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Abstract

Lucanus cervus (L.), the stag beetle, is a saproxylic beetle species distributed widely across

Europe. Throughout its distribution the species has exhibited pronounced declines and is

widely considered threatened. Conservation efforts may be hindered by the lack of popula-

tion genetic data and understanding of the spatial scale of population connectivity. To

address this knowledge gap this research details the first broad scale phylogeographic

study of L. cervus based on mitochondrial DNA (mtDNA) sequencing and microsatellite

analysis of samples collected from 121 localities across Europe. Genetic data were comple-

mented by palaeo-distribution models of spatial occupancy during the Last Glacial Maxi-

mum to strengthen inferences of refugial areas. A salient feature of the mtDNA was the

identification of two lineages. Lineage I was widespread across Europe while lineage II was

confined to Greece. Microsatellites supported the differentiation of the Greek samples and

alongside palaeo-distribution models indicated this area was a glacial refuge. The genetic

endemism of the Greek samples, and demographic results compatible with no signatures

of spatial expansion likely reflects restricted dispersal into and out of the area. Lineage I

exhibited a shallow star like phylogeny compatible with rapid population expansion across

Europe. Demographic analysis indicated such expansions occurred after the Last Glacial

Maximum. Nuclear diversity and hindcast species distribution models indicated a central

Italian refuge for lineage I. Palaeo-distribution modelling results also suggested a western

refuge in northern Iberia and south-west France. In conclusion the results provide evidence

of glacial divergence in stag beetle while also suggesting high, at least on evolutionary time-

scales, gene flow across most of Europe. The data also provide a neutral genetic framework

against which patterns of phenotypic variation may be assessed.
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Introduction

The stag beetle, Lucanus cervus L. (Coleoptera: Lucanidae) is distributed widely across

Europe [1]. Past and current forest management practices, such as logging, wood harvesting,

and removal of old trees and dead wood, have had detrimental effects on saproxylic biodiver-

sity [2, 3]. In light of such declines the stag beetle is listed as “near threatened” in the Euro-

pean Red List [3] and has been protected by the Habitats Directive of the European Union

since 1992 [4]. Conservation efforts may be hindered by a lack of information on the spatial

scale at which populations may be connected on ecological and evolutionary timescales.

Since dispersal distances in the species seem to range from a few hundred meters up to a

maximum of five kilometres [5], distances between aggregates or populations cannot exceed

these limits if sufficient gene flow is to be maintained within a metapopulation. Harvey et al.

[1] reported that, since L. cervus shows an aggregated distribution, wood management may

be critical for the species to counter local extinction. Furthermore, in species with presumed

high levels of genetic structuring a significant loss of cryptic diversity is expected under

changing conditions, such as climate change, when conservation policies do not incorporate

these genetic differences [6, 7]. On a broader geographical scale the identification of intra-

specific Evolutionarily Significant Units (ESUs), their evolutionary history and spatial distri-

bution provide vital information to optimise conservation strategies which minimise genetic

diversity loss at species level [8]. In addition to providing information for spatial manage-

ment strategies, such phylogeographic approaches can also provide insight into how species

have responded to historical climate change, and accordingly inform predictions of future

climate change effects.

Pleistocene glaciations have influenced current patterns of genetic diversity and structure

of fauna and flora [9, 10]. During the Last Glacial Maximum (LGM; 23 ky– 16 ky BP), substan-

tial areas of northern Europe were covered by vast ice sheets, while permafrost reached most

of continental Europe up to about 45˚N [11]. During this period, southern European peninsu-

las (Iberian, Italian, Balkan) and the Caucasus/Caspian region acted as refugia where species

persisted during glaciation, although additional glacial (cryptic) refugia and colonisation

routes outside the Mediterranean region have been increasingly detected [12–15].

The sedentary nature of stag beetles [5, 16] is predicted to make them a model species for

detecting signatures of historical climate driven processes [17]. Furthermore, as a result of

their ecological specialization, it is probable that their colonisation process followed that of the

broadleaf trees before and during the Pleistocene era [18]. The preferred habitat of the species

is large diameter, decomposing logs which provide substantial substrate for habitat, have the

capacity to hold moisture [19] and deliver more stable microclimatic conditions [20]. More-

over, such structures can persist for long periods within the landscape, potentially providing

habitat for multiple generations which further ensures preservation of the phylogeographic

signal in sedentary species.

To date, the genetic approach used in studies on L. cervus has been used to investigate pro-

cesses like hybridisation [21] and localised intergenerational genetic patterns [22], or the con-

gruence of morphological and molecular phylogenies at the (sub)species level [23]. The latter

study has shown that certain subspecies, such as L. c. akbesianus from Turkey and L. c. fabiani
(synonym L. pontbrianti) from France appeared to be different species, using cytochrome c

oxidase subunit I (COI) sequences, while others could not be differentiated from L. c. cervus
[23]. In this study we perform the first population genetic study of L. c. cervus at both regional

and local geographical scales across Europe using both mtDNA and nuclear microsatellites.

We combine genetic data with ecological niche modelling to robustly identify patterns of his-

torical vicariance, glacial refugia locations and postglacial expansion dynamics. This study
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informs spatial conservation through identification of unique components of the species’ bio-

diversity and provides a valuable genetic baseline for future studies on the species.

Material and methods

Sampling and DNA-extraction

We requested samples from entomologists across Europe. Samples included whole beetles

and parts of beetles, found as road kill or as predatory remains. In some cases a leg was

removed from a live specimen, a treatment that does not seem to hinder further movement

substantially [24, 25]. Many samples were part of an existing collection for which the entomol-

ogists required the necessary permits from national and/or local authorities when required. To

ensure sampling of conspecifics and thus resolution of intraspecific processes sampling was

restricted to Lucanus cervus cervus. Most samples were collected during the period 2001–2017,

except for two samples from Craiova (Romania), collected in 1988, and six samples from

Kursk (Russia), collected in 1990 (S1 Table). The samples originating from 121 localities (S1

Table, Fig 1) were either dried and kept at room temperature or preserved in absolute ethanol.

The tissue used for DNA extraction depended on availability, but was mostly muscle tissue

from legs. We extracted DNA from ground samples with the E.Z.N.A. Forensic DNA Kit

(Omega Bio-Tek, VWR, Haasrode, Belgium) or the DNeasy Blood & Tissue Kit (Qiagen,

Fig 1. Sampling locations of Lucanus cervus. Localities with samples with COI sequences are indicated with orange triangles, those with

samples genotyped with microsatellites with blue dots. The five regions over which the samples were divided are shown with different colours.

The background is an altitude map of Europe in greyscale from the WorldClim database [26].

https://doi.org/10.1371/journal.pone.0215860.g001
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Venlo, the Netherlands). The quality of DNA of 10% of the samples was assessed on 1% aga-

rose gels. DNA quantification was performed with Quant-iT PicoGreen dsDNA Assay Kit

(Life Technologies, Merelbeke, Belgium) using a Synergy HT plate reader (BioTek, BioSPX,

Drogenbos, Belgium).

Mitochondrial DNA

For the COI sequences, we followed the procedure reported by Cox et al. [23], including align-

ment and quality control. Several COI sequences available on GenBank were added (S1 Table):

those obtained by Lin et al. [27], by Solano et al. [21] and by Cox et al. [23].

A haplotype network was constructed using the median-joining algorithm implemented

in PopArt [28]. Phylogenetic analysis and the corresponding bootstrap analysis were per-

formed using the maximum likelihood (ML) approach. For comparison, a Bayesian inference

approach (BI) was also used. The ML analyses of unique haplotypes were achieved using

RAxML 7.2.8 on RAxML BlackBox (http://phylobench.vital-it.ch/raxml-bb/index.php) [29]

with 100 rapid bootstrap analyses followed by a search of the best-scoring ML tree in a single

run. The general time reversible model (GTR) was used with an alpha parameter for the shape

of the gamma distribution to account for among-site rate heterogeneity, as recommended by

Stamatakis et al. [29].

The Bayesian analysis was conducted with a Markov chain Monte Carlo (MCMC) phyloge-

netic search using BEAST v. 2.4.8 [30]. We first identified the best fit model of molecular evo-

lution under the Aikaike information criterion (AIC), as implemented in JModeltest v. 2.1.10

[31, 32]. Since the selected model, TIM2 + I + G (AIC = 4123.6848), was too complex to

achieve convergence, the Hasegawa–Kishino–Yano (HKY) + G +I model was set instead. We

applied a strict molecular clock with a rate of 1.77%/lineage per million years which was esti-

mated for COI of tenebrionid beetles [33]. MCMC analyses were run for 5 x 108 generations,

sampling one tree every 1,000 generations. After verifying parameter convergence and effec-

tive sample size (>200) using Tracer v.1.6 [34], we discarded the first 10% of the trees as burn-

in. A maximum clade credibility (MCC) tree was constructed using TreeAnnotator 2.4.8 [35]

and visualised in FigTree v. 1.4.3 [36]. Owing to the computational limits using TreeAnnotator

we first resampled one tree every 5 x 104 generations using LogCombiner v. 2.4.8 [35].

The following diversity indices were calculated for each locality with at least five samples

and for each geographic region using DnaSP v. 6.10.04 [37]: number of haplotypes (k), nucleo-

tide diversity (π) and haplotype diversity (h). The seven geographic regions were defined to

increase and balance sample sizes of the groups while taking the genetic structure (see below)

into account (S1 Table, Fig 1). We call them ‘Greece’, ‘Italy’, ‘Iberia’, ‘UK’, ‘West’, ‘North’ and

‘East’ from now on. We assessed if there was a relationship between diversity indices and loca-

tion (latitude and longitude) using Pearson correlation tests.

Population structure was investigated using the Bayesian program BAPS v. 6.0 [38]. We

performed 10 runs for each K = 1–10. Since this resulted in an optimal cluster number of one,

we wanted to assess additional or hierarchical genetic structure by fixing K = 2 and ran the

analysis ten times to ensure convergence and consistency of the results. This was repeated for

each inferred cluster. For populations with a minimum sample size of five individuals (with

COI sequences), pairwise genetic differentiation among populations (FST) was calculated using

Arlequin v. 3.5.1.2 [39] with 10,000 permutations.

Several approaches were explored to investigate the demographic history of Lucanus cervus.
First, we assessed population expansion of each cluster, as was defined by BAPS clustering

results, and of the total dataset using Arlequin to calculate Tajima’s D [40] and Fu’s FS [41]

with 2,000 simulated samples. If values are significantly different from zero, these neutrality
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tests indicate that populations deviate from expectations under a mutation–drift model. Next,

a mismatch distribution analysis using Arlequin was performed for each lineage with 2,000

bootstrap replicates to evaluate the frequency distribution of the number of nucleotide mis-

matches among pairs of COI sequences. Whilst unimodal distributions represent expanding

populations, populations of constant size show a multimodal distribution [42]. Additionally,

we calculated the sum of square deviations (SSD) between the observed and the expected dis-

tribution and Harpending’s raggedness index (rg), which estimates the fluctuation in the fre-

quency of pairwise differences [43].

To further assess past demographic dynamics through time, we ran a Bayesian skyline plot

in BEAST with five group intervals for each lineage separately. All parameters were set identi-

cal to those described above (MCC tree), except for the number of MCMC in one of both line-

ages, which was 1 x 109 for lineage I (see Results). Sampling of trees was done every 1 x 104

generations. The median and corresponding credibility intervals of the Bayesian skyline plot

were visualised with Tracer.

Microsatellites

The DNA was eluted in 70 μl AE buffer. The integrity of DNA of 10% of the samples was

assessed on 1% agarose gels. DNA quantification was performed with Quant-iT PicoGreen

dsDNA Assay Kit (Life Technologies) using a Synergy HT plate reader (BioTek). Samples were

genpotyped at the loci Lcerv-1, Lcerv-3, Lcerv-4, Lcerv-6, Lcerv-7, Lcerv-8, Lcerv-9, Lcerv-16,

Lcerv-17, Lcerv-20, Lcerv-21, Lcerv-25, Lcerv-28, Lcerv-29, Lcerv-30, Lcerv-31 and Lcerv-36,

described by McKeown et al. [44]. The primer sets were included in four multiplex PCRs and

one simplex PCR (S2 Table). The multiplex PCR contained 1 μl DNA solution (5–10 ng/μl),

5 μl Multiplex PCR Master Mix (Qiagen) and a certain concentration of each primer pair

shown in S2 Table. Autoclaved ultrapure water was added to a total volume of 10 μl. PCR con-

ditions were as follows: 15’ at 94˚C, 35 cycles of 30” at 94˚C, 30” at annealing temperature (S2

Table) and 30” at 72˚C. The final extension step was carried out during 10’ at 72˚C, ending

with 15’ at 4˚C, after which temperature was kept at 15˚C. We performed the genotyping anal-

ysis on an ABI 3500 Genetic Analyzer (Applied Biosystems) with the GeneMapper v.4.0 soft-

ware package. To test for reproducibility, 6% of the samples were blindly replicated two to six

times within and across well plates. Samples with fewer than 12 scored loci were discarded. To

investigate possible deviations from Hardy–Weinberg equilibrium (HWE), we used the test

available in the program Genepop 4.6 [45]. To take in account population structure, we

reduced the dataset to those localities with five samples or more. Genepop was also used to

assess the presence of null alleles with the maximum likelihood method following the expecta-

tion maximization (EM) algorithm of Dempster et al. (1977), and to test for linkage disequilib-

rium (LD) for each pair of loci. We implemented a correction for multiple testing with the

false discovery rate method (FDR) [46] with a nominal level of 5%. To assess the influence of

loci with potential null alleles on population structure analyses, we calculated pairwise FST val-

ues with and without such loci using Genalex v. 6.503 [47, 48].

As with the mitochondrial sequences, we applied the BAPS v. 6.0 spatial clustering of indi-

viduals [49]. The program was run ten times for each value of K = 1–39. An admixture analy-

sis [50] was performed using 100 iterations, a minimum of three individuals per population,

200 reference individuals for each population, and 20 iterations of reference individuals. We

used another Bayesian approach implemented in STRUCTURE v. 2.3.4 [35] with K 1 to 20,

replicating each value of K three times. The simulations were run with a burn-in and run

length each of 1 x 105 iterations. We chose the admixture model and used the correlated

allele frequency option and the localities as prior information (locprior). The optimal K was
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determined based on the average natural logarithm of the probability of the data (Ln

Pr(X|K)) and the Evanno method [51] in STRUCTURE HARVESTER v. 0.6.94 [52]. As the

ΔK method of Evanno et al. [51] is likely to identify the uppermost hierarchical level of popu-

lation structure, subsequent hierarchical analysis was performed. Result files from STRUC-

TURE HARVESTER were processed in CLUMPP v. 1.1.2 [53]. Furthermore, pairwise FST

values were calculated among populations with at least five samples and visualised in a prin-

cipal coordinate analysis (PCoA) using Genalex v. 6.503. Significance of these values was

assessed using 9,999 permutations.

We calculated the following estimates of genetic diversity using the R package ‘hierfstat’ v.

0.04–22 [54] for the localities with at least five genotyped individuals: rarefied allelic richness

(AR), observed (HO) and expected heterozygosity (HE). Also the fixation index FIS was esti-

mated. The same measures were estimated for the different predefined geographical regions

(Fig 1) following partly the structure results as well as to obtain more balanced sample sizes.

We evaluated if a relationship exists between latitude/longitude and the level of diversity as

measured with HE and AR through Pearson correlation tests. Additionally, we tested if isola-

tion-by-distance (IBD) was present with a Mantel test based on 9,999 replicates implemented

the R package ‘adegenet’ v. 2.0.1 [55].

Palaeo-distribution modelling

Modelling of the geographical distribution of L. cervus was performed using MaxEnt v. 3.4.1

[56] implemented in the R package ‘dismo’ v. 1.1–4 [57], based on current conditions and

then projected onto two palaeoclimatic models for the LGM (~22 ky BP), the Community

Climate System Model (CCSM4) and the Model for Interdisciplinary Research On Climate

(MIROC-ESM).

Species records from the Global Biodiversity Information Facility (GBIF) [58] comple-

mented our own records (including non-genotyped samples). We filtered the GBIF records to

those having unique coordinates with a precision of less than 2 km. We first randomly selected

one record in each grid cell with size 2.5 arc minutes (approximately 5 km) using the R pack-

age ‘GSIF’ v. 0.5–4 [59], which corresponds with the resolution of the climatic data we down-

loaded from the WorldClim database [26]. Since GBIF records were highly concentrated in

Germany, England and Sweden we further thinned the occurrences using the R package

‘spThin’ v. 0.1.0 [60] which returns the largest number of records that are no closer to each

other than a user-defined linear distance. We chose a minimum nearest neighbour distance of

5 km and repeated the analysis 200 times to obtain the highest number of occurrences possible.

Since we had a high number of records, we applied the thinning procedure to four regions sep-

arately: England, Sweden, Germany and the remaining area. We used 19 bioclimatic variables

available at WorldClim and the complementary ENVIREM dataset that comprises 16 climatic

and two topographic variables [61]. Each layer was cropped to an extent (-15˚ to 55˚ E, 30˚ to

65˚ N) that is slightly larger than that of the current distributional range (-13˚ to 43˚ E, 35˚ to

62˚ N). A set of 10,000 random pseudo-absence records was created within this extent. We

built the MaxEnt model using the R package ‘MaxentVariableSelection’ v. 1.0–3 [62] that

reduces the set of variables in a stepwise manner to avoid overfitting the model to the occur-

rence data. Variables that contributed less than 3% to the model were removed, while also

keeping the Pearson correlation values below 0.9. After each step, model performance is

assessed based on the sample size adjusted Akaike information criterion (AICc), based on

all occurrence locations, and the area under the receiver operating characteristic (AUC)

based on 50% test data and 10 replicate runs. We selected the model with the lowest AICc

value to obtain a model that identifies the fundamental niche of stag beetle and that is better
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transferable to other climate scenarios [63, 64]. A range of regularisation multiplier (β) values,

from 1 to 15 in increments of 0.5, were simultaneously tested.

In order to assess if the analysis region during the LGM has similar environmental condi-

tions as it has at present and if extrapolation risks exist, we used the mobility-oriented parity

(MOP) metric [65] implemented in the R package ‘kuenm’ v. 1.1.1 (https://github.com/

marlonecobos/kuenm) [66].

Results

Mitochondrial DNA

In total, we obtained 404 sequences of specimens from localities spread across the entire distri-

bution range of L. cervus (Fig 1). Sequences were submitted to GenBank (S1 Table). Only 85

haplotypes were detected, defined by 83 polymorphic sites of which 43 parsimony informative.

The haplotype network conformed to a star-like topology consisting of a central and most

abundant haplotype from which many low frequency haplotypes radiated, separated by usually

one to two substitutions (lineage I, Fig 2). The central haplotype was found across Europe.

Some Italian and samples of region ‘East’ differed by three mutational steps from the main

haplotype, while some ‘UK’ samples differed by three or four steps. A Greek lineage (lineage

II) is separated by five mutations from the dominant haplotype which harbours a wide variety

of rather distantly related haplotypes. Only three samples of ‘Greece’ shared the main Euro-

pean haplotype. In general, diversity was relatively high, particularly in southern and eastern

regions (Table 1), with the highest values for number of haplotypes (k), π and h in ‘Greece’. In

Fig 2. Median joining haplotype network of mitochondrial cytochrome oxidase subunit I (COI) haplotypes of

Lucanus cervus in Europe. Partitions inside the circles represent the proportion of each region as given in Fig 1 within

each haplotype. Circle size is proportionate with sample size. Haplotypes connected by a line differ in sequence by one

mutational step and black dots represent unsampled or extinct haplotypes.

https://doi.org/10.1371/journal.pone.0215860.g002
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Table 1. Genetic diversity indices for regions and localities with a minimum sample size of five individuals at 16 microsatellite loci and/or based on COI sequences.

Region Country Locality N_coi N_ssr k π h HO HE AR FIS

East 40 34 10 0.00282 (0.00035) 0.737 (0.061) 0.509 (0.225) 0.555 (0.171) 4.374 (1.626) 0.073 (0.243)

Romania Bistrita 7 0 3 0.00171 (0.00059) 0.714 (0.127)

Târnăveni 2 5 0.538 (0.299) 0.533 (0.195) 2.812 (0.834) -0.004 (0.371)

Timisoara 7 0 3 0.00171 (0.00066) 0.667 (0.160)

Slovenia Pivka 7 9 3 0.00213 (0.00043) 0.714 (0.127) 0.549 (0.274) 0.553 (0.189) 2.976 (1.035) 0.005 (0.355)

Greece 22 28 18 0.01090 (0.00073) 0.978 (0.021) 0.723 (0.177) 0.811 (0.131) 9.954 (4.704) 0.093 (0.226)

Greece Neraida 5 5 4 0.00925 (0.00205) 0.900 (0.161) 0.750 (0.258) 0.795 (0.164) 5.312 (1.778) 0.023 (0.343)

Vlahava 8 12 8 0.01178 (0.00157) 1 (0.063) 0.719 (0.187) 0.799 (0.161) 5.514 (1.518) 0.079 (0.223)

Iberia 28 58 9 0.00096 (0.00028) 0.497 (0.117) 0.501 (0.244) 0.508 (0.179) 4.075 (1.477) 0.030 (0.196)

Spain Dehesa de Robleda 3 5 0.453 (0.390) 0.417 (0.272) 2.188 (1.047) -0.093 (0.565)

La Laguna 0 6 0.490 (0.240) 0.477 (0.218) 2.946 (1.279) -0.042 (0.178)

Italy 69 57 31 0.00216 (0.00030) 0.745 (0.059) 0.543 (0.239) 0.597 (0.162) 5.259 (1.815) 0.097 (0.270)

Italy Acquapendente 11 8 8 0.00224 (0.00054) 0.891 (0.008) 0.574 (0.252) 0.669 (0.117) 3.850 (1.040) 0.152 (0.308)

Bernate 10 9 6 0.00224 (0.00050) 0.889 (0.091) 0.576 (0.279) 0.587 (0.198) 3.454 (1.237) 0.018 (0.293)

Marmirolo 20 34 7 0.00145 (0.00046) 0.584 (0.127) 0.540 (0.258) 0.551 (0.170) 3.108 (0.878) 0.019 (0.328)

Sondrio 10 0 6 0.00312 (0.00082) 0.844 (0.103)

North 26 76 9 0.00135 (0.00034) 0.622 (0.107) 0.486 (0.265) 0.509 (0.194) 3.750 (1.356) 0.079 (0.344)

Poland Janikow 2 5 0.462 (0.356) 0.508 (0.238) 2.687 (1.014) 0.111 (0.530)

Milicz 3 5 0.512 (0.342) 0.555 (0.268) 3.125 (1.500) 0.059 (0.419)

Pnewkow 5 37 3 0.00119 (0.00045) 0.700 (0.218) 0.506 (0.282) 0.476 (0.215) 2.653 (0.905) -0.062 (0.323)

Russia Kursk 3 6 0.490 (0.336) 0.533 (0.226) 2.856 (1.003) 0.048 (0.494)

Ukraine Berezovka 4 5 0.400 (0.358) 0.436 (0.210) 2.250 (0.683) 0.077 (0.628)

West 62 144 15 0.00095 (0.00019) 0.497 (0.079) 0.482 (0.228) 0.539 (0.133) 4.091 (1.412) 0.110 (0.271)

Belgium Overijse 2 30 0.471 (0.256) 0.483 (0.144) 2.633 (0.737) 0.061 (0.294)

Sint-Genesius-Rode 2 10 0.447 (0.296) 0.419 (0.205) 2.492 (0.840) -0.031 (0.302)

Watermaal-Bosvoorde 0 30 0.463 (0.230) 0.485 (0.177) 2.603 (0.861) 0.032 (0.275)

France Bussiere 18 0 3 0.00062 (0.00023) 0.392 (0.018)

Lanouaille 3 5 0.606 (0.259) 0.579 (0.128) 3.625 (3.117) -0.044 (0.408)

Lurais 5 5 2 0.00119 (0.00071) 0.400 (0.237) 0.550 (0.306) 0.596 (0.144) 5.063 (8.575) 0.068 (0.517)

Germany Alf 6 5 4 0.00149 (0.00045) 0.800 (0.172) 0.513 (0.318) 0.570 (0.169) 2.938 (0.854) 0.082 (0.470)

Forst 5 10 1 0 0 0.469 (0.309) 0.493 (0.212) 2.700 (1.024) 0.044 (0.420)

Kronau 5 15 2 0.00060 (0.00035) 0.400 (0.237) 0.503 (0.306) 0.498 (0.199) 2.741 (0.904) -0.005 (0.386)

Tairnbach 2 13 0.500 (0.250) 0.563 (0.125) 2.861 (0.800) 0.093 (0.391)

UK 157 19 15 (0.00129 0.00016) 0.474 (0.049) 0.515 (0.276) 0.554 (0.147) 3.904 (1.689) 0.101 (0.338)

United Kingdom Berkshire 20 0 2 0.00045 (0.00039) 0.100 (0.088)

Colchester 3 13 0.522 (0.283) 0.549 (0.165) 2.918 (0.887) 0.064 (0.338)

Copdock 4 6 0.500 (0.333) 0.529 (0.177) 2.823 (0.871) 0.088 (0.493)

Essex 20 0 3 0.00197 (0.00020) 0.637 (0.064)

Hampshire 20 0 5 0.00141 (0.00036) 0.632 (0.112)

Kent 20 0 5 0.00190 (0.00029) 0.679 (0.080)

London 16 0 2 0.00035 (0.00019) 0.233 (0.126)

Suffolk 16 0 2 0.00119 (0.00034) 0.400 (0.114)

Surrey 20 0 2 0.00040 (0.00017) 0.268 (0.113)

Sussex 18 0 3 0.00062 (0.00023) 0.392 (0.133)

N_coi, number of samples with sequences of COI; N_ssr, number of samples with microsatellite genotypes; k, number of haplotypes; π, nucleotide diversity; h, haplotype

(gene) diversity; HO, observed heterozygosity; HE, expected heterozygosity; AR, allelic richness rarefied at 10 for localities and at 36 for regions; FIS, fixation index;

standard deviations between brackets.

https://doi.org/10.1371/journal.pone.0215860.t001
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‘Italy’ π and h were lower and comparable to the levels of ‘East’. The lowest levels in diversity

seemed to be in regions ‘West’, ‘UK’ and ‘Iberia’. These patterns were evident in correlation

tests with a positive relationship between π or h and longitude (r = 0.57, p = 0.004 and r = 0.60,

p = 0.003, respectively), while diversity decreased with increasing latitude (r = -0.75, p = 4.3 x

10−5 and r = -0.60, p = 0.003, for π and h respectively) (Fig 3A and 3B).

According to the ML tree the haplotypes spread across Europe formed a clade with moder-

ate support and was separated from the majority of the Greek haplotypes. The latter, however,

seemed to be paraphyletic (S1 Fig). This changed using the Bayesian approach with all samples

included. In the MCC tree, the Greek haplotypes (except for three samples with the main hap-

lotype) formed a monophyletic clade but with low support (0.54), while the European hap-

logroup had high support (1; Fig 4). No apparent geographical structure was present within

both clades. As expected, the Bayesian clustering analysis with K fixed as 2 resulted in the same

two groups: a cluster in Greece and a second with individuals all over Europe including some

in Greece (Fig 5A). No further hierarchical clustering was found.

High FST values (0.380–0.831) were found among populations of Greece (Neraida and Vla-

hava) and the remaining populations, representing the two lineages (S3 Table). Populations of

region ‘East’ seemed also well differentiated, especially Bistrita and Timisoara in Romania (FST

= 0.488–0.787). Other population comparisons resulted in lower to non-significant FST values,

except for the population from Essex which was well differentiated, even from other popula-

tions in the ‘UK’ region (FST > 0.193), Kent not included (FST = 0.039).

In lineage I, Tajima’s D and Fu’s FS were significantly negative indicating demographic

expansion, while only the latter was significant in lineage II (Table 2). Furthermore, the SSD

under the demographic expansion model was significant in lineage II which suggests popula-

tion stability as is shown in the mismatch distribution in Fig 6B. The significant value of SSD

under the spatial expansion model in Greece further indicates no range expansion took pres-

ent. The mismatch distribution of lineage I followed an L-shaped, positively skewed distribu-

tion which is expected for star-like topologies (Fig 6A). Demographic and/or spatial expansion

in this cluster seemed to have occurred. The BSP also supports a population expansion in line-

age I (Fig 7A) and a stable population size through time in lineage II (Fig 7B). The start of the

population expansion of lineage I occurred around 16 ky before present, after the LGM.

Microsatellites

Eight loci deviated from HWE in one to three localities of which four in Marmirolo and three

in Vlahava. The locus deviating from HWE in three localities (Watermaal-Bosvoorde, Aqua-

pendente and Vlahava), Lcerv-30, also showed an elevated proportion of null alleles (> 20%)

in 13 localities, while loci Lcerv-16 and Lcerv-29 showed such levels in respectively seven and

eight localities. There was no sign of LD among pairs of loci. We discarded locus lcerv-30, but

tested for changes in population structure through the calculation of pairwise FST values after

excluding Lcerv-16, Lcerv-29 or both. Because FST values hardly changed, both were included

for further analysis. Mean error rate was 4% and no samples were discarded of a total of 416.

Genetic structure and diversity. The spatial clustering analysis using BAPS resulted in an

optimum of four clusters (Fig 5B). Some admixture was found in only a limited number of

samples, of which the majority (4 samples) was located in northern Italy (S2A Fig). Except for

one, individuals from Greece formed a separate group (i.e. ‘cluster 1’). The second cluster con-

sisted of individuals from Central Italy and some from northern Italy (‘cluster 2’). Low levels

of admixture (between 19% and 33%) with this Italian gene pool also occurred in Slovenia,

Hungary and Spain. Another spatial group (‘cluster 3’) predominated in the regions ‘East’,

‘North’, ‘Iberia’, ‘UK’, the north of ‘Italy’ and, to some extent, in ‘West’, especially in Germany
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Fig 3. Population-level genetic diversity in relation to latitude and longitude. (A) Haplotype diversity (h) and

nucleotide diversity (ᴫ) based on COI sequences in relation to longitude and (B) in relation to latitude. (C) Expected

heterozygosity (HE) and allelic richness (AR) based on microsatellite genotypes in relation to latitude.

https://doi.org/10.1371/journal.pone.0215860.g003
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(Forst, Rettigheim and Kronau). Finally, the fourth cluster was mainly located in region ‘West’

with some individuals scattered in the other regions (‘cluster 4’). Some localities showed a mix-

ture of individuals assigned to this fourth and the widespread cluster 3. The same four clusters

were suggested by BAPS after randomly reducing the sample sizes in two Belgian localities

from 30 to 10 individuals. It therefore does not seem that the larger sample sizes at these locali-

ties could have influenced results. Initially, STRUCTURE analysis resulted in an optimal K = 2

(S3A Fig). The same Greek cluster was formed as with BAPS, while the remaining samples

were mostly assigned to a second cluster (S2B Fig). Subsequent analysis for substructure in this

second cluster delivered again the highest ΔK for K = 2 subclusters (S3B Fig). A second peak in

ΔK was obtained at K = 4 subclusters (S3B Fig), where also the average Ln Pr(X|K) values

started to plateau. Results for both K values are included in S2(C) and S2(D) Fig. For K = 2

subclusters, samples were divided in the two clusters 3 and 4 as defined by BAPS, but with the

Italian samples assigned to cluster 3. For K = 4 subclusters, the samples from Central Italy

form a separate subcluster, very similar to cluster 2 according to the BAPS results (S2D Fig). A

fourth subcluster consisted substantially out of admixed individuals, with likelihood admixture

ratios> 0.5, particularly in two localities Watermaal-Bosvoorde (Belgium) and Tairnbach

(Germany) with a mean ratio of 0.566 and a range of 0.251–0.724. We did not investigate fur-

ther subclustering because of the low sample sizes in many localities.

Pairwise FST values ranged from 0.025 to 0.207 (S4 Table). The pattern in FST values fol-

lowed largely the Bayesian clustering results (Fig 8), differentiating the Greek (pairwise FST val-

ues for Vlahava: 0.093–0.176; for Neraida: 0.116–0.202) and central Italian populations

(pairwise FST values for Viterbo: 0.086–0.174). However, the Berezovka population in Ukraine

Fig 4. Bayesian maximum clade credibility tree of the mtDNA dataset of Lucanus cervus obtained using BEAST. Bayesian posterior

probabilities higher than 0.5 are shown on nodes. Lineage I is indicated in blue and lineage II in pink.

https://doi.org/10.1371/journal.pone.0215860.g004

Phylogeography of European stag beetle

PLOS ONE | https://doi.org/10.1371/journal.pone.0215860 April 25, 2019 11 / 23

https://doi.org/10.1371/journal.pone.0215860.g004
https://doi.org/10.1371/journal.pone.0215860


from region ‘North’ displayed high FST values, although it was assigned to the most abundant

and wide spread cluster. Sample size for this population was, however, only five.

Gene diversity and allelic richness reached the highest values in ‘Greece’ and the second

highest in ‘Italy’ (Table 1). In the other regions levels of genetic variation were similar,

although values for both HE and AR were quite high in Lanouaille and Lurais in Central France

Fig 5. Bayesian cluster memberships obtained using BAPS for (A) the mtDNA dataset of Lucanus cervus and (B)

the microsatellite genotypes. The pie charts represent the distribution of BAPS clusters, given in different colours,

and are scaled according to sample size.

https://doi.org/10.1371/journal.pone.0215860.g005
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of region ‘West’ (HE ranged from 0.579 to 0.596 and AR from 3.625 to 5.063). Multilocus FIS

values were not significant in any sample. The HE and AR decreased with increasing latitude

(r = -0.55, p = 0.004 and r = -0.59, p = 0.002, respectively) (Fig 3C), but no significant pattern

with longitude was detected (r = 0.27, p = 0.198 and r = 0.12, p = 0.561, respectively). The

relationship between genetic and geographic distance was weak but significant (r = 0.18,

p = 0.0001). However, IBD was not significant when Greek samples were excluded (r = 0.036,

p = 0.075).

Palaeo-distribution modelling

A total of 37,851 occurrence records was reduced to 16,493 records having unique coordinates

with a precision of at least 2 km. After filtering these records to one occurrence per grid cell of

2.5 arc minutes, a total of 2325 points remained. This number dropped to 1279 observations

when thinned using a nearest neighbour distance of 5 km (S4 Fig). The model with the lowest

AICc had a regularisation multiplier of 1 and only four environmental variables: precipitation

of the driest month, Thornthwaite aridity index (index of the degree of water deficit below

water need), continentality (average temperature of warmest month—average temperature of

coldest month) and maximum temperature of the coldest month. The average AUC test value

for this model was 0.927 that differed on average 0.003 from the AUC training value. The most

important variable was continentality with a model contribution of 43%, while the second

most important was precipitation of the driest month which contributed 33% to the model.

Table 2. Results of demographic analyses on COI sequences in the two lineages of Lucanus cervus.

D FS SSD_demo SSD_spat rg

Lineage I -2.628��� -28.390��� 0.0012 0.0001 0.0468

Lineage II -1.153 -8.604�� 0.0424��� 0.0166� 0.0295

Total -2.537��� -26.918��� 0.0024 0.0021 0.0387

D, Tajima’s D; FS, Fu’s FS; SSD_demo, sum of squared deviation under the sudden, demographic expansion model; SSD_spat, sum of squared deviation under the

spatial expansion model; rg, Harpending’s raggedness index.

� significant at P < 0.05

�� significant at P < 0.0

��� significant at P < 0.001

https://doi.org/10.1371/journal.pone.0215860.t002

Fig 6. Mismatch distribution of Lucanus cervus mtDNA in lineage I (A) and lineage II (B). The x-axes display the

number of nucleotide differences.

https://doi.org/10.1371/journal.pone.0215860.g006
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The variables ‘Thornthwaite aridity index’ and ‘maximum temperature of the coldest month’

had a relative contribution score of 14% and 10%, respectively.

The present species distribution model encompassed mainly the north-western part of

Europe, but also northern Iberia, parts of Italy, east of the Adriatic Sea through to Albania and

the north of Greece, Serbia and Bulgaria, and the Black Sea coast of Turkey (Fig 9A). When

projected to the conditions of the CCSM4 scenario of LGM, suitable habitat seemed to be

restricted to the southern parts of current distribution, with an increase in southern France

and in Italy (Fig 9B). A decrease in habitat appeared in the north-eastern and eastern

Fig 7. Bayesian skyline plot of Lucanus cervus created with the COI dataset. The y-axis represents the product of effective population size

(Ne) and generation time (with units in millions of years) on a logarithmic scale. The black line gives the median of effective population size

through time and the blue lines represent the 95% highest posterior densities over the median estimates along the coalescent history. The x-axis

gives years before present.

https://doi.org/10.1371/journal.pone.0215860.g007

Fig 8. Principal Coordinates Analysis (PCoA) of population pairwise FST values for microsatellite genotypes of

Lucanus cervus. The dots are coloured according to the clusters defined by BAPS (see Fig 5B and S2 Fig).

https://doi.org/10.1371/journal.pone.0215860.g008
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Mediterranean. The MIROC-ESM scenario showed the same trend but with smaller areas of

suitable habitat in aforementioned regions and in Italy (Fig 9C).

The MOP analyses revealed areas during LGM with environments comparable to the pres-

ent-day environments in southern Europe (Fig 10). Towards the north conditions became less

Fig 9. Species distribution models using 1279 occurrence data points of Lucanus cervus. (A) The current

distribution with the occurrence records (black dots), the distribution during the Last Glacial Maximum based on two

general circulation models, (B) CCSM4 and (C) MIROC-ESM. The legend indicates low (0) to high (1) environmental

suitability for L. cervus.

https://doi.org/10.1371/journal.pone.0215860.g009
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similar. Strict extrapolation risk was present in the northern half of Europe, which corre-

sponded with unsuitable habitat for stag beetle in the LGM projections (under the assumption

of climatic niche conservatism). Smaller areas of strict extrapolation were also present in the

Alps when compared with the CCSM4 scenario (Fig 10A) and in the southern and south-west-

ern edges of Iberia when compared with the MIROC-ESM scenario (Fig 10B).

Discussion

This study is the first phylogeographic investigation of stag beetle to incorporate both regional

and fine scale sampling, and analysis of both mtDNA and nuclear genetic markers. mtDNA

analysis revealed a clear spatial pattern wherein most of the European range was dominated by

a single clade (lineage I). A second clade (lineage II) was found to be restricted to samples

from Greece, with the differentiation of Greek samples also apparent at microsatellite loci.

Microsatellite analysis further differentiated samples mainly from Central Italy that was part of

lineage I on the basis of mtDNA. Nuclear data also subdivided Lineage I in two clusters. Apart

from an increase in genetic clusters, differentiation among populations using nuclear markers

was low to moderately high and was in agreement with the spatial structure results.

The populations in Greece did not seem to have experienced a demographic change and

stayed largely isolated from populations in other regions, as the mtDNA and nuclear markers

indicated. During the LGM, possible habitat is predicted to be limited to the north-western

corner of Greece but was connected with a larger habitat area in southern Albania. The fact

that the Greek lineage did not expand after the LGM is potentially due to the mountain ranges

of northern Greece which were glaciated during the Pleistocene and could have acted as barri-

ers isolating the populations on this part of the Balkan Peninsula [67]. Similarly, a separate

lineage of Rosalia alpina was also found in north-western Greece by Drag et al. [68]. However,

stag beetles appeared to be able to cross the Alps and Pyrenees. Fossil pollen data showed the

Pindus Mountains of Greece to be a refugium of deciduous Quercus spp., a major host species

group of stag beetle, where only a limited increase in distribution range was observed [69].

Likewise, the Greek mountains hindered post-glacial dispersal of Mediterranean oaks [70].

Thus the habitat requirements of the host species might be the underlying factor why the

Fig 10. Mobility-oriented parity (MOP) analysis comparing current conditions of the calibration region for stag beetle distribution

modelling with conditions during LGM. (A) Results for the CCSM4 scenario and (B) the results for MIROC-ESM. The closer the values are to

1 (dark blue) the more comparable environments are to current conditions. Areas with value 0 (dark red) are out of range for one or more

environmental variables (strict extrapolation).

https://doi.org/10.1371/journal.pone.0215860.g010
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Greek stag beetle distribution did not shift northwards. Due to the continuous presence of

suitable habitat, the population size was able to stay stable and retain its genetic diversity.

The star-like topology of lineage I is compatible with a sudden range expansion, a scenario

supported by neutrality test and mismatch distribution results. The expansion appeared to be

of a demographic nature as well as of a spatial nature. The BSP showed a strong increase in

population size after the LGM. All diversity measures had a significant negative relation to lati-

tude which is in line with a general pattern of increased southern refugial richness found in

studies investigating post-glacial recolonisation processes in the northern hemisphere [71, 72].

During range contractions and expansions in the course of climatic oscillations, genotypes

may have been lost in northern Europe, but not in populations that stayed in the southern

refugia. This loss of alleles and haplotypes could have been the result of a rapid expansion of

already impoverished populations from the leading edge or from single refugial populations

[71]. Moreover, founder effects may have attributed to this loss of genetic diversity.

Our results suggested that, apart from Greece, another refugium was located in southern

Europe. Next to Greece, Italy seemed to hold the highest genetic diversity, mitochondrial as

well as nuclear. According to our palaeo-distribution model, several parts of southern Italy

seemed to be a candidate refugium, going from the north in Piemonte and Genoa, through

Lazio and Umbria in Central Italy, to the utmost south in Calabria. This is assuming historical

climate preference to be the same as current, where winter and summer temperatures

(expressed as continentality in the model) and humidity levels appeared to be important fac-

tors, which concurs with earlier findings [5, 73–75]. Italy was also one of the prime refugia

during the LGM of the European white oaks [76]. The presence of admixed individuals and

populations assigned to different clusters in the north of Italy based on nuclear data could fur-

ther indicate the occurrence of a suture zone.

Diversity measures of the mtDNA correlated positively with longitude. This seemed to

exclude northern Iberia and south-west France as refugia, although the palaeo-distribution

model showed high probabilities for the presence of stag beetle in those areas. The lack of

genetic richness in these areas may reflect postglacial bottlenecks. Even though in Central

France higher levels of nuclear gene diversity and allelic richness were present, we have no

samples from the southwest of France that could corroborate the area to have been another

refugium. If this were the case, it could explain why we found cluster 4 with individuals across

region ‘West’, based on nuclear DNA, which could represent another lineage. Our genetic data

might also not hold enough resolving power to distinguish a secondary refuge in the southwest

of France and/or northern Iberia.

Although the species is attributed limited vagility, our results showed a substantial and

rapid range expansion of L. cervus in ancient times. Female stag beetles especially have the ten-

dency to stay close to their site of emergence [16, 77, 78]. Dispersal distances are even smaller

when suitable oviposition sites are abundant and nearby as in Bosco Della Fontana in Italy

[78], but can become somewhat larger in suburban areas [5] and under unsuitable habitat con-

ditions [16]. Thomaes et al. [16] found that availability of suitable dead wood for oviposition

and habitat quality, defined as canopy cover, are the main drivers of dispersal in female stag

beetles and thus in regulating colonisation. Our results, on the basis of the maternally inherited

mtDNA, suggested that long distance dispersal across generations by female stag beetles could

have occurred or that the environment at that time might have invited them to disperse more

frequently than is now assumed. As the postglacial colonisation of host tree species, specifically

Quercus species, through Europe progressed [69], suitable habitat for stag beetle must have

been available, enabling females to stay, as many studies have shown. On the other hand, nest-

ing sites might have been distributed in a scattered manner, which could have induced dis-

persal. When numbers of larvae also increased locally, this could have encouraged the females
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to look for other nesting sites, as they seem not to lay their eggs where other larvae are already

present [79].

While mtDNA remains the classical phylogeographical marker it may lack the power to

detect population structure on fine spatio-temporal scales, particularly in cases where individ-

uals are derived from star-shaped phylogenies. Microsatellites, owing to their high levels of

variability, may confer greater fine scale resolution. Founder effects and genetic bottlenecks

during colonisation would have reduced local population genetic diversity and increased

genetic differentiation among populations, especially when rates of population growth

remained small after colonisation [80]. However, levels of nuclear genetic diversity in northern

and western populations were not extremely low and no indication of inbreeding was found.

Here microsatellites revealed often low to moderate FST values within clusters and the lack of a

significant signal of IBD when Greek samples were excluded. This might suggest gene flow

among populations with distances exceeding the assumed home range between them to be

possible. Nonetheless, the FST values may represent the historical rather than the present pat-

tern, due to shared alleles from an ancestral population. Furthermore, population differentia-

tion was often significant, even among nearby populations (e.g. the Belgian populations).

Finer scale resolution of the drivers of structure here will require further sampling.

As for many other species hot spots of genetic diversity for L. cervus seemed to lie in south-

eastern Europe where they resided during the LGM. The identification of such regions, espe-

cially in Greece and Italy, could help conservation managers to prioritise actions to preserve

the current level of genetic diversity of the species. The study delivered new knowledge on the

colonisation history of L. cervus in Europe after the LGM, as the data demonstrated that a sin-

gle clade successfully colonised most of Europe. However, further research is needed on a

more local scale to evaluate the drivers of fine scale structure among populations under current

conditions and if effective population sizes are high enough to counter the negative effects of

isolation.

Supporting information

S1 Fig. Maximum-likelihood phylogeny tree, calculated with RAxML for Lucanus cervus
COI data, using L. ibericus as an outgroup species. Only bootstrap values greater than 70%

are shown (100 replicates). The scale bar corresponds to the mean number of amino acid sub-

stitutions per site on the respective branch. Lineages I and II are indicated with blue and pink,

respectively.

(TIF)

S2 Fig. Spatial clustering results based on microsatellite genotypes of Lucanus cervus. (A)

The BAPS results showing four clusters, (B-D) STRUCTURE results with (B) K = 2 main clus-

ters involving all samples, and with (C) K = 2 subclusters and (D) K = 4 subclusters after

excluding Greek samples assigned to one cluster in (B; indicated in pink). The estimated prob-

abilities of assignment to each cluster (indicated in different colours) are shown on the y-axes.

(TIF)

S3 Fig. ΔK calculated for each K from 1 to 20 using the Evanno method in STRUCTURE

HARVESTER. This is based on STRUCTURE results (A) using all samples and (B) after

excluding the Greek samples.

(TIF)

S4 Fig. The final set of occurrence data of Lucanus cervus after thinning indicated with red

x’s. The insert shows part of Southern England where grey crosses are occurrence sites before
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the final thinning step using the nearest neighbour distance of 5 km.

(TIF)

S1 Table. Sample information of the collected stag beetles including localities, coordinates,

year of collection and accession numbers of the studied COI sequences.

(PDF)

S2 Table. Microsatellite multiplex and simplex primer concentrations, fluorescent labels

and annealing temperatures for Lucanus cervus.
(PDF)

S3 Table. Population pairwise FST values for mtDNA dataset of Lucanus cervus. Significant

values (p< 0.05) are indicated in bold.

(PDF)

S4 Table. Population pairwise FST values for microsatellite genotypes of Lucanus cervus.
Significant values (p< 0.05) are indicated in bold.

(PDF)

S5 Table. Lucanus cervus microsatellite data used in the analyses.

(XLSX)
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