 3 0.9964

2 SV16-02 43.5943 17.4693 1257 1.5x1x0.8 2 0.9958

3 SV16-03 43.5957 17.4727 1240 3x2x1.2 2 0.9982

4 SV16-04 43.5922 17.4653 1252 1x2x1 3 0.9964

5 SV16-05 43.5898 17.4658 1242 1.3x1x0.8 2 0.9843

6 SV16-06 43.5874 17.4745 1302 1x1x0.5 4 0.9771

7 SV16-07 43.5875 17.4741 1307 1.5x1x0.6 3 0.9771

8 SV16-08 43.5877 17.4733 1298 0.6x1x0.4 3 0.9771

9 GL16-01 43.6321 17.5315 1285 1x1x0.4 2 0.9896

10 GL16-02 43.6363 17.5299 1271 1.5x1.5x0.8 4 0.9963

11 GL16-03 43.6480 17.5374 1278 0.5x0.4x0.25 4 0.9982

12 GL16-04 43.6366 17.5302 1268 2.5x2x1 3 0.9927

Table 1

Latitude 

(WGS84)

Longitude 

(WGS84)
Elevation*

Sample 

thickness

Topography 

correction 

factor

Boulder 

dimensions 

(LxWxH)

Sample ID

Table 1 Click here to access/download;Table;Table
1_FieldData_Blidinje.xlsx
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Al2O3 CaO Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 CO2 Sm Gd U Th

(LOI)

(wt. %)(wt. %)(wt. %)(wt. %)(wt. %)(wt. %)(wt. %)(wt. %)(wt. %)(wt. %)(wt. %) (ppm) (ppm) (ppm) (ppm)

1 SV16-01 0.18 54.45 0.15 0.03 0.56 0.01 0.03 0.04 0.56 0.01 43.90 0.11 0.16 2.40 0.20 13.6 ± 1.3

2 SV16-02 0.07 55.12 0.08 0.01 0.48 0.02 0.01 0.04 0.39 0.01 43.70 0.13 0.16 0.80 0.20 14.0 ± 1.3

3 SV16-03 0.05 54.80 0.09 0.01 0.72 0.02 0.01 0.10 0.50 0.01 43.60 0.13 0.11 0.60 0.20 11.7 ± 1.1

4 SV16-04 0.05 55.34 0.07 0.01 0.44 0.01 0.01 0.05 0.36 0.01 43.60 0.11 0.18 0.80 0.20 9.1 ± 0.8

5 SV16-05 0.12 54.92 0.07 0.01 0.52 0.01 0.02 0.01 0.48 0.01 43.70 0.05 0.05 2.10 0.20 13.2 ± 1.2

6 SV16-06 0.06 54.98 0.06 0.01 0.67 0.01 0.01 0.01 0.26 0.01 43.90 0.05 0.06 1.60 0.20 18.5 ± 1.7

7 SV16-07 0.03 55.29 0.06 0.01 0.58 0.01 0.02 0.01 0.15 0.01 43.80 0.05 0.05 1.80 0.20 16.4 ± 1.5

8 SV16-08 0.01 55.32 0.06 0.01 0.51 0.01 0.01 0.01 0.21 0.01 43.80 0.05 0.05 2.10 0.20 5.6 ± 0.5

9 GL16-01 0.02 54.85 0.06 0.01 0.88 0.01 0.03 0.01 0.18 0.01 43.90 0.05 0.05 8.30 0.20 39.0 ± 3.5

10 GL16-02 0.03 55.28 0.07 0.01 0.53 0.01 0.02 0.01 0.24 0.01 43.80 0.05 0.05 2.80 0.20 56.6 ± 5.1

11 GL16-03 0.02 55.30 0.06 0.01 0.58 0.01 0.01 0.01 0.16 0.01 43.80 0.07 0.09 0.50 0.20 25.3 ± 2.3

12 GL16-04 0.04 54.81 0.04 0.01 0.71 0.01 0.02 0.01 0.40 0.01 43.90 0.05 0.05 5.10 0.20 28.7 ± 2.6

(ppm)

Table 2

Major elements Trace elements

ClSample ID

Table 2 Click here to access/download;Table;Table
2_ChemData_Blidinje.xlsx
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Months I II III

Temperature, oC, at Nevesinje station (@900 m asl) -0.9 0.5 3.5

Precipitation, mm, at Nevesinje station 171 169 165

Snow depth, cm, measured at Nevesinje station 117 70 53

Temperature @1270 m asl using 6.5 oC km-1 temp. lapse rate -3.3 -1.9 1.1

Minimum snow water equivalent, mm (=prec, if temp<0) 171 169 0

Minimum snow depth, cm (using the 10:1 snow depth ratio) 171 169 0

Our snowpack estimates on top of boulders (aver. boulder height 70 cm) 100 100 50

Table 3 Click here to access/download;Table;Table
3_SnowData_Blidinje.xlsx

https://www.editorialmanager.com/megr/download.aspx?id=300&guid=60d8c8bc-e2a0-4e25-8a93-4abebb56f427&scheme=1
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IV V VI VII VIII IX X XI XII

7.5 12.3 15.5 18.0 17.8 14.2 9.7 4.8 0.5

162 119 97 65 85 116 178 242 225

34 4 0 0 0 0 10 30 65

5.1 9.9 13 16 15 12 7.3 2.4 -1.9

0 0 0 0 0 0 0 0 225

0 0 0 0 0 0 0 0 225

25 0 0 0 0 0 0 25 100



Landform Age

(ka)

Svinjača

1 SV16-01 Hummocky Moraine 49.28 ± 1.63 8.7 ± 0.8 12.2 ± 1.4

2 SV16-02 Hummocky Moraine 72.19 ± 2.44 12.7 ± 1.1 22.7 ± 3.8

3 SV16-03 Hummocky Moraine 59.22 ± 2.21 10.6 ± 1.0 16.6 ± 2.4

4 SV16-04 Hummocky Moraine 58.31 ± 2.28 10.4 ± 0.9 16.4 ± 2.4

5 SV16-05 Hummocky Moraine 69.78 ± 2.23 13.0 ± 1.0 22.5 ± 3.8

6 SV16-06 Lateral Moraine 46.90 ± 1.78 8.0 ± 0.7 10.6 ± 1.3

7 SV16-07 Lateral Moraine 49.82 ± 1.73 8.4 ± 0.7 11.5 ± 1.5

8 SV16-08 Lateral Moraine 50.76 ± 2.18 8.9 ± 0.8 13.2 ± 1.8

Glavice

9 GL16-01 Terminal Moraine 50.98 ± 1.86 8.0 ± 0.6 9.7 ± 1.1

10 GL16-02 Terminal Moraine 47.46 ± 5.91 7.0 ± 1.0 8.2 ± 1.5

11 GL16-03 Terminal Moraine 43.47 ± 1.65 7.3 ± 0.6 9.0 ± 1.0

12 GL16-04 Terminal Moraine 58.80 ± 1.91 9.9 ± 0.9 13.5 ± 1.8

Sample ID Landform 36
Cl (measured)

(10
4
 atoms g

-1
 rock)

Surface Exposure Ages

Erosion 

corrected                    

(0 mm ka
-1

)

Erosion 

corrected                    

(40 mm ka
-1

)

13.2 ± 1.8

13.5 ± 1.8

(ka) (ka)

22.7 ± 3.8

Table 4 Click here to access/download;Table;Table 4_Blidinje ages (0-40).xlsx
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Mountain Dating method Age

Snežnik (Croatia) 14C LGM (18.7 ±1.0 cal kyr BP*)

Pindus (Greece) U-series MIS 12 (>350-71 ka), MIS 6 (131.3-80.5 ka)

Šar Planina 

(FYROM)

10Be cosmogenic exposure 

dating

LGM (19.4 ± 3.2 ka to 12.4 ± 1.7 ka), 

Younger Dryas (14.7 ± 2.1 to 11.9 ± 1.7 ka)

Orjen 

(Montenegro)
U-series

MIS 12 (>350-324.0 ka), MIS 6 (124.6-

102.4 ka), MIS 5d-2 (17.3-12.5 ka), 

Younger Dryas (9.6-8.0 ka)

Central 

Montenegro
U-series

MIS 12 (>350 ka; 396.6-38.8 ka), MIS 8 or 

10 (231.9-58.8 ka), MIS 6 (120.2-88.1 ka) 

MIS 2 (13.4 ka), Younger Dryas (10.9-2.2 

ka)

Velebit mountain, 

Velebit channel 

(Croatia)

U-series MIS 12-6 (>350-61.5 ka)

Rila (Bulgaria)
10Be cosmogenic exposure 

dating
LGM (23.5-14.4 ka)

Chelmos (Greece)
36Cl cosmogenic exposure 

dating

MIS 3 (39.9 ± 3.0 ka to 30.4 ± 2.2 ka), LGM 

(22.9 ±1.6 ka to 21.2 ± 1.6 ka), Younger 

Dryas (12.6 ± 0.9 ka to 10.2 ± 0.7 ka)

Galičica (FYROM)
36Cl cosmogenic exposure 

dating
Younger Dryas (12.8 ± 1.4 ka to 11.3 ± 1.3)

Pelister (FYROM)
10Be cosmogenic exposure 

dating
Oldest Dryas (15.56 ± 0.85 to 15.03 ± 0.85)

Olympus (Greece)
36Cl cosmogenic exposure 

dating

Lateglacial (3 phases: 15.5 ± 2.0 ka, 13.5 ± 

2.0 ka, 12.5 ± 1.5 ka), Holocene (3 phases: 

9.6 ± 1.1 ka,  2.5 ± 0.3 ka, 0.64 ± 0.08ka)

Velež and Crvanj 

(Bosnia and 

Herzegovina)

36Cl cosmogenic exposure 

dating

Oldest Dryas (14.9 ± 1.1 ka)  Younger Dryas 

j (11.9 ± 0.9 ka) 

Table 5 Click here to access/download;Table;Table 5-Balkan ages.xlsx
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Erosion rate Number of samples Reference

/ 1 (animal bone in outwash fan) Marjanac et al., 2001

/

28 from at least 11 landforms (calcite 

cement from moraines and alluvial 

deposits)

Hughes et al., 2006; 

Woodward et al., 2004

10 mm/ka
8 from at least 6 landforms (moraine 

boulders)
Kuhlemann et al., 2009

/
12 from 7 landforms (calcite cement 

from moraines)
Hughes et al., 2010

/
19 from 11 landforms (calcite cement 

from moraines)
Hughes et al., 2011

/

 9 from at least 6 landforms (calcite 

cement from moraines, paleocaverns, 

former ice wedges)

Marjanac, 2012

0 mm/ka
10 from at least 6 landforms (moraine 

boulders)
Kuhlemann et al., 2013

0 mm/ka
7 from 4 different landforms (moraine 

boulders)
Pope et al., 2015

5 mm/ka 5 from 1 landform (moraine boulders) Gromig et al., 2018

0 mm/ka 3 from 1 landform (moraine boulders) Ribolini et al., 2018

0 mm/ka
20 from 11 landforms (moraine 

boulders, bedrock)
Styllas et al., 2018

40 mm/ka
20 from 4 landforms (moraine 

boulders)
Žebre et al., 2019
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Figure 2 Click here to access/download;Figure;2. Figure_Svinjaca.jpg
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Figure 3 Click here to access/download;Figure;3. Svinjaca HM & LLM.tif

https://www.editorialmanager.com/megr/download.aspx?id=304&guid=d5485e31-80c0-4b56-829b-b036ea26f6fe&scheme=1
https://www.editorialmanager.com/megr/download.aspx?id=304&guid=d5485e31-80c0-4b56-829b-b036ea26f6fe&scheme=1


Figure 4 Click here to access/download;Figure;4. Figure_Glavice.jpg
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Figure 5 Click here to access/download;Figure;5. Glavice.tif
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Figure 6 Click here to access/download;Figure;6. Svinjica samples.tif
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Figure 7 Click here to access/download;Figure;7. GLavice pictures.tif
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Figure 8 Click here to access/download;Figure;8. Ageplot_Blidinje.png
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