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Abstract A rule base covering the entire input domain
is required for the conventional Mamdani inference and
Takagi–Sugeno–Kang (TSK) inference. Fuzzy interpola-
tion enhances conventional fuzzy rule inference systems
by allowing the use of sparse rule bases by which certain
inputs are not covered. Given that almost all of the existing
fuzzy interpolation approacheswere developed to support the
Mamdani inference, this paper presents a novel fuzzy inter-
polation approach that extends the TSK inference. This paper
also proposes a data-driven rule base generation method
to support the extended TSK inference system. The pro-
posed system enhances the conventional TSK inference in
two ways: (1) workable with incomplete or unevenly dis-
tributed data sets or incomplete expert knowledge that entails
only a sparse rule base and (2) simplifying complex fuzzy
inference systems by usingmore compact rule bases for com-
plex systems without the sacrificing of system performance.
The experimentation shows that the proposed system overall
outperforms the existing approaches with the utilisation of
smaller rule bases.

Keywords Fuzzy inference system · TSK · Fuzzy rule base
generation · Fuzzy interpolation
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1 Introduction

Fuzzy inference mechanisms are built upon fuzzy logic to
map system inputs andoutputs.A typical fuzzy inference sys-
tem consists of a rule base and an inference engine. A number
of inference engines have been developed, with theMamdani
inference (Mamdani (1977)) and the TSK inference (Takagi
and Sugeno (1985)) being the most widely used. The Mam-
dani fuzzy model is more intuitive and suitable for handling
linguistic inputs; its outputs are usually fuzzy sets, and thus, a
defuzzification process is often required. In contrast, the TSK
inference approach produces crisp outputs directly, as TSK
fuzzy rules use polynomials as rule consequences. There are
generally two types of rule bases used to support the two
fuzzy inference engines, which areMamdani-style rule bases
and TSK-style rule bases accordingly.

A rule base, Mamdani-style or TSK-style, can either be
translated from expert knowledge or extracted fromdata. The
rule base led by the knowledge-driven approaches therefore
essentially is a representation of the human experts’ knowl-
edge in the format of fuzzy rules (Negnevitsky (2005)). In
order to enable this approach, a problem has to be human
comprehensible and fully understood by human experts as
linguistic rules, which are then interpreted as fuzzy rules
by specifying the membership functions of linguistic words.
Recognising that the expert knowledge may not always
be available, data-driven approaches were proposed, which
extract fuzzy rules from a set of training data using machine
learning approaches (Rezaee and Zarandi (2010)). Both
Mamdani and TSK inference approaches are only workable
with dense rule bases which each covers the entire input
domain.

Fuzzy interpolation relaxes the requirement of dense rule
bases from conventional fuzzy inference systems (Kóczy
and Hirota (1993); Yang et al. (2017c)). When a given
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observation does not overlap with any rule antecedent,
certain conclusions can still be generated by means of inter-
polation. In addition, fuzzy interpolation helps in system
complexity reduction by removing the rules that can be
approximated by their neighbours. A number of fuzzy inter-
polation approaches have been developed, such as Chen and
Hsin (2015), Huang and Shen (2006, 2008), Kóczy and
Hirota (1997), Naik et al. (2014), Yang and Shen (2011),
Yang et al. (2017a), Shen and Yang (2011) and Yang and
Shen (2013). However, all these existing fuzzy interpolation
approaches were extensions of the Mamdani inference.

A novel fuzzy interpolation approach, which extends the
TSK inference, is presented in this paper. The proposed
fuzzy inference engine is workable with sparse, dense or
imbalanced TSK-style rule bases, which is a further devel-
opment on the seminal work of Li et al. (2017). In addition, a
data-driven TSK-style rule base generation approach is also
proposed to extract compact and concise rule bases from
incomplete, imbalanced, normal or over-densedata sets.Note
that sparse and imbalanced data sets are still commonly seen,
regardless of the magnitude of the data sets in the era of big
data. The proposed approach has been applied to two bench-
mark problems and a real-world problem in the field of cyber
security. The experimentation demonstrated the power of the
proposed approach in enhancing the conventional TSK infer-
ence method by means of broader applicability and better
system efficiency, and competitive performance in reference
to other machine learning approaches.

The structure of rest of the paper is organised as follows.
Section 2 introduces the theoretical underpinnings of TSK
fuzzy inference model and the TSK rule base generation
approaches. Section 3 presents the extendedTSKsystem, and
Sect. 4 discusses the proposed rule base generation approach.
Section 5 details the experimentation for demonstration and
validation. Section 6 concludes the paper and suggests prob-
able future developments.

2 Background

The conventional TSK inference system and rule base gen-
eration approaches are briefly reviewed in this section.

2.1 TSK inference

Suppose a TSK-style fuzzy rule base comprises of n rules
each with m antecedents:

R1 : IF x1 is A11 and . . . and xm is Am1

THEN y = f1(x1, . . . , xm)

= β01 + β11x1 + . . . + βm1xm,

. . .

Rn : IF x1 is A1n and . . . and xm is Amn

THEN y = fn(x1, . . . , xm)

= β0n + β1nx1 + . . . + βmnxm, (1)

where β0r and βsr , (r ∈ {1, 2, . . . , n} and s ∈ {1, 2, . . .,
m}) are constant parameters of the linear functions of rule
consequences. The consequence polynomials deteriorate to
constant numbers β0r when the outputs are discrete crisp
numbers (to represent symbolic values). Given an input vec-
tor (A∗

1, . . . , A
∗
m), the TSK engine performs inference in the

following steps:

1 Determine the firing strength of each rule Rr (r ∈
{1, 2, . . . , n}) by integrating the similarity degrees between
its antecedents and the given inputs:

αr = S(A∗
1, A1r ) ∧ . . . ∧ S(A∗

m, Amr ), (2)

where ∧ is a t-norm usually implemented as a minimum
operator, and S(A∗

s , Asr ) (s ∈ {1, 2, . . . ,m}) is the similarity
degree between fuzzy sets A∗

s and Asr :

S(A∗
s , Asr ) = max{min{μA∗

s
(x), μAsr (x)}}, (3)

where μA∗
s
(x) and μAsr (x) are the degrees of membership

for a given value x within the domain.
2 Calculate the sub-output led by each rule Rr based on the
given observation (A∗

1, . . . , A
∗
m):

fr (x
∗
1 , . . . , x

∗
m)

= β0r + β1r Rep(A
∗
1) + · · · + βmr Rep(A

∗
m),

(4)

where Rep(A∗
s ) is the representative value or defuzzified

value of fuzzy set fuzzy set A∗
s , which is often calculated

as the centre of area of the membership function.
3 Generate the final output by integrating all the sub-outputs
from all the rules:

y =
∑n

r=1
αr fr (x

∗
1 , . . . , x

∗
m)

∑n

r=1
αr

. (5)

It is clear from Eq. 3 that the firing strength will be 0 if a
given input vector does not overlap with any rule antecedent.
In this case, no rule will be fired and the conventional TSK
approach will fail.

2.2 TSK rule base generation

The antecedent variables of a TSK rule are represented as
fuzzy sets and the consequence is represented by a linear
polynomial function, as shown in Eq. 1. Data-driven fuzzy
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rule extraction approaches first partition the problem domain
into multiple regions or rule clusters. Then, each region is
represented by a TSK rule. Various clustering algorithms,
such as K-Means (MacQueen (1967)) and its variations, can
be used to divide the problem domain into sub-regions or
rule clusters (Chen and Linkens (2004); Rezaee and Zarandi
(2010)).

Given a rule cluster that contains a set of multi-dimensi-
onal data instances, a typical TSK fuzzy rule extraction
process is performed in two steps: (1) rule antecedents
determination and (2) consequent polynomial determina-
tion (Nandi and Klawonn (2007)). The rule antecedent
determination process prescribes a fuzzy set to represent
the information of the cluster on each dimension, such as
Gaussian membership functions Chen and Linkens (2004).
The consequent polynomial can usually be determined
by employing the linear regression (Nandi and Klawonn
(2007); Rezaee and Zarandi (2010)). Once each rule clus-
ter has been expressed by a TSK rule, the TSK rule
base can be assembled by combining all the extracted
rules.

Note that a 0-order TSK fuzzy model is required if only
symbolic labels are included in the output of data set (Kerk
et al. (2016)). In this case, the step of consequent poly-
nomial determination is usually omitted. Instead, discrete
crisp numbers are typically used in representing the sym-
bolic output values. Accordingly, the rule base generation
process is different by firstly dividing the labelled data set
into multiple sub-data sets each sharing the same label.
Then, a clustering algorithm is applied to each sub-data
set to generate rule clusters. Finally, each rule cluster is
represented as the antecedents of a rule with an integer
number used as the 0-order consequence representing the
label.

3 TSK inference with fuzzy interpolation (TSK+)

The conventional TSK fuzzy inference system is extended
in this section by allowing the interpolation and extrap-
olation of inference results. The extended system is thus
workable with sparse rule bases, dense rule bases and
imbalanced rule bases, which is termed as TSK+ inference
system.

3.1 Modified similarity measure

Conventional TSK will fail if a given input does not overlap
any rule antecedent in the rule base. This can be addressed
using fuzzy interpolation such that the inference conse-
quence can be approximated from the neighbouring rules
of the given input. In order to enable this, the measure

of firing strength used in the conventional TSK inference
is modified based on a revised similarity measure pro-
posed in Chen and Chen (2003). In particular, the similarity
measure proposed in Chen and Chen (2003) is not sensi-
tive to distance in addition to membership functions. This
similarity measure is further extended in this subsection
such that its sensitivity to distance is flexible and con-
figurable to support the development of TSK+ inference
engine.

It has been proven in the literature that different types of
membership functions do not pose a significant difference
in inference results if the membership functions are prop-
erly fine-tuned (Chang and Fan (2008)). Based on this, only
triangular membership functions are used in this work for
computational efficiency. Given two triangular fuzzy sets
A = (a1, a2, a3) and A′ = (a′

1, a
′
2, a

′
3) in a normalised

variable domain, their similarity degree S(A, A
′
) can be cal-

culated as (Chen and Chen (2003)):

S(A, A′) =
⎛

⎜⎝1 −
∑3

i=1
|ai − a′

i |
3

⎞

⎟⎠ . (6)

Equation 6 is extended in this work by introducing a con-
figurable parameter as:

S(A, A′) =
⎛

⎜⎝1 −
∑3

i=1
|ai − a′

i |
3

⎞

⎟⎠ · d, (7)

where d, termed as distance f actor , is a function of the
distance between the two concerned fuzzy sets:

d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ; a1 = a2 = a3
& a

′
1 = a

′
2 = a

′
3

1 − 1
1+e(−s·‖A,A′‖+5) ; otherwise,

(8)

where ‖A, A′‖ represents the distance between the two
fuzzy sets usually defined as the Euclidean distance of their
representative values, and s (s > 0) is an adjustable sensitiv-
ity factor. Smaller value of s leads to a similarity degree
which is more sensitive to the distance of the two fuzzy
sets. The constant 5 in the equation ensures that the dis-
tance factor is normalised as 1 when the distance between
two given fuzzy sets is 0 (i.e. the two fuzzy sets have the
same representative values). According to Eq. 8, the dis-
tance factor is not considered when fuzzy sets A and A′
are both crisp. This is because the shapes of the fuzzy set
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need to be considered by the representative values as con-
tributing elements of the distance factor when the objects
are fuzzy sets, but there is no point to consider this ele-
ment if the objects are crisp numbers (Johanyák and Kovács
(2005)).

The modified similarity measure S(A, A′) between fuzzy
sets A and A′ has the following properties:

1. lager value of S(A, A′) represents higher similarity
degree between fuzzy sets A and A′;

2. S(A, A′) = 1 if and only if fuzzy sets A and A′ are
identical;

3. S(A, A′) > 0 unless (a1 = a2 = a3 = 0 and a′
1 = a′

2 =
a′
3 = 1) or (a1 = a2 = a3 = 1 and a′

1 = a′
2 = a′

3 = 0).

3.2 Extended TSK inference

Given a rule base as specified in Eq. 1 and an input vec-
tor (A∗

1, . . . , A
∗
m), the TSK+ performs inferences using the

same steps as those detailed in Sect. 2.1 except that Eq. 3 is
replaced byEq. 7.According to the third property of themod-
ified similarity measure discussed above, S(A∗

s , Asr ) > 0
unless A∗

s and Asr take boundary crisp values 0 and 1. This
means the firing strength of any rule Rr is always greater
than 0, i.e. αr > 0, except for the special case when only
boundary crisp values are involved. As a result, every rule
in the rule base contributes to the final inference result to a
certain degree. Therefore, even if the given observation does
not overlap with any rule antecedent in the rule base, certain
inference result can still be generated, which significantly
improves the applicability of the conventional TSK inference
system.

4 Sparse TSK rule base generation

A data-driven TSK-style rule base generation approach for
the proposed TSK+ inference engine is presented in this sec-
tion, which is outlined in Fig. 1. Given a data set T which
might be sparse, unevenly distributed, or dense, the system
firstly groups the data instances into clusters using certain
clustering algorithms. Then, each cluster is expressed as a
TSK rule by employing linear regression. From this, an initial
rule base is generated by combining all the extracted rules.
Finally, the initialised rule base is optimised by applying the
genetic algorithm (GA), which fine-tunes the membership
functions of fuzzy sets in the rule base.

Fig. 1 TSK+ rule base generation

4.1 Rule base initialisation

Centroid-based clustering algorithms are traditionally emp-
loyed in TSK fuzzy modelling to group similar objects
together for rule extraction (Chen andLinkens (2004)),which
is also the case in this work. However, differing from exist-
ing TSK-style rule base generation approaches, the proposed
system is workable with dense data sets, sparse data sets and
unevenly distributed data sets. Therefore, a two-level cluster-
ing scheme is applied in thiswork. The first level of clustering
divides the given (dense/sparse) data set into multiple sub-
data sets using sparse K-Means clustering algorithm (Witten
and Tibshirani (2010)). Based on the feature of the sparse
K-Means clustering, those divided sub-data sets are gener-
ally considered being dense. The second level of clustering
is applied on each obtained dense sub-data set to generate
rule clusters for TSK fuzzy rule extraction by employing the
standard K-Means clustering algorithm (MacQueen (1967)).
Note that the number of clusters has to be pre-defined for
both sparse K-Means and the standard K-Means, which is
discussed first below.

4.1.1 Number of clusters determination

A number of approaches have been proposed in the lit-
erature to determine the value of k, such as the Elbow
method, Cross-validation, Bayesian Information Criterion
(BIC)-based approach, and Silhouette-based approach (Kod-
inariya and Makwana (2013)). In particular, the Elbow
method is faster and effective, and this approach is there-
fore employed in this work. This approach determines the
number of clusters based on the criteria that adding another
cluster does not lead tomuch bettermodelling result based on
a given objective function. For instance, for a given problem,
the relationship between performance improvement and the
value of k is shown in Fig. 2. The value of k in this case can
be determined as 4 which is the obvious turning point (or the
Elbow point).

Fig. 2 Determination of k using the Elbow method
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4.1.2 Dense sub-data set generation

Sparse K-Means is an extension of the standard K-Means
for handling sparse data sets (Witten and Tibshirani (2010)).
Assuming k clusters are required, sparse K-Means also starts
with the initialisation of k centroids (usually randomly). This
is followed by the assignment of data instances to centroids
and the updating of centroids based on the assignments,
which are iterated until there is no change on the assignments.
Different from the standard K-Means which assigns objects
with the goal ofminimising thewithin-cluster sum of squares
error (SSE), the sparse K-Means assigns objects bymaximis-
ing the between-cluster sum of squares error (BCSS), which
is defined as:

BCSS =
m+1∑

q=1

( p∑

t=1

(xtq − μq)
2 − SSE

)
, (9)

where p is the total numbers of data instances in the given
data set, m is the number of input features in the given data
set,μq is the mean of all the elements on the qth feature, and
xtq is the qth feature of the t th data point in the given data
set.

The within-cluster sum of squares error SSE is defined as:

SSE =
k∑

j=1

p j∑

t=1

(‖ x jt − v j ‖)2 , (10)

where k is the number of clusters determined by the Elbow
approach, p j is the number of data instances in the j th cluster,
x jt is the t th data point in the j th cluster, v j is the j th cluster
centre, and ‖ x jt −v j ‖ is the Euclidean distance between x jt
and v j . Note that if the labels in a given data set are symbolic
values, only 0-order TSK rules are required and thus Eq. 9
becomes:

BCSS =
m∑

q=1

( p∑

t=1

(xtq − μq)
2 − SSE

)
. (11)

4.1.3 Rule cluster generation

Once the given training data set T has been divided into k
dense sub-data sets, K-Means is employed to each deter-
mined sub-data set Ti (1 ≤ i ≤ k) to generate rule clusters,
each representing a rule. Assume that ki clusters are required
for a sub-data set Ti . K-Means is initialised by ki random
cluster centroids. It then assigns every data instance to one
cluster by minimising the SSE:

SSE =
ki∑

j=1

pit∑

t=1

(
‖ xij t − vij ‖

)2
, (12)

where pit is the number of data points in the j th cluster of
the sub-data set Ti , xij t is the t th data point in the j th cluster

in the sub-data set Ti , vij is the centre of the j th cluster in the

sub-data set Ti , and ‖ xij t − vij ‖ is the Euclidean distance

between xij t and vij . Once all the data instances are assigned,
the algorithm updates the cluster centroids accordingly to
the newly assigned members. These two steps are iterated
until there is no change in object assignments. After the K-
Means is applied, the given training data set T is divided
into n = ∑k

j=1 ki clusters. For simplicity, the generated rule
clusters are jointly represented as {RC1, RC2, . . . , RCn}.

4.1.4 Fuzzy rule extraction

Each determined cluster from the above steps is utilised to
form one TSK fuzzy rule. A number of approaches have been
proposed to use a Gaussian membership function to repre-
sent a cluster, such as Rezaee and Zarandi (2010). However,
given the fact that most of the real-world data are not nor-
mally distributed, the cluster centroid usually is not identical
with the centre of the Gaussian membership function, and
thus, Gaussian membership functions may not be able to
accurately represent the distribution of the calculated clus-
ters. In order to prevent this and also keep computational
efficiency as stated in Sect. 3, triangular membership func-
tions are utilised in this work.

Suppose that a data set has m input features and a single-
output feature. Given a rule cluster RCr (1 ≤ r ≤ n), a TSK
fuzzy rule Rr can be extracted from the cluster as follows:

Rr : IF x1 is A1r and . . . and xm is Amr

THEN y = fr (x1, . . . , xm). (13)

Without loss generality, take the sth dimension (1 ≤ s ≤ m)
of rule cluster RCr as an example, denoted as RCs

r . Suppose
that RCs

r has pr elements, i.e. RCs
r = {x1s , x2s , . . . , x pr

s }. As
only triangular fuzzy sets are used in this work, fuzzy set Asr

can be precisely represented as (a1sr , a
2
sr , a

3
sr ). The core of the

triangular fuzzy set is set as the cluster centroid, that is a2sr =∑pr
q=1 x

q
s /pr ; and the support of the fuzzy set is set as the

span of the cluster, i.e. (a1sr , a
3
sr ) = (min{x1s , x2s , . . . , x pr

s },
max{x1s , x2s , . . . , x pr

s }).
First-order polynomials are typically used as the conse-

quences of TSK fuzzy rules. That is, y = β0r +β1r x1+· · ·+
βmr xm , where the parameters β0r and βsr , s ∈ {1, 2, . . . ,m}
are estimated using a linear regression approach. The locally
weighted regression (LWR) is particularly adopted in this
work, due to its ability to generate an independent model
that is only related to the given cluster of data in the training
data set (Nandi and Klawonn (2007); Rezaee and Zarandi
(2010)). The rule consequence will deteriorate to 0-order, if
the values in the output dimension are discrete integer num-
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bers. From this, the raw base is initialised by combining all
the extracted rules, which is of the form of Eq. 1.

4.2 Rule base optimisation

The generated raw rule base is optimised in this section by
fine-tuning the membership functions using the general opti-
misation searching algorithm, genetic algorithm (GA). GA
has been successfully utilised in rule base optimisation, such
as Mucientes et al. (2009) and Tan et al. (2016). Briefly, GA
is an adaptive heuristic search algorithm for solving both
constrained and unconstrained optimisation problems based
on evolutionary ideas of natural selection process that mim-
ics biological evolution. The algorithm firstly initialises the
population with random individuals. It then selects a num-
ber of individuals for reproduction by applying the genetic
operators. The offspring and some of the selected existing
individuals jointly form the next generation. The algorithm
repeats this process until a satisfactory solution is generated
or a maximum number of generations has been reached.

4.2.1 Problem representation

Assume that an initialised TSK rule base is comprised of
n rules as expressed in Eq. 1. A chromosome or individ-
ual, denoted as I, in the GA is used to represent a potential
solution, which is designed to represent the rule base in this
proposed system, as illustrated in Fig. 3.

4.2.2 Population initialisation

The initial population P = {I1, I2, . . . , I|P|} is formed by
taking the initialised rule base and its random variations. In
order to guarantee all the variated fuzzy sets are valid and
convex, constraint a1sr < a2sr < a3sr is applied to the genes
representing each fuzzy set. The size of the population |P|
is a problem-specific adjustable parameter, typically ranging
from tens to thousands, with 20–30 being used most com-
monly (Naik et al. (2014)).

Fig. 3 Chromosome encoding

4.2.3 Objective function

An objective function is used in the GA to determine the
quality of individuals. The objective function in this work
is defined as the root mean square error (RMSE). Given a
training data set T and an individual Ii , 1 ≤ i ≤ |P|, the
RMSE value can be calculated as:

RMSEi =

√√√√
∑|T|

j=1

(
z j − ẑ j

)2

|T| , (14)

where |T| is the size of the given training data set, z j is the
label of the j th training data instance, and ẑ j represents the
output value led by the proposed TSK+ inference approach.
The individual with the smallest value of RMSE represents
the fittest solution in the population.

4.2.4 Selection

Anumber of individuals need to be selected for reproduction,
which is implemented in this work by the fitness propor-
tionate selection method, also known as the roulette wheel
selection. Assuming that fi is the fitness of individual Ii in
the current population P, its probability of being selected to
generate the next generation is:

p(Ii ) = fi
∑|P|

j=1
f j

, (15)

where |P| is the size of the population. The fitness value fi
of an individual Ii in the proposed systemwas determined by
adopting the linear-ranking algorithm (Baker (1985)) given
as:

fi = 2 − max + 2(max − 1)(ri − 1)

|P| , (16)

where ri is the ranking position of individual Ii in the ordered
population P, and max is the bias or selective pressure
towards the fittest individuals in the population.

4.2.5 Reproduction

Once a number of parents are selected, they then breed some
individuals for the next generation using the genetic opera-
tors crossover and mutation, as shown in Fig. 4. In particular,
crossover swaps contiguous parts of the genes of two indi-
viduals. In this work, the single-point crossover approach
is adopted, which swaps all data beyond this index point
between the two parent chromosomes to generate two chil-
dren. Note that the crossover point can only be between those
genes which employed to represent two different fuzzy sets,
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Fig. 4 Procedure of reproduction (with only one crossover ormutation
operation per generation for illustration)

such that all the fuzzy sets are valid and convex all the time
during the reproduction process.

The second genetic operator mutation is used to maintain
genetic diversity from one generation of an individual to the
next, which is analogous to a biological mutation. Mutation
alters one gene values in a chromosome from its initial state.
A pre-defined mutation rate is used to control the percentage
of occurrence of mutations. In this work, in order to make
sure the resulted fuzzy sets are valid and convex, the con-
straint a1sr ≥ a2sr ≥ a3sr is applied to the genes representing
each fuzzy set during themutation operation. The newly bred
individuals and some of the best individual in the current gen-
eration P jointly form the next generation of the population
(P

′
).

4.2.6 Iteration and termination

The selection and reproduction processes are iterated until
the pre-defined maximum number of iterations is reached or
the value of the objective function regarding an individual
is less than a pre-specified threshold. When the termination
condition is satisfied, the fittest individual in the current pop-
ulation is the optimal solution.

5 Experimentation

Two nonlinear mathematical models and a well-known real-
world data set (KDD Cup 99 data set) are employed in this
section to validate and evaluate the proposed system.

5.1 Experiment 1

A3-dimensional nonlinear functionhas beenused as a bench-
mark by a number of projects, including the recent ones such
as Bellaaj et al. (2013); Tan et al. (2016) and Li et al. (2017),
which is re-considered in this section for a comparative study.
The problem is given below:
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Fig. 5 Mathematical model in Experiment 1. a Surface view of Eq. 17.
b Training data set distribution

f (x1, x2) = sin
( x1

π

)
· sin

( x2
π

)
, (17)

which takes two inputs, x1 (x1 ∈ [10, 30]) and x2 (x2 ∈
[10, 30]), and produces a single output y = f (x1, x2) (y ∈
[−1, 1]), as illustrated in Fig. 5a.

5.1.1 Rule base initialisation

In order to demonstrate the proposed TSK+ rule base gen-
eration approach, a sparse training data set T was manually
generated from Eq. 17. The data set is composed of 300
data points sparsely distributed within the [10, 30]×[10, 30]
domain covering 57% of the input domain. The distribution
of this training data set is illustrated in a 2-dimensional plane
in Fig. 5b. The key steps of TSK rule base initialisation using
the training data set are summarised below.

Step 1 Dense sub-data sets generation The sparse training
data set T was firstly divided into a number a dense sub-data
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Table 1 SSE and performance
improvement

No. of k SSE PI

1 2961.91

2 2248.98 712.93

3 1763.74 485.24

4 1478.32 285.42

5 1286.41 191.91

6 1180.48 105.93

7 1079.48 101.00

8 997.626 81.85

9 946.238 51.39

10 880.43 65.81

11 840.865 39.57

12 808.51 32.36

13 767.61 40.90

14 709.997 57.61

15 689.301 20.70
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Fig. 6 Performance improvement against incremented k

sets by applying the sparse K-Means clustering algorithm.
In particular, the number of sub-data sets was determined by
the Elbowmethod as discussed in the Sect. 4.1.2. The perfor-
mance improvements (PIs) against the incremented number
clusters are listed in Table 1 and shown in Fig. 6. It is clear
from the figure that the performance improvement decreases
rapidly when k increased from 2 to 6, before it flattened out
after 6. Therefore, 6 was taken as the number of clusters. The
application of sparse K-Means led to 6 dense sub-data sets
as demonstrated in Fig. 7.

Step 2 Rule cluster generation Once the sparse training data
set Twas divided into 6 dense sub-data sets (T1, T2, . . ., T6),
the standard K-Means clustering algorithm was employed
on each determined sub-data set to group similar data points
into rule clusters. The application of the Elbow approach led
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Sparse K-Means results, k=6

Fig. 7 Result of sparse K-Means where k=6

to a set of SSEs and PIs as listed in Table 2, which in turn
determined the value of k for each sub-data set as listed in
Table 3.

Step 3 Rule base initialisation A rule was extracted from
each cluster and all the extracted rules jointly initialised the
rule base. The generated 28 TSK fuzzy rules are detailed in
Table 4.

5.1.2 TSK fuzzy interpolation

Given any input, overlapped with any rule antecedent or
not, the proposed TSK+ inference engine is able to gen-
erate an output. For instance, a randomly generated test-
ing data point was (A∗

1 = (27.37, 27.37, 27.37), A∗
2 =

(13.56, 13.56, 13.56)). TheproposedTSK+ inference engine
firstly calculated the similarity degrees between the given
input and the antecedents of every rule (S(A∗

1, Ar1), S(A∗
2,

Ar2), r = {1, 2, . . . , 28}) using Eq. 7, with the results listed
in Table 5.

From the calculated similarity degrees, the firing strength
of each rule FSr was computed using Eq. 2, and the sub-
consequence from each rule was calculated using Eq. 4,
which are also shown in Table 5. From this, the final output
of the given input was calculated using Eq. 5 as y = − 0.902.

5.1.3 Rule base optimisation

In order to achieve the optimal performance, the generated
raw rule base was fine-tuned using the GA algorithm as
detailed in Sect. 4.2. The GA parameters used in this exper-
iment are listed in Table 6. The population was initialised as
the individuals representing the raw rule base and its random
variations. The performance against the number of iterations
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Table 2 SSE and PI for each sub-data set (k = {1, 2, . . . , 10})
k T1 T2 T3 T4 T5 T6

SSE PI SSE PI SSE PI SSE PI SSE PI SSE PI

1 159.9 271.6 128.3 222.28 133.98 259.65

2 109.42 50.48 187.65 83.95 68.61 59.69 140.16 82.12 96.06 37.92 187.95 71.70

3 81.44 27.98 149.88 37.78 56.66 11.95 114.23 25.93 66.42 29.64 147.02 40.93

4 66.85 14.86 126.35 23.53 46.16 10.50 99.48 14.75 52.46 13.96 123.73 23.29

5 56.45 10.13 109.73 16.62 39.87 6.29 85.06 14.42 42.79 9.67 109.39 14.34

6 48.04 8.41 94.14 15.59 33.04 6.83 77.22 7.84 37.69 5.10 95.25 14.104

7 42.01 6.03 83.67 10.47 28.33 4.71 69.90 7.32 33.52 4.17 85.26 9.99

8 36.22 5.79 77.63 6.04 26.26 2.07 61.87 8.03 29.18 4.34 80.06 5.2

9 32.4 3.82 74.63 8.00 24.03 2.23 56.17 5.70 25.01 4.17 74.62 5.44

10 28.77 3.63 67.11 7.52 22.69 1.34 52.39 3.78 24.29 0.72 68.56 6.06

Table 3 The value of k for each sub-data set

T1 T2 T3 T4 T5 T6

Determined number of k 5 5 3 4 6 5

is shown in Fig. 8, which clearly demonstrates the perfor-
mance improvements led by the GA.

5.1.4 Results comparison

In order to enable a direct comparative study with support
of the approaches proposed in Bellaaj et al. (2013) and Tan
et al. (2016), the proposed approach was also applied to 36
randomly generated testing data points. The sum of errors for
the 36 testing data led by the proposed approach is shown in
Table 7, in addition to those led by the compared approaches.
The proposed TSK+ outperformed the approaches proposed
in Bellaaj et al. (2013) and Tan et al. (2016), although less
rules have been used. Another advantage of the proposed
approach is that the number of rules led by the proposed
system was determined automatically by the system without
the requirement of any human inputs. In addition, noticeably,
the optimisation process significantly improved the system
performance by reducing the sum of error from 3.38 to
1.78.

5.2 Experiment 2

The proposed approach is not only able to deal with sparse
or unevenly distributed data sets, but also able to work with
dense data sets. In order to evaluate its ability in handling
dense data sets, a two-input and single-output nonlinear
mathematical model expressed in Eq. 18 was employed as a
test bed, given that it has been used by Evsukoff et al. (2002)
and Rezaee and Zarandi (2010).

f (x, y) = sin(x)

x
· sin(y)

y
. (18)

In this case, a randomly generated dense training data set
was used, including 1681 data points distributed within the
range of [−10, 10]× [−10, 10]. By employing the proposed
approach, 14 TSK fuzzy rules in total were generated. To
allow a direct comparison, the mean-squares error (MSE)
was used as the measurement of models, by following the
work presented in Evsukoff et al. (2002) and zRezaee and
Zarandi (2010). The detailed calculations of this experiment
are omitted here. TheMSEvalues led by different approaches
with the specified number of rules are listed in Table 8. The
results demonstrated that the proposed system TSK+ per-
formed competitively with only 14 TSK fuzzy rules.

5.3 Experiment 3

This section considers awell-known real-world data setNSL-
KDD-99 (Tavallaee et al. (2009)), which has been widely
used as a benchmark (Bostani and Sheikhan (2017); Wang
et al. (2010); Yang et al. (2017b)). This data set is a modified
version of KDD Cup 99 data set generated in a military net-
work environment. It contains 125,973 data instances with
41 attributes and 1 label which indicates the type of con-
nection. In particular, normal connections and four types of
attacks are labelled in the data set, including Denial of Ser-
vice Attacks (DoS), User to Root Attacks(U2R), Remote to
User Attacks (R2U) and Probes.

5.3.1 Data set pre-processing

The four most important attributes were selected from the
original 41 using expertise knowledge in order to remove
noises and redundancies in the work of Yang et al. (2017b).
This experiment also took the four attributes as system input,
and the application of automatic feature selection and reduc-
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Table 4 Generated raw TSK
rule base

No. Input 1 Input 2 Output

a11 a12 a13 a21 a22 a23 β0 β1 β2

1 10.08 12.72 15.36 26.22 27.00 27.78 − 0.14 0.06 − 0.38

2 13.22 14.87 16.52 27.87 28.84 29.82 − 0.00 0.28 − 8.24

3 11.82 13.02 14.22 22.97 24.46 25.96 − 0.15 − 0.02 1.72

4 10.90 13.68 16.45 18.85 20.50 22.16 − 0.04 − 0.20 4.47

5 10.06 11.18 12.30 14.89 16.91 18.93 0.25 − 0.06 − 1.49

6 13.16 14.57 15.99 15.63 17.69 19.76 0.00 − 0.21 4.30

7 19.24 20.48 21.71 26.83 28.25 29.68 0.14 − 0.06 − 1.21

8 19.59 20.52 21.45 22.15 22.89 23.64 0.24 0.08 − 6.50

9 19.20 20.39 21.58 23.90 24.66 25.42 0.30 0.00 − 6.00

10 10.16 11.26 12.37 10.85 12.44 14.02 0.12 0.09 − 2.22

11 13.36 15.15 16.95 10.05 10.78 11.51 − 0.01 0.30 − 2.85

12 12.25 14.14 16.03 11.75 13.42 15.09 0.05 0.10 − 2.21

13 20.51 21.24 21.97 15.28 17.48 19.69 − 0.17 0.12 1.32

14 19.27 20.31 21.35 19.30 20.33 21.35 0.13 − 0.00 − 2.49

15 16.64 18.59 20.54 15.11 16.71 18.32 − 0.27 − 0.00 5.31

16 20.95 21.42 21.89 11.14 12.25 13.35 − 0.17 − 0.13 4.92

17 19.23 20.61 21.98 12.46 13.57 14.69 − 0.28 − 0.01 5.71

18 19.10 20.14 21.19 10.00 10.81 11.62 − 0.06 − 0.03 1.52

19 24.39 25.46 26.53 28.19 28.94 29.68 − 0.00 − 0.27 8.02

20 24.02 25.03 26.04 21.77 24.08 26.39 − 0.01 0.05 − 0.13

21 27.38 28.63 29.89 21.95 24.91 27.88 − 0.27 − 0.00 8.17

22 24.32 26.04 27.75 17.93 19.32 20.71 0.03 0.28 − 6.23

23 24.31 25.73 27.15 15.75 16.37 16.98 0.09 0.15 − 5.72

24 28.40 29.19 29.99 15.89 18.20 20.52 0.23 0.03 − 7.43

25 26.03 27.77 29.52 10.50 11.39 12.29 0.07 − 0.18 − 0.01

26 24.15 25.29 26.42 10.16 11.62 13.08 0.03 − 0.26 1.80

27 28.40 29.16 29.92 12.79 13.89 14.99 0.29 − 0.02 − 8.38

28 25.07 26.62 28.17 12.92 13.92 14.92 0.18 − 0.06 − 4.66

tion approaches, such as Zheng et al. (2015), remains as
future work. The four selected input features are listed in
Table 9. The data set in this experiment has also been nor-
malised in an effort to reduce the potential noises in this
real-world data set.

5.3.2 TSK+ model construction

As the labels are symbolic values, 0-order TSK-style fuzzy
ruleswere used. In order to construct a 0-order TSK rule base,
the training data set was divided into 5 sub-data sets based
on the five symbolic labels, which are represented using five
integer numbers. The sizes of the sub-data sets and their cor-
responding integer labels are listed in Table 10. The rule base
generation process is summarised in four steps below.

Step 1 Dense sub-data set generation The sparse K-Means
was applied on each sub-data set T j , 1 ≤ j ≤ 5 to generate
dense sub-data sets. Taking the second sub-data set T2 as an

example, the performance improvement led by the increment
of k2, (k2 ∈ {1, 2, . . . , 10}) is shown in Fig. 9. Following
the Elbow approach, 3 was selected as the number of clus-
ters, i.e. k2 = 3. Denote the 3 generated dense sub-sets as
(T21, T22, T23).

Step 2 Rule cluster generation The standard K-Means clus-
tering algorithm was applied on Tji ( j ∈ {1, 2, . . . , 5} and i
ranging from 1 to the determined cluster numbers using the
Elbow approach), to generate rule clusters each representing
a rule. Again, take T2 as an example for illustration. The
determined cluster numbers k2i for each dense sub-data set
T2i are shown in the third column of Table 11. Then, 13 rule
clusters were generated from the sub-data set T2. The rule
cluster generation process for other dense sub-data sets is
not detailed here, but the generated rule cluster or the given
training data set is summarised in Table 11.

Step 3 Raw rule base generation A rule is extracted from
each generated rule cluster. Taking rule cluster RC12 as an
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Table 5 Sub-result from each rule and its calculation details

p S(A∗
1, Ap1) S(A∗

2, Ap2) FDp Consequence

1 0.0053 0.059 0.053 − 0.014

2 0.020 0.003 0.003 − 0.012

3 0.004 0.010 0.004 − 0.014

4 0.001 0.836 0.001 0.006

5 0.007 0.455 0.007 0.004

6 0.016 0.780 0.016 0.023

7 0.467 0.157 0.157 0.170

8 0.461 0.004 0.004 0.008

9 0.449 0.052 0.052 0.118

10 0.012 0.954 0.012 0.018

11 0.024 0.870 0.024 0.024

12 0.002 0.939 0.002 0.005

13 0.211 0.848 0.211 − 0.430

14 0.567 0.812 0.567 − 0.996

15 0.440 0.480 0.440 0.114

16 0.591 0.941 0.591 − 0.913

17 0.480 0.969 0.480 − 1.042

18 0.414 0.871 0.414 − 0.232

19 0.926 0.009 0.009 0.005

20 0.932 0.004 0.004 0.014

21 0.925 0.077 0.077 0.005

22 0.927 0.868 0.868 − 0.937

23 0.918 0.736 0.736 − 0.471

24 0.932 0.616 0.616 − 1.030

25 0.948 0.902 0.902 − 0.622

26 0.947 0.966 0.947 − 0.547

27 0.906 0.913 0.906 − 0.849

28 0.920 0.964 0.920 − 0.589

Table 6 GA parameters

Parameters Values

Population Size 100

Max value in fitness function 2

Crossover rate 0.85

Mutation rate 0.05

Maximum iteration 10,000

Termination threshold 0.01

example, which is the first determined rule cluster in T21, the
corresponding rule R12 can be extracted. In particular, the
consequence of rule R12 is the integer number representing
the class of connections; and the rule antecedents are four
triangle fuzzy sets (A(12)1, A(12)2, A(12)3, A(12)4) led by
the approach discussed in Sect. 4.1.4. The generated rule
R12 is:
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Fig. 8 RMSE values decrease over time during optimisation

Table 7 Results led by approaches in experiment 1

Approaches No. of rules Sum of error RSME

Bellaaj et al. (2013) 36 5.8 0.161

Tan et al. (2016) 36 3.1 0.086

TSK+ without GA 28 3.38 0.094

TSK+ 28 1.78 0.067

Bold value indicates best performance

Table 8 Results led by fuzzy models in experiment 2

Approaches No. of rule MSE

Evsukoff et al. (2002) 49 0.001

Rezaee and Zarandi (2010) 13 0.0004

Rezaee and Zarandi (2010) 14 0.0002

TSK+ 14 0.0002

Table 9 Selected input features

Feature # Feature

5 Size from source to destination

6 Size from destination to source

23 Number of connections in past 2 second

35 Different services rate for destination host

R12 : IF x1 is (0.588, 0.599, 0.601)

and x2 is (0, 0.387, 0.414)

and x3 is (0.05, 0.075, 0.1) and x4 is (0, 0, 0)

THEN y = 2. (19)

According to Table 11, 46 rules in total were generated to
initialise the rule base. The detailed initialised rule base can
be found in Appendix I.

Step 4 Rule base optimisation The GA was applied to opti-
mise the membership functions of the fuzzy sets involved in
the extracted fuzzy rules. The same GA parameters used in
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Table 10 Data details regarding the types of connections

Datasets No. of instances Classes Rule consequence

T1 53,874 Normal traffic 1

T2 36,741 DoS 2

T3 42 U2R 3

T4 796 R2U 4

T5 9,325 Probes 5

2 3 4 5 6 7 8 9 10
Number of k

0

1

2

3

4

5

6

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

× 107

Fig. 9 Performance improvement regarding incremented k

Experiment 1 as listed in Table 6 were also used in this exam-
ple, but the number of iterationswas increased to 20,000. The
system performance against the number of iterations used in
GA is shown in Fig. 10. The optimised rule base is attached
in Appendix II.

5.3.3 TSK+ model evaluation

Once the TSK fuzzy rule base was generated, it can then
be used for connection classification by the proposed TSK+
inference engine. The rule base and the inference engine
TSK+ jointly formed the fuzzy model, which was validated
and evaluated using a testing dataset. The testing data set
contains 22,544 data samples provided by Tavallaee et al.
(2009). The testing data set was also extracted from original

×

Fig. 10 RMSE decreasing over time

KDD Cup 99 data set, but it does not share any data instance
with the training data set NSL-KDD-99.

Note that the testing data set has been used in a number
of projects with different classification approaches. In par-
ticular, decision tree, naive Bayes, back-propagation neural
network (BPNN), fuzzy clustering-artificial neural network
(FC-ANN) have been employed in Wang et al. (2010),
and modified optimum-path forest (MOPF) was applied
in Bostani and Sheikhan (2017). The accuracy of the clas-
sification results for each class of network traffic generated
by different approaches including the proposed one with the
initialised rule base and the optimised rule base is listed in
Table 12.

Table 12 Performance comparison

Normal
Traffic

DoS U2R R2U Probes

Decision tree Wang
et al. (2010)

91.22 97.24 15.38 1.43 78.13

Naive bayes Wang et al.
(2010)

89.22 96.65 7.69 8.57 88.13

BPNN Wang et al.
(2010)

89.75 97.20 23.08 5.71 88.75

FC-ANN Wang et al.
(2010)

91.32 96.70 76.92 58.57 80.00

MOPF Bostani and
Sheikhan (2017)

N/A 96.89 77.98 81.13 85.92

TSK+ without GA (the
proposed approach)

77.10 94.07 57.69 55.29 78.71

TSK+ (the proposed
approach)

93.10 97.84 65.38 84.65 85.69

Bold values indicate best performance

Table 11 Rules and clusters for each set of data instances with the same type of connection

Dense data set Normal T1 DoS T2 R2U T3 U2R T4 Probes T5

T11 T12 T13 T21 T22 T23 T31 T41 T42 T43 T51 T52 T53

Index i of rule cluster RCi 1–4 5–7 8–11 12–14 15–18 19–24 25–30 31–35 36–38 39–41 42–44 45 46

Index i of rule Ri 1–4 5–7 8–11 12–14 15–18 19–24 25–30 31–35 36–38 39–41 42–44 45 46
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The results show that the proposed TSK+ overall outper-
formed all other approaches; and the proposed rule base
optimisation approach significantly improved the system
performance by over 10% on average. In particular, the
proposed system achieved better accuracies on the predic-
tion of normal connections, DoS and R2U than those of all
other approaches; worse performance led by the proposed
approach in the class of U2R compared to FC-ANN and
MOPF; and similar result was generated for class Probes
with the existing best performance resulted from other
approaches.

6 Conclusion

This paper proposed a fuzzy inference system TSK+, which
extended the conventional TSK inference system such that
it is also applicable to sparse rule bases and unevenly
distributed rule bases. This is achieved by allowing the inter-
polation and extrapolation of the output from all rules even
if the given input does not overlap with any rule antecedents.
This paper also proposed a novel data-driven rule base gener-
ation approach, which is workable with spare data sets, dense
data set, and unevenly distributed data sets. The system was
validated and evaluated by applying two benchmark prob-
lems and one real-world data set. The experimental results
demonstrated the wide applicability of the proposed system
with compact rule bases and competitive performances.

The proposed system can be further enhanced in the
following areas. Firstly, the sparsity-aware possibilistic clus-
tering algorithm (Xenaki et al. (2016)) was designed to work

with sparse data sets, and thus, it is desired to investigate
how this clustering algorithmcan support the proposedTSK+
inference system. Secondly, it is worthwhile to study how the
proposed sparse rule base generation approach can help in
generatingMamdani-style fuzzy rule bases. Finally, it would
be interesting to define the sparsity or density of a data set
such that more accurate clustering results can be generated
during rule cluster generation.
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Appendix I

See Table 13

Table 13 Initialised Rule Base

i Input Output

Ai1 Ai2 Ai3 Ai4 fi

a(i1)1 a(i1)2 a(i1)3 a(i2)1 a(i2)2 a(i2)3 a(i3)1 a(i3)2 a(i3)3 a(i4)1 a(i4)2 a(i4)3

1 0.000 0.210 0.714 0.000 0.228 0.438 0.000 0.100 1.000 0.000 0.000 1.000 1

2 0.000 0.212 0.711 0.000 0.520 0.787 0.025 0.100 0.599 0.000 0.000 1.000 1

3 0.000 0.233 0.450 0.805 0.833 0.834 0.025 0.025 0.125 0.000 0.020 0.430 1

4 0.723 0.760 0.843 0.000 0.000 0.723 0.025 0.050 0.050 0.000 0.040 1.000 1

5 0.833 0.833 0.833 0.000 0.000 0.788 0.025 0.050 0.150 0.000 0.040 1.000 1

6 0.834 0.834 0.834 0.689 0.830 0.833 0.025 0.025 0.050 0.040 0.185 0.360 1

7 0.834 0.834 0.834 0.000 0.670 0.761 0.025 0.025 0.075 0.000 0.090 0.610 1

8 0.836 0.836 0.836 0.561 0.833 0.833 0.025 0.025 0.025 0.030 0.055 0.080 1

9 0.848 0.848 0.848 0.834 0.834 0.834 0.025 0.025 0.025 0.030 0.030 0.030 1

10 0.837 0.837 0.837 0.682 0.687 0.689 0.025 0.025 0.025 0.030 0.030 0.030 1

11 0.835 0.835 0.835 0.000 0.747 0.783 0.025 0.050 0.050 0.090 0.160 0.920 1

12 0.588 0.599 0.601 0.000 0.387 0.414 0.050 0.075 0.100 0.000 0.000 0.000 2

13 0.000 0.000 0.263 0.000 0.000 0.047 0.554 0.584 0.623 0.000 0.070 1.000 2

14 0.000 0.000 0.272 0.000 0.000 0.000 0.025 0.524 0.554 0.000 0.050 0.760 2

15 0.593 0.601 0.601 0.468 0.487 0.487 0.025 0.075 0.725 0.000 0.000 0.000 2
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Table 13 continued

i Input Output

Ai1 Ai2 Ai3 Ai4 fi

a(i1)1 a(i1)2 a(i1)3 a(i2)1 a(i2)2 a(i2)3 a(i3)1 a(i3)2 a(i3)3 a(i4)1 a(i4)2 a(i4)3

16 0.000 0.000 0.263 0.000 0.000 0.000 0.624 0.663 0.710 0.000 0.070 0.750 2

17 0.580 0.585 0.587 0.414 0.468 0.487 0.050 0.100 0.150 0.000 0.000 0.000 2

18 0.554 0.568 0.579 0.360 0.401 0.487 0.025 0.088 0.150 0.000 0.000 0.000 2

19 0.352 0.352 0.352 0.000 0.000 0.000 0.025 0.543 0.605 0.000 0.020 0.260 2

20 0.352 0.352 0.352 0.000 0.000 0.000 0.752 1.000 1.000 0.000 0.020 0.260 2

21 0.360 0.360 0.520 0.000 0.000 0.330 0.025 0.050 0.659 0.000 0.020 1.000 2

22 0.352 0.352 0.352 0.000 0.000 0.000 0.606 0.667 0.751 0.000 0.000 0.260 2

23 0.263 0.263 0.263 0.000 0.000 0.000 0.711 0.970 0.993 0.000 0.000 0.000 2

24 0.524 0.535 0.549 0.360 0.487 0.487 0.050 0.100 0.150 0.000 0.000 0.000 2

25 0.000 0.000 0.362 0.406 0.439 0.498 0.025 0.025 0.075 0.000 0.000 0.020 3

26 0.000 0.149 0.219 0.000 0.296 0.371 0.025 0.025 0.100 0.000 0.000 0.750 3

27 0.215 0.362 0.365 0.368 0.384 0.390 0.025 0.025 0.599 0.000 0.000 0.060 3

28 0.376 0.378 0.382 0.404 0.405 0.417 0.025 0.025 0.050 0.000 0.000 0.000 3

29 0.244 0.244 0.244 0.631 0.631 0.631 0.025 0.025 0.025 0.000 0.000 0.000 3

30 0.365 0.407 0.449 0.531 0.538 0.545 0.025 0.025 0.025 0.000 0.010 0.020 3

31 0.000 0.229 0.358 0.000 0.000 0.362 0.025 0.025 0.100 0.000 0.000 0.670 4

32 0.000 0.356 0.359 0.371 0.378 0.573 0.025 0.025 0.050 0.000 0.020 1.000 4

33 0.000 0.305 0.361 0.754 0.771 0.787 0.025 0.025 0.025 0.000 0.000 0.000 4

34 0.000 0.000 0.000 0.850 0.833 0.833 0.025 0.025 0.025 0.000 0.000 0.000 4

35 0.464 0.464 0.464 0.000 0.000 0.000 0.025 0.050 0.075 0.000 0.000 0.220 4

36 0.834 0.834 0.834 0.000 0.000 0.000 0.025 0.025 0.025 0.000 0.000 0.290 4

37 0.834 0.834 0.834 0.000 0.000 0.000 0.025 0.025 0.025 0.000 0.000 0.290 4

38 0.834 0.834 0.834 0.000 0.000 0.000 0.025 0.025 0.050 0.000 0.000 0.130 4

39 0.000 0.000 0.000 0.834 0.834 0.834 0.025 0.025 0.025 0.000 0.000 0.000 4

40 0.000 0.000 0.000 0.834 0.834 0.834 0.025 0.050 0.075 0.000 0.000 0.000 4

41 0.000 0.000 0.000 0.834 0.834 0.834 0.025 0.025 0.025 0.000 0.000 0.000 4

42 0.000 0.002 0.836 0.000 0.000 0.596 0.000 0.025 1.000 0.000 0.270 1.000 5

43 0.897 0.897 0.897 0.000 0.000 0.000 0.025 0.025 0.025 0.120 0.120 0.120 5

44 0.869 0.869 0.869 0.000 0.000 0.000 0.025 0.025 0.025 0.110 0.110 0.110 5

45 0.000 0.000 0.000 0.900 0.900 1.000 0.025 0.025 0.050 0.500 0.500 0.650 5

46 0.937 0.988 1.000 0.000 0.000 0.000 0.025 0.025 0.538 0.080 0.105 0.120 5
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Appendix II

See Table 14

Table 14 Optimised Rule Base

i Input Output

Ai1 Ai2 Ai3 Ai4 fi

a(i1)1 a(i1)2 a(i1)3 a(i2)1 a(i2)2 a(i2)3 a(i3)1 a(i3)2 a(i3)3 a(i4)1 a(i4)2 a(i4)3

1 0.000 0.199 0.332 0.000 0.210 0.350 0.000 0.157 0.261 0.000 0.157 0.262 1

2 0.000 0.138 0.184 0.000 0.124 0.166 0.000 0.178 0.226 0.237 0.675 0.868 1

3 0.000 0.167 0.331 0.000 0.176 0.333 0.746 0.782 0.774 0.175 0.480 0.750 1

4 0.333 0.453 0.667 0.317 0.455 0.700 0.000 0.081 0.225 0.000 0.109 0.289 1

5 0.348 0.567 0.731 0.000 0.000 0.000 0.000 0.116 0.204 0.000 0.086 0.150 1

6 0.475 0.787 0.829 0.301 0.599 0.602 0.000 0.235 0.237 0.000 0.260 0.276 1

7 0.602 0.873 0.995 0.300 0.529 0.632 0.000 0.164 0.226 0.000 0.173 0.250 1

8 0.750 0.780 0.950 0.000 0.026 0.175 0.000 0.071 0.474 0.000 0.036 0.238 1

9 0.831 0.912 1.000 0.873 0.932 0.995 0.000 0.108 0.214 0.000 0.120 0.249 1

10 0.833 0.889 1.000 0.000 0.013 0.158 0.000 0.024 0.304 0.000 0.021 0.262 1

11 0.916 0.936 0.998 0.317 0.503 0.632 0.000 0.154 0.249 0.000 0.148 0.250 1

12 0.000 0.152 0.175 0.000 0.118 0.135 0.748 0.920 0.945 0.000 0.252 0.289 2

13 0.572 0.701 0.774 0.000 0.152 0.317 0.788 0.866 0.998 0.000 0.132 0.276 2

14 0.632 0.896 0.950 0.000 0.305 0.368 0.000 0.197 0.249 0.000 0.218 0.263 2

15 0.500 0.717 0.752 0.000 0.259 0.317 0.746 1.000 1.000 0.000 0.203 0.236 2

16 0.745 0.753 0.775 0.000 0.307 0.349 0.080 0.081 0.072 0.000 0.000 0.000 2

17 0.461 0.515 0.691 0.275 0.334 0.404 0.040 0.119 0.145 0.000 0.000 0.000 2

18 0.323 0.498 0.695 0.432 0.498 0.579 0.018 0.086 0.155 0.000 0.000 0.000 2

19 0.281 0.324 0.380 0.000 0.000 0.000 0.026 0.586 0.680 0.000 0.018 0.459 2

20 0.000 0.049 0.158 0.000 0.057 0.184 0.474 0.637 1.000 0.000 0.078 0.250 2

21 0.298 0.377 0.427 0.000 0.000 0.320 0.027 0.038 0.671 0.000 0.009 0.760 2

22 0.177 0.228 0.442 0.000 0.000 0.000 0.577 0.631 0.648 0.000 0.000 0.168 2

23 0.244 0.270 0.326 0.000 0.000 0.000 0.665 0.765 0.836 0.000 0.000 0.000 2

24 0.792 0.848 0.948 0.000 0.000 0.735 0.000 0.090 0.249 0.000 0.095 0.263 2

25 0.000 0.000 0.303 0.365 0.394 0.647 0.021 0.022 0.073 0.000 0.000 0.025 3

26 0.551 0.831 0.919 0.602 0.904 1.000 0.000 0.200 0.263 0.000 0.181 0.238 3

27 0.543 0.815 0.842 0.831 1.000 1.000 0.000 0.214 0.226 0.000 0.249 0.263 3

28 0.000 0.157 0.333 0.498 0.667 0.831 0.000 0.102 0.238 0.500 0.745 1.000 3

29 0.150 0.263 0.276 0.525 0.641 0.705 0.023 0.026 0.033 0.000 0.000 0.000 3

30 0.320 0.437 0.461 0.477 0.498 0.758 0.022 0.027 0.033 0.000 0.014 0.022 3

31 0.000 0.144 0.150 0.833 1.000 1.000 0.000 0.072 0.249 0.000 0.076 0.263 4

32 0.000 0.357 0.466 0.296 0.428 0.838 0.026 0.028 0.036 0.000 0.022 0.755 4

33 0.000 0.154 0.367 0.633 0.746 0.903 0.000 0.100 0.226 0.000 0.099 0.236 4

34 0.000 0.019 0.175 0.000 0.031 0.286 0.000 0.028 0.250 0.000 0.029 0.262 4

35 0.300 0.428 0.528 0.000 0.000 0.000 0.035 0.042 0.085 0.000 0.000 0.249 4

36 0.831 1.000 1.000 0.000 0.096 0.150 0.000 0.152 0.237 0.000 0.160 0.238 4

37 0.386 0.477 0.663 0.000 0.047 0.150 0.000 0.082 0.249 0.000 0.078 0.238 4

38 0.665 0.846 1.000 0.664 0.930 1.000 0.000 0.141 0.262 0.000 0.134 0.248 4

39 0.000 0.144 0.150 0.833 1.000 1.000 0.000 0.072 0.249 0.000 0.076 0.263 4

40 0.000 0.000 0.000 0.663 0.661 1.000 0.032 0.036 0.040 0.000 0.000 0.000 4
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Table 14 continued

i Input Output

Ai1 Ai2 Ai3 Ai4 fi

a(i1)1 a(i1)2 a(i1)3 a(i2)1 a(i2)2 a(i2)3 a(i3)1 a(i3)2 a(i3)3 a(i4)1 a(i4)2 a(i4)3

41 0.000 0.000 0.000 0.671 0.701 0.807 0.030 0.023 0.030 0.000 0.000 0.000 4

42 0.000 0.000 0.175 0.000 0.000 0.166 0.000 0.000 0.250 0.750 0.750 0.815 5

43 0.000 0.160 0.166 0.000 0.152 0.158 0.000 0.228 0.238 0.525 0.930 0.948 5

44 0.000 0.023 0.166 0.000 0.026 0.175 0.750 0.765 0.857 0.522 0.606 0.950 5

45 0.831 0.857 0.857 0.000 0.146 0.150 0.000 0.219 0.238 0.000 0.458 0.473 5

46 0.000 0.003 0.158 0.875 0.881 0.987 0.000 0.006 0.275 0.275 0.285 0.788 5
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