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Many strategies have been exploited for the task of reinforcing the effectiveness and efficiency of extreme learning machine
(ELM), from both methodology and structure perspectives. By activating all the hidden nodes with different degrees, local coupled
extreme learning machine (LC-ELM) is capable of decoupling the link architecture between the input layer and the hidden layer in
ELM. Such activated degrees are jointly determined by the associated addresses and fuzzy membership functions assigned to the
hidden nodes. In order to further refine the weight searching space of LC-ELM, this paper implements an optimisation, entitled
evolutionary local coupled extreme learning machine (ELC-ELM). This method makes use of the differential evolutionary (DE)
algorithm to optimise the hidden node addresses and the radiuses of the fuzzy membership functions, until the qualified fitness or
themaximum iteration step is reached.The efficacy of the presentedwork is verified through systematic simulated experimentations
in both regression and classification applications. Experimental results demonstrate that the proposed technique outperforms three
ELM alternatives, namely, the classical ELM, LC-ELM, and OSFuzzyELM, according to a series of reliable performances.

1. Introduction

Due to the significant efficiency and simple implementation,
extreme learning machine (ELM) [1, 2] has recently enjoyed
much attention as a powerful tool in regression and classifi-
cation applications (e.g., [3, 4]). A variety of the extensions
of ELM, therefore, have been developed in an attempt to
improve their performances. In general, there are two man-
ners: one is to optimise the methodology of ELM (e.g., online
sequential ELM [5] and evolutionary ELM [6]); the other is
to refine the hidden layer of ELM for optimising the learning
model (e.g., incremental ELM [7], pruned-ELM [8], and two-
stage ELM [9]). Several promising performances have been
observed through these two schemes, at both theoretical and
empirical levels.

Local coupled extreme learningmachine (LC-ELM) ulte-
riorly develops the classical ELM algorithm by assigning
an address to each hidden node in the input space. Given
a learning sample, the hidden nodes will be activated at
different levels in accordance with the distances from their
locations to the input sample. In so doing, the fully coupled

architecture between the input layer and the hidden layer
in ELM gets simplified. And the complexity of the weight
searching space will be reduced correspondingly. In fact,
when the input information is modified, only those highly
relevant hidden nodes will be influenced. This process is
similar to the learning process of a brain: when a new learning
sample is achieved, only relative knowledge needs to be
revised with different memory inspired degrees.

In LC-ELM, the addresses and the window radiuses are
preset empirically or randomly at present. However, the
existence of the nonoptimal addresses and radiuses may
yield an inappropriate underlying model, by accident. As
a type of metaheuristics, the differential evolution (DE)
approach [10] entails few or no assumptions regarding the
problem being optimized and has the ability to search for
the candidate solutions in very large spaces. In this case, this
paper presents an approach termed evolutionary local cou-
pled extreme learning machine (ELC-ELM). The proposed
method makes use of DE in an attempt to address the chal-
lenges raised by the stochastically predetermined addresses
and radiuses. Specifically, in ELC-ELM, DE is utilised to
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optimise the addresses and radiuses, according to the result-
ing root mean squared error (RMSE). Hence, the associated
activation degrees are improved.This optimisation procedure
is capable of searching for a superior framework of ELC-
ELM, until the qualified fitness (consisting of the addresses
and radiuses) or the maximum iteration step is reached.
To evaluate the performance of this approach, compara-
tive studies between ELC-ELM and the alternative ELM-
based techniques (including the classical ELM, LC-ELM, and
OSFuzzyELM [11]) are also presented through systematic
experimental investigations. The results demonstrate that
the proposed work entails improved performances in both
regression and classification applications.

The remainder of this paper is structured as follows. An
outline of the relevant background materials is presented in
Section 2, including LC-ELM and the differential evolution
algorithm. The optimisation of LC-ELM, termed evolution-
ary local coupled extreme learning machine (ELC-ELM), is
then described in Section 3. In Section 4, the systematical
comparisons between ELC-ELM and several relevant ELM-
based algorithms (ELM, LC-ELM, and OSFuzzyELM) are
carried out in an experimental evaluation. Section 5 con-
cludes the paper with a short discussion of the potential
further works.

2. Theoretical Background

For completeness, the basic ideas of local coupled extreme
learning machine and differential evolution (DE) [10] are
briefly recalled first.

2.1. Local Coupled Extreme Learning Machine. Convention-
ally, extreme learning machine (ELM) algorithms [1, 2] are
implemented with a fully coupled framework as, in general,
single input activates all hidden nodes. Such structure leads to
the computation cost in proportion with the scale of a given
network. In LC-ELM, a strategy to decouple the framework
linking the input layer to the hidden layer in ELM was pro-
posed. Different from the classical ELM, LC-ELM introduces
a parameter, termed “address,” to each hidden node in the
input space. Given a learning sample, the distances from
the hidden nodes to the input sample are gauged by the
fuzzy membership functions as the activated degree of the
relevant hidden nodes. Due to the utilisation of these two
improvements, this strategy implements the structural sim-
plification of the weight searching space in LC-ELM.

For a dataset which contains 𝑀 distinct objects (x
𝑖
, t
𝑖
),

where x
𝑖

∈ R𝑝 and t
𝑖

∈ R𝑞, the output of an 𝑁-hidden-node
nonlinear LC-ELM is

𝑁

∑

𝑗=1

𝛽
𝑖
𝑔 (w
𝑗

⋅ x
𝑖
+ 𝑏
𝑗
) 𝐹 (𝑆 (x

𝑖
, d
𝑗
)) , 𝑖 = 1, . . . , 𝑀, (1)

where 𝑔(⋅) denotes the activation function. w
𝑗
, 𝑏
𝑗
, and 𝛽

𝑗
are

the network weights. 𝐹(⋅) is a fuzzy membership function.
𝑆(x
𝑖
, d
𝑗
) is the similarity between the 𝑖th input and the 𝑗th

hidden node. d
𝑗

∈ R𝑝 is the address of the 𝑗th hidden node.
In LC-ELM, the fuzzy membership function 𝐹(⋅) is

defined with the following properties:

(1) 𝐹(⋅) is a nonnegative piecewise continuous function,
(2) 𝐹(⋅) is monotonically decreasing in [0, +∞),
(3) 𝐹(0) = 1,
(4) 𝐹(𝑥) → 0, 𝑥 → +∞.

Here, 𝐹(⋅) is said to be piecewise continuous if it has only a
finite number of discontinuities in any interval, and its left
and right limits are defined (not necessarily equal) at each
discontinuity [2]. In order to adjust the width of the activated
area, the underlying radius parameter 𝑟 is employed in 𝐹(⋅).

Note that, in (1), when the 𝐹(⋅) is a constant function
which is equal to 1, LC-ELM is reduced to the classical ELM.
Moreover, when w

𝑗
in (1) is equal to zero, the fuzzy member-

ship function 𝐹(⋅) is nonconstant, and the similarity function
𝑆(x, d) is determined by the norm distance ‖x − d‖; then,
the framework of LC-ELM is reduced to the ELM with RBF
hidden nodes [2]. In [12], both of these two cases of ELM are
proven to own universal approximation capabilities. There-
fore, it is reasonable to consider that, for an arbitrary multi-
variate continuous function, LC-ELMmay have the ability to
approximate the function under a given accuracy.

For the linear system generated by LC-ELM,

H𝛽 = T, (2)

the hidden-layer output matrix in LC-ELM is

H = [ℎ
𝑖𝑗

= 𝑔 (w
𝑗

⋅ x
𝑖
+ 𝑏
𝑗
) 𝐹 (𝑆 (x

𝑖
, d
𝑗
))]
𝑀×𝑁

,

𝑖 = 1, . . . , 𝑀, 𝑗 = 1, . . . , 𝑁.

(3)

𝛽 = [𝛽
1
, . . . ,𝛽

𝑁
]
𝑇

𝑁×𝑞
is the matrix of output weights and 𝛽

𝑖

denotes theweight vector connecting the 𝑖th hidden node and
the output layer. T = [t

1
, . . . , t

𝑀
]
𝑇

𝑀×𝑞
is the matrix of target

outputs. Given such presentation, in the initialisation phase
of LC-ELM, the hidden node address d

𝑗
as well as the hidden

layer parameters (w
𝑗
, 𝑏
𝑗
) is assigned randomly as well.

Following the above discussion, a three-step LC-ELM
algorithm can be summarised in Algorithm 1.

2.2. Differential Evolution. Differential evolution (DE) [10] is
known as one of the most efficient evolutionary algorithms
[13]. It has been widely used to tune the parameters in neural
networks [14, 15]. Given a set of parameter vectors {𝜃

𝑘,𝐺
| 𝑘 =

1, 2, . . . , 𝑁𝑃} as a population at each generation 𝐺, the basic
learning process of DE involves the iteration of the following
procedures.

(i) Mutation. For each target vector 𝜃
𝑘,𝐺

, 𝑘 = 1, 2, . . . , 𝑁𝑃, a
mutant vector is generated according to

^
𝑘,𝐺+1

= 𝜃
𝑟
1
,𝐺

+ 𝐹 ⋅ (𝜃
𝑟
2
,𝐺

− 𝜃
𝑟
3
,𝐺

) (4)

with random and mutually different indices 𝑟
1
, 𝑟
2
, 𝑟
3

∈

{1, 2, . . . , 𝑁𝑃} and 𝐹 ∈ [0, 2]. The constant factor 𝐹 is used to
control the amplification of the differential variation (𝜃

𝑟
2
,𝐺

−

𝜃
𝑟
3
,𝐺

).
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Require:
N, the training set {(x

𝑖
, t
𝑖
) x
𝑖
∈ R𝑝, t

𝑖
∈ R𝑞, 𝑖 = 1, . . . , 𝑀},

𝑔, the activation function,
𝑆, the similarity function,
𝐹, the fuzzy membership function,
𝑁, the number of hidden nodes,
𝑟, the radius of fuzzy membership functions.

(1) Randomly assign hidden node parameters (w, b) and the hidden node address d.
(2) Calculate the hidden layer output matrixH.
(3) Calculate the output weight 𝛽.

Algorithm 1: Local coupled extreme learning machine.

(ii) Crossover. In this procedure, the 𝐷-dimensional trial
vector

𝜇
𝑘,𝐺+1

= (𝜇
1𝑘,𝐺+1

,𝜇
2𝑘,𝐺+1

, . . . ,𝜇
𝐷𝑘,𝐺+1

) (5)

is formed such that

𝜇
𝑙𝑘,𝐺+1

= {
^
𝑙𝑘,𝐺+1

if rand 𝑏 (𝑙) ≤ 𝐶𝑅 or 𝑙 = 𝑟𝑛𝑏𝑟 (𝑘)

𝜃
𝑙𝑘,𝐺

if rand 𝑏 (𝑙) ≤ 𝐶𝑅 or 𝑙 ̸= 𝑟𝑛𝑏𝑟 (𝑘) ,

(6)

where rand 𝑏(𝑙) is the 𝑙th evaluation of a uniform random
number generator with an outcome in [0, 1], 𝐶𝑅 is the
crossover constant in [0, 1] which is specified independent of
the algorithm, and 𝑟𝑛𝑏𝑟(𝑘) is a randomchosen integer index∈

which ensures that ^
𝑘,𝐺+1

obtains at least one parameter from
^
𝑙𝑘,𝐺+1

.

(iii) Selection. If vector 𝜇
𝑘,𝐺+1

is better than 𝜃
𝑘,𝐺

, then 𝜃
𝑘,𝐺+1

is set to 𝜇
𝑘,𝐺+1

. Otherwise, the existing value 𝜃
𝑘,𝐺

is retained
as 𝜃
𝑘,𝐺+1

.

Overall, DE is an approach that optimises a problem
through iterative attempt of improving a candidate solution
with regard to a given measure of quality (i.e., fitness func-
tion). As a type of metaheuristics, such strategy entails few or
no assumptions regarding the problem being optimised and
has the ability to search in the large spaces (such as the weight
searching space of LC-ELM) of candidate solutions [10].

3. Evolutionary Local Coupled Extreme
Learning Machine

In LC-ELM, the strategy to decouple the linking architecture
between the input layer and the hidden layer is guided by the
predetermined addresses and the radiuses. Such parameters
are preset randomly and empirically. However, the existence
of the nonoptimal addresses and radiuses may yield an
inappropriate model by accident. In order to make an opti-
misation for these addresses and the radiuses, an evolutionary
local coupled extreme learningmachine (ELC-ELM)method
is hereby exploited in this paper. Such approach considers
the tuples of addresses and radiuses as the solutions of an
optimisation problem and searches for them by the use of DE.

In so doing, ELC-ELM can expect a more reliable implemen-
tation in a variety of applications.

For a dataset which contains 𝑀 distinct objects (x
𝑖
, t
𝑖
),

where x
𝑖
∈ R𝑝 and t

𝑖
∈ R𝑞, the main procedure of an 𝑁-hid-

den-node ELC-ELM algorithm consists of the following.

(i) Random Generation of a Population of Individuals. Each
individual in the population is composed of a set of the
addresses and radiuses

𝜃 = {d, r} , (7)

where d = {d
𝑖

| d
𝑖

∈ R𝑝, 𝑖 = 1, . . . , 𝑁} and r ∈ R𝑁 are
initialised within the range of [0, 1] at random. Then, these
parameters are employed to measure the activated degrees of
the hidden nodes.

Note that, in this step, the input weights w and hidden
node biases b are chosen within the range of [0, 1] randomly
as well. However, they are excluded in the underlying popu-
lations in ELC-ELM.

(ii) Analytical Computation of the Output Weights for Each
Individual.This step is implemented by the use of theMoore-
Penrose generalised inverse as with many other ELM algo-
rithms, instead of running any iterative tuning.

(iii) Evaluation of Each Individual. The resulting root mean
squared error (RMSE) of ELC-ELM is employed to assess the
fitness of the individuals in this method, leading to a fitness
value for each individual in the population. The mapping
between the datasets and the fitness values is termed as the
fitness function below. Specifically, in this paper, the RMSE is
defined as

𝐸 =
√

∑
𝑀

𝑖=1


∑
𝑁

𝑗=1
𝛽
𝑖
ℎ
𝑖𝑗

− t
𝑖



2

2

𝑀 × 𝑞
.

(8)

Here, the parameters are defined the same as those in (2).

(iv) Application of the Three Steps of DE: Mutation, Crossover,
and Selection. In addition to the RMSE, the norm of the
output weights ‖𝛽‖ is also used as a criterion to be added
to reinforce the selection procedure. In so doing, when the
differences of the fitness between distinct individuals are
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Require:
N, the training set {(x

𝑖
, t
𝑖
) x
𝑖
∈ R𝑝, t

𝑖
∈ R𝑞, 𝑖 = 1, . . . , 𝑀};

𝑔, the activation function;
𝑆, the similarity function;
𝐹, the fuzzy membership function;
𝑁, the number of hidden nodes;
Itermax, the preset maximum learning epoch of DE.

(1) Randomly designate hidden node parameters (w, b), hidden node address d, and radius r.
(2) 𝐼𝑡𝑒𝑟 = 1.
(3) while 𝐼𝑡𝑒𝑟 ⩽ 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 do
(4) (1) Calculate the hidden layer output matrixH,

(2) Calculate the output weight 𝛽,
(3) Adjust (d, r) using DE,
(4) 𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1.

(5) end while
(6) (1) Calculate the hidden layer output matrixH.

(2) Calculate the output weight 𝛽.

Algorithm 2: Evolutionary local coupled extreme learning machine.

insignificant, the one that leads to the minimum ‖𝛽‖ is
selected.

(v) Determination of a New Population 𝜃
𝑖,𝐺+1

. This is com-
puted as follows:

𝜃
𝑘,𝐺+1

=

{{{{{{{{

{{{{{{{{

{

𝜇
𝑘,𝐺

if 𝑓 (𝜃
𝑘,𝐺

) − 𝑓 (𝜇
𝑘,𝐺

) > 𝜀𝑓 (𝜃
𝑘,𝐺

) ,

𝜇
𝑘,𝐺

if 
𝑓 (𝜃
𝑘,𝐺

) − 𝑓 (𝜇
𝑘,𝐺

)


< 𝜀𝑓 (𝜃
𝑘,𝐺

) ,

𝛽
𝜇
𝑘,𝐺

 <

𝛽𝜃𝑘,𝐺


,

𝜃
𝑘,𝐺

else,

(9)

where 𝑓(⋅) is the fitness function (RMSE) and 𝜀 is the
tolerance rate.

(vi) Iteration of the AboveDE Process Once the New Population
Is Generated, until the Goal Is Met or the PredeterminedMaxi-
mumNumber of Learning Iterations Is Reached. Following the
above discussion, the ELC-ELM algorithm is summarised in
Algorithm 2.

The same as LC-ELM, the implementation of ELC-ELM
is highly flexible in dealing with a variety of problems.
Specifically, a collection of certain commonly used similarity
measures [16, 17] are listed as follows:

(i) 𝑝-norms: 𝑆(x, y) = ‖x − y‖
𝑝
, (𝑝 = 1, 2, +∞),

(ii) fuzzy similarity: 𝑆(x, y) = 𝑇
𝑎∈𝑃

{𝜇
𝑅
𝑎

(x, y)},
where 𝑇 is a 𝑇-norm, 𝑃 is a subset of features, and
𝜇
𝑅
𝑎

(x, y) is the degree to which objects x and y are
similar for feature 𝑎,

(iii) kernel functions:

(a) Gaussian kernel: 𝑆(x, y) = exp(−‖x − y‖
2
/𝜃),

(b) wave kernel: 𝑆(x, y) = (𝜃/‖x−y‖) sin(‖x−y‖/𝜃),
(c) polynomial kernel: 𝑆(x, y) = (𝑎x ⋅ y + 𝑐)

𝑑.

As well as the similarity relations, the fuzzy membership
functions in ELC-ELM also enjoy a variety of implemen-
tations. For instance, Gaussian function equation (10), the
reversed sigmoid function equation (11), and reversed tanh
function equation (12) are alternatives in practice:

𝐹 (𝑥) = exp(−
𝑥
2

𝑟
) , (10)

𝐹 (𝑥) =
2

1 + exp (𝑥/𝑟)
, (11)

𝐹 (𝑥) = tanh(−
𝑥

𝑟
) + 1. (12)

4. Experimental Evaluation

This section presents a systematic evaluation of ELC-ELM
experimentally. The results and discussions are divided into
three parts. Each of them is carried out as a compari-
son between ELC-ELM and three alternative ELM algo-
rithms: the classical ELM, OSFuzzyELM [11], and LC-ELM.
OSFuzzyELM is a variance of ELM which is based on the
fuzzy rules.

The first part evaluates ELC-ELM in the aspect of func-
tion approximation. The comparison on real-world regres-
sion problems is performed in the second part.The third part
provides an investigation of the classification performance of
ELC-ELMon several benchmark datasets. Note that the fuzzy
membership functions and the similarity relations in the
following OSFuzzyELM, LC-ELM, and ELC-ELM methods
are assigned empirically.

4.1. Function Regression. This task is to approximate the
Gabor function

𝐺 (𝑥, 𝑦) =
1

2𝜋 × 0.52
exp(−

𝑥
2

+ 𝑦
2

2 × 0.52
) cos (2𝜋 (𝑥 + 𝑦)) .

(13)
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Table 1: Configurations of ELM, OSFuzzyELM, LC-ELM, and ELC-ELM.

Configuration ELM OSFuzzyELM LC-ELM ELC-ELM
Input weights RN in [−1, 1] N/A RN in [−1, 1] RN in [−1, 1]
&& hidden layer biases
Activation function Sigmoid N/A Sigmoid Sigmoid
Hidden node address N/A N/A RN in [0, 1] RN in [0, 1]
&& window radius && 0.4
Similarity N/A N/A Wave kernel Wave kernel
Fuzzy membership function N/A (10) (11) (11)
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Figure 1: Testing RMSEs of ELM, OSFuzzyELM, LC-ELM, and ELC-ELM with respect to different numbers of hidden nodes.

In this example, 51 × 51 training and testing patterns are
stochastically selected from a [−0.5, 0.5] × [−0.5, 0.5] square
region, respectively. The specific configurations of the algo-
rithms involved in this experiment are introduced in Table 1.
For simplicity, RN stands for “random number.”

A series of experiments are carried out in order to
ascertain the variation in the resulting regression RMSEs by

changing the number of the hidden nodes, or fuzzy rules, in
the relevant algorithms. It is noteworthy that the number of
hidden nodes (or fuzzy rules) is the tens ranging from 10 to
150. For each of these values, 10 trials have been conducted
for the four ELM approaches. The average testing RMSEs are
illustrated in Figure 1. Furthermore, across all the 15 numbers
of the hidden nodes of each method, the lowest result is
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Table 2: Function approximation results of ELM, OSFuzzyELM, LC-ELM, and ELC-ELM.

Algorithm Lowest testing Hidden nodes Avg. training Avg. testing
RMSE RMSE SD RMSE SD

ELM 0.0221 110 0.1303 0.0054 0.0607 0.0217
OSFuzzyELM 0.0371 140 0.1302 0.0068 0.0764 0.0289
LC-ELM 0.0219 90 0.1295 0.0055 0.0552 0.0173
ELC-ELM 0.0203 60 0.1167 0.0015 0.0403 0.0277

denoted by the red marker. As well as such results, the
associated numbers of hidden nodes, the average training and
testing results, and the standard deviations (SD) of the four
ELM-based algorithms are summarised in Table 2.

Overall, it can be observed from Figure 1 and Table 2 that
ELC-ELM consistently outperforms the alternative methods
with less hidden nodes at the levels of both the lowest and the
average RMSEs. In particular, even with the 10 hidden nodes/
rules, ELC-ELM is still able to result in a comparable perfor-
mance (RMSE = 0.0887).

4.2. Real-World Regression Problems. This section presents
the comparative studies between the proposed approach and
the other ELM algorithms on the benchmark regression data-
sets taken from UCI Machine Learning Repository [18] and
Statlib [19]. The specifications of these datasets are shown in
Table 3.

In this experiment, 10 trials are conducted for each
problem. The training and testing data of the corresponding
datasets are reshuffled at each trial of simulation.The configu-
rations of the testing ELM algorithms are roughly the same as
those in Table 1. However, the fuzzymembership functions of
LC-ELM and ELC-ELM are reversed tanh function (12), and
the classical ELM algorithm is constructed with RBF hidden
nodes with multiquadric function 𝑔(𝑥) = (‖𝑥 − 𝑎‖

2
+ 𝑏
2
)
1/2.

The average RMSE, the corresponding standard deviation
(SD), the average training/testing time, and the number of
hidden nodes or fuzzy rules, over the training data and the
testing data across the 10 trials, are listed in Table 4.

In Table 4, the superior RMSE results, which are lower
than their counterparts by more than 0.005, will be shown
in boldface. It can be seen from these results that, compared
to the remaining three ELM algorithms, ELC-ELM performs
better with the lowest RMSE and SD results in general. In
particular, ELC-ELM gains significant improvements com-
pared to the others for all datasets except theAbalone dataset.
Occasionally, for Autoprice and CPU datasets, the training
RMSE results of OSFuzzyELM are better than those of ELC-
ELM. However, given the associated testing RMSE results,
this significance may be caused by the overfitting that
happened to OSFuzzyELM. Although, due to the complexity
of DE, the evolution procedure in ELC-ELM is more time
consuming than the conventional ones, the generalisation
ability of ELC-ELM is improved.

4.3. Classification Problems. In this section, the classification
performances of ELC-ELM will be compared against those

Table 3: Specifications of tested regression problems.

Dataset Number of
attributes

Number of
training data

Number of
testing data

Abalone 8 2784 1393
Autoprice 9 106 53
Bodyfat 14 168 84
Computer 12 5461 2731
CPU 6 139 70
Housing 13 377 169

of ELM, OSFuzzyELM, and LC-ELM on several benchmark
datasets [18]. The specifications of the datasets are displayed
in Table 5.

Again, in this experiment, each problem will run 10 trails
with reshuffling the training and testing data. Different from
the configuration in Section 4.2, the sigmoid hidden nodes
will be adopted in ELM and the window radius in LC-ELM is
fixed to be 0.7 empirically. For these four ELM-based meth-
ods, the average classification accuracy (Accy), the standard
deviation (SD), the average training/testing time, and the
numbers of hidden nodes or fuzzy rules, over the training
data and the testing data across the 10 trials, are listed in
Table 6.The same numbers of hidden nodes are used in ELM,
LC-ELM, and ELC-ELM.

Likewise, in Table 6, the superior classification accuracies
which are higher than their counterparts by more than 0.5%
will be marked in boldface. Overall, the LC-ELM method
outperforms the other three ELM-based algorithms in all
testing results. In particular, for Ecoli dataset, ELC-ELM
also results in the best training accuracy. This indicates that
the model of ELC-ELM enjoys a remarkable generalisation.
Although OSFuzzyELM yields the better training results
performance on 3 of 6 datasets, given the corresponding test-
ing results, it suffers from overfitting. Again, the ELC-ELM
costsmore time to implement the classificationmodels which
perform better for testing data.

In summary, examining all of the results obtained, it is
clear that, due to an evolved weight searching space by DE,
ELC-ELM is more reliable than the others in addressing the
regression and classification problems. Although, since DE is
adopted in ELC-ELM, the evolution procedure is more time
consuming than the conventional ones, the resulting model
enjoys a greater generalisation ability. Even with a small
number of hidden nodes, ELC-ELM still has the ability to
gain certain considerable performances. Additionally, given
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Table 4: Regression results of ELM, OSFuzzyELM, LC-ELM, and ELC-ELM.

Dataset Algorithm Training (%) Training time Testing (%) Testing time Number of nodes/rules
RMSE SD RMSE SD

Abalone

ELM 0.0761 0.0012 0.0172 0.0776 0.0027 0.0016 25
OSFuzzyELM 0.0741 0.0015 1.3026 0.0766 0.0023 0.0406 5
LC-ELM 0.0754 0.0011 0.4524 0.0767 0.0018 0.2699 25
ELC-ELM 0.0754 0.0013 537.1114 0.0743 0.0025 0.2278 25

Autoprice

ELM 0.0879 0.0101 0.0016 0.1205 0.0190 0.0009 15
OSFuzzyELM 0.0401 0.0052 0.0624 0.1096 0.0078 0.0252 3
LC-ELM 0.0757 0.0044 0.0031 0.0842 0.0087 0.0016 15
ELC-ELM 0.0805 0.0059 37.1688 0.0769 0.0048 0.0025 15

Bodyfat

ELM 0.0678 0.0038 0.0062 0.1295 0.0191 0.0047 50
OSFuzzyELM 0.0790 0.0038 0.0686 0.1264 0.0323 0.0031 2
LC-ELM 0.0661 0.0038 0.0562 0.1243 0.0243 0.0218 50
ELC-ELM 0.0680 0.0013 193.9529 0.1129 0.0115 0.0224 50

Computer

ELM 0.0339 0.0008 0.3354 0.0408 0.0044 0.0406 125
OSFuzzyELM 0.0257 0.0006 83.6555 0.0346 0.0044 0.1950 15
LC-ELM 0.0345 0.0016 2.2511 0.0407 0.0033 0.9812 125
ELC-ELM 0.0279 0.0003 5.6467 × 10

3 0.0288 0.0005 1.0868 125

CPU

ELM 0.0476 0.0066 0.0016 0.0865 0.0584 0.0008 10
OSFuzzyELM 0.0284 0.0035 0.0499 0.0659 0.0339 0.0031 3
LC-ELM 0.0416 0.0070 0.0047 0.0582 0.0203 0.0016 10
ELC-ELM 0.0394 0.0069 29.3719 0.0360 0.0092 0.0025 10

Housing

ELM 0.0793 0.0047 0.0062 0.0929 0.0093 0.0016 50
OSFuzzyELM 0.0645 0.0043 0.3011 0.0924 0.0163 0.0094 5
LC-ELM 0.0711 0.0035 0.1076 0.0884 0.0091 0.0390 50
ELC-ELM 0.0682 0.0040 281.3338 0.0807 0.0127 0.3768 50

Table 5: Specifications of tested classification problems.

Dataset Number of attributes Number of training data Number of testing data Number of classes
Ecoli 7 224 112 8
Glass 9 142 72 7
Ionosphere 34 153 77 2
Iris 4 100 50 3
Sonar 60 138 70 2
Wisconsin 9 455 228 2

the large number of the similarity relations and the fuzzy
membership functions, ELC-ELM can be implemented into
various forms, the same as LC-ELM. This mechanism allows
ELC-ELM to have the ability to generate solutions for differ-
ent problems flexibly.

5. Conclusion

This paper has presented an approach entitled evolutionary
local coupled extreme learning machine (ELC-ELM), in an
attempt to address the challenges raised by the stochasti-
cally predetermined addresses and radiuses of LC-ELM. The
existence of such nonoptimal parameters may yield an inap-
propriate model of LC-ELM, accidentally. In ELC-ELM, the
differential evolution (DE) algorithm is utilised to optimise
this tuple (address and radius) and the associated activated

degrees, according to the resulting root mean squared errors.
This optimisation procedure will improve the underlying
model of ELC-ELM, until the satisfactory solution (popula-
tion) or the maximum iteration step is reached. Due to the
massive existence of the fuzzy membership functions and
the similarity relations, the implementation of ELC-ELM is
highly flexible. Experimental results demonstrate that the
proposed algorithm entails better performances, compared to
three alternative ELM-based approaches.

Though promising, further research will help strengthen
the potential of the proposed approach. In particular, due to
the use of DE, as the scale of the problem increases, the train-
ing progress of ELC-ELMwill becomemore time consuming
than the alternative methods in this paper. Although ELC-
ELM enjoys a significant generalisation ability, the efficiency
of ELC-ELM still requires enhancing in the future. Topics for
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Table 6: Classification results of ELM, OSFuzzyELM, LC-ELM, and ELC-ELM.

Dataset Algorithm Training (%) Training time Testing (%) Testing time Number of nodes/rules
Accy SD Accy SD

Ecoli

ELM 89.78 0.90 0.0062 85.71 1.68 0.0031 20
OSFuzzyELM 90.04 1.53 0.1045 86.79 2.72 0.0047 5
LC-ELM 89.29 1.17 0.0218 87.14 4.23 0.0156 20
ELC-ELM 90.89 0.74 312.5917 89.29 4.29 0.0162 20

Glass

ELM 72.25 3.82 0.0047 63.47 5.36 0.0016 20
OSFuzzyELM 92.04 1.88 0.1529 63.33 4.05 0.0062 10
LC-ELM 74.79 2.97 0.0172 63.75 6.56 0.0062 20
ELC-ELM 73.59 3.31 21.9727 66.39 6.98 0.0074 20

Ionosphere

ELM 91.70 1.69 0.0078 83.51 3.12 0.0031 40
OSFuzzyELM 95.88 3.29 0.1357 80.91 4.98 0.0031 3
LC-ELM 93.86 2.05 0.0359 86.49 2.68 0.0218 40
ELC-ELM 93.53 1.70 121.4764 86.84 3.51 0.0236 40

Iris

ELM 98.30 0.67 0.0031 96.60 2.50 0.0016 15
OSFuzzyELM 98.50 0.71 0.0296 96.00 2.11 0.0031 5
LC-ELM 97.90 1.29 0.0078 96.40 2.07 0.0047 15
ELC-ELM 97.40 0.52 11.8374 97.20 2.70 0.0054 15

Sonar

ELM 88.70 2.92 0.0031 75.57 3.95 0.0016 40
OSFuzzyELM 97.46 3.35 0.2558 67.00 8.21 0.0062 3
LC-ELM 89.42 4.06 0.0343 76.29 6.25 0.0187 40
ELC-ELM 89.78 2.95 117.0569 78.00 6.61 0.0178 40

Wisconsin

ELM 97.71 0.55 0.0047 96.36 1.42 0.0031 40
OSFuzzyELM 97.54 0.38 0.1934 96.45 1.10 0.0094 5
LC-ELM 97.49 0.43 0.0874 96.97 1.06 0.0406 40
ELC-ELM 97.41 0.53 250.2381 97.54 1.59 0.0397 40

further research also include a more comprehensive study of
how ELC-ELMwould perform with other fuzzy membership
functions and similarity relations [20] as the alternative.
Correspondingly, the sensitivity of these chosen functions is
also necessary to be exploited in theory. Furthermore, a more
complete comparison of ELC-ELM against the other state-of-
the-art learning techniques over different datasets from real
application domains [3, 21] would form the basis for a wider
series of topics for future studies.
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