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Abstract

This is the second of a series of three papers that present a methodology with the aim of creating a set of maps of
the coronal density over a period of many years. This paper describes a method for reconstructing the coronal
electron density based on spherical harmonics. By assuming a radial structure to the corona at the height of interest,
line-of-sight integrations can be made individually on each harmonic basis prior to determining coefficients, i.e.,
the computationally expensive integrations are calculated only once during initialization. This approach reduces
the problem to finding the set of coefficients that best match the observed brightness using a regularized least-
squares approach and is very efficient. The method is demonstrated on synthetic data created from both a simple
and an intricate coronal density model. The quality of reconstruction is found to be reasonable in the presence of
noise and large gaps in the data. The method is applied to both Large Angle and Spectrometric
Coronagraph Experiment C2 and Solar Terrestrial Relations Observatory Cor2 coronagraph observations from
2009 March 20, and the results from both spacecraft compared. Future work will apply the method to large
data sets.
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1. Introduction

Reliable maps of the coronal density are important for linking
various solar wind structures to the low solar atmosphere, for
studies of the coronal response to the solar cycle, and for space
weather applications, either as an inner boundary conditions for
solar wind models, or for direct ballistic extrapolation into
interplanetary space. Estimates of the coronal electron density
can be made through the inversion of coronal visible light
observations. This has been achieved using several methods of
varying complexity during eclipses, or by coronagraphs, for
several decades. The introduction of Morgan (2015) gives a
summary of the field, including a discussion of the difficulties
involved and examples of applications. A comprehensive review
is given by Aschwanden (2011).

This paper presents a new inversion method based on
spherical harmonics for the extended inner solar corona, which
is valid for regions where the large-scale structure is close to
radial. Spherical harmonics as a basis for 3D reconstruction is
used in some branches of medicine and geophysics (e.g.,
Merrill et al. 1996; Arridge & Schotland 2009; Levis et al.
2015, and references within). The method is described in
Section 2 and is tested on a simple set of synthetic data in
Section 3. A more complicated set of synthetic data is
discussed in Section 4. An approach to regularizing the
higher-order spherical harmonics is presented in Section 5. A
discussion of data gaps, noise, and temporal changes is given in
Section 6. Application to observations are demonstrated in
Section 7. Conclusions are in Section 8. The Appendix presents
an alternative method to calculate the spherical harmonic
coefficients based on iteration rather than least squares.

2. Inversion Using Spherical Harmonics

2.1. Outline

For a spherical surface at a constant height r=r0, the
coronal density, ρ, at Carrington longitude f and latitude θ may
be approximated by a spherical harmonic basis,
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where the ci are coefficients and Si are the real-valued spherical
harmonics, with the i index related to latitudinal order l (l� L,
where L is the highest order) and longitudinal order m
(−l�m� l), as shown in Table 1.
Note that S0 is the mean density component (a constant at all

f and θ) and nsph=(L+ 1)2. By increasing the order L to large
values, any sufficiently continuous density structure can be
well approximated by Equation (1).
If a radial coronal density structure is assumed above the

height of interest, the profile f (r� r0) of the density with height
can be described by a simple function. For example,
considering mass flux conservation for a spherically expanding
corona under acceleration for heights at around 5Re,
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with 2.2a = . Thus, the coronal density can be described by
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For a volume segmented into discrete voxels, the observed
K-coronal (electron) brightness Bk is the line-of-sight (LOS)
summation of the product of density and a factor g that contains
known constants, Thomson scattering coefficients, and the
length of each LOS segment through each voxel (see for
example Section2.1 of Quémerais & Lamy 2002, and
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where the j index labels voxels lying along the LOS, thus Sij is
the value of the spherical harmonic at order level i and voxel j.

Each spherical harmonic Sij may be summed independently
of the other harmonics along the LOS to give the brightness
contribution resulting from each harmonic. Defining Ai:
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the total brightness is given by
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This describes a linear relationship between the contribution
from each spherical harmonic density distribution and the
observed brightness. For the purpose of finding an unknown
density distribution from observed brightness, a reconstruction
space with prescribed Sij, f (rj), and gj is created. The LOS
summations of Equation (5) are calculated, and the problem is
reduced to finding the coefficients ci—thus, the LOS integra-
tions are made only once, leading to high efficiency. Given a
large number of observations (nobs?nsph), the system is
overdetermined and can be solved using least squares. The
ability to perform the LOS summations independently for each
spherical harmonic is based on the assumption of a radially
structured corona at heights above the height of interest, and a
uniform profile to the decrease in density with height (e.g.,
Equation (2)). The assumption of a radial corona is reasonable
at r=5Re, and the approximation of an assumed radial
density profile is discussed later.

2.2. Application

Consider a set of observed coronal images recording
brightness Bk, taken over an extended time period (e.g., half
a solar rotation, ∼2 weeks). Circular samples of data at a
constant distance from the Sun center, at a height at which the
coronal structure is deemed close to radial (e.g., 5Re), are
extracted over the time period, giving b, which records Bk as a
function of the position angle and time. For each member of b,
a geometrical LOS is defined through the corona, extending to
large heights behind and in front of the point of closest
approach to the Sun (similar to the description in the following
section for the creation of synthetic observations). A set of Sij,
gj, and f (r) are prepared (with the unknown f (r) set according
to Equation (2)). The LOS summation of Equation (5) is then

implemented. This gives a set of Ai, one for each spherical
harmonic, each of size nobs. Assuming a normal distribution to
observational errors, the problem is reduced to solving

b Acmin , 7
c

2-∣ ∣ ( )

with matrix A of size nsph×nobs, b of size nobs, and c as the
coefficients of size nsph. The least-squares solution to
Equation (7) is

c A A A b. 81 = -( ) ( )

For numerical stability, before applying Equation (8), A and b
are divided by the mean of the absolute values of A (both
contain very small numbers).

3. A Simple Test

Synthetic observations are made from a known density
distribution. For this example, a spherical distribution of
density at height 5Re is created using Equation (1), with
L=11 (nsph= 144). The ci are created from a set of random
numbers in the range −1 to 1, divided by weight l+m+1, so
that higher-order components are reduced in amplitude. The
distribution is then scaled between a minimum at a typical

Table 1
The Relationship between Spherical Harmonic index i, Latitudinal Order l, and

Longitudinal Order m

i l m

0 0 0
1 1 −1
2 1 0
3 1 1
· · ·
n 1sph - L L

Figure 1. (a) Density distribution created using spherical harmonics of order
L=11 with weighted random coefficients (see the text) for a spherical shell at
a height of 5Re. (b) The reconstructed density. (c) The percentage difference
between target and reconstructed densities. The longitude and colatitudes are
Carrington coordinates.
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value for electron density in a coronal hole (Doyle et al. 1999)
and a maximum within a streamer (Gibson et al. 2003). This
distribution is shown in Figure 1(a). This will be the target
density distribution against which the method is tested. The
distribution is simple in the sense that it is based directly on
spherical harmonics—it is not similar to a true coronal density
distribution, yet it serves as an initial test of the method.

Synthetic observations are made by specifying an uniform
vector of pixels describing a circle centered on the solar disk as
observed from the perspective of the Large Angle and Spectro-
meric Coronagraph Experiment (LASCO) C2 during 2007
March 15–30. One observation per hour is synthesized
throughout this period, for 360 pixels distributed at each degree
around the circle (or the position angle, measured counter-
clockwise from north). Thus, nobs=∼1.2×105 pixels are
defined. A LOS is created for each pixel, with 200 points along
each LOS extending to ±10Re from the point of closest
approach to the Sun. Appropriate diverging LOS are used
(extending in a narrow cone from the position of the
coronagraph through the corona). Spherical Carrington coordi-
nates are calculated for each point, and the density set by
Equation (1) and the random coefficients. For this test case, f (r)
is not set according to Equation (2), since we can directly use the
radial description of density decrease with height in a coronal
hole given by Doyle et al. (1999) to fix the minimum density at
each height. Similarly, the formulation of Gibson et al. (2003)
can be used to set the maximum density at each height. The gi
are then calculated, and the resulting emission is summed along
each LOS. The “observed” K-coronal brightness b, as a function
of the position angle and time, is shown in Figure 2.

An important choice in reconstructing the density is the
choice of L, or the maximum number of orders. For the sake of
this first simple test, this is set at L=11 to match the order of
the input distribution. Solving Equation (7) takes a few seconds
on a 2.8 GHz Intel Core i7 desktop computer with 16Gb
memory. The reconstructed density map is shown in
Figure 1(b). The percentage difference between target (ρt)
and reconstructed (ρr) density is shown in Figure 1(c). The

mean absolute percentage deviation is 3.8%, while the
distribution correlation C over the sphere, given by

C , 9r r t t

r r t t
2 2 0.5

r r r r

r r r r
=

å - -

å - å -⎡⎣ ⎤⎦( )
( ˜ )( ˜ )

( ˜ ) )( ( ˜ )
( )

is 99.8% (the r̃ are means). Figure 3 compares latitudinal slices
of the observed and reconstructed density for several different
longitudes. The residual, or the difference between the
reconstructed and observed brightness, is close to zero, as
shown in Figure 4, which directly compares slices of the
observed and reconstructed brightness as a function of the
position angle for several different times over the “observation”
period. The mean absolute fractional deviation of the observed
and reconstructed brightness is 0.5%.
The algorithm is close to giving a perfect reconstruction for

this simple test case. This is perhaps not surprising given that the
test density is based directly on spherical harmonics, and that the
information on the number of orders (L= 11) has been used for
the solution. Note that the original density distribution used to
create the synthetic observations has a density decrease with the
height based on the formulation of Doyle et al. (1999) and
Gibson et al. (2003). This gives a decrease with the height,
which is proportional to the relative density of each point, but
does not follow the spherically uniform decrease of Equation (2).
For the reconstruction, the true decrease is assumed unknown,
and Equation (2) is used. It is obvious from the success of the
reconstruction that this leads to only a minor error.
The Appendix describes an alternative method for finding

the coefficients c, based on the properties of the spherical
harmonics and iteration. The alternative method performs well
in the case where the target density is directly based on
spherical harmonics. In general, and for the rest of this work, it
is not used since its performance degrades (in both accuracy
and efficiency) in comparison to the least-squares method on
more complicated density distributions. It is included in the
Appendix since it is an interesting approach and may prove
useful in other contexts.

Figure 2. Bk values created from the LOS integration of the density distribution of Figure 1(a). The brightness is given for an “observational” height of 5Re, giving a
synoptic-type map as a function of the position angle and time.
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4. A More Realistic Test

In this section, a complicated, narrowly peaked density
distribution is used to test the reconstruction method. In
contrast to the previous simple test, the density distribution is
not based directly on a spherical harmonic basis, and therefore
the distribution cannot be exactly fitted by a limited order of

spherical harmonics, and the number of orders required in the
reconstruction cannot be determined beforehand. This distribu-
tion is

, , 1 exp
,

0.2 , 101
2

2

r f q r f q
r f q

w
= + - +

⎡
⎣⎢

⎛
⎝⎜

⎞
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Figure 3. Slices of the target density (solid line) and reconstructed density (dashed) as a function of latitude for various longitudes at a height of 5Re.
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where ρ1 and ρ2 are summed spherical harmonic series with
weighted random coefficients (as in the simple case of the
preceding section), with L=11 andM=9, and with ρ1 scaled
between 0 and 1. The exponential term forms ridges centered
on where the ρ2 function passes through zero, and these ridges
can be made narrow by setting ω to a small value. The ρ1 term

introduces variability to the value of both the ridges and the
background. This initial density distribution is scaled to
appropriate coronal values of density in a similar way to the
simple case above. The resulting density distribution is shown
in Figure 5(a). Through the exponential function, this
distribution has extended, narrow and intricate structures and

Figure 4. Slices of the “observed” (crosses) and reconstructed (line) Bk as a function of the position angle for various “dates” during the test period. They are almost
identical.
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is more similar to the expected form of the true coronal density
distribution, being distributed along narrow sheets along
polarity inversion regions and pseudostreamers (e.g., Morgan
& Habbal 2010). The brightness resulting from LOS integra-
tion of the density is shown in Figure 6(a), again for an
“observation” period of half a solar rotation toward the end of
2007 March, from the perspective of LASCO C2.

A high-order spherical harmonic basis is required to
reconstruct the target density, and for this test, we set L=25
(n= 676). The calculation of the LOS integrations of the Ai

takes around five minutes on the desktop computer, and the
least-squares estimation also takes around five minutes—the
calculation of the covariance matrix A A accounts for most of
this time. The reconstructed density has a mean absolute

fractional deviation of 13.7% from the target, with a structural
correlation of 94.0%. The comparison is shown in Figure 5.
The reconstructed brightness, shown in Figure 6(b), is almost
identical to the “observed,” with a mean absolute fractional
deviation of 1.2%.
Despite the decent structural correlation in density distribu-

tion, and the almost identical match between model and
observed brightness, the reconstruction suffers from high-
frequency longitudinal oscillations, leading to large inaccuracy
near the equator and regions of low density (including a small
negative region). These oscillations are caused by large
spherical harmonic coefficient values at high frequencies as
the data is overfitted. Figure 7 shows the optimal density that
can be achieved using a 25th order spherical harmonic basis.

Figure 5. Same as in Figure 1, but for the complicated, narrowly peaked density distribution of Equation (10).
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The coefficients are calculated directly from integrating the
product of each spherical harmonic basis with the true input
density over the spherical shell by

c S d d, , sin . 11i iò ò r q f q f f=
f q

q f( ) ( ) ( )

Steep jumps in density cause high-frequency oscillations
(Gibbs oscillations), which can be seen in Figure 7(b). These
are minor compared to the large-amplitude errors in the least-
squares tomographical reconstruction.

The tendency of the reconstruction to contain negative
densities near high-density regions is a problem that plagues
coronal tomography. This test shows that it is a problem that
arises is not solely due to rapid temporal changes in the
streamer belt or due to contamination by coronal mass ejections
(this test data has zero noise and no temporal changes). It is a
problem intrinsic to the observations—of convolution of linear
LOSs through an extended spherical structure and is related to
missing information at heights below the height of interest r0
for any single observation. Even for tomography at heights
below 5Re, this problem is unavoidable at the limit of the
instrument FOV. The problem of extreme oscillations in
reconstructed density is worse near the equator: for a given
observation, the LOS integrations at the equator pass through
only a limited range of longitude and through only a very small
range of latitude. At the poles, the LOS observations pass

through the whole polar corona, near to the axis of rotation,
giving a more stable reconstruction.
The results of this section show that some form of

regularization is required to impose smoothness on the
reconstruction and to avoid negative densities.

Figure 6. (a) Bk values created from the LOS integration of the density distribution of Figure 5(a). The brightness is given for an “observational” height of 5Re, giving
a synoptic-type map as a function of the position angle and time. (b) The model brightness as created from the reconstructed density of Figure 5(b).

Figure 7. (a) Density arising from a direct (nontomographical) calculation of
harmonic coefficients (see the text). (b) A slice along the equator comparing
true density (black) and spherical harmonic density (red).
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5. Regularization of the Higher-order Harmonics

Other coronal tomography methods impose a condition on
the spatial smoothness of the reconstruction (e.g., Frazin 2000)
to avoid unphysical high-frequency components. A similar and
necessary extension of the spherical harmonic approach is
given here. It is desirable to increase the highest order of the
spherical harmonics in order to reconstruct the density structure
at the finest possible resolution, yet this leads to greater
instability of the highest orders. Coronal tomography methods
achieve stability by imposing a weighted penalty term for lack
of spatial smoothness in the reconstructed density—thus,
the optimal reconstruction is given by a compromise between
the best fit to the data and the spatial smoothness of the
reconstruction (regularization).

The noise σ at each position angle and time bin is estimated
from the original prebinned data by isolating the highest-
frequency spatial and temporal component. To achieve this, a
datacube is created of dimensions of the position angle, height,
and time. The height range is a narrow strip (±0.2Re) centered
on the height of interest. The datacube is convolved with a
narrow Gaussian kernel over the position angle and time, and
this smoothed data is subtracted from the original. This leaves
the high-frequency residual containing noise, rapid temporal
changes, and some residual from very sharp gradients. The
narrow height range serves to increase the number of pixels at
each point, giving an improved estimate of noise.

Defining A A.1s=s
-[ ] and b b.1s=s

-[ ] , a regularized
solution weighted by the noise reciprocal is given by

c A A w A b , 121 l= +s s s s
-( ) ( )

where λ is a regularization factor that sets the balance between
fitting the data and imposing a priori constraints on the
solution. w is a square matrix, with diagonal elements of
i n0, 1, , 1sph= ¼ - given by

w
l m

l m
, 13i
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and nondiagonal elements are zero (the l and m are the
spherical harmonic longitudinal and latitudinal order). w takes
the place of the more commonly used identity matrix so that the
regularization has a larger direct impact on higher-frequency
harmonics.

In previous work on regularization in coronal tomography,
the commonly used positivity constraint on the density selects
values of λ where density is everywhere zero or positive. From
our own tests on this approach, this gives an overly smooth
solution—that is, for all small values of λ, the positivity
constraint is not satisfied, and only at large values does the
density become everywhere positive. A different approach is
taken here. Our fitting routine finds an optimal solution using
two parameters. One is λ (the smoothing parameter), and the
other is a minimum density threshold ρ′. The main steps in this
approach are as follows:

1. Values of λk, with an index of k=0, 1, K, nk−1, is set
by a logarithmic increment between the minimum entry
of the diagonal of the covariance matrix A As s divided
by 10, and the maximum entry multiplied by a. Typically,
we set nk=25.

2. A minimum density is estimated from the observed
brightness values through a spherically symmetric
inversion of the second percentile minimum of bright-
ness. Values of jr¢ , with an index of j=0, 1, K, nj,−1,
are set between the minimum density divided by 5, and
the minimum density multiplied by 2. Typically, we set
nj=20.

3. For each value of λk, an initial solution is given by
Equation (12). This solution gives an initial density
distribution on a longitude–latitude map at the coronal
height of interest (e.g., 5Re).

4. For each value of jr¢ , the initial reconstruction solution at

the current λk is thresholded to a minimum value of jr¢ . A
new set of spherical harmonic coefficients are calculated
directly from this thresholded density map via
Equation (11). These adjusted coefficients ck j, are used
to give a measure of the goodness-of-fit to data for the
current value of λ and r¢ by

b A c

n

1
. 14k j

k j
,

obs

,
2

å s
c =

-s s( )
( )

Thus, a 2D array χk,j is gained that maps the goodness-of-fit
as a function of λ and ρ′. The final task is to define an optimal
point within this array. Figure 8 shows χk,j for the complicated
density distribution. As expected, χ increases with increasing

Figure 8. Goodness-of-fit to data χk,j, as defined by Equation (14) as a function of the regularization parameter, λ, and the minimum density threshold, ρ′. The white
contour shows the 15%minimum percentile. The triangle symbol shows the optimal point as described in the text.
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λ—a smoother density reconstruction gives a poorer fit to data.
χ also increases with increasing ρ′, since the reconstructed
density is thresholded to a higher minimum value, taking it
further from the initial least-squares solution. There is a broad
region within this array contains the lowest values of χ and has
very low gradients of χ (i.e., low variability; χ increases only
slowly in this region as a function of both λ and ρ′. This region
is identified by the 15%percentile minimum value of χ, shown
by the white contour. Through tests using several different
density distributions, the addition of various noise levels (and
data gaps), and tests on real data, we define the optimum point
within this region as halfway between the region centroid and
the point on the region boundary furthest from the origin,
shown as the triangle symbol. This point defines our final
solution for density.

Application of this fitting routine results in a considerable
improvement in reconstructed density, as shown in Figure 9.
The high-frequency oscillations near the equator are greatly
reduced. The density has a mean absolute fractional deviation
of 12.3% from the target, with a structural correlation of 95%.
The brightness values are fitted with a mean absolute deviation
of 1.1%. As inherent to the fitting method, there are no regions
of negative density. The solution, for this example, has a
minimum density threshold of ρ′=10.4×103cm−3, and
λ=1.74×103. The true minimum density of the synthetic
density distribution is 1.19×103cm−3. The fitting routine
adds around 5 minutes to the computational time: the A A

covariance matrix is precomputed, and calculations of modeled
brightness and density for Equations (14) and (10) are efficient
due to the spherical harmonic basis. Note that for this test case,
there is no noise, so an arbitrary constant value of noise is set
for each data point (i.e., no weighting in Equation (12)).

6. Missing Data, Noise, and Rapid Temporal Changes

Figure 10(a) shows the brightness test data degraded through
the addition of random, normally distributed noise at 5%of the
mean signal level. Regularized tomography applied to this noisy
data set gives the density of Figure 11(a). The reconstructed
density has a mean absolute fractional deviation of 12.1% from
the target, with a structural correlation of 95%. The brightness
values are fitted with a mean absolute deviation of 4.3%. The

solution has a minimum density of ρ′=9.96×103 cm−3 and
λ=1.75×103.
The largest reconstruction errors are near the equator, where

high-density regions are underestimated, and low-density
regions overestimated—that is, the reconstruction gives density
that is too smooth over longitude compared to the sharply
defined structures and large gradients of the true density. This
is an important point to remember when interpreting tomo-
graphy results applied to real data—the equatorial regions are
the most important regions in the context of space weather
studies, yet this is where the reconstruction errors are greatest.
All coronagraphs suffer from occasional data gaps, with the

potential to seriously degrade tomographical reconstructions.
Figure 10(b) shows a half-solar-rotation set of noisy synthetic
observations with four missing days of data (around one third
are missing) split into three gaps of two days, one day, and
one day. The reconstructed density for this data is shown in
Figure 11(b). It deviates from the target density by 14.1%, with
a spatial correlation of 94%. The reconstructed and observed
brightness deviate by 4.3%. The solution has a minimum
density of ρ′=9.9×103cm−3 and λ=2.19×103. Thus, the
spherical harmonic basis provides stability in the presence of
even quite substantial data gaps.
The most detrimental noise in coronagraph data is perhaps

not a normal distribution, but rather isolated pixels or groups of
pixels of spurious high/low values caused by, for example,
sporadic bursts of energetic particles that can seriously
deteriorate some images or the passage of bright planets. The
weighted fitting can help reduce the impact of these on the
results. More importantly, rapid changes in brightness and
structure caused by coronal mass ejections (CMEs) have a large
detrimental effect on reconstruction. Morgan (2015, Paper I)
introduces several processing steps to reduce these problems. In
particular, the dynamic separation technique (DST) reduces the
effect of CMEs and also results in a smoother signal with
reduced salt-and-pepper noise. Observations that are seriously
degraded (possibly due to bursts of energetic particles) can be
identified and discarded, as described in Paper I. Occasionally,
telemetry or read errors can lead to missing blocks of data
within an image. Discarding bad images, or missing data
blocks, will result in short data gaps, which seems acceptable
for the spherical harmonic method, as shown above.

Figure 9. Reconstructed density as gained from the regularized fitting method.
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Lastly, coronal structure must change, either slowly or
rapidly, and may reconfigure very rapidly during the passage of
large CMEs. Time-dependent coronal tomography (based on
regularization methods) has been successfully applied by
Vibert et al. (2016). In principle, the spherical harmonic
approach can be extended to include time-dependency, with the
coefficients becoming functions of time. Initial experiments
with a time-dependent density model shows that this is a very
challenging task—particularly, if a step change in density is
needed to account for rapid changes. Further development is
necessary and is reserved for a future publication.

7. Application to Observations

This section applies the tomography to observations made
by the LASCO C2 and the Solar Terrestrial Relations

Observatory (STEREO) Sun Earth Connection Coronal and
Heliospheric Investigation (SECCHI) Cor2 A coronagraphs
for a half-Carrington rotation period centered on 2009 March
20 12:00 UTC. At this time, the STEREO A spacecraft is
separated by 60° from the Solar and Heliospheric Observa-
tory (SOHO). The data are processed and calibrated according
to the method of Paper I. The height of interest is set at 5.5Re,
and the data is rebinned into a position angle and time array
with 180 position angle bins and 200 time steps. The data
array for LASCO C2 is shown in Figure 12(a) and for Cor2 A
in Figure 12(c). The data binning can be set at higher
resolution, at the expense of computational time. The binning
here allows reconstructions to be made in approximately 10
minutes.
The choice of the period, and the height, has allowed for

convenient comparison with Figure5 of Frazin et al. (2010).

Figure 10. (a) Synthetic brightness data degraded by 5%normally distributed, random noise. (b) A set of synthetic observation with three periods of missing data
(rectangular black blocks) centered on 2007 March 18, 22, and 25. The first period lasts for two days, and the two other periods last for a day each. Noise with
amplitude 5%of the mean signal is also present in this data.
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The density reconstruction for LASCO C2 is shown in
Figure 13(a) and for Cor2 A in Figure 13(b). The LASCO
C2 data is fitted with a mean absolute deviation of 10.6%, with
a smoothing parameter of λ=6.2×104 and minimum
density of ρmin=1.4×103cm−3. For Cor2 A, the values are
7.0%, λ=5.1×104, and ρmin=6.5×103cm−3. The mean
absolute fractional difference between the two reconstructed
densities is 38%, with a spatial correlation of 81%. Comparing
with Figure 5 of Frazin et al. (2010), these density maps are
smoother and have maximum densities at around half the
values of Frazin et al. (2010). Currently, there is no other
empirical verification for density maps such as these. From
Figure 13, Cor2 A seems to give a better reconstruction, in that
the streamer belt is narrow, and fits the data more closely.
Comparison with future in situ measurements of the coronal
density by the Parker Solar Probe will be invaluable for
coronal tomography.

8. Conclusions and Future Work

For heights where the coronal structure can be well
approximated as radial with an uniform density decrease with
an increasing height (i.e., the extended inner corona), a model
of the density based on spherical harmonics leads to a very
efficient and stable method for reconstruction. This is
demonstrated for simple and complex model coronal density

distribution. The method is robust for large data gaps of several
days. Without regularization, the smoothness of the recon-
structed density is dictated by the highest order of the spherical
harmonic basis. However, the true coronal density is likely to
have steep gradients between regions of low and high density
or very narrow regions of high density, and a high order is
required to approximate these. To counteract this problem, we
provide a method for regularized solutions where the smooth-
ness of the reconstructed density, and a minimum density
threshold is taken into consideration.
The application of this method to a large data set will be

presented in the third paper of this series. Other future work
involves finding a robust time-dependent extension to the
spherical harmonic approach, where the harmonic coefficients
can change as a function of time. We also aim to experiment
with other approaches similar to spherical harmonics that have
proved useful in geophysics, including wavelet-based spherical
functions (Chambodut et al. 2005). We anticipate these may
prove useful for the nonradial corona, in particular for extreme
ultraviolet (EUV) observations of the low corona.
Spherical harmonics are a simple yet powerful basis for the

inversion of coronal density and should be a consideration for
other coronal applications, such as EUV diagnostics in the low
corona or 3D reconstructions of the coronal magnetic field with
future spectropolarimetric instruments.

Figure 11. (a) Reconstructed density for the input data degraded by noise. (b) Same as in (a), but for the noisy input data including data gaps.

11

The Astrophysical Journal Supplement Series, 242:3 (14pp), 2019 May Morgan



Figure 12. (a) Brightness of the corona observed at 5.5Re by LASCO C2 for a two-week period centered on 2009 March 20. (b) Model brightness gained from
reconstructed density for LASCO C2. (c) Same as in (a), but observed by the Cor2 A instrument. (d) Model brightness for the Cor2 A reconstructed density.

12

The Astrophysical Journal Supplement Series, 242:3 (14pp), 2019 May Morgan



Appendix

This appendix describes an iterative procedure to find the
spherical harmonic coefficients ci. For this procedure, the
observed data, b, and the Ai (see Equation (5) of Section 2.1)
are first normalized to achieve numerical stability—both are
very small numbers (b and Ai∣ ∣ on the order of 10−10 and 10−16,
respectively). b is normalized to a mean of zero and unity
standard deviation by

b
b b

, 15
bs

¢ =
- ˜

( )

where b̃ is the mean, and bs is the standard deviation. The Ai are
normalized by the mean of their absolute value (calculated over
all orders):

A
A

A
. 16i

i¢ =
á ñ∣ ∣

( )

Starting with an initial estimate of coefficients (labeled with
a prime, ci¢, since they are operating on normalized arrays) all
set to zero, the following iterative algorithm, with iteration
counter k cycling through Equations (17)–(19), converges

toward a solution:
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where bmods is the standard deviation of bmod, and λ (=1) is a
parameter that controls the rate of convergence. At values that
are too large, the process does not converge. This becomes
important as the number of spherical harmonic orders becomes
high.

n

1

sph
l = gives good results for the examples in this work

(where nsph is the number of spherical harmonics). The
iterations continue until k reaches a set value or until the
convergence rate drops below a set threshold. Note that while
Equation (19) is not strictly necessary, it is included to greatly
increase the rate of convergence.
After convergence is reached, the ci¢ are scaled to account for

the normalizations of Equations (15) and (16), which gives the

Figure 13. (a) Reconstructed density at a height of 5.5Re gained from the LASCO C2 observations shown in Figure 12(a). (b) Same as in (a), but for the Cor2 A
observations shown in Figure 12(c).
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solution ci:

c
c

, 20i
i b

bmod

s
s

=
¢

( )

where σb and bmods are the standard deviations of the observed
and modeled brightness. Finally, the mean density that should
be included in the zeroth-order component, c0, is estimated
directly from the observed brightness by

c
C

n

b

g f r
. 21

p

n

j

n
j j

0
obs 1 1

obs
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å

=
= =

( )
( )

C is a correction factor based on the curtailing of the LOS to a
limited range. Due to the curtailing, the summation in the
denominator is too small, leading to an overestimate of the
mean density by a few percent. This correction is easily
quantified by calculating g f rj

n
j j1

loså = ( ) for a single case of a
very long LOS (where the emission essentially drops to zero at
large heights) and for comparing the same value for the
curtailed LOS. This gives the correction factor C directly.

To fit any function on a sphere to a set of spherical
harmonics, the coefficient of a spherical harmonic at a given
order can be found by integrating the product of the function
and the spherical harmonic over the sphere (see Equation (11)).
In this case, where the spherical harmonics are multiplied by
geometrical and other factors and integrated over extended
LOSs, the iterative algorithm of Equations (17)–(19), in
essence, implements a similar approach. For the simple test
case of Section 3, this iterative method gains a more accurate
reconstruction than the least-squares approach, with a mean
absolute fractional deviation of 2% between the reconstructed
and target densities. For the more complicated cases, it loses
accuracy compared to the least-squares approach, and with
increasing number of spherical harmonic orders, it becomes
considerably less efficient.
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