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Abstract

The Chinese stroke evaluation and generation systems required in an autonomous

calligraphy robot play a crucial role in producing high-quality writing results

with good diversity. These systems often suffer from inefficiency and non-optima

despite of intensive research effort investment by the robotic community. This

paper proposes a new learning system to allow a robot to automatically learn to

write Chinese calligraphy effectively. In the proposed system, the writing qual-

ity evaluation subsystem assesses written strokes using a convolutional auto-

encoder network (CAE), which enables the generation of aesthetic strokes with

various writing styles. The trained CAE network effectively excludes poorly

written strokes through stroke reconstruction, but guarantees the inheritance

of information from well-written ones. With the support of the evaluation sub-

system, the writing trajectory model generation subsystem is realized by multi-

variate normal distributions optimized by differential evolution (DE), a type of

heuristic optimization search algorithm. The proposed approach was validated

and evaluated using a dataset of nine stroke categories; high-quality written
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strokes have been resulted with good diversity which shows the robustness and

efficacy of the proposed approach and its potential in autonomous action-state

space exploration for other real-world applications.

Keywords: Robotic Chinese calligraphy, data-driven evaluation model,

convolutional auto-encoder, differential evolution

2010 MSC: 00-01, 99-00

1. Introduction

The main focus of research for robotic writing is the trajectory generation

methods for robots to write characters or letters using a pen or ink brush [1,

2, 3, 4, 5], but this is not necessarily the case for Chinese calligraphy robots.

Chinese calligraphy, an aesthetic presentation of Chinese characters, implicitly5

expresses the emotion of the artist, in addition to convey the message that the

characters imply. Consequently, the research on robotic Chinese calligraphy

is interdisciplinary across robotics and arts [6, 7], which makes the designing

of Chinese calligraphy robotic systems challenging. Nevertheless, this special

challenge represents a new dimension of development to further advance the10

robotic field by better replicating human intelligence in machines. Accordingly,

the techniques required in writing high-quality aesthetic strokes can be readily

transferred to other industries [8, 9], such as industrial welding and medical

rehabilitation, which witnesses the importance of the research in robotic Chinese

calligraphy from a technical point of view. Culture-wise, the presentation of this15

oriental tradition through modern digital technologies inspires creativity and

helps interest development in Chinese calligraphy. The challenge aforementioned

can be expressed as two technical difficulties.

The development of an effective and efficient writing result evaluation mech-

anism forms the first technical difficulty. Almost all conventional robotic writ-20

ing systems use pre-defined and simplistic evaluation criteria that often lead

to a lack of diversity in the writing results. For instance, the curve fitting ap-

proach proposed by Yao et al. [10, 11] matches the writing trajectories to the
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pre-defined image patterns of strokes; the stroke generation system reported

in Kwok et al. [12] uses prepared and inflexible stroke boundaries; the visual25

feedback based robotic drawing system presented by Mueller et al. [13] only

considers the overlay of a writing result and its reference stroke. All these

methods require manual implementations to obtain fixed image patterns or

stroke boundaries, which often lead to monotonous writing results. Several

other projects [14, 15, 16] manually analyze the geometric features of callig-30

raphy to design the evaluation methods for robotic Chinese calligraphy. One

notable exception is the data-driven approach reported Chao et al. [17], which

introduce the Generative Adversarial Nets (GAN) to a robotic manipulator to

generate writing trajectories. This work takes advantage of a discriminative

model in GAN, which serves as the feedback system for learning robotic writ-35

ing. However, the GAN-based models only discriminate between the instances

of true stroke probability distribution and that of the writing results, which

limits the assignment of an evaluation score to each writing sample and thus

the quality of writing outputs from expectations.

The learning-based robotic writing systems usually suffer from local minima40

when finding optimal trajectory models using gradient-based methods, which

poses the second difficulty. For instance, a gradient descent algorithm to de-

crease writing errors was proposed by Mueller et al. [13], which itself can be

time-wise inefficient when learning complex strokes and characters. Specifically,

once a practical robot entity is involved in a gradient descent algorithm-based45

learning system, it is difficult to back-propagate errors. To address this, a policy

gradient method is used in the work of Chao et al. [17] based on several specific

measures, to train the trajectory model. However, the overall performance is

still not as good as expected due to the high variance in estimating the policy

gradients. These difficulties reveal the necessity to globally optimize the writing50

system during the training stage.

This paper proposes a data-driven robotic Chinese calligraphy system, which

enables a robot to autonomously learn to generate writing trajectory models, to

address these technical difficulties. In particular, a convolutional auto-encoder
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(CAE) [18] is applied as the data-driven writing result evaluation subsystem.55

The CAE firstly extracts stroke features which encode stroke images as low di-

mensional codes. Then, each written image is compared with the whole dataset,

and the well-written strokes are used as candidates for reconstruction with no

or very marginal loss of information. The comparison between the input image

and the reconstruction provides an effective means for writing result evaluation,60

which is used to support the automatic development of optimal writing trajec-

tory models. Enlightened by the recent work reported in [19, 20, 21, 22, 23],

which use evolutionary algorithms (EA) for agent development, differential evo-

lution (DE) [24] is adapted in this work to obtain optimal writing trajectory

models with the support of the CAE-based evaluation subsystem. In contrast65

to the traditionally used gradient-based algorithms, DE is highly parallelizable

and gradient-free, and thus more likely to escape from local optimums.

The proposed learning framework allows the robot to autonomously develop

high-performance writing skills and avoid monotonous writing results. The ex-

perimentation in this work was conducted based on a dataset with 9 stroke cat-70

egories. The experimental results demonstrate the superiority of the proposed

work in helping robots to generate high-quality Chinese calligraphy strokes with

good diversity over others. The main contributions of this work are twofold: 1)

a CAE is applied to evaluate the quality of strokes to support automatic writ-

ing trajectory model generation; 2) DE was adapted to the robotic manipulator75

for generating writing trajectory models with the support of the CAE-based

evaluation subsystem.

The remainder of this paper is organized as follows: Section 2 serves as a brief

introduction to the theoretical underpinning CAE and DE. Section 3 specifies

the proposed system, which allows a calligraphy robot to automatically learn80

to write strokes with high quality and good diversity. Section 4 presents the

experimental set up and discusses the experimental results. Section 5 concludes

the paper and points out important future work.
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2. Background

This work applies a CAE [18] for the evaluation subsystem, due to its strong85

feature extraction capability; whilst DE [25, 26, 27] is applied to find optimal

writing trajectory models because of the readiness to use, reliable, and time

efficiency. These fundamental techniques are reviewed in this section.

2.1. Convolutional Auto-Encoder

A conventional auto-encoder is a fully connected neural network that consists90

of two parts: an encoder and a decoder. The encoder maps high dimensional

data into a latent code (lower dimensional), while the decoder reconstructs the

initial data from the latent code. Auto-encoders are commonly used to reduce

dimensionality and extract features. A CAE is a variant of an auto-encoder

[18] whose encoder and decoder are convolutional and deconvolutional neural95

networks, respectively. The neural networks allow the CAEs to capture the spa-

tial information of the data; therefore, CAEs are more suitable for applications

related to image processing [28, 29, 30, 31]. The main components of a CAE,

including an encoder and a decoder, are briefed as follows:

Encoder. The encoder consists of convolution and pooling layers. A convolution100

layer convolves the input image with parametric filters (convolution kernels) to

produce feature maps of an image. The k-th feature map of a mono-channel

input, x, is given by:

hk = σ(x⊗W k + bk), (1)

where σ(·) is an activation function (normally non-linear); ⊗ denotes the 2D

convolution operation; W k and bk denote the weight and bias of the k-th fil-105

ter. A pooling layer partitions the input feature map into a set of rectangular

regions and outputs an aggregation of each rectangular region; for instance,

maximum pooling aggregates the values in the region to its maximum value,

while average pooling to the average of all values in the region. By representing

the whole region using only a representative value, the pooling layer reduces the110

computational requirement in the upper layers.
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Figure 1: A CAE typically consists of convolution, pooling, fully-connected, unpooling, and

deconvolution layers.

Decoder. A decoder consists of deconvolution and unpooling layers. A decon-

volution layer performs an inverse operation of the convolution layer; in other

words, a deconvolution layer reconstructs images from feature maps. Recon-

struction is realized using:115

y = σ(

H∑
k=1

hk ⊗ W̃ k + c), (2)

where hk denotes the k-th of all H feature maps; W̃ k corresponds to the flip

operation over both dimensions of the weights; c denotes the bias. Also, an

unpooling layer, performing the reverse operation of pooling, reconstructs the

original size of each rectangular region. Interesting, as shown in Fig. 1, an

encoder can be connected with a decoder via fully-connected layers.120

Objective function. There are a good set of object functions that can be sued

here. The most commonly used objective function is the mean squared error

(MSE) between the input data, x, and the reconstructed data, y:

error =
1

2N

N∑
i=1

(xi − yi)2. (3)

All the parameters of a CAE can be easily optimized through a back-propagation

algorithm.125

2.2. Differential Evolution

Differential evolution, a gradient-free method, has proven effective in global

optimization [32, 33, 34, 35]. Like other EA, DE is a population-based algorithm
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that explores search space by repeating the cycle of selection and reproduction

for a population of parameter vectors. Different from other EAs, a differential130

mutation operation is employed to generate scaled mutated individuals. Such

an operation ensures that mutants do not duplicate existing individuals [25].

The population structure and the main procedures of the DE algorithm are

summarized as follows:

Population Structure. The population consists of Np D-dimensional135

real-valued vectors, called target vectors. Denote the i-th target vector of the

population in the g-th generation as follows:

ωi(g); i = 1, 2, ..., Np; g = 1, 2, ..., gmax, (4)

where gmax is a preset maximum number of generations. Every element of each

D-dimensional vector is bounded. Both upper and lower boundaries must be

specified:140

ωL
j < ωj,i(g) < ωU

j ; j = 1, 2, ..., D. (5)

Initialization. Once the initialization bounds have been specified, a ran-

dom number generator assigns a value within the prescribed range to every

parameter of each vector. Such an operation is described as follows:

ωj,i(0) = ωL
j + rand(0, 1)(ωU

j − ωL
j ), (6)

where rand(0, 1) is the evaluation of a uniform random distribution on the in-

terval [0, 1).145

Mutation. After initialization, to produce an intermediary population of

Np vectors, every three different, randomly chosen target vectors are combined

into one mutant vector by using the differential mutation operation:

vi(g) = ωr1(g) + F · (ωr2(g)− ωr3(g)); i6= r1 6= r2 6= r3, (7)
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where vi(g) denotes the i-th mutant vector of the intermediary population in the

g-th generation. The scale factor, F , is a positive real-value number, typically150

less than 1, that controls the rate of the evolution.

Crossover. To complement reproduction, DE crosses each target vector

with a mutant vector to form an offspring vector:

uj,i(g) =

vj,i(g), if randj(0, 1) ≤ Cr or j = jrand

uj,i(g), otherwise

; j = 1, 2, ..., D. (8)

Here j denotes the index of the j-th element of a vector; randj(0, 1) is the

evaluation of a uniform random distribution for the j-th dimension; Cr is the155

crossover rate; jrand ∈ {1, 2, ..., Np} indicates a randomly chosen index that

ensures at least one element from the mutant vector is adopted.

Selection. In a comparison of each offspring vector with the target vector,

the better vectors have better chances to survive to the next generation. The

selection operation is described as:160

ωi(g + 1) =

ui(g), if f(ui(g)) ≥ f(xi(g))

ωi(g), otherwise,

(9)

where f(·) is the objective function to be maximized, called fitness function. Af-

ter updating the new population, the cycle of mutation, crossover, and selection

is repeated until a termination condition is met, e.g., the optimum is located or

the number of generations reaches a predefined maximum.

3. Proposed System165

3.1. System Overview

The proposed system allows a writing robot to automatically learn to write

diverse, high-quality Chinese character strokes. The proposed system is illus-

trated in Fig. 2, which consists of a CAE-based stroke evaluation subsystem
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Figure 2: The overview of the proposed framework for robot handwriting. DE is employed

to find optimal trajectory models. A CAE-based stroke evaluation subsystem is used to score

the writing results and thus providing a fitness function to the DE-based Learning subsystem.

The cycle of selection and reproduction is repeated until the optimum is located or the number

of generations reaches a predefined maximum.

and a DE-based writing trajectory model generation subsystem. The CAE-170

based stroke evaluation subsystem is used to score the writing results and thus

providing a fitness function to the DE-based Learning subsystem. The writ-

ing trajectory model generation subsystem is responsible to develop trajectory

writing models for strokes, each trajectory model is optimized by DE algorithm

to writing high-quality results of a stroke.175

The overall working procedure of the proposed system is: First of all, the

DE randomly generates an original population of individuals, each of which is

composed of the parameters (i.e., the means and the covariance matrices) of the

multivariate normal distributions. After the mutation and crossover operations,

the variant population is converted to the multivariate normal distributions.180

After a sampling of a distribution, a set of writing trajectory points of a stroke

can be obtained from its corresponding multivariate normal distribution. Every

three variables of a trajectory point jointly define the position of the end-effector
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at a certain point in time. The robotic arm receives the trajectory points and

produces the stroke writing movements. The writing results are captured by185

a vision camera and processed by the stroke evaluation system in providing

evaluation scores representing the quality of the images. The stroke evaluation

system applies a conventional auto-encoder network to reconstruct the input

image; then, the cosine similarity method is used to measure the similarity

between the input image and reconstructed ones. The cosine similarity scores190

are then used by the DE as the fitness function, which selects better individuals

to produce a new generation of mean and covariance population. This working

procedure will repeat this loop until the termination criterion is reached.

An unsupervised learning tool, CAE, is applied to build the stroke evalua-

tion subsystem, which learns the stroke features extracted from a stroke image195

dataset. Note that, the presented evaluation subsystem does not simply com-

pare the writing results with the only standard stroke image, but with the entire

dataset. Stroke images written by the robot are sent to a trained CAE that pro-

duces reconstructed images. During this process, well-written stroke images are

reconstructed with little information loss; that is, the CAE, in this case, serves200

as a “filter” of poorly produced stroke images. The similarity between an orig-

inal stroke image and its reconstructed one is positively related to the quality

of the stroke.

Compared with other EAs, DE has the features of fast convergence speed and

processing stability. Although the particle swarm optimization (PSO) features205

the fast convergence speed, PSO is easily affected by the size of parameters and

original population. In contrast to Covariance matrix adaptation evolutionary

strategies (CMA-ES) [36], DE is easy to escape from local optimums. Moreover,

DE is simpler to be implemented in the proposed approach. Hence, the writing

trajectory model generation subsystem applies the DE algorithm to learn each210

stroke trajectory information.
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3.2. Stroke Evaluation Subsystem

The stroke images are evaluated using a data-driven approach, and thus

the CAE needs to be trained using a training dataset. The trained CAE firstly

extracts stroke features and reconstruct the image using the feature values; then215

the cosine similarity between a stroke image and its reconstructed version is used

to measure the quality of the stroke.

3.2.1. Stroke Reconstruction by CAE

The first task in building a stroke evaluation subsystem is the concise and

accurate representation of stroke images, i.e., stroke features extraction, to elim-220

inate noise, background and other irrelevant information. This is implemented

in this work using the CAE with a deep architecture organized in nine hidden

layers, as detailed in Table 1. The CAE consists of three convolution layers,

three fully-connected layers, and three deconvolution layers. Since the training

dataset is of relatively low dimension, there is not any pooling layer structured225

in the architecture. The first convolution layer has 32 kernels; each kernel pro-

duces a feature map with a resolution of 14 × 14 pixels. The second and third

convolution layers contain 64 and 128 kernels, each leading to a feature map

with a resolution of 7× 7 and 4× 4, respectively. The three convolution layers

are followed by three fully-connected layers. In particular, the second fully-230

connected layer projects the input into a latent space, which is represented by

a latent code system. The hidden layers are ended with three deconvolution

layers that perform the inverse operations of the above three convolution layers.

The MSE, as shown in Eq. 3, is a widely used loss function for training the

CAE, and it is also applied in this work. To optimize the objective function,235

the Adam algorithm as specified in [37] is adopted, which is an optimization al-

gorithm for first-order gradient-based optimization of stochastic objective func-

tions, based on adaptive estimates of lower-order moments. In this work, all

the weights and bias listed in Table 1 in the CAE network are optimized by the

Adam algorithm.240
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Table 1: The architecture and parameters of the CAE for stroke evaluation model

Layer Parameters Dimensions

Input - 1×28×28

Conv. 1 32 4×4 kernels with stride = 2 and pad = 1 32×14×14

Conv. 2 64 4×4 kernels with stride = 2 and pad = 1 64×7×7

Conv. 3 128 4×4 kernels with stride = 2 and pad = 1 128×4×4

Fully-connected 1 1024 neurons 1024

Fully-connected 2 512 neurons 512

Fully-connected 3 1024 neurons 1024

Deconv. 1 128 4×4 kernels with stride = 2 and pad = 1 128×4×4

Deconv. 2 64 4×4 kernels with stride = 2 and pad = 1 64×7×7

Deconv. 3 32 4×4 kernels with stride = 2 and pad = 1 32×14×14

Output - 1×28×28

3.2.2. Stroke Evaluation by Cosine Similarity

The trained CAE, regarded as a stroke “filter”, compresses the written stroke

images into latent codes and then reconstructs the images by decoding the latent

codes. This can be used to effectively eliminate poorly generated strokes for

further use; the quality of a produced stroke is measured by computing the245

similarity between the stroke image and its reconstruction. Because all images

used in this work are gray scale, cosine similarity [38] can be applied to score

the stroke:

Score([x1, x2, ..., xN ]) =
[x1, x2, ..., xN ] · [x̂1, x̂2, ..., x̂N ]√∑

i xi ×
√∑

i x̂i + α
, (10)

where [x1, x2, ..., xN ] denotes original image vector; [x̂1, x̂2, ..., x̂N ] denotes re-

constructed image vector; and α is a positive, near zero constant for avoiding250

zero denominator.

3.3. Writing Trajectory Model Generation Subsystem

Multivariate normal distributions are used in this work to represent the

writing trajectory models of strokes. DE is employed to find the optimal pa-
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rameters of the models, which is supported by the CAE-based stroke evaluation255

subsystem as presented in the last section in providing the fitness function.

3.3.1. Writing Trajectory Model Specification

The writing movement of a stroke is a sequence of brush pen positions;

therefore, this work mainly focuses on the sequence of the end-effector positions

of a calligraphy robot. In the proposed system, it is considered as a 3 × T260

dimensional random vector given by

m = (px,1, py,1, pz,1, px,2, py,2, pz,2, , ..., px,T , py,T , pz,T ), (11)

where T is the number of trajectory points; px,t, py,t, pz,t (t = 1, 2, ..., T ) jointly

represents the position of the end-effector in the working space at the moment

t; px,t, py,t determine the 2D trajectory of a stroke; pz,t ∈ (0, 5); t = 1, 2, ..., T

determines the pressure sequence of the writing brush.265

In this paper, the writing trajectory random vector is considered to be nor-

mally distributed. Therefore, multivariate normal distributions are used to de-

scribe the rules of the writing movement of the strokes. Indeed, multivariate

normal distributions are important in statistics and are often used to represent

real-valued random vectors whose distributions are unknown. The multivariate270

probability density of the distribution is defined as:

p(m) =
exp[− 1

2 (m− µ)TΣ−1(m− µ)]√
(2π)k|Σ|

, (12)

where m denotes the 3×T dimensional random vector of writing movement; µ

is mean or expectation of the distribution; Σ is a covariance matrix; |Σ| is the

determinant of Σ.

Let ω denotes the parameters of the distribution (i.e. µ and Σ), the writing275

movement distribution is written in the following notation:

m ∼ pω(m) = N(m|µ,Σ). (13)

To facilitate the learning process, simple multivariate normal distributions are

used to specify diagonal covariance matrices, rather than the full covariance ma-

13



trices. The writing sequence of a stroke’s trajectory points is sorted in ascending

order of px, py.280

3.3.2. Writing Trajectory Model Optimization by DE

The parameters of the writing trajectory model need to be optimized to

maximize the expected score given by the stroke evaluation subsystem as re-

ported in Section 3.2. Because the writing trajectory model is a distribution,

the expectation is naturally selected to measure its performance. The overall285

objective function (or fitness function) is designed as follows:

f(ω) = Em∼pω(m)[Score(W(m))], (14)

where f(·) is the fitness function; m denotes the trajectory random vector; ω

denotes the parameters of the distribution (i.e. µ and Σ); W(·) presents the

writing process of the robotic system; Score(·) denotes a stroke scoring function.

In this case, the expectation is the long-run average value of the trajectory290

samples that are drawn from the writing movement distribution.

The optimal means and covariance matrices of the trajectory distributions

for every stroke must be obtained, which is implemented by the DE. In every

generation, by using differential mutation and crossover operations, the popu-

lation of parameter vectors (or individuals in EA terminology) varies; a writing295

robot writes strokes based on the trajectories drawn from the distributions that

parametrized by the vectors in both the original and variant populations; then,

the fitness scores of the vectors are computed for the better individual selec-

tion. The higher scoring parameter vectors survive to the next generation. The

iterations continue until the objective is optimized or the maximum number of300

iterations reached. The training procedure is summarized in the pseudo-code

as shown in Algorithm 1.

3.4. Robotic System

As depicted in Fig. 3, the robotic system used in this research consists of a

4-axis robotic arm and a camera mounted on a bracket. A brush pen is mounted305

14



Algorithm 1 Strokes Trajectory Model Optimization by DE.

Require: Np: the size of population; G: the maximum number of generations;

ω1,ω2, · · · ,ωNp: the parameters of the multivariate normal distributions;

Ensure: optimal parameter ω∆

1: initialize ωi, i = 1, 2, ..., Np by Eq. 6 and g = 1;

2: repeat

3: MUTATION:

4: for each i ∈ [1, Np] do

5: perform the mutation operation by Eq. 7 to obtain mutant vector

vi(g).

6: end for

7: CROSSOVER:

8: for each i ∈ [1, Np] do

9: perform the crossover operation by Eq. 8 to obtain offspring vector

ui(g).

10: end for

11: SELECTION:

12: Robot writes strokes by using trajectories drawn from pui
(j), then the

image samples {xui,1,xui,2, ...,xui,l} are obtained.

13: Robot writes strokes by using trajectories drawn from pωi(j), then the

image samples {xωi,1,xωi,2, ...,xωi,l} are obtained.

14: if 1
l

∑l
k=1 Score(xωi,k) < 1

l

∑l
k=1 Score(xui,k) then

15: ωi ← ui

16: if 1
l

∑l
k=1 Score(xωi,k) < 1

l

∑l
k=1 Score(x∆,k) then

17: ω∆ ← ωi

18: save {xωi,1,xωi,2, ...,xωi,l} as {x∆,1,x∆,2, ...,x∆,l} ;

19: end if

20: end if

21: g=g+1

22: until model converges or g > G

15



Figure 3: The robotic hardware for writing Chinese strokes.

at the end-effector of the robotic arm. The writing occurs within the working

range of the arm. A whiteboard, placed flat in front of the robot, is the writing

area for the robot.

A designed conversion function converts positions of the stroke trajectories

into the calligraphic robot coordinates, (px, py, px), which is given as follows:310 
pγx = xS + γ · px

pγy = yS + γ · py

pγz = zS + γ · pz

(15)

where γ denotes a scale parameter that controls the size of the strokes; xS, yS,

and zS jointly define the initial position for each stroke; px, py, and pz jointly

define the position of the end-effector at a certain point of time.

Since only the joint angle values control the electrical motor of the robot

arm, the obtained writing trajectory is transformed from the sequence of the315

end-effector positions to the joint parameters. The transformation process is

done by inverse kinematics calculation.

The configuration of the robotic arm is illustrated in Fig. 4, which includes

the setup of joints, links and coordinate frames of joints. The robotic arm has

four linked parts, (d, a1, a2, and a3, with lengths of 103, 140, 160, and 70 mm,320

respectively) and four revolute joints (three active joints o1, o2, o3, and a passive

16



joint o4). The origin coordinate frame is defined by x0, y0, and z0. In this setup,

the z0-axis is vertical with the writing board; the y0-axis is parallel with the

writing board; and the x0-axis is vertical with the plane that is defined by the

axes x0 and z0.325

The Denavit and Hartenberg (DH) convention is used to analyze the forward

and inverse kinematics of the robot’s manipulator. The DH parameters are

listed in Table 2. In this table, αi−1, ai−1, di, and θi are link twist, link length,

link offset, and joint angle, respectively. The inverse kinematics analysis of the

robot arm is obtained from the forward kinematics. Thus, if the positions of the330

robotic arm are obtained, the four joint angles are calculated using the following

equations:

θ1 = arctan
py
px

(16)

θ2 = arctan
(pxc1 + pys1)(a1 + a2c3) + (pz − d1)a2s3

(a1 + a2c3)2a3
2s3

2 − (pxc1 + pys1)(a1 + a2c3)− (pz − d)a2s3
(17)

θ3 = arctan
(pxc1 + pys1)2 + (pz − d)2 − a2

1 − a2
2√

2a1a2 − (pxc1 + pys1)2 − (pz − d)2 + a2
1 + a2

2

(18)

335

θ4 = −(θ2 + θ3) (19)

where px, py, and pz denote the elements of the position vector, respectively; si

and ci represent sinθi and cosθi, respectively.

After writing a stroke, the robotic arm returns to a pre-defined initial po-

sition; then, the camera captures the written stroke as an image, which is in

turn delivered to the stroke evaluation subsystem. To be consistent with the340

representation of strokes in the training dataset, the black strokes with a white

background are then inverted to white lines with a black background.

4. Experiments

The implementation of the experiment mainly involves two training processes

to train the stroke evaluation model using CAE and the writing trajectory345
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Figure 4: The configuration of the robot arm.

Table 2: DH parameter table

Link Link Twist Link Length Link Offset Joint Angle

i αi−1 ai−1 di θi

1 0 0 d θ1

2 π
2 0 0 θ2

3 0 a1 0 θ3

4 0 a2 0 θ4

models using DE. A training dataset and a test dataset of nine types of Chinese

character strokes were used in this experiment, to verify the function of the

stroke evaluation models.

4.1. Training and Test Dataset

The training dataset used in this work consists of nine types of Chinese350

character stroke images. The stroke extraction method proposed by Lian et al.

[39] was applied in this work to obtain a stroke image dataset from a number of

Chinese calligraphic textbooks. The dataset contains 4,500 of greyscale images,
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each with a resolution of 28×28; each stroke has 500 samples. A part of the

stroke images in the training dataset are illustrated in Fig. 5. From top to355

bottom, the strokes are as follows: (a) horizontal, (b) short left-falling, (c) long

left-falling, (d) right-falling, (e) horizontal and left-falling, (f) vertical and turn-

right hook, (g) horizontal, fold and hook, (h) vertical, fold and curved-hook,

and (i) horizontal and curved-hook.

The test dataset of stroke images used for functional verification was ob-360

tained based on the following:

Step 1. For each of the nine stroke types, 100 stroke test images with different

quality were collected through two channels: 33 of the test images were

collected from the training dataset, and the remaining 67 were collected

from the intermediate writing results produced by using the approach365

proposed in Chao et al. [17].

Step 2. Ten undergraduate students were individually invited and appropriately

consented to classify all 900 stroke images into three grades of quality,

including poor, acceptable, and good, to support this research.

Step 3. All the 900 stroke images were labeled by the levels that most assessors370

chose. The test images, which obtained scores in a 5-5 tie, are excluded

in the test dataset and replaced by other stroke images.

4.2. Functional Verification of the Stroke Evaluation Model

The stroke evaluation model, which is presented in Section 3, was trained

by using the training dataset of the strokes; then, the test stroke images, which375

are labeled in three grades, were used to verify that the stroke evaluation model

can measure the quality of the strokes written by the calligraphy robot.

All 900 test images were scored by the evaluation model. The evaluation

results are summarized in Fig. 6. For every type of the strokes, the box plot

is used as a visual statistical tool to display the distribution of the evaluation380

results. Each plot presents the relationships between the scores from the evalua-

tion model and grades from human regarding the same stroke (i.e. quality of the
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Figure 5: Exampler training samples used in the experiment, each row shows one type of a

stroke with various variants.

Figure 6: Box plots of scores by the stroke evaluation model. Each box plot presents a positive

correlation between the scores by evaluation model and the quality levels of the strokes.
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stroke). For example, the “horizontal stroke” plot has three groups including

“Poor”, “Average” and “Good”. For poor strokes, the bulk of scores (between

first quartile and third quartile) lies below 0.7; for average strokes, the bulk of385

scores (between first quartile and third quartile) lies between 0.8 and 0.85; for

good strokes, the bulk of scores (between first quartile and third quartile) lies

above 0.85. This figure clearly demonstrates that there is a positive correlation

between the scores led by evaluation model and the quality levels graded by the

assessors.390

4.3. Writing Trajectory Model Generation

The generated writing trajectory models for strokes were also validated and

evaluated. Each model was generated and optimized for one stroke, and thus

nine models were generated and tested in this experiment. For each model,

the number of trajectory points (T ), the population size (Np), the maximum395

number of generations (G), the scale factor (F ), and the crossover rate (Cr)

were set as 6, 60, 2000, 0.9, and 0.6 in this experiment, respectively.

4.3.1. Learning Process

Each stroke costed a total of 2,000 generations for the stroke trajectory model

to learn. The learning progress was divided in 15 stages for each stroke trajec-400

tory model, each stage represents 133 generations. Each stage was illustrated

as a representative writing results as shown in Fig. 7; therefore, the training

history of each model is represented as 15 points in time as shown in each row

of the figure. Each row in Fig. 7 illustrates continuing improvement for a stroke

trajectory model. The progress for the nine strokes was almost identical: during405

the early generations, the written strokes were shapeless and very difficult to

recognize; in the medium generations, the written strokes showed rough target

shapes; in the final generations, the writing results demonstrated strokes of high

quality.

In addition, as shown in Fig. 8, the performance (i.e., fitness) of the trajec-410

tory model steadily increased over the training process of 2,000 generations. The
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Figure 7: Learning progress of the nine strokes. The images in a row are representatives of

trajectory written results along the timeline of generations.

solid points indicate the average fitness of all the individuals in each generation.

The range of the fitness of each 100 generations is indicated by a vertical line.

In the beginning phase of the training, the fitness range was large; however, the

ranges were significantly reduced during the optimization process. Noticeably,415

each learning curve is smooth, and there is not any sharp change in these curves.

The smooth curves imply that the proposed system has good learning stability.

4.3.2. Writing Results

The robotic writing process is illustrated in Fig. 9 where the robotic arm is

writing a horizontal, fold and hook stroke. The action sequence in this figure420
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Figure 8: Convergence curves for the learning process of the nine strokes. The solid points

indicate the average fitness of all the individuals in each generation. The range of the fitness

of all the individuals in each generation is indicated by a solid line between the minimum and

maximum values.

is indicated by the arrows. The final writing results for all nine types of stroke

are shown in Fig. 10; 25 stroke images were generated for each stroke. All

these strokes were written by the calligraphy robot using the trajectories drawn

from the optimal trajectory distributions. These writing results are of very high

quality, which exhibited the effectiveness of the proposed system. These results425

also demonstrated that the writing results regarding the same stroke are slightly

different from each other. Therefore, the proposed system can learn the strokes

in a flexible way, instead of simply learning the trajectory positions as used by

most of the existing approaches in the literature.

Furthermore, in order to clearly demonstrate the diversity generation ability430

of the proposed work, Fig. 11 demonstrates two types of writing styles, which are
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Figure 9: Robotic arm is writing a stroke.

labeled as “dull” and “sharp”, of the “Right-falling Stroke” and “Vertical and

Turn-right Hook Stroke”. Through sampling corresponding multivariate normal

distribution, various writing trajectories with good writing quality were gener-

ated by the calligraphy robot. Each trajectory in the same category contains435

variations in trajectory length and inclination of the strokes amongst others,

which collectively demonstrate the capability of the proposed system in produc-

ing strokes with different styles.

4.4. Discussion and Comparison

The experimental results demonstrate that the proposed system successfully440

develops the capacity for a robot to write Chinese character strokes. In reference

to the existing approaches reported in the literature, the proposed approach has

two distinctive advantages:

(1) Data-driven mechanism to evaluate the quality of strokes based

on the features of a collection of variations. Many existing evaluation445

for robotic calligraphy [10, 11, 12, 13, 14, 15, 16] was performed based on a

24



Figure 10: Final writing results of all nine strokes. All these strokes were written by the

calligraphy robot using trajectories drawn from the optimal trajectory distributions.

predefined, simplistic evaluation criterion. Their evaluation methods required

a large number of human engineer’s efforts; these methods usually limit the
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Figure 11: Selected strokes of “Right-falling” and “Vertical and Turn-right Hook” demonstrate

different styles.

diversity of the writing results due to its hard-wired mechanism. However, the

proposed evaluation method applied a CAE to extract the features of stroke450

images from a prepared stroke image dataset. The data-driven mechanism en-

sured the diversity of the writing results. The writing results in the proposed

system were compared with the entire stroke dataset, rather than with a single

fixed reference point. The proposed evaluation method is also readily applicable

to evaluate the quality of Chinese characters.455

Note that the GAN-based approach is also data-driven, but its evaluation

model (i.e. the discriminative model) discriminates the sources of the input

instances, either provided by a human or generated by a calligraphy robot [17].

The discrimination in this work cannot exhibit the writing quality of the cal-

ligraphy robot. However, the proposed evaluation model here can determine460

and make use of the quality of strokes, so as to improve the quality of the writ-

ing results. In addition, in contrast to the GAN-based method, a well-trained

stroke evaluation subsystem in the proposed system leads to a steadily improv-

ing training process, but the GAN-based approach involves some oscillations.

(2) DE-based framework effectively applied to obtain the trajec-465

tory writing models of strokes. In contrast to the work reported in [10,

11, 12, 13], the work reported herein is able to discover the optimal generative

models of stroke trajectory generation, which is more challenging compared to
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the optimization of stroke trajectories generation itself. Due to the non-linear

feature of such an optimization problem, it is difficult, if not impossible, for the470

gradient-based approaches to obtain a stable solution efficiently. For example,

the GAN-based robotic calligraphy system used 5,000 epochs for training, but

the performance was hard to converge. In contrast, DE was applied in this

work to find the optimal trajectory models for strokes, and the experimental

results demonstrated the efficiency of the proposed DE-based learning system,475

which discovered the optima in just 2,000 generations. In addition, the writing

performance was stable without any incorrect trajectories generated. Last but

not least, the learning curve of the proposed approach is very deep, witnessed

by some reasonable results generated in the first 200 generations. Furthermore,

another potential reason that the proposed framework showed high efficiency is480

the lower dimension of the trajectory parameters. However, if we use non-linear

representations with high dimensional data to replace our current trajectory

model, our DE-base optimization process is still available and might still per-

form the high-efficiency characteristic; in addition, several other heuristic search

algorithms that are good at large scale data, such as Competitive Swarm Opti-485

mizer (CSO) [40], can be also introduced into our framework.

5. Conclusion

This paper presented a new learning framework for calligraphy robots to

autonomously learn to write Chinese strokes. The proposed framework used

CAE to build the mechanism to evaluate the quality of strokes and applied DE490

to automatically develop writing trajectory models for strokes. The proposed

system is driven by data, and thus it is robust and of wider applicability. The

proposed system was evaluated using a dataset with nine strokes; the writing

results show that the robot powered by the proposed system successfully learned

the ability to write high quality and diverse strokes.495

There is still room to improve this work. We believe that multivariate nor-

mal distributions can be applied as a simpler representation mechanism for the
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trajectory generative model used in this approach; therefore, due to the ar-

tificial neural network’s better representational ability of multivariate normal

distributions, we will focus on incorporate neural networks into the trajectory500

generative model in future. In addition, the current stroke writing system learns

Chinese strokes only; however, we will further develop the system to write com-

plete Chinese characters. Third, the proposed algorithm ignored the trajectory

writing order of the sampling points, further efforts will focus on this.
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