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Abstract 

The genetic basis of complex diseases involves alterations on multiple genes. Unravelling the 

interplay between these genetic factors is key to the discovery of new biomarkers and treatments. In 

2014, we introduced GUILDify, a web server that searches for genes associated to diseases, finds 

novel disease-genes applying various network-based prioritisation algorithms and proposes candidate 

drugs. Here, we present GUILDify v2.0, a major update and improvement of the original method, 

where we have included protein interaction data for seven species and 22 human tissues and 

incorporated the disease-gene associations from DisGeNET. To infer potential disease relationships 

associated with multi-morbidities, we introduced a novel feature for estimating the genetic and 

functional overlap of two diseases using the top-ranking genes and the associated enrichment of 

biological functions and pathways (as defined by GO and Reactome). The analysis of this overlap 

helps to identify the mechanistic role of genes and protein-protein interactions in comorbidities. 

Finally, we provided an R package, guildifyR, to facilitate programmatic access to GUILDify v2.0 

(http://sbi.upf.edu/guildify2)   

Introduction 

Complex diseases such as cancer, diabetes, neurodegenerative disorders or cardiovascular diseases 

are rarely caused by a single genetic perturbation and usually involve polygenic modifications on the 

underlying interconnected cellular network. Understanding the genetic basis of diseases and the 

interactions of disease-associated proteins in the protein interaction network (PIN) is essential for the 
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development of new rational therapeutic strategies. Despite recent large-scale genotyping efforts, 

information on disease-gene associations is still limited, often explaining a small percentage of the 

phenotypic variance observed among individuals [1]. To address this limitation and infer novel 

disease-gene associations, various disease-gene prioritisation methods have been suggested, 

exploiting the “guilt-by-association” principle over certain features of disease-genes such as similarity 

in sequence and functional annotations, clustering in the linkage interval, or proximity in the PIN [2]. 

Indeed, albeit the PINs being incomplete [3], the proximity to disease-genes in the PIN has proven 

extremely useful in prioritising disease-associated genes [4]. Consequently, a number of tools and 

web servers has been developed to expand the number of disease-associated genes using the 

interactome [5–9]. 

Previously, we presented GUILDify, a web server that applies the prioritisation algorithms 

developed in GUILD software to find novel disease-gene associations based on the connectedness of 

genes in the PIN [10,11]. GUILDify searches for genes starting from user-provided keywords such as 

the names of diseases or gene symbols in the BIANA knowledge database. It uses the genes 

associated to the keywords as seeds and the PIN for the selected organism to apply graph theory 

algorithms to prioritise new disease genes. Recently, GUILDify has been applied to: (i) find 

comorbidities across genetic diseases [12]; (ii) construct PINs specific to breast cancer metastasis to 

lung and brain [13]; (iii) identify candidate genes for body size in sheep [14] and (iv) prioritise 

preeclampsia pathogenesis [15]. 

Here, we present a comprehensive upgrade, GUILDify v2.0, where we updated the underlying 

biological databases in BIANA knowledge database (protein and drug-target interactions, functional 

and disease annotations) and: (i) facilitated the use of seven species-specific PINs and 22 human 

tissue-specific PINs; (ii) increased the quality and number of disease-gene associations by 

incorporating DisGeNET to our datasets; (iii) incorporated the option to search by drug name, allowing 

the prioritisation of genes based on known drug targets to uncover the neighbourhood of the PIN 

affected by the drug; (iv) improved the visualisation of the results using cytoscape.js; (v) refined the 

definition of top-ranking genes based on whether they had similar functional annotations as the 

seeds,  thus providing the biologically most coherent subnetwork relevant to a given disease; (vi) 

introduced a feature to measure the genetic and functional overlap of the top-ranking genes of two 

different diseases, supporting the investigation of disease comorbidities; (vii) implemented a new drug 

repurposing functionality to propose novel indications for a given drug based on the genetic and 

functional overlap; and (viii) developed an R package to facilitate the programmatic access to the 

methods implemented in the web server. 

Results and Discussion 

Advances 

1. Identifying genetic and functional similarities across diseases 

In recent works, we have shown that the genetic and functional similarities of diseases in the PIN can 
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be used to characterise co- and multi-morbidities across diseases [12] and also to repurpose existing 

drugs targeting these diseases [16]. Motivated by these findings and to provide systematic insights on 

disease-disease relationships, GUILDify v2.0 now allows users to identify the overlap between two 

previously submitted results, i.e. sets of genes linked to two different diseases. Accordingly, given two 

job IDs corresponding to the prioritisation results of two different diseases, GUILDify v2.0 provides: (i) 

the overlap between the top-ranking genes of the two diseases; (ii) the overlap between the enriched 

functions among the top-ranking genes of the two diseases; (iii) the enriched functions among the 

common top-ranking genes; and (iv) a network visualisation of the interactions between common top-

ranking genes. Moreover, GUILDify v2.0 also calculates the Fisher’s exact test to quantify the 

significance of the overlap between genes and functions and report one-sided P-value (see details in 

Supplementary Material). GUILDify v2.0 is the first server that permits the use of gene prioritisation 

results to explore disease-disease relationships with such simplicity and flexibility.  

2. Prioritisation of drug targets 

GUILDify v2.0 now allows to search by a drug in addition to a phenotype and returns a list of drug-

target associations integrated from DrugBank [17], DGIdb [18], DrugCentral [19] and ChEMBL [20] 

(see details in Supplementary Material). This new functionality allows the characterisation of the 

neighbourhood of the drug in the PIN, i.e. neighbouring proteins to those targeted by the drug, and 

thus providing insights on the potential mechanism of action of the drug. Moreover, the novel feature 

of assessing the overlap between two network expansion runs (i.e. two job IDs) can also be applied in 

multiple scenarios to: (i) identify the similarity between the neighbourhood of two drugs in the PIN, 

which can be useful to identify drug interactions; (ii) compare the neighbourhood of a disease with the 

neighbourhood of a drug in the PIN, which can be applied to drug repurposing. Such novel features 

make GUILDify v2.0 one of the most easy-to-use and flexible web servers to inspect the effect of 

drugs in the PIN. 

3. Screening diseases to identify potential new indications of known drugs 

Building upon new technical developments mentioned above, GUILDify v2.0 now offers a novel drug 

repurposing functionality. Given a job ID associated with a drug (or a list of drug targets), this feature 

automatically calculates the overlap of genes (or functions) between the given drug and a set of pre-

calculated diseases. Details on the method and validation of drug repurposing are described in detail 

at Supplementary Material. 

4. Tissue and species-specific PINs 

The analysis of the protein interactions in a tissue-specific context is becoming increasingly relevant 

to understand genetic diseases and find improved treatments [21]. We have included tissue-specific 

networks derived from 22 different human tissues (see Supplementary Table S1). To create these 

networks, we filtered the interactions in the global PIN using RNAseq data from GTEx [22], keeping 

only the interactions between proteins encoded by genes that are expressed in a given tissue (i.e. 

considering only transcripts with TPM (transcripts per kilobase million) expression values of 1 or 
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higher (see details in Supplementary Material). We have also included 7 species-specific PINs 

derived from experimentally determined protein-protein interactions. Although the coverage of 

interactomic data for some species is low (e.g., 11,943 interactions in rat vs 320,337 interactions in 

human), these PINs provide a reliable backbone for interactome-based analyses (e.g., in preclinical 

research) as opposed to PINs generated by predicted interactions based on homology information. 

5. Disease-gene information from DisGeNET 

We incorporated DisGeNET, one of the largest repositories of genes and variants associated to 

human diseases [23]. DisGeNET relies on data from UniProt [24], CTD [25], CLINVAR [26], 

ORPHANET [27], GWAS Catalog [28], PsyGeNET [29] and HPO [30] and is integrated in BIANA [31]. 

To investigate the increase in the number of disease-gene associations between versions 1 and 2 of 

GUILDify, we checked the number of associations for the lowest-level non-obsolete diseases from 

Disease Ontology [32] that were available in our repositories (2,190 terms). GUILDify v1 contains 

gene associations for 1,505 diseases and 4,171 genes (2.8 genes per disease), while updated 

GUILDify v2.0 has gene associations for 2,064 diseases and 11,615 genes (5.6 genes per disease on 

average).  

6. Functional-coherency based selection of top-ranking genes 

One of the main issues when working with disease-gene prioritisation is to select the most relevant 

(top ranked) genes associated with a given disease. The user can select top 1% or 2% highest 

scoring genes among all the proteins in the PIN as top ranked genes. In GUILDify v2.0, we also 

introduced a cutoff based on the functional validation approach described in Ghiassian et al. [5] and 

provided a new panel visualising the significance of the functional enrichment (P-value) as a function 

of the number of top-ranking genes included in the validation (implemented in Plotly). In brief, the 

highest-scoring non-seed proteins are iteratively included in the top-ranking set, provided that they 

maintain the functional coherency of the existing top-ranking set (see details in Supplementary 

Material). Note that this approach might be too restrictive for some complex diseases in which the 

information on known disease-gene associations is limited, failing to represent the functional diversity 

involved in the disease. 

7. Visualisation of the top-ranking subnetwork 

GUILDify v2.0 uses the JavaScript-based network visualisation library, Cytoscape.js [33], to show the 

subnetwork of the top-ranking proteins and the drugs targeting these proteins. The user can decide 

the cutoff to define the top ranked proteins to be visualised (top 1%, top 2% or functionally-coherent 

as mentioned above). In addition to seeds (green hexagons), top-ranking proteins (yellow circles) and 

drugs (blue diamonds), the subnetwork includes the proteins that connect the seeds to the largest 

connected component induced by seeds (named “linkers” and shown as grey circles, see details in 

Supplementary Material).  

8. R package 
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We have included an R package in order to provide programmatic access to GUILDify v2.0 through R 

statistical computing environment (https://www.r-project.org/). The package implements methods to 

query and retrieve results from the web server as an R data frame, allowing users to run multiple 

queries for more high-throughput and/or systematic analyses. The package and documentation are 

available online at: http://sbi.upf.edu/guildify2. 

GUILDify v2.0 workflow 

1. Input 

The interface of GUILDify v2.0 is designed to be simple and intuitive. The input varies slightly 

depending on the desired task: (i) a new search; (ii) retrieving results from a previous run; and (iii) 

calculating genetic and functional overlap between two previous runs. For a new search, we require 

two steps: first the selection of seeds (genes associated with a phenotype or drug) and second the 

selection of parameters to run the prioritisation algorithms. For the selection of seeds the user has to 

provide: (i) either keyword(s) describing the phenotype/drug of interest or a set of specific gene 

names separated by a semicolon; (ii) the species of interest (default value: Homo sapiens); (iii) the 

tissue of interest (default value: All); and (iv) the PIN source (default value: BIANA). If the user 

provides a keyword (or set of keywords) describing a phenotype or drug, the server searches genes 

containing the keyword in BIANA knowledge database (i.e. integrating information from many 

resources), otherwise it uses the list of provided gene names. The server shows the selected seeds, 

which can still be filtered and selected by the user. Then, for the prioritisation parameters the user can 

select to run the “disease module detection algorithm” (DIAMOnD, downloaded from 

https://github.com/dinaghiassian/DIAMOnD) [5] or to use one of the several prioritisation algorithms 

from the GUILD package (default value: NetScore with default parameters). Finally, to retrieve results, 

the required input is the job ID of a previous run, while for calculating genetic and functional overlap 

the inputs are two job IDs of previous runs. 

2. Output 

GUILDify v2.0 outputs the ranking of the nodes in the PIN and the visualisation of the subnetwork 

involving the top-ranking genes in a cytoscape.js panel. In addition, the output page has: (i) a panel 

showing the P-values of functional enrichment of the ranked nodes; (ii) two panels with functions 

enriched among the top-ranking nodes and seeds, respectively; and (iii) one panel with the drugs that 

target the top-ranking proteins. 

For the “Overlap between two results” option, the server provides: (i) the list of the common top-

ranking genes and the significance of the overlap assessed by a Fisher’s exact test (see details in 

Supplementary Material); (ii) the network visualisation of the common top-ranking genes including the 

“linkers” (see above); (iii) the list of enriched functions of the common genes; iv) the list of common 

enriched functions of both results and the significance of the overlap; and v) the drugs targeting the 

proteins of the common PIN. Using this functionality, the users can identify the overlap between any 

two queries such as between two diseases, two drugs or a disease and a drug. Although we do not 
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provide the overlap between interactions of top-ranking proteins in a separate table, these interactions 

can be investigated in the network visualisation panel.  

Case studies 

1. Exploring the mechanistic links between rheumatoid arthritis and asthma 

In multiple studies, rheumatoid arthritis and asthma are linked as a potential comorbidity, although the 

mechanisms underlying this association remain unclear [34]. Using the new functionality of GUILDify 

v2.0, we can assess the overlap between diseases and thus propose a potential mechanism to 

explain the association between them. Querying for “rheumatoid arthritis” and “asthma” returns 156 

and 96 seeds, respectively coming from DisGeNET, OMIM, and UniProt. There are already 12 seeds 

in common (Fisher’s exact test, one-sided P-value = 1.4·10-9) and 18 common functions out of the 

total enriched functions of the seeds (P-value = 9.3·10-23).   After running GUILDify v2.0, we select 

290 and 181 top ranked genes using functional-coherency based cutoff for rheumatoid arthritis and 

asthma, respectively. We find that the number of common genes increases to 55 (yielding a P-value = 

5.9·10-48), while the number of common functions (biological processes) increases to 31 (P-value = 

8.1·10-46). The link between these diseases is significant even when the seeds are removed from the 

top-ranking genes (see Supplementary Material). Among the shared top-ranking genes, we find 

Tumor Necrosis Factor (TNF), which has been proposed as a potential drug target for asthma and 

rheumatoid arthritis, and highlighted as a potential precursor of the comorbidity [12]. We also find 

HLA-DRB1 and several interleukins (IL18, IL1B, IL3), taking part of the immune response potentially 

involved in both diseases. Furthermore, the most common enriched functions relate to inflammatory 

processes such as “inflammatory response”, “positive regulation of interferon-gamma production” and 

“positive regulation of T-helper 1 cell cytokine production”. These functions appear again if we check 

the functions enriched by the common genes, along with other functions such as “T-helper 1 type 

immune response” or “negative regulation of type 2 immune response”, highlighting the involvement 

of type 1 immune response in both diseases. As negative controls, we repeated the analysis using 

other disease pairs that are not likely to be comorbid such as “rheumatoid arthritis” - “breast cancer” 

and “asthma” - “breast cancer”, finding drastically reduced number of genes in the overlap between 

these disease pairs (see Supplementary Material). The results can be further explored in Figure 1 and 

in the pre-calculated examples section of the web. Additionally, we compared the functional relevance 

of the top-ranking genes identified by NetScore with DIAMOnD, based on the analysis in Sharma et 

al. [35] (see Supplementary Material). We checked the enrichment of top-ranking genes among the 

pathways containing the seed genes of asthma and rheumatoid arthritis, showing that both methods 

significantly recover the pathways in each disease. Furthermore, NetScore identified more genes that 

belonged to the pathways shared between asthma and rheumatoid arthritis compared to DIAMOnD. 

2. Study of the mechanism of non-small cell lung carcinoma drugs 

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Typically induced by 

exposure to toxic substances, the NSCLC pathology has been specially associated with a mutation in 
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the Epidermal Growth Factor Receptor (EGFR) [36]. In a recent study, 9 drugs were proposed to treat 

this disease [37], 6 of them having drug-target interactions reported: Afatinib, Ceritinib, Crizotinib, 

Erlotinib, Gefitinib and Palbociclib. Given that we can now identify potentially new relationships 

between drugs and diseases using drugs as queries, we investigate whether the neighbourhood of 

the targets of these drugs in the PIN significantly overlaps with the neighbourhood of the genes 

associated with NSCLC. We used GUILDify v2.0 to define this neighbourhood. We observe that the 

genetic overlap is always significant, except for one of the drugs (Palbociclib, see Table 1).  

   We confirm the significance by applying the same approach to breast cancer, showing that Ceritinib, 

Crizotinib and Palbociclib produce a significant genetic overlap, although the number of common 

genes in each case is substantially lower than it is in NSCLC (see Table 1). These results are 

consistent with the fact that Palbociclib is primarily indicated for breast cancer and it has been 

recently repurposed for NSCLC [38]. The small but significant overlap of Ceritinib and Crizotinib 

suggests that these two drugs might also be considered as potential repurposing candidates. We note 

that using the top-ranking nodes increases the significance of the genetic overlap (with lower P-

values) compared to the overlap using only seeds (genes associated with a pathophenotype and 

direct targets of drugs). The significant overlap between the top ranked genes identified using these 

drugs and the top ranked genes for NSCLC (but not for the top ranked genes for breast cancer) 

suggests that GUILDify v2.0 can help understanding how drugs exert their action on certain diseases. 

Indeed, the characterisation of the neighbourhood in the PIN that is affected by drugs opens a wide 

range of possibilities for drug repurposing research. 

 

Methods 

Datasets 

GUILDify v2.0 uses BIANA [31] for the integration of biological interaction databases with information 

on drugs, genes, proteins, functions, pathways and diseases. To create the tissue-specific PINs, we 

use the RNAseq data from GTEx V7 [22]. Phenotype-gene associations are extracted from 

DisGeNET, OMIM, Uniprot, and Gene Ontology. Drug-target associations are taken from DrugBank 

[17], DGIdb [18], DrugCentral [19] and ChEMBL [20]. See Supplementary Material for details on the 

datasets.  

Prioritisation algorithms 

GUILDify v2.0 uses four different network-based prioritisation algorithms: NetShort, NetZcore, 

NetScore and DIAMOnD. For details on these algorithms see references [5,10,11] and the 

Supplementary Material.  

Overlap and functional enrichment analysis 

We use one-sided Fisher’s exact test to calculate the overlap between two sets of genes or functions 

and use Benjamini-Hochberg multiple hypothesis testing procedure (where applicable). The functions 
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enriched among seeds and top-ranking nodes as well as common functions between two diseases 

are calculated as explained in a previous work [12] (see details in Supplementary Material).  
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TABLE AND FIGURES LEGENDS 
 

Figure 1. GUILDify v2.0 example study on the comorbidity between asthma and rheumatoid arthritis. 

First, we run the prioritisations of the two diseases by searching (1) and selecting (2) the genes. After 

obtaining the ranking of proteins from the prioritisation (3), we use both job IDs to check their overlap 

(4) and inspect the genetic and functional relationships between them (see details at 

http://sbi.upf.edu/guildify2 in the pre-calculated examples section. 

Table 1. Results of the genetic and functional overlap between the subnetwork of genes associated 

with “non small cell lung carcinoma” and “breast cancer” (top ranking genes and seeds) and the 

subnetwork of genes associated with the targets of drugs Afatinib, Ceritinib, Crizotinib, Erlotinib, 

Gefitinib and Palbociclib (drug targets and top-ranking genes obtained with GUILDify v2.0). P-values 

shown have been corrected using the Benjamini-Hochberg correction for multiple tests. Results with 

non-significant P-value are highlighted in red. 


