

Aberystwyth University

Whole spermatangia within the seminal receptacles of female chokka squid (Loligo reynaudii d'Orbigny, 1839-1841)

Sato, Noriyosi; Iwata, Yoko; Shaw, Paul; Sauer, Warwick H. H.

Published in: Journal of Molluscan Studies DOI 10.1093/mollus/eyy059

Publication date: 2019

Citation for published version (APA):

Sato, N., Iwata, Y., Shaw, P., & Sauer, W. H. H. (2019). Whole spermatangia within the seminal receptacles of female chokka squid (*Loligo reynaudii* d'Orbigny, 1839-1841). *Journal of Molluscan Studies*, 85(1), 172-176. https://doi.org/10.1093/mollus/eyy059

General rights

Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

tel: +44 1970 62 2400 email: is@aber.ac.uk

Whole spermatangia within the seminal receptacles of female chokka squid (*Loligo reynaudii* Orbigny, 1845)

NORIYOSI SATO¹, YOKO IWATA², PAUL W. SHAW^{3,4}, WARWICK H. H. SAUER⁴

¹Oki Marine Biological Station, Shimane University, Oki, Shimane, 6850024, Japan. ²Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 2778564, Japan.

³Institute of Biological, Environmental and Rural Science (IBERS), Aberystwyth University, Penglais, Aberystwyth SY23 3DA, UK

⁴Department of Ichthyology and Fisheries Science, Rhodes University, PO Box 94, 6140 Grahamstown, South Africa.

1	During cephalopod copulation, sperm are transferred from males to females
2	through a complex process (Hanlon & Messenger, 2018) involving males depositing
3	sperm packets (spermatophores) onto various locations on or inside the female (Hanlon
4	& Messenger, 2018). When spermatophores are released from the Needham's sac
5	through the male funnel, the cap thread of the spermatophore is pulled and triggers a
6	spermatophoric reaction (Drew, 1919; Marian, 2012, 2015; Sato et al., 2013; Sato,
7	Kasugai & Munehara, 2014). Through this reaction, a sac containing a sperm mass
8	(spermatangium) is ejaculated from the spermatophore and attaches to the female by a
9	cement body and numerous small stellate particles (Drew, 1919; Austin, Lutwak-Mann
10	& Mann, 1964; Takahama et al., 1991; Marian, 2012; Sato et al., 2014). Females of
11	many species of squid and cuttlefish have sperm storage organs (seminal receptacles)
12	within the buccal membrane, and spermatangia are generally attached on and around the
13	buccal mass (e.g. in Idiosepidae (Sato et al., 2010), Loliginidae (Drew, 1911; van Oordt
14	1938; Lum-Kong, 1992; Wada et al., 2005; Iwata & Sakurai, 2007: Saad et al., 2018),
15	and Sepiidae (Hanlon, Ament & Gabr, 1999; Naud et al., 2005)). How sperm is transfer
16	from the spermatangium to the seminal receptacle, however, is poorly understood.
17	Spermatozoa are ejaculated from the distal tip of spermatangia after completion of the
18	spermatophoric reaction, but the spermatozoa are not directly transferred to the seminal

 $\mathbf{2}$

19	receptacle through this ejaculation because the distal tip does not connect directly to the
20	opening of the seminal receptacle (Drew, 1919; Iwata et al., 2011; Marian, 2012, 2015;
21	Sato et al., 2014; Fernández-Álvarez et al., 2018).
22	Previous studies have offered several hypotheses to explain sperm transfer in
23	squid, including sperm actively swimming, muscular action of the seminal receptacle
24	and female manipulation. The most intuitive hypothesis is that spermatozoa ejaculated
25	from the spermatangium actively swim into the seminal receptacle. Spermatozoa
26	become active on contact with seawater (Drew, 1919; van Oordt, 1938; Marian, 2012;
27	Sato et al., 2014), whilst they become immobilized once inside the seminal receptacle
28	(van Oordt, 1938), where their heads align facing the internal epithelium (Drew, 1911;
29	van Oordt, 1938; Sato et al., 2010; Fernández-Álvarez et al., 2018), suggesting active
30	swimming towards sperm-attracting substances. A recent microscopy study
31	demonstrated free sperm within the opening to the seminal receptacle in Dosidicus
32	gigas (Fernández-Álvarez et al., 2018), and that the spermatozoa were the only cellular
33	component of the seminal solution (mobile spermatozoa and immobile round cells)
34	found inside the seminal receptacle, reinforcing the active swimming hypothesis. It is
35	not known how spermatozoa might be attracted to the seminal receptacle, but
36	sperm-attracting peptides are present in the eggs of Sepia (Zatylny et al., 2002) and

Octopus (De Lisa *et al.*, 2013).

38	Another hypothesis is that females may transfer whole spermatangia directly
39	into the seminal receptacle using their arms. Caribbean reef squid have been suggested
40	to employ this method (Moynihan & Arcadio, 1982; Hanlon & Messenger, 2018), but
41	these studies were based on direct behavioural observation in the field and lacked
42	histological confirmation of the spermatangia in the receptacle. Van Oordt (1938)
43	observed whole spermatangia inside the seminal receptacle in Loligo vulgaris, and used
44	this observation to forward the hypothesis of muscular suction generated by the seminal
45	receptacle. Manipulation of attached spermatangia by the female has been reported in
46	Idiosepius paradoxus (Sato et al., 2013) and in Sepiadarium austrinum (Wegener et al.,
47	2013), but these cases were associated with removal or ingestion, rather than with sperm
48	transfer.
49	With the exception of van Oordt (1938) and Saad et al.(2018), most previous
50	studies involving multiple cephalopod species have not reported whole spermatangia
51	within the seminal receptacle (e.g. Drew, 1911; Lum-Kong, 1992; Hanlon et al., 1999;
52	Naud et al., 2005; Sato et al., 2010, Bush et al., 2012; Fernández-Álvarez et al., 2018).
53	In the present study, we report finding whole spermatangia inside the seminal
54	receptacle of another loliginid, the chokka squid Loligo reynaudii. Based on this finding,

 $\mathbf{5}$

we further explore the possibilities of sperm transfer mechanisms in squids.

56	Ten female squid (dorsal mantle length 177 to 228 mm) were collected by
57	jigging, on the 16 November 2008 and 11 September 2009 in St Francis Bay, South
58	Africa. All females were mature according to the maturity scale of Perez, Aguiar &
59	Oliveira (2002) for Doryteuthis plei. The seminal receptacle was dissected from each
60	individual and fixed in Bouin's solution, then dehydrated and embedded in paraffin wax.
61	Serial 8–10 μ m sections were made in transverse (5 individuals) and longitudinal (5
62	individuals) orientations, and stained with hematoxylin and eosin using standard
63	methods. The largest diameter of the central duct and the greatest depth of the seminal
64	receptacle were measured at the mid-sagittal section, from photographs using ImageJ
65	software (NIH, Bethesda, MD, USA).
66	The duct was found to run through the centre of the seminal receptacle and to
67	branch into a number (14-37) of small bulb-shaped compartments (bulbs) (Fig. 1). The
68	mean diameter of the duct was 270 μ m (<i>n</i> =5, range 99–464 μ m) and depth of the seminal
69	receptacle was 2166µm (n=5, range 1797–2384µm) (Fig. 1A). Columnar ciliated
70	epithelium lined the duct (Fig. 1B), cuboidal ciliated epithelium cells lined the bottom
71	of each bulb (Fig. 1C), and goblet cells were distributed in the neck of each bulb (Fig.
72	1C). The seminal receptacles were surrounded by a muscle sheath and connective tissue,

 $\mathbf{5}$

73	and individual bulbs were separated by a muscle sheath (Fig. 1C). In 75 of 198 bulbs
74	observed sperm were aligned with their heads facing the epithelium (Fig 1D), whereas
75	in the remaining bulbs sperm were not aligned but rather, were distributed randomly,
76	similar to sperm located near the bulb entrance or in the central duct (Fig. 1A, B).
77	In all females, at least ten intact spermatangia (containing sperm) were
78	observed attached to the external surface of their buccal mass near the seminal
79	receptacle (Fig. 2A). Whole spermatangia structures (cement body + tunic containing
80	varying amounts of sperm) were found within the seminal receptacles of five of the ten
81	examined females (Fig. 2B). In these latter spermatangia, the cement bodies were
82	attached to, and interspersed with, the epithelium of the seminal receptacle (Fig. 2B, C).
83	One receptacle contained two spermatangia (width 375 μ m and 354 μ m) which were
84	filled with spermatozoa (Fig. 2B), and the whole spermatangial structure (tunic, sperm
85	mass and cement body) appeared identical to spermatangia attached to the outside of the
86	buccal mass, except for their tips which appeared partly shrivelled. In this seminal
87	receptacle, spermatozoa near the tip of the intact spermatangia were not aligned
88	towards the bulb walls (Fig. 2C). The remaining four receptacles each contained only
89	one spermatangium, which in all cases contained few spermatozoa within an inner tunic
90	(Fig. 2D). In three of these latter four cases, the inner tunic was collapsed (Fig. 2E) or

91 missing, and only the cement body remained (Fig. 2F).

92	Male L. reynaudii employ two distinct mating tactics: large consort males mate
93	in a "male-parallel" position and attach spermatophores near the oviduct opening, while
94	small sneaker males mate in a "head-to-head" position and attach spermatophores near
95	the seminal receptacle (Hanlon, Smale & Sauer, 2002). Dimorphism in spermatangium
96	size and morphology has also been demonstrated between large consort and small
97	sneaker males in this species, taking "rope-like" and "drop-like" forms respectively
98	(Iwata et al., 2018). Spermatangia in and around the seminal receptacle were found in
99	the present study to be of the drop-like form only, and therefore assumed to be deposited
100	by sneaker males.
101	As well as free individual spermatozoa present within the seminal receptacles,
102	as expected from previous studies of squid and cuttlefish (Drew, 1911; van Oordt, 1938;
103	Lum-Kong, 1992; Hanlon, et al. 1999; Naud, et al., 2005; Sato et al., 2010; Bush et al.,
104	2012; Fernández-Álvarez et al., 2018), the present study also found whole spermatangia
105	within the seminal receptacle of 50% of females examined. This result prompts the
106	question as to how these spermatangia were transferred into the seminal receptacle?
107	After copulation, the female may use her arms to transfer whole spermatangia into the
108	seminal receptacle, with the spermatangia taken from those attached around the buccal

109	mass. Manipulation of deposited spermatangia has been observed in pygmy squid,
110	Idiosepius paradoxus, where females remove some of the attached spermatangia after
111	mating (Sato et al., 2013; Sato, Yoshida & Kasugai, 2017). Likewise in Sepia apama the
112	number of male genotypes represented by the sperm within the seminal receptacle is
113	less than those represented in spermatangia attached around the buccal mass, suggesting
114	that the female may control sperm or spermatangia transfer into the seminal receptacle
115	(Naud et al., 2005). If females physically transfer the spermatangia, however, the
116	cement body would be expected to remain attached to the external surface of the buccal
117	mass and not anchored to the epithelium of the seminal receptacle, whereas we observed
118	that the cement body was intact and strongly attached to the epithelium within the
119	seminal receptacle. The appearance of the connection of the cement substance to the
120	epithelium of the seminal receptacle described here is similar to that observed between
121	the cement substance of the attached spermatangia and the connective tissue in
122	Doryteuthis plei (Marian, 2012). The presence of a strong attachment of the cement
123	body to the epithelium of the receptacle in L. reynaudii suggests that the
124	spermatophores are implanted into the organ whilst the spermatophoric reaction is
125	occurring (i.e. during mating) rather than post-mating translocation by the female.
126	Therefore, we also hypothesize that once inside the receptacle, sperm is released from

127 the tip of the spermatangium.

128	The presence of spermatangia within the seminal receptacle may also suggest a
129	different process of sperm storage and usage during fertilization. Spermatozoa are
130	assumed to be released and swim freely from the tip of the spermatangia towards eggs
131	or the receptacle, but in the case of spermatangia transferred directly within the
132	receptacle, their sperm may be released by being "squeezed" out by pressure from the
133	muscles of the seminal receptacle. Most of the spermatangia observed here inside the
134	receptacle displayed a "squashed" shape and collapsed inner tunic. In cephalopods,
135	released sperm become active on contact with seawater (e.g. Sato et al 2014). However,
136	sperm in the seminal receptacle are of course not released directly into seawater, and
137	they may remain inactive. This transfer method may therefore result in sperm not being
138	aligned towards the bulb epithelium. Half of the females examined had spermatangia
139	inside the seminal receptacle, suggesting that this phenomenon may be common in this
140	species. Interestingly, sperm not facing the bulb epithelium were observed in all samples,
141	irrespective of whether whole spermatangia were located within the seminal receptacle.
142	We note that sperm not facing the bulb epithelium in some bulbs of the seminal
143	receptacle, is also encountered in other loliginid species (L. pealii, Drew, 1911; L.
144	vulgaris, van Oordt, 1938; L. forbesi, Lum-Kong, 1992), as well as in other cephalopod

145	groups (S. officinalis, Hanlon et al., 1999; Bathyteuthis berryi, Bush et al., 2012). This
146	is not the case for all cephalopods however: I. paradoxus (Sato et al., 2010), Octopus
147	vulgaris (Cuccu et al., 2013), O. mimus (Olivares et al., 2017) and Dosidicus gigas
148	(Fernández-Álvarez et al., 2018) all were found to show stored sperm facing the bulb
149	epithelium. Recently, Saad et al. (2018) reported intact spermatangia stored in the
150	seminal receptacle in D. plei. They hypothesized those spermatangia serve as mating
151	plugs and not for sperm storage, as most of them are concentrated in the opening duct of
152	the seminal receptacle with the tips protruding outside the receptacle. This phenomenon
153	was not observed in the present study, but rather the whole spermatangia here were
154	situated well within the bulbs rather than in the duct openings.
155	In conclusion, our study observed whole spermatangia within the seminal
156	receptacle of 50% of female squid examined, demonstrating that sperm storage by direct
157	transfer of spermatangia may occur frequently in L. reynaudii, in addition to active
158	migration of sperm over the buccal membrane and into the seminal receptacle from
159	externally stored spermatangia. Our results do not preclude active swimming by
160	individual sperm, given that most females had many spermatangia attached around the
161	external surface of the seminal receptacle, and sperm stored in some bulbs were aligned
162	facing towards the epithelium, suggesting that these sperm might have entered the

163	storage organ through active swimming. In addition, it has been established in H.
164	bleekeri that the flagellum of sneaker sperm, from the spermatangia attached around the
165	seminal receptacle, is longer than that of consort sperm, from spermatangia placed
166	around the oviduct (Iwata et al., 2011). There are no differences in swimming velocity
167	between consort and sneaker sperm (Iwata et al., 2011), but sneaker sperm form clusters
168	(Hirohashi et al., 2013) and display asymmetrical movement, using their long flagella,
169	while moving along CO ₂ gradients (Iida et al., 2017), behaviours proposed to be
170	adapted to reach the seminal receptacle through active swimming (Hirohashi et al.,
171	2016). Loligo reynaudii has a similar reproductive strategy to that of H. bleekeri, with
172	morphological dimorphism in spermatangia between consort and sneaker males (Iwata
173	et al., 2018). Sperm transfer and storage in L. reynaudii (Fig. 1B, D) may therefore be
174	conducted by a combination of active swimming of sperm ejaculated from external
175	spermatangia and by direct transfer of spermatangia into the seminal receptacle.
176	However, additional research is required to confirm this.

177 ACKNOWLEDGEMENTS

179 J.E.A.R. Marian and one referee for their helpful comments. The research was funded

- 180 by the South Africa Squid Management Industrial Association (SASMIA), Rhodes
- 181 University, and a European Commission Marie Curie International Incoming Fellowship
- to YI. NS is financially supported to publish this manuscript by the faculty of Life and
- 183 Environmental Science in Shimane University.

REFERENCES

185	AUSTIN, C.R., LUTWAK-MANN, C. & MANN, C. 1964. Spermatophores and spermatozoa of the squid
186	Loligo pealii. Proceedings of the Royal Society of London. Series B, 161: 143-152.

- 187 BUSH, S.R., HOVING, H.J.T., HUFFARD, C.L., ROBINSON, B.H., & ZEIDBERG, L.D. 2012.
- 188 Brooding and sperm storage by the deep-sea squid *Bathyteuthis berryi* (Cephalopoda:
- 189 Decapodiformes). *Journal of the Marine Biological Association of the United Kingdom*, 92:
 190 1629-1636.
- 191 CUCCU, D., MEREU, M., PORCU, C., FOLLESA, M.C., CAU, A.L., & CAU, A. 2013. Development of
 192 sexual organs and fecundity in *Octopus vulgaris* Cuvier, 1797 from the Sardinian waters
 193 (Mediterranean Sea). *Mediterranean Marine Science*, 14: 270-277.
- DE LISA, E., SALZANO, A.M., MOCCIA, F., SCALONI, A., & DI COSMO, A. 2013. Sperm-attractant
 peptide influences the spermatozoa swimming behavior in internal fertilization in *Octopus vulgaris. Journal of Experimental Biology*, 216: 2229-2237.
- DREW, G.A. 1911. Sexual activities of the squid, *Loligo pealii* (Les.). I. Copulation, egg laying and
 fertilization. *Journal of Morphology*, 22: 327-359.
- DREW, G.A. 1919. Sexual activities of the squid, *Loligo pealii* (Les.). II. The spermatophore; its structure,
 ejaculation and formation. *Journal of Morphology*, **32**: 379-436.
- FERNÁNDEZ-ÁLVAREZ, F.Á., VILLANUEVA, R., HOVING, H.J.T., & GILLY, W.F. 2018. The
 journey of squid sperm. *Reviews in Fish Biology and Fisheries*, 26: 601–607.
- HANLON, R.T., & MESSENGER, J.B. 2018. Cephalopod behaviour 2nd edition. Cambridge University
 Press, Cambridge.
- HANLON, R.T., AMENT, S.A., & GABR, H. 1999. Behavioral aspects of sperm competition in cuttlefish,
 Sepia officinalis (Sepioidea: Cephalopoda). Marine Biology, 134: 719-728.
- HANLON, R.T., SMALE, M.J., & SAUER, W.H.H. 2002. The mating system of the squid *Loligo vulgaris reynaudii* (Cephalopoda, Mollusca) off South Africa: fighting, guarding, sneaking,
 mating and egg laying behavior. *Bulletin of Marine Science*, **71**: 331-345.
- 210 HIROHASHI, N., ALVAREZ, L., SHIBA, K., FUJIWARA, E., IWATA, Y., MOHRI, T., INABA, K.,
- 211 CHIBA, K., OCHI, H., SUPURAN, C.T., KOTZUR, N., KAKIUCHI, Y., BENJAMIN, K., &
- BABA, S.A. 2013. Sperm from sneaker male squids exhibit chemotactic swarming to CO2. *Current Biology*, 23: 775-781.
- HIROHASHI, N., IIDA, T., SATO, N., WARWICK, S.H., & IWATA, Y. 2016. Complex adaptive traits
 between mating behaviour and post-copulatory sperm behaviour in squids. *Reviews in Fish Biology and Fisheries*, 26: 601-607.
- IIDA, T., IWATA, Y., MOHRI, T., BABA, S.A., & HIROHASHI, N. 2017. A coordinated sequence of
 distinct flagellar waveforms enables a sharp flagellar turn mediated by squid sperm pH-taxis.

219	Scientific reports, 7: 12938.
220	IWATA, Y., & SAKURAI, Y. 2007. Threshold dimorphism in ejaculate characteristics in the squid Loligo
221	bleekeri. Marine Ecology Progress Series, 345 : 141-146.
222	IWATA, Y., SHAW, P., FUJIWARA, E., SHIBA, K., KAKIUCHI, Y., & HIROHASHI, N. 2011. Why
223	small males have big sperm: dimorphic squid sperm linked to alternative mating behaviours. BMC
224	Evolutionary Biology, 11: 236.
225	IWATA, Y., SAUER, W.H.H., SATO, N., & SHAW, P. 2018. Spermatophore dimorphism in the chokka
226	squid Loligo reynaudii associated with alternative mating tactics. Journal of Molluscan Studies,
227	84 : 157-162.
228	LUM-KONG, A. 1992. A histological study of the accessory reproductive organs of female Loligo forbesi
229	(Cephalopoda: Loliginidae). Journal of Zoology, 226: 469-490.
230	MARIAN, J.E.A.R. 2012. Spermatophoric reaction reappraised: novel insights into the functioning of the
231	loliginid spermatophore based on Doryteuthis plei (Mollusca: Cephalopoda). Journal of
232	Morphology, 273 : 248-278.
233	MARIAN, J.E.A.R. 2015. Evolution of spermatophore transfer mechanisms in cephalopods. Journal of
234	natural history, 49 : 1423-1455.
235	MOYNIHAN, M., & ARCADIO, F.R. 1982. The behavior and natural history of the Caribbean reef
236	squid, Sepioteuthis sepioidea. vol 25. Advances in Ethology. Verlag Paul Parey, Berlin and
237	Hamburg.
238	NAUD, M.J., SHAW, P.W., HANLON, R.T., & HAYENHAND, J.N. 2005. Evidence for biased use of
239	sperm sources in wild female giant cuttlefish (Sepia apama). Proceedings of the Royal Society of
240	London. Series B, 272: 1047-1051.
241	OLIVARES, A., AVILA-POVEDA, O.H., LEYTON, V., ZUÑIGA, O., ROSAS, C., &
242	NORTHLAND-LEPPE, I. 2017. Oviducal glands throughout the gonad development stages: a
243	case study of Octopus mimus (Cephalopoda). Molluscan Research, 37: 229-241.
244	PEREZ, J.A.A., AGUIAR, D.C. & OLIVEIRA, U.C. 2002. Biology and population dynamics of the
245	long-finned squid Loligo plei (Cephalopoda: Loliginidae) in southern Brazilian waters. Fisheries
246	Research, 58 : 267–279.
247	SAAD, L.O., SCHWAHA, T., HANDSCHUH, S., WANNINGER, A., & MARIAN, J. E. A. R. 2018. A
248	mating plug in a squid? Sneaker spermatophores can block the female sperm-storage organ in
249	Doryteuthis plei. Zoology, 130 : 47-56.
250	SATO, N., KASUGAI, T., IKEDA, Y., & MUNEHARA, H. 2010. Structure of the seminal receptacle and
251	sperm storage in the Japanese pygmy squid. Journal of Zoology, 282: 151-156.
252	SATO, N., YOSHIDA, M.A., FUJIWARA, E., & KASUGAI, T. 2013. High-speed camera observations of
253	copulatory behaviour in Idiosepius paradoxus: function of the dimorphic hectocotyli. Journal of
254	Molluscan Studies, 79: 183-186.

- SATO, N., KASUGAI, T., & MUNEHARA, H. 2014. Spermatangia formation and sperm discharge in the
 Japanese pygmy squid *Idiosepius paradoxus*. *Zoology*, **117**: 192-199.
- SATO, N., YOSHIDA, M.A., & KASUGAI, T. 2017. Impact of cryptic female choice on insemination
 success: Larger sized and longer copulating male squid ejaculate more, but females influence
 insemination success by removing spermatangia. *Evolution*, **71**: 111-120.
- 260 TAKAHAMA, H., KINOSHITA, T., SATO, M., & SASAKI, F. 1991. Fine structure of the
- spermatophores and their ejaculated forms, sperm reservoirs, of the Japanese common squid,
 Todarodes pacificus. Journal of Morphology, 207: 241-251.
- VAN OORDT, G. 1938. The spermatheca of *Loligo vulgaris*. I. Structure of the spermatheca and function
 of its unicellular glands. *Quarterly Journal of Microscopical Science*, s2-80: 593-599.
- WADA, T., TAKEGAKI, T., MORI, T., & NATSUKARI, Y. 2005. Alternative male mating behaviors
 dependent on relative body size in captive oval squid *Sepioteuthis lessoniana* (Cephalopoda,
 Loliginidae). *Zoological Science*, 22: 645-651.
- WEGENER, B.J., STUART-FOX, D., NORMAN, M.D., & WONG, B.B. 2013. Spermatophore
 consumption in a cephalopod. *Biology Letters*, 9: 20130192.
- ZATYLNY, C., MARVIN, L., GAGNON, J., & HENRY, J. 2002. Fertilization in *Sepia officinalis*: the
 first mollusk sperm-attracting peptide. *Biochemical and Biophysical Research Communications*,
 272 296: 1186-1193.

Figure 1. Structure of the seminal receptacle in *Loligo reynaudii*. A. Entire receptacle in
longitudinal section, showing the external opening, central duct and peripheral bulbs
(arrowhead indicates a peripheral bulb). B. Spermatozoa located in the central duct of
the seminal receptacle. C. Longitudinal section of individual bulbs, with part of the
sperm with the heads not facing the epithelium (arrowhead indicates goblet cells). D.
Bulbs filled with sperm facing to the epithelium.

500µm

С

281Figure 2. Spermatangia attached around and within the seminal receptacle. A. Multiple 282spermatangia (to the left) attached to the buccal membrane around the seminal receptacle (to the right) (black arrow indicates the opening of the seminal receptacle). B. 283284Two spermatangia stored within the seminal receptacle. C. A spermatangium and released spermatozoa within the seminal receptacle. D. A spermatangium containing a 285small volume of spermatozoa. E. Collapsed spermatangium in the seminal receptacle 286

400µm

- 287 containing a small volume of sperm, and most bulbs showing few sperm but one bulb
- containing many sperm (to right). **F.** Transverse section of the cement body in the
- seminal receptacle.