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Abstract 

Several recent studies from both Greenland and Antarctica have reported significant changes 

in the water isotopic composition of near-surface snow between precipitation events. These 

changes have been linked to isotopic exchange with atmospheric water vapor and 

sublimation-induced fractionation, but the processes are poorly constrained by observations. 

Understanding and quantifying these processes are crucial to both the interpretation of ice 

core climate proxies and the formulation of isotope enabled general circulation models. Here, 

we present continuous measurements of the water isotopic composition in surface snow and 

atmospheric vapor together with near-surface atmospheric turbulence and snow-air latent and 

sensible heat fluxes, obtained at the East Greenland Ice-Core Project drilling site in summer 

2016. For two 4 day-long time periods, significant diurnal variations in atmospheric water 

isotopologues are observed. A model is developed to explore the impact of this variability on 

the surface snow isotopic composition. Our model suggests that the snow isotopic 

composition in the upper sub-centimeter of the snow exhibits a diurnal variation with 

amplitudes in δ
18

O and δD of ~2.5‰ and ~13‰, respectively. As comparison, such changes 

correspond to 10-20% of the magnitude of seasonal changes in interior Greenland snow pack 

isotopes and of the change across a glacial-interglacial transition. Importantly, our 

observation and model results suggest, that sublimation-induced fractionation needs to be 

included in simulations of vapor-ice transitions on diurnal timescales during summer cloud-

free conditions in northeast Greenland. 

 

1 Introduction 

Climate reconstructions derived from both Antarctic and Greenland ice cores constitute 

a cornerstone in paleo-climate science (e.g. Masson-Delmotte et al., 2015;Jouzel et al., 

2007;Johnsen et al., 2001;Vimeux et al., 1999), extending to 129 thousand years (kyr) 

before present (BP; before 1950) in Greenland (North Greenland Ice-Core Project 

(NorthGRIP) Members, 2004;NEEM community members, 2013), and to 800 kyr BP in 

Antarctica (EPICA community members, 2006;Jouzel et al. 2007).  Interpretations of 

past climate variability using ice core water isotopes were determined using 

precipitation-weighted isotopic composition and observations of mean annual 

temperature either from in-situ observations (e.g. Dansgaard, 1964;Jouzel et al., 

1997;Johnsen et al., 2001), borehole temperature reconstruction (e.g. Vinther et al., 

2010), or from use of distillation models (e.g. Johnsen et al., 1989;Uemura et al., 
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2012;Masson-Delmotte et al., 2005). These previous studies commonly assume that post-

depositional processes do not influence the mean annual isotopic signature.  

 

Recent advances in laser spectroscopy allow for field measurements of water 

isotopologue exchange between the snow surface and the atmosphere overlying the ice 

sheets. Steen-Larsen et al. (2014) reported concurrent isotopic variations in near-

surface snow and atmospheric vapor at the NEEM ice core camp, northwest Greenland. 

Over several precipitation-free periods (3-7 days), the surface (top 5 mm) snow δ18O 

varied by up to 6‰, attributable to vapor-exchange between the surface snow and 

atmospheric vapor. Ritter et al. (2016) deployed a laser spectrometer for measuring 

water vapor isotopes at Kohnen Station, East Antarctica. They showed that both surface 

snow and near-surface water vapor exhibit significant concurrent diurnal variations in 

water isotopic composition.  

In a study by Casado et al. (2018), the authors combine a comprehensive dataset 

consisting of several years of precipitation collection from Dome C, Antarctica with δ18O 

records from snow pits.  A clear discrepancy between the average precipitation isotopic 

composition and the average snow pit isotopic composition was observed. This 

demonstrated that the climate signal initially stored in the precipitation is not 

necessarily stored in the surface snow and subsequently buried, suggesting that the 

water isotopic composition of ice cores is not solely governed by precipitation. These 

studies highlight that isotopic exchange between atmospheric vapor and surface snow 

must be considered to accurately interpret observed variations in snow isotopic 

composition.  

 

These observations of post-depositional change challenge the current parameterization 

of snow-air isotope exchange in isotope-enabled global circulation models (isoGCMs) 

which are based on the assumption that sublimation does not change the surface snow 

isotopic composition (Werner et al., 2011;Risi et al., 2010;Wong et al., 2017). To link 

simulations using isoGCMs with ice core isotope records, it is therefore important to 

understand and quantify the impact of post-depositional processes.  

 

Here, we examine processes that control diurnal variations in snow and vapor isotopic 

composition in Greenland as a case study for the processes at play during sublimation 
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and condensation. We pursue the hypothesis that snow and vapor isotopic composition 

is controlled through surface fluxes of water by both sublimation and deposition. To test 

our hypothesis we combine measurements of the isotopic composition of surface snow 

and near-surface atmospheric water vapor with estimates of atmospheric boundary 

layer turbulence. To quantify the impact of post-depositional processes we advance 

upon previous studies and use a 1-dimensional model to simulate our observed vertical 

profiles of atmospheric water vapor mixing ratio and isotopic composition above the 

snow surface, and the accompanying change in the isotopic composition of the surface 

snow. Our aim is to show that fluxes of water vapor between the snow surface and the 

atmosphere have the potential to change the snow isotopic composition. We 

acknowledge here that other relevant processes controlling the snow-air isotope 

exchange are neglected in this study. Development of a fully coupled atmosphere-snow 

boundary layer model with enabled isotopes is beyond the scope of the present study, 

but is an important direction for future research.  

 

The paper is organized as follows. In section 2, we describe our observational 

methodology, reviewing the measurement site, characteristic meteorology, and 

instrumental configuration, along with the data acquisition, calibration, and the time 

series of observed variations in near-surface atmospheric humidity and water 

isotopologues. In section 3, we describe our near-surface atmospheric model. The 

model results are discussed in section 4, followed by conclusions and recommendations 

for further work in section 5. 

 
 

2 Site Description and Methods 

 

2.1 EastGRIP site location and meteorological characteristics 

Sampling and measurements were conducted as part of the international deep ice core drilling 

project EastGRIP from April to August 2016. The campsite was located in the northeast 

Greenland ice stream (75.63°N, 35.99°W; 2700 m above sea level).  

Meteorological observations were obtained from the Program for the Monitoring of the 

Greenland Ice Sheet (PROMICE) (Ahlstrøm et al., 2008) using an automatic weather station 

(AWS), which was installed ~500 m southeast of the EastGRIP camp in May 2016. The 
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summer 2016 (June-July-August; JJA) meteorological observations reported by the AWS are 

summarized in Table 1. The prevailing wind at the camp was westerly (Figure 1D). The 

surface air temperature (~2.5 meter above the surface) varied between -35.0°C and -2.1°C, 

with a mean of -15.8°C. 

During the measurement period (beginning of May to beginning of August), six precipitation 

events, corresponding to a total of 9 cm of snowfall, were recorded. The accumulation was 

estimated from measurements of snow heights along an array of 200 small bamboo sticks (1 

cm diameter) deployed at the beginning of the season.  

Table 1 Summer 2016 (JJA) minimum, average, and maximum meteorological values 

reported by the PROMICE automatic weather station at EastGRIP. 

 Minimum Average Maximum 

Ambient air pressure 708 hPa 727 hPa 740 hPa 

Wind speed 0.01 ms
-1

 4.7 ms
-1

 12.4 ms
-1

 

Air temperature -35.0 °C -15.8 °C -2.1 °C 

Relative humidity w.r.t. ice 54.6% 92.7% 113.7 % 

 

 

 

2.2 Cavity Ring-Down Spectrometry measurements on water 

vapour and surface snow 

During the 2016 field season water stable isotopologues (
1
H2

16
O, 

1
H

2
H

16
O, and 

1
H2

18
O) in 

near-surface vapor were measured continuously from June 14th to August 4th. The vapor 

measurement site (Figure 1) was located to the southwest (i.e. upwind) of camp at the edge of 

the clean air sector. Vapor samples were collected from 4 inlets mounted on a tower at initial 

heights of 0.52 m, 1.06 m, 2.07 m, and 7.20 m above the snow surface (Figure 1). For the rest 

of this study, these inlet heights are approximated as z = 0.5 m, 1 m, 2 m and 7 m, 

respectively. No significant amount of accumulation occurred around the tower during the 

water vapor isotope measurement campaign. The tower consisted of an open aluminum frame 

with a triangular footprint of ~20 cm wide sides. The air was sampled through the inlets using 

a 10 L/min KNF pump (N811 KN.18) and measured using a Picarro L-2130 cavity ring-down 

spectrometer (CRDS). The CRDS was housed in a small heated tent (Figure 1), erected ~10 

m downwind from the tower. The full sampling protocol is described in Steen-Larsen et al. 

(2013), including regulation of both the vapor intake and analysis apparatus, which was done 

using solenoid valves measuring 15 minutes at each level.  
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Isotopic composition is reported using the notation δ
*
 = (R

*
/R

*
VSMOW-1)▪ 1000‰, where R

* 
is 

the concentration ratio of the heavier isotopic species (with * denoting either 

) to the light abundant species ( ) of water (Craig, 1961). R
*

VSMOW is the relative 

composition of the VSMOW (Vienna Standard Mean Ocean Water) standard. δ* 

represents the abundance of either 1H2H16O or 1H218O. The second order parameter 

deuterium excess is defined by Dansgaard (1964) as dxs = δD−8δ18O. 

Calibration of the CRDS data was performed following the protocol outlined in Steen-Larsen 

et al. (2013). Humidity-isotope calibrations were conducted 4 times throughout the field 

season to correct for humidity-induced bias. VSMOW-SLAP calibrations were carried out 6 

times during the field campaign using three standards (δ
18

O: 0.4‰, -33.56‰, -54.05‰; δD: 

2.8‰, -257.6‰, -424.1‰). The uncertainties are assumed to be equivalent to the 

uncertainties estimated by Steen-Larsen et al. (2014), which are for δ
18

O and δD are 0.23‰ 

and 1.4‰, respectively. Propagation of errors gives an uncertainty on the vapor dxs of 2.3‰. 

The humidity mixing ratio measured by the spectrometer was calibrated using the humidity 

measurements from the nearby AWS. 

Throughout the field season, snow samples were routinely collected for isotopic analysis. 

Along a 1 km marked transect, 26 samples of the upper 1 cm of snow were collected on a 

daily basis. These samples have been analyzed on a Picarro L-2130-i CRDS and calibrated to 

the VSMOW-SLAP scale using 4 standards (δ
18

O: -19.8‰, -33.8‰, -42.39‰, -50.12‰; δD: 

-152.93‰, -266.7‰, -341.24‰, -392.0‰) at the Alfred-Wegener-Institute, Bremerhaven. In 

this study, only the average value and standard deviation of these 26 samples for each day are 

shown. These values will be referred to as the observed snow isotopic composition with 

standard deviation σsnow.  
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Figure 1 Schematic overview of the field site and instrument configuration. Side view: (A) 

Position of the tent, CR3000 micrologger, and vapor tower. The prevailing wind is 

approximately from right to left (see D).  Vertical discretization of the model domain 

representation the lower boundary in contact with the snow surface. (B) Approximate 

position of vapor inlets, cup anemometers, fine wire thermocouples and the eddy covariance 

system. Top view: (C) Relative position of vapor inlets, cup anemometers, thermocouples, 

and eddy covariance instruments on each beam. A KH20 hygrometer and CSAT3 ultrasonic 

anemometer comprise the eddy covariance system. Note that instruments are not drawn to 

scale. The x - y coordinate system is the internal coordinate system of the ultrasonic 

anemometer. (D) The wind rose observed by the ultrasonic anemometer (10 min averages) 

where directions are given both with respect to the orientation of the anemometer (x - y 

coordinate system) and the approximate north-south compass (N-S, E-W). The green wedge 

indicates the angles within 80° of the x-axis of the CSAT3. 
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2.3 Atmospheric Eddy Covariance Measurements 

To estimate the atmospheric flux of water vapor at EastGRIP, an eddy covariance system 

(hereafter EC) was mounted on the tower, 1.8 m above the snow surface (Figure 1). The EC 

system consisted of a fast response krypton hygrometer (KH20) and a highly sensitive omni-

directional ultrasonic anemometer (CSAT3), both produced by Campbell Scientific Inc. With 

this setup, we calculated the turbulent fluxes of momentum, heat, and moisture between the 

surface and atmosphere (Box and Steffen, 2001;Cullen et al., 2007;Forrer and Rotach, 1997). 

Stably stratified conditions prevail at EastGRIP, strong and persistent katabatic winds are 

expected to maintain shear-driven instabilities and reduce intermittency, allowing reliable 

calculation of turbulent fluxes from the eddy covariance statistics. 

The raw data was sampled at 20 Hz and relayed to a micro logger (Campbell Scientific Inc. 

CR3000) placed approximately 1.5 m downwind from the tower (Figure 1). For the turbulent 

flux calculation, raw covariances were averaged over 10 min intervals. Three cup-

anemometers and fine-wire thermocouples were also mounted at heights 0.54 m, 1.05 m and 

2.07 m above the snow surface. These instruments have been included in Figure 1 for 

completeness, but the associated time series are not discussed in this paper.  

 

 2.3.1 Calibration  

We correct for errors in our turbulent flux measurements following Cullen et al. (2007). 

Outliers are excluded iteratively using criteria adopted from Hojstrup (1993). Errors induced 

by wind deflection around nearby structures have been corrected by excluding all 

measurements taken at times when the wind is directed from the camp towards the mounted 

sensors. By only retaining winds with an incident angle of ±80°
 
relative to the x-axis of the 

anemometer (Figure 1D), all potentially corrupted data have been discarded.  

Errors associated with the anemometer tilt (Hyson et al., 1977;Tanner and Thurtell, 1969) and 

frequency response loss (Moore, 1986;Moncrieff et al., 1997) have been corrected. Tilt 

corrections are required to prevent cross-contamination of velocities by small misalignment 

of the sensors. On average, tilt corrections change the sensible and latent heat flux by 0.4% 

and -0.3%, respectively. Spectral corrections are required to account for bandpass filtering 

due to the separation and limited frequency response of the instruments. The CSAT3 and 

KH20 sensors were mounted 20 cm apart. The internal path lengths of the CSAT3 and the 

KH20 sensors were set to 11.5 cm and 1 cm, respectively. Average flux increases of 0.8% 
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and 13% for the sensible and latent heat flux have been obtained, respectively.  

2.4 Observations of water vapour 

We focus now on two periods with distinct diurnal cycles in the atmospheric state: June 25
th

 

to 29
th

 (DOY 177-181) and July 21
st
 to 25

th
 (DOY 203-207). These periods were chosen 

based on the criteria that we wanted at least four clear diurnal cycles with minimal change in 

mean synoptic conditions and mostly clear sky conditions all the time. Diurnal cycles are 

observed on other days, but were not chosen as they did not fulfill the requirements.  During 

the June period, weak atmospheric instability is observed from 12:00-18:00 UTC, whereas 

neutral stability is observed during these hours in the July period. Measurement of the eddy 

momentum and heat flux by the EC system allows for the calculation of the friction velocity 

u* and the Monin-Obukhov length, L, where L is proportional to the height at which 

buoyancy forcing dominates mechanical production of turbulence. The non-dimensional 

stability parameter is defined as ζ = z/L, where z is the height above the surface. Timeseries of 

ζ and u* are shown in Figure 2.  

Although both June and July periods exhibit similar variation in atmospheric humidity, there 

are notable differences in observed vapor isotopic composition. Values of dxs throughout the 

June period show diurnal variations, but are relatively constant during the July period. 

Furthermore, time-averaged dxs  is larger in the earlier period. For reference, we note that in 

the June period, the time-average δ
18

O and δD is −43.5‰ and −317.5‰, respectively, 

compared to July values of −39.6‰ and −290.5‰. The supplementary material S2 gives an 

overview of the water isotope isotope observations from all 4 inlets for both the June and July 

period. 

 

We shortly discuss relationships between the Eddy Covariance, humidity, and isotope 

observations. Typically, high (positive) stability is associated with a stable stratified lower 

atmosphere, where the snow surface is colder than the air above. This condition gives rise to 

a negative (downward) latent heat flux in the form of deposition or condensation causing the 

atmosphere to become less humid and more isotopic depleted. Further, in stable conditions 

little vertical mixing would occur and we would expect a gradient in both humidity and 

isotopic composition in the vapour (Supplementary S2), where the vapour closest to the 

surface is more depleted and less humid than the air above. Opposite, unstable or near-neutral 
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conditions result in an upward transport, positive heat fluxes and increasing humidity, and a 

uniform humidity and isotopic composition of the lower atmosphere (Supplementary S2). We 

therefore expect, as also observed, a phase shift between the latent heat flux and the isotope 

observations since a positive latent heat flux infers sublimation from the surface, and the 

maximum humidity will occur at the time where the latent heat flux shifts from positive to 

negative. 

 

 

Figure 2 Left panel: June period (DOY 177-181, June 25th to 29th). Right panel: July 

period (DOY 203-207, July 21st to 25th). From above: PROMICE automatic weather station 

(AWS) observations of net in-coming shortwave (SW) radiation, air and snow surface 

temperature, and relative humidity with respect to ice. Eddy Covariance observations of 

friction velocity, atmospheric stability (z/L) evaluated at a height of 1.8 m, and turbulent 

sensible and latent heat flux. Specific humidity, δ
18

O, and dxs measured by the CRDS at 2 

meter above the snow surface. The shading on both δ
18

O and dxs indicates 1 measurement 

uncertainty. 

 

3 Model  

In this section, we construct a model to explore the observed variation of humidity, q(z,t), and 

the vapor isotopic composition of δ
18

O(z,t) and δD(z,t), with respect to time (t) and 
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displacement from the surface (z). We aim to simulate the two periods with distinct dxs 

variations presented in Section 2.4. The periods will be referred to as the June and July 

period, respectively. Both periods were cloud-free and characterized by repeating diurnal 

cycles of latent and sensible fluxes of heat, near-surface temperature, and humidity (Figure 

2). The aim is to model the snow surface isotopic composition consistent with our humidity 

and isotope observations for these two cases.  

The model consists of three boxes representing (1) the immediate snow surface, (2) a viscous 

sub-layer (VSL), and (3) the near-surface atmospheric boundary layer (ABL) (Craig and 

Gordon, 1965). 

The VSL has thickness ∆z and is characterized by mixing dominated by molecular diffusion.  

At all times, it is assumed that the lower boundary of the VSL is saturated with respect to ice 

at the snow surface temperature Ts. 

The model domain simulating the near-surface ABL extends from the top of the VSL to the 

height z = H and is characterized by turbulent mixing and no isotopic fractionation. This 

mixing rate is assumed to be the same for all isotopologues of water, in contrast to the 

molecular diffusion in the VSL, which is modeled with an isotopologue-dependent molecular 

diffusion.  We set H = 7.2 m, corresponding to the top inlet on the tower. 

3.1 Numerical Formulation 

We model the humidity and vapor isotopic composition with a diffusion equation  

𝜕𝑅∗𝑞

𝜕𝑡
=  

𝜕

𝜕𝑧
(𝜅∗(𝑧, 𝑡)

𝜕𝑅∗𝑞

𝜕𝑧
)                       (1) 

 

where R
*

 

is the ratio of the concentration of the rare isotopic species to the abundant 
1
H2

16
O 

and q is the mixing ratio. κ* is the isotopologue-specific diffusion coefficient. To provide 

higher resolution near the surface where we expect the largest vertical gradients of q(z), 

δ
18

O(z), and δD(z), we introduce a vertically stretched coordinate system (Figure 1). The 

height z of a grid point given by z(s) =H [exp(a s)-1]/[exp(a)-1], where s is a normalized 

coordinate used to transform a linearly spaced coordinate system into the stretched 
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coordinate. We set a = 8.2, generating 200 grid nodes that allow for reasonable computation 

times. Stable solutions to Eq. (1) are achieved using a Crank-Nicholson discretization 

scheme, with a time step of 2 min. Our discretization is independent of the VSL thickness ∆z, 

which allows us to explore solutions to Eq. (1) under a broad range of ∆z, without 

compromising numerical stability or increasing the computational cost of the model.  

 

3.2 Diffusion Coefficient  

We use the formulation of eddy diffusivity for momentum and heat inspired by Brost and 

Wyngaard (1978), and assume that the eddy diffusivity for sensible heat equals that of latent 

heat (Box and Steffen, 2001;Moore, 1986). In the near-surface ABL, we parameterize the 

turbulent diffusion coefficient, KH(z,t), as:  

𝐾𝐻(𝑧, 𝑡) =
𝑘𝑢∗𝑧′(1−

𝑧′

ℎ
)1.5

𝜙𝑚(
𝑧

𝐿
) 𝜙𝐻(

𝑧

𝐿
)

   (2) 

 

Here, z is the height above the snow surface and z’ = z − ∆z is the height over the VSL. The 

distinction between z’ and z is set so that KH (z = ∆z) = 0.  u*
 the friction velocity and the von 

Karmán constant k = 0.4. We use the non-dimensional functions φm and φH for momentum 

and heat (Högström, 1988) for both stable and unstable stratifications. h is the total height of 

the ABL and we assume h > H. In this work, we use h as a free parameter to minimize the 

misfit between the observations and the model. The time dependency of KH is contained in u* 

and L, which are both derived directly from the eddy covariance measurements. The full 

diffusion coefficient is:  

𝜅∗(𝑧, 𝑡) =  {
𝐷∗(𝑇𝑠, 𝑝)

𝐷 𝑂16
(𝑇𝑠, 𝑝) + 𝐾𝐻(𝑧, 𝑡)

          
if 0 ≤  𝑧 ≤ 𝛥𝑧
if 𝛥𝑧 < 𝑧 ≤ 𝐻

                           (3) 

where D
* (Ts,p) is the isotopologue specific molecular diffusion, Ts is the snow surface 

temperature, and p is the ambient atmospheric pressure. We use the molecular diffusivity of 

water vapor in air given by Hall and Pruppacher (1976). The isotopologue specific 

diffusivities in the VSL are given by the ratios D
18O

/D
16O

 = 0.9723 and D
D
/D

16O
 = 0.9755 
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(Merlivat, 1978). 

3.3Modelling Humidity 

When modelling the humidity we solve Eq. 1, with R* = R
16O = 1. At the snow-VSL 

interface we force the model with the AWS observed radiative snow surface temperature and 

assume saturation with respect to ice. The saturation vapor pressure over ice is calculated 

following Flatau et al. (1992). The upper boundary of the model is forced with the observed 

humidity-mixing ratio obtained from the CRDS measurements. The model is initialized with 

a constant humidity throughout the box, prescribed as the saturation humidity at the snow 

surface temperature. We use a spin-up of 1 day. This means that to model for example the 

June period (26th - 29th June) we use one-day integration forced by CRDS, EC, and AWS 

data from June 25
th

 as spin-up.  

3.4Modelling isotopic composition of water vapor 

We solved Eq. 1 for R
18

O
q and R

D
q, and initialized the simulations with uniform isotopic 

composition. The initialization values based on observational means were δ
18

O = −45‰ and 

δD = −320‰. Similar to the humidity simulations, a 1-day spin-up is used. We force the 

upper boundary at z = H with the observed isotopic composition, R
18O

q and R
D
q. We do not 

have any measurements of the vapor isotopic composition at z = 0. Instead we assume that 

the vapor isotopic composition at the snow-vapor interface varies diurnally (See Figure 2) 

following: 

𝛿∗(𝑧 = 0, 𝑡) =  𝐴∗ + 𝐵∗ sin (
2𝜋𝑡

𝑇𝑑𝑎𝑦
+ 𝐶∗)            (4) 

where Tday = 24 hours, A* is the mean isotopic composition, B* is the amplitude and C* is the 

phase offset, for each isotopologue. A*, B*, and C* are unknown model-parameters for each 

isotopologue.  

We use a least squares optimization approach to minimize the total model-data misfit. The 

model parameters we seek to optimize are A*, B* and C* in Eq. (4), along with the VSL 

thickness, ∆z, and the ABL height, h. To compute the isotopologue misfit, the modeled 

isotopic composition is linearly interpolated onto the height of the 3 inlets on the tower at z = 
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[0.56, 1.06, 2.07] m.  

We have computed best fit values of A*, B* and C*, referred to as A*
best, B*

best and C*
best, 

respectively, for 3 different boundary layer heights h = [25, 75, 150] m and VSL thicknesses 

in the range 0.0005m <= ∆z <= 0.1m.   Values for A*
 
and B*

 
have been run with a resolution 

of 0.1‰ and 0.5‰ for δ18O and δD, and the phase offset, C* with a resolution of 30 minutes. 

No a priori constraints have been placed on the values of A*
 
and B*.  

4 Results & Discussion  

Figure 3 shows values of A*
best, B*

best and C*
best, as a function of the VSL thickness ∆z, and 

boundary layer height, h. In general, we find that the value of C*
best for δ18O and δD is nearly 

independent of ∆z and h during both the June and July period. A*
best and B*

best are almost 

independent of h, but vary approximately linearly with ∆z. A positive linear relation between 

B*
best and ∆z is expected since the influence of the bottom boundary condition is more 

attenuated for a thicker VSL. For the rest of this study, we will only consider results from Eq. 

(4) using the optimized values of the three model coefficients A*
best, B*

best, and C*
best (Figure 

3). 
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Figure 3 Values of the coefficients A*, B* and C* in Eq. (4) for different combinations of 

VSL thickness (Δz, x-axis) and ABL height (h, symbols - see key), shown for both (blue) 

δ
18

O and (red) δD producing the best fit to the observations. Left: June period. Right: July 

period. 

 

4.1 The June Period  
 

The model-data misfits, calculated as described in section 3.4, of δ18O, δD and 

specific humidity, q, as a function of ∆z are shown in Figure 4. The model-data misfit 

of q is shown at each of the 3 observed heights z = [0.5 m, 1m, 2 m]. For the 

investigated range of ∆z and h, the model-data misfit in q is consistently smaller for 

the lowest level (z = 0.5 m). This misfit is strongly dependent on the choice of the 

VSL thickness, ∆z, and weakly dependent on the ABL height, h. The optimal choice 

of ∆z, depends on the height above the surface; the minimum misfit at heights z = 

[0.5, 1, 2] m are found for a VSL thicknesses of ∆z ~ [0.008, 0.006, 0.03] m. At 

heights z = [0.5, 1, 2] m the optimal combination of ∆z and h has a [50%, 25%, 25%] 

reduction in model-data misfit, relative to the worst possible combination of  ∆z  and h 

used in this study. 

Ideally, minimization of model-data misfits at the 3 levels should suggest the same 
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optimal values of ∆z and h. We find that the modeled humidity is slightly phase 

shifted relative to the observations at z = 2 m on DOY 179. Furthermore, observed 

humidity at z = 1 m on DOY 180 exhibits more noise relative to DOY 178 and 179, 

which cannot be reproduced by the model. As a result, larger model-data misfits are 

found at the z = [1, 2] m levels, relative to the z = 0.5 m level (Supplementary S3, 

Figures S7, S8, S9).  

Despite these issues, our idealized model reproduces a significant fraction of the 

observed variability. Specifically, we are able to simulate 90-95 % of the observed 

variance in q (i.e. modeled q variations are within 1 measurement uncertainty of the 

observations), by assuming a VSL thickness in the range 0.006 m < ∆z < 0.01 m, 

independent of the ABL height. 

The model-data misfit in δ
18

O is maximized for a VSL thickness of ∆z = 0.006 m and 

minimized for thicknesses in the range 0.05 m < ∆z < 0.1 m. The model-data misfit in 

δD is minimized for a VSL thickness in the range 0.004 m < ∆z <  0.008 m. For both 

δ
18

O and δD, the optimal choice of ∆z depends on the assumed ABL height, h. We 

find that the total model-data misfit for δ
18

O and δD can be reduced by 9% and 3% 

given the choice of ∆z and h, respectively.  

We select ∆z = 0.008 m and h = 25 m to minimize the total model-data misfit for the 

June period. The values of A
*

best, B
*

best, and C
*

best  for the June period are shown in 

Table 2. See Supplementary S3 for a comparison between model and observations 

with these settings. 

4.2 The July Period  

We now focus on optimization of the model for the July period (DOY 204 to 207). 

Both humidity and the isotopologues dependence of model-data misfit on the VSL 

thickness ∆z, and ABL height, h, are shown in Figure 5. 

We find that the humidity model-data misfit is minimized for 0.025 m < ∆z < 0.05 m; 

as mentioned above, the optimal choice depends on the height above the surface.  

However, in contrast to the June period, we find that the worst model-data misfit in 
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July is obtained for the lowest level (z = 0.5 m). (Supplementary S3, Figures S10, 

S11, S12). 

 We observe trends for the total model-data misfit for δ
18

O and δD that are similar to 

those during the June period. Surprisingly, we note that the misfits for the two 

isotopes behave independently of the fit to the overall humidity, i.e. that the minimum 

of the humidity is not aligned with the minimum in the total 2-norm of δD. The 

humidity misfit is also more drastically reduced due to the choice of ∆z compared to 

the isotope misfits. Therefore, the best overall fit to the observations is obtained by 

settings ∆z = 0.025 m and h = 25 m. The values of A
*

best, B
*
best, and C

*
best   using these 

settings are shown in Table 2. We refer to Supplementary S3 for a comparison 

between model and observations with these settings. 

panel: humidity misfit for each individual level; the misfit at the 0.5 m level (purple) is 

consistently smaller than that at the 1 m (black) and 2 m (green) levels. Mid panel: total δ
18

O 

model-data misfit (blue).  Bottom panel: total model-data misfit for δD (red). 
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Figure 5 July period model-data misfit dependency on the thickness of the viscous sub-layer 

Δz for 3 different values of h: 25 m (circles), 75 m (+'s), and 150 m (triangles). Top panel: 

humidity misfit for each individual level; the misfit at the 0.5 m level (purple) is consistently 

smaller than that at the 1 m (black) and 2 m (green) levels. Mid panel: total δ
18

O model-data 

misfit (blue).  Bottom panel: total model-data misfit for δD (red). 
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  June 26-29 July 22-25 

  A[‰] B[‰] C[hrs] A[‰] B[‰] C[hrs] 

V
ap

o
r 𝛿18𝑂 -43.9 3.3(1.7, 4.6) 14.5 -41.7 3.9(2.4, 4.6) 14.5 

𝛿𝐷 -320.5 19.0(10, 27.5) 14.0 -305.0 22.5(13.5, - ) 13.5 

dxs 31 -8 - 28 -11 - 

 

Table 2 Best-fit values for A*, B*, and C* for the June and July period. To achieve the 

overall best fit to both humidity and isotopic composition measurements, we find ∆z = 

0.008m and h = 25m for the June period, and ∆z = 0.025m and h = 25m for the July period. 

The 95% confidence bound on B* 
 is given in the parenthesis, an upper limit on B

D
 for the 

July period has not been determined (see Appendix).
 

 

4.3 Snow Isotopic Composition  

The results in the previous sections allow us to estimate the diurnal changes in the 

snow isotopic composition during the June and July periods, consistent with the water 

vapor isotope observations. We assume equilibrium fractionation at the interface 

between the snow surface and the VSL. Using the optimized parameters A
*
best, B

*
best, 

C
*
best (Table 2), we compute the snow isotopic composition using the fractionation 

coefficients α for ice-vapor fractionation from Ellehoj et al. (2013) and the observed 

snow surface temperature. We note that using fractionation values from Majoube 

(1971) or Merlivat and Nief (1967) does not change our conclusions. We have 

computed the average and maximum amplitude of the snow isotopic composition, and 

have propagated the 95% confidence limit of the vapor amplitudes into snow 

amplitudes. The model is compared with the observed snow isotopic composition at 

three times during both the June and July periods (Figure 6).  
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Figure 6. Snow isotopic composition using the ice-vapor fractionation coefficient from 

Ellehøj et al. (2013), assuming equilibrium fractionation in the viscous sub-layer. Left: June 

period. Right: July period. For each period, three observations of snow isotopic composition 

are also shown. The standard deviation(σsnow) on the mean observed snow isotopic 

composition is comparable to the marker size for the July period. 

 

In Figure 6, we observe that the top 1 cm of the snow surface isotope measurements 

and the modeled snow isotopes are consistent with each other under the assumption of 

isotopic fractionation at the interface, but due to the low temporal sampling frequency 

of the snow samples they are not directly comparable. Furthermore, it is important to 

note that it still unresolved to which depth the atmospheric water vapor is in contact 

with the top of the snow pack. To verify or reject the hypothesis that the snow surface 

is in isotopic equilibrium with the vapor at the snow-air interface, the surface snow 

would have to be sampled in higher vertical and temporal resolution (millimeter and 

hourly, respectively). However, it is possible to model the depth to which the snow 

should be in isotopic equilibrium with the vapor. 

In Table 3, we have estimated the depth of the snow surface that remains in 

equilibrium with the vapor at the lower boundary of the VSL, using the principle of 
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conservation of isotopic composition and assuming fractionation. We do this using EC 

measurements of the latent heat flux, the fractionation coefficients given by Ellehoj et 

al. (2013), and the constants given in Table 3. The required depth of the snow surface, 

which is in equilibrium with the vapor at the lower boundary of the VSL interphase, is 

computed for both the June and July period using the amplitudes and the confidence 

interval given in Table 2. As a result of these calculations we observe that within the 

uncertainty range of our tuned parameters, the snow depth of the layer in equilibrium 

with the vapor will be in the sub-millimeter to centimeter range (Table 3).  

In conclusion, our model simulates that during summer cloud-free conditions at 

EastGRIP, the snow isotopic composition exhibits diurnal variations with an 

amplitude of around 2.5 ‰ and 13 ‰ for δ
18

O and δD, respectively. Such variations 

are significant as they are on the order of 10-20% of seasonal variations measured in 

snow pack isotopes (Shuman et al., 1998;Steen-Larsen et al., 2011). Similarly do the 

estimated diurnal changes in the snow isotopes also correspond to 10-20% of glacial-

interglacial transitions in Greenland (e.g. Johnsen et al., 2001).  It is possible that 

these large diurnal variations in isotopic composition may be limited to the upper few 

millimeters of snow. Further work to model vapor diffusion within the snow pack 

could help determine the maximum depth at which the snow is influenced by these 

processes. Validation of our model results will require carefully conducted snow 

sampling in future field experiments. 

Table 3: Top table: Values used for estimating snow surface thickness in equilibrium 

with the vapor in the viscous sub-layer. Bottom table: Estimates of the snow thickness 

at which the snow is in equilibrium with the vapor above the surface. The 95% 

confidence bounds are giving in the parenthesis. 

 

 Symbol Value 

Latent heat of sublimationat 0 °C 𝜆 2838 kJ kg
-1 

Snow density 𝜌𝑠 150 kg m
-3 

Snow surface temperature 𝑇𝑠 -11.5°C 

Average day positive latent heat flux (June/July) 𝐿𝐸 > 0 6.5/6.7 W m
-2 

Average day negative latent heat flux (June/July) 𝐿𝐸 < 0 -2.5/-3.8 W m
-2 

Initial snow surface isotopic composition 𝛿18𝑂 -30‰ 
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Initial snow surface isotopic composition 𝛿𝐷 -240‰ 

 

  June period July period 

𝐿
𝐸

>
0

 

𝛿18𝑂 2.5(7.1, 1.8) mm 2.3 (4.5, 1.9) mm 

𝛿𝐷 3.2(14.4, 1.9) mm 2.0 (9.9, - ) mm 

𝐿
𝐸

<
0

 

𝛿18𝑂 0.7 (2.5, 0.4) mm 0.9 (2.2, 0.7) mm 

𝛿𝐷 1.0 (5.3, 0.5) mm 1.2 (5.2, - ) mm 

 

We suggest that the simulated and observed snow isotopic compositions are evidence 

of fractionation during the diurnal vapor to ice and ice to vapor phase transitions. For 

the June period, this conclusion is based on the observation that the snow samples are 

consistent with the average value of the modeled snow isotopic composition within 

1σsnow for both isotopic species. This agreement is independent of the specific choice 

of fractionation coefficients from the available range published in the literature. For 

the July period, we observe an agreement within 1σsnow and the 95% confidence 

bound on the modeled snow isotopic composition. We conclude that accounting for 

isotopic fractionation is important in modeling snow-atmosphere isotopic exchange. 

This implies that the snow isotopic composition can change while the snow is 

subjected to exchange with the atmosphere. 

Up until this point we have not considered how the model performs in terms of dxs. In 

summary, given that we use the optimized values for A
*
, B

*
, and C

*
, we find that we 

are able to simulate the dxs such that on average 95% of the modeled dxs is within one 

standard deviation of the observed values. However, the   modeled dxs limits the 

maximum deviation of B
18

O 
from B

D
. For example, by selecting the upper bound of 

the confidence limit on δD and the lower bound on the confidence limit of δ
18

O, we 

find that we no longer simulate the dxs within 95% confidence. This implies that an 

optimization of the parameters A
*
 and B

*
 
with respect to dxs will result in a decrease 

of the confidence limits given in Table 1. Since a decrease in the confidence bounds 

on B
* 

does not undermine our results we find that another optimization of the 
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parameters with respect to dxs is unnecessary.  Nonetheless, it is important to note that 

we find that the modeled vapor at the snow-VSL interface have a diurnal cycle in the 

dxs for both the June and July period (Table 2). For both periods we find that the dxs is 

in anti-phase with the δD and δ
18

O, even though there is no diurnal cycle in the 

atmospheric vapor for the July period. This is a result of the presences of the VSL, 

where the difference in molecular diffusivities determines how the dxs attenuates with 

displacement from the surface.  

We now compare our results to existing studies. Ritter et al. (2016) find evidence in 

their snow samples of a diurnal cycle with amplitude ~ 0.2‰ and ~ 1.5‰ for δ
18

O 

and δD, respectively. This amplitude is smaller than our modeled amplitude, which in 

part can be explained by both lower temperatures and lower specific humidity, since 

the observations of Ritter et al. (2016)  are conducted at Kohnen Station, Antarctica. 

To verify this, we have conducted sensitivity studies (not shown) and found that a 15-

20% reduction in snow isotope amplitude is achieved for a cooling of 10 K, consistent 

with summer conditions at Kohnen Station. However, the most important factor is 

probably related to the difficulties of sampling the exact top of the snow pack layer. 

Steen-Larsen et al. (2014) present two summer seasons of snow samples collected 

from the top 0.5 cm. Their morning and evening samples indicate a diurnal cycle with 

maximum amplitudes of 0.6‰ for δ
18

O. 

Isotopes have recently been implemented in the complex snowpack model CROCUS 

(Touzeau et al., 2018). The authors propose, similar to Ebner et al. (2017), that a snow 

grain has an inner and outer isotopic composition, which is similar upon snowfall, but 

changes independently as the snow grain undergoes post-depositional processes. We 

propose that throughout a single day, the outer snow grain undergoes substantial 

changes in both volume and isotopic composition, whereas the inner snow grain 

isotopic composition stays constant. This can partly explain the difference between the 

modeled and observed change observed in this work, since a snow sample would be 

biased towards inner grain isotopic composition, and thus the observed diurnal 

variability in the surface snow isotopic composition would be damped. 
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It is unclear how this conclusion is compatible with Pinzer et al. (2012), who used 

controlled lab experiments with X-ray tomography to show that an average snow 

crystal has a   lifetime of 2-3 days, with a daily mass turnover of up to 60%. Further 

studies are needed to address the interplay between changes in the snow isotopic 

composition caused by snow metamorphism and equilibration of the outer snow grain 

with the near-surface atmospheric water vapor. 

5 Conclusions  

We have presented near-continuous, high-precision measurements of water isotopic 

composition in atmospheric vapor, as well as eddy covariance measurements from two 

periods of stable diurnal cycles, taken at the East Greenland Ice Core Project camp during 

summer 2016. We observe substantial changes in the isotopic composition of the near-surface 

atmosphere on diurnal timescales, which prompted an investigation as to whether these high 

frequency isotopic variations are also present in the surface snow. We focus on simulating 

two distinct cloud free periods from the 2016 field season, spanning three days each. 

Although both periods exhibit similar variation in atmospheric humidity, there are notable 

differences in observed vapor isotopic compositions.  

We have developed a numerical model to simulate changes in humidity and water vapor 

isotopic composition along a vertical profile extending from the snow surface up into the 

near-surface atmosphere. With this model, we are able to compute the snow isotopic 

composition and quantify the amplitude of snow isotope variability across diurnal cycles. We 

find that the uppermost millimeters of the snow surface in northeast Greenland exhibits a 

diurnal variability with an amplitude of approximately 2.5‰ and 13‰ for δ
18

O and δD, 

respectively.   The magnitude of these diurnal variations in the snow is significant and 

equivalent to 10-20% of the seasonal change in the snow isotopic composition in Greenland, 

or of the magnitude of the change across a glacial-interglacial transition.  

We also compared our modeled snow isotopic composition with measurements of the 

integrated top 1 cm of snow. Based on the snow and vapor isotope measurements, we 

conclude that the observations are consistent with the assumption of isotopic equilibrium at 

the snow-air interface. Our findings highlights the need for a high resolution sampling 

campaign in order to improve our understanding on the processes controlling of isotopic 



 

 
© 2019 American Geophysical Union. All rights reserved. 

fractionation of snow during sublimation. Our results strongly support the earlier findings 

that a diurnal signal exists in the snow isotopic composition. Further laboratory experiments 

and fieldwork can address the following questions: Does a viscous sub-layer exist as an 

interface between the snow and the near-surface atmosphere? What is the thickness of the 

viscous sub-layer? To what depth is diurnal variability in snow isotopic composition 

significant? It is needed to sample the uppermost millimeters of the snow at high frequency in 

both laboratory and field experiments to answer this question. 

We have found evidence that fractionation during sublimation and solid-condensation is 

important for modeling vapor exchange and snow isotopic composition on the diurnal scale, 

supporting recently published results by Ritter et al. (2016). This implies that the snow 

isotopic composition can change while the snow is subjected to exchange with the 

atmosphere. This work therefore contributes to the understanding of how the isotopic 

composition of snow is subject to changes after deposition. The ability of the presented 

model to simulate the diurnal cycle in isotopic composition of the vapor and change in 

the snow isotopic composition yield confidence in the ability to further parameterize 

the snow-air interaction and eventually implement this into higher complexity climate 

models. This is relevant for both present-day and paleo climate modeling of Greenland 

isotopes and comparison to ice core records. 

 

Acknowledgements 

EGRIP is directed and organized by the Center of Ice and Climate at the Niels Bohr Institute. 

It is supported by funding agencies and institutions in Denmark (A. P. Møller Foundation, 

University of Copenhagen), USA (US National Science Foundation, Office of Polar 

Programs), Germany (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine 

Research), Japan (National Institute of Polar Research and Artic Challenge for 

Sustainability), Norway (University of Bergen and Bergen Research Foundation), 

Switzerland (Swiss National Science Foundation), France (French Polar Institute Paul-Emile 

Victor, Institute for Geosciences and Environmental research) and China (Chinese Academy 

of Sciences and Beijing Normal University). This project has received funding from the 

European Research Council (ERC) under the European Union’s Horizon 2020 research and 

innovation program: Starting Grant – SNOWISO (grant agreement No. 759526). The authors 

acknowledge James DeGrand for calibrating the KH-20 instrument and updating the 

CSAT3D firmware. Data from the Programme for Monitoring of the Greenland Ice Sheet 



 

 
© 2019 American Geophysical Union. All rights reserved. 

(PROMICE) were provided by the Geological Survey of Denmark and Greenland (GEUS) at 

http://www.promice.dk. MVM thanks the Frederikke Lørups mindelegat for support of visit 

to University of Colorado. 

 

 

Data 

Data are available as supplementary material in –ascii and excel format. Questions regarding 

data should be address to H. C. Steen-Larsen (Hans.Christian.Steen-Larsen@uib.no). 

 

References 

 

Ahlstrøm, A., Gravesen, P., Andersen, S., As, D. V., Citterio, M., Fausto, R., Nielsen, S., 

Jepsen, H., Kristensen, S., Christensen, E., Stenseng, L., Forsberg, R., Hanson, S., Petersen, 

D., and PROMICE-Project-Team: A new programme for monitoring the mass loss of the 

Greenland ice sheet, Geol. Surv. Den. Green. Bull., 15, 61-64, 2008. 

Box, J. E., and Steffen, K.: Sublimation on the Greenland Ice Sheet from automated weather 

station observations, Journal of Geophysical Research: Atmospheres, 106, 33965-33981, 

10.1029/2001JD900219, 2001. 

Brost, R. A., and Wyngaard, J. C.: A Model Study of the Stably Stratified Planetary 

Boundary Layer, Journal of the Atmospheric Sciences, 35, 1427-1440, 10.1175/1520-

0469(1978)035<1427:amsots>2.0.co;2, 1978. 

Casado, M., Landais, A., Picard, G., Münch, T., Laepple, T., Stenni, B., Dreossi, G., Ekaykin, 

A., Arnaud, L., Genthon, C., Touzeau, A., Masson-Delmotte, V., and Jouzel, J.: Archival 

processes of the water stable isotope signal in East Antarctic ice cores, The Cryosphere, 12, 

1745-1766, 10.5194/tc-12-1745-2018, 2018. 

Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702-1703, 1961. 

Craig, H., and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and the marine 

atmosphere, in: Stable Isotopes in Oceanographic Studies and Paleotemperatures, July 26-30 

1965, Spoleto, Italy, 1965. 

Cullen, N. J., Steffen, K., and Blanken, P. D.: Nonstationarity of turbulent heat fluxes at 

Summit, Greenland, Boundary-Layer Meteorology, 122, 439-455, 10.1007/s10546-006-9112-

2, 2007. 

Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436-468, 1964. 

http://www.promice.dk/


 

 
© 2019 American Geophysical Union. All rights reserved. 

Ebner, P. P., Steen-Larsen, H. C., Stenni, B., Schneebeli, M., and Steinfeld, A.: Experimental 

observation of transient δ18O interaction between snow and advective airflow under various 

temperature gradient conditions, The Cryosphere, 11, 1733-1743, 10.5194/tc-11-1733-2017, 

2017. 

Ellehoj, M. D., Steen-Larsen, H. C., Johnsen, S. J., and Madsen, M. B.: Ice-vapor equilibrium 

fractionation factor of hydrogen and oxygen isotopes: Experimental investigations and 

implications for stable water isotope studies, Rapid Communications in Mass Spectrometry, 

27, 2149-2158, 10.1002/rcm.6668, 2013. 

EPICA community members: One-to-one coupling of glacial climate variability in Greeland 

and Antartctica, Nature, 444, 195-198, 2006. 

Flatau, P. J., Walko, R. L., and Cotton, W. R.: Polynomial Fits to Saturation Vapor Pressure, 

Journal of Applied Meteorology, 31, 1507-1513, 1992. 

Forrer, J., and Rotach, M. W.: On the turbulence structure in the stable boundary layer over 

the Greenland ice sheet, Boundary-Layer Meteorology, 85, 111-136, 

10.1023/a:1000466827210, 1997. 

Hall, W. D., and Pruppacher, H. R.: The survival if ice particles falling from cirrus clouds in 

subsaturated air, Journal of Atmospheric Science, 33, 1995-2006, 1976. 

Högström, U.: Non-dimensional wind and temperature profiles in the atmospheric surface 

layer: A re-evaluation, Boundary-Layer Meteorology, 42, 55-78, 10.1007/bf00119875, 1988. 

Hojstrup, J.: A statistical data screening procedure, Measurement Science and Technology, 4, 

153, 1993. 

Hyson, P., Garratt, J. R., and Francey, R. J.: Algebraic and Electronic Corrections of 

Measured uw Covariance in the Lower Atmosphere, Journal of Applied Meteorology, 16, 43-

47, 10.1175/1520-0450(1977)016<0043:aaecom>2.0.co;2, 1977. 

Johnsen, S. J., Dansgaard, W., and White, J. W. C.: The origin of Arctic precipitation under 

present and glacial conditions, Tellus B, 41, 452-468, 1989. 

Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen, H. B., Miller, H., 

Masson-Delmotte, V., Sveinbjörnsdottir, A. E., and White, J.: Oxygen isotope and 

palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, 

GRIP, GISP2, Renland and NorthGRIP, Journal of Quaternary Science, 16, 299-307, 2001. 

Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann, G., Johnsen, 

S. J., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M., Stuiver, M., and White, J.: 

Validity of the temperature reconstruction from water isotopes in ice cores, Journal of 

Geophysical Research, 102, 26471-26487, 1997. 



 

 
© 2019 American Geophysical Union. All rights reserved. 

Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., 

Minster, B., Nouet, J., Barnola, J M., Chappellaz, J., Fischer, H., Gallet, J C., Johnsen, S., 

Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, 

D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. 

P., Stenni, B., Stocker, T F., Tison, J L., Werner, M., Wolff, E. W.: Orbital and Millennial 

Antarctic Climate Variability over the Past 800,000 Years, Science, 317, 793-796, 2007.  

Majoube, M.: Fractionnement en oxygène 18 et en deutérium entre l'eau et sa vapeur, J. Clim. 

Phys., 68, 1423-1436, 1971. 

Masson-Delmotte, V., Landais, A., Stievenard, M., Cattani, O., Falourd, S., Jouzel, J., 

Johnsen, S. J., Dahl-Jensen, D., Sveinbjornsdottir, A., White, J. W. C., Popp, T., and Fisher, 

H.: Holocene climatic changes in Greenland: Different deuterium excess signals at Greenland 

Ice Core Project (GRIP) and NorthGRIP, Journal of Geophysical Research, 110, D14102, 

doi:14110.11029/12004JD005575, 2005. 

Masson-Delmotte, V., Steen-Larsen, H. C., Ortega, P., Swingedouw, D., Popp, T., Vinther, 

B. M., Oerter, H., Sveinbjornsdottir, A. E., Gudlaugsdottir, H., Box, J. E., Falourd, S., 

Fettweis, X., Gallée, H., Garnier, E., Gkinis, V., Jouzel, J., Landais, A., Minster, B., Paradis, 

N., Orsi, A., Risi, C., Werner, M., and White, J. W. C.: Recent changes in north-west 

Greenland climate documented by NEEM shallow ice core data and simulations, and 

implications for past-temperature reconstructions, The Cryosphere, 9, 1481-1504, 10.5194/tc-

9-1481-2015, 2015. 

Merlivat, L., and Nief, G.: Fractionnement isotopique lors des changements d'état solide-

vapeur et liquide-vapeur de l'eau à des températues inférieures à 0°C, Tellus, 1, 122-127, 

1967. 

Merlivat, L.: Molecular Diffusivities of (H2O)-O-16, HD16O, and (H2O)-O-18 in Gases, 

Journal of Chemical Physics, 69, 2864-2871, 1978. 

Moncrieff, J. B., Monteny, B., Verhoef, A., Friborg, T., Elbers, J., Kabat, P., de Bruin, H., 

Soegaard, H., Jarvis, P. G., and Taupin, J. D.: Spatial and temporal variations in net carbon 

flux during HAPEX-Sahel, Journal of Hydrology, 188-189, 563-588, 

https://doi.org/10.1016/S0022-1694(96)03193-9, 1997. 

Moore, C. J.: Frequency response corrections for eddy correlation systems, Boundary-Layer 

Meteorology, 37, 17-35, 10.1007/bf00122754, 1986. 

NEEM community members: Eemian interglacial reconstructed from a Greenland folded ice 

core, Nature, 493, 489-494, 10.1038/nature11789, 2013. 



 

 
© 2019 American Geophysical Union. All rights reserved. 

North Greenland Ice-Core Project (NorthGRIP) Members: High resolution Climate Record of 

the Northern Hemisphere reaching into the last Glacial Interglacial Period, Nature, 431, 147-

151, 2004. 

Pinzer, B. R., Schneebeli, M., and Kaempfer, T. U.: Vapor flux and recrystallization during 

dry snow metamorphism under a steady temperature gradient as observed by time-lapse 

micro-tomography, The Cryosphere, 6, 1141-1155, 10.5194/tc-6-1141-2012, 2012. 

Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water stable isotopes in the LMDZ4 General 

Circulation Model: model evaluation for present day and past climates and applications to 

climatic interpretations of tropical isotopic records, Journal of Geophysical Research, 115, 

2010. 

Ritter, F., Steen-Larsen, H. C., Werner, M., Masson-Delmotte, V., Orsi, A., Behrens, M., 

Birnbaum, G., Freitag, J., Risi, C., and Kipfstuhl, S.: Isotopic exchange on the diurnal scale 

between near-surface snow and lower atmospheric water vapor at Kohnen station, East 

Antarctica, The Cryosphere Discuss., 2016, 1-35, 10.5194/tc-2016-4, 2016. 

Shuman, C. A., Alley, R. B., Fahnestock, M. A., Bindschadler, R. A., White, J. W. C., 

Winterle, J., and McConnell, J. R.: Temperature history and accumulation timing for the 

snowpack at GISP2, central Greenland, Journal of Glaciology, 44, 21-30, 1998. 

Steen-Larsen, H. C., Masson-Delmotte, V., Sjolte, J., Johnsen, S. J., Vinther, B. M., Breon, F. 

M., Clausen, H. B., Dahl-Jensen, D., Falourd, S., Fettweis, X., Gallee, H., Jouzel, J., 

Kageyama, M., Lerche, H., Minster, B., Picard, G., Punge, H. J., Risi, C., Salas, D., 

Schwander, J., Steffen, K., Sveinbjornsdottir, A. E., Svensson, A., and White, J.: 

Understanding the climatic signal in the water stable isotope records from the NEEM shallow 

firn/ice cores in northwest Greenland, Journal of Geophysical Research-Atmospheres, 116, 

D06108 

10.1029/2010jd014311, 2011. 

Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H., 

Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehøj, M. D., Falourd, S., Grindsted, A., 

Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P., 

Sperlich, P., Sveinbjörnsdóttir, A. E., Vinther, B. M., and White, J. W. C.: Continuous 

monitoring of summer surface water vapor isotopic composition above the Greenland Ice 

Sheet, Atmos. Chem. Phys., 13, 4815-4828, 10.5194/acp-13-4815-2013, 2013. 

Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., 

Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen, D., Dumont, M., Guillevic, M., Kipfstuhl, 

S., Landais, A., Popp, T., Risi, C., Steffen, K., Stenni, B., and Sveinbjörnsdottír, A. E.: What 



 

 
© 2019 American Geophysical Union. All rights reserved. 

controls the isotopic composition of Greenland surface snow?, Clim. Past, 10, 377-392, 

10.5194/cp-10-377-2014, 2014. 

Tanner, C. B., and Thurtell, G. W.: Anemoclinometer measurements of Reynolds stress and 

heat transport in then atmospheric surface layer, University of Wisconsin Tech. Rep. ECOM-

66-G22-F, 88 pp, 1969. 

Touzeau, A., Landais, A., Morin, S., Arnaud, L., and Picard, G.: Numerical experiments on 

vapor diffusion in polar snow and firn and its impact on isotopes using the multi-layer energy 

balance model Crocus in SURFEX v8.0, Geosci. Model Dev., 11, 2393-2418, 10.5194/gmd-

11-2393-2018, 2018. 

Uemura, R., Masson-Delmotte, V., Jouzel, J., Landais, A., Motoyama, H., and Stenni, B.: 

Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope 

records over glacial–interglacial cycles, Clim. Past, 8, 1109-1125, 10.5194/cp-8-1109-2012, 

2012. 

Vimeux, F., Masson, V., Jouzel, J., Stievenard, M., and Petit, J. R.: Glacial-interglacial 

changes in ocean surface conditions in the Southern Hemisphere, Nature, 398, 410-413, 

1999. 

Vinther, B. M., Jones, P. D., Briffa, K. R., Clausen, H. B., Andersen, K. K., Dahl-Jensen, D., 

and Johnsen, S. J.: Climatic signals in multiple highly resolved stable isotope records from 

Greenland, Quaternary Science Reviews, 29, 522-538, 2010. 

Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., and Lohmann, G.: Stable water 

isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope 

modeling on a global scale, Journal of Geophysical Research-Atmospheres, 116, 

10.1029/2011jd015681, 2011. 

Wong, T. E., Nusbaumer, J., and Noone, D. C.: Evaluation of modeled land-atmosphere 

exchanges with a comprehensive water isotope fractionation scheme in version 4 of the 

Community Land Model, Journal of Advances in Modeling Earth Systems, 9, 978-1001, 

10.1002/2016MS000842, 2017. 

 


