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Abstract 22 

Network analysis was used to show changes in network attributes by analyzing the relations 23 

among the main soil microbial groups in a potted tomato soil inoculated with arbuscular 24 

mycorrhizal fungus, treated with low doses of Mentha spicata essential oil, or both, and then 25 

exposed to ten-fold higher oil addition (stress pulse). Pretreatments were chosen since they 26 

can induce changes in the composition of the microbial community. Cellular phospholipid 27 

fatty acids (PLFAs) and the activity of six soil enzymes, mainly involved in the N-cycle were 28 

measured. Networks were constructed based on correlated changes in PLFA abundances. The 29 

values of all parameters were significantly different from those of random networks 30 

indicating modular architecture. Networks ranked from the lowest to highest modularity: 31 

control, non-pretreated and stressed, inoculated and stressed, oil treated and stressed, 32 

inoculated and treated with oil and stressed. The high values of network density and 1st/2nd 33 

eigenvalues ratio are related to arylamidase activity while N-acetyl-glucosaminidase, acid 34 

phosphomoesterase and asparaginase activities related to high values of the clustering 35 

coefficient index. We concluded that modularity may be an efficient indicator of changes in 36 

the network of interactions among the members of the soil microbial community and the 37 

modular structure of the network may be related to the activity of specific enzymes. 38 

Communities that were stressed without a pretreatment were relatively resistant but prone to 39 

sudden transition towards instability, while oil or inoculation pretreatments gave networks 40 

which could be considered adaptable and susceptible to gradual change. 41 

 42 
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1. Introduction 50 

The global ecological system is described as a complex, self-organized, adaptive and dynamic 51 

structure being represented as a network of interactions that occur between connected nodes 52 

[1, 2]. Local networks within the ecological system can represent any biological hierarchy, 53 

such as species composition or functional groupings [3, 4]. Soil habitats may be viewed as 54 

complex subsystems within the larger ecological system [5], characterized by enhanced 55 

heterogeneity [6] and consisting of superimposed spheres such as the chemical background, 56 

the microbial community, or the enzymatic activity in soil [4].  57 

According to Simard [5] the complexity of the soil microbial network is dynamic due 58 

to microbial adaptability because of rapidly evolving microbiota, capable of self-organization 59 

due to the existence of feedback operating across hierarchical spheres. Since soil microbial 60 

communities are in a non-equilibrium state, their composition, activity and abundance can 61 

change due to external influences most of which act as disturbance agents causing 62 

pronounced change in activity and/or abundance of biota. Existing evidence suggests that the 63 

soil microbial community responds differently to various types of disturbances because 64 

microbiota behavior varies in terms of species mortality and the development of the various 65 

microbial species [7]. In this paper we considered that disturbance caused a stress effect 66 

resulting in episodic physiological perturbation [8]. Tobor-Kaplon et al. [9] suggested that 67 

stress-induced changes in the energy budgets of soil organisms can trigger changes in 68 

ecosystem functioning, while Norris et al. [10] and Azarbad et al. [11], among many others, 69 

showed that a wide range of disturbances can exert a strong selective pressure on soil 70 

microbial assemblages. Disturbances are often episodic in natural systems. Philippot et al. 71 

[12] suggested that the response of a microbial community to stress is often dictated by prior 72 

stress exposure. Indeed an initial response to recurrent low-impact events moves the system to 73 

a new state, which modulates responses to a further more severe event [13]. Rillig et al. [13] 74 

suggest that this is due to differences in species’ inherent tolerances to stress, the differential 75 

energy cost derived by the response of various strains to a pretreatment effect, and the 76 



differential effectiveness of pretreatment on different organisms; therefore, the resulting 77 

individual responses can likely affect composition and function of soil microbial 78 

communities. 79 

The relationship between the composition of the microbial community and soil 80 

functioning, is a fundamental but yet unanswered question, although microbial diversity could 81 

provide potential indications about such functions [14]. In order to study the magnitude of 82 

relationships between microbial composition and function, most studies have addressed 83 

possible links between species or phylogenetic diversity and various functions of the 84 

community [15,16]. However, Prosser [17] suggested that although microbial communities 85 

are highly diverse, they are also highly redundant with respect to function, so that the 86 

relevance of diversity estimates to ecological functions is limited. He further highlighted the 87 

value of exploring network characteristics such as connectivity, in order to explore the 88 

relationship between composition and functions of the microbial community. Simard [5] and 89 

Shade et al. [18] maintained that the structure of a network, in particular the values of 90 

architectural properties such as connectedness, cohesion, transitivity, centrality etc. are 91 

indicative of system resilience, while Sinha [19] discussed the network's architecture in terms 92 

of stability-instability. Stability meant the ease of the community to return to a stable 93 

condition after stress. It includes the components of resistance and resilience, i.e. the capacity 94 

of a community under stress to persist and maintain (resistance) or recover their original or 95 

new stable state (resilience) [11-12]. Such an architectural property is small-world topology. 96 

Small world networks have global properties that suit randomness. However, at the local level 97 

they resemble regular networks where the nodes form clusters of nodes that are highly 98 

connected among themselves and have relatively fewer connections with the nodes of the 99 

other modules [19-20]. According to Alon [21] the nodes in a module have strong interactions 100 

and share common function. Another key structural property of small-world networks is the 101 

existence of a large number of nodes involved in transitive triples [22]. 102 

Social network analysis has shown that several metrics can be used to capture the 103 

architecture of complex networks. We suggest that such analyses could be used to assess the 104 

https://mathinsight.org/evidence_additional_structure_real_networks#transitivity
https://mathinsight.org/evidence_additional_structure_real_networks#transitivity


relationships between composition and function in microbial communities. In the current 105 

study, we employed this approach to interrogate how exposure of soil microbial communities 106 

to different pretreatments and subsequent stress could affect the relationship between the 107 

architectural features of microbial networks and the activity of certain enzymes in soil. We 108 

have determined the composition of main soil microbial groups by phospholipid fatty acids 109 

analysis in a mesocosm experiment based on soil from potted tomato plants [23]. Some soils 110 

were pretreated by repeated additions of small quantities of Mentha spicata oil, which is toxic 111 

to some microbes and beneficial to others when used as a food source [24]. The stimulatory or 112 

inhibitory effect on microbial communities also depends on the applied dose [25] and it is not 113 

cumulative for microbial activity [26]. The essential oil is an easily degradable C source in 114 

soil. We hypothesize that the use of limited doses can cause various effects on a microbial 115 

community via competition between microorganisms for energy and nutrients. To verify this 116 

hypothesis we conducted a mesocosm experiment by inoculating tomato roots with the 117 

arbuscular mycorrhizal fungus (AMF) Rhizophagous irregularis, considering that AMF are 118 

involved in a plethora of synergistic or antagonistic relations with the members of the soil 119 

microbial community. In addition, AMF can affect the quality and quantity of C-rich exudates 120 

of the host plant roots thus altering the competitive conditions for energy sources [26]. 121 

Finally, following the work of Vokou & Liotiri [27], we conducted a pulse disturbance caused 122 

by the application of ten-fold exposure treatment with M. spicata essential oil. Considering 123 

the genetic and physiological adaptability of the microbial communities [18] it was expected 124 

that post-pulse disturbance effects would be observed on the architectural properties 125 

associated with the stability and the resilience of the network. This would be manifested 126 

indirectly in the composition of main soil microbial groups in a fashion dictated by the nature 127 

of the initial treatments. We hypothesize diversification in networks’ attributes among 128 

treatments will be reflected in the activity of enzymes involved in N-cycle which is mainly 129 

microbially mediated.  130 

 131 

2. Materials and Methods 132 



2.1. Experimental design 133 

Details concerning the experimental design and soil sampling are shown by Stamou et al. 134 

[23]. A summary of the experimental design is highlighted in Fig. 1. Briefly, tomato seedlings 135 

(Solanum lycopersicun) originating from sterilized seeds were grown in hydroponic cultures 136 

for a period of three weeks and were singly transplanted into 30 experimental pots. Pots were 137 

surface sterilized (2 L volume) and filled with sterilized soil-sand mixture (1500 g in each pot 138 

at a soil:sand ratio 1:1 w/w). To eradicate indigenous AMF and other soil borne biota, the 139 

soil-sand mixture was sterilized by autoclaving (4 h at 120 °C). Soil was an acid (pH 5) sandy 140 

loam. Concentrations of organic carbon and other nutrients were as follows: C% 1.62, N% 141 

0.096, Pextr 2.1 mg/100 g, K 1.62 mg/Kg, Ca 1.17 mg/Kg, Mg 0.18 mg/Kg and Na 0.136 142 

mg/Kg. Before transplantation of seedlings into pots, the roots of 12 plants were inoculated 143 

with R. irregularis inoculum (‘inoculated pots’), while the remaining 18 were not (‘non-144 

inoculated pots’). The inoculum consisting of spores and hyphal fragments of R. irregularis, 145 

was provided by the Energy and Resource Institute, India and its concentration was 1000 146 

propagules per gram. Ten days after root inoculation, we reintroduced into all 30 pots the 147 

original bacterial community of the soil, by adding a bacterial suspension prepared from the 148 

initially collected soil. For the preparation of the bacterial suspension, 10 g of the initially 149 

collected soil were mixed with 50 ml of deionized water, the soil suspension was filtered 150 

through a 21 μm sieve, and 10 ml of it was added to each pot near the rhizosphere zone. 151 

Half of the AMF inoculated pots (six) along with the six non-inoculated pots were 152 

treated with M. spicata (spearmint) essential oil. The spearmint oil was supplied by Etherio, 153 

Research and Commerce, Eratera, Greece and it was pure essential oil produced after 154 

distillation of M. spicata plants. The oil was added at a weekly rate of 1.33 ml per pot, for a 155 

period of one month. The major compounds of M. spicata oil were carvone 63.9% and 156 

limonene 13.3% followed by 1,8-cineole, β-pinene, myrcene and α-pinene in percentages 7.1, 157 

2.8, 2.4 and 1.4%, respectively [23]. The experiment was conducted in a glasshouse under 158 

natural light conditions for a two-month period (from mid-June to mid-August). During the 159 

experiment, the day and night temperature ranged from 28 to 37 °C and 20 to 27 °C, 160 



respectively. The plants were watered daily in order to achieve 60% of the water holding soil 161 

capacity. No further fertilizers were added to the pots.  162 

The experiment involved soil from replicated tomato pots being subjected to four different 163 

treatments: pretreated by adding small quantities (1.33 ml) of Mentha spicata’s oil each week 164 

for a period of one month; inoculated two months previously with the Arbuscular Mycorrhizal 165 

Fungus (AMF; Rhizophagous irregularis); subjected to both treatments; untreated.  166 

One month after the repeated application of oil and two months post AMF 167 

inoculation, a disturbance (pulse type pressure; [18]) was exerted on soils. The disturbance 168 

consisted of a ten-fold higher exposure in the amount of M. spicata essential oil. The 169 

experimental design was fully factorial with AMF inoculation and oil addition being the 170 

independent variables each with two levels (Yes-No). To monitor the effect of disturbance 171 

per se, six non-inoculated and non-pretreated with oil soils were exposed to the higher 172 

amount of oil. The concentration of individual PLFAs and the activity of specific soil 173 

enzymes were the dependent variables. Two destructive samplings were undertaken at 3 and 7 174 

days post pulse disturbance involving three replicates sampled on each occasion. A two-way 175 

ANOVA and a two-way ANOSIM showed no quantitative and compositional temporal 176 

differences in the PLFA recordings and enzyme activity in the same treatment. Hence, the 177 

outputs of the day 3 and day 7 replicates per treatment were grouped and subjected to network 178 

analysis. 179 

Overall, there were five treatments with six replicates per treatment, giving a total of 180 

30 pots in a randomized factorial design: (i) inoculated-pretreated with oil-stressed pots 181 

(+AMF+Oil+Str), (ii) inoculated-non pretreated with oil- stressed pots (+AMF-Oil+Str), (iii) 182 

non-inoculated-pretreated with oil- stressed (-AMF+Oil+Str), (iv) non-inoculated-non 183 

pretreated with oil- stressed pots (-AMF-Oil+Str), (v) control (-AMF-Oil-Str). The design 184 

allowed assessment of the independent and joint effect of the experimental interventions on 185 

network metrics pertaining to interactions among the members of the microbial community. 186 

 187 

2.2 Enzyme activity assays 188 



The activities of six soil enzymes were studied. These were N-acetyl-glucosaminidase, acid 189 

phosphomonoesterase, urease, asparaginase, glutaminase and arylamidase. N-acetyl-190 

glucosaminidase (NAG) and acid phosphomonoesterase activities were determined according 191 

to Allison and Jastrow [28], as these were modified in order to be applicable for 96-well 192 

microplates. The activity of the two enzymes is presented in units of μmol pNP g-1 h-1. Urease 193 

activity was determined according to Sinsabaugh et al. [29]. It was expressed as micromoles 194 

of ammonium released per hour per g of soil (μmol NH4
+ g-1 h-1). Activities of asparaginase 195 

and glutaminase were determined according to Tabatabai [30] with enzyme activity here 196 

expressed as mg NH4
+ .kg-1.2h-1. Arylamidase activity was evaluated according to Acosta-197 

Martínez and Tabatabai [31]. Activity was expressed as mg β-naphthylamide. kg-1.h-1. All 198 

activities were expressed per unit of dry soil. 199 

 200 

2.3 Phospholipid fatty acid analysis 201 

Extraction and analysis of phospholipids from soil samples was always performed within a 202 

week. Briefly, this involved extraction of lipids, separation of phospholipids by column 203 

chromatography then methylation of esterified fatty acids in the phospholipid fraction. 204 

Chromatographic separation and identification of the sample components was achieved using 205 

a Trace GC Ultra gas chromatograph (Thermo Finnigan, San Jose, CA) coupled with a Trace 206 

ISQ mass spectrometry detector, a split-splitless injector, and an Xcalibur MS platform [23]. 207 

The total amount of PLFAs represented the total microbial biomass. The fatty acid 208 

nomenclature was according to Papadopoulou et al. [32]. Overall, 21 fatty acid methyl esters 209 

were identified and considered for further analysis, including the internal standard 19:0;The i-210 

15:0, a15:0, 15:0, i16:0, i17:0 fatty acids were indicators of Gram-positive (Gr+) bacteria 211 

[33,34,35], the 16:1ω9c was a Gram-negative (Gr-) bacteria indicator [35], the 16:0, 17:0 212 

were bacteria indicators in general [36] while the 10Me16:0, 10Me17:0, 10Me18:0 fatty acids 213 

were indicators of actinomycetes [37,38]. The sum of these indicators was used to calculate 214 

the bacterial biomass. The 18:1ω9c and 18:2ω9,12 fatty acids were indicators of fungal 215 

biomass [35,36], while the fatty acids 17:1 and 14:0 were mainly of microbial origin. Finally, 216 



the PLFAs 18:0, 20:0, 22:0, 23:0, 24:0 were considered as indicators of microeukaryotes 217 

(algae, protozoa, nematodes; [39]).  218 

 219 

2.4 Data analysis 220 

Network analysis is widely used for studying patterns of ties among nodes [40]. In this study, 221 

the nodes stand for concentrations of PLFAs and the ties for the significant correlation 222 

coefficients among individual PLFAs. First we estimated the significant correlations (p<0.05) 223 

among the individual PLFAs i and j and then 5 correlation matrices with elements rij, one for 224 

each group of pots that experienced the same manipulation, were built. The values rij were 225 

equal either to the correlation coefficients among variables, whenever these were significant 226 

(p < 0.05), or zero if they were not. Also the binary version of the correlation matrices was 227 

elaborated setting the elements rij either to 0, if the corresponding nodes were not correlated 228 

significantly or otherwise to 1.  229 

In addition, to test the statistical significance of the network indices, 6 replicate 230 

random networks with properties similar to those of the experimental networks, that is, with 231 

the same network size and values either greater than the correlation threshold (0.81 for N=6) 232 

or, otherwise, zero, were created employing a uniform generating function. Then, the indices 233 

provided by the experimental networks were tested against the corresponding indices from the 234 

random networks by using the Student t test, for N=6. 235 

Each matrix was analyzed by the network analysis software UCINET 6 [41]. The 236 

analysis estimated parameters pertaining to the architecture of the network (Table 1) and 237 

yielded graphs where the nodes were depicted on a circular layout ordered by class of 238 

structural equivalence [42].  239 

Analysis was conducted in three steps: First we estimated parameters relative to the 240 

network cohesion (density, compactness, shortest path, nulls; [43, 44], we next partitioned 241 

nodes into groups bearing ecological meaning (classes of structural equivalence) and 242 

estimated parameters referring to modularity (E-I index and transitivity) and finally we 243 

explored patterns and embeddedness of each node within the setting of its connections 244 



(centrality measures). In brief, cohesion metrics measure the connectedness of a network [44], 245 

modularity assesses the tendency of nodes to form distinct classes [45], while centrality 246 

accounts for the extent to which a given node occupies a more influential position than 247 

another [46]. A short description of the estimated metrics is given in Table 1. 248 

In particular, the modularity of a network was assessed by considering the values of 249 

the shortest path (a value approximating the Log of the number of nodes is indicative of 250 

modularity; [47], the structural holes, the transitivity indices (a value higher than 0.40 251 

indicates modularity; [46]) and the clustering coefficient. In addition, we examined whether 252 

our networks fall into the class of small-world networks. Actually, we estimated the ‘Small-253 

World-Ness’ index SΔ proposed by Humphries & Gurney [48]. A real-world network G is 254 

termed small-world if the shortest path (Lg) estimated for the network G is more or less equal 255 

to the shortest path (Lrand) estimated for an equivalent random graph (LgLrand) and the 256 

clustering coefficient for G (CΔ
g) is higher than that for an equivalent random graph (CΔ

g>> 257 

CΔ
rand), i.e. if SΔ=(CΔ

g/CΔ
rand)/(Lg/Lrand)> 1 258 

In this study we identified classes of structurally equivalent nodes. Two nodes of a 259 

class were considered equivalent if they have to some extent similar relationships with other 260 

nodes in the network. To assess the degree of structural equivalence we used the R-squared 261 

correlation coefficient. The R-squared value accounts for the correlation between the 262 

partitioned data matrix and an ideal matrix with the same dimension. Each cell in the cluster 263 

of the ideal matrix is set to the average value of the corresponding cluster in the data matrix. 264 

Among the centrality metrics in this paper we employed eigencentrality which 265 

measures how well connected a node is and also how many links its connections have. This 266 

identifies nodes with influence over the whole network.  267 

Finally, to explore possible associations of the network architectural attributes with 268 

enzymatic activity, a Principal Component Analysis (PCA) was performed and the results 269 

were loaded onto the first axis of the corresponding biplot. The variables were assigned to 270 

clusters by applying a K-means cluster analysis (PCA and K-means analyses were conducted 271 

with Statistica7). 272 



 273 

3. Results 274 

Networks of correlated changes in PLFA abundance were created for each experimental 275 

treatment, and their metrics are presented in Table 2. The values of all network parameters 276 

were significantly different from those of the corresponding random networks indicating that 277 

the microbial guilds in the studied communities showed small-world characteristics (in all 278 

cases SΔ>1). For assessment of the stress effect, we compared data of non-pretreated and non-279 

stressed (-AMF-Oil-Str) with stressed but non-pretreated pots (-AMF-Oil+Str). Stress 280 

initiated a minor decrease in the network cohesion, as indicated by the decreasing values of 281 

density and compactness. There was also an increase in the number of structural holes and the 282 

length of the shortest path. However, the influence of the stress remained evenly distributed 283 

among nodes, as indicated by the low eigenvector centralities estimated for both networks. 284 

Values higher than 2 were estimated for the ratio 1st/ 2nd eigenvalues and suggested that global 285 

features characterized the architecture of the network. The contribution of local 286 

configurations was negligible. Clearly, stress led to looser relationships (Fig. 2a, b).  287 

In the controls (-AMF-Oil-Str), estimated transitivity values were higher than 0.4, 288 

while the average length of the shortest path approximated the Log of the number of nodes 289 

(Log21=1.322) and SΔ>1. This suggested modularity and small world properties, a trend that 290 

holds also after the stress (-AMF-Oil+Str). In both networks the nodes were partitioned into 291 

four classes of structural equivalence (R-square equals 0.788 and 0.513 respectively, 292 

P<0.001). At the whole network scale, positive values of the index E-I were estimated by 293 

taking into account the separation of nodes into clusters of structural equivalence. This 294 

highlighted the superiority of ties between (red coloured lines) versus ties within sub-clusters 295 

(blue coloured lines). Three main classes of structural equivalence were apparent in the -296 

AMF-Oil-Str network. The first (red circles, density 0.98) contained only markers indicative 297 

of bacteria (five Gr+, two actinomycetes and one Gr-). Eight members of the first class occupy 298 

the most centralized positions in the network. The second class (blue circles, density 0.92) 299 



included four eukaryote and one Gr- markers, while the third class (green circles, density 300 

0.95) was not as homogeneous as the first and the second one and included two Gr+, one 301 

actinomycetes and two fungal markers.  302 

Again, in the network -AMF-Oil+Str three main classes of structural equivalence 303 

were identified, but their composition was less homogeneous than in the previous network. 304 

The first class (red circles, density 0.99) included four markers for bacteria (three Gr+ and one 305 

Gr-) and 2 markers representing eukaryotes. In the second class (blue circles, density 0.35) 306 

there were markers for every microbial guild whereas the third class (green circles, density 307 

0.96) included two Gr+, one fungal and one eukaryote markers. Three Gr+, one Gr- and three 308 

eukaryote markers occupied the more centralized posistions. 309 

Stressed pots, which had been pretreated only with either essential oil (-310 

AMF+Oil+Str) or inoculated with AMF (+AMF-Oil+Str), gave networks with intermediate 311 

values for all network attributes, suggesting that both treatments resulted in less compact 312 

networks relative to those of control pot (Fig. 3a, b). It is noteworthy that the differences were 313 

more pronounced in samples pretreated with essential oil. For both networks, the estimated 314 

values for transitivity were greater than 0.4, while the values corresponding to the average 315 

length of the shortest path did not deviate from the Logs of the number of nodes and SΔ>1. 316 

These findings imply the existence of modularity and small world properties. Nodes in these 317 

two networks were partitioned into four classes of structural equivalence. Judging from the 318 

low E-I values estimated mainly in the -AMF+Oil+Str treatment and to a lesser extent in the 319 

+AMF-Oil+Str treatment, we inferred an increased proportion of ties within sub-clusters 320 

relative to control, suggesting enhanced modularity. Again relative to the control, networks 321 

exhibited increased centralization, with values estimated for the eigenvector centralities 322 

ranging from 12 to 23%. The most centralized network was the network from the 323 

pretreatment with oil and then soil from stessed treatment. The difference in the values of the 324 

ratio 1st / 2nd eigenvalues should be highlighted here. For inoculated pots (+AMF-Oil+Str) the 325 

value of 2.94 indicates primacy of nodes and ties at the entire network scale over local 326 



configurations. By contrast, in the oil treated samples (-AMF+Oil+Str), a value less than 2 327 

showed almost equal contribution of global and local configurations. 328 

Three main classes of structural equivalence were dististinguished in the -329 

AMF+Oil+Str network. Τhe first (red circles, density 0.95) included two Gr+, one fungal and 330 

one eukaryotic markers. In the second class (blue circles, density 0.98), markers representing 331 

eukaryotes dominated, with one for fungi and one for actinomycetes. In the third class (green 332 

circles, density 0.72), markers representing bacteria (four Gr+, two Gr-, one actinomycetes) 333 

dominated, with one fungal marker. The most centralized positions were occupied by four 334 

eukaryotic, three Gr+ and one fungal markers. 335 

Four main classes were distinguished in the network +AMF-Oil+Str with density 336 

ranging from 0.87 to 0.98. The first class (red circles) was dominated by the four markers 337 

representing eukaryotes, while one Gr+ and one fungal marker were also included. In the 338 

second class (blue circles) there were four Gr+, along with one actinomycete and one fungal 339 

markers. In the third class, there were two Gr+, one actinomycete and one eukaryote markers. 340 

Finally, the fourth class comprised one Gr+ and two Gr- markers. Two Gr- markers followed 341 

by four Gr+ markers and one actinomycete marker were in the more centralized positions.  342 

In pots inoculated with AMF, pretreated with oil, and then severely disturbed 343 

(+AMF+Oil+Str), the lowest recordings for density, transitivity, and compactness were 344 

observed. We also recorded the highest values for the average length of the shortest path, and 345 

the highest percentage of missing ties (nulls). This highlights the existence of a loose network 346 

(Fig. 4). The E-I value estimated above showed almost equal participation of the ties within 347 

and between sub-clusters. This network exhibited by far the highest percentage eigenvector 348 

centralization. This indicates that the structure of the whole network was based around a few 349 

influential biomarkers, while the ratio of the 1st / 2nd eigenvalues revealed enhanced 350 

contribution of the local configurations of the nodes and ties to the appearance of the network. 351 

Only two main classes of structural equivalence were in the+AMF+Oil+Str netwotk. In the 352 

first (red circles, density 0.90) there were four bacterial markers (two Gr+, one Gr- and one 353 

actinomycete) along with one fungal marker. The second loose class (blue circles, density 354 



0.29) contained only bacterial markers (three Gr+ and one Gr-), while the markers for 355 

eukaryotes occupied marginal positions (green and mangenta colours).  356 

Fig. 5 depicts the relationships between the activities of certain enzymes and metrics 357 

referring to the architecture of networks, as resulted from employing a PCA model. For the 358 

sake of simplicity, transitivity and compactness (which lay close to density) were omitted. 359 

The first two components were highly significant and accounted for 75.5 % of the variability 360 

in the data. Estimations of density and the ratio of 1st / 2nd eigenvalues, whose high values 361 

pertained to more compact networks, were loaded close to the activity of arylamidase towards 362 

the highest values of the first axis. In contrast, metrics whose high values indicated less 363 

compact networks were loaded in association with the activity of urease, glutaminase, acid 364 

phosphomonoesterase, N-acetyl-glucosaminidase and asparaginase, towards the lowest values 365 

of the first axis. Specifically, the activities of N-acetyl-glucosaminidase, acid 366 

phosphomonoesterase and asparaginase were loaded close to the clustering coefficient metric 367 

I-E. 368 

 369 

4. Discussion 370 

In this study we analyzed data from an experiment studying the effect of an impacting 371 

stress of essential oil on the composition of main microbial groups and enzyme 372 

activities of a tomato pot soil either previously inoculated with AMF, repeatedly 373 

exposed to low doses of essential oil, both, or neither. Compared to control pots, the 374 

greatest effect on network structure was observed when pots were exposed to both 375 

pretreatments prior to the stress. Azarbad et al. [11] reviewed the effects of secondary 376 

stresses on already stressed microbial communities from long-term metal polluted 377 

soils (‘stress-on-stress’ experiments) by using DNA based techniques. According to 378 

these authors, two types of responses of primed microbial communities to secondary 379 

stress were reported; (A) tolerant communities that manage to recover due to their 380 



physiological adaptation and B) sensitive communities that are further degraded after 381 

their exposure to secondary stress. They concluded that the reaction of communities 382 

to a secondary stress depends greatly on the nature of the stress. Τo an extent the 383 

effects recorded in our pre-treated samples are partially in line with the type B 384 

proposed by Azarbad et al. [11]. In fact, the outcome of the priming either with AMF 385 

inoculation or by applying essential oil was the decrease of network density, 386 

compactness and centralization compared to the control, although of different extent. 387 

These downgrading processes were burdened with stress, ultimately resulting to 388 

relative fragmentation of the networks and increased importance of locality. Such 389 

architecture pertains to less resistance networks, susceptible to further degradation. 390 

The disruptive effect of the stress on the network of interactions among the members 391 

of the microbial community was more pronounced in soil pretreated with the same 392 

stressor (-AMF+Oil+Str) compared to inoculated counterparts (+AMF-Oil+Str). 393 

Thus, one of our hypotheses was proven correct; the nature of the pretreatment of a 394 

microbial community affects the response of network architecture to a subsequent 395 

stress. This further agrees with Philippot et al. [12], who discussed the behavior of the 396 

composition of microbial communities severely stressed with heavy metals and with 397 

Tobor-Kaplon et al. [49,50], who discussed disturbances by heavy metal addition or 398 

by changing heat and water regimes. However, although we share common conclusions 399 

with many researches, the use of network metrics to visualize the response of the composition 400 

of main soil microbial groups to primary or secondary stresses is novel. 401 

Overall, networks showed structural similarity regardless of treatment, with the 402 

exception of the inoculated, pretreated with oil and stressed pots (+AMF+Oil+Str). Estimates 403 

of the average density indicated dominance of direct versus indirect ties among nodes and 404 

such enhanced values of network connectivity pointed to small-world properties and 405 

modularity. The modularity assertion is reinforced by the high values of transitivity ranging 406 



between 0.915 and 0.742 (all higher than the critical value 0.40; [46]), by the average values 407 

of the shortest path being approximated by the Log of the number of nodes (Log 21=1.322; 408 

[47] and the values of the index SΔ. The modular structuring of networks may suggest 409 

robustness in a context of environmental constraints and deprived resources [47, 51]. 410 

Modularity fitted closely at the level of structural equivalence. Consequently, in each 411 

network, the members of each class of structural equivalence would be ecologically 412 

homologous with respect to the exploitation of resources [52] and the response to 413 

environmental constraints [22, 53-55]. This was due to the fact that PLFAs provide strain 414 

profiles rather than being indicative of individual strains. Because of the coarse-scale analysis 415 

of this study, strict taxonomic or functional correspondence with the structurally equivalent 416 

groups was not possible. However, it was possible to loosely associate classes of structural 417 

equivalence with certain guilds. There was a tendency for eukaryotic markers to exhibit 418 

higher values of eigenvalues indicating enhanced centrality in stressed but non-pretreated pots 419 

(-AMF-Oil+Str), while in inoculated and stressed (+AMF-Oil+Str), as well as in control pots 420 

(-AMF-Oil-Str) more central positions tended to be occupied by markers indicating bacteria. 421 

Only three out of the seven markers indicate that Gr+ bacteria were positioned in the same 422 

cluster together with markers for eukaryotes. 423 

The E-I values estimated after the partition of nodes to structural equivalence classes 424 

were positive for all networks. Positive E-I values indicated a prevalence of ties between 425 

classes and enhanced robustness of the global architecture. However, in soil pretreated with 426 

essential oil the E-I values were lowest, indicating enhanced within-class ties and increased 427 

robustness of local configurations. Results show that under pretreatment of soil with M. 428 

spicata oil and application of a stress of the same nature, the robustness of the local versus the 429 

global architecture of the microbial network is improved. The inter-network differences in 430 

modularity and the contribution of local configurations of nodes and ties to the global 431 

architecture of the networks were likely due to fluctuations in strains’ evenness. This is 432 

because different treatments favoured different microbial groups at the expense of others. As 433 



shown by Stamou et al. [23], AMF and essential oils act selectively on the main microbial 434 

groups, but in divergent directions.  435 

Despite evident modularity, the eigenvector centralities of the networks varied 436 

between low and moderate levels, while the ratio of 1st / 2nd eigenvalues suggested dominance 437 

of the global as opposed to the local configuration (except for the +AMF+Oil+Str network) 438 

and an absence of focal nodes operating as highly influential hubs [3,56,57]. According to 439 

Scott [58] such decentralized networks, where most nodes are more or less equally influential 440 

and the links among them are evenly distributed, are considered more resilient. More 441 

specifically, Scheffer et al. [59] suggested that more homogeneous networks are resistant to 442 

change but prone to critical transition. In contrast, networks exhibiting modularity 443 

accompanied by enhanced heterogeneity have increased adaptive capacity and are prone to 444 

gradual change. Sinha [19] claimed that changes in the connection topology from regular to 445 

random networks, does not affect the stability of a network. However, it affects the type of 446 

transition in that it gets sharper as the network becomes more random. Taking into 447 

consideration the E-I values and metrics relating to centrality we conclude that the networks 448 

in the non-pretreated pots (-AMF-Oil-Str and –AMF-Oil+Str) were expected to be generally 449 

more resistant, but susceptible to sudden transition towards instability in the sense of Sinha 450 

[19]. The counterparts receiving single pretreatments were expected to have an increased 451 

adaptive potential and inclination for gradual change. All metrics recorded in the 452 

+AMF+Oil+Str pots indicated a highly heterogeneous network with restricted connectivity, 453 

increased centralization, superiority of less influential nodes and minimal modularity, 454 

therefore at risk of further disintegration. Certain biomarkers, such as 16:1ω9, 15:0, 14:0 are 455 

key for the integrity of this network. The joint effect of the two pretreatment agents, 456 

inoculation with AMF and repeated addition of essential oil, affected the architecture of the 457 

interaction network more severely than the effects exerted by each agent alone. Probably, as 458 

already hypothesized by Stamou et al. [23], without changing the total microbial biomass the 459 

two preliminary treatments caused a divergence in the composition of main soil microbial 460 



groups. Both act as selective factors though independently of each other, but each one favors 461 

and selects different microbial groups, eventually resulting in a fragmented network. 462 

Network architectures, as associated with the activity of certain enzymes, suggested 463 

effects of the applied treatments on functional properties of the soil. There has only been one 464 

study considering PLFAs and enzymes as nodes of a network relating to the unfolding of a 465 

secondary succession process and associating individual PLFA markers, utilization of Biolog 466 

substrates and nutrients with some enzyme activities [4]. It was reported that the architectural 467 

elements of the interaction networks could be related to the activity of N-acetyl-468 

glycosaminidase, acid phosphomoesterase and asparaginase, which appear related to the 469 

modularity of the network. Arylamidase activity was instead associated with a more coherent 470 

microbial network. It is possible that the activity of the N-acetyl-glycosaminidase, acid 471 

phosphomonoesterase and asparaginase is a consequence of cooperation among ecologically 472 

equivalent groups, while the production of arylamidase seems instead to be dependent on 473 

specific microbial strains rather than on specific microbial groups. 474 

In conclusion, this novel use of network analysis provides insights into topological 475 

structures associated with changes in ecologically equivalent modules during the response of 476 

the main soil microbial groups to perturbation. Moreover, this approach allowed comparison 477 

of global and local attributes of the networks (glocal approach) and provided data regarding 478 

the relationships between composition and function of main soil microbial groups. In addition 479 

to deepening our knowledge on network analysis methodology, our results may have 480 

relevance to real world cultivation practices since tomato is among the most propagated crop 481 

plants. 482 
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Figures’ Legends 667 

Figure 1. Schematic illustration of the experimental design. (each treatment has 6 replicates)  668 

 669 

Figure2 (a, b). Projection of the network of correlations among microbial PLFAs on a circle-670 

type plot in control (a: -AMF-Oil-Str) and only stressed pots (b: -AMF-Oil+Str). The colour 671 

of nodes corresponds to different classes of structural equivalence. The size of nodes accounts 672 

for their eigenvector centrality, specifically, the larger the node, the higher the eigenvector 673 

centrality, and the higher the influence of the corresponding node. The red coloured ties 674 

represent links between classes of structural equivalence and blue coloured ties correspond to 675 

links within classes of structural equivalence. There were no significant correlations of 676 

marker 10Me18:0 with any other marker. 677 

 678 

Figure 3 (a,b). Projection of the network of correlations among microbial PLFAs in oil 679 

treated and stressed pots (a: -AMF+Oil+Str) and inoculated stressed pots (b: +AMF-Oil+Str). 680 

The colour of nodes corresponds to different classes of structural equivalence. The size of 681 

nodes accounts for their eigenvector centrality, specifically, the larger the node, the higher the 682 

eigenvector centrality, and the higher the influence of the corresponding node. The red 683 

coloured ties represent links between classes of structural equivalence and blue coloured ties 684 

correspond to links within classes of structural equivalence. There were no significant 685 

correlations of the outside the network marker 10Me17:0 with any other marker. 686 

 687 

Figure 4. Projection of the network of correlations (+AMF+Oil+Str) among microbial PLFAs 688 

on a circle-type plot. The colour of nodes corresponds to different classes of structural 689 

equivalence. The size of nodes accounts for their eigenvector centrality, specifically, the 690 

larger the node, the higher the eigenvector centrality, and the higher the influence of the 691 

corresponding node. The red coloured ties represent links between classes of structural 692 

equivalence and blue coloured ties correspond to links within classes of structural 693 



equivalence. There were no significant correlations of the outside the network marker 694 

10Me17:0 and a17:0 with any other marker. 695 

 696 

Figure 5. Ordination of parameters accounting for the architecture of the network (in green) 697 

and activity of certain enzymes (in red) on a PCA biplot. 698 

  699 



Table 1. Network properties and metrics referring to the architecture of the whole network 700 

 701 

 702 

  703 

Cohesion: Assesses 

the extent of 

connectedness of a 

network 

Density The number of ties divided by the maximum 

number of  possible ties 

Length of the shortest 

path 

The minimum number of steps connecting a 

node with another 

Compactness Τhe average value of all the reciprocal distances 

among nodes, Accounts for the probability of 

two nodes to be directly tied 

Structural holes (nulls) The number of missing ties. Accounts for the 

missing ties among nodes 

Modularity: Assesses 

the possibility of 

various nodes to be 

grouped together 

E-I index The number of ties external to the cluster minus 

the number of ties that are internal to cluster 

divided by the total number of ties 

Transitivity The number of transitive triples in a network 

divided by the number of the transitive and non-

transitive triples 

Clustering coefficient The clustering coefficient C is a measure of how 

much neighbors of each node are also neighbors 

of each other  

Small-worldness-index 

SΔ 

A real-world network G is termed small-world 

if the values of the shortest path and the 

clustering coefficient estimate for the network G 

are equal and higher respectively than the 

corresponding values estimated for a random 

graph 

Centrality: Assesses 

the extent to which the 

overall network 

structure is dominated 

by one or few nodes 

Eigenvector centrality Connections to nodes with higher number of 

connections contribute more to the score of the 

ego node than equal number of connections but 

to nodes with lower number of connections 

Ratio 1st/2nd 

eigenvalues 

Accounts for the relative importance of the 

global and local configuration of nodes 



Table 2. Values of metrics illustrating the architecture of the networks. In the third column 704 

average values of the corresponding variables taken from random networks are depicted. The 705 

first word in the labels of the first row indicates either AMF inoculation (+) or not (-), the 706 

second word indicates either pretreatment with oil (+) or not (-) and the third one indicates 707 

either stress (+) or not (-). 708 

 709 

 Indices Random -AMF-

Oil-Str 

-AMF-

Oil +Str 

-AMF 

+Oil+Str 

+AMF-

Oil+Str 

+AMF + 

Oil+Str 

Cohesion % Density 16.7 82.4 73.3 52.9 67.1 19.5 

Avg shortest 

path L 

2.64 1.18 1.22 1.54 1.26 3.32 

Compactness 0.39 0.91 0.81 0.75 0.79 0.38 

Nulls 0.75 0.18 0.27 0.47 0.33 0.81 

Modularity R-square 0.22 0.79 0.51 0.63 0.56 0.58 

Transitivity 0.22 0.89 0.92 0.74 0.83 0.67 

E-I 0.54 0.50 0.58 0.28 0.46 0.17 

Clustering 

coefficient C 

0.18 0.91 0.92 0.80 0.86 0.66 

SΔ  11.31 11.01 7.62 10.01 2.92 

Centrality % eigenvector 

centralization 

33.22 7.08 9.02 23.11 12.32 52.99 

1st/2ndeigenvalue 1.83 3.59 4.47 1.82 2.94 1.23 
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Reply to Reviewers' comments: 

 

Reviewer #1: Line 32 should be non-pretreated  

“Done” 

Line 40 I don't understand how the results show a "sudden loss of balance" in a 

system resistant to perturbation.  

We replaced the “sudden loss of balance” with “prone to sudden transition towards 

instability”. This type of network characterization follows the suggestion of Sinha 

(2005).  

Line 376 - 378 are directly plagiarized from comments provided by reviewer #1 

Lines 376-378. It would be good to apply this statement to the current findings in the 

following sections. How did oil on oil response differ or not with metal on metal, 

etc.? 

We changed the text presented in lines 376-378 in order to respond to the review’s 

comments (plagiarism and application of statement to our data). Please see the new 

text in lines 376-401.  

 

Authors' Response to Reviewers' Comments Click here to access/download;Authors' Response to
Reviewers' Comments;REply to reviewers-Rev II.docx

https://www.editorialmanager.com/meco/download.aspx?id=110722&guid=96f08dda-9ccb-4d42-a3c0-a3d7944e2288&scheme=1
https://www.editorialmanager.com/meco/download.aspx?id=110722&guid=96f08dda-9ccb-4d42-a3c0-a3d7944e2288&scheme=1

