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Abstract—Breast cancer has a high incidence among women
worldwide. This, together with the recent developments in deep
learning based convolutional networks, have motivated research
towards the enhancement of Computer Aided Diagnosis (CAD)
systems. In this paper, the performance of a densely connected
convolutional network (DenseNet) for breast cancer was investi-
gated for the malignant/benign classification of mammographic
masses. Different mammography data sets were collected to
investigate the capacity of this network for learning a combi-
nation of these databases. To achieve this, internal low-level,
mid-level and high-level features/abstracts were extracted from
the model together with hand-crafted features, generating a vast
amount of data. Using the distributed rough set based feature
selection approach (Sp-RST), significant features were selected
from both deep learning based features and hand-crafted ones,
and fed into a learning model with separate and combined
data approaches for the classification of mammographic masses.
Results show that by using Sp-RST as a powerful technique
capable of performing big data preprocessing, DenseNet had the
representational capacity to learn mammographic abnormalities.

Index Terms—Breast Cancer; Feature Selection; DenseNet; Big
Data; Mass Classification

I. INTRODUCTION

Breast cancer is the most regularly diagnosed cancer and
recent estimates highlight that more than 1 050 000 cancer-
ous cases occur every year in the world, with approxi-
mately 580 000 case studies in developed countries and nearly
470 000 in developing countries [1]. Currently, mammography
is considered as a common modality used for primary lesion
visualisation and detecting early changes in breast tissue.
Breast cancer can be visualised in mammograms as masses,
architectural distortion, and microcalcifications. Clinicians use
several factors to diagnose their potentially cancerous nature.
Among these factors are size, morphology, distribution, form,
shape, intensity and density of the abnormalities. Computer
Aided Diagnosis (CAD) systems have been developed as an
alternative to assist radiologists’ interpretation and to improve
their diagnostic accuracy for the patients’ outcomes. These

systems aim to improve the identification of subtle suspicious
abnormalities in mammograms [2], [3].

Delineation of breast tissue characteristics has been done
using traditional machine learning methods [4]. Several hand-
crafted (manual) features have been explored for classifying
mass abnormalities. The common features include statistical,
textural, morphological and intensity based characteristics.
Some histogram-based intensity features and Gray Level Co-
occurrence Matrix (GLCM) based texture features (contrast,
correlation, energy and homogeneity) [2] have also been ex-
plored for discriminating cancerous and non-cancerous mam-
mographic masses. Several studies have evaluated the per-
formance of these manual feature sets using several learning
methods such as Random Forest (RF), Support Vector Machine
(SVM), Decision Tree and Neural Networks [2], [4].

Recently, deep learning models including deep convolu-
tional neural networks (CNNs) [5], inspired by information
processing in animal visual cortex, have shown remarkable
results in various image processing tasks. The intuition behind
deep convolutional models is to learn a hierarchical representa-
tion of input data, without relying on hand-crafted features, via
a cascade of multiple layers of nonlinear processing units [6].
Accordingly, an automatic feature extraction and transforma-
tion is performed from one layer to another in an hierarchic
concept. In such a way, the output feature maps from the
previous layer are fed as inputs to the successive layer, leading
to multiple levels of representations corresponding to different
levels of abstraction in the hierarchy of concepts.

Incorporating deep learning concept and methods into the
wide range of mammographic applications have expanded
ideas to modify CAD systems. Among these, Dhunge et al. [7]
combined a mass candidate generator and a CNN to define
texture and morphology related features for a linear SVM
classifier. Carneiro et al. [8] did transfer learning with a
previously trained CNN and fine-tuned it using unregistered
mammograms for the task of mass segmentation. Huynh et
al. [9] also used transfer learning to extract tumour related
information to distinguish between benign/malignant breast



lesions. Kooi et al. [10] investigated a CAD system relying
on manual and CNN designed features. Data augmentation
and context effects for classifying pre-segmented masses were
studied in [11]. Several CNNs with various depths were evalu-
ated by Arevalo et al. [12], comparing the best obtained results
from Histogram of Oriented Gradients, Histogram of Gradient
Divergence and hand-crafted features. However, none of these
studies have investigated the behaviour of the deep learning
based methods for the learning process, to express why and
how the deep learning based networks perform so well. There-
fore, in this paper, we aim to investigate the performance of a
densely connected neural network (DenseNet) [13] for breast
cancer by analysing the network’s intermediate feature maps
extracted from different levels of the model’s architecture.
Accordingly, many features were extracted leading to a vast
amount of data that could be referred to as big data. This
data was computationally expensive to analyse with standard
techniques. To investigate and analyse the DenseNet internal
information via the generated feature maps, the use of an
appropriate feature selection approach that could preserve the
semantics of the features, analyse the facts hidden in data and
find a minimal knowledge representation without sacrificing
performance of the learning model is essential.

With regards to the feature reduction techniques, and in the
context of big data, various distributed approaches have been
proposed in literature and these can be grouped into two cat-
egories namely methods that perform a transformation on the
original meaning of the attributes, named the transformation
based approaches (also called feature extraction approaches),
and techniques which preserve the semantic of the features
called the selection based approaches [14]. Feature extrac-
tion generally refers to approaches that build combinations
of variables to represent the initial set of attributes. This
is achieved via the new set of constructed variables while
still representing the data with satisfactory accuracy. Feature
extraction approaches are usually employed in cases where
the semantics of the initial data set (initial features) will not
be required to perform any future actions. On the other side,
the selection based approaches aim to retain the semantic
(meaning) of the initial attribute set. The major aim of these
approaches is to find a minimal sub-set of features from
a given problem domain, while retaining a sufficient accu-
racy in describing the initial features [14]. Feature selection
techniques can be further partitioned into filter approaches
and wrapper approaches. The main difference between the
two categories is that wrapper approaches include a learning
algorithm in the feature sub-set evaluation, and hence they are
tied to a particular induction algorithm. In this work, we focus
on the application of a feature selection approach, specifically
a filter technique. This was important to preserve the mean-
ing/semantics of the DenseNet generated feature maps and to
have a better understanding of the model behaviour. However,
most of these distributed feature selection approaches require
the user to deal with the algorithms’ parameterisation, noise
levels specification or to give a threshold that decides when
the algorithm should end; which are all counted as significant

drawbacks. All of these require users to make a decision based
on their own (possibly subjective) perception. To overcome
these limitations, we used the distributed rough set based
feature selection approach (Sp-RST) [15]. Sp-RST, dedicated
to big data feature selection, is a distributed implementation
design of the standard Rough Set Theory (RST) [16], which
is a powerful feature selection technique that has made many
achievements in many applications such as in environment,
epidemiology, medicine and many others [17], [18].

As mentioned earlier, DenseNet is used to classify mammo-
graphic mass abnormalities into benign and malignant classes
using various mammographic data sets that were acquired
from different laboratories, with various scanners and ap-
proaches. Within this application, the main motivations of our
paper are to (1) empirically demonstrate the effectiveness of
DenseNet for binary classification of mass abnormalities on
mammograms, and (2) investigate the behaviour of a deep and
dense convolutional model for the learning process through
the generated deep features/abstracts. To achieve this, after
creating a pool of deep feature maps and in order to evaluate
the salient features in the targeted layers in the DenseNet
model architecture, we have introduced the application of Sp-
RST and applied it to the extracted features. In this concern,
we also aim to (3) investigate the effect of combining the clas-
sification outcome of classifiers trained on the Sp-RST selected
hand-crafted features and the Sp-RST selected internal feature
maps generated automatically inside the deep convolutional
network. Accordingly, the capacity of this network for learning
a combination of mammographic images is discussed.

This paper is structured as follows. Section II introduces the
basic concepts of RST for feature selection. Section III details
the application in breast cancer via the use of DenseNet and
Sp-RST for large-scale data pre-processing. The experimental
setup and the results are discussed in Section IV, and the
conclusion is presented in Section V.

II. ROUGH SET THEORY

Rough Set Theory (RST) [16] is seen as formal approx-
imation of the conventional set theory that provides a filter
based approach. This approach can extract knowledge from a
problem domain in a concise way and retain the information
content while reducing the involved amount of data.

A. Preliminaries of Rough Set Theory

In rough set theory, the training data set is called an
information table that can be defined as a tuple T = (U,A).
U and A are two finite non-empty sets, where U refers to
the universe of primitive instances (or objects) and A refers
to the set of features. Each feature a ∈ A is described with
a set of values Va named the domain of a. The feature set A
can be partitioned into two sub-sets; namely the conditional
feature set C and the decision attribute D. Let P ⊂ A be a
sub-set of attributes. The central concept to rough set theory
is the indiscernibility relation which is denoted by IND(P ).
IND(P ) is an equivalence relation that can be defined as fol-
lows: IND(P ) = {(x, y) ∈ U × U : ∀a ∈ P, a(x) = a(y)},



where a(x) refers to the value of attribute a of the instance
x. In case where (x, y) ∈ IND(P ) then x and y are said
to be indiscernible with respect to the sub-set of features P .
The set of all equivalence classes of IND(P ) is denoted by
U/IND(P ), and refers to a partition of U which is determined
by P . Every element in U/IND(P ) is a set of indiscernible
instances with respect to the sub-set of features P . Based on
these, the equivalence classes U/IND(C) and U/IND(D)
can be defined and are named condition and decision classes,
respectively. In RST, any X ⊆ U and feature sub-set R ⊆ A,
and using the knowledge of R, X can be approximated
by two key concepts named the R-lower approximation and
the R-upper approximation. The lower approximation of X
describes the set of instances of U that are certainly in X .
The R-lower approximation is defined as follows: R(X) =⋃
{E ∈ U/IND(R) : E ⊆ X}. On the other hand, the

upper approximation of X describes the set of instances of U
that are possibly in X . The R-upper approximation is defined
as follows: R(X) =

⋃
{E ∈ U/IND(R) : E ∩ X 6= ∅}.

The concept that defines the set of instances that are not
certainly, but can possibly be classified in a specific way is
named the boundary region. The latter is defined as follows:
BNDR(X) = R(X) − R(X). If BNDR(X) is empty,
meaning that R(X) = R(X), then the X concept is said to
be R-definable. In the opposite case, X is a rough set with
respect to R. Another essential concept in RST is the positive
region. The positive region of decision classes U/IND(D)
with respect to the set of the conditional features C is denoted
by POSc(D); where POSc(D) =

⋃
R(X). POSc(D) is a

set of instances of U that can be classified with certitude to
classes U/IND(D) when using features of C. This means
that POSc(D) describes the union of all the equivalence
classes which are defined by IND(P ) that each, certainly,
can specifically induce the decision class D. Based on the
positive region concept, the dependency of features is defined
as follows: k = γ(C, ci) = |POSC(ci)|

|U | . The dependency
measures the degree k of the dependency of a specific feature
ci on a set of features C.

B. Reduction Process

The theory of rough sets aims at finding the smallest
sub-set of the conditional attribute set in a way that the
resulting reduced database remains consistent with respect to
the decision attribute. To achieve this, the theory defines the
Reduct concept and the Core concept. A sub-set R ⊆ C is
said to be a D-reduct of C in the case where γ(C,R) = γ(C)
and there is no R′ ⊂ R such that γ(C,R

′
) = γ(C,R). Based

on this formula, the Reduct can be defined as the minimal
set of selected features that preserve the same dependency
degree as the whole set of features. In practice, from the given
information table, it is possible that the theory generates a
set of reducts: REDF

D(C). In this situation, any reduct in
REDF

D(C) can be selected to describe the original informa-
tion table. The theory also defines the Core concept which
is the set of features that are enclosed in all reducts. The
Core concept is defined as CORED(C) =

⋂
REDD(C),

where REDD(C) is the D-reduct of C. More precisely, the
Core is defined as the set of features that cannot be omitted
from the information table without inducing a collapse of the
equivalence class structure. This means that all the features
which are in the Core are indispensable.

III. APPLICATION

A. Data set

Of critical concern for supervised learning, specially in deep
learning approaches, is the amount of annotated data with
labels for training the network. Currently, access to a large
mammography repository that provides images with similar
acquisition methods is not realistic, because providing such
database is time-consuming, tedious and costly. Currently,
four mammographic databases have become publicly avail-
able and these data repositories were used in this research
to conduct experiments. The first and the second data sets
are from the wide-ranging annotated Breast Cancer Digital
Repository (BCDR) [19], containing digitised film (F03) and
full field digital mammography images (D01) from women in
northern Portugal. The third data set is a sub-set of the Digital
Database for Screening Mammography (DDSM) [20] provided
by the University of South Florida. The fourth data set that
contains images acquired at a Breast Centre in Portugal is the
Inbreast [21] repository providing full field digital mammog-
raphy images. In this study, we concentrated on biopsy-proven
mammographic mass lesions. Detailed information about these
benchmarking data sets is provided in Table I.

1) Patch Extraction: To keep the information in the images
acquired from various centres and decrease the sensitivity of
classification models to intensity variations, a pre-processing
approach was implemented. Firstly, all images were segmented
into background and tissue (using a thresholding approach
for digital images and the approach developed by Chen and
Zwiggelaar for digitised images [22]). Subsequently, the inten-
sity values of the segmented tissue regions were normalised.
Using the provided annotations of identified lesions (manual
contours annotated by clinical experts), a Region of Interest
(RoI) was extracted with the size equal to double the square
bounding box of the abnormality. The reason for this RoI
selection was that not only the mass abnormality itself, but also
its neighbourhood contained relevant information, which were
considered by radiologists for diagnosis and has been reported
to result in significant improvement in the final classification
performance [11]. The prepared data sets were randomly split
into training, validation and test sets as 65%, 25% and 10%
of the whole database, respectively based on cases, ensuring
that there was no women overlap between the splits. The
distribution of patient characteristics in each data repository
is provided in Table I.

2) Data Augmentation: Data augmentation was performed
to alleviate the relatively small amount of training data for the
deep learning approach. To achieve this, five random rotations
were done. In order to keep the original morphology of the
abnormality and avoid shape changes due to common re-sizing
methods, square bounding boxes for the abnormalities were



TABLE I: Publicly available databases containing masses, used in this study. (MLO: mediolateral-oblique view; CC: Cranial-
Caudal view)

BCDR-F03 [19] BCDR-D01 [19] DDSM [20] Inbreast [21]
Number of cases 341 51 975 102
Number of images 664 105 1930 102
Benign images 369 69 1023 34
Malignant images 295 36 907 68
Resolution (bits/pixel) 8 14 12, 16 14
Image mode digitised digital digitised digital
View MLO, CC MLO, CC MLO, CC MLO, CC
Age distribution 58.4±15.3 57.7±13.5 58.9±11.5 -

considered instead of the abnormality bounding box, whilst
extracting patches. The patches were scaled to 256×256. Then,
random 224×224 crops followed by random mirroring were
performed to generate more training samples. However, there
was variation in the number of mammograms per case and not
all images necessarily contained annotated abnormalities. As
seen in Table I, there is an imbalance between the number of
benign and malignant cases/images. Doing augmentation led
to a further imbalance between these samples. To address this
issue and improve the regularisation of the training procedure,
random noise from one of the Gaussian, Localvar, Poisson,
Salt & Pepper and speckle distributions was generated and
added to the selected image in the training data set.

B. Deep Learning Methodology

1) DenseNet Architecture: CNNs have become the dom-
inant type of models for image classification. Among the
well-known CNNs, we have focused on DenseNet [13]. This
was based on a comparative study conducted in [23], in
which various types of deep networks (DenseNet, GoogLeNet,
VggNet-16 and AlexNet) were compared with regards to
the generalisation ability of the model to various data sets
for the current problem. DenseNet is an interesting model
because it uses the key characteristic of bypass signals from
the preceding layers to the subsequent ones to enforce optimal
information flow in the form of feature maps. This is done by
concatenating features while disregarding redundant feature
maps during training. Among the DenseNet variants [13],
DenseNet-BC is a successful model proposed for the Ima-
geNet [24] classification challenge. Since our images have the
similar size as the ones fed into the DenseNet-BC structure,
we have therefore selected it in our proposed approach, and
we shortly name it “DenseNet” in this paper. This network is
made up of L layers and each layer implements a specific non-
linear transformation, which can be a composite function of
different commonly used operations in deep learning concept
such as Batch Normalisation, rectified linear units, Pooling
and Convolution [6], [13]. In this model, direct connections
from any layer to all subsequent layers are incorporated to
enable the lth layer to receive the feature-maps of all preceding
layers. To facilitate down-sampling as an essential part of a
convolutional networks, the network is divided into multiple
densely connected blocks (dense-blocks), which are connected
to each other through transition layers (composed of a batch

normalisation layer, a 1×1 convolutional layer and a 2×2
average pooling layer). DenseNet’s growth rate (k) is a new
parameter of the network defined for generating narrower
layers and is set to 4 to specifically refer to the DenseNet-
BC structure (i.e. 4 dense-blocks and 3 transition layers).
The initial convolution layer incorporates 2k convolutions of
size 7×7 and the number of feature-maps in all other layers
follow the setting for k. Each dense-block consists of different
repetition of a sequence of sub-layers, i.e. dense-blocks 1, 2, 3
and 4 have 6, 12, 24 and 16 sub-layer sequences, respectively
as shown in Figure 1. Each layer takes all preceding feature-
maps as input. The final Softmax classifier makes a decision
based on the created features in the network. The rest of
the model’s parameters with regards to the kernel, stride and
padding sizes were kept as default as detailed in [13].

2) Training DenseNet: The objective of training in deep
learning is to minimise the difference error between the
network prediction and the expected output (defined by expert
radiologists). This error is then flowed backwards through the
network using the back-propagation procedure [6] leading the
network parameter values to be updated. In our experiments
and with respect to [13], the DenseNet model was trained via
a stochastic gradient descent solver with the parameters set to
Gamma = 0.1, momentum = 0.9 and weight-decay = 10−5.
We trained the model using mini-batches of size 8 (according
to our hardware specifications) and an initial learning rate
of 0.001 with 33% step down policy for 30 epochs. In our
implementations, the ImageNet data was used to do the initial
training of DenseNet, whilst the network was fine-tuned using
a combination of all the data sets presented in Table I.

DenseNet layers are very narrow and a small set of feature
maps are added to the collective knowledge of the network
during training, while the rest of the feature maps are preserved
unchanged. After training the network, the low-level, mid-level
and high-level features were extracted from the last pooling
layer of four main dense-blocks referred to as F-DB-1, F-
DB-2, F-DB-3 and F-DB-4 (see Figure 1). These features had
the following dimensionality (size): 118 800 (4.3GB), 65 536
(2.3GB), 42 849 (1.4GB) and 10 000 (420MB) for dense-block
1 to 4, respectively. To deal with this amount of data, a dis-
tributed version of rough set theory, named Sp-RST [15], was
used for feature selection (details are given in Section III-E).
Sp-RST is based on a parallel programming design that allows
to tackle big data sets over a cluster of machines independently



Fig. 1: Flowchart of the overall methodology.

from the underlying hardware/software. This feature selector
indicated the most significant features from the input database,
which corresponded to the low-level, mid-level and high-
level deep features from different depths of the network. The
application of Sp-RST decreased the number of features to
87 564 (3.7GB), 47 886 (2.1GB), 29 141 (1.3GB), and 7 326
(328.5MB) for dense-block 1 to 4, respectively.

C. Hand-Crafted Methodology

Adding to the previous process, several manual/hand-crafted
features were extracted (see Figure 1 for F-HC) to be com-
bined with the already selected deep learned features (i.e
F-DB-1, F-DB-2, F-DB-3 and F-DB-4) to investigate the
influence of these manual features on the overall classification
performance of the model. The computed manual features are
explained in Table II, where their selection was based on a
comparative study made in [2]. A total of 2 570 (57.9MB)
manual features were computed for each ROI and Sp-RST
was also applied to decrease the number of manual features
and could select 785 (19.1MB) significant features.

D. Training the Classifier

Using the selected hierarchical features from the network,
four Random Forest (RF) classifiers (RF-DB-1, RF-DB-2, RF-
DB-3 and RF-DB-4) were trained. The main motivation behind
the use of RF was its robustness and efficiency in handling
large data sets and its capability to not overfit the model. In
our experiments, an RF parameter tuning step was performed
to select the most adequate parameter values and these were
set as follows: n.estimators = 500, max.features = 32 and
max.depth = 6. The rest of the RF parameters were kept as
default using the Sklearn Library1. A similar RF classifier
was trained on hand-crafted features (RF-HC) to distinguish
benign/malignant abnormalities. These five RF classifiers were
trained to be used later in an ensemble method and the
outcome of the respective RF classifiers were considered to
give the final judgment, i.e. via the majority voting approach
to choose the best model for the current problem. This was

1http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

achieved while incorporating the effect of various features in
the binary classification task of mass abnormalities. This will
be further discussed in Section IV.

E. Sp-RST for Feature Selection

To select the most significant features from such amount of
data, specifically from each input database referring to F-DB-
1, F-DB-2, F-DB-3, F-DB-4 and F-HC, which corresponded to
the feature pools extracted from each dense-block in DenseNet
as well as from the hand-crafted feature pool—mapped as in-
formation data sets with respect to the rough set terminology—
Sp-RST [15] proceeds as follows:

1) Problem Formalisation: Technically, the information ta-
ble was first stored in an associated Distributed File System
(DFS) which is reachable from any machine (computer) of
the used cluster. To work on the input DFS in a distributed
and parallel way, a Resilient Distributed Dataset (RDD) was
created. We may formalise the latter as a given information
table defined as TRDD, where universe U = {x1, . . . , xN} is
the set of data items reflecting the extracted mammographic
patches from the mammograms provided in Table I and
as previously explained in Section III-A1, the conditional
attribute set C = {c1, . . . , cV } contains every single feature
of the TRDD information table and reflects pixel intensities
from the feature maps for DenseNet corresponding to dif-
ferent internal filter responses, while for manual features it
represents numerical values computed for each criteria covered
in Table II. The decision feature D of our learning problem
refers to the label (class) of each TRDD sample having binary
values d: either the patch is benign or malignant. D is defined
as: D = {0, 1}. C presents the conditional attribute pool from
where the most significant attributes were selected.

2) Feature selection process: For feature selection, the
given TRDD information table was partitioned first into m
data blocks based on splits from the conditional attribute
set C. Hence, TRDD =

⋃m
i=1(Cr)TRDD(i)

, where r ∈
{1, . . . , V }. Every TRDD(i)

was build using r random at-
tributes which were selected from C, where ∀TRDD(i)

:
@{cr} =

⋂m
i=1 TRDD(i)

. Within a distributed implementation
design, Sp-RST was applied to every TRDD(i)

while gathering

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


TABLE II: Manual/Hand-crafted features extracted from each abnormality.

Manual feature Description
Patient Based Features Age and normalised area of the abnormality for each patient.
First Order Statistical Fea-
tures

Mean, Standard Deviation, Variance, Skewness, Kurtosis of the abnormality for each patient.
These features estimate the properties of individual pixels in the image without considering the
spatial interaction between the image pixels.

Local Binary Pattern
(LBP) Features

Represented by a histogram of each generated LBP code. LBP operator is a function of pair (P,
R), where P tells the neighbourhood size and R is the radius. In the “Uniform” LBP, the pair
values are set to (1,8) with 254 bins for the histogram.

Histogram of Oriented
Gradient (HOG) Features

Counting occurrences of oriented gradient orientation in the image. For this, the magnitude and
direction of the horizontal/vertical gradients are calculated in 32×32 divided blocks of image
and the final HOG descriptor is represented by combining histograms (with 9-bins) from all the
blocks.

Second order Statistical
Features based on Grey
Level Co-occurrence Ma-
trix (GLCM)

Considers the relationship between the neighbouring pixels. In the current work, GLCM matrix
for four directions (0, 45, 90, 145) and five pixel distances (0,1,2,3,4) were calculated. Afterwards
Correlation, Energy, Contrast, Entropy, Variance and Homogeneity features were computed and
the mean of these texture features from all matrices were added as final features

all the intermediate results from the distinct m created parti-
tions. Technically, Sp-RST stars first of all by computing the
indiscernibility relation for the decision class. We define the
indiscernibility relation as IND(D): IND(di). Sp-RST will
calculate IND(D) for each decision class di by associating
the same TRDD data items (instances) that are expressed in
the universe U = {x1, . . . , xN} and that belong to the same
decision class di. This process is totally independent from
the m created partitions. This is because the result depends
on the class of the data instances, and not on the attribute set.
Once this is calculated, Sp-RST builds the m random TRDD(i)

partitions as previously described. After that and within a
specific partition, the algorithm generates first all the possible
combinations of the Cr set of attributes, then calculates the
indiscernibility relation IND(AllComb(Cr)) for every created
combination, and finally computes the dependency degrees of
each attribute combination defined as γ(Cr, AllComb(Cr)).
Once all the dependencies are calculated, Sp-RST looks for
the maximum value of the dependency among all the computed
γ(Cr, AllComb(Cr)). Let us recall that based on the RST
preliminaries (seen in Section II), the maximum dependency
refers to not only the dependency of the whole attribute set
(Cr) describing the TRDDi but also to the dependency of all
the possible attribute combinations satisfying the following
constraint: γ(Cr, AllComb(Cr)) = γ(Cr). The maximum
dependency reflects the baseline value for the feature selection
task. In a next step, Sp-RST performs a filtering process to
only keep the set of all combinations which have the same
dependency degrees as the already selected dependency base-
line value. In fact, through these computations, the algorithm
removes in each level the unnecessary attributes that may neg-
atively influence the performance of any learning algorithm.
At a final stage, Sp-RST performs a second filtering process to
only keep the set of combinations that have the minimum num-
ber of attributes. This is achieved by satisfying the full reduct
constraints highlighted in Section II: γ(Cr, AllComb(Cr)) =

γ(Cr) while there is no AllComb
′

(Cr)
⊂ AllComb(Cr)

such that γ(Cr, AllComb
′

(Cr)
) = γ(Cr, AllComb(Cr)). Every

combination that satisfies this constraint is evaluated as a
possible minimum reduct set. The features defining the reduct
set describe all concepts in the initial TRDDi

training data set.

At the end of all these computations, the output of each
created partition can be either only one reduct REDi(D)

(Cr)

or a set (a family) of reducts REDF
i(D)

(Cr). As previously
highlighted in Section II, any reduct among the REDF

i(D)
(Cr)

reducts can be selected to describe the TRDD(i)
information

table. Therefore, in case where Sp-RST generates a single
reduct for a specific TRDD(i)

partition then the final output of
this attribute selection phase is the set of features defined in
REDi(D)

(Cr). These attributes represent the most informative
features among the Cr features, and generate a new reduced
TRDD(i)

defined as: TRDD(i)
(RED). The latter reduced base

guarantees nearly the same data quality as its corresponding
TRDD(i)

(Cr) which is based on the full attribute set Cr.
In the other case where Sp-RST generates multiple reducts
then the algorithm performs a random selection of a single
reduct among the generated family of reducts REDF

i(D)
(Cr)

to describe the corresponding TRDD(i)
. This random selection

is supported by the RST fundamentals and is explained by
the same level of importance of all the reducts defined in
REDF

i(D)
(Cr). More precisely, any reduct included in the

family of reducts REDF
i(D)

(Cr) can be selected to replace
the TRDD(i)

(Cr) attributes. At this level, the output of
every i data block is REDi(D)

(Cr) which refers to the
selected set of features. Nevertheless, since every TRDD(i)

is
described using distinct attributes and with respect to TRDD =⋃m

i=1(Cr)TRDD(i)
, a union operator on the generated selected

attributes is needed to represent the original TRDD. This is
defined as Reductm =

⋃m
i=1REDi(D)

(Cr).

To further guarantee the Sp-RST feature selection perfor-
mance while avoiding any critical information loss, to evolve
the algorithm and to refine it, Sp-RST was run over N
iterations on the TRDD m data blocks and hence an output
of N Reductm is generated. Finally, an intersection operator
applied on all the obtained Reductm was required. This is
defined as Reduct =

⋂N
n=1Reductm. Sp-RST could diminish



the dimensionality of the original data set from TRDD(C) to
TRDD(Reduct) by removing irrelevant and redundant features
at each computation level. Sp-RST could also simplify the
learned model and speed up the overall learning process. We
invite the reader to refer to [15] for further details about the
Sp-RST pseudo-code as well as details of its distributed tasks.

F. System Specifications

All deep learning based implementations were performed
within the Caffe framework, using a NVIDIA GeForce GTX
1080 GPU on Intel Core i7-4790 Processor within Ubuntu
16.04. For feature selection and training the RFs, we per-
formed the experiments on the High Performance Computing
Wales using dual 12 core Intel Westmere Xeon X5650 and
36GB of memory to test Sp-RST, which was implemented in
Scala 2.11 within Spark 2.1.1. We performed experiments for
652 partitions on 4 nodes and 10 iterations.

IV. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION

The main aim of our experiments was to analyse the clas-
sification performance along with the behaviour of DenseNet.
This was done using Sp-RST for the investigation of deep and
hand-crafted features for mammography classification. Focus-
ing on classification, the network performance was compared
to several well-known state-of-the-art networks. This was to
show DenseNet’s effectiveness, generalisability and robustness
toward different data repositories as will be discussed in
Section IV-A. In the later stage, we have investigated the
DenseNet behavior through a study of its signal passing
through the targeted dense-blocks. This was done by compar-
ing and discussing classification performances of each dense-
block, hand-crafted features and various combinations on such
features in ensemble techniques. Besides, we have introduced
the use of t-SNE, for displaying the distribution of training
and testing samples and the binary separation of classes.
With the effective use of Sp-RST for feature selection, and
by performing inference using activation maximization via
regularized optimization [25], feature maps were visualised
to give a better intuition of the DenseNet information flow.
This will be discussed in Section IV-B. For the DenseNet
evaluation performance, we have used the standard measures
including accuracy (ACC), precision, recall, F1-score, and the
Area Under Curve (AUC).

A. Classification Performance

We have empirically demonstrated DenseNet’s effectiveness
for binary classification of mass abnormalities on several
mammographic data sets from multiple centers and vendors
and with different protocols and compared with a set of well-
known state-of-the-art architectures namely GoogLeNet [26],
Vgg-Net [27] and AlexNet [5] in Table III. To ensure a
fair comparison between these architectures, some factors
such as differences in databases and data pre-processing were
eliminated. Detailed explanations about the implementation
and the models’ parameters can be found in [23]. Based
on our reported results presented in Table III, DenseNet

outperformed the other mentioned models for the classifica-
tion task in terms of ACC and AUC with 76% and 78%,
respectively on the mixture of data sets (described in Table I).
Taking this into account, the trained DenseNet was evaluated
on testing samples of each database separately as well, as
stated in Section III-A. Based on our experiments and the
quantitative results provided in Table IV, DenseNet had the
representational capacity to learn different mammographic
abnormalities. Results also demonstrated the robustness and
generalisability of this network to various image types (i.e.,
digitised and digital images as described in Table I) for the
task of classification. Compared to other networks, DenseNet’s
superior classification performance could be associated to the
innovative idea of short connections in the network structure.
These connections enabled adding to the collective knowledge
of the network during training while preserving the rest of the
feature maps unchanged.

TABLE III: Comparing the classification performance for four
well-known deep networks in terms of accuracy and area under
curve. Results are obtained on the mixture of testing samples
from all databases.

Evaluation DenseNet GoogLeNet VggNet-16 AlexNet
ACC 0.76 0.72 0.75 0.72
AUC 0.78 0.72 0.77 0.67

TABLE IV: Classification of DenseNet for each mammo-
graphic data set.

Data set Accuracy (%) AUC
DDSM 73.50 0.82

BCDR-F03 84.48 0.78
BCDR-D01 100.00 1.00

Inbreast 81.82 0.75

B. Network Behaviour

As shown in Figure 1, different RFs were trained by feeding
them various features from the hierarchical dense-blocks, e.g.,
F-DB-1 is fed to RF-DB-1, F-DB-2 is fed to RF-DB-2, etc.,
and from the manual features, i.e. F-HC is fed to RF-HC.
As previously explained in Section III-E, these features were
selected by Sp-RST. After this feature selection task and after
training the RFs classifiers as highlighted in Section III-D,
testing samples were fed to these classifiers. For analysis pur-
poses, the independent classification performance of various
dense-blocks (RF-DB-1, RF-DB-2, RF-DB-3, and RF-DB-4)
and manual features (RF-HC) are presented in Table V.

Comparing the first four RF classifiers in Table V, results
show that through the different layers the classification per-
formance is gradually improving from the initial dense-block
(RF-DB-1 with 52.3%) to the final dense-block (RF-DB-4 with
72.8%); where the difference is increased by nearly 20% in
terms of classification accuracy. We notice the same behavior
for the precision, recall, and F1-score with 16%, 21% and 32%
improvements, respectively. Such interesting behaviour can be
explained by the existing input concatenation in DenseNet



architecture, which enables the feature maps learned in the
preceding layers to be accessed by all the subsequent layers.
This characteristic has encouraged feature reuse throughout
the network.

To gain a better intuition about this feature reusing and
hence the network behaviour, Figure 2 is given which shows
the low-level (dense-blocks 1 & 2), mid-level (dense-block 3)
and high-level features (dense-block 4) for a sample (patch)
abnormality from the test set that were extracted from the final
pooling layer of each dense-block. From Figure 2, in the low-
level feature maps, as expected, projection to pixel space and
feature map has revealed responses corresponding to edges and
boundaries. Bypassing these feature maps to the subsequent
dense-block and reusing them, the number of less informative
or less discriminative responses was decreased and eventually
in the final layers it can be seen that an optimal information
flow in the form of feature maps was achieved. This can
be explained by the fact that all of the feature maps were
counted as important and salient features based on our Sp-
RST feature selection approach. From an Sp-RST perspective,
these selected features correspond to the reduct set and they
represent the minimal set of selected attributes that preserve
the same dependency degree as the whole set of attributes.

Figure 3 shows a visualisation of the Sp-RST feature distri-
bution performed by t-SNE to gain a further intuition about the
network’s behaviour for the training and testing samples. From
Figure 3, we can similarly see that the initial dense-blocks have
generated filter responses during training containing a few
salient and discriminative features, not leading to a separative
boundary. This boundary reflects the lowest results in terms of
classification performance (mainly in RF-DB-1 and RF-DB-2
with 51.8% and 52.7% in terms of classification accuracy) as
presented in Table V. Besides, based on the results given in
Table V, the best classification performance of a combination
of testing samples was achieved in the final layer of DenseNet
(RF-DB-4 with 72.8% in terms of classification accuracy),
presenting a clear separative boundary as can be clearly seen in
Figure 3. This is explained by the fact that each layer takes all
preceding feature-maps as input, which allows features to be
re-used throughout the network during training. Consequently,
the model is able to learn more compactly and accurately.

Considering precision and recall values, we observed that
the model in each layer (RF-DB-1 to RF-DB-4) is coping
better with benign samples than malignant ones and the
number of false negative predictions compared to the false
positive predictions is higher for the network performance
in each experiment but still improving as it goes deeper.
Eventually, these two rates become the same for RF-DB-4
and RF-DBs but then it is affected by the subsequent blocks
(global pooling and softmax (S)) in the standard DenseNet
model, resulting in more false negatives than false positives
(80% and 71% in term of precision and recall, respectively).

In order to investigate the effect of signal bypassing
throughout the model, we have combined the Sp-RST salient
opted features from the four dense-blocks (comprising low-
level to high-level) and have fed such features to a similar

RF classifier (RF-DBs) as seen in Figure 1. Possibly the
most noticeable trend is to compare the classification results
obtained by RF-DBs and the classification results obtained
by RF-DB-4, which demonstrates the optimal information
flow due to feature reusing and keeping maximum correla-
tion independency. This is confirmed by the results shown
in Table V, where we can notice that RF-DBs achieves a
classification performance of 72.7% which is very similar to
the classification performance given by the last dense-block,
RF-DB-4 (72.8%). Moreover, at the end of the fourth dense
block, a global average pooling was used following a softmax
classifier (S) to represent the standard DenseNet. On the other
hand, in our implementation, as ensemble during testing, if
the binary classification outcome of low-level to high-level
classifiers (RF-DB-1 to RF-DB-4) and the Softmax output (S)
were the same, then that judgment was taken. Otherwise, the
image was counted as an uncertain case and the output of the
RF classifier trained on the selected manual features (RF-HC)
was taken into account and the majority voting approach was
applied, i.e. among the 6 classifiers (RF-DB-1 to RF-DB-4, S,
and RF-HC). Via this approach, we aimed to evaluate if by
adding the hand-crafted features to the model’s intermediate
abstracts, the classification performance of DenseNet could be
improved.

Based on our experimental results and from Tables IV and
V, we noticed that the classification performance using deep
convolutional networks is significantly superior compared to
using merely hand-crafted features. Due to low classification
performance of RF-HC (in terms of accuracy, precision, recall
and F1-score), and combing that in ensemble methods (RF-
DBs-HC) has led to the model deviation and thus low results
were obtained as stated in Table IV. Table V shows that
in terms of classification accuracy the ensemble approach
(71.2%) did not further improve the performance over the
original DenseNet model (S) (76.5%). This was due to the
low classification performance of classifiers trained on merely
low-level features (RF-DB-1 and/or RF-DB-2 with accuracies
equal to 51.8% and 52.7%, respectively) or manual features
(RF-HC with 52.3%) compared to the network itself with
76.5%. Meanwhile, it is important to recall that the use of Sp-
RST as a feature selection technique was mainly to understand
the DenseNet behaviour and thus a comparison of RF-DBs to
the softmax classifier (S) was not realistic.

Based on the conducted experiments, we highlighted the
effectiveness of the use of Sp-RST as a feature selection
technique when dealing with large data sets. Sp-RST could
perform optimal feature selection while being able to analyse
the facts hidden in data and find a minimal knowledge repre-
sentation without requiring any additional information about
the given data. Another important interest of our proposed
solution was the use of t-SNE for large data visualisation. Both
of these techniques helped to better understand and investigate
the optimal information flow during the DenseNet learning
process. These innovative aspects have not been done before
and are the key contributions for developing a more suitable
mammographic CAD system.



Fig. 2: Features extracted from the final pooling layer of each dense-block. The Sp-RST feature selection approach was applied
to the extracted deep features. The first row shows the significant pixel-wise features. The second row is the result of opted
features-maps. From left to right: F-DB-1, F-DB-2, F-DB-3 ans F-DB-4 in DenseNet.

TABLE V: Classification results based on various types of
extracted features on the mixture of testing samples.

Accuracy Precision Recall F1-Score
RF-DB-1 0.523 0.57 0.52 0.41
RF-DB-2 0.527 0.57 0.52 0.41
RF-DB-3 0.655 0.71 0.66 0.63
RF-DB-4 0.728 0.73 0.73 0.73
RF-DBs 0.727 0.72 0.72 0.72
RF-HC 0.60 0.65 0.60 0.58

RF-DBs-HC 0.68 0.67 0.68 0.68
Softmax (S) 0.767 0.80 0.71 0.76

Ensemble approach 0.712 0.70 0.71 0.70

V. CONCLUSION

In this work, a pipeline for mammography mass classi-
fication was investigated by fine-tuning the DenseNet on a
combination of various mammographic data sets, acquired
from different vendors. Therefore, the capacity of this network
for learning a combination of these databases was compared
with the existing state-of-the-art models. On the other hand,
we trained several random forest classifiers separately and in
ensemble techniques. In these studied scenarios, using the
distributed rough set based feature selection approach for
mainly understanding the DenseNet behaviour, different levels
of features extracted from the trained network and hand crafted
features were opted and fed to the classifiers. Using proper
visualisation techniques (i.e. sample distributions and feature
maps), the insight into the function of intermediate feature
layers and the operation of a dense network in flowing optimal
and salient information was discussed. We concluded that end-
to-end learning with DenseNet showed the representational
capacity to learn the class of mammographic abnormalities and

the mid-level to high-level features or manual features could
not further improve the classification performance. However,
larger and more diverse but coherent data sets are required to
learn a more generalised model. Considering that in this dense
convolutional structure, each layer receives supervision from
the loss function through the shorter connections, attaching
classifiers (i.e. RF) to every internal hidden dense-block can
enforce the mid-level layers to learn more discriminative
features, which can be suggested as future work.

ACKNOWLEDGMENT

Part of the research has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Skłodowska-Curie grant agreement No 702527.
The authors would like to gratefully acknowledge Dr. Alun
Jones and Sandy Spence for their support and maintenance
of the GPU and the systems used for this research. Additional
thanks go to the Supercomputing Wales project, which is part-
funded by the European Regional Development Fund via the
Welsh Government.

REFERENCES

[1] B. W. Stewart and P. Kleihues, World Cancer Report. Lyon, France:
IARCPress, International Agency for Research on Cancer, WHO, 2014.

[2] W. He, A. Juette, E. R. Denton, A. Oliver, R. Martı́, and R. Zwiggelaar,
“A review on automatic mammographic density and parenchymal seg-
mentation,” International Journal of Breast Cancer, vol. 2015, p. Article
ID: 276217, 2014.

[3] A. Hamidinekoo, E. Denton, A. Rampun, K. Honnor, and R. Zwiggelaar,
“Deep learning in mammography and breast histology, an overview and
future trends,” Medical Image Analysis, vol. 47, pp. 45–67, 2018.

[4] A. Oliver, J. Freixenet, J. Marti, E. Perez, J. Pont, E. R. Denton, and
R. Zwiggelaar, “A review of automatic mass detection and segmentation
in mammographic images,” Medical Image Analysis, vol. 14, no. 2, pp.
87–110, 2010.



(a) Dense-block 1 (b) Dense-block 2 (c) Dense-block 3 (d) Dense-block 4

(e) Dense-block 1 (f) Dense-block 2 (g) Dense-block 3 (h) Dense-block 4

Fig. 3: The scatter plot distribution of sample images in training (row 1) and testing (row 2), by t-SNE using features extracted
from different dense-blocks.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1097–1105.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[7] N. Dhungel, G. Carneiro, and A. P. Bradley, “Automated mass detection
in mammograms using cascaded deep learning and random forests,” in
IEEE International Conference on Digital Image Computing: Techniques
and Applications (DICTA), 2015, pp. 1–8.

[8] G. Carneiro, J. Nascimento, and A. P. Bradley, “Unregistered multi-
view mammogram analysis with pre-trained deep learning models,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention, vol. 9351. Springer, 2015, pp. 652–660.

[9] B. Q. Huynh, H. Li, and M. L. Giger, “Digital mammographic tumor
classification using transfer learning from deep convolutional neural
networks,” Journal of Medical Imaging, vol. 3, no. 3, p. 034501, 2016.

[10] T. Kooi, G. Litjens, B. van Ginneken, A. Gubern-Mérida, C. I. Sánchez,
R. Mann, A. den Heeten, and N. Karssemeijer, “Large scale deep learn-
ing for computer aided detection of mammographic lesions,” Medical
Image Analysis, vol. 35, pp. 303–312, 2017.

[11] A. Hamidinekoo, Z. Suhail, T. Qaiser, and R. Zwiggelaar, “Investigating
the effect of various augmentations on the input data fed to a convolu-
tional neural network for the task of mammographic mass classification,”
in Annual Conference on Medical Image Understanding and Analysis.
Springer, 2017, pp. 398–409.
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