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Abstract
We review the notion of complementarity of observables in quantum mechanics, as
formulated and studied by Paul Busch and his colleagues over the years. In addi-
tion, we provide further clarification on the operational meaning of the concept, and
present several characterisations of complementarity—some of which new—in a uni-
fied manner, as a consequence of a basic factorisation lemma for quantum effects. We
work out several applications, including the canonical cases of position–momentum,
position–energy, number–phase, as well as periodic observables relevant to spatial
interferometry. We close the paper with some considerations of complementarity in a
noisy setting, focusing especially on the case of convolutions of position and momen-
tum,whichwas a recurring topic in Paul’s work on operational formulation of quantum
measurements and central to his philosophy of unsharp reality.

Keywords Quantum observables · Positive operator measures · Effects ·
Complementarity · Joint measurability · Position–momentum pair · Position–energy
pair ·Momentum–energy pair · Time–energy pair · Phase–number pair

One may view the world with the p-eye and one may view it with the q-eye but if
one opens both eyes simultaneously then one gets crazy.

Wolfgang Pauli in a letter to Werner Heisenberg, 19 October 1926.

To the memory of Paul Busch, our friend and colleague

B Juha-Pekka Pellonpää
juhpello@utu.fi

Jukka Kiukas
jek20@aber.ac.uk

Pekka Lahti
pekka.lahti@utu.fi

Kari Ylinen
ylinen@utu.fi

1 Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ, UK

2 Department of Physics and Astronomy, University of Turku, Turku, Finland

3 Department of Mathematics and Statistics, University of Turku, Turku, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10701-019-00261-3&domain=pdf
http://orcid.org/0000-0002-3967-5908


Foundations of Physics

We hope to have demonstrated that one can safely open a pair of complementary
‘eyes’ simultaneously. He who does so may even ‘see more’ than with one eye
only. The means of observation being part of the physical world, Nature Herself
protects him from seeing too much and at the same time protects Herself from
being questioned too closely: quantum reality, as it emerges under physical
observation, is intrinsically unsharp. It can be forced to assume sharp contours
– real properties – by performing repeatable measurements. But sometimes
unsharp measurements will be both, less invasive and more informative.

Paul Busch et co in the Epilogue of [1].

1 Introduction

Complementarity and uncertainty are two key notions of quantum mechanics, and
much of the scientific work of Paul Busch also dealt with these notions, especially with
the problem of joint measurability of complementary observables and the relevance
of the uncertainty relations to that question. The above quote is a poetic summary of
Paul’s general thinking on the subject matter—we dare to say, even twenty years after
its formulation.

In this paper, we study a formulation of the notion of complementary observables
based on an intuitive idea of Niels Bohr, put forward especially in his 1935 paper
[2], and strongly advocated by Wolgang Pauli [3], according to which observables
are complementary if all the experimental arrangements allowing their unambiguous
operational definitions and measurements are mutually exclusive. Bohr introduced
the word complementarity into the vocabulary of quantum theory in his classic Como
lecture in 1927 [4] aiming to acquire a consistent interpretation, or, at least, an intu-
itive understanding of the then new quantum mechanical formalism. In that paper
Bohr used the term complementarity several times in various intuitive contexts never
defining it explicitly. During the years 1927–1962 Bohr published a series of essays in
which he strove to develop the idea of complementarity into a definite philosophical
viewpoint. Most of them are collected in the three volumes entitled Atomic Theory
and the Description of Nature, Atomic Physics and Human Knowledge, and Essays
1958–1962 on Atomic Physics and Human Knowledge originally published in 1934,
1958, and 1963, respectively. The secondary literature trying to understand Bohr’s
philosophy is abundant; we mention here only the monographs of Max Jammer [5],
Henry Folse [6], and Arkady Plotnitsky [7].

Obviously, the experimental arrangements in Bohr’s formulation of complemen-
tarity cannot be applied together. Therefore, complementary observables cannot be
measured jointly. In this reading, the accompanying bold idea of Werner Heisen-
berg [8] could be expressed as follows:1 complementary observables, like position
and momentum, can be defined and measured jointly if sufficient ambiguities are
allowed in their definitions. For the necessary defining ambiguities or measurement
inaccuracies δq, δ p for position and momentum Heisenberg gave his famous relation
δq · δ p ∼ h. For an elaboration of these ideas, we refer to the papers [10–18] as
well as to the recently initiated The Quantum Uncertainty Page at http://paulbusch.

1 For a critical analysis of Heisenberg’s ideas on his 1927 paper and their further refinements we refer to
the paper [9] of Werner and Farrelly in this Special Issue.
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wixsite.com/qu-page, with which Paul wanted to serve a large audience interested in
the foundational questions of quantum physics.

This paper is structured as follows: in Sect. 2 we briefly review the operational
formulation of quantum measurement theory as it appeared in most of Paul’s work. In
Sect. 3 we collect various characterisations of effect order needed in the subsequent
Sect. 4, where we first present an operational definition of complementarity in terms of
the lack of joint tests, and then derive a number of general characterisations. Section
5 is devoted to applications of the general results to specific observables and their
effects, including position–momentum, and interferometric complementarity, which
were central to Paul’s work. Finally, in Sect. 6 we discuss briefly the topic of our
second motto.

2 Operational Formulation of QuantumMeasurement

Theuseof a rigorous framework for the quantummeasurement theorywasundoubtedly
one of the main characteristics of Paul’s work in general. In the case of complementar-
ity, this is especially important, given the rather philosophical nature of Bohr’s original
ideas. We now review briefly the relevant concepts.

Throughout the paper we denote byH the Hilbert space associated with a physical
system under study and by L(H) and T (H) the sets of bounded and trace class
operators on H. The concepts of states, observables, and the statistical duality they
define form the rudimentary frame of the description of the system: a state given as a
positive trace one operator ρ acting inH, an observable given as a normalized positive
operator measure E : A→ L(H), defined on a σ -algebra A of subsets of a set �, the
probability measure A � X �→ Eρ(X) = tr [ρE(X)] ∈ [0, 1] giving the measurement
outcome statistics for the observable E in the state ρ.2

Observables are thus identified (and operationally defined) through the totality of
their measurement outcome distributions Eρ, ρ ∈ S(H), with S(H) denoting the set
of all states of the system. In addition to this purely statistical level of description,
there are two deeper levels which take into account the conditional state changes of
the system caused by a measurement on it, or even adopting the most comprehensive
level of modeling the interaction and information transfer between the system and the
measuring apparatus. Indeed, each observable E can be realized with a measurement
scheme M = (K, σ,Z, U ), with K being the probe Hilbert space, σ the initial probe
state, Z the pointer observable, and U the unitary measurement coupling. If I is the
instrument defined by M, then the three levels of the statistical description given by
quantum mechanics get expressed as follows: for any state ρ and for any X ∈ A,

Eρ(X) = tr [ρE(X)] = tr [I(X)(ρ)] = tr
[
U (ρ ⊗ σ)U∗ I ⊗ Z(X)

]
. (2.1)

In fact, any observable E can be identifiedwith an equivalence class of (completely pos-
itive) instruments I satisfying (2.1), whereas any such instrument I can be identified

2 We use freely the standard notations and results of quantum theory described in a greater detail, for
instance, in the monograph [19].
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with an equivalence class of measurements M fulfilling (2.1). We wish to empha-
size the interpretation of the non-normalized state I(X)(ρ) as a conditional state
giving rise to conditional probabilities in the sense that for any other observable F,
with the value space (�′,B), the number tr [I(X)(ρ)F(Y )] = tr

[
ρ I(X)∗(F(Y ))

]
is

the probability that a measurement of F leads to a result in Y ∈ B, given that in
the first performed E-measurement, with the instrument I, a result in X ∈ A was
obtained.

As complementarity represents an extreme case of incompatibility, we also recall
at this point the definition of the latter: two (or more) observables E1 and E2 are
compatible or jointly measurable if they have a joint observable, that is, there is an
observable G defined on the product σ -algebraA1⊗A2 of subsets of�1×�2 having
the two as the marginal observables, that is, for instance, E1(X) = G(X ×�2) for all
X ∈ A1.

Observables are effect valued measures whereas instruments are operation valued
measures. As we will see below, complementarity is defined in terms of the effects
constituting the observables, and the order structure plays a central role. Let E(H)

denote the set of effects (operators E ∈ L(H) with 0 ≤ E ≤ I ) and O(H) the
set of operations (completely positive linear maps � : T (H) → T (H) with 0 ≤
tr [�(ρ)] ≤ 1 for any state ρ). As is obvious from the definitions, they both are
naturally ordered. We also recall that any operation � ∈ O(H) defines an effect
�∗(I ) ∈ E(H) through its dual operation �∗ : L(H) → L(H) and any effect
E ∈ E(H) is of the form E = �∗(I ) for some � ∈ O(H). Defining two operations
equivalent if their effects are the same one gets a bijective correspondence between
the effects and the equivalence classes of operations. With a slight abuse of notation,
we write � ∈ E if �∗(I ) = E and we say that the operation � implements the effect
E . Similarly, we write I ∈ E if the instrument I defines the observable E, that is, for
any X ∈ A, one has E(X) = I(X)∗(I ).

3 On the Order Structure of the Set of Effects

Complementarity of observables will be defined and characterised below in terms of
order properties of pairs of their effects. This section develops the necessary frame-
work.

3.1 Square Root and Other Factorisations

The characterisations of complementarity appearing in this paper are all based on
factorising an effect into a product of two contractions. While these results are all
elementary and appear in the literature, they have not been systematically applied in
the context of complementarity.

For any E ∈ E(H), we let E
1
2 be its square root, and note that the support space

HE of E is

HE = (ker E)⊥ = ran E = (ker E
1
2 )⊥ = ran E

1
2 = ran E

1
2
0 ,
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with E0 and E
1
2
0 denoting the restrictions of E and E

1
2 to HE . We let PE denote

the support projection of E , that is, the projection onto the support subspace HE .
Occasionally, we also let EA denote the spectral measure of a selfadjoint operator A.

Remark 1 We note that the restrictions E0 and E
1
2
0 are bijective onto their ranges. In

particular, if 0 ∈ σ(E0) then 0 ∈ σc(E0), and therefore EE0({0}) = 0, which implies

that x �→ x−1 and x �→ x− 1
2 are always measurable and EE0 -almost everywhere finite

on [0, 1]. Hence the inverses of the bijections E0 : HE → ran E0 and E
1
2
0 : HE →

ran E
1
2
0 can be constructed via functional calculus, that is,

dom E
− 1

2
0 =

{
ϕ ∈ HE

∣∣∣∣

∫

[0,1]
x−1EE0

ϕ,ϕ(dx) < ∞
}
= ran E

1
2
0 ,

〈ψ |E− 1
2

0 ϕ〉 =
∫

[0,1]
x−

1
2 EE0

ψ,ϕ(dx) for all ψ ∈ HE , ϕ ∈ dom E
− 1

2
0 , (3.1)

and a similar statement holds for E−1
0 .3 In particular, E

− 1
2

0 is selfadjoint on the domain

(3.1), which provides a useful characterisation of the range of E
1
2 . Note that by the

Hellinger-Toeplitz theorem, ran E
1
2
0 = HE if and only if E

− 1
2

0 is bounded, which
is equivalent to the analogous statement for E−1

0 , and hence further equivalent to
0 /∈ σc(E0).

We now proceed to state two simple lemmas, from which various characterisations
of complementarity can conveniently be derived. These lemmas appear essentially
in [20]; however, as the short and elementary proofs quite effectively illustrate the
structure of effects relevant to complementarity, we have included them here. The
first one characterises the order relation in terms of the “splitting” of an effect into
contractions other than the square root.

Lemma 1 Let H, K, M be Hilbert spaces and K ∈ L(H,K), M ∈ L(H,M) con-
tractions.4 The following conditions are equivalent:

(i) M∗M ≤ K ∗K ;
(ii) there exists a contraction C ∈ L(K,M) such that M = C K and ker K ∗ ⊂

ker C;
(iii) there exists an effect Q ∈ E(K) such that M∗M = K ∗QK and ker K ∗ ⊂ ker Q.

In this case C and Q are unique, Q = C∗C, and ‖C‖2 = ‖Q‖ = inf{λ ∈ [0, 1] |
M∗M ≤ λK ∗K }.
Proof Assuming (ii), any Q ∈ E(K) with M∗M = K ∗QK and ker K ∗ ⊂ ker Q has
K ∗C∗C K = M∗M = K ∗QK , so Q = C∗C as both Q and C vanish on (ran K )⊥ =
ker K ∗. Hence (iii) holds. Clearly, (iii) implies (i) as Q ≤ I . Assuming (i) we have

3 Here, e.g. EE0
ψ,ϕ denotes the complex measure X �→ 〈ψ |EE0 (X)ϕ〉.

4 Here, e.g. L(H,K) is the set of bounded operators from H to K.
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‖Mϕ‖2 ≤ ‖Kϕ‖2 for each ϕ ∈ H, so the map Kϕ �→ Mϕ from ran K into ran M
is well defined and extends to a contraction C ∈ L(K), which is unique if required
to vanish on (ran K )⊥ = ker K ∗, so (ii) holds. Hence (i)-(iii) are equivalent and
Q = C∗C when they hold. In this case r = inf{λ ∈ [0, 1] | M∗M ≤ λK ∗K } ≤
‖Q‖ = ‖C‖2 as M∗M = K ∗QK ≤ ‖Q‖K ∗K , and if λ ∈ [0, 1] has M∗M ≤ λK ∗K ,
then ‖Mϕ‖2 ≤ λ‖Kϕ‖2 for all ϕ ∈ H, so ‖C‖2 ≤ λ by the construction of C . Hence
‖C‖2 = r . ��

The second lemma relates order to the inclusion of the ranges of the contractions
appearing in the first lemma.

Lemma 2 Let K and M be as in the above lemma. The following are equivalent:

(i) M∗M ≤ λK ∗K for some λ ≥ 0;
(ii) ran M∗ ⊂ ran K ∗.

Proof Clearly, (i) implies (ii) by Lemma 1. Furthermore, the restriction of K ∗ to
(ker K ∗)⊥ = ran K is bijective onto D = ran K ∗ with inverse (K ∗)−1 : D →
ran K densely defined and closed in D = ker K , since a sequence (ϕn) in D
for which limn ϕn = ϕ ∈ ker K and limn(K ∗)−1ϕn = ψ also has limn ϕn =
limn K ∗(K ∗)−1ϕn = K ∗ψ as K ∗ is bounded, so ϕ = K ∗ψ ∈ ran K ∗ = D and
(K ∗)−1ϕ = ψ . If (ii) holds then ran M∗ ⊂ D so R = (K ∗)−1M∗ is defined on all of
M, and closed as (K ∗)−1 is closed and M∗ bounded. Hence R ∈ L(M,K) by the
closed graph theorem, so K ∗R = M∗ and hence M∗M = K ∗R R∗K ≤ ‖R‖2K ∗K ,
proving (i). ��

3.2 Range and Order

Wenow showhow two different characterisations of effect order follow from the above
factorisation lemmas.

Our first application is the following proposition. In order to state it we recall
some relevant terminology: the one-dimensional projections P[ϕ] = |ϕ〉〈ϕ|, ϕ ∈ H,
‖ϕ‖ = 1, are the atoms of the projection lattice P(H) and any P ∈ P(H) is the
join (the least upper bound) of all the atoms contained in it. Also, the meet of any
two projections exists both in P(H) and in E(H) and is clearly the projection onto
the intersection of the ranges of the two projections. Though there are no atoms in
E(H), it is convenient to call any rank-1 effect |ϕ〉〈ϕ|, ϕ ∈ H, with 0 �= ‖ϕ‖ ≤ 1,
a weak atom. According to [21, Corollary 3] each effect is the join of all the weak
atoms contained in it. On the other hand, the weak atoms contained in an effect E are
characterised by [21, Theorem 3]:

Proposition 1 Let E be an effect and |ϕ〉〈ϕ| a weak atom. Then

∃λ > 0 : λ|ϕ〉〈ϕ| ≤ E ⇐⇒ ϕ ∈ ran E
1
2 .

Moreover, then sup{λ ≥ 0 | λ|ϕ〉〈ϕ| ≤ E} = ∥∥E
− 1

2
0 ϕ

∥∥−2.
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Proof Follows immediately from Lemmas 1 and 2. ��
The second application is dilation: every effect E can be dilated to a projection P

on a larger Hilbert space, as E = J ∗P J where J is an isometry. This is an instance of
the well-known Naimark dilation theorem, and clearly a particular case of the above
factorisation. Hence we can easily derive the following result:

Lemma 3 Let E ∈ E(H) be an effect, ψ ∈ H with ‖ψ‖ ≤ 1, and E = J ∗P J ,
J ∈ L(H,K), a Naimark dilation of E into a projection P ∈ L(K). The following
conditions are equivalent:

(i) |ψ〉〈ψ | ≤ E;
(ii) there is an η ∈ ran P J , ‖η‖ ≤ 1, such that ψ = J ∗η.

Proof We use Lemma 1 with M = 〈ψ | : H → C and K = P J , so the adjoint
of C : K → C has one-dimensional range ranC∗ ⊂ ran P J ⊂ ran P (where the
second inclusion is due to ran P being closed). Taking η ∈ ranC∗ the lemma gives
ψ = J ∗Pη = J ∗η. ��
Remark 2 More generally, condition (iii) of Lemma 1 yields the following statement:
if E = J ∗P J is a dilation of an E ∈ E(H), then A ≤ E for A ∈ E(H) if and
only if A = J ∗Q P J for a Q ∈ E(K) commuting with P . (Commutativity follows
since ran Q ⊂ ran P J ⊂ ran P .) This is a simple special case of the Radon-Nikodym
theorem for completely positive maps; see e.g. [22], which could therefore also be
used to derive the lemma. Since we do not need the general statement, the above
elementary proof is justified.

3.3 Bounding the Support Projection

In many relevant cases (such as position and momentum; see below), the effect is
constructed via functional calculus from some existing selfadjoint operator. While
every effect can be written in this form, the setting becomes interesting when the
function has a nontrivial structure—the cases of smearing of a sharp observable with
a Markov kernel or a convolution with a probability measure fall into this category.
The following Lemma is relevant in this context:

Lemma 4 If E = f (A) = ∫
f dA for some spectral measure A : B (R) → L(H),

with the selfadjoint operator A = ∫
x A(dx), and a Borel measurable function f :

R→ [0, 1], then PE ≤ A(supp( f )), but equality does not hold in general.5

Proof We have 〈ϕ|Eϕ〉 = ∫
f dAϕ,ϕ ≤ ∫

supp( f )
dAϕ,ϕ = 〈ϕ|A(supp( f ))ϕ〉 for all

ϕ ∈ H, so if ϕ is orthogonal to A(supp( f ))(H) then ϕ ∈ ker E = H⊥
E = P⊥E (H).

This proves the first statement.
Let A be Q, the canonical spectral measure on L2(R), C a Cantor set with positive

measure, and f (x) the minimum of 1 and the distance of x from C . Then f is a
continuous nonnegative function f such that supp( f ) = R and thus A(supp( f )) = I .
However, the characteristic function χC ∈ ker f (A) \ {0} so that Pf (A) �= I . ��
5 We use the notation B (T ) for the Borel σ -algebra of any topological space T .
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Note that for an arbitrary effect E , an application of the lemma with A = EE and
f (x) = x , x ∈ [0, 1], f (x) = 0, x ∈ R \ [0, 1], is consistent with the fact PE =
EE ([0, 1]), but does not provide any more information—as noted above, interesting
cases arise with nontrivial functions.

3.4 Effect Order and Pure Operations

The order of effects has no direct relation to the order of the operations implementing
them. Clearly, if A ≤ E then for any fixed state σ , the operations �A

σ (ρ) = tr [ρ A] σ
and �E

σ (ρ) = tr [ρE] σ , defining A and E , respectively, are also ordered �A
σ ≤ �E

σ .
However, these operations are maximally noisy in the sense that the normalised post-
measurement state (with or without conditioning on a specific outcome) is always the
fixed state σ , which is unrelated to the effects A and E under consideration. In the
other extreme, there are the Lüders operations associated with the ideal, first kind,
repeatable measurements of discrete sharp observables, the operations of the form
�P

L (ρ) = Pρ P , P ∈ P(H). For discrete unsharp observables their counterpart are

the generalised Lüders operations, �E
L (ρ) = E

1
2 ρE

1
2 , extensively studied also by

Paul, see, e.g. [23]. These are a special case of the pure operations ρ �→ KρK ∗,
K ∈ L(H), defining an effect E = K ∗K . Since any operation can be written as
a sequence of pure operations, one often argues that pure operations have the least
amount of classical noise. In any case, they are specific to the observables and hence
imprint some information on the measurement to the post-measurement state. In this
sense they form the opposite of the trivial operations �E

σ .

Proposition 2 Let � and � be two pure operations with �∗(I ) = A and �∗(I ) = E.
The following are equivalent:

(i) A ≤ E;
(ii) there exists a pure operation 
 such that � = 
 ◦�.

Proof Writing � = M( · )M∗ and � = K ( · )K ∗ we can apply Lemma 1; the con-
traction C featuring in condition (ii) determines 
 = C( · )C∗. ��

3.5 Common Lower Bounds for a Pair of Effects

In preparation for the discussion on complementarity in the next section, we now
consider joint lower bounds for pairs of effects.

For any two effects E, F ∈ E(H), we let l.b.{E, F} = {A ∈ E(H) | A ≤ E, A ≤
F} denote the set of their common lower bounds, and similarly for the operations
�, 
 ∈ O(H). In neither case does their meet, the greatest lower bound, typically
exist.6 This is the case even if E and F are compatible, in which case they are of
the form E = E(X) and F = E(Y ) for some observable E and thus E(X ∩ Y ) is a
common lower bound of them; still, inf{E, F} = E ∧ F need not exist in E(H). The

6 A characterization of the existence of the infimum of effects is established in [24]. In particular, if one of
the effects is a projection, then their meet exists [25].
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characterization of the set l.b.{E, F}, and especially the case l.b.{E, F} = {0} is the
key issue of this study. Proposition 1 gives the following:7

Corollary 1 For any two effects E, F ∈ E(H) the following conditions are equivalent:

l.b.{E, F} �= {0}; (3.2)

ran E
1
2 ∩ ran F

1
2 �= {0}. (3.3)

A direct study of (3.2) and (3.3) may, in general, be challenging, since the range
of an effect need not be closed. In fact, while the condition HE ∩ HF = {0} (i.e.
PE ∧ PF = 0) clearly implies E ∧ F = 0, the converse need not hold even under
additional constraints, as will be demonstrated below by Proposition 7. In some cases,
the following necessary condition, which follows directly from Lemma 4, is more
tractable.

Lemma 5 Let E = f (A), F = g(B) where A and B are selfadjoint operators given
by (real) spectral measures A and B, and f : R → [0, 1] and g : R → [0, 1] are
measurable. If A(supp( f )) ∧ B(supp(g)) = 0, then l.b.{E, F} = {0}.

4 Complementary Observables

Intuitively, observables are complementary if the experimental arrangements allow-
ing their unambiguous definitions are mutually exclusive. With the full machinery
of quantum mechanics, one may formalise the concept of ‘experimental arrangement
unambiguously defining an observable’ using either the measurement schemes defin-
ing the observable, the instruments implementing it, or just the observable, itself. We
follow [27] and [28] to express the idea of ‘mutual exclusiveness of experimental
arrangements’ in terms of the order structure of the sets of effects and operations.

4.1 A Test of a Binary Observable

Consider any two observables E and F with the outcome σ -algebras A and B. If the
set l.b.{E(X), F(Y )} �= {0} for some X and Y , then for any (nozero) effect A which is
below E(X) and F(Y ), the yes-outcome 1 of a yes-no measurement of the dichotomic
observable A, with A(1) = A, A(0) = I − A = A⊥, gives probabilistic information
on both of the effects E(X) and F(Y ). If the effects E(X) and F(Y ) are disjoint, that is,
E(X) ∧ F(Y ) = 0, equivalently, � ∧ 
 = 0 for any � ∈ E(X), 
 ∈ F(Y ), then no
such measurements exist. We elaborate next the operational context of this idea a bit
further.

Let Q be a binary observable (a yes/no question) with outcomes 1 and 0, where 1
denotes the yes-answer. Suppose we have another binary 1/0–observable A such that

(1) A can be measured jointly with Q;

7 An earlier version of Proposition 1 together with the equivalence of (3.2) and (3.3) was obtained in [26].
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(2) the 1-outcome of A serves as a definite indicator for the 1-outcome of Q, that
is, the latter occurs with certainty given that the former is 1, for any state of the
system;

(3) the “indicator” outcome 1 of A has nonzero probability at least for some state.

We call such an observable a test for Q.
For any observable E and X ∈ A, we letQE,X denote the binary coarse-graining of E

corresponding to the questionofwhether the outcome lies in X , that is,QE,X (1) = E(X)

and QE,X (0) = I − E(X). The following simple observation follows readily from the
definition.

Proposition 3 Let Q and A be binary 1/0–observables. The following are equivalent:

(i) A is a test for Q;
(ii) there exists an observable E with outcome σ -algebra A, and sets Y , X ∈ A,

Y ⊂ X, such that E(Y ) �= 0 and QE,X = Q and QE,Y = A;
(iii) A(1) ≤ Q(1);
(iv) there exists a contraction C such that

√
A(1) = √

Q(1) C.

Proof (i)⇔(iii): If (i) holds then by the joint measurability of A and Q there are four
effects G00, G10, G01, G11 summing to identity, such that G10 + G11 = Q(1) and
G01 + G11 = A(1), where the first and second indices refer to outcomes of Q and A,
respectively. This implies that G11 ≤ A(1) ≤ P where P is the projection onto the
support subspace of A(1). Then P �= 0 by the condition (3), and G11 and A(1) are
determined by states with support in P . Since the conditional probability condition (2)
reads tr[G11ρ]/tr[A(1)ρ] = 1 for any such state, we must have G11 = A(1), so that
Q(1)−A(1) = G10 ≥ 0, that is, (iii) is true. Conversely, if (iii) holds thenA andQ have
the joint observable G11 = A(1), G10 = Q(1)−A(1), G01 = 0, G00 = I −Q(1), and
the conditional probability condition is satisfied with similar remarks on the support.
(ii)⇔(iii): If (iii) holds the three-outcome observable E = {A(1),Q(1)− A(1),Q(0)}
satisfies the requirements of (ii), and if (ii) holds then A(1) = E(Y ) ≤ E(X) = Q(1)
so (iii) holds as well. The equivalence of (iii) and (iv) follows from Lemma 1. ��

4.2 The Definition of Complementarity as a Lack of Joint Tests

We are now ready to state the definition of complementarity, and give a basic charac-
terisation based on the results of the preceding section.

Definition 1 Let E and F be two observables with outcome σ -algebrasA and B. Given
X ∈ A andY ∈ B, the observables E and F are (X , Y )-complementary ifQE,X andQF,Y
have no common tests. GivenA0 ⊂ A and B0 ⊂ B, we say that E and F are (A0,B0)-
complementary or, briefly, complementary (if A0 and B0 are clear from context8), if
they are (X , Y )-complementary for each X ∈ A0 and Y ∈ B0.

Theorem 1 Observables E : A → L(H) and F : B → L(H) are (A0,B0)-
complementary, if and only if one of the equivalent conditions below hold:

8 See discussion on the choice ofA0 and B0 below.
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(i) for any X ∈ A0, Y ∈ B0, the effects E(X) and F(Y ) are disjoint, that is, E(X) ∧
F(Y ) = 0;

(ii) ran
√
E(X) ∩ ran

√
F(Y ) = {0} for all X ∈ A0, Y ∈ B0;

(iii) any two instruments I ∈ E and J ∈ F are mutually exclusive with respect to A0
and B0, that is, I(X) ∧ J (Y ) = 0 for all X ∈ A0, Y ∈ B0;

(iv) for any pure operations � ∈ E(X), 
 ∈ F(Y ), there exist no pure operations
�1, �2 such that �1 ◦� = �2 ◦
.

Regarding the choice of A0 and B0, the naive choice A0 = A and B0 = B
obviously leads to a trivial notion, as the identity operator has a joint lower bound
with any effect. Merely excluding the identity would still be too strong a requirement,
restricting complementarity essentially only to dichotomic observables. However, for
an unambiguous definition of an observable E : A → L(H) one does not need all
its effects—indeed, using polarisation and the Carathéodory extension theorem we
see that it suffices to specify the effects E(X), X ∈ R, for some semiring R ⊂ A
which generates A and covers � in the sense of a countable union (of sets that can,
moreover, be required to be disjoint, as one can easily show).9 In concrete examples
this allows one to choose the sets A0 and B0 such that they contain such generating
covering semirings. With this restriction, complementarity becomes a special case of
quantum incompatibility:

Proposition 4 Complementary observables have no joint measurements.

Proof If M is a joint measurement of E and F (with the semirings R and S) and
(Xi ) ⊂ R ⊂ A0, (Y j ) ⊂ S ⊂ B0 countable disjoint covers for � and �′, then
I = M(�×�′) = ∑

i, j M(Xi × Y j ), implying thatM(Xi × Y j ) �= 0 for some (i, j),
providing a joint lower bound for E(Xi ) and F(Y j ). ��

We now discuss briefly the choice of A0 and B0 in two basic cases:

4.2.1 Continuous Case

For real observables absolutely continuous with respect to the Lebesgue measure, one
could choose� = supp(E) ⊂ R andA0 ⊂ A = B(R)∩supp(E) to consist of bounded
Borel sets X for which�\X has nonzero Lebesgue measure. This choice excludes the
identity, and satisfies the generating semiring condition. However, we could equally
well include all Borel sets with the above restriction regarding the measure, leading to
a different notion of complementarity. In fact, the canonical position–momentum pair
is complementary in the former but not in the latter sense, as we will discuss later on.

4.2.2 Discrete Case

If E is discrete (and nontrivial), the outcome set is essentially � = {x1, x2, . . .} where
E(x) �= 0 for all x ∈ �, and

∑
x∈� E(x) = I . In this case, A = 2�, and the obvious

9 We recall that S ⊂ 2� is a semiring if ∅ ∈ S, for all X , Y ∈ S, X ∩ Y ∈ S, and X \ Y is the union of
finite number of disjoint sets belonging to S.
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generating semiring is
{{x} ∣∣ x ∈ �

}
. Clearly, there are (at least) two natural choices:

(1) A0 consists of all finite proper subsets of �, and (2) A0 =
{{x} ∣∣ x ∈ �

}
.

The first choice will be relevant for the examples in Sect. 5. Regarding the second
one, Proposition 2 yields an interesting characterisation in terms of conditional post-
measurement states. In fact, complementarity of E and F excludes the possibility that
these could be further post-processed into the same final conditional state:

Proposition 5 Let E and F be discrete observables with outcome sets � and �′, and
let A0 = {{x} | x ∈ �} and B0 = {{y} | y ∈ �′}. Then E and F are (A0,B0)-
complementary if and only if their generalized Lüders instruments IL and J L do not
satisfy 
x ◦ IL({x}) = �y ◦ J L({y}) for any pair x ∈ �, y ∈ �′, and any pure
operations 
x and �y .

4.3 Complementarity In Terms of Dilations

In this sectionwe characterise complementarity usingNaimark dilations of the observ-
ables; this method will then be further refined in applications. We consider two
observables E : A → L(H) and F : B → L(H) with the value spaces (�,A) and
(�′,B), and let (H⊕,Q, J ), resp. (H′⊕,Q′, K ), be a minimal diagonal Naimark dila-
tion of E, resp. F (see, for instance, [19, Sec. 8.6]). For instance,H⊕ is a direct integral
Hilbert space, Q : A → L(H⊕) its canonical spectral measure, and J : H → H⊕
an isometry such that E(X) = J ∗Q(X)J for all X ∈ A. Lemma 3 now yields the
following characterisation.

Proposition 6 E and F are (A0,B0)-complementary if and only if for each X ∈ A0,
Y ∈ B0,

J ∗η = K ∗η′, η ∈ ran[Q(X)J ], η′ ∈ ran[Q′(Y )K ], (4.1)

implies η = 0 (or, equivalently, J∗Q(X)η = 0).

Remark 3 We note the following relevant facts:

(1) If η ∈ ran[Q(X)J ] and η′ ∈ ran[Q′(Y )K ] thenQ(�\X)η = 0 andQ′(�′\Y )η′ =
0.

(2) If, say, E is projection valued, then J is unitary, and (4.1) reads η = F∗η′ with
η ∈ ranQ(X) and F∗F = IH⊕ , i.e. F = K J ∗ is an isometry, H ∼= H⊕,
dimH⊕ ≤ dimH′⊕. If also F is projective, then H ∼= H⊕ ∼= H′⊕; moreover
η ∈ ranQ(X) and η′ ∈ ranQ′(Y ) so that E(X) ∧ F(Y ) = 0 is equivalent to
ranQ(X) ∩ F∗(ranQ′(Y )

) = {0}.

4.4 Other Formulations of Complementarity

There is a stronger form of complementarity advanced, for instance, in [1,28,29].
Accordingly, two observables E and F could be called strongly complementary if

E(X) ∧ F(Y ) = E(X) ∧ F(Y )⊥ = E(X)⊥ ∧ F(Y ) = 0
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for any X ∈ A0, Y ∈ B0. Some of the natural pairs of observables are known to be
complementary but not strongly complementary (examples below) which is why we
consider here the weaker formulation as the generic notion.

The notion of extreme incompatibilitymay also be used to express complementarity.
Here we quote three versions of extreme incompatibility.

First, let E be the collection of trivial effects λI , 0 ≤ λ ≤ 1, and let T = pI be a
trivial observable, defined by a probability measure p. According to Ludwig [30, D
3.3, p. 154] two observables E and F are L-complementary, L for Ludwig, if neither
of them is a trivial observable and for each observable E′ it follows that

E(A) ∩ E′(A′) ⊂ E or F(B) ∩ E′(A′) ⊂ E .

Clearly, this is an extreme case of incompatibility. In fact, if E1 and E2 are L-
complementary then they cannot have anymutually commuting effects in their ranges.
Indeed, if E ∈ E1(A1) and F ∈ E2(A2) are mutually commuting, then any joint
observable E of the dichotomic observables {0, E, E⊥, I } and {0, F, F⊥, I } would
contradict their L-complementarity.

As is well known, any two observables E1 and E2 can bemade compatible by adding
trivial noise in the form Ẽ1 = λE1 + (1 − λ)T1 and Ẽ2 = μE2 + (1 − μ)T2, where
0 ≤ λ, μ ≤ 1, and T1, T2 are trivial observables, see, for instance, [31]. Let J (E1, E2)
denote the set of pairs (λ, μ) ∈ [0, 1]×[0, 1] for which there exist (T1, T2) such that Ẽ1
and Ẽ2 are compatible. Then� ⊂ J (E1, E2), where� = {(λ, μ) | λ+μ ≤ 1}. Clearly,
if (1, 1) ∈ J (E1, E2), then E1 and E2 are compatible. In the other extreme, J (E1, E2) =
� and the observables may be called maximally incompatible. If j(E1, E2) denotes
the supremum of the set of the numbers 0 ≤ λ ≤ 1 such that (λ, λ) ∈ J (E1, E2), then
E1 and E2 are maximally incompatible if and only if λ = 1

2 [32].
Finally, there is a slightly different form of maximal incompatibility especially

useful for sharp observables. The degree of commutativity of two projections P,

R ∈ P(H) can be desribed in terms of their commutativity projection

com(P, R) = (P ∧ R) ∨ (P ∧ R⊥) ∨ (P⊥ ∧ R) ∨ (P⊥ ∧ R⊥),

the range of which consists exactly of the vectors ϕ ∈ H for which P Rϕ = R Pϕ.
Clearly, 0 ≤ com(P, R) ≤ I , the extreme cases indicating total noncommutativity
and commutativity, respectively. One can further refine the totally noncommutative
case in terms of the spectrum of the effect P R P (or, equivalently, R P R)—the case
where the spectrum is the whole [0, 1] represents maximal incompatibility in the
sense of robustness against arbitrarily biased binary noise—for instance, position and
momentum projections corresponding to half-lines fall into this category [33].

For any sharp observables A and B we have com(A, B) = ∧
X∈A, Y∈B com(A(X),

B(Y )), and it is known [34] that a unit vector ϕ is in the range of this projection exactly
when there is a probability measure μ : A ⊗ B → [0, 1] such that μ(X × Y ) =
〈ϕ|A(X)B(Y )ϕ〉 = 〈ϕ|A(X) ∧ B(Y )ϕ〉. Clearly, observables A, B are compatible if
this projection is the identity I . On the other hand, if com(A, B) = 0 the observables
can be called totally incompatible.
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5 Examples of Complementarity

5.1 The Canonical Case: Position andMomentum in L2(R)

Position and momentum are the prototype pair of complementary observables. They
were also central to the work of Paul Busch. Therefore, we start with a brief discussion
of the well-known results in this setting, and then proceed to derive a few new results
on the complementarity of the relevant unsharp localisation effects, focusing on the
(previously less studied) case where one of them is periodic.

Let Q and P be the canonical position and momentum observables inH = L2(R),
and F be the Fourier-Plancherel operator. We let Q and P denote the corresponding
selfadjoint position and momentum operators, so that P = F∗QF .

5.1.1 Complementarity ofQ and P

As is well known10, for bounded X , Y ∈ B(R),

Q(X) ∧ P(Y ) = Q(X) ∧ P(R \ Y ) = Q(R \ X) ∧ P(Y ) = 0, (5.1)

Q(R \ X) ∧ P(R \ Y ) �= 0. (5.2)

Since bounded sets in B(R) (even bounded intervals) form a generating semiring R
that covers R (in the sense of countable union) we conclude that Q and P are not
only complementary but even strongly complementary11 observables, if we choose
A0 = B0 = R. Moreover, it can be shown [32] that they are maximally incompatible
in the sense of joint measurability region discussed in Sect. 4.4. Finally, since

com(Q, P) ≤
∧

X ,Y∈R
com(Q(X), P(Y )) =

∧

X ,Y∈R
Q(R \ X) ∧ P(R \ Y ) = 0,

the canonical pair (Q, P) is also totally incompatible in the sense of trivial com-
mutativity domain. On the other hand, they are not L-complementary and also not
(A0,B0)-complementary if we include countable unions of sets of R in A0 and B0.
Indeed, for any periodic sets X+a, Y+b, withminimal positive periods a, b satisfying
2π
ab ∈ N, one has Q(X)P(Y ) = P(Y )Q(X) (see, for instance, [19, Theorem 15.2]).
This means that they have jointly measurable coarse grainings, not only of the

binary form associated with the above type of sets, but of the form X �→ Q f (X) =
Q( f −1(X)) and Y �→ Pg(Y ) = P(g−1(Y )), where f and g are essentially bounded
periodic Borel functions with minimal positive periods a, b satisfying 2π

ab ∈ N (see,
e.g. [19, Theorem 15.2]).

10 Equation 5.1 express the basic fact that the support of the Fourier transform of a compactly supported
function is the whole R. The result (5.2) is derived in [35].
11 Note that supp(Q) = R = supp(P).
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5.1.2 Complementarity of Derived Effects

In addition to the sharp observables Q and P, it is also natural to study effects derived
from them as first moments, assuming that 0 ≤ f ≤ 1 and 0 ≤ g ≤ 1, that is, E =
f (Q) and F = g(P). In the philosophy of Paul Busch, these correspond to unsharp
properties,12 which for suitable functions will approximate the sharp properties Q(X)

and P(Y ). There are then different cases of complementarity: on the one hand, if
the functions have compact support, their support projections are complementary by
the above discussion, and hence the effects themselves remain complementary due
to Lemma 5. On the other hand, in the periodic case specified above, the effects are
commutative and hence non-complementary, even compatible. As a basic example of
the latter case, we consider

E = f0(Q), F = g0(P), (5.3)

with “haversin” and “havercos” functions f0(x) = 1
2 (1− cos x) and g0(p) = 1

2 (1+
cos((2π)−1 p)). These effects represent unsharp periodic localisation: for instance, E
assigns small probabilities to states concentrated around points 2πn, n ∈ Z, and large
ones to states around 2πn + π .

It is now interesting to consider the intermediate case—we retain the periodic effect
E on the Q-side but compress F into one periodicity interval; in the haversin example,
this yields

E = f0(Q), F = P
([− 1

2 ,
1
2

])
(P)g0(P)P

([− 1
2 ,

1
2

])
. (5.4)

Note that this can be understood operationally as conditioning on the P-measurement.
Since PE = I , the support projections are not disjoint in this case, and we need to

look into the structure of the ranges more closely. It turns out that this pair is in fact
complementary—we now proceed to prove this result in a more general case, which
applies both in the context of multislit interferometry and “generalised Jauch theorem”
considered later in this paper.

Accordingly, let E = f (Q) and F = g(P), where f , g : R → [0, 1] are measur-
able functions, and denote by Z f = f −1({0}) the zero set of f and S f = R \ Z f

its complement set. By Remark 1 the support subspaces and critical domains are now
given by

HE = L2(S f ), HF = F−1L2(Sg),

ran E
1
2 =

{

φ ∈ HE

∣
∣
∣
∫ |φ(x)|2

f (x)
dx < ∞

}

, ran F
1
2 =

{

φ ∈ HF

∣
∣
∣
∫ |φ̂(p)|2

g(p)
dp < ∞

}

.

Remark 4 Before proceeding, a couple of subtleties are worth pointing out.

12 The concept of unsharp property has gradually refined in the work of Paul Busch, with the first explicit
definition being given in [36, Definition 4].
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(a) Since E
1
2 acts as

(
E

1
2 ψ

)
(x) = √

f (x)ψ(x), one might think that each continu-

ous functionφ ∈ ran E
1
2 must vanishwhenever f does, assuming f is also continuous.

Of course, this is not the case; for instance, if f (x) = √|x | for |x | ≤ 1 and 1 for

|x | > 1, then any φ ∈ L2(R) which is constant on [−1, 1], belongs to ran E
1
2 .

(b) Another issue is related to the support subspace: By Lemma 4,HE = L2(S f ) ⊂
L2(supp( f )) where supp f = S f , but the inclusion may be strict. Hence there could
be cases where HE ∩HF = {0} but Q(supp( f )) ∧ P(supp(g)) = 0 does not hold.

Proposition 7 Suppose that g �= 0 is measurable and compactly supported, and fix
any R > 0 such that supp(g) ⊂ [−R, R]. Then assume that f is continuous with zero
set Z f = {nπ/R | n ∈ Z} and x �→ f (x)−1 not integrable over any neighbourhood
of any x0 ∈ Z f . Then E and F are complementary but HE ∩HF �= {0}.
Proof Since g �= 0, Sg ⊂ [−R, R] has nonzero measure, and hence we have {0} �=
HF ⊂ F−1L2[−R, R]. We also have HE = L2(S f ) = L2(R \ Z f ) = L2(R) =
L2(supp( f )). In particular, the intersection HE ∩HF = HF is nontrivial.

Let now φ ∈ ran E
1
2 ∩ ran F

1
2 , and note first that φ ∈ ran F

1
2 ⊂ HF ⊂

F−1L2[−R, R] implies φ̂(p) = 0 for |p| > R. In particular, φ is the inverse
Fourier transform of an integrable function (as L2[−R, R] ⊂ L1[−R, R]), and hence
continuous. Therefore, if φ(x0) �= 0 for some x0 ∈ Z1 we could find ε, δ > 0
for which

∫ x0+ε

x0−ε
f (x)−1|φ(x)|2dx ≥ δ

∫ x0+ε

x0−ε
f (x)−1dx , which would contradict

φ ∈ ran E
1
2 as the second integral is infinite by assumption. Hence we must have

φ(x) = 0 for all x ∈ Z f , that is, φ(nπ/R) = 0 for all n ∈ Z. Next note that
the restriction φ̂ ∈ L2[−R, R] implies that φ̂ = ∑

n∈Z〈ψn|φ̂〉ψn where ψn(p) =
1√
2π

χ[−R,R](p)e−inpπ/R forms an orthonormal basis of the subspace L2[−R, R]. But
here 〈ψn|φ̂〉 = 1√

2π

∫ R
−R einπ p/R φ̂(p)dp = (F−1φ̂)(nπ/R) = φ(nπ/R). (This is

just the sampling theorem from signal analysis, see e.g. [37, p. 230], but we need
the above calculation to get the constants right with our definition of F .) Since
φ(nπ/R) = 0 for all n ∈ Z we have φ̂ = 0, and hence also φ = 0. We have
shown that ran E

1
2 ∩ ran F

1
2 = {0}, that is, E and F are complementary. ��

As an example, the complementarity of the pair (5.4) follows directly from Prop. 7
(where now R = 1/2), since the non-integrability condition is satisfied as f0(x) ∼ x2

near zero.

Remark 5 Note that this example (and also the general context of Proposition 7) cor-
responds to a boundary case where the effect E = f (Q) does not have a kernel but
the spectrum still reaches zero, thereby allowing a possibility for complementarity.

The case where inf f > 0 is uninteresting as ran E
1
2 = L2(R) and the effect is not

complementary with any other effect.

5.1.3 Complementarity and (Informational) Compleness

Weclose this sectionwith a brief discussion on another aspect of Q P-complementarity
which was historically significant. The idea of complementarity of observables typ-
ically includes also the idea of their equal importance for the full description of the
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system. Perhaps, it was in this sense that Pauli [3] posed the question if the posi-
tion and momentum distributions suffice to determine the state of the system. It was
soon demonstrated by Valentine Bargmann (as reported in [38]) that this is not the
case.13 The informational incompleteness of the complementary pair (Q, P) suggests
that some of the complementary information is lacking. This leads one to ask if there
is a third observable H, say energy, which is complementary to Q and P, and which
would completeQ andP to an informationally complete triple (Q, P,H). Example 5.2.1
shows that if the spectrum of the energy is purely discrete, then the position–energy
and momentum–energy pairs are complementary, too. If the energy operator H is of
the form H = 1

2m P2 + V (Q), with V (Q) bounded and positive it is known that the
probability distributions Qρ, Pρ, Hρ do not suffice to determine the state ρ [39,41].
Not knowing the general answer to the posed question, we recall that ifQθ = UθQUθ ,
withUθ = eiθ H , is a quadrature observable, then, not only the pairQ and P = Q π

2
, but,

in fact, any pair (Q,Qθ ), θ /∈ {0, π}, is complementary [42]. Moreover, any family of
the pairwise complementary observables {Qθ | θ ∈ S}, with a dense set S ⊂ [0, 2π),
is informationally complete [43].

5.2 Complementarity of Continuous–Discrete Pairs

We now focus on pairs E and F where E is absolutely continuous with respect to the
Lebesgue measure (as in Sect. 4.2.2) and F discrete (as in Sect. 4.2.1). Let � and �′
denote the respective outcome sets. Throughout this subsection, A0 is the family of
Borel subsets of � whose complement has nonzero Lebesgue measure, and B0 the
family of finite proper subsets of �′ (i.e. the first choice in Sect. 4.2.2).

5.2.1 The Case of Sharp E

Here we assume that E is a rank-1 sharp observable, so that E(X) = J ∗Q(X)J for
all X ∈ A, where Q is the canonical spectral measure on H⊕ = L2(�) (with � ⊂
R having nonzero Lebesgue measure), and J is unitary. For F assume that my =
rank F(y) < ∞ for each y ∈ �′, and write F(y) = ∑my

k=1 | fyk〉〈 fyk | where { fyk}my
k=1

is linearly independent.

Proposition 8 (Polynomial method) Suppose that there is a (measurable) weight func-
tion w : � → (0,∞) such that J fyk is a polynomial multiplied by w for each y ∈ �′
and k = 1, . . . , my. Then E and F are complementary.

Proof Define Q′(y) = ∑my
k=1 |ϕyk〉〈ϕyk |, where {ϕyk} is an orthonormal basis of a

Hilbert spaceH′⊕, and set K = ∑
y∈�

∑my
k=1 |ϕyk〉〈 fyk |. Then F(y) = K ∗Q′(y)K for

all y ∈ �′ so K and Q′ form a (minimal) dilation of F on H′⊕. The complementarity
condition (4.1) of Propostion 6 for Y ∈ B0 now reads J ∗η = K ∗η′ whereQ(�\X)η =
0 and Q′(�′ \ Y )η′ = 0. Hence J ∗η = ∑

y∈Y
∑my

k=1〈ϕyk |η′〉 fyk , so η = (J J ∗)η =
∑

y∈Y
∑my

k=1 c′yk J fyk with c′yk = 〈ϕyk |η′〉 as J is unitary. Hence by assumption η is
a polynomial times w, and as such either has a finite number of zeros or is identically

13 See, for instance, [39] or [40] for other explicit examples.
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zero. But the former case is impossible, as η(x) = 0 for (almost) all x ∈ � \ X
and � \ X has nonzero measure. Hence η = 0, and an application of Proposition 6
completes the proof. ��

In particular, the canonical spectral measure E of any interval � ⊂ R has many com-
plementary discrete observables. In the case of a bounded interval we can choose
� = [−1, 1] by a simple transformation and the basis consists of Jacobi polynomi-
als or trigonometric polynomials (times a weight factor). The interval � = [0,∞)

gives associated Laguerre polynomials and R Hermite polynomials. If we let F be the
number observable associated with the chosen polynomial basis we see that the canon-
ical spectral measure and the number are complementary observables. Especially, the
number (or energy) and the position (or momentum) of the harmonic oscillator form
complementary pairs; in this case � = R and the basis consists of Hermite polyno-
mials multiplied by the Gaussian weight. More generally, if F is the energy 1

2 P2 + V
where the potential V is such that the energy spectrum is discrete and its eigenvec-
tors are (e.g. trigonometric) polynomials (with a weight) then position and energy are
complementary (e.g. a particle in a box).

5.2.2 Circular Position and Number

Let � = [0, 2π) and fix a Z ⊂ Z. Let {|n〉}n∈Z be an orthonormal basis ofH, F = N,
the number, i.e. F(n) = |n〉〈n|, and E(X) = J ∗Q(X)J where J = ∑

n∈Z |en〉〈n|,
en(θ) = (2π)− 1

2 e−inθ , and Q is the position observable of the circle. Note that this
case includes, in particular, the case of periodic position andmomentum (with Z = Z),
as well as the canonical phase [19, p. 372] and number (or the canonical time [19, p.
402] and energy) of the harmonic oscillator (Z = N). Complementarity in the former
case was studied in [44], while the latter case was treated recently in [45].

Since E is a spectral measure only when Z = Z, other cases (including number–
phase) are not covered by the polynomial method. Nevertheless, the following result
holds:

Proposition 9 If Z \ Z is bounded from below or above, then E and F are complemen-
tary.

Proof Recall that the condition (4.1) of Propostion 6 reads J ∗η = η′whereQ
([0, 2π)\

X
)
η = 0 and F(Z \ Y )η′ = 0, where X ∈ A0 and Y ∈ B0. (Note that now K = I

since F is a spectral measure.) Hence J ∗η = η′ = ∑
n∈Y 〈n|η′〉|n〉, so J J ∗η =∑

n∈Y 〈n|η′〉en where Y ⊂ Z is finite (and Y �= Z ). But η = ∑
n∈Z〈en|η〉en so

J J ∗η = ∑
n∈Z 〈en|η〉en , which implies that 〈em |η〉 = 0 for all m ∈ Z \ Y , that

is, η = ∑
m∈Y∪(Z\Z)〈em |η〉em . Suppose first that Z \ Z is bounded from above.

Then Y ∪ (Z \ Z) is also bounded from above and so η = ∑mY
m=−∞〈em |η〉em for

some mY ∈ Z, that is, η is (up to a phase) a Hardy function on the circle. But
Q

([0, 2π) \ X
)
η = 0, that is, η(x) = 0 for (almost all) x ∈ [0, 2π) \ X , where

[0, 2π)\X has positivemeasure. Hence η = 0 (see e.g. [46]). An even easier reasoning
applies for the ‘below’ case. ��
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5.3 Multislit Interferometry

Being a classic application of complementarity, spatial interferometrywas also studied
by Paul Busch until recently [47,48]. The following idealised setting (which however
quite well approximates typical experimental situations, see the cited papers) neatly
illustrates several aspects of complementarity studied above. Consider an infinite peri-
odic aperturemaskgivenby the periodic set A = ∪n∈Z(X+n)where X ⊂ [−1/2, 1/2]
describes a single slit. Then in the usual Fraunhofer approximation, the position mea-
surement at a detector screen placed at a large distancewill correspond to amomentum
measurement in the coordinates of the aperture, with a typical interference pattern typ-
ically exhibiting periodic structure with the “inverse” period 2π .

5.3.1 Complementarity of “WhichWay” and Interference Measurements

Consider the following decomposition of Q and P into a sum of periodic part and the
remainder:

Q = Qmod + Qd, P = Pmod + Pd,

So here Qmod is “Q modulo 1”, coinciding with Q − nI in L2([−1/2, 1, 2] + n),
and Qd is the discretised position with eigenvalues n ∈ Z labelling the slit index,
with eigenprojections Q(X +n). The decomposition of P is similar in the momentum
space, but with period 2π .

Note that here the canonical complementary pair (Q, P) is decomposed by sep-
arating out the commuting part: indeed, [Qmod, Pmod] = 0 as these operators are
periodic functions of Q and P of the form discussed at the beginning of Sect. 5.1.
In the momentum space, Pmod captures the periodic structure of the interference pat-
tern while Qd is the “which way” measurement giving the information on the slit the
particle “has passed through”. Hence they form an appropriate pair of interferometric
observables, as originally suggested in [49] and further studied in [47,48].

Proposition 10 The pair (Qd, Pmod) is complementary (where A0 and B0 are as in the
preceding subsection).

Proof As noted in [48], one can easily check that the unitary groups generated by
these operators satisfy the Weyl relations for the phase space T×Z, and therefore by
the Stone-von Neumann–Mackey theorem (Qd, Pmod) is a direct sum of copies of the
associated canonical pair whose complementarity was proved in Proposition 9. Hence
the claim follows, as it is clear from Theorem 1 that complementarity is preserved
when taking direct sums. ��

5.3.2 From Commutativity to Complementarity

It is furthermore interesting to consider the transition from commutativity to comple-
mentarity due to the inclusion of the “which path” information. This can conveniently
be done in the level of effects: consider first measuring the commutative effects
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E = f (Pmod) and F = g(Qmod), where f is taken to be continuous and vanish-
ing exactly where Pmod does, i.e. at points n2π . For definiteness, we can take f = f0
and g = g0 as in (5.3) considered in Sect. 5.1. Here we can regard E = f (Pmod) as
an unsharp yes/no measurement regarding whether the value of Pmod is zero or not.

Now the compression of F into F ′ = Q([− 1
2 ,

1
2 ])FQ([− 1

2 ,
1
2 ]) by the projection

Q([− 1
2 ,

1
2 ]) onto the slit at the interval [− 1

2 ,
1
2 ] can be interpreted as conditioning

on the “which path” information that the particle “passed through” this specific slit,
leading (up to Fourier-transform) to the pair (5.4), which is indeed complementary
even though the corresponding support subspaces have a nontrivial intersection.

6 Complementarity and Noise

Complementarity is an extreme form of incompatibility, and as such, one could expect
that it would be unstable against the addition of noise. We first make some remark on
the general aspects of this phenomenon, in the level of pairs of generic effects, and
then proceed to consider the case of unsharp position andmomentum observables with
convolution type noise. Complementarity in the latter context was considered by Paul
Busch in his 1984 paper, entitled “On joint lower bounds of position and momentum
observables in quantum mechanics” [26].

6.1 Breaking Complementarity of Effects by Noise

The following simple results show how a small perturbation immediately regularises
any effect E so that its inverse becomes bounded.

Proposition 11 For any E ∈ E(H) and λ, p ∈ (0, 1), define two modified effects

Eλ,p = (1− λ)E + λpI , E p = p(I − E)+ (1− p)E,

corresponding to classical noise addition and convolution (see proposition below).

Then ran E
1
2
λ,p = ran E

1
2
p = H, regardless of how small p and λ are.

Proof Consider first Eλ,p. Since σ((1−λ)E) ⊂ [0, 1], it follows that−λp ∈ (−1, 0)
is in the resolvent set of (1 − λ)E , and hence Eλ,p = (1 − λ)E − (−λp)I has
a bounded inverse, that is, 0 /∈ σ(Eλ,p). Regarding E p, note that if p ≤ 1

2 then
σ((1 − 2p)E) ⊂ [0, 1 − 2p] so −p ∈ (−1, 0) is in the resolvent set of (1 − 2p)E
and hence E p = (1 − 2p)E + pI has a bounded inverse. Similarly, if p > 1

2 then
σ((1 − 2p)E) ⊂ [1 − 2p, 0] so −p ∈ (−1, 1 − 2p) is again in the resolvent set.
Hence, in both cases 0 /∈ σ(E p). ��
Corollary 2 Let Q be a binary observable and p ∈ (0, 1). Define the convolution

Qp = {pQ(0)+ (1− p)Q(1), (1− p)Q(0)+ pQ(1)}

with outcomes 1 and 0, respectively. Then ran
√
Qp(0) = ran

√
Qp(1) = H, and hence

(Qp,Q′) is not (i, j)-complementary for any binary observableQ′ and any i, j = 0, 1.
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In order to make a slightly more definitive statement, we let C ⊂ E(H) × E(H)

denote the set of pairs of complementary effects. An immediate observation regarding
the stability of complementarity is that in the finite-dimensional case complementary
effects cannot have full rank, and hence complementarity can be destroyed by arbitrary
small perturbations by trivial observables proportional to identity. The same result
holds in the infinite-dimensional case; a precise formulation can be stated as follows:

Proposition 12 Equip E(H) with any induced vector space topology of L(H) and
E(H)× E(H) with the corresponding cartesian product topology. Then the subset C
has empty interior.

Proof Let E, F ∈ E(H). Then for any λ > 0 the effects Eλ = (1 − λ)E + λI
and Fλ = (1 − λ)F + λI have ran

√
Eλ = ran

√
Fλ = H by Proposition 11, so

(Eλ, Fλ) /∈ C. Since [0, 1] � λ �→ (Eλ, Fλ) ∈ E(H)× E(H) is continuous, the claim
follows. ��
These results demonstrate that complementarity, like other forms of extreme incompat-
ibility, is not stable in arbitrary small perturbations even in the infinite-dimensional
case, and is instantly destroyed in mixtures with trivial observables. This is very
different from incompatibility, in general, which is typically preserved until some
nontrivial noise threshold also in the finite-dimensional case. This is most evident in
the case of qubit effects and observables. Indeed, any two (different) qubit effects
are complementary if and only if they are of rank-1, that is, weak atoms. Moreover,
two qubit observables are complementary if and only if they are sharp and clearly
any two sharp qubit observables are complementary. By contrast, for any two qubit
effects E = 1

2 (e0 I + !e · !σ) and F = 1
2 ( f0 I + !f · !σ), and thus for the corresponding

dichotomic observables E and F, their compatibility can be expressed in the form of a
single inequality—in fact, E and F are compatible exactly when

〈
E |E⊥〉 〈

F |F⊥〉
−

√
〈E |E〉 〈F |F〉 〈E⊥|E⊥〉 〈

F⊥|F⊥〉

≤ 〈E |F⊥〉〈E⊥|F〉 + 〈E |F〉〈E⊥|F⊥〉

where, for instance, 〈E |F〉 = 1
4 (e0 f0−!e · !f ) [50, Theorem 3]; see [51] for the original

proof in a special case. For an extensive study of the compatible approximators of the
complementary sharp qubit (spin) observables, see [17,18,31–33].

6.2 Generalised Jauch Theorem

We return to the context of the paper [26], where Paul proved ‘generalized Jauch theo-
rem’ to answer the question how much unsharpness in the form of convolutions needs
to be introduced into position and momentum in order to break their complementarity
(5.1). According to this theorem, our Corollary 1, for any pair of unsharp position and
momentum observables μ ∗ Q and ν ∗ P and for any of their value sets X and Y ,

l.b.{(μ ∗ Q)(X), (ν ∗ P)(Y )} �= {0}
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if and only if

ran
√

(μ ∗ Q)(X) ∩ ran
√

(μ ∗ Q)(X) �= {0}.

By Lemma 4 the support spaces HE and HF of the effects E = (μ ∗ Q)(X)

and F = (ν ∗ P)(Y ) are contained in the subspaces Q(supp(χX ∗ μ))(H) and
P(supp(χY ∗ ν))(H), respectively, so that there are two obvious necessary conditions
for the noncomplementarity of these effects:

Q(supp(χX ∗ μ))(H) ∩ P(supp(χY ∗ ν))(H) �= {0},
HE ∩HF �= {0}.

Clearly, if Q(supp(χX ∗μ))∧ P(supp(χY ∗ ν)) = 0, and thus also PE ∧ PF = 0, then
the effects (μ ∗Q)(X) and (ν ∗ P)(Y ) remain complementary. It will be shown below
that these implications cannot be reversed.

Remark 6 FromLemma4weknow that e.g.HE could in principle be strictly contained
in Q(supp(χX ∗ μ))(H), but we do not construct an example here – in what follows
we consider the case where HE = Q(supp(χX ∗ μ))(H).

Before proceeding to the relevant result, we recall the following observation on

the support of the involved convolutions: since supp(χX ∗ μ) ⊂ X + supp(μ) and

supp(χY ∗ ν) ⊂ Y + supp(ν); from this we may conclude, along with [26], that if
the measures μ and ν have bounded supports then the unsharp observable μ ∗ Q and
ν ∗ P are still complementary. The following remark explores the support question in
a slightly more general context.

Remark 7 In this remark we let G denote a (not necessarily abelian) locally compact
group, using multiplicative notation in general but additive notation in the abelian case
(i.e., in (b)). Let M(G) be the space of regular complex Borel measures on G. We
regard it as equipped with the convolution product (μ, ν) �→ μ ∗ ν as in [52].

(a) If G is compact, then for any probability measures μ, ν ∈ M(G) the support
supp(μ∗ν) equals supp(μ)supp(ν), the set of the products xy with x ∈ supp(μ),
y ∈ supp(ν) [53, p. 925].

(b) If G is not assumed to be compact, the claim in (a) need not hold, even if G is
abelian. To see this, let G = R

2, let μ be the probability measure on G supported
by the x-axis and defined by the N (0, 1) Gaussian density on the x-axis, and let
ν = ∑∞

n=1 2−nδ(n,n−1). The support of the convolution μ ∗ ν contains the x-axis
which, however, is not contained in supp(μ)+ supp(ν).

(c) We claim that supp(μ ∗ ν) is contained in the closure of supp(μ)supp(ν) for
any probability measures μ, ν ∈ M(G). We only needed this result above in
the abelian case, but the proof does not require commutativity. It is enough
to show that

∫
G f d(μ ∗ ν) = 0 whenever f : G → [0, 1] is a continuous

function with compact support contained in the open complement of the clo-
sure of supp(μ)supp(ν) (see [52, p. 123]). For such an f ,

∫
G f d(μ ∗ ν) =∫

G dμ(x)
∫

G f (xy)dν(y) = ∫
supp(μ)

dμ(x)
∫
supp(ν)

f (xy)dν(y) = 0, since
f (xy) = 0 whenever x ∈ supp(μ) and y ∈ supp(ν).
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The following application of Proposition 7 shows that the necessary condition given
above in terms of the supports of the convolving measures is not sufficient.

Proposition 13 For any bounded intervals X , Y ⊂ R with lengths dX , dY satisfying
dX dY ≤ π/2, there exist probability density functions f , g with finite variance, such
that the effects f ∗χX (Q) and g ∗χY (P) are complementary, but Q(supp( f ∗χX ))∧
P(supp(g ∗ χY )) �= 0.

Proof Choose f (x) = ∑
n∈Z pnχ[− 1

2 , 12 ](x − 2n) where pn > 0 are such that
∑

n∈Z pn = 1 and
∑

n∈Z n2 pn < ∞. (More general functions could be chosen.) Then
f is a probability density function with mean zero and finite variance. Moreover, f
vanishes exactly on the periodic set ∪n∈Z(2n+ [ 12 , 3

2 ]). Hence, if we take X = [ 12 , 3
2 ]

then h1(x) = ( f ∗ χX )(x) = ∑
n∈Z pn f0(x − 2n), where f0 = χ[− 1

2 , 12 ] ∗ χ[ 12 , 32 ],
that is, f0(x) = x for x ∈ [0, 1], f0(x) = 2 − x for x ∈ [1, 2] and zero otherwise.
Now h1 vanishes precisely in 2Z, that is, Z1 = 2Z, and we also have supp(h1) = R,
so HE = L2(supp(h1)) = L2(R) in this case. Moreover, for each n ∈ Z we have
h1(x) = |x−2n|whenever |x−2n| < 1 and so 1/h1(x) is not integrable over any open
interval containing 2n. Hence h1 satisfies the conditions of Proposition 7. Now if we
let g = 2π−1χY where Y = [−π/4, π/4], then g is a probability density with mean
zero and finite variance, and if we take h2 = g ∗ χY , then supp(h2) = [−π/2, π/2]
and hence HF = L2(S2) = L2(supp(h2)) = L2([−π/2, π/2]). Then Proposition 7
applies with R = π/2.

We can generalise this construction: if X is any bounded interval of length dX , a
density function f can be constructed as above to have zero set ∪n∈Z(2ndX + X), so
that f ∗ χX is zero exactly at the equidistant points 2dXZ. Hence if Y is a bounded
interval centred at 0 with length dY and g is the uniform distribution on Y then g ∗χY

has support in [−dY , dY ] and hence any φ̂ supported there is determined by the values
φ(nπ/R) if R ≥ dY . If we adjust R = π/(2dX ) to match this with 2ndX and require

φ ∈ ran( f ∗ χX (Q))
1
2 then we must have φ(nπ/R) and hence φ = 0 as above. The

required choice of R is possible if dX dY ≤ π/2. ��
Remark 8 The first part of the above proof shows that the mean and variance of f and
g can be chosen to be zero if e.g. X = [ 12 , 3

2 ] and Y = [−π/4, π/4].

7 Summary

We have reviewed and reconsidered the notion of complementarity, as advanced by
Paul Busch and his colleagues over the years. We have clarified the relevant definition
of complementarity of a pair of effects as nonexistence of a joint lower bound, by
emphasising the operational interpretation of such a lower bound as a binary “test”
observable. To define complementarity for observables, one then merely fixes a family
of outcome sets for each observable; complementarity means that for any pair of
sets from these respective families, the corresponding effects are complementary. We
have presented several characterisations of complementarity, in terms of effect order,
quantum operations implementing them, and their Naimark dilations, all appearing as
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consequences of an elementary lemma regarding factorisation of an effect in terms of
a contraction, which is itself a reformulation of one of Paul’s old results (as elaborated
in [21]) on “weak atoms” of quantum effects. We have applied the characterisations
to several cases, including position and momentum, position/momentum and energy,
time and energy, number and phase, and spatial interferometry, which were all central
to Paul’s work. Regarding the noisy setting, we have discussed the complementarity as
a form of extreme incompatibility of quantum observables, and finally considered the
case of convolutions of position and momentum. In this context we have specifically
focused on the complementarity of pairs of “unsharp” position and momentum effects
where one of the functions is periodic and the other compactly supported, also settling
an open question Paul posed in [26] as part of the work which originally initiated his
study of circumventing complementarity and opening the scheme to develop a concept
of unsharp reality.
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