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Abstract 18 

The distribution of rock glaciers is often used to investigate the occurrence of permafrost in mountain areas 19 

and to understand their climate and paleoclimate evolution. This requires the creation of regional and 20 

global inventories capable of discriminating active and relict landforms in order to forecast the presence or 21 

absence of ice in the ground. In this paper, geomorphological, geophysical and microclimatic surveys are 22 



performed on a rock glacier of the Carnic Alps (Eastern European Alps). In the classification currently used 23 

for implementing regional inventories of permafrost evidence in the Alps, this rock glacier would be defined 24 

as relict. However the geophysical, climatological and geomorphological results indicate that internal iceis 25 

widespread in large portions of the rock glacier. These are generally interpreted as ice in pore spaces and 26 

local ice lenses, probably without layers of massive ice. Moreover the occurrence of ice during the 27 

maximum thawing season at depths < 15 m, assumed here as the depth of zero annual amplitude, suggests 28 

that the ice occurring within the rock glacier is related to current cryotic conditions due to density driven air 29 

flow (i.e. the chimney effect). This research demonstrates that the current altitudinal limit of alpine 30 

permafrost can be locally several hundreds of meters lower than forecasted by empirical modeling based 31 

only on the rock glacier distribution and classification. Therefore, rock glacier classifications based only on 32 

remote sensing and geomorphological evidence as the main sources for extracting regional climate and 33 

paleoclimate signals should be treated with caution.  34 

 35 

1. Introduction  36 

The term rock glacier defines a thick lobate or tongue-shaped mass of debris moving downslope through 37 

the deformation of subsurface ice and/or ice-rich sediments (Ballantyne, 2018). Generally, the downslope 38 

movement is indicated geomorphologically by a system of transverse surface ridges and furrows (Capps, 39 

1910; Wahrhaftig and Cox, 1959). Although they are commonly present in many poorly-glacierized 40 

mountain regions around the world, rock glaciers represent key features for the understanding of high 41 

altitude cryosphere under climate change conditions (Haeberli et al., 2006). A long-running discussion exists 42 

around the origin of rock glaciers (Anderson et al., 2018). The ice within a rock glacier might come from ice-43 

supersaturated mountain permafrost (e.g., Haeberli, 1985; Barsch, 1996), from glacier ice (e.g., Whalley 44 

and Martin, 1992, Guglielmin et al., 2018) or represents a continuum between glacial and non-glacial origin 45 

(e.g., Giardino et al., 1987; Clark et al., 1998; Humlum, 1998, 2000; Berthling, 2011;),  46 

A common characteristic of rock glaciers is the presence of old buried ice, often (but not exclusively) of 47 

glacial origin (e.g., Guglielmin et al., 2004; Stenni et al., 2007; Ribolini et al., 2010;) and of different ages 48 



(e.g., Krainer et al., 2015). It has been recently shown that presently active rock glaciers probably 49 

underwent long periods of inactivity in response to climate variability (i.e. warming) during the Holocene, 50 

although warmer periods produced only limited ice melt (Krainer et al., 2015). Thus, while glaciers are 51 

considered excellent climate indicators and their evolution is recognized as someof the best evidence for 52 

climate change (e.g., Haeberli et al., 2007), rock glaciers are generally more resilient to atmospheric 53 

changes due to their thick debris cover (Jones et al., 2018). In this context, it is important to discriminate 54 

between different rock glacier’s evolutionary stages, and classify them accordingly. The rock glacier 55 

classification is generally performed by looking at their degree of activity, defining them as intact (active 56 

and inactive) and relict, and following different classifications proposed by Haeberli (1985), Barsch (1996) 57 

and Cremonese et al. (2011), all based on their dynamics. Active rock glaciers are characterized by 58 

widespread presence of buried ice, sufficient to induce internal deformation, creep and movement. 59 

Inactive rock glaciers also contain ice, but are no longer mobile either due to the melting of most of the 60 

upper ice layers within the terminus slope (climatically inactive), or because of topographic obstacles 61 

(dynamically inactive). Relict rock glaciersdo not flow and internal ice is assumed to be completely absent. 62 

Moreover, an additional type of rock glaciers, called pseudo-relict, has also been recognized and defined as 63 

an intermediate type between relict and inactive rock glacier, having locally isolated patches of permafrost 64 

(Barsch, 1996; Kellerer-Pirklbauer, 2008; Kellerer-Pirklbauer et al., 2012) with negligible climatic 65 

significance. 66 

Ice distribution within rock glaciers varies considerably. Volumetric ice content within rock glaciers normally 67 

ranges between 40% and 60% (Barsch, 1996; Haeberli et al., 1998; Hausmann et al., 2007) although 68 

estimates of up to 70% have also been reported ( Barsch et al., 1979; Arenson, 2002;). Considerable 69 

uncertainties remain regarding the ice content and subsequent water equivalent of inactive and pseudo-70 

relict rock glaciers. 71 

One of the peculiar characteristics of a rock glacier is to retain much of its original morphology, even after it 72 

has ceased moving and the internal ice has completely melted. Rock glaciers at this stage display less 73 

pronounced furrows and gentler front slopes compared to the same landform that was once active (Hughes 74 

et al., 2003). For this reason, rock glaciers can be mapped relatively easily from aerial photographs, and 75 



further geometrically constrained and classified with more sophisticated digital elevation models (DEM), 76 

obtained from high resolution aerial laser scanning or photogrammetric techniques. These methods are 77 

widely used in compiling regional inventories, which often discriminate between intact and relict forms, 78 

although generally without any geophysical or direct investigation. Such classifications are further used to 79 

make estimations of permafrost presence (e.g., Scotti et al., 2013) and water volume equivalent (Jones et 80 

al., 2018). One of the main indicators used in remote sensing to classify a rock glacier as relict, thus 81 

excluding the occurrence of ice and movement, is considered to be the presence of (widespread) 82 

vegetation cover (e.g.,;  Seppi et al., 2005;; Scapozza and Mari, 2010; Lilleøren and Etzelmüller, 2011; Scotti 83 

et al., 2013; http://www.permanetalpinespace.eu/archive/pdf/WP5_3_final_report.pdf; last accessed 4 84 

July 2018) although it is well known that alpine vegetation can cover surfaces with displacement up to 35 85 

cm/year (i.e. Cannone and Gerdol, 2003). Once classified, the altitudinal distribution of rock glaciers is often 86 

used as a proxy for inferring permafrost occurrence and to extract climate and paleoclimate signals. A 87 

correct interpretation of all these aspects is particularly important in areas of sporadic permafrost, as, e.g., 88 

the case of the Mediterranean mountains (Oliva et al., 2018). Here, it is still not clear which landforms flow 89 

and/or contain ice, and what is the timing of their formation and stabilization (e.g., Hughes, 2018; Oliva et 90 

al., 2018). 91 

 92 

Geophysical techniques have been extensively used to investigate the internal structure of rock glaciers. 93 

These include seismic (e.g., Musil et al., 2002), ground penetrating radar (GPR) (e.g., Arcone et al., 1998;; 94 

Musil et al., 2006; Monnier et al., 2008; Merz et al., 2015; Guglielmin et al., 2018) and electrical (e.g., 95 

Kneisel and Hauck, 2008) methods. Such techniques are often integrated (Hausmann et al., 2007; Leopold 96 

et al., 2011) and calibrated with boreholes and temperature measurements. As far as electrical methods 97 

are concerned, the technical improvements of the last decades have provided increasingly accurate results. 98 

Vertical resistivity soundings (VES) have been extensively used since the 1970’s to investigate the internal 99 

structure of rock glaciers ( King et al., 1987; Guglielmin et al., 1994, 1997;). More recently, the development 100 

of modern multichannel systems that can be connected to several tens of electrodes has allowed the 101 

successful application of 2D electrical resistivity tomography (ERT) (e.g., Hauck et al., 2003; Hauck and 102 

http://www.permanetalpinespace.eu/archive/pdf/WP5_3_final_report.pdf


Mühll, 2003; Ribolini et al., 2010) as well as  pseudo-3D ERT surveys ( Rödder and Kneisel, 2012; Emmert 103 

and Kneisel, 2017;). The most significant problem in geoelectrical surveying on rock glaciers is the weak 104 

galvanic coupling associated with the generally high contact resistances between electrodes and ground 105 

(Maurer and Hauck, 2007), and the usually very rough topography, characterized by different size 106 

sediments and blocks. However, ERT investigations remain the most accurate geophysical techniques to 107 

distinguish between frozen and unfrozen areas (e.g., Hausmann et al., 2007; Hauck et al., 2011), even if 108 

there are uncertainties related to the resistivity range superposition between different geological and 109 

glaciological conditions (Reynolds, 2011). A comprehensive review of the pros and cons of geophysical 110 

techniques for rock glaciers imaging is provided by Maurer and Hauck (2007). 111 

Rock glaciers on the southern side of the European Alps have been thoroughly studied using different 112 

approaches (Oliva et al., 2018) and the distribution of rock glaciers in the southeastern Alps has been 113 

recently updated by Colucci et al. (2016). Here, the altitudinal range of rock glaciers was found to be the 114 

lowest for the southern Alps, while the majority of rock glaciers were classified as relict. The Razzo rock 115 

glacier (RRG) in the Italian Carnic Alps is an example of a rock glacier that shows characteristics of a relict 116 

landform based only on its geomorphic properties, elevation range and vegetation cover. This work aims 117 

to: 1) describe the internal characteristics of a geomorphologically relict rock glacier through ERT 118 

investigations, repeated high resolution LiDAR surveys, and a three-year-long period of ground 119 

temperature monitoring; 2) discuss, with evidence from the RRG case study, the limitations of the present 120 

classifications when taking into account only geomorphic characteristics and vegetation cover in the 121 

implementation of regional inventories. 122 

 123 

1. Study area  124 

The RRG (Lat. 46°28’16.19” N; Long. 12°36’34.61” E) is located in the Italian Carnic Alps (Fig. 1). The highest 125 

peak of the study area is Mt. Tiarfin (2,413 m asl; Fig. 3), while the highest peak in the Carnic Alps is Mt. 126 

Coglians (2,782 m asl; Fig. 1b). The Tiarfin group is characterized by Triassic dolomitic limestone (i.e. calcari 127 

dolomitici of Tiarfin) in the highest parts, overlaying Permian Bellerophon, Val Gardena Sandstone and 128 



Sesto Conglomerate towards the North (Carulli, 2006). Several rock glaciers and other landforms of 129 

periglacial origin have been described in inventoriees of the surrounding mountains (Colucci et al., 2016), 130 

while glaciers and ice patches are scattered and have only been reported from the Dolomites to the west 131 

(Baroni et al., 2017), in the area of Mt. Coglians (Carnic Alps) to the northeast (Colucci and Guglielmin, 132 

2015) and in the Julian Alps to the east (Colucci and Žebre, 2016). 133 

A useful source of climate information for the study area is the meteorological station of Mt. Zoncolan 134 

(1750 m) located 25 km east and at the same elevation as RRG. Here, the 1993-2017 Mean Annual Air 135 

Temperature (MAAT) was 4.2°C (σ=0.7) with February being the coldest month (-3.5°C, σ=2.5) and August 136 

being the warmest month (12.6°C, σ=1.8) (www.meteo.fvg.it; last accessed on 4 July  2018). 1993-2013 137 

Mean Annual Precipitation (MAP) was 1,795 mm water equivalent (w.e.) with February being the driest 138 

month (36 mm w.e.) and November being the wettest month (255 mm w.e.).  139 

http://www.meteo.fvg.it/


 140 

Fig. 1 141 

(a) Permafrost distribution in the Alps according to the Alpine permafrost index map (Boeckli et al., 2012). 142 

(b) Rock glacier distribution in the southeastern Alps, including Central and Eastern Austria (after Lieb et al., 143 

2012), Slovenia (after Colucci et al., 2016) and Italian regions of Friuli Venezia Giulia (after Colucci et al., 144 

2016) and Veneto (after PermaNet; 145 

http://www.permanetalpinespace.eu/archive/pdf/WP5_3_final_report.pdf; last accessed on 4 July 2018). 146 

The latter inventory was performed using lower resolution DEM with respect to Lieb et al. (2012) and 147 

Colucci et al. (2016) and therefore probably underestimates the real number of landforms. The Razzo study 148 

area is located within the marked black square and reported in detail in Fig. 3. 149 

http://www.permanetalpinespace.eu/archive/pdf/WP5_3_final_report.pdf


 150 

2. Methods 151 

 152 

3.1 LiDAR data acquisition and processing   153 

Two airborne Light Detection and Ranging (LiDAR) surveys were carried out over the study area on August 154 

2009 and September 2016, with an average point density of 4 and 8 points per square meter, respectively. 155 

Technical specifications of both surveys are reported in Table 1. 156 

 2009 survey 2016 survey 

Average flight height 800 m a.g.l. 1000 m a.g.l. 

LiDAR system Optech ALTM Gemini  Riegl LMS-Q780 

Laser frequency 33 – 167 kHz 0 – 400 kHz 

Acquisition mode Up to 4 range measurements Full-waveform 

Scan angle 50° 60° 

Average point density 4 points m-2 8 points m-2 

Vertical accuracy  0.05 m at 250 m range 0.02 m at 250 m range 

Horizontal accuracy  0.05 m at 250 m range 0.02 m at 250 m range 

 157 

Table 1. Technical specifications of the two LiDAR surveys performed in the study area in 2009 and 2016. 158 

A visual inspection of the two datasets showed a residual shift between them, which could affect subsequent 159 

analyses and generate misleading results in terms of surface changes. For this reason, the Iterative Closest 160 

Point (ICP) algorithm (Zhang, 1994) of the CloudCompare software was used to automatically co-register the 161 

two point clouds, adopting as a reference the point cloud from 2016. In particular, the ICP algorithm was 162 

applied on a subset of the point clouds, corresponding to stable (i.e. no surface change) areas, and the 163 

obtained rigid transformation was then applied to the whole original point cloud surveyed in 2009. 164 



In order to create a representative model of the actual terrain surface excluding vegetation, a classification 165 

of both point clouds was carried out. First, the routines provided by TerraScan software package were used 166 

to generate an automatic classification. This classification was subsequently manually edited to accurately 167 

rearrange the datasets into two classes, namely ground points, i.e. points belonging to the terrain surface, 168 

and overground points, i.e. points backscattered by trees, shrubs, buildings and any other element above the 169 

terrain. Ground points were then exploited to create Digital Terrain Models (DTMs) with a resolution of 1 m. 170 

TerraScan software uses LiDAR points to derive a Triangulated Irregular Network (TIN) through Delaunay 171 

triangulation that is subsequently resampled onto a grid of specified resolution. 172 

Finally, to highlight vertical elevation differences and the horizontal shifts of the study area, a DEM of 173 

Difference (DoD) was computed by subtracting the 2009 surface from the 2016 surface using the ESRI ArcGIS® 174 

raster calculator tool. The elevation difference error, computed on stable areas, is on average -0.06 m, with 175 

a standard deviation of 0.28 m. 176 

3.2 Geomorphic Changes and Analysis 177 

In order to identify and investigate possible geomorphic changes in the study area , vertical elevation 178 

differences between the DTMs derived from the 2009 and 2016 LiDAR point clouds were analyzed. To 179 

produce reliable results, uncertainties affecting DTMs and the obtained DoD were first taken into account. 180 

Several factors can indeed introduce errors in DTMs, including survey point quality, surface characteristics, 181 

sampling strategy, interpolation methods and classification errors (Milan et al., 2011). 182 

In this study, we assumed spatially uniform uncertainties affecting the DoD and specified a threshold for the 183 

minimum level of detection to distinguish between actual surface changes and inherent noise. A threshold 184 

of 0.56 m was chosen, which corresponds to twice the standard deviation of the elevation difference error 185 

computed on stable areas, as described in section 3.1. In this way, predicted elevation changes beneath this 186 

detection limit were discarded. The thresholded DoD was generated using the ESRI ArcGIS Geomorphic 187 

Change Detection (GCD) tool (Wheaton et al., 2010). 188 



Further statistical analysis was then performed with the GCD tool on the thresholded DoD and the results 189 

are reported in Table 2. 190 

3.3 Geomorphological setting, rock glacier volume and water volume equivalent  191 

Although the focus of this research is the study of one particular rock glacier, we mapped the 192 

geomorphology of a wider area, approximately equal to 6 km2. Moraine and rock glacier ridges were 193 

mapped using orthophotos and digital elevation models (DEM) derived from 2009 and 2016 LiDAR data 194 

(Table 1), as well as field surveying. A detailed geomorphological analysis, including the calculation of some 195 

typical rock glacier morphometric parameters (maximum, minimum and mean altitude, width, length, area, 196 

mean slope of the front), was performed by applying different ESRI ArcGIS® tools.  197 

The maximum volume of ice during full rock glacier activity in the past of the RRG was estimated on the 198 

basis of assumed volumetric ice content (40-60 %) within intact rock glaciers and rock glaciers volume. 199 

Volume of the RRG was estimated by multiplying rock glacier surface area (A) and thickness (H). The first 200 

parameter was extracted from a 1 m DEM, using the previously defined rock glacier polygon. The second 201 

parameter was estimated using an empirical rule established by Brenning (2005), which is based on several 202 

field observations of rock glacier geometry. According to this power-law relationship (Equation 1) the mean 203 

rock glacier thickness (H; in meters) is calculated as a function of surface area (A; in square kilometres) and 204 

two scaling parameters (ϲ and β) 205 

𝐻 = ϲ𝐴𝛽    (1) 206 

where ϲ is 50 and β is 0.2. 207 

The estimated ice volume was subsequently used for the calculation of the water volume equivalent 208 

(w.v.e.) (Brenning, 2005; Jones et al., 2018) by assuming an ice density conversion factor of 900 kg m−3 209 

(Paterson, 1994). 210 

 211 

3.4 Ground temperature monitoring  212 



Ground temperature is measured at 2 different locations at the rock glacier’s front by using Tynitag-plus-2® 213 

dataloggers, equipped with a built-in sensor and with thermistor probes with an accuracy of 0.35°C and a 214 

resolution of 0.01°C. The probes are located at the entrance of two decimetric-in-size natural cavities near 215 

the foot of the rock glacier’s front, through which evident cold-air flow is detected in summer. Ground 216 

surface temperature (GST) at location 1 (Fig. 2a) is recorded by the built-in sensor at the ground surface 217 

and the datalogger is inserted into the ground with its top part at ground level, whilst ground temperature 218 

(GT-1) is recorded by a thermistor probe inserted 20 cm in the soil at the bottom of the small cavity, overall 219 

at 100 cm depth. Ground temperature (GT-2) at location 2 (Fig. 2b) is recorded in the same way as at 220 

location 1, whilst air flow temperature (ATH) is recorded by a thermistor probe vertically fixed in the small 221 

cavity. At both locations, the dataloggers are set to record the minimum and maximum temperature on a 222 

hourly basis. 223 



 224 

Fig. 2 225 

Location of the ground temperature probes at the rock glacier front: a) details of the location 2 as 226 

highlighted in Fig. 4a; b) details of the location 1 as highlighted in Fig. 4; c) photograph of the location 2 227 

highlighting the GST monitoring site, i.e. the built-in sensor (not visible here) and the GT-2 located in the 228 

small cavity at the rock glacier’s front (Photo by R.R. Colucci). The sketches in a and b are intended to clarify 229 

how the probes are inserted in the ground and the drawing is not correctly scaled both in terms of lengths 230 

and steepness of the slope. 231 



3.5 Electrical Resistivity Tomography (ERT)  232 

Two longitudinal ERT profiles were acquired on the rock glacier (Fig. 4); one in 2015 (October 30th) and the 233 

other in 2016 (September 7th). The 2015 ERT survey was performed with a Syscal Pro georesistivimeter (IRIS 234 

International) connected to 72 electrodes with a 2 m spacing. We used both standard Wenner (W) and 235 

Wenner-Schlumberger (WS) electrode configurations, obtaining 828 and 1221 measures, respectively. After 236 

the preliminary analysis on 2015 ERT data we decided to enlarge the electrode spacing to 5 m for the 2016 237 

survey. In 2016, we used a Pasi 16GL-N instrument with a standard Wenner configuration to collect two 238 

partially overlapping profiles, each of them with 32 electrodes. During the processing we concatenated 239 

such profiles obtaining a 48 electrodes (235 m long) profile with 289 resistivity values. Each measure was 240 

repeated from three to six times, depending on the standard deviation of the collected values, then 241 

stacking the data, to minimize random noises. The overall high data quality is confirmed by the very low 242 

standard deviation between reciprocal measurements: 8 values from 2015 W profile, 7 values from 2015 243 

WS profile and only 4 values from 2016 W profile have RMS error above 0.5%. 244 

After careful data editing by checking the effective electric currents, self potentials, difference of potential, 245 

and apparent resistivities, we used Res2Dinv software (Loke and Dahlin, 2002) to invert the data and set a 246 

RMS convergence limit equal to 5%. Due to the high quality of the data neither interpolation nor resistivity 247 

constrains have been applied. On the other hand, it was almost impossible to follow a straight line on the 248 

field, especially for the 2016 profile. Therefore, we recalculated all the geometrical factors by using the 249 

actual electrodes locations measured by an RTK GPS device, which allowed a centimetric accuracy. The RMS 250 

mean error obtained after data inversion is always lower than 10% after maximum 5 iterations, despite the 251 

very rough topography and the logistical problems, related to the connection of some of the electrodes into 252 

the ground. 253 



 254 

 255 

Fig. 3  256 

Geomorphological map of the broader study area, characterized by high density of rock glaciers and 257 

moraines. The RRG is marked with a black square shown in detailin Fig. 4. The base map and contours are 258 

realized from a high resolution (2x2 m cell) DEM kindly made available by the Geological Service of the 259 

Veneto Region. 260 

 261 



3. Results 262 

4.1 Geomorphology of the study area  263 

The landscape of the study area (Fig. 3) is largely characterized by typical alpine glacial and periglacial 264 

landforms. The carbonate slopes below the highest mountain crests are mainly covered by non-vegetated 265 

talus deposits, generally directly linked to the rock glaciers located downwards. Lateral, frontal and 266 

hummocky moraine ridges cover less steep slopes immediately below the rock glaciers and are 267 

stratigraphically older than the rock glaciers. Till cover is are occasionally dissected by permanent or 268 

intermittent streams flowing from the rock glaciers terminus over moraines and towards north. The area to 269 

the north forms a badland-like landscape, which is extensively eroded by water. Moraine ridges are a few 270 

meters high and likely designate several glacier stabilizations (stadials) during the Late glacial and/or early 271 

Holocene periods. As recently shown by Colucci et al. (2014), the LGM ELA in the southeastern Alps was 272 

much lower than the LGM ELA in the Casera Razzo area, which likely acted as an area of accumulation for 273 

larger glaciers. Ten rock glaciers (6 of them shown in Fig. 3) with a total area of 0.7 km2 were mapped in the 274 

Tiarfin group (Fig. 3). They extend between 2,280 and 1,680 m asl. Seven of them are tongue-shaped, while 275 

the rest have a lobate geometry. Their areas vary between 5,410 and 189,429 m2. The RRG is located SE of 276 

the Col Marende peak (Fig. 3) and its rooting zone is located on the NE slopes of the Tiarfin group. It has all 277 

the characteristics of a tongue-shaped rock glacier with a length/width ratio of 1.9. The altitudinal 278 

difference between the maximum (1,981 m asl) and minimum (1,831 m asl) point is 150 m, while the 279 

median elevation is 1,909 m. The area covered by this landform is ca. 173,000 m2. The height of the frontal 280 

slope is ca. 30 m and the mean and maximum slope angles of the front are 30° and 43°, respectively. The 281 

RRG surface is characterized by ridges composed of angular metric Triassic dolostone and limestone 282 

boulders, originating from the local slopes. The orientation of the ridges is related to the N-NE downward 283 

direction of the rock glacier movement. Between the ridges, thermokarst depressions are formed mainly on 284 

the main body and towards the front, but not over it. The RRG is entirely and extensively covered by 285 

vegetation, with prevailing Pinus mugo and Larix decidua, while the vegetation at the front is much 286 

different from the surroundings and appears to be related to locally colder thermal regime with species 287 



typical of higher altitudes as the Cladonia macrophyllodes Nyl. ( Tretiach, 1992; Nimis et al., 2018;). At the 288 

contact between the rock glacier front and the bedrock a spring emerges, from which an intermittent 289 

stream, active mainly in spring and early summer, flows towards a depression behind a frontal moraine. 290 

There, a pond forms and usually persists until the early summer. Other springs, which are not located 291 

immediately below the RRG front, but clearly feed from the rock glacier area, are present NW of the front, 292 

in the area of moraine deposits.  293 

According to Equation 1, the mean thickness of the RRG (debris and ice) in its active state would be 35.2 m. 294 

This results in a total rock glacier volume of 6.08*106 m3 and volumetric ice content between 2.43*106 and 295 

3.65*106 m3 if considering a range of 4060% for the ice content. Thus, the water volume equivalent was 296 

calculated to be between 2.19*106 m3 and 3.28*106 m3. 297 



 298 

Fig. 4  299 

(a) The extent of the RRG with the location of ERT profiles performed in 2015 and 2016, and ground 300 

temperature monitoring locations 1 and 2 (details in Fig. 2). (b) Orthophoto of the RRG area. Note the 301 

dense vegetation cover over the entire surface of the rock glacier. (c) Aspect map and (d) slope map of the 302 

area covered by the RRG. Base layer for (a), (c) and (d) is a shaded relief extracted from the 2016 1-m DTM. 303 

 304 

 305 

 306 



4.2 Climatology of the area 307 

The 1981–2010 climatology of MAAT at 2,200 m asl in the south eastern Alps, recently reconstructed by 308 

Colucci and Guglielmin (2015), is in very good agreement with the data record of 2004-2017 monthly mean 309 

temperature in Sella di Razzo (R=0.95; Fig. 5a), as well as with the data record of Mt. Zoncolan (Fig. 1b) 310 

meteorological station (R=0.95). Therefore, it was possible to reconstruct the 1981-2010 MAAT for Sella di 311 

Razzo when data was missing. A 37-year-long record of MAAT  is presented in Fig. 5b. MAAT in Sella di 312 

Razzo, which is located very close to the front of the rock glacier (Fig. 3), is 3.7°C (σ=0.7). Indeed, this 30-313 

year-long period has been characterized by a steep and accelerated warming during which MAAT increased 314 

by about 1.0°C. Temperature data from Sella di Razzo shows a steep rising trend with three of the warmest 315 

year recorded in the last five years of observation, which is in accordance with observations in the 316 

southeastern Alps. The year 2015 is the warmest of the Sella di Razzo record and likely the warmest of the 317 

last (at least) 150 years. 318 

Mean annual precipitation (MAP) over the period 1961-2000 recorded at the meteorological station of 319 

Sauris at 1,212 m asl was 1543 mm water equivalent (w.e.). February is the driest month (74 mm w.e.) and 320 

October is the wettest (175 mm w.e.). More recent observations (2005-2017) performed in Forni di Sopra 321 

(Fig. 1b) at 922 m asl point to similar data with MAP of 1548 mm w.e. (January 84 mm w.e.; November 176 322 

mm w.e.).  323 



 324 

Fig. 5 325 

In a) scatter plot of temperature reconstruction from Julian Alps (Colucci and Guglielmin, 2015) and Sella 326 

Razzo dataset. In b) 1901-2017 climatology of: (1) MAAT Canin (2,200 m asl); (2) MAAT Sella Razzo (1,839 m 327 

asl); (3) 5-year centered running mean for Canin; (4) 5-year centered running mean for Sella Razzo. 328 

 329 

 330 

 331 



4.3 Geomorphic Changes and Analysis 332 

By analysing the LiDAR point cloud data from 2009 and 2016, some small changes in the area of interest (AOI; 333 

corresponding to the rock glacier extent) were detected (Table 2). A net volume change of -1803 m3 and the 334 

average net thickness (computed as the total net volume difference divided by the AOI) of 1 cm for the period 335 

2009-2016 was found. The percentage of the AOI with detectable changes (i.e. exceeding the minimum level 336 

of detection) equals 2%. All these values clearly show that geomorphic changes in the area of interest are 337 

negligible along all (x,y,z) directions. 338 

 339 

 340 

 Thresholded DoD Estimate 

Negative volume change (m3) 2065 

Positive volume change (m3) 262 

Net volume change (m3) -1803 

Average depth of negative change (m) 0.84 

Average depth of positive change (m) 0.71 

Percentage of AOI with detectable change  2% 

Average net thickness difference for AOI (m) -0.01 

Table 2. 341 

Statistics related to changes in the area of interest (AOI), computed on the thresholded DoD. 342 

 343 

4.4 Results from temperature monitoring  344 

A 36-month-long record of continuous semi-hourly ground (GT-1 and GT-2), soil (GST) and air-flow (AT-H) 345 

temperatures were recorded from August 2015 to July 2017 at the front of the RRG (Fig.s 2 and 4). GST 346 

shows a marked daily variability in summer with diurnal excursions often greater than 25 °C. Daily 347 

maximums exceeded 30°C in several occasions during the summers of 2016 and 2017 with a peak of 35.4°C 348 



in 2017. GT-1 and GT-2 show a similar pattern in all the seasons with a fast decreasing trend from early 349 

autumn to mid winter and a slow and long rising trend from mid winter to the end of the summer. AT-H is 350 

in phase with GT-2, but shows warmer temperature during the winter/early spring phase. At the onset of 351 

the snowmelt season in March, temperature at all the locations rapidly rise to 0°C and a long zero curtain 352 

effect is recorded. In autumn a less pronounced zero curtain phase is also observed in 2016 and 2017, 353 

especially at locations GT-2 and AT-H. The coldest temperature generally occurs on early-to-mid winter, 354 

when minimum peaks between -15°C and -20°C have been recorded and associated with low snow cover 355 

(Fig. 5). In winter 2018, early snow cover dumped the cooling of the ground, which only occasionally 356 

reached minimum values around -5°C (“S” in Fig. 5). Only the GST location shows a positive mean annual 357 

temperature (MAT; Fig. 6), whilst at location GT-1 MAT is the lowest (Fig. 6). 358 

The temperature of the spring immediately below the rock glacier front (S1 in Fig. 3;) was measured to 359 

1.3°C on the 19th of June 2016, when the air temperature was 9.0°C and winter snow cover was completely 360 

absent in the area and over the rock glacier. The spring S2 (Fig. 3;), ~300 m far from the rock glacier front 361 

and 40 m lower in elevation from the S1 had a temperature of 2.7°C on the same day.  362 

 363 

 364 



 365 

Fig. 6  366 

Daily ground temperature data at the rock glacier front and snow thickness at the Sella Razzo 367 

meteorological station (see Fig. 3 for location): with “z” the “zero curtain” phases are highlighted; with “s” 368 

the thick snow cover of the winter season 2017-18, which has inhibited the ingression of cold air into the 369 

ground, is also highlighted. First data refers to 8th August, 2015 while last data belongs to 15th August, 2018. 370 

See Fig. 2 for the location of the probes. GT represents the ground surface temperature, AT-H the 371 

temperature of the air flowing in the small cavities and GST is the ground surface temperature. 372 

 373 



 374 

Fig. 7  375 

Monthly and annual (MAT) ground and air temperature data at the RRG front. Grey boxes highlight 376 

locations with “just” 2 continuous years of data recorded.  377 

 378 

4.5 ERT results  379 

Inverted 2015 ERT profiles show a resistivity range between about 0.3 and 40 kOhm∙m (Fig. 7) with only 380 

minor differences between WS (Fig. 8a) and W (Fig. 8b) configurations. In fact, for increasing depths a low 381 

resistivity layer with variable thickness from about 2 up to 10 m is followed by a quite laterally continuous 382 

zone with resistivity always above 10 kOhm·m and a maximum thickness of about 15 m. In the central part 383 

of the 2015 profile (Fig. 8) there is a remarkable resistivity decreasing down to values of few hundreds 384 

Ohm·m. Such results are similar to the ones obtained in the 2016 survey (Fig. 9), where, despite higher 385 

overall resistivities, the above described trend is similar.  386 

The higher resolution provided by the WS profile with respect to the W one (Figs. 8a and 8b, respectively) 387 

shows very shallow and small high-resistivity-zones, shown by the black arrows in Fig. 8a. These zones 388 

which might be related to local air filled fissures and small cavities just below the largest boulders are 389 

especially obvious in the lower ridge (R1). 390 



 391 

Fig. 8 392 

Inverted ERT Wenner-Schlumberger (A) and Wenner (B) 2015 profiles. Black arrows mark surficial relatively 393 

high resistivity zones, interpreted as air filled voids between rock blocks, the white-dotted line highlights 394 

the approximate base of the active layer, and R1 and R2 highlight the two main ridges intersected by the 395 

profile. Percentual RMS errors are equal to 9.9 and 6.9 for A) and B), respectively. Vertical to horizontal 396 

ratio is equal to 1. 397 

 398 



 399 

Fig. 9  400 

Inverted ERT Wenner 2016 profile plotted with the same resistivity scale as in Fig.-5. White dotted line 401 

highlights the approximated base of the active layer, while R3 and R4 labels highlight the two main ridges 402 

intersected by the profile. Percentual RMS error is equal to 4.6. Vertical to horizontal ratio is equal to 1. The 403 

exact location of this profile within the rock glacier indicated in Fig. 4a as ERT 2016. 404 

 405 

5. Discussion  406 

The RRG, which on the basis of our results is classified as inactive, would have been certainly classified as a 407 

relict rock glacier according to the criteria presented in Table 4 and by using only remote sensing 408 

techniques (aerial photographs, analysis of a more geometrically consistent DEM obtained from TLS, LiDAR 409 

or photogrammetric surveys). Much of the RRG geomorphic characteristics, such as a concave median 410 

longitudinal profile, a generally depressed body, no ice exposures, the presence of some collapsed features 411 

(conical depressions) and a gentle transition to upper surface, would exclude the presence of ground buried 412 

ice or interstitial ice. Additionally, when considering the MAAT of the last 37 years (3.7°C), we can infer that 413 

the rock glacier is climatically located out of the range of a periglacial environment. The steepness of the 414 

front of the RRG indeed might point to an active landform, but recent studies show possible higher external 415 

angle of repose for limestone scree, generally in the range 35 - 45 ° with variability affected by factors, such 416 

as the size distribution of clasts, cleanliness and moisture content (Oates, 1998; Rackl and Grötsch, 2018). 417 



Several authors would consider this rock glacier as a relict one also on the basis of the present vegetation 418 

cover. 419 

 420 

Classification RSD RSD RSD RSD RSD RSD CD CD 

Active Steep 

front 

(>35° ) 

and side 

slopes 1,2 

Surface 

with well 

defined 

furrows 

and 

ridges1,3 

Median 

longitudinal 

profile is 

convex4 

Swollen 

body5 

eventual ice 

exposures6 

Sharp 

crested 

frontal 

slope7 

MAAT 

< -2°C8 

Frozen 

material or 

ice core 

detectable 

at depths 

lower than 

ZAA4 

Relict Gently 

sloping 

(<30°)1,2 

(Naturally 

subdued) 

surface 

relief of 

ridges and 

furrows is 

still 

visible1,3 

Median 

longitudinal 

profile is 

concave4 

Depressed 

or flattened 

body5 

No ice 

exposures 

and surface 

collapsed 

features6 

Gentle 

transition 

(rounded 

crest) to 

upper 

surface7 

MAAT 

>3°C8 

Frozen 

material or 

ice core 

detectable 

at depths 

higher than 

ZAA4 

Table 4.  421 

Remote Sensing Derived (RSD) and Climatically Derived (CD) classification for active and relict rock glaciers. 422 

1) Barsch (1988); 2) Jones et al. (2018); 3) Kääb and Weber (2004); 4) Colucci et al. (2016); 5) Seppi et al. 423 

(2004); 6) Janke (2013); 7) Wahrhaftig and Cox (1959); 8) French (2018). The characteristics of the RRG are 424 

shown in bold. 425 

On the other hand, the findings from this case study point to a widespread and abundant presence of 426 

buried ice in the RRG, therefore indicating it should be classified as an inactive rock glacier. Specifically, ERT 427 

inversions show resistivity values typically encountered in active rock glaciers. It is worth noting that for 428 

both ERT profiles the resistivity exhibits thicker low sub-surficial zones below the ridges (labels R1-R4 on 429 



Fig.s 8 and 9), while some high resistivities are also close to the topographic surface (up to about 2-2.5 m) 430 

in correspondence with the furrows. A similar distribution pattern, which should be related to colder 431 

temperatures in the furrows due to topographic or microclimatic effects, is reported by Harris and 432 

Pedersen (1998) and Hoelzle et al. (1999). An opposite behavior, likely caused by local compression 433 

phenomena in the ridge zones, is described by Hauck and Kneisel (2008) and Emmert and Kneisel (2017). 434 

The active layer thickness (ALT) varies between about 2 and 8 m (white dotted lines in Fig.s 8 and 9) 435 

showing a correspondence with the main ridges (R1, R2, R3, R4). The longitudinal lateral variability, shown 436 

by the electrical resistivity data along an almost continuous, more than 500 m long longitudinal profile (see 437 

Fig. 4) on the rock glacier, is overall small, demonstrating a generally increasing trend towards higher 438 

elevations. A relevant exception is represented by the well-defined shallow high resistivity zone at the rock 439 

glacier’s front (Fig. 8), ending at its limit. The resistivity values exceeding 30 KOhm·m and the mean slope of 440 

the rock glacier’s front along this profile is >35° (Fig. 4d), indicate the probable presence of ice-rich 441 

materials and permafrost conditions even at that location. 442 

Additional ERT data, acquired from the plain just to the north of the rock glacier and not reported in this 443 

paper ,show a maximum resistivity of 2.5 KOhm·m, indirectly demonstrating that the ice-rich materials lie 444 

only within the rock glacier. 445 

The cryological interpretation of the resistivity values in the absence of boreholes or other geophysical 446 

investigations is not easy to interpret, but according to Haeberli and VonDer Mühll (1996) values above 10-447 

15 KOhm·m can be referred to rock glacier permafrost, whereas sedimentary ice has values close to or 448 

higher than 100 KOhm·m, showing high variability for low temperature conditions. 449 

In more recent papers, Ribolini et al. (2010) studied the Foscagno rock glacier (Central Alps) and interpreted 450 

zones with resistivity exceeding 20 kOhm·m as ice-rich permafrost , while Emmert and Kneisel (2017) 451 

analyzed two rock glaciers in the Swiss Alps and fixed a resistivity threshold of 8 kOhm∙m as the lower limit 452 

for the frozen state. Similar results are provided by Ikeda and Matsuoka (2006) by validating ERT data with 453 

direct observations in a trench and considering the differences between boulder and pebble sized rock 454 

glaciers. However, we have to consider that the presence of liquid water can strongly influence the 455 



resistivity values (Hauck and Kneisel, 2008)  and the grain size vertical and lateral variability also plays a role 456 

(Kneisel et al., 2008), making it difficult to extrapolate a single resistivity threshold to infer the ice presence. 457 

Summarizing and integrating the geophysical and geomorphological results from RRG, large portions of the 458 

rock glacier contain ice, without relevant layers composed of massive ice, but rather with ice in pore spaces 459 

and local, but continuous ice lenses. Although massive ice cannot be inferred by the resistivity values never 460 

exceeding some tens of KOhm·m, the ice is widespread and continuous enough to generate an essentially 461 

uninterrupted high resistivity level. The active layer consists of boulders (up to several meters wide) as well 462 

as fine-grained sandy-silty materials as typically found in the Alps (Isaksen et al., 2000). Geophysical 463 

investigations in the RRG also show the occurrence of frozen material during the summer and autumn 464 

above the depth of zero annual amplitude (ZAA). In this type of deposit it is reasonable to hypothesize that 465 

the ZAA, which represents the soil-and-climate-dependent depth where the annual variation is less than 466 

0.1°C, at depth ≥ 15 m (Harris et al., 2009).  Therefore, we infer the presence of frozen material in the RRG 467 

related to current ground cryotic conditions. 468 

Observations of both ground and spring water temperatures, and of air flows also support the hypothesis 469 

that ice exists within this rock glacier. Recorded Mean Annual Ground Temperature (MAGT) points to the 470 

presence of permafrost (Cremonese et al., 2011). Short periods of strong ground overcooling are 471 

detectable from October-November up to the second half of January, generally with low snow cover on the 472 

ground (Fig. 6). This is probably due to the warmer and less dense air than the external, flowing away from 473 

the upper part of the rock glacier due to its buoyancy through voids between blocks and the debris (i.e. 474 

chimney effect; ( Thury, 1861; Balch, 1900)). This produces a negative low (lower air pressure) inside the 475 

rock glacier, which triggers a forced aspiration of atmospheric air in the lower part of the rock glacier as 476 

already highlighted by several authors (e.g., Morard et al., 2008; Popescu et al., 2017). This is clearly 477 

detectable at the RRG from the AT-H probe, which shows the lowest mean monthly values in December 478 

and January (Table 3). On the other hand, during summer months, colder and denser air flows out from the 479 

rock glacier front, keeping cooler conditions at the rock glacier terminus and just in front of it. Mean and 480 

absolute temperature observed at the RRG’s front (Figs. 6 and 7) are largely consistent with previous 481 



studies in the Alps on talus slopes (e.g., Delaloye and Lambiel, 2005; Popescu et al., 2017) and rock glaciers 482 

(e.g., Delaloye and Lambiel, 2005; Morard et al., 2008), as well as in talus-and-gorge ice caves in North 483 

America (Holmgren et al., 2017).  484 

With such evidence, cryotic conditions in the ground are still currently occurring here. This means that the 485 

forced lowering of the mean annual ground temperature in turns allows permafrost conditions to reach 486 

much lower elevations compared to the regional climate limits. Similar cases exist in the Mediterranean 487 

areas and in North Africa, where the presence of permafrost is marginal. This is for instance the case of 488 

Morocco, where ground temperature measurements imply that permafrost may still be present  (Vieira et 489 

al., 2017). 490 

 491 

By overlying the Alpine-wide Permafrost Model (APMOD, Boeckli et al., 2012) on the geomorphological 492 

map of the area of Casera Razzo (Fig. 10), we observed that the area of possible presence of permafrost is 493 

900 m lower than that modeled in the area around the RRG. Considering the cooling effect cause by coarse-494 

blocky rock glaciers in the Alps, the offset found in the RRG area is actually greater than that reported in 495 

Boeckli et al. (2012) In their “debris model”, a maximum altitudinal variation offset from APMOD between -496 

153 m to +770 m is assumed. However, the same authors warn about possible larger differences related to 497 

local permafrost patches in densely vegetated areas or below the tree line (as the present case), which are 498 

not considered in the model.  499 



 500 

Fig. 10. Permafrost distribution in the Casera Razzo area according to the Alpine permafrost index map 501 

(Boeckli et al., 2012). Permafrost conditions are envisaged on the north facing slopes above the RRG, and in 502 

the talus scree and part of a rock glacier located at higher elevation. 503 

 504 

6. Conclusions 505 

This work shows that rock glaciers considered relict on the basis of remote sensing and geomorphological 506 

evidence can still contain residual ice at elevations much lower than the modelled permafrost limit. Indeed 507 

rock glaciers can exist at altitudes several hundred meters lower than forecasted by modeling techniques or 508 

taking into account the -2°C isotherm. This aspect is of particular interest because it shows how models can 509 

be inaccurate when dealing with sporadic permafrost areas. Several examples exist from the 510 



Mediterranean mountains, where under thick debris cover (rock glaciers) and in caves (permanent ice 511 

deposits in caves) no model or index is currently able to predict the presence of ice. This is particularly true 512 

for high altitude karstic terrains, where the occurrence of ground ice in caves is common. Several ice caves 513 

exist in the area of the RRG (Colucci et al., 2016b, 2017), in the southern Alps, in the Apennines and Sicily in 514 

Italy (Maggi et al., 2018) and in other Mediterranean areas such as Greece (e.g., Pennos et al., 2018).  515 

As a result, caution should be applied when calculating physical parameters such as the minimum 516 

altitudinal limit for the occurrence of permafrost at regional scales, the volume of water equivalent in a 517 

geographic area affected by possible permafrost conditions, as well as paleoclimatic reconstruction of 518 

permafrost occurrence and predictions of future scenarios. 519 

 520 

 521 

 522 
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