
Aberystwyth University

Efficient pattern matching in degenerate strings with the Burrows–Wheeler
transform
Daykin, Jacqueline; Groult, Richard; Guesnet, Yannick; Lecroq, Thierry; Lefebvre, Arnaud; Léonard, Martine;
Mouchard, Laurent; Prieur-Gaston, Élise; Watson, Bruce

Published in:
Information Processing Letters

DOI:
10.1016/j.ipl.2019.03.003

Publication date:
2019

Citation for published version (APA):
Daykin, J., Groult, R., Guesnet, Y., Lecroq, T., Lefebvre, A., Léonard, M., Mouchard, L., Prieur-Gaston, É., &
Watson, B. (2019). Efficient pattern matching in degenerate strings with the Burrows–Wheeler transform.
Information Processing Letters. https://doi.org/10.1016/j.ipl.2019.03.003

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aberystwyth Research Portal

https://core.ac.uk/display/326674487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ipl.2019.03.003
https://pure.aber.ac.uk/portal/en/persons/jacqueline-daykin(16bf36d7-bde2-4a56-9768-9daed3ddcf05).html
https://pure.aber.ac.uk/portal/en/publications/efficient-pattern-matching-in-degenerate-strings-with-the-burrowswheeler-transform(74748a11-9102-48f1-9aab-5d8070f76e5a).html
https://doi.org/10.1016/j.ipl.2019.03.003

Accepted Manuscript

Efficient pattern matching in degenerate strings with the Burrows–Wheeler transform

J.W. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre et al.

PII: S0020-0190(19)30053-5
DOI: https://doi.org/10.1016/j.ipl.2019.03.003
Reference: IPL 5809

To appear in: Information Processing Letters

Received date: 18 December 2017
Revised date: 11 January 2019
Accepted date: 8 March 2019

Please cite this article in press as: J.W. Daykin et al., Efficient pattern matching in degenerate strings with the Burrows–Wheeler transform,
Inf. Process. Lett. (2019), https://doi.org/10.1016/j.ipl.2019.03.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ipl.2019.03.003

Highlights

• Formalization of the search in degenerate strings with the Burrows-Wheeler transform
• Proofs that consecutive intervals generated during the search can be merged
• Complexity proof for the conservative case
• Experimental results

Efficient pattern matching in degenerate strings with
the Burrows–Wheeler transform�

J. W. Daykina,b,c,e, R. Groultd,c, Y. Guesnetc, T. Lecroqc, A. Lefebvrec, M.
Léonardc, L. Mouchardc, É. Prieur-Gastonc, B. Watsone,f

aDepartment of Computer Science, Aberystwyth Univ., Wales & Mauritius
bDepartment of Informatics, King’s College London, UK

cNormandie Univ., UNIROUEN, LITIS, 76000 Rouen, France
dModélisation, Information et Systèmes (MIS), Univ. Picardie Jules Verne, Amiens, France

eDepartment of Information Science, Stellenbosch Univ., South Africa
fCAIR, CSIR Meraka, Pretoria, South Africa

Abstract

A degenerate or indeterminate string on an alphabet Σ is a sequence of non-
empty subsets of Σ. Given a degenerate string t of length n and its Burrows–
Wheeler transform we present a new method for searching for a degenerate
pattern of length m in t running in O(mn) time on a constant size alphabet
Σ. Furthermore, it is a hybrid pattern matching technique that works on both
regular and degenerate strings. A degenerate string is said to be conservative if
its number of non-solid letters is upper-bounded by a fixed positive constant q;
in this case we show that the search time complexity is O(qm2) for counting the
number of occurrences and O(qm2 + occ) for reporting the found occurrences
where occ is the number of occurrences of the pattern in t. Experimental results
show that our method performs well in practice.

Keywords: algorithm, Burrows–Wheeler transform, conservative, degenerate,
pattern matching, string

1. Introduction

An indeterminate or degenerate string x on an alphabet Σ is a sequence of
non-empty subsets of Σ. Degenerate strings date back to the groundbreaking
paper of Fischer & Paterson [5]. Then a solid letter is a singleton. Non-solid
letters are called degenerate letters. This generalization of a regular (or solid)
string, from letters to subsets of letters, arises naturally in diverse applications:
in musicology, for instance the problem of finding chords that match with single
notes; search tasks allowing for occurrence of errors such as with web inter-

�The first author was part-funded by the European Regional Development Fund through
the Welsh Government, Grant Number 80761-AU-137 (West)

Preprint submitted to Elsevier March 13, 2019

faces and search engines; bioinformatics activities (DNA sequences and proteins
analysis); and cryptanalysis applications.

For solid strings, the main approaches for computing all the occurrences of
a given non-empty pattern p in a given non-empty text t have been window-
shifting techniques, and applying bit-parallel processing to achieve fast process-
ing – for expositions of classic string matching algorithms see [2]. More recently
the Burrows–Wheeler transform (BWT) has been tuned to this search task,
where all the occurrences of the pattern p can be found as a prefix of consecu-
tive rows of the BWT matrix, and these rows are determined using a backward
search process.

The degenerate pattern matching problem for degenerate strings p and t
over Σ of length m and n respectively is the task of finding all the positions of
all the occurrences of p in t, that is, computing every j such that ∀ 1 ≤ i ≤ |p|
it holds that p[i] ∩ t[i + j] �= ∅. Following the first significant contribution to
this problem by Fischer and Paterson [5], interest over the years has produced
a faster algorithm by Kalai [9], and practical methods by Smyth et al. [12].

Variants of degenerate pattern matching have recently been proposed. A
degenerate string is said to be conservative if its number of degenerate letters
is upper-bounded by a fixed positive constant q. Crochemore et al. [3] consid-
ered the matching problem of conservative degenerate strings and presented an
efficient algorithm that can find, for given degenerate strings p and t of total
length n containing q degenerate letters in total, the occurrences of p in t in
O(nq) time, i.e. linear in the size of the input.

Our contribution is to implement degenerate pattern matching by modifying
the existing Burrows–Wheeler pattern matching technique using the standard
RAM model of computation. Given a degenerate string t of length n, searching
for either a degenerate or solid pattern of length m in t is achieved in O(mn)
time; in the conservative scenario with at most q degenerate letters in the pat-
tern and in t, the search complexity is O(qm2) for counting the number of
occurrences and O(qm2 + occ) for reporting the found occurrences where occ is
the number of occurrences of the pattern in t – competitive for short patterns.
This formalizes and extends the work implemented in BWBBLE [8]. The rest of
the paper is organized as follows. In Section 2 we give notation and recall basic
definitions. The following Section 3 presents the previous work on the problem.
Then in Section 4 we provide proofs for pattern matching in degenerate strings
with the Burrows–Wheeler transform. In Section 5 we consider the case of pat-
tern matching in conservative degenerate strings. We discuss our experimental
results in Section 6.

2. Notation and definitions

Consider a finite totally ordered alphabet Σ of constant size σ which consists
of a set of letters. The order on letters is denoted by the usual symbol <. A
string is a sequence of zero or more letters over Σ. The set of all strings over
Σ is denoted by Σ∗ and the set of all non-empty strings over Σ is denoted by

2

Σ+. Note we write strings in mathbold such as x, y. The lexicographic order
(lexorder) on strings is also denoted by the symbol <.

A string x over Σ+ of length |x| = n is represented by x[1 . . n], where
x[i] ∈ Σ for 1 ≤ i ≤ n is the i-th letter of x. The symbol � gives the number of
elements in a specified set.

The concatenation of two strings x and y is defined as the sequence of
letters of x followed by the sequence of letters of y and is denoted by x · y
or simply xy when no confusion is possible. A string y is a substring of x if
x = uyv, where u,v ∈ Σ∗; specifically a string y = y[1 . .m] is a substring
of x if y[1 . .m] = x[i . . i + m − 1] for some i, where 1 ≤ i ≤ n − m + 1.
Strings u = x[1 . . i] are called prefixes of x, and strings v = x[i . . n] are called
suffixes of x of length n for 1 ≤ i ≤ n. The prefix u (respectively suffix v) is a
proper prefix (suffix) of a string x if x �= u,v. A string y = y[1 . . n] is a cyclic
rotation of x = x[1 . . n] if y[1 . . n] = x[i . . n]x[1 . . i− 1] for some 1 ≤ i ≤ n (for
i = 1,y = x).

Definition 1 (Burrows–Wheeler transform). The BWT of x is defined as
the pair (L, h) where L is the last column of the matrix Mx formed by all the
lexorder sorted cyclic rotations of x and h is the index of x in this matrix.

The BWT is easily invertible via a linear LF last first mapping [1] using an
array C indexed by all the letters c of the alphabet Σ and defined by: C[c] =
�{i | x[i] < c} and rankc(x, i) which gives the number of occurrences of the letter
c in the prefix x[1 . . i]. A property of the LF mapping is that the i-th occurrence
of a letter c in the last column L has the same rank as the i-th occurrence of c in
the first column F which can be calculated using the array C and the function
rank. Traversing the letters repeatedly between L and F recovers the input.

Given the BWT of x it is easy to find the number of occurrences of a pattern
p of length m in x by performing a right to left, that is a backwards, scan
of p as computed by the pseudocode in Figure 1. Note that although the
BWT is defined as a pair, Definition 1, for the backwards search technique, the
convention for the argument list is to describe the last column L in the BWT
matrix as the string BWT . The procedure returns an interval (i, j) such that p
is a prefix of Mx[k] for i ≤ k ≤ j, or, it returns ⊥ if p is not a prefix of any rows
of Mx. Hence the number of occurrences of the pattern is given by the size of
the interval. The positions of the occurrences can be computed with the help of
a full or sampled suffix array of x: a suffix array SA gives the starting positions
of the suffixes of x in lexicographical order, so that SA[i] is the starting position
of the i-th smallest suffix of x; a sampled SA has been sampled at a subset of
its indices thus providing succinctness.

In [4], Daykin and Watson present a simple modification of the classic BWT,
the degenerate Burrows–Wheeler transform which, analogously to the classic
case, exhibits clustering of letters in degenerate strings – the focus here is ap-
plications of the transforms to pattern matching.

Given an alphabet Σ we define a new alphabet ΔΣ as the non-empty subsets
of Σ: ΔΣ = P(Σ) \ {∅}, where P is the usual power set. Formally a non-empty

3

BackwardSearch(p,m,BWT, n, C)
1 (i, j, k) ← (1, n,m− 1)
2 while i ≤ j and k ≥ 1 do
3 c ← p[k]
4 (i, j, k) ← (C[c] + rankc(BWT, i− 1) + 1, C[c] + rankc(BWT, j), k − 1)
5 if i ≤ j then
6 return (i, j)
7 else return ⊥

Figure 1: Backward search for a pattern p in the BWT of a string x.

indeterminate or degenerate string x is an element of Δ+
Σ . We extend the notion

of prefix on degenerate strings as follows. A degenerate string u is called a
degenerate prefix of x if |u| ≤ |x| and u[i] ∩ x[i] �= ∅ ∀1 ≤ i ≤ |u|.

A degenerate string is said to be conservative if its number of degenerate
letters is upper-bounded by a fixed positive constant q.

Definition 2. A degenerate string y = y[1 . . n] is a degenerate cyclic rotation
of a degenerate string x = x[1 . . n] if y[1 . . n] = x[i . . n]x[1 . . i − 1] for some
1 ≤ i ≤ n (for i = 1,y = x).

Given an order on ΔΣ denoted by the usual symbol <, we can compute the
BWT of a degenerate string x in the same way as for a regular string; here we
apply lexorder.

3. Previous work

In [8] the authors present a bioinformatics software tool called BWBBLE
that enables performing pattern matching on a pan-genome (collection of genomes
of individuals of the same species) that they called a reference multi-genome.
BWBBLE can take into account various types of differences between the differ-
ent genomes. For substitutions it basically aligns the different genomes and the
symbol at each position of the reference multi-genome is composed of the union
of the symbols of the different genomes at this position. More specifically, it
considers strings of Δ+

Σ where Σ = {A, C, G, T}. Each element of Σ is represented
as a 4-bit integer power of 2 (2i with i ∈ {0, 1, 2, 3}), where an element S ∈ ΔΣ

is represented by
∑

{s∈S} s. Then instead of using the natural order on integers

it uses a Gray code [7] (also known as the reflected binary code) to order the
elements of ΔΣ. With the Gray code two successive values differ only by one
bit, such as 1100 and 1101, which enables minimizing the number of separate
intervals associated with each of the four symbols of Σ. Then the authors gen-
eralize the usual backward search technique, shown in Figure 1, for searching in
a reference multi-genome but they do not provide any proofs of correctness. In
the next section we provide a proof of correctness of the generalization of the

4

backward search for the degenerate Burrows-Wheeler transform. We also show
that adjacent intervals generated during the backward search can be merged.

4. Searching for a degenerate pattern in a degenerate string

Let p and t be two degenerate strings over ΔΣ of lengthm and n respectively.
We want to find the positions of all the occurrences or matches of p in t i.e. we
want to compute every j such that ∀ 1 ≤ i ≤ |p| it holds that p[i]∩ t[i+ j] �= ∅.
For determining the matching we will apply the usual backward search but at
each step we may generate several different intervals which will be stored in
a set H. Then step k (processing p[k] with 1 ≤ k ≤ m) of the backward
search can be formalized as follows: 1Step(H, k,C,BWT = (L, h),p) = (((r, s)) |
r = C[c] + rankc(L, i − 1) + 1, s = C[c] + rankc(L, j), r ≤ s, (i, j) ∈ H, c ∈
ΔΣ and c ∩ p[k] �= ∅).

Then for 1 ≤ i ≤ m−1, Step(m,C,BWT,p) = 1Step({(1, n)},m,C,BWT,p)
and Step(i, C,BWT,p) = 1Step(Step(i+ 1, C,BWT,p), i, C,BWT,p). In other
words, Step(i, C,BWT,p) applies step m through to i of the backward search.

Lemma 1. The interval (i, j) ∈ Step(k, C,BWT,p) if and only if p[k . .m] is a
degenerate prefix of Mt[h] for i ≤ h ≤ j.

Proof. =⇒: By induction. By definition of the array C, p[m] is a degenerate
prefix of Mt[h], for i ≤ h ≤ j when (i, j) ∈ Step(m,C,BWT,p). So assume
that the property is true for all integers k′ such that k < k′ ≤ m. If (r, s) ∈
Step(k, C,BWT,p) then r = C[a] + ranka(BWT, i − 1) + 1 and s = C[a] +
ranka(BWT, j) with r ≤ s, where (i, j) ∈ Step(k + 1, C,BWT,p), a ∈ ΔΣ and
a∩p[k] �= ∅. Thus by the definition of the BWT, p[k . .m] is a degenerate prefix
of rows of Mt[h] for r ≤ h ≤ s.

⇐=: By induction. By definition, if p[m] is a degenerate prefix of Mt[h]
for r ≤ h ≤ s then (r, s) ∈ Step(m,C,BWT,p). So assume that the property
is true for all integers k′ + 1 such that k < k′ ≤ m. If p[k + 1 . .m] is a
degenerate prefix of Mt[h] for i ≤ h ≤ j, then (i, j) ∈ Step(k + 1, C,BWT,p).
When p[k . .m] is a degenerate prefix of Mt[h] for r ≤ h ≤ s, then (r, s) ∈
1Step(Step(k + 1, C,BWT,p), i, C,BWT,p) = Step(k, C,BWT,p) by definition
of the array C and the rank function.

We conclude that the property holds for 1 ≤ k ≤ m. �

Corollary 2. The interval (i, j) ∈ Step(1, C,BWT,p) if and only if p is a
degenerate prefix of Mt[h] for i ≤ h ≤ j.

The proposed algorithm, see Figure 2, computes Step(1, C,BWT,p) by first
initializing the variable H with {(1, n)} and then performing steps m to 1, while
exiting whenever H becomes empty.

The following two lemmas show that the number of intervals in H cannot
grow exponentially.

Lemma 3. The intervals in 1Step({(i, j)}, k, C,BWT,p) do not overlap.

5

DegenerateBackwardSearch(p,m,BWT = (L, h), n, C)
1 (H, k) ← ({(1, n)},m)
2 while H �= ∅ and k ≥ 1 do
3 H ′ ← ∅
4 for (i, j) ∈ H do
5 for c ∈ ΔΣ such that c ∩ p[k] �= ∅ do
6 H ′ ← H ′ ∪ {(C[c] + rankc(L, i− 1) + 1, C[c] + rankc(L, j))}
7 (H, k) ← (H ′, k − 1)
8 return H

Figure 2: Backward search for a degenerate pattern in the BWT of a degenerate string.

Proof. 1Step({(i, j)}, k, C,BWT,p) will generate one interval for every dis-
tinct letter c ∈ ΔΣ such that c ∩ p[k] �= ∅. Thus these intervals cannot overlap.

�

Lemma 4. The intervals in 1Step({(i, j), (i′, j′)}, k, C,BWT,p) with i ≤ j <
i′ ≤ j′ do not overlap.

Proof. From Lemma 3, the intervals generated from (i, j) do not overlap, and
similarly the intervals generated from (i′, j′) do not overlap.

Let (r, s) be an interval generated from (i, j), and let (r′, s′) be an in-
terval generated from (i′, j′). Formally, let r, s, c be such that r = C[c] +
rankc(BWT, i − 1) + 1, s = C[c] + rankc(BWT, j), c ∈ ΔΣ and c ∩ p[k] �= ∅.
Let r′, s′, c′ be such that r′ = C[c′] + rankc′(BWT, i′ − 1) + 1, s′ = C[c′] +
rankc′(BWT, j′), c′ ∈ ΔΣ and c′ ∩ p[k] �= ∅.

If c �= c′ then (r, s) and (r′, s′) cannot overlap since C[c] ≤ r ≤ s < C[c]+�{i |
t[i] = c} and C[c′] ≤ r′ ≤ s′ < C[c′] + �{i | t[i] = c′}. Otherwise, if c = c′

then since j < i′, it follows that rankc(BWT, j) < rankc(BWT, i′ − 1) + 1
and thus (r, s) = (C[c] + rankc(BWT, i − 1) + 1, C[c] + rankc(BWT, j)) and
(r′, s′) = (C[c] + rankc(BWT, i′ − 1)+ 1, C[c] + rankc(BWT, j′)) do not overlap.

�

Corollary 5. Let H be a set of non-overlapping intervals. The intervals in
1Step(H, k,C,BWT,p) do not overlap.

We can now state the complexity of the degenerate backward search.

Theorem 6. The algorithm DegenerateBackwardSearch(p,m,BWT, n, C)
computes a set of intervals H, where (i, j) ∈ H if and only if p is a degenerate
prefix of consecutive rows of Mt[k] for i ≤ k ≤ j, in time O(mn) for a constant
size alphabet.

Proof. The correctness comes from Corollary 2. The time complexity mainly
comes from Lemma 3 and the fact that the alphabet size is constant. �

6

From Corollary 5, the number of intervals at each step of the backward
search cannot exceed n. However, in practice, it may be worthwhile decreasing
the number of intervals further: the next lemma shows that adjacent intervals
can be merged. In order to easily identify adjacent intervals we will now store
them in a sorted list-like data structure as follows. For two lists I and J the
concatenation of the elements of I followed by the elements of J is denoted by
I · J .

We proceed to define the operationMrg that consists in merging two adjacent
intervals: Mrg(∅) = ∅ and Mrg((i, j)) = ((i, j)), Mrg(((i, j), (j + 1, j′)) · I) =
Mrg(((i, j′)) · I), Mrg(((i, j), (i′, j′)) · I) = ((i, j)) ·Mrg(((i′, j′)) · I) for i′ > j+1.
The next lemma justifies the merging of adjacent intervals in H.

Lemma 7. Mrg(1Step(((i, j), (j+1, j′)), k, C,BWT,p)) = Mrg(1Step(((i, j′)), k, C,BWT,p)).

Proof. For a letter c ∈ ΔΣ such that c ∩ p[k] �= ∅ the intervals gener-
ated from (i, j) and (j + 1, j′) are, by definition, necessarily adjacent which
shows that if (p, q) ∈ Mrg(1Step(((i, j), (j + 1, j′)), k, C,BWT,p)) then (p, q) ∈
Mrg(1Step(((i, j′)), k, C,BWT,p)). The reciprocal can be shown similarly. �

This means that H can be implemented with an efficient data structure such
as an interval tree typically implemented as red-black trees adapted for storing
non-overlapping and non-adjacent intervals.

Complete example
Let t = {c, e} · {c, d} · {a, b, c} · {a, e} · {a, b, c}. Then by renaming {a, b, c}

as A, {a, e} as B, {c, d} as C and {c, e} as D, t = DCABA and with the order
A < B < C < D we have BWT(t) = CBADA see [4] for the ordering technique.

i
1 D C A B A

2 C A B A D

3 A B A D C

4 B A D C A

5 A D C A B

i F L
1 A B A D C

2 A D C A B

3 B A D C A

4 C A B A D

5 D C A B A

cyclic rotations of t Mt
Thus the array C is as follows:

A B C D

C 0 2 3 4
Let p = {c} · {a, b} · {a} and let us search for p in t with the algorithm De-
generateBackwardSearch.

p[3] = {a} ∩A = {a, b, c} �= ∅ and p[3] = {a} ∩B = {a, e} �= ∅.

7

Without merging With merging
1Step(((1, 5)), 3, C,BWT,p) = 1Step(((1, 5), 3, C,BWT,p) =

((1, 2), (3, 3)) ((1, 3))
F L

→B 1 A C

→E 2 A B

⇒ 3 B A

4 C D

5 D A

F L
→B 1 A C

2 A B

→E 3 B A

4 C D

5 D A

p[2] = {a, b} ∩A = {a, b, c} �= ∅ and p[2] = {a, b} ∩B = {a, e} �= ∅.
Without merging With merging

1Step(((1, 2), (3, 3)), 2, C,BWT,p) = 1Step(((1, 3)), 2, C,BWT,p) =
((1, 1), (3, 3)) ((1, 1), (3, 3))

F L
⇒ 1 A C

2 A B

⇒ 3 B A

4 C D

5 D A

F L
⇒ 1 A C

2 A B

⇒ 3 B A

4 C D

5 D A

p[1] = {c}∩A = {a, b, c} �= ∅, p[1] = {c}∩C = {c, d} �= ∅ and p[1] = {c}∩D =
{c, e} �= ∅.

Without merging With merging
1Step(((1, 1), (3, 3)), 1, C,BWT,p) = 1Step(((1, 1), (3, 3)), 1, C,BWT,p) =

((1, 1), (4, 4)) ((1, 1), (4, 4))
F L

⇒ 1 A C

2 A B

3 B A

⇒ 4 C D

5 D A

F L
⇒ 1 A C

2 A B

3 B A

⇒ 4 C D

5 D A
→B stands for the beginning of an interval, →E for the end of an interval and
⇒ for an interval of one element.
Thus p has two occurrences in t.

5. Degenerate pattern in a conservative degenerate string

For conservative degenerate strings the search complexity can be reduced.

Theorem 8. Let t and p be two conservative degenerate strings over a con-
stant size alphabet such that their total number of degenerate letters is bounded
by a constant q. Then given the BWT of t, all the intervals in the BWT of
occurrences of a pattern p of length m can be detected in time O(qm2).

8

Proof. The largest number of intervals at the first step of the backward search
is O(1) for solid letters and q for the degenerate letters. Then at each step the
q intervals for the degenerate letters will generate q other intervals while each
interval corresponding to a solid letter will generate O(1) intervals for solid
letters and q intervals for the degenerate letters. Since there are m steps the
result follows. �

Corollary 9. Let t and p be two conservative degenerate strings over a constant
size alphabet such that their total number of degenerate letters is bounded by a
constant q. Then given the BWT of t, the occurrences of p of length m can be
reported in time O(qm2+ occ) where occ is the number of occurrences of p in t.

6. Experiments

We ran algorithm DegenerateBackwardSearch (DBS) for searching for
the occurrences of a degenerate pattern in different random strings: solid strings,
degenerate strings and conservative degenerate strings. The alphabet consists
of subsets of the DNA alphabet encoded by integers from 1 to 15. Solid letters
are encoded by powers of 2 (1, 2, 4 and 8) as in [8]. Then intersections between
degenerate letters can be performed by a bitwise and operation. But contrary
to [8] we used the natural order on integers. The patterns have also been
randomly generated.

We additionally ran the adaptive Hybrid pattern-matching algorithm of [12],
and, since the alphabet size is small we also ran a version of the Backward-Non-
Deterministic-Matching (BNDM) adapted for degenerate pattern matching (see
[10]). The Hybrid and BNDM are bit-parallel algorithms and have only been
tested for pattern lengths up to 64. The source of our method is available at
https://github.com/YGuesnet/dbwt and the inputs have been made compati-
ble to those of [3]. However we excluded the algorithm in [3] from the comparison
since it is more general and performs slower than the two previously mentioned
algorithms. For the computation of the BWT we used the SAIS library [11] and
the SDSL library [6]. All the experiments have been performed on a computer
with a 3.5 GHz i7-4800MQ processor and 16 GB RAM.

We performed various experiments and select four of them for presentation
here. For DBS the measured times exclude the construction of the BWT but
include the reporting of the occurrences using a suffix array. This can be justified
by the fact that, in most cases, strings are given in a compressed form through
their BWTs. Figure 3(a) shows the searching times for a degenerate pattern
of length 8 in solid strings of various lengths with an alphabet of size 4, where
clearly when the length of the string increases the advantage of using DBS
also increases. Figure 3(b) shows the searching times for various numbers of
degenerate patterns of length 8 in a solid string with an alphabet of size 8.
Running times include preprocessing times for all methods. It can be seen that
when enough patterns have to be searched for in the same string then it is
worth using the new DBS algorithm. Figure 3(c) shows the searching times
with DBS for various numbers of degenerate patterns of length 8 in degenerate

9

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107 3.5x107

T
im

e
(s

)

length of string

Hybrid
BNDM

DBS

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0 100 200 300 400 500 600

T
im

e
(s

)

#patterns

Hybrid
BNDM

DBS

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70

T
im

e
(s

)

length of pattern

RB Tree
List

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107 3.5x107

T
im

e
(s

)

length of strings

Hybrid
BNDM

DBS

(c) (d)

Figure 3: (a): Running times for searching for a degenerate pattern of length 8 in a solid
string of various lengths with σ = 4. (b): Running times for searching for several degenerate
patterns of length 8 in a solid string of length 250MB with σ = 8. (c): Running times with
DBS for searching for degenerate patterns in a conservative degenerate string of length 250MB
with σ = 4 and 25M degenerate letters when the list of intervals is implemented with a red-
black tree or with a linked list. (d): Running times for searching for one degenerate pattern of
length 8 in a conservative degenerate string of variable length with 500, 000 degenerate letters.

strings with an alphabet of size 4 when intervals are stored with red-black trees
or with linked lists. As expected, for efficiency it is worth using an advanced
data structure, such as red-black trees, for merging intervals. All times are
in seconds. Figure 3(d) shows the searching times for a degenerate pattern of
length 8 in conservative degenerate strings of various lengths (for each length
the strings contain 10% of degenerate letters).

References

[1] Burrows, M., Wheeler, D.J.: A block sorting lossless data compression
algorithm. Tech. Rep. 124, Digital Equipment Corporation (1994)

[2] Charras, C., Lecroq, T.: Handbook of exact string matching algorithms.
King’s College Publications (2004)

[3] Crochemore, M., Iliopoulos, C.S., Kundu, R., Mohamed, M., Vayani, F.:
Linear algorithm for conservative degenerate pattern matching. Eng. Appl.
of AI 51, 109–114 (2016)

10

[4] Daykin, J.W., Watson, B.: Indeterminate string factorizations and degen-
erate text transformations. Math. Comput. Sci. 11(2), 209–218 (2017)

[5] Fischer, M.J., Paterson, M.S.: String matching and other products. In:
Karp, R. (ed.) Proceedings of the 7th SIAM-AMS Complexity of Compu-
tation. pp. 113–125 (1974)

[6] Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug
and play with succinct data structures. In: SEA. pp. 326–337 (2014)

[7] Gray, F.: Pulse code communication (1953), U.S. Patent No. 2,632,058

[8] Huang, L., Popic, V., Batzoglou, S.: Short read alignment with populations
of genomes. Bioinformatics 29(13), i361–i370 (2013)

[9] Kalai, A.: Efficient pattern-matching with don’t cares. In: Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. vol. 2,
pp. 655–656 (2002)

[10] Navarro, G., Raffinot, M.: Flexible pattern matching in strings - practical
on-line search algorithms for texts and biological sequences. CUP (2002)

[11] Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time
suffix array construction. IEEE Trans. Computers 60(10), 1471–1484 (2011)

[12] Smyth, W.F., Wang, S.: An adaptive hybrid pattern-matching algorithm
on indeterminate strings. Int. J. Found. Comput. Sci. 20(06), 985–1004
(2009)

11

