
Aberystwyth University

A kernel approach to deconvolution of the complex modulus in linear
viscoelasticity
Davies, A. R.; Douglas, R. J.

Published in:
Inverse Problems

Publication date:
2019

Citation for published version (APA):
Davies, A. R., & Douglas, R. J. (2019). A kernel approach to deconvolution of the complex modulus in linear
viscoelasticity. Inverse Problems, 36(1), [015001].

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326674653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.aber.ac.uk/portal/en/persons/robert-douglas(54a8b544-6cd4-4bcb-b277-adfb86e1bce4).html
https://pure.aber.ac.uk/portal/en/publications/a-kernel-approach-to-deconvolution-of-the-complex-modulus-in-linear-viscoelasticity(762d38fe-3f1d-4910-835d-5a21228b34a4).html
https://pure.aber.ac.uk/portal/en/publications/a-kernel-approach-to-deconvolution-of-the-complex-modulus-in-linear-viscoelasticity(762d38fe-3f1d-4910-835d-5a21228b34a4).html


This is an author-created, un-copyedited version of an article published in
Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omis-
sions in this version of the manuscript or any version derived from it. The Ver-
sion of Record is available online at https://doi.org/10.1088/1361-6420/ab2944.

1



A kernel approach to deconvolution of the complex
modulus in linear viscoelasticity.
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Abstract

The relaxation spectrum of a viscoelastic material holds the key to describing
its relaxation mechanisms at a molecular level. It also plays a fundamental role
in accessing the molecular weight distribution, and in modelling the dynamics of
complex fluids. The relaxation spectrum cannot be measured directly, but it may
be locally determined from experimental measurements of viscoelastic response
at a macroscopic level. In particular, the relaxation spectrum is a continuous
distribution of relaxation times which may be recovered, at least locally, from
measurements of the complex modulus of the material. Although mathematical
expressions for the continuous spectrum have been known for well over a century,
these were inaccessible to numerical implementation for decades. Regularization
methods for approximating discrete line spectra were first introduced in the
1980s, but it was not until 2012 that methods for recovering continuous spectra
in a mathematical framework were proposed. In this paper, we analyze spectrum
recovery within the framework of reproducing kernel Hilbert spaces and identify
such spaces as natural homes for the complex modulus and spectrum. Theorems
are proved establishing the convergence of inverse operators expressed as series
of derivatives of the complex modulus. This enables a detailed characterization
of the native spaces of the real and imaginary parts of the complex modulus,
and leads to a further theorem which identifies a hierarchy of trial spaces for the
spectrum. Homeomorphic trial spaces for data and spectra are then specified
in detail, and their efficacy demonstrated by means of a case study.

Keywords: linear viscoelasticity, complex modulus, native spaces, continuous
relaxation spectrum, differential series, homeomorphic trial spaces.

1. Introduction

Most materials encountered in everyday life are viscoelastic in nature.
Examples include polymers, plastics, composites, foods, biological fluids,
oils, paints and gels. Both viscous and elastic properties pertain in these
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materials, and when subjected to an applied force the resulting deformation is
a combination of viscous response and elastic response. The mathematical and
computational modelling of viscoelastic behaviour must enable the description
of thread-like, flexible, long-chain macromolecules in motion, and an important
contributor to this description is the phenomenological theory of linear vis-
coelasticity.

Linear viscoelasticity describes the relationship between stress and strain in
a viscoelastic material for a restricted class of flows and deformations with very
small strains and strain rates. Despite its formal limitations, the theory has a
fundamental significance because certain key material functions arising in the
theory also play a role in modelling more complex flows in linear and nonlinear
regimes. Stress in the material depends not only on the current strain, or rate
of strain, but also on past strain history. For this reason, viscoelastic materials
are referred to as materials with memory. The relaxation processes involved
can occur on a variety of different time-scales, and a key function used in the
modelling is the relaxation modulus of the material, which is the time-decay
in stress resulting from a unit step in strain. The relaxation modulus may be
viewed as a superposition of separate relaxation mechanisms, each decaying
on a different time-scale. The distribution of relaxation times (decay rates)
associated with the relaxation modulus is called the relaxation spectrum of the
material.

In reality, the distribution of relaxation times in a viscoelastic material
is infinite. The continuous relaxation spectrum (CRS) and its mathematical
properties will be investigated in some detail in what follows. In engineering
applications, however, the spectrum is represented by a finite number (usually
fewer than 10) of relaxation times. Such a spectrum is called a discrete line
spectrum and its associated relaxation modulus is a finite sum of decaying ex-
ponential functions of time. This approximation and its associated exponential
decay is a convenient tool for representing experimental data, and has led to
significant advances in computational modelling. However, the approximation
has its limitations (McDougall et al (2014); Anderssen et al (2015); Ankiewitz
et al (2016)).

Relaxation spectra are important not only in describing the relaxation
modulus, but also in revealing the inter-connections between the modulus and
other material properties such as creep and molecular weight distribution.
Neither discrete spectra nor continuous spectra can be measured directly by
experiment, but they can be locally recovered from indirect measurements by
solving one or more inverse problems. Previous methods of approximating
the CRS have included contributions by Malkin (2006), Stadler and Bailly
(2009), Stadler (2010), Davies and Goulding (2012), Cho (2013), Anderssen
et al (2015), and Davies et al (2016). None of these methods take into
account the precise nature of the native spaces occupied by the real and imag-
inary parts of the complex modulus: hence the motivation for the current paper.
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In this paper, we analyze spectrum recovery within the framework of re-
producing kernel Hilbert spaces, and identify such spaces as natural homes for
the complex modulus and spectrum. Theorems are proved establishing the con-
vergence of inverse operators expressed as series of derivatives of the complex
modulus. This enables a detailed characterization of the native spaces of the
real and imaginary parts of the complex modulus, and leads to a further theo-
rem which identifies a hierarchy of trial spaces for the spectrum. Homeomorphic
trial spaces for data and spectra are then specified in detail, and their efficacy
demonstrated by means of a case study.

The paper is structured as follows. Section 2 summarizes the main mathe-
matical concepts underpinning linear viscoelasticity, while Section 3 shows how
the CRS may be recovered as series involving derivatives of the storage and
loss moduli separately. Section 4 introduces new series combining derivatives of
both storage and loss moduli (mixed derivative series), while Section 5 presents
sufficient conditions and theorems for series convergence. Section 6 briefly de-
scribes how linearly mixed sequences can accelerate convergence, thereby giving
improved resolution enhancement. Section 7 describes the native spaces oc-
cupied by the real and imaginary parts of the complex modulus, and Section
8 develops natural homeomorphic trial spaces for data and spectra. The case
study is presented in Section 9, and conclusions drawn in Section 10.

2. Mathematical background

The mathematical theory of linear viscoelasticity originated in the latter
half of the 19th century. Notable contributors were Maxwell, Meyer, Kelvin and
Voigt, but by far the most significant and far-reaching contribution was made
by Boltzmann. An account of the historical development of the subject, with
a detailed bibliography, is to be found in the book by Tanner and Walters (1998).

In an incompressible shear deformation, Boltzmann’s general linear integral
model for viscoelastic materials relates the stress σ(t) to the strain-rate γ̇(t) in
the form

σ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′, (2.1)

where G(t) denotes the relaxation modulus, which is a positive, monotonically
decreasing, and continuously differentiable function of time. The memory func-
tion of the material is defined by means of the first derivative as −Ġ(t), which,
in keeping with the principle of fading memory (Saut and Joseph, 1983), is also
monotonically decreasing. This means that Ġ(t) is monotonically increasing.
Bernstein’s theorem (Bernstein,1928) states that successive derivatives of G(t)
of all orders are alternately monotonically increasing and decreasing if and only
if G(t) is the Laplace transform of a positive measure. Under this constraint
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G(t) is said to be completely monotone and may be written in the form

G(t) = Ge +

∫ ∞

0

H(τ)e−
t
τ
dτ

τ
, (2.2)

where Ge is a material constant, given by

Ge = lim
t→∞

G(t), (2.3)

and H(τ) is the CRS associated with a continuous range of relaxation times τ .
Equation (2.2) serves as a mathematical definition of the CRS. In keeping with
Bernstein’s theorem it will be assumed throughout that H(τ) ≥ 0.

As mentioned in the introduction, relaxation spectra cannot be measured
directly, but must be found from indirect measurements. A common method
is to sample the complex modulus of the material (see equation (2.6)) at dif-
ferent frequencies in an oscillatory shear experiment (Walters, 1975). A small
amplitude oscillatory strain is applied in the form

γ(t) =

{
γ0e

iωt if t ≥ 0;

0 if t < 0,
(2.4)

with constant angular frequency ω. This enables equation (2.1) to be written
in the form

σ(t) = G∗(ω)γ(t) + o(1), (2.5)

where G∗(ω) defines the complex modulus (also called the complex shear mod-
ulus, or dynamic modulus) as a function of frequency. This is given by

G∗(ω) = Ge + iω

∫ ∞

0

[G(t′)−Ge]e
−iωt′dt′. (2.6)

Under the transformation z = iω−1 it follows from equation (2.2) that G∗(ω) is
related to the CRS by the following complex Stieltjes transforms

G∗(ω) = Ge +

∫ ∞

0

iω

1 + iωτ
H(τ)dτ = Ge +

∫ ∞

0

H(τ)

τ − z
dτ. (2.7)

If G∗(ω) were measurable at all frequencies 0 < ω < ∞, then in principle
the transform (2.7) can be inverted to yield the spectrum for all relaxation
times 0 < τ < ∞. The oscillatory shear experiment, however, can be
repeated only for a limited range of sampled frequencies, which means that
exact inversion formulae based on semi-infinite intervals become problematic.
Furthermore, when z is pure imaginary, as is the case in equation (2.7), then
recovering the spectrum from the complex modulus is an exponentially ill-
posed inverse problem, and is highly unstable to small perturbations in the data.
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The real part of G∗(ω) is called the storage modulus and denoted by G′(ω),
while the imaginary part is called the loss modulus and is denoted by G′′(ω).
These are given by the pair of Fredholm integral equations

G′(ω) = Ge +

∫ ∞

0

ω2τ2

1 + ω2τ2
H(τ)

dτ

τ
(2.8)

G′′(ω) =

∫ ∞

0

ωτ

1 + ω2τ2
H(τ)

dτ

τ
, (2.9)

which are the real and imaginary parts of (2.7). The Fredholm equations
(2.8) and (2.9) must share the same solution H, a property which derives
from the analyticity of G∗(ω) in the right-hand complex frequency half-plane.
G′(ω) and G′′(ω) are related via the Kramers-Krönig relations (Tschoegl, 1989).

In modelling low frequency and high frequency response, low order moments
of the relaxation spectrum play a role. The following constraints are normally
imposed:

lim
ω→0

G′(ω)−Ge

ω2
=

∫ ∞

0

τH(τ)dτ < ∞, (2.10)

η0 = lim
ω→0

G′′(ω)

ω
=

∫ ∞

0

H(τ)dτ < ∞, (2.11)

G′
∞ = lim

ω→∞
G′(ω) =

∫ ∞

0

H(τ)
dτ

τ
= G(0) < ∞. (2.12)

In the case of a viscoelastic liquid, η0 in (2.11) denotes the zero shear-rate
viscosity.

Without loss of generality the constant Ge will be be set to zero. This is the
relevant case for viscoelastic liquids. The addition of a constant term, Ge > 0,
which is required in the case of viscoelastic solids, can be easily accommodated.
The way in which the constraints (2.10)-(2.12) are built into the trial space for
H will be made clear in Section 8.

3. Spectrum recovery as a deconvolution problem.

Equations (2.8) and (2.9) may be written in convolution form by choosing
the logarithmic variable x = lnω . Let

H(ω−1) = h(x), G′(ω) = 1
2g1(x), and G′′(ω) = 1

2g2(x). (3.1)
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Then, with Ge = 0, (2.8) and (2.9) become

g1(x) = [1 + tanh(x)] ⋆ h(x), (3.2)

g2(x) = sech(x) ⋆ h(x), (3.3)

where ⋆ denotes convolution, i.e.

(f ⋆ g)(x) =

∫ ∞

−∞
f(x− s)g(s)ds. (3.4)

It is assumed throughout this article that h(x) ∈ L1(R) ∩C(R) so that the

Fourier transform ĥ exists. The convention for the Fourier transform is

ĥ(ξ) =

∫ ∞

−∞
h(t)e−iξtdt. (3.5)

From (3.2) and (3.3) it may be shown that g1(x) /∈ L1(R) and
g2(x) ∈ L1(R) ∩ C(R). The Fourier transform of g1(x) exists only in
the sense of distributions. Even so, equations (3.2) and (3.3) may be solved
using the convolution theorem for Fourier transforms.

Differentiating (3.2) gives

Dg1 = sech2(x) ∗ h(x), (3.6)

which, after Fourier transformation, reads

iξĝ1(ξ) = 2ξ̄cosech
(
ξ̄
)
ĥ(ξ), where ξ̄ =

π

2
ξ.

It follows that

ĥ(ξ) =
1

2
ξ̄−1sinh

(
ξ̄
)
iξĝ1(ξ), (3.7)

with continuity at ξ = 0. Similarly, noting that the transform of sech(x) is
πsech

(
ξ̄
)
, it follows from (3.3) that

ĥ(ξ) =
1

π
cosh

(
ξ̄
)
ĝ2(ξ). (3.8)

Replacing the hyperbolic functions in (3.7) and (3.8) by their Maclaurin series,
and inverting term by term, leads to solutions of (3.2) and (3.3) in the form

h(x) = h1(x) +
1

π

∞∑
r=1

(−1)r

(2r + 1)!
D̄2r+1g1(x), (3.9)

and h(x) = h0(x) +
1

π

∞∑
r=1

(−1)r

(2r)!
D̄2rg2(x), (3.10)
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respectively, with

h0(x) =
1
π g2(x), h1(x) =

1
2Dg1(x) =

1
π D̄g1(x), (3.11)

where D, D̄ denote the differential operators

D =
d

dx
, D̄ =

π

2
D. (3.12)

Sufficient conditions for the convergence of the series (3.9) and (3.10) will be
given in Section 5, together with a proof of convergence.

4. Deconvolution of the complex modulus as a complex function:
mixed series.

Rather than separate deconvolution of the real and imaginary parts of the
complex modulus, which involves the inversion of real-valued kernels, it is of
interest to consider its deconvolution as a complex function, which involves a
complex-valued kernel. Consider, first, the hyperbolic identity

1 = 1
2 [sinh(3ξ̄)cosech(ξ̄)− cosh(3ξ̄)sech(ξ̄)]. (4.1)

Multiplying both sides of (4.1) by ĥ(ξ) gives

ĥ(ξ) =
1

2π
[sinh(3ξ̄)ξ−1D̂g1(ξ)− cosh(3ξ̄)ĝ2(ξ)], (4.2)

whereupon, by expanding the sinh and cosh functions and taking the inverse
transform term by term, the following mixed series is obtained:

h(x) = 3
2h1(x)− 1

2h0(x) +
1

2π

∞∑
r=1

(−1)r[
32r+1

(2r + 1)!
D̄2r+1g1(x)−

32r

(2r)!
D̄2rg2(x)].

(4.3)

Other mixed series of this type are derivable by employing hyperbolic identi-
ties of higher order than (4.1). What is of special interest about the series (4.3),
however, is that it emerges from direct deconvolution of the complex equation

g1(x) + ig2(x) = [1 + tanh(x) + isech(x)] ⋆ h(x), (4.4)

which is the subject of this section.

To derive (4.2) from (4.4), differentiate both sides of (4.4) and take the
Fourier transform, to give

D̂g1(ξ)− ξĝ2(ξ) = 2ξ̄[cosech(ξ̄)− sech(ξ̄)]ĥ(ξ). (4.5)
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Now, since h is real-valued, both ĥ and D̂g1 are conjugate hermitian functions,
while ξĝ2(ξ) is anti-hermitian. It is no surprise, therefore, that equating the
hermitian parts of (4.5) leads to (3.7), while equating the anti-hermitian parts

leads to (3.8). On the other hand, expressing ĥ in (4.5) in terms of the hermitian
part of

D̂g1(ξ)− ξĝ2(ξ)

2ξ̄[cosech(ξ̄)− sech(ξ̄)]

leads to

ĥ(ξ) =
1

4π
[sinh(3ξ̄) + sinh(ξ̄)]ξ−1D̂g1(ξ)−

1

4π
[cosh(3ξ̄)− cosh(ξ̄)]ĝ2(ξ). (4.6)

Equation (4.2) now follows from (4.6) by simplifying the right-hand side using
(3.7) and (3.8), and rearranging.

Notice that the identity (4.1) is the difference of two functions each with
the same exponential growth. When the sinh and cosh functions are replaced
by their series representations, the rates of growth of the partial sums are no
longer the same. This property imposes more stringent convergence criteria on
(4.3) than are required for the series (3.9) and (3.10).

5. Convergence.

The derivative series introduced so far have been derived in a formal man-
ner. Sufficient conditions for convergence are required, and are provided in this
section. More than one approach is possible in the study of sufficient conditions.
(Loy et al (2017) treat a mollified series). Here we restrict attention to integra-
bility conditions and dominated convergence. The following three sequences of
partial sums are considered:
For n = 1, 2, 3, . . . ,

h2n+1(x) = h1(x) +
1

π

n∑
r=1

(−1)r

(2r + 1)!
D̄2r+1g1(x), (5.1)

h2n(x) = h0(x) +
1

π

n∑
r=1

(−1)r

(2r)!
D̄2rg2(x), (5.2)

h∗
2n+1(x) = 3

2h1(x)− 1
2h0(x) +

1

2π

n∑
r=1

(−1)r[
32r+1

(2r + 1)!
D̄2r+1g1(x)−

32r

(2r)!
D̄2rg2(x)],

(5.3)

First, in Theorem 5.1 below, conditions are given such that h2n+1(x) → h(x)
and h2n(x) → h(x) as n → ∞, for all x ∈ R. The following standard results are
used:
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Lemma 5.1 Let f1, f2 be real-valued functions with Fourier transforms f̂1, f̂2.
Let f1 and f̂2 ∈ L1(R). [See Titchmarch (1948), Theorem 35, p54]. Then∫ ∞

−∞
f1(x− y)f2(y)dy =

1

2π

∫ ∞

−∞
f̂1(ξ)f̂2(ξ)e

ixξdξ. (5.4)

Lemma 5.2 For any given r ≥ 0, D̄2rsech(x) is a polynomial in odd powers of
sech(x) of degree 2r + 1, and D̄2rsech2(x) is a polynomial in even powers of
sech(x) of degree 2r + 2.
This lemma is easily established by induction. It follows that D̄2rsech(x) and
D̄2rsech2(x) ∈ L1(R) ∩ C(R).

Theorem 5.1. Let h ∈ L1(R) ∩ C(R) and ĥ ∈ L1(R). Then h2n+1(x) →
h(x) and h2n(x) → h(x) for all x ∈ R.

Proof. For n ≥ 0, let

F2n+1(x) =
1

2

n∑
r=0

(−1)r

(2r + 1)!
D̄2rsech2(x), (5.5)

so that

F̂2n+1(ξ) =

n∑
r=0

ξ̄2r+1

(2r + 1)!
cosech(ξ̄). (5.6)

Since D̄2rsech2(x) ∈ L1(R) ∩ C(R) for all r ≥ 0, and h2n+1 = F2n+1 ⋆ h, it
follows that h2n+1 ∈ L1(R) ∩ C(R). Hence, from (5.4),

h2n+1(x) =

∫ ∞

−∞
h(y)F2n+1(x− y)dy =

1

2π

∫ ∞

−∞
ĥ(ξ)F̂2n+1(ξ)e

ixξdξ. (5.7)

Now, ĥ(ξ)F̂2n+1(ξ)e
ixξ → ĥ(ξ)eixξ for all ξ ∈ R as n → ∞,

and |ĥ(ξ)F̂2n+1(ξ)e
ixξ| ≤ |ĥ(ξ)|. Hence, by dominated convergence,

h2n+1(x) → h(x) almost everywhere. But h and h2n+1 are continuous.
Therefore h2n+1(x) → h(x) for all x ∈ R.

To prove that h2n(x) → h(x) for all x ∈ R, the same argument as above

holds with F2n+1(x) and F̂2n+1(ξ) replaced by

F2n(x) =
1

π

n∑
r=0

(−1)r

(2r)!
D̄2rsech(x) and F̂2n(ξ) =

n∑
r=0

ξ̄2r

(2r)!
sech(ξ̄). (5.8)

The conditions for convergence stated in Theorem 5.1 are not sufficient to
guarantee convergence of the sequence h∗

2n+1(x) given by (5.3). To apply domi-

nated convergence, an additional constraint on the decay rate of ĥ(ξ) as ξ → ±∞
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is required. Let

An(x) =
1

4

n∑
r=0

(−1)r
32r+1

(2r + 1)!
D̄2rsech2(x) (5.9)

and Bn(x) =
1

2π

n∑
r=0

(−1)r
32r

(2r)!
D̄2rsech(x), (5.10)

so that

Ân(ξ) =
1

2

n∑
r=0

(3ξ̄)2r+1

(2r + 1)!
cosech(ξ̄) and B̂n(ξ) =

1

2

n∑
r=0

(3ξ̄)2r

(2r)!
sech(ξ̄). (5.11)

Then Ân(ξ) → A(ξ) and B̂n(ξ) → B(ξ) for every ξ ∈ R as n → ∞, where

A(ξ) = 1
2 sinh(3ξ̄)cosech(ξ̄) and B(ξ) = 1

2cosh(3ξ̄)sech(ξ̄). (5.12)

Unfortunately, the condition ĥ ∈ L1(R) does not, in itself, guarantee that

the sequence of functions [Ân(ξ) − B̂n(ξ)]ĥ(ξ) has a limit function in L1(R).

However, such a limit exists for certain rapidly decaying functions ĥ(ξ) ∈ L1(R).

Definition. For σ > 0, h is said to belong to class Mσ if the following
conditions pertain:
(i) h ∈ L1(R) ∩ C(R) and ĥ ∈ L1(R);
(ii) there exists a bounded, non-negative function m(ξ) ∈ L1(R), such that, for
all ξ ∈ R

|ĥ(ξ)| ≤ cosech(σξ̄)sinh(ξ̄)m(ξ) and |ĥ(ξ)| ≤ sech(σξ̄)cosh(ξ̄)m(ξ). (5.13)

Examples.
(E1) For any constant λ, sech(λξ̄) ∈ Mσ if λ > σ − 1, and sech(λξ̄) /∈ Mσ if
0 ≤ λ ≤ σ − 1.
(E2) Certain non-negative band-limited functions are in Mσ for all σ > 0.
(E3) If h is in Mρ, then it is also in Mσ where 0 < ρ < σ.

Theorem 5.2. Let h ∈ M3. Then h∗
2n+1(x) → h(x) for all x ∈ R.

Proof. Again, this is a simple application of Lebesgue’s dominated conver-
gence theorem. For every x ∈ R, and for every ξ ∈ R,

[Ân(ξ)− B̂n(ξ)]ĥ(ξ)e
ixξ → [A(ξ)−B(ξ)]ĥ(ξ)eixξ = ĥ(ξ)eixξ, (5.14)

where the last step relies on the identity (4.3). Also

|[Ân(ξ)− B̂n(ξ)]ĥ(ξ)e
ixξ| ≤ [Ân(ξ) + B̂n(ξ)]|ĥ(ξ)| ≤ m(ξ), (5.15)

since h ∈ M3. Hence, by dominated convergence, as n → ∞,

h∗
2n+1(x) =

1

2π

∫ ∞

−∞
[Ân(ξ)− B̂n(ξ)]ĥ(ξ)e

ixξdx → 1

2π

∫ ∞

−∞
ĥ(ξ)eixξdx = h(x).
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6. Linearly mixed series: acceleration of convergence.

The series (4.3) is not a linear combination of (3.9) and (3.10), and its
convergence requirements are restrictive. In contrast, mixed series derived from
linear combinations share the same sufficiency conditions for convergence as the
individual series (3.9) and (3.10). They can also be constructed to accelerate
the convergence of the individual series.

Consider the functions Fn(x), n ≥ 0, defined by (5.5) and (5.8). We
define Fn to be order n. The sequence {Fn(x)}∞n=0 is a delta-sequence, i.e.
a limit sequence for the Dirac delta distribution δ(x), with the property
limn→∞

∫∞
−∞ Fn(x)h(x)dx = h(0) for all h ∈ L1(R) ∩ C(R). Each Fn is

symmetric, with a positive central peak at x = 0, which increases without limit,
and becomes narrower as n increases. [See Figure 1]. Also, as a consequence of
Lemma 5.2, any linear combination of F2n and F2n+1 has at most 2n zeros.

For n = 0, 1, 2, . . . , define the mixed, odd order sequence

hλ
2n+1 = Fλ

2n+1 ∗ h, (6.1)

where Fλ
2n+1 = (1− λ)F2n + λF2n+1, (6.2)

for any real value of the parameter λ. Anderssen et al (2016) give reasons for
choosing a value λ = 3

2 , and, with this value of λ, demonstrate the superior
accuracy of the approximation hλ

1 compared with that of h0 and h1.

There is, however, no unique strategy for accelerating convergence of a
series. One simple, but effective, approach is to choose λ so that Fλ

1 is the
best minimax approximation to F2, and to keep this λ-value constant for
all n. A suitable value of λ is 1.9, for which value the approximation hλ

2n+1

matches the accuracy of h2n+2, not only for n = 0, but for all n of practical
interest. In Figure 1, with λ = 1.9, the first three terms of the mixed delta-
sequence Fλ

2n+1 are compared with the first three terms of the delta-sequence
F2n+2. This is a clear demonstration of how lower order terms in a mixed se-
quence can match the resolution of higher order terms in an individual sequence.

The conceptual advantage of mixed series is generalized in Section 8 to mixed
homeomorphic subspaces, and a case study is given in Section 9.

7. Native spaces.

The complex modulus G∗(ω) is analytic in the right-hand half-plane
Reω > 0. Under the transformation x = ln(Reω), it follows that the data
functions g1(x) and g2(x) are real analytic on R. Douglas and Whittle Gruffudd
(2016) have shown that if ĝ2 extended to the complex plane is entire, there
exists no h in L2(R) which has compact support, other than h ≡ 0. In this
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Figure 1: First three terms of the delta-sequence Fλ
1 , Fλ

3 , Fλ
5 , . . . (⋄ ⋄ ⋄), λ = 1.9, compared

with the delta-sequence F2, F4, F6, . . . ( ).

paper, we treat functions ĝ2 that do not have entire extension. Neverthe-
less, the advantage of working with h of non-compact support will become clear.

As mentioned earlier, an account of the native spaces in which g1 and g2
reside has not previously been given, and this will be done in this section. In
the next section we identify certain subspaces of these native spaces which
allow deconvolution by homeomorphism. For completeness, we begin with a
brief summary of analytic models for g1 and g2 given by Davies and Goulding
(2012) and Davies et al (2016).

Let X = L1(R)∩C(R) and Y = L1(R)∩C∞(R). Hence X and Y ⊂ L2(R).
Furthermore let S : X → Y , T : X → C∞(R) and DT : X → Y denote the
convolution operators defined by

Sh(x) = sech(x) ∗ h(x), (7.1)

Th(x) = [1 + tanh(x)] ∗ h(x), (7.2)

and DTh(x) = sech2(x) ∗ h(x), h ∈ X. (7.3)

The inverse operators S−1, T−1 and (DT )−1, acting on the respective range
spaces SX, TX and DTX, are not continuous. One approach to stabilizing the
inversion is to choose a compact subset M of X such that S−1 is single-valued
and continuous on the range space SM . In this case M and SM are home-
omorphic subspaces. Similarly for the operators T and (DT ). Usually, M is
finite-dimensional. Moreover, if ρ(., .) denotes a metric in Y , and h is a function
in M which minimizes the residual ρ(Sh, g2), then h is called a quasi-solution

13



of (3.3) (Ivanov (1962a,b)). In particular, one may write h = S−1Pg2, where
P is the metric projection operator from Y to SM . Similarly for (3.2).

Davies and Goulding (2012) take M to be a finite-dimensional subspace of
the trial space

Xσ = span{sech(x− α

σ
) : α ∈ R, σ fixed, 0 < σ < 1}, (7.4)

where the range of α is the whole of the reals and σ is a chosen scaling
parameter. (The constraint 0 < σ < 1 guarantees that the total viscosity of
the model fluid is finite). A quasi-solution is found by discrete least-squares
projection of the experimental data g1 and g2 onto TM and SM jointly.
Xσ is a space of radial basis functions (RBFs), and as is often the case in
RBF-approximation of experimental data, the numerical results are sensitive
to both the dimension of M and the choice of scaling parameter σ.

In Davies et al (2016), the experimental data are first projected onto trial
spaces constructed from weighted Gegenbauer polynomials which may be readily
differentiated by means of a simple recurrence relation. To illustrate, consider
a quasi-solution for h derived from the data g2 by iterating the sequence (5.2)
to convergence. Let λ be a half-integer chosen from the set { 3

2 ,
5
2 ,

7
2 , . . . }, let

C
(λ)
n (t) denote the Gegenbauer polynomial of degree n and order λ on [−1, 1],

and introduce an L2-basis for Y given by {γ(λ)
σ,n(x)}∞n=0, where

γ(λ)
σ,n(x) = sechλ−

1
2 (

x− α

σ
)C(λ)

n (tanh(
x− α

σ
)). (7.5)

Here, α denotes a fixed centering parameter and σ a fixed scaling parameter.
The data g2 are least-squares projected onto the N + 1 dimensional subspace

Y
(λ)
σ,N = span{γ(λ)

σ,n(x) : n = 0, 1, 2, . . . , N}, (7.6)

and the quasi-solution h recovered in the space S−1Y
(λ)
σ,N by repeated use of the

recurrence

Dγ(λ)
σ,n(x) = σ−1[An−1γ

(λ)
σ,n−1(x) +Bn+1γ

(λ)
σ,n+1(x)], (7.7)

where An and Bn are constants given by

An =
n(n+ 2λ)

2(n+ λ+ 1)
, Bn = − n(n+ 2λ)

2(n+ λ− 1)
.

The parameters λ, N and σ affect the numerical stability of inversion and must
be carefully chosen.

The trial spaces (7.4) and (7.6) can work well if the scaling parameters
are correctly chosen, but this often requires repeated attempts by trial and
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error. Moreover, they shed very little light on the true native spaces of the
data g1 and g2. In this section, therefore, we provide characterizations of these
native spaces, which then lead to an alternative approach to deconvolution by
homeomorphism which is both more revealing and efficient than the methods
based on (7.4) and (7.6).

Let K : R × R → R, K(x, y) = K(x − y), be a translation-invariant,
symmetric positive definite kernel. Specific examples of such a kernel are those
in (7.1) and (7.3), i.e., sech(x − y) and sech2(x − y). Convolution integrals of
type K(x) ∗ h(x) reside in the native space, K, of the kernel K, which may
be characterized in more than one equivalent form. The first of these is the
completion of the trial space

K0 = span{K(x− α) : α ∈ R},

with respect to the inner-product

⟨
m∑
j=1

ujK(· − αj),

n∑
k=1

vkK(· − βk)⟩K =

m∑
j=1

n∑
k=1

ujvkK(αj − βk), (7.8)

where {α1, . . . , αm} and {β1, . . . , βn} are any two sets of distinct points in R.
Further details may be found in Wendland (2005) and Schaback and Wendland
(2006). We write

K = clos K0. (7.9)

It follows from (7.8) that

⟨K(· − α),K(· − β)⟩K = ⟨K(· − β),K(· − α)⟩K = K(α− β), (7.10)

and consequently, for all f ∈ K, and α ∈ R,

⟨f,K(· − α)⟩K = f(α). (7.11)

This reproduction property illustrates the important fact that K is a reproducing
kernel Hilbert space (RKHS) with reproducing kernel K.

For convolution integrals, (7.8) extends to

⟨K ∗ u,K ∗ v⟩K =

∫ ∞

−∞

∫ ∞

−∞
u(x)v(y)K(x− y)dxdy, (7.12)

where (K ∗ u)(x) =
∫∞
−∞ K(x− y)u(y)dy, with corresponding norm

∥K ∗ u∥2K =

∫ ∞

−∞

∫ ∞

−∞
u(x)u(y)K(x− y)dxdy. (7.13)
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For each integer n ≥ 1, define the RKHS

Mn = clos Mn
0 , Mn

0 = span{µ−1
n sechn(x− α) : α ∈ R}, (7.14)

where the normalization constants µn =
∫∞
−∞ sechn(x)dx are given by

µ1 = π; µ2n+1 =
(2n)!π

22n(n!)2
, µ2n =

22n(n!)2

n(2n)!
, n ≥ 1. (7.15)

For finite n, the normalization constants are, of course, redundant. However,
their inclusion admits the sequence {µ−1

n sechn(x)}∞n=1 as a limit sequence for
δ(x). In consequence, let M∞

0 denote the trial space of delta distributions

M∞
0 = span{δ(x− α) : α ∈ R}. (7.16)

From (3.3) and (3.6) it then follows that g2 ∈ M1, and Dg1 ∈ M2, with

Characterization 1. For n = 1, 2:

Mn = {sechn ∗h : h ∈ L2(R)∪M∞
0 ,

∫ ∞

−∞

∫ ∞

−∞
h(x)h(y)sechn(x−y)dxdy < ∞}.

The characterization admits both continuous and discrete spectra, and the
spaces M1 and M2 are slightly larger than strictly required by the conditions
on the data g1 and g2 imposed by Theorem 5.1. [Observe that if h, ĥ ∈ X, then

h, ĥ ∈ L2(R)]. In keeping with (7.8), h(x) may take the form
∑

k ckδ(x − αk),
where

∑
j

∑
k cjcksech

n(αj − αk) < ∞.

Note that, since Dg1 ∈ M2, then g1 resides in the integrated space IM2,
where

IM2 = {f : Df ∈ M2 and f → 0 as x → −∞.} (7.17)

The second characterization follows from the first upon application of
the Parseval-Plancherel formula to the double integral. Then g2 ∈ M1, and
Dg1 ∈ M2, with

Characterization 2.

M1 = {f = sech ∗ h : h ∈ L2(R) ∪M∞
0 ,

∫ ∞

−∞
cosh(ξ̄)|f̂(ξ)|2dξ < ∞}.

M2 = {f = sech2 ∗ h : h ∈ L2(R) ∪M∞
0 ,

∫ ∞

−∞

sinh(ξ̄)

ξ̄
|f̂(ξ)|2dξ < ∞}.
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By expanding the above cosh term, for every finite N we have∫ ∞

−∞

N∑
r=0

ξ̄2r

(2r)!
|f̂(ξ)|2dξ =

N∑
r=0

∫ ∞

−∞

ξ̄2r

(2r)!
|f̂(ξ)|2dξ (7.18)

= 2π

N∑
r=0

∫ ∞

−∞

|D̄rf |2

(2r)!
dx (7.19)

<

∫ ∞

−∞
cosh(ξ̄)|f̂(ξ)|2dξ. (7.20)

As N → ∞, the first integral in (7.18) converges to the final integral in (7.20)
by monotone convergence. Consequently, the two intermediate sums converge
to the same integral. It follows that

1

2π

∫ ∞

−∞
cosh(ξ̄)|f̂(ξ)|2dξ =

∞∑
r=0

1

(2r)!
∥D̄rf∥2L2(R), (7.21)

and by a similar argument,

1

2π

∫ ∞

−∞

sinh(ξ̄)

ξ̄
|f̂(ξ)|2dξ =

∞∑
r=0

1

(2r + 1)!
∥D̄rf∥2L2(R). (7.22)

This leads to

Characterization 3.

M1 = {f = sech ∗ h : h ∈ L2(R) ∪M∞
0 ,

∞∑
r=0

1

(2r)!
∥D̄rf∥2L2(R) < ∞}.

M2 = {f = sech2 ∗ h : h ∈ L2(R) ∪M∞
0 ,

∞∑
r=0

1

(2r + 1)!
∥D̄rf∥2L2(R) < ∞}.

Note that in all cases, h ∈ L2(R) ∪ M∞
0 implies that sechn ∗ h ∈ L2(R). All

three characterizations give equivalent descriptions of the same RKHS.

Fasshauer and Ye (2011) establish the equivalence between the RKHS with
translation-invariant, positive definite kernels, K(x−y), and generalized Sobolev
spaces of the type depicted by characterization 3. In their theory, series of type
(7.21) and (7.22) define generalized Sobolev norms. The kernelsK are embedded
in the space, S ′, of Schwartz distributions, and are shown to be the Green’s
functions of certain associated differential operators. As special cases of their
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general theory we may infer

1

π

∞∑
r=0

(−1)r
1

(2r)!
D̄2rsech(x− y) = δ(x− y), (7.23)

and
1

2

∞∑
r=0

(−1)r
1

(2r + 1)!
D̄2rsech2(x− y) = δ(x− y). (7.24)

8. Homeomorphic subspaces.

Equipped with the characterizations established in Section 7, arguably the
most important consequence of Theorem 5.1 is the identification of a sequence
of trial spaces for the spectrum, h, each successive member of the sequence
containing functions of higher resolution. We first prove

Theorem 8.1 M1 ⊂ M2 ⊂ M3 ⊂ · · · ⊂ L2(R).

Proof. To show that M1 ⊂ M2 it is enough to show that, for every
h ∈ L2(R) ∪M∞

0 , there exists a u ∈ L2(R) such that

f = sech ∗ h = sech2 ∗ u, and

∫ ∞

−∞

sinh(ξ̄)

ξ̄
|f̂(ξ)|2dξ < ∞. (8.1)

The function û(ξ) = ξ−1tanh(ξ̄)ĥ(ξ) is in L2(R), as is its inverse
L2-Fourier transform, u(x). In addition, u satisfies the convolu-
tion equation in (8.1). Finally, since f is in M1, it is in M2 since∫∞
−∞ ξ̄−1sinh(ξ̄)|f̂(ξ)|2dξ <

∫∞
−∞ cosh(ξ̄)|f̂(ξ)|2dξ.

Exactly similar arguments establish that M2n ⊂ M2n+1 ⊂ M2n+2. The
Fourier transforms

F [sech2n+1(x)] =
22n

(2n)!
π

n∏
r=1

[(
2r − 1

2
)2 +

ξ2

2
]sech(ξ̄), n ≥ 1, (8.2)

and F [sech2n(x)] =
22n−1

(2n− 1)!

n−1∏
r=1

(r2 +
ξ2

2
)ξ̄cosech(ξ̄), n ≥ 2, (8.3)

are useful.

The sequence of nested subspaces in Theorem 8.1 shares some of the prop-
erties of a multiresolution analysis (MRA) of the space L2(R) which plays a
fundamental role in the theory of wavelets (Mallat (2009)). Thus

• each subspace is invariant under shifts of any size. In an MRA the shifts
are dyadic.
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• The subspace Mn has a basis which is close to a scaled version of the basis
in M1. In particular, for every x ∈ R, there is a dilation factor λ(n;x),
with

√
n ≤ λ(n;x) < n, such that sechn(x) = sech(λ(n;x)x). In an MRA

the dilation factor is independent of x, and is larger than n.

• The spatial resolution of functions in Mm is higher than of the those in
Mn for m > n.

• The union of the nested subspaces is dense in L2(R).

Now let h and ĥ satisfy the conditions of Theorem 5.1. Since g2 ∈ M1 it
follows from (5.2) that

h ∈ M1 ∪ D̄2M1 ∪ D̄4M1 ∪ . . . .

But, by Lemma 5.2 we know that D̄2rsech(x) is a polynomial in odd powers of
sech(x) of degree 2r + 1. Thus

h ∈ M1 ∪M3 ∪M5 ∪ . . . .

By the same argument, since Dg1 ∈ M2 it follows from (5.1) and Lemma 5.2
that

h ∈ M2 ∪M4 ∪M6 ∪ . . . .

Hence, as a set-theoretic extension of mixed series, we have

h ∈ M1 ∪M2 ∪M3 ∪ . . . . (8.4)

From the computational viewpoint, therefore, an appropriate trial space for h
is a finite-dimensional subspace of the sum M1

0 +M2
0 +M3

0 + . . . .

Consider the constraints (2.10)-(2.12) on the low order moments of the re-
laxation spectrum H(τ). Write H(τ) = h(t), where t = − ln τ . The constraints
on h, in order, are then ∫ ∞

−∞
h(t)e−2tdt < ∞, (8.5)

η0 =

∫ ∞

−∞
h(t)e−tdt < ∞, (8.6)

G′
∞ =

∫ ∞

−∞
h(t)dt = ∥h∥L1(R) < ∞. (8.7)

For n ≥ 3, the basis functions sechn(t) in Mn
0 satisfy all three constraints.

However, constraint (8.5) is not satisfied when n = 2, and both (8.5) and (8.6)are
not satisfied when n = 1. A simple change of basis in M1

0 and M2
0 resolves this

issue. Consider the following triplets of basis functions:

u
[β]
1 (t) =

sech(t)− 1
2 sech(β)[sech(t− β) + sech(t+ β)]

1− sech2(β)
∈ M1

0 , (8.8)

u
[β]
2 (t) =

sech2(t)− 1
2 sech(2β)[sech

2(t− β) + sech2(t+ β)]

1− sech(2β)sech2(β)
∈ M2

0 . (8.9)
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where β is an adjustable positive parameter. u
[β]
1 (t) has a rate of decay e−3|t|

as t → ±∞, which is independent of β, while similarly, u
[β]
2 (t) has a rate of

decay e−4|t|. The functions u
[β]
1 and u

[β]
2 , therefore, satisfy all three constraints,

and serve as suitable bases in M1
0 and M2

0 , respectively. More importantly,
translations of (8.8) serves as a basis for a subspace of M3

0 , as does (8.9) for a
subspace of M4

0 .

The basis functions u
[β]
1 and u

[β]
2 enjoy the following interesting properties:

• they are symmetric and bell-shaped;

• they are positive for all t, and for all β > 0;

• their width (resolution) is controlled by the parameter β;

• u
[β]
1 (t) → sech3(t) as β → 0; u

[β]
2 (t) → sech4(t) as β → 0;

• u
[β]
1 (t) → sech(t) as β → ∞; u

[β]
2 (t) → sech2(t) as β → ∞.

We are now in a position to create homeomorphic subspaces which may be
used for stable deconvolution of experimental data. Let M be a finite dimen-
sional trial space for h, given by

M ⊂ M1
0 +M2

0 +M3
0 + . . . .

The corresponding trial spaces for g1 and g2 are, respectively,

TM ⊂ TM1
0 + TM2

0 + TM3
0 + . . . ,

and SM ⊂ SM1
0 + SM2

0 + SM3
0 + . . . .

Since TM is also finite dimensional, the inverse map T−1 : TM → M
is continuous, as is S−1 : SM → M . The pairs of spaces (M,TM) and
(S, SM) are therefore homeomorphic. Once the data g1 and g2 are projected
onto the spaces TM and SM , respectively, the recovery of h in M is immediate.

Projection onto TM and SM is a straightforward exercise in nonlinear re-
gression, since, for each n ≥ 1, the image of Mn

0 under the mapping T may be
obtained explicitly, and similarly for the mapping S. We have

TM1
0 = span{1 + tanh( 12 (x− α)) : α ∈ R}; (8.10)

TM2
0 = span{1 +D[(x− α)coth(x− α)] : α ∈ R}; (8.11)

TM2n+1
0 =

π

(2n)!µ2n+1

n∏
r=1

[(2r − 1)2 −D2]TM1
0 , n ≥ 1; (8.12)

TM2n
0 =

2

(2n− 1)!µ2n

n−1∏
r=1

(4r2 −D2)TM2
0 , n ≥ 2. (8.13)
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Under the mapping S, with continuity at x = α in all cases, we have

SM1
0 = span{ 2

π
(x− α)cosech(x− α) : α ∈ R}; (8.14)

SM2
0 = span{ 1

4πsech
2( 12 (x− α)) : α ∈ R}; (8.15)

SM2n+1
0 =

π

(2n)!µ2n+1

n∏
r=1

[(2r − 1)2 −D2]SM1
0 , n ≥ 1; (8.16)

SM2n
0 =

2

(2n− 1)!µ2n

n−1∏
r=1

(4r2 −D2)SM2
0 , n ≥ 2. (8.17)

9. An example of spectrum recovery from experimental data.

As a case study we choose the data published by Honerkamp and Weese
(1989) for a polybutadiene blend (PBD1). Estimates of the CRS recovered
from this data have been determined by several methods, and a comparison of
existing results appears in Davies et al (2016). All agree on a bimodal spectrum.

For convenience, the trial space Mn
0 will be said to be order n. In general,

any data set will contain values for G′ and G′′ for a finite number of sampled
frequencies. The PBD1 data has 17 sampled frequencies. If the order of the
trial space is too high, then a multi-modal distribution of relaxation times
will result. The true number of modes should reflect the diversity of structure
within the macromolecule, and the appearance of too many modes in the
spectrum will be a mark of over-resolution. This is at its most obvious in the
case of a discrete spectrum. A priori information about the macromolecule
under investigation should always be taken into consideration, where possible.
Also, some estimate of the noise level in the data will be of value. For PBD1
an estimate of the rms noise is about 2%.

Trial space M∞
0 . Although, in this paper, we are concerned with the CRS,

nevertheless, a discrete spectrum can act as a guide in choosing the dimension
of the trial space M , and can also render a lower bound estimate on the noise
level in the data. As an initial step, therefore, we choose M ∈ M∞

0 , with the
spectrum and data represented as follows:

hN =
N∑

k=1

akδ(x−αk); gN1 =
N∑

k=1

ak[1+tanh(x−αk)]; gN2 =
N∑

k=1

aksech(x−αk).

Note that since ω−1 and τ have the dimension of time, we have the approxi-
mants H(τ) ≈ hN (−x), G′(ω) ≈ 1

2g
N
1 (x) and G′′(ω) ≈ 1

2g
N
2 (x). For every trial

space in this study, the functions gN1 and gN2 are fitted to the data using the
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nonlinear regression algorithm of Levenberg-Marquardt.

The experimental data, G′, G′′, are shown in red on the right of Figure
2. Frequencies are sampled in the range 0.9 < lnω < 7.0, and the G′′-data
show a single maximum in the region of lnω = 4. With dimension N = 4, the
blue curves on the right denote the C∞-approximants to the data, and the
spiked functions on the left represent the recovered discrete spectrum H(τ).
For purposes of illustration, the height of each spike is truncated to the value
10−1ak. The dimension N = 4 allows an excellent fit to the data with a joint
rms error-of-fit of 1.3%. Given that the spaces SM∞

0 and TM∞
0 have the

highest resolving power of all the available trial spaces, the rms error of 1.3%
can be taken as a lower bound for the noise level in the data. The predicted
values of η0 and G′

∞ are η0 = 1.41× 104 and G′
∞ = 1.36× 106.

The forward maps S and T , together with the inverse maps S−1 and T−1,
are from R to R. For this reason, the real analytic continuations of G′ and
G′′ outside the measured frequency range are shown in Figure 2. One of
the discrete spectral modes is located at ln τ = −8.1, outside the reciprocal
frequency range −7 < ln τ < −0.9, with a corresponding relaxation time of
3 × 10−4s. The contribution of this mode to the viscosity η0 is less than 1%,
but the contribution to G′

∞ is almost 30%.

Figure 2: Recovery in a 4-dimensional subspace of M∞
0 . On the right: Experimental G′

(⋄ ⋄ ⋄); Experimental G′′ (◦ ◦ ◦); G′, G′′-approximants ( ). On the left: Recovered 4-mode
discrete spectrum( ).

Once the finite-dimensional trial space M is chosen, continuity of the
inverse maps is guaranteed. However, numerical instabilities in regression can
emerge if the dimension of M is too high. In the case of trial space M∞

0 ,
positivity of the coefficients ak is required to preserve complete monotonicity
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of the relaxation modulus G(t). Positivity can be lost if N > 4.

Trial space M3
0 . Let M be chosen in M3

0 , with spectrum and data repre-
sented as follows:

hN
3 (x) =

2

π

N∑
k=1

aksech
3(x− αk);

gN1 (x) =
N∑

k=1

ak[1 +
3
2 tanh(

1
2 (x− αk))− 1

2 tanh
3( 12 (x− αk))];

gN2 (x) =
4

π

N∑
k=1

ak[coth(x− αk)cosech(x− αk)− (x− αk)cosech
3(x− αk)].

The above data-representations are found from (8.12) and (8.16), and it
is understood that continuity is imposed at x = αk in the case of gN2 . In
consequence, gN1 and gN2 ∈ C∞(R). In this trial space it is not necessary
that the coefficients ak are all positive, only that hN

3 (x) be positive for all
x. The results for N = 4 are shown in Figure 3. The rms error-of-fit to the
data is 2.1%. The recovered CRS is bimodal, in keeping with results from
other methods. The predicted values of η0 and G′

∞ are η0 = 1.1 × 104 and
G′

∞ = 1.2 × 106, both of which are lower than the values obtained from a
discrete spectrum. Unlike the situation in Figure 2, the centres αk all lie within
the measured frequency range. One common feature of both trial spaces M∞

0

and M3
0 is that it is difficult to impose positivity on the spectrum when N > 4.

The triplet basis (8.8) spans a subspace of M3
0 governed by the resolution

parameter β. The basis for H in Figure 3 corresponds to the value β = 0. By
increasing the value of β the rms error-of fit to the data reaches a minimum
when β ≈ 0.35, and thereafter increases once more. With a value β = 0.35,
the spectrum Hβ differs imperceptably from H at β = 0. However the rms
error-of-fit is reduced from 2.1% to 1.8%. The result is shown on the left of
Figure 4 in black, while the corresponding C∞-approximants to the data are
shown on the right in black. Also in Figure 4 are results from the trial space M4

0 .

Trial space M4
0 . In an attempt to improve resolution, consider M ⊂ M4

0 .
In terms of the polynomials

p(t) = 1 + 5
2 t−

3
2 t

3; q(t) = 3
2 (1− t2)2; r(t) = 3

32πt
2(2 + t2), (9.1)

with continuity imposed at x = αk where necessary, the spectrum and data are
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represented as follows:

hN
4 (x) = 3

4

N∑
k=1

aksech
4(x− αk);

gN1 (x) =
N∑

k=1

ak[p(coth(x− αk)) + (x− αk)q(coth(x− αk))];

gN2 (x) =
N∑

k=1

akr(sech(
1
2 (x− αk))).

Figure 3: Recovery in a 4-dimensional subspace of M3
0 . On the right: Experimental G′

(⋄ ⋄ ⋄); Experimental G′′ (◦ ◦ ◦); G′, G′′-approximants ( ). On the left: Recovered bimodal
spectrum( ).

The spectrum HN
4 (τ) = hN

4 (−x) for N = 4 is shown on the left of Figure
4 in blue, with the corresponding C∞-approximants to the data in blue on
the right. There is an improvement in resolution of the spectrum, but the rms
error-of-fit to the data is 2.6%, compared with 1.8% for Hβ(τ). The values of
η0 are η0 = 1.19× 104 for HN

4 compared with η0 = 1.1× 104 for Hβ , while the
values of G′

∞ are G′
∞ = 1.18× 106 for HN

4 compared with G′
∞ = 1.2× 106 for

Hβ . Numerical investigations in the β-subspace of M4
0 spanned by the basis

(8.9) failed to reduce the rms-error of fit to the data to below 2.6%.

If an estimated rms noise level in the data of 2% is accepted, then,
according to Morozov’s discrepancy principle (Morozov, 1984), the best
estimate of the spectrum derived from the data lies between the blue and
black curves on the left of Figure 4, i.e. in the mixed trial space M3

0 + M4
0 .
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Figure 4: Recovery in 4-dimensional subspace of M3
0 and M4

0 . On the right: Experimental G′

(⋄ ⋄ ⋄); Experimental G′′ (◦ ◦ ◦); G′, G′′with 2.6% error ( ); G′, G′′with 1.8% error. ( )
On the left: Recovered Hβ in M3

0 ( ); recovered H in M4
0 ( ).

The larger peak is centred at ln τ ≈ −4.1, τ ≈ 1.7 × 10−2, in excellent
agreement with other methods. The larger peak is centred in the range
−7.0 < ln τ < −6.6, 9× 10−4 < τ < 1.4× 10−3, again entirely consistent with
other methods. Of interest is that the results presented here are free from small
end-oscillations which are present in other methods.

A statement concerning overall accuracy of the recovered spectra is in order.
The spectra shown in Figures 3 and 4 lie mainly within the interval ln τ ∈
(−9,−2.5), which is partly outside the reciprocal range ln τ ∈ (−7.0,−0.9) of
the data. While the existence and position of the larger peak can be accepted
with confidence, there is an element of uncertainty concerning the accuracy of
the recovered spectra in the range ln τ ∈ (−9,−7). This uncertainty is quantified
by the accuracy of the analytic continuation of G′ or G′′ in the reciprocal interval
lnω ∈ (7, 9), which is by no means easy to assess without further measurements
being available.

10. Conclusion.

This paper presents, for the first time, an analysis of the native spaces of the
storage and loss moduli (the real and imaginary parts of the complex modulus)
in linear viscoelasticity. Sufficient conditions for convergence of inverse convolu-
tion operators in the form of differential series have been given, and the native
spaces characterized in terms of these series as generalized Sobolev spaces. The
inverse operators are then used to identify trial spaces for the continuous relax-
ation spectrum. Detailed homeomorphic trial spaces for data and spectrum are
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constructed and are shown to deliver results for the spectrum which are in ex-
cellent agreement with other kernel methods, but which are easier to compute,
without the need for selecting sensitive scaling parameters.
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