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Abstract 

The continuous rise of CO2 concentrations in the atmosphere is reducing plant nutritional quality for 

herbivores and indirectly affects their performance. The whitefly (Bemisia tabaci, Gennadius) is a 

major worldwide pest of agricultural crops causing significant yield losses. This study investigated 

the plant-mediated indirect effects of elevated CO2 on the feeding behavior and life history of B. 

tabaci Mediterranean species. Eggplants were grown under elevated and ambient CO2 

concentrations for three weeks after which plants were either used to monitor the feeding behavior 

of whiteflies using the Electrical Penetration Graph technique or to examine fecundity and fertility of 

whiteflies. Plant leaf carbon, nitrogen, phenols and protein contents were also analyzed for each 

treatment. Bemisia tabaci feeding on plants exposed to elevated CO2 showed a longer phloem 

ingestion and greater fertility compared to those exposed to ambient CO2 suggesting that B. tabaci is 

capable of compensating for the plant nutritional deficit. Additionally, this study looked at the 

transmission of the virus Tomato yellow leaf curl virus (Begomovirus) by B. tabaci exposing source 

and receptor tomato plants to ambient or elevated CO2 levels before or after virus transmission 

tests. Results indicate that B. tabaci transmitted the virus at the same rate independent to the CO2 

levels and plant treatment. Therefore, we conclude that B. tabaci Mediterranean species prevails 

over the difficulties that changes in CO2 concentrations may cause and it is predicted that under 

future climate change conditions, B. tabaci would continue to be considered a serious threat for 

agriculture worldwide. 

 

Key words: Carbon dioxide, eggplant, EPG, fitness, tomato, whiteflies 
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Introduction 

 

Since the industrialization period, the concentrations of greenhouse gases in the atmosphere have 

been significantly altered by the intensive use of fossil fuels and by deforestation. In particular, the 

emissions of carbon dioxide (CO2) have rapidly increased in the atmosphere varying from 280 ppm 

(parts per million) at the pre-industrialization period to 400 ppm indicated by recent data from the 

National Oceanic and Atmospheric Administration (NOAA, 2015). Moreover, the concentration of 

this gas is expected to increase considerably in the current century (IPCC, 2014) changing the 

physiology of plants and indirectly the behavior and performance of herbivores (Trębicki et al., 

2017a). Elevated CO2 is known to accelerate plant growth and to increase plant photosynthetic 

rates, plant canopy temperatures, biomass and carbon:nitrogen (C:N) ratios (Ward & Kelly, 2004; 

Oehme et al., 2011; Sun et al., 2013; Curnutte et al., 2014; Guo et al., 2014; Kimball, 2016; Trębicki 

et al., 2017a; Zhang et al., 2018). Therefore, given that elevated CO2 increases the carbohydrate 

accumulation and the generation of reactive oxygen species (ROS) in plant tissues and decreases 

nitrogen accumulation, soluble proteins and amino acids, the plant primary and secondary 

metabolites as well as antioxidant and enzymatic proteins are altered, and this is likely to impact the 

performance and behavior of herbivores (Guo et al., 2014; Li et al., 2017b; Rajashekar, 2018; Ryan et 

al., 2014a; Sun et al., 2013; Sun et al., 2011; Trębicki et al., 2017a). 

 Research has shown that the response of herbivores to elevated CO2 varies depending upon 

the manner in which they feed. Some authors suggest that limited nitrogen concentration in plants 

treated with elevated CO2 decreases fecundity, population abundance and growth rates of chewing 

insects and increases their development time and leaf consumption (Cornelissen, 2011; Guo et al., 

2014; Wang et al., 2014; Zhang et al., 2018). However, the effects of elevated CO2 on sap sucking 
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insects are species-specific (Hughes & Bazzaz, 2001). For instance, the population abundance of 

Aphis gossypii (Glover), Myzus persicae (Sulzer) (Hughes & Bazzaz, 2001), Rhopalosiphum maidis 

(Fitch) (Xie et al., 2014) or Bemisia tabaci (Gennadius) (Mediterranean species (MED) - Q biotype) (Li 

et al., 2011) have been positively affected by elevated CO2. Some other sap feeders are unaffected 

such as Aphis nerii (Boyer de Fonscolombe), Aphis oenotherae (Oestlund) or Aulacorthum solani 

(Kaltenbach) (Hughes & Bazzaz, 2001). However, the increase of CO2 levels has negatively altered the 

body mass of Brevicoryne brassicae (Linnaeus) (Klaiber et al., 2013) and population abundance of 

Acyrthosiphon pisum (Harris) (Hughes & Bazzaz, 2001). In the case of B. tabaci, which is a major 

phloem feeding pest worldwide, little information is known regarding the effects of CO2 on its 

feeding behavior and fitness (Curnutte et al., 2014; Li et al., 2017b; Li et al., 2011; Sun et al., 2011; 

Wang et al., 2014). 

 

Bemisia tabaci is one of the most serious agricultural pests worldwide because it is highly 

polyphagous, a vector of begomoviruses and rapidly develops insecticide resistance (Navas-Castillo 

et al., 2011; Fang et al., 2013; Gilioli et al., 2014; Götz & Winter, 2016). It is considered a species 

complex with a minimum of 36 morphologically indistinguishable species of which the Middle East-

Asia Minor 1 species (MEAM1 - B biotype) and the MED species are the most commonly known 

(Bellows et al., 1994; De Barro et al., 2011; Dinsdale et al., 2010; Firdaus et al., 2013). Both species 

could exhibit variable molecular features and biological behavior with respect to host range, plant 

virus transmission efficiency, the ability to cause phytotoxicity and the degree of fecundity and/or 

insecticide resistance considering the complexity of this species assembly (Brown et al., 1995). 

Research on the effects of elevated CO2 on B. tabaci MED species is limited since studies have been 

commonly conducted on the MEAM1 species (Sun et al., 2011; Curnutte et al., 2014). Elevated CO2 
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increases developmental time and population abundance (Sun et al., 2011), without discernible 

impact on life-span, sex ratio, fecundity and density of MEAM1 species (Sun et al., 2011; Wang et al., 

2014). Due to the differences between both species of whiteflies it is necessary to carry out further 

studies into the effects of increased CO2 levels on the performance of B. tabaci MED species.  

 Whiteflies are important vectors of plant viruses (Hasegawa et al., 2018; Li et al., 2017a; 

Navas-Castillo et al., 2011) and B. tabaci is vector of more than 200 species of plant viruses that 

cause significant losses in crops located from the tropics to the warmer temperate regions (Canto et 

al., 2009). The Tomato yellow leaf curl virus (Begomovirus, TYLCV) is one of the main viruses 

transmitted by B. tabaci in tomato plants (Solanum lycopersicum, Linnaeus). Little information is 

known on the effects that elevated CO2 could have on virus transmission by sap sucking insects. 

However, some studies showed that elevated CO2 may increase the resistance of tomato plants to 

TYLCV, indicated by the decrease of virus incidence and infection severity (Huang et al., 2012). It may 

also reduce Cucumber mosaic virus (Cucumovirus, CMV) transmission by M. persicae to pepper 

(Capsicum annuum, Linnaeus) receptor plants previously exposed to elevated CO2 (Dáder et al., 

2016). Other authors indicated that elevated CO2 activates plant defenses in tobacco plants 

(Nicotiana tabacum, Linnaeus) increasing plant metabolites after M. persicae and CMV infestation 

(Fu et al., 2010)  or Potato virus Y (Potyvirus, PVY) inoculation (Matros et al., 2006). Nevertheless, 

the effects of CO2 are also species-specific for viruses. Trębicki et al., (2016) have demonstrated that 

development and fecundity of Rhopalosiphum padi (Linnaeus) on Barley yellow dwarf virus (BYDV) 

infected wheat plants, and its virus spread ability were unaffected by the increase of CO2 levels.  

Similarly, the results of Bosquee et al. (2018) showed that the ability of Myzus persicae to spread 

PVY was unaffected by the level of CO2 at short time frame and at different spatial scales. However, 

the same authors observed more efficient viral transmission under elevated CO2 conditions, and it 
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was suggested that the main reason was the altered plant defenses or changes in the feeding 

behavior of their vector. 

 Given that atmospheric CO2 levels are predicted to continue rising (IPCC, 2014), research 

that seeks to understand direct impacts on plant physiology, as well as direct and indirect effects on 

herbivores, such as B. tabaci, could help to improve pest management programs in a future climate 

change scenario. Therefore, the present study examines the feeding behavior (by means of the EPG 

technique) and fitness of B. tabaci MED species on eggplants that were previously exposed to 

elevated (700 ppm) and ambient (440 ppm) CO2 concentrations. It was hypothesized that B. tabaci 

under elevated CO2, which increases plant biomass and C:N ratio (Ward & Kelly, 2004; Oehme et al., 

2011; Sun et al., 2013; Curnutte et al., 2014; Guo et al., 2014), would change its performance and 

feeding behavior as suggested by Sun et al. (2011). Additionally, we also studied the effects of 

elevated CO2 on TYLCV transmission by B. tabaci MED species on tomato plants.   

 

Materials and methods 

Plant material, herbivore species and virus source 

Eggplants (Solanum melongena, Linnaeus) cv. Black Beauty were used to analyze the effects 

of elevated CO2 on the fitness of whiteflies as colonies were reared on this plant. In this way, the 

effect of adaptation of the insect to a new host plant that could caused different results was 

avoided. Additionally, virus susceptible tomato plants (S. lycopersicum) cv. Marmande were used to 

analyze the effects of elevated CO2 on the transmission of TYLCV by B. tabaci MED species (eggplants 

are not susceptible to TYLCV). Experiments were conducted at the Institute of Agricultural Sciences 

of the Spanish National Research Council (ICA-CSIC, Madrid, Spain) in two growth chambers with 
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different CO2 regimes: ambient (aCO2; 440 ppm) and elevated CO2 (eCO2; 700 ppm). Growing 

conditions were 24:20ºC (day:night); RH: 66%; photoperiod: 14:10 h (light:dark) with three Philips 

Green Power LED Production Modules Deep Red/Blue 150 on each shelf and 200 µmol/m2/s light 

intensity at canopy level. Eggplants were sown in Petri dishes, transplanted into pots at seven days 

old (BBCH 7) (Acosta-Quezada et al., 2016) and tomato plants were transplanted into pots at 10 days 

old (BBCH 10) with a mixture of soil : vermiculite (2 : 1). After transplanting, eggplants were 

transferred to each of the two growth chambers set at 700 or 440 ppm for three weeks. Plants were 

watered three times a week using 20-20-20 (N-P-K) Nutrichem fertilizer (Miller Chemical & Fertilizer 

Corp., Pennsylvania, USA).  

Bemisia tabaci MED species were kindly provided from a colony maintained in the laboratory 

of Dr. Enrique Moriones at IHSM-La Mayora, CSIC (Málaga, Spain) in 2007. The population was 

reared on eggplants in greenhouse conditions (temperature ranges of 24 : 20 ºC ± 2 (day : night); a 

photoperiod of 16 : 8 h (light : dark) with high-pressure sodium lights (Osram Plantastar 400 W E40) 

and relative humidity of 70%–80%. Adult whiteflies were separated to create a synchronized colony 

prior to the bioassay.    

One month before the experiments, tomato plants were inoculated with TYLCV to create 

virus source plants for virus transmission experiments. Bemisia tabaci adults were collected from the 

main colony and placed in clip-cages previously installed on symptomatic leaves of TYLCV-infected 

tomato plants (30 adults per clip-cage). After the virus acquisition access period (72 h), the clip-cages 

with whiteflies were placed on leaves of healthy tomato plants (4-true leaf stage – BBCH 14). Leaves 

with clip-cages were cut after the inoculation period (72 h) and tomato plants were distributed into 

growth chambers with either elevated (700 ppm) or ambient (440 ppm) CO2 treatments. Plants were 

then examined every three days to ensure the absence of whiteflies on the plants.      
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Whitefly fitness bioassay 

 Eggplants (BBCH 14), previously grown over one month under elevated (700 ppm) or 

ambient (440 ppm) CO2 conditions, were infested with ten couples of adult whiteflies with a clip-

cage (2 cm of diameter) on the abaxial side of the youngest leaf of the plant. After 24 h clip-cages 

were removed and the development of ten eggs per plant was monitored in a climatic chamber 

(24:20ºC (day:night); RH: 66%; photoperiod: 14 : 10 h (light : dark)) under ambient CO2 conditions, 

until adult emergence. The emerged adult whiteflies were sexed, coupled and each couple was 

placed inside of a clip-cage on another leaf of the same plant for each of the treatments to evaluate 

fecundity and fertility of whiteflies for 30 days (n=20).   

 

Feeding behavior of B. tabaci using the Electrical Penetration Graph (EPG) technique 

 Eggplants exposed to either ambient or elevated CO2 levels were used to evaluate the 

feeding behavior of B. tabaci. Whitefly adult females were monitored using the Electrical 

Penetration Graph technique (EPG) for eight hours. Before the assay, a gold wire (20 mm length × 

12.5 µm in diameter) glued to a thin copper wire (20 mm length) was attached to the pronotum of 

each whitefly with a tiny drop of water based silver-conducting glue paint (Rodríguez-López et al., 

2011). Whiteflies were starved for approximately one hour before the EPG test and were placed on 

the abaxial side of the second youngest leaf of each eggplant. The assay was conducted using eight 

channels (four plants for each treatment) of the Giga-Ohm DC-EPG device (EPG Systems, 

Wageningen, The Netherlands) until there were at least 20 recordings per treatment. A single adult 

whitefly and a plant were used for each replicate. After EPG recording, plants were collected and 
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introduced into a -80ºC refrigerator for further analyses of protein and secondary metabolite 

content in plants. The EPG data was analyzed using Windows software Stylet+ (EPG Systems, 

Wageningen, The Netherlands) and the variables related to the feeding behavior of the whiteflies 

were processed using the EPG-Excel data Worksheet v.5.0 (Sarria et al., 2009). The EPG recording 

was conducted at 27 ± 0.53ºC. 

Twenty-eight EPG sequential and non-sequential variables were selected from the EPG-Excel 

data worksheet and compared between treatments as described in Backus et al. (2007): PPW 

(proportion of individuals that produced a specific waveform type), NWEI (number of waveform 

events per insect, that is the sum of the number of events of a particular waveform divided by the 

total number of insects under each treatment), WDI (total waveform duration (s) per insect, that is 

the sum of durations of each event of a particular waveform divided by the total number of insects 

under each treatment) and WDE (waveform duration (s) per event, that is the sum of the duration of 

the events for a particular waveform divided by the total number of events of that particular 

waveform under each treatment). 

 

TYLCV transmission experiments  

 Two experiments were conducted to examine the effects of elevated CO2 on TYLCV 

transmission by B. tabaci on tomato plants. In the first experiment (1) receptor plants were exposed 

to ambient and elevated CO2 treatments during post-inoculation (3 weeks) and in the second 

experiment (2), receptor plants were under the two CO2 treatments during pre and post-inoculation 

(5 weeks). Virus source plants were grown either under elevated or ambient CO2 conditions. After 

the experiments, ten randomly selected plants were collected for each of the two treatments to 

measure the height, fresh weight and dry weight (dried at 80ºC for 48 h).  
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(1) A month after the inoculation of the TYLCV source plants, around 750 whiteflies were 

placed on the virus source plant grown under the two different CO2 treatments to acquire the virus 

(72h). Then five whiteflies were transferred to 3-week old tomato plants (BBCH 14) that were grown 

under ambient CO2 and covered with cages of methacrylate cylinders for 72 h. Plants with insects 

were then transferred to either elevated or ambient CO2 growth chambers and after the inoculation 

period, plants were treated twice with a systemic insecticide (Confidor 20 SL at 200 ppm dose 

applied at dropping point) to eliminate whiteflies. Plants infected with TYLCV were evaluated three 

to four weeks after inoculation. Positive infection was considered when visually plants presented 

clear symptoms (leaves are curled, yellow and stunted) (Fang et al., 2013). These symptoms were 

correlated by PCR technique in previous experiments (Moreno-Delafuente et al., 2013).  

(2) Tomato receptor plants at cotyledon stage (BBCH 10) were distributed in the growth 

chambers with either 700 or 440 ppm of CO2 treatments. One month after the inoculation of the 

virus source plants, the acquisition and inoculation process was performed as described in the first 

experiment (see above). After the inoculation, plants were transferred to their respective 

treatments. 

 

Plant analyses  

Secondary metabolites analyses  Frozen samples (-80ºC) were lyophilized to remove frozen 

water without liquid phase. Samples were analyzed for secondary metabolites by extraction of 

freeze-dried samples (30 mg) in 1 mL 70% methanol with shaking for 20 minutes, the sample was 

then centrifuged for 10 min at 10 000 r/min and the supernatant transferred to a clean tube. The 

pellet was extracted twice more with 0.5 mL 70% methanol. Methanol was evaporated using a Jouan 

RC1022 vacuum centrifuge (Thermo Scientific, Massachusetts, USA) before extracts were partially 



 

 

 

This article is protected by copyright. All rights reserved. 

 

11 

purified by solid-phase extraction using a Sep-Pak Vac 500 mg C18 column (Waters Ltd., Elstree, UK) 

as described by Hauck et al. (2014). Samples were subsequently dried under vacuum at 60 oC and 

the dried pellets were resuspended in 500 µL 100% methanol and analyzed via high pressure liquid-

chromatography with online photodiode array detection (HPLC-PDA) with a system comprising a 

Waters 515 pump, a Waters 717plus autosampler, a Waters 996 photodiode array detector and a 

Waters C18 Nova-Pak radial compression column (C18 4.0 µm, 8.0 × 100 mm cartridge) (Waters Ltd., 

Elstree, UK) with an injection volume of 30 µL and a flow rate of 2 mL/min. The mobile phase 

consisted of 5% acetic acid (solvent A) and 100% methanol (solvent B) with a linear gradient from 5% 

to 75%, B in A, over 35 min. Peak integration was performed using the Empower software. Liquid 

chromatography with PDA and electrospray ionization-ion trap tandem mass spectrometry (LC-PDA-

ESI/MSn) was performed to identify the major compounds. A Thermo Finnigan LC-MS system 

(Finnigan Surveyor LC pump plus, PDA plus detector, Finnigan LTQ linear ion trap) (Thermo Scientific, 

Massachusetts, USA) and a Waters Nova-Pak C18 4.0 µm, 3.9 × 100 mm column was used with an 

injection volume of 10 µL and a flow rate of 1 mL/min. The mobile phase consisted of purified water-

0.1% formic acid (solvent A) and MeOH-0.1% formic acid (solvent B) with a linear gradient from 5% 

to 65%, B in A, over 60 min. Phenolics were characterized by UV absorption spectra, MS 

fragmentation patterns in negative ion mode and comparison with standards. 

 

Protein analysis  Samples were analyzed for proteins by extraction of freeze-dried samples 

(30 mg) in 1.8 mL McIlvaine buffer containing 50 mmol/L ascorbic acid and 0.2 mL 20% lithium 

deodecyl sulphate. Proteins were precipitated with 10% trichloroacetic acid, 0.2% phosphotungstic 

acid and resuspended in 0.1mol/L NaOH. Proteins were analyzed by the Lowry method as described 

by (Dáder et al., 2014). 
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Total carbon and nitrogen measurements  Total carbon and nitrogen content of four 

plants per treatment, were measured to link the effects of CO2 on the virus transmission and plant 

characteristics with changes of plant C:N ratio in tomato plants. Plants were separated in roots, 

stem, leaves and flowers. All plant parts were dried for 24 h at 60ºC and crushed to prepare the 

samples for the analyses. The analyses were performed using an Organic Elemental Analyzer - NC 

Soil Analyzer (Flash 2000, Thermo scientific) at ICA-CSIC (Madrid, Spain) and CEBAS-CSIC (Murcia, 

Spain). 

Statistical analysis  

All data were analyzed with SPSS Version 24.0 (Statistical Package for the Social Sciences 

or Statistical Product) (Carver & Nash, 2006). Raw data were checked for normality and homogeneity 

of variance using the Shapiro-Wilk W-test before performing the parametric test. Data were 

transformed with either Ln(x+1) or arcsin√x if needed to reduce heteroscedasticity. The data were 

analyzed by a Student t-test (P<0.05) except the virus transmission data and total carbon and 

nitrogen content that were analyzed by a one-way ANOVA test and the means were subsequently 

separated using the Least Significant Difference (LSD) test. When data did not follow the ANOVA 

assumptions, a non-parametric Mann-Whitney U-test (P<0.05) was performed.  

Results 

Elevated CO2 levels on eggplants indirectly affected some life history parameters of B. tabaci. The 

mean number of days from egg to adult of whiteflies on eggplants that were exposed to either 

elevated or ambient CO2 levels was similar under both treatments (aCO2 = 26.5 ± 0.5; eCO2 = 26.0 ± 

0.6; t = 0.686; P = 0.498). Although the number of hatched eggs per couple of B. tabaci (aCO2 = 28.8 ± 
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6.5; eCO2 = 29.5 ± 5.3; U = 145.5; P = 0.804) and fecundity (aCO2 : 60.1 ± 9.2; eCO2 :53.7 ± 8.2; t = 

0.520; P = 0.607) were similar under both treatments, egg fertility (%) was significantly greater on 

plants that were exposed to elevated CO2 (aCO2 : 43.6 ± 5.9; eCO2 : 62.0 ± 6.8; t = -2.040; P = 0.049) 

(Table 1). 

Comparison of the feeding behavior of B. tabaci on eggplants exposed to either elevated CO2 

(eCO2) or ambient CO2 (aCO2) concentrations are shown in Table 2. Several EPG variables showed 

that the feeding behavior of whiteflies differed when plants were raised under eCO2 or aCO2. The 

duration of non-probe (np) (WDE: 274.9 ± 22.6 s for eCO2 and WDE: 227.6 ± 14.8 s for aCO2; U = 

1002035; P = 0.004) and probe waveforms (159.4 ± 9.5 s for eCO2 and 150.3 ± 10.0 s for aCO2; U = 

925762; P =< 0.001) was significantly higher on plants exposed to eCO2 than to aCO2. The number (U 

= 138.5; P= 0.022) and duration (U = 148.5; P = 0.052) of the sustained phloem ingestion phase (E2s) 

was significantly lower for whiteflies feeding on eggplants exposed to eCO2 (NWEI: 0.2 ± 0.1; WDI: 

399.6 ± 228.6 s) compared to those exposed to aCO2 (NWEI: 0.6 ± 0.2; WDI: 934.3 ± 320.7 s). 

Nevertheless, the whiteflies that were able to reach the phloem phase, spent more time ingesting 

phloem sap on plants previously exposed to eCO2 than on those exposed to aCO2. This fact is shown 

by the duration per event (WDE) of E2s that was significantly higher (t = -2.246; df = 14; P = 0.041) on 

whiteflies feeding on plants exposed to eCO2 (WDE: 2664.0 ± 541.4 s) than to those exposed to aCO2 

(WDE: 1509.2 ± 217.3 s). Moreover, the number of whiteflies reaching the phloem phase and able to 

sustain phloem ingestion (E2 > 10 min) was lower under eCO2 (3/7) than under aCO2 (10/12) (Table 

2). The analysis of EPG sequential variables (Table 2) shows that eCO2 delays the time needed by the 

insect to start phloem phase activities. This is reflected by the following variables: time from the 1st 

probe to the 1st E (eCO2: 24867.7 ± 1320.5 s vs. aCO2: 19272.2 ± 2115.4 s; t = -2.218 ; df = 39; P = 

0.032), from the 1st probe to the 1st E2s (eCO2: 26736.6 ± 962.1 s vs. aCO2: 20834.8± 2152.2 s; t = -

2.461; df = 39; P = 0.018) and the time from the beginning of that probe to the 1st E2 (eCO2: 1258.3 
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± 279.6 s vs. aCO2: 695.2 ± 111.5 s; t = -2.272; df = 14; P = 0.039). All these sequential variables gave 

significantly higher values when whiteflies fed on plants previously expose to eCO2 than to those 

expose to aCO2. Also the number of probes after the 1st E was significantly lower on eggplants 

exposed to eCO2 than to aCO2 (NWEI: 3.3 ± 1.2 for eCO2; 14.8 ± 4.3 for aCO2; U = 138; P = 0.041).  

Results of the TYLCV transmission assays indicate that CO2 concentrations does not affect 

virus transmission rate to tomato plants by B. tabaci, showing no significant differences between 

both CO2 treatments (F = 1.003; df = 3; P = 0.425) (Table 3).   

 

Additionally, plants exposed to eCO2 showed altered physiology compared to those that 

were under aCO2. Tomato plants increased significantly in size under eCO2 (aCO2: 38.06 ± 0.64 cm; 

eCO2: 48.25 ± 0.87 cm; F = 88.947; P < 0.001) and, therefore, plant fresh weight (g) was significantly 

higher compared to plants grown at aCO2 levels (aCO2: 20.46 ± 1.35 g; eCO2: 23.76 ± 1.48 g; U = 

154.000; P = 0.006). 

Plants grown at eCO2 showed a significant increase in soluble phenolic compounds (Figure 

1). The specific phenols analyzed in the leaves were chlorogenic acid, two chlorogenic acid isomers, 

feruloyl quinate, quercetin rutinoside and kaempferol rutinoside. Chlorogenic acid was the main 

phenol presenting higher concentrations compared to the other phenols. Chlorogenic acid (eCO2: 

14.3e+6 ± 0.7e+6 mg/gDM vs. aCO2: 9.8e+6 ± 1.1e+6 mg/gDM; U = 577; P < 0.001), chlorogenic acid 

isomer a (eCO2: 32.4e+4 ± 1.6e+4 mg/gDM vs. aCO2: 18.7e+4 ± 2.9e+4 mg/gDM; U = 325; P < 0.001), 

chlorogenic acid isomer b (eCO2: 66.1e+4 ± 3.0e+4 mg/gDM vs. aCO2: 66.8e+4 ± 6.9e+4 mg/gDM; U = 

1182; P = 0.160), feruloy quinate (eCO2: 16.1e+4 ± 0.8e+4 mg/gDM vs. aCO2: 10.1e+4 ± 0.9e+4 

mg/gDM; U = 473; P < 0.001), quercetin rutinoside (eCO2: 33.8+4 ± 2.2e+4 mg/gDM vs. aCO2: 

17.6e+4 ± 1.5+4 mg/gDM; U = 559; P < 0.001) and kaempferol rutinoside (eCO2: 34.2e+4 ± 3.0e+4 
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mg/gDM vs. aCO2: 13.2e+4 ± 1.3e+4 mg/gDM; U = 258; P < 0.001) significantly increased under eCO2. 

Additionally, the dry matter content of proteins significantly decreased in eggplants exposed to eCO2 

(aCO2: 173.28 ± 6.55 mg/g; eCO2: 130.46 ± 4.68 mg/g; t = 5.379; df = 50; P < 0.001).  

Elevated CO2 changed the nitrogen content of both tomatoes and eggplants. Our results 

indicated that nitrogen (N) content in leaves was significantly reduced after exposure to elevated 

CO2 concentrations. However, no significant differences were found in carbon (C) content or C/N 

ratio (Table 4).   

 

Discussion 

The present study indicates that plants grown under elevated CO2 alter the feeding behavior 

and fertility of B. tabaci MED species. The whiteflies reached phloem less number of times and 

phloem sap ingestion was delayed on plants that were previously exposed to elevated CO2 levels 

than on those that were grown under ambient CO2. However, whiteflies that were indirectly affected 

by plants grown under elevated CO2 levels showed longer episodes of sustained phloem ingestion 

which may have finally increased their fertility. However, TYLCV transmission was unaffected by the 

CO2 treatments.   

Herbivores feeding on phloem sap are expected to successfully overcome physical and 

chemical plant defenses before reaching the phloem (Guo et al., 2014). It is known that CO2 

enrichment increases plant growth rates, biomass, leaf area index (Stiling et al., 2002; Yan et al., 

2018) and also, it has been correlated with sizes and densities of foliar cell types (Del Toro et al., 

2017) which could be considered as physical barriers for sap-sucking insects. These herbivores have 

to penetrate the leaf with their stylets creating channels to salivate and consequently, ingest phloem 
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sap (Will et al., 2007). Bemisia tabaci took a similar length of time to the first probe with both CO2 

treatments suggesting that there are no superficial factors that could affect probing behavior of the 

whitefly. On the other hand, the results obtained in the present study (Table 2) show that whiteflies 

need longer time to start phloem activities in plants exposed to elevated CO2. This fact could indicate 

that the feeding behavior of whiteflies could be affected by some type of physical or chemical 

barriers. Plant chemical defenses are regulated by the salicylic acid (SA), the jasmonic acid (JA) and 

ethylene (ET) signaling-pathways. Elevated CO2 is known to alter SA and JA signaling-pathways 

increasing plant susceptibility to aphids (Sun et al., 2013). However, Guo et al. (2014) indicated that 

the nitrogen fixation of host-plants is likely to vary the effectiveness of the SA signalling-pathway 

which may also affect the time that the pea aphid takes to reach the phloem of Medicago truncatula 

(Gaertn). In addition, the effect of CO2 on JA may vary with plant type, thus Lu et al. (2018) 

demonstrated that elevated CO2 in infected tobacco plants increased JA but decreased in infected 

rice plants. Based on these results, the JA levels in eggplant are more likely to increase as it is a 

Solanaceous plant, the same as tobacco and in turn, may increase the defenses of the eggplants 

against the whiteflies. Secondary metabolites are also considered as part of plant defense 

mechanisms against biotic and abiotic stresses and variations in composition are phenotypic 

responses associated with resource availability and pathogen attack (Matros et al., 2006). 

Additionally, these metabolites are known to alter feeding behavior of different herbivores (Yan et 

al., 2018). The main phenolic found in the eggplant leaves was chlorogenic acid which is generally 

the predominant soluble phenolic compound in the leaves of this cultivar (Whitaker & Stommel, 

2003). This phenolic compound has been demonstrated to affect the digestion and infection of 

herbivores and pathogens respectively. Felton et al. (1989) tested the effects of chlorogenic acid on 

the larval growth of Spodoptera exigua (Hübner) feeding on S. lycopersicum and showed that this 

phenolic significantly inhibited the growth of this noctuid herbivore. Results of the present study 
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showed that whiteflies feeding on plants exposed to elevated CO2 arrived less often to phloem and 

dedicated more time to starting phloem ingestion. This may indicate that chemical defenses of 

eggplants were enhanced with CO2 making the plant more resistant to B. tabaci as phenolics 

increased and nitrogen content decreased. Nevertheless, once whiteflies reached the phloem sieve 

elements (only the 15% of the individuals tested with the EPG technique), they were able to sustain 

phloem sap uptake for a longer period and satisfy their nutritional requirements for successful 

performance.    

Sap sucking insects are limited by phloem quality (Bezemer & Jones, 1998; Sun et al., 2009) 

and elevated CO2 is assumed to decrease quality of phloem for herbivores (Ryan et al., 2014b; Sun et 

al., 2013; Sun et al., 2011). Some herbivores such as chewing insects are known to increase leaf 

damage under elevated CO2 as a result of their ability to compensate for the nutritional deficit of the 

plants (Hughes & Bazzaz, 2001; Trębicki et al., 2016; Zhang et al., 2018). However, in addition to 

chewing insects, certain phloem feeders are found to increase sap ingestion as a compensatory 

feeding mechanism (Sun et al., 2009; Trębicki et al., 2016). Trębicki et al. (2016) observed that the 

bird cherry-oat aphid (R. padi) spent longer time in phloem sap ingestion on plants subjected to 

elevated CO2. Also, Sun et al. (2009) indicated that the cotton aphid (A. gossypii) excreted a greater 

amount of honeydew as a result of greater ingestion of phloem sap on Bt cotton plants grown under 

elevated CO2 compared to plants exposed to ambient CO2. This compensatory feeding implicates a 

greater amount of phloem sap ingested by sap sucking insects that could result in greater plant 

damage on plants grown under elevated CO2 compared to those under ambient CO2. Hughes and 

Bazzaz (2001) examined the effects of elevated CO2 on the abundance of five aphid species. These 

authors found that the majority of aphids were not negatively affected by increasing CO2 levels. The 

reasons suggested by these authors were that the decline of nitrogen and amino acid content in 

plants under elevated CO2 conditions may be neutralized by other plant characteristics or changes in 
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the sugar soluble nitrogen ratio and, that those aphids were capable of compensating for the low 

plant nutritional quality by altering their feeding behavior. Studies have shown that elevated CO2 

changes the amino acid (nitrogen based compound) content of the plants by increasing minor amino 

acids but decreasing or unaltering major amino acids such as glutamine, glutamate, aspartate or 

alanine (Geiger et al., 1998; Ryan et al., 2015). Minor amino acids are synthesized via biosynthetic 

pathway using carbon skeletons while the pathway to form major amino acids is during nitrate 

assimilation (Geiger et al., 1998). Also, some minor amino acids are known to act as phagostimulant 

for herbivores (Chapman, 2003). Therefore, the decrease in nitrogen content may have reduced 

major amino acids and the increase of the C:N ratio may have increased the availability of 

carbohydrates and carbon skeletons that stimulate the biosynthesis of minor amino acids. In the 

present study, results of plant biochemical analysis (Table 4) indicated that plant leaves contained 

significantly less nitrogen, higher C:N ratio and less dry matter protein after exposure to elevated 

CO2. This fact, could have stimulated minor amino acids synthesis and therefore, have modified the 

feeding behavior of the whitefly showing a longer duration of the sustained phloem ingestion phase 

(E2) (Table 2). However, further research is needed to evaluate the effects of minor amino acids on 

the feeding behavior of herbivores. Alternatively, there may be other mechanisms to overcome the 

nutritional deficit of plants exposed to elevated CO2. For instance, Sun et al. (2009) suggested that 

certain endosymbionts of A. gossypii might alter total amino acid composition to avoid the decrease 

of phloem nutritional quality. Moreover, a study of Sun et al. (2015) on Acyrthosiphon pisum feeding 

on Medicago truncatula indicated that elevated CO2 reduced the stomatal aperture of plants. This 

induced an increase of phloem and xylem sap ingestion by A. pisum as a result of the decrease in 

transpiration and the increase in water potential of M. truncatula. Therefore, the increase of turgor 

of this plant species exposed to elevated CO2 may also explain the enhanced performance of sap 

feeders. In contrast to these results, in the present study was not observed significant differences in 
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the total duration of the xylem sap ingestion when whiteflies were exposed to eggplants grown 

under ambient or elevated CO2 which may be contingent on the host plant characteristics and 

herbivore species.  

 

The decline in plant nutritional quality caused by elevated CO2 is known to alter performance 

of herbivores (Ryan et al., 2014b; Sun et al., 2013; Sun et al., 2011). However, contrary to what is 

expected, a meta-analysis evaluating the effects of elevated CO2 on insect life history, showed that 

generally sap sucking herbivores improved their performance with elevated CO2 (Robinson et al., 

2012), rejecting the general assumption that a decline in plant nutritional quality will necessarily 

reduce herbivore performance. Indeed, some authors have reported a positive impact of elevated 

CO2 on population abundance of sap sucking insects such as A. gossypii, M. persicae (Hughes & 

Bazzaz, 2001), B. tabaci (Li et al., 2011) and R. padi (Ryan et al., 2015). However, the response to the 

increase of CO2 is often species-specific as some phloem feeders such as B. brassicae (Klaiber et al., 

2013), A. pisum (Hughes & Bazzaz, 2001) and Sipha flava (Forbes, S.A.) (Auad et al., 2012) were 

affected negatively by elevated CO2 levels and others such as A. nerii, A. oenotherae and A. solani 

(Hughes & Bazzaz, 2001) were unaffected. In the present study, the whitefly B. tabaci MED species 

increased its fertility when feeding on plants exposed to elevated CO2. This indicates that B. tabaci is 

not only compensating for the nitrogen deficit of the plant but also over-compensates it, resulting in 

an increased number of offspring. These findings are supported by Li et al. (2011) where the 

population abundance of B. tabaci MED increased with elevated CO2 levels feeding on nontransgenic 

cotton plants. However, in spite of the fact that nitrogen limitation in the plants could be 

fundamental for herbivore life-history on plants exposed to elevated CO2, little attention has been 

made to understand how this deficit could increase performance of phloem feeders. White (1984) 
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proposed the plant stress hypothesis where it was predicted that stressed plants are better hosts for 

herbivores. Plants exposed to elevated CO2 caused nitrogen deficiency in the plants (Guo et al., 

2014; Wang et al., 2014) stressing the plants and also inducing a reduction in the plant water 

potential in their leaves (Radin & Boyer, 1982). Consequently, plant susceptibility to phloem feeders 

such as Bemisia argentifolii (Gennadius) (Skinner, 1996) and B. tabaci is increased (Flint et al., 1996; 

Hilje et al., 2001). The nitrogen deficit could have had a stronger effect on the plant water 

management compared to the stomatal aperture mentioned above, as nitrogen deficiency also 

decreases the root hydraulic conductivity (Radin & Boyer, 1982). Ultimately, B. tabaci may be able to 

take advantage of the plant susceptibility and plant hydraulic conditions to improve fertility as 

reported in the present study.  

Little attention has been paid to the impact of elevated CO2 on virus transmission. The 

majority of research conducted in this topic has concluded that elevated CO2 decreases virus 

transmission rate (Felton & Duffey, 1990; Matros et al., 2006; Fu et al., 2010; Huang et al., 2012; 

Dáder et al., 2016) as a consequence of the increase in secondary metabolites (Fu et al., 2010; 

Matros et al., 2006) such as chlorogenic acid (Felton & Duffey, 1990).  However, Bosquee et al. 

(2018) suggested that the altered plant defenses or aphid feeding behavior may have increased the 

ability of M. persicae to transmit phytoviruses under elevated CO2 conditions. Furthermore, Xie et al. 

(2014) indicated that the increase of alate abundance, as a result of the increase in CO2 levels, may 

improve R. maidis migration and virus spread and Trębicki et al. (2017b) showed that in wheat plots 

grown under elevated CO2 increased natural incidence of different viruses compared to those grown 

under ambient CO2, but R. padi on infected plants with Barley yellow dwarf virus (BYDV) were 

unaffected suggesting that elevated CO2 will not delay or reduce the spread of this virus (Trębicki et 

al., 2016). Despite the significant increase of phenolic compounds, especially chlorogenic acid, our 

results have indicated that the increase in CO2 has no effect on the transmission of the TYLCV by B. 
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tabaci, similar to the findings of Trębicki et al. (2016). This result was not related to the number of 

TYLCV-DNA copies in virus acquisition or transmission, as previous studies have shown that the 

ability of virus transmission by B. tabaci is not affected by the changes in the number of TYLCV-DNA 

copies present in the body of the insect after virus acquisition from infected plants (Guo et al., 

2016). Bemisia tabaci has demonstrated the ability to overcome the presumable stress that elevated 

CO2 could cause by spending longer time ingesting phloem sap in eggplants; however, this was not 

translated to a greater virus transmission rate in tomato plants under elevated CO2 when compared 

to plants exposed to ambient CO2.  

 Results of the present study suggest that the two main species (MED – Q biotype and 

MEAM1 – B biotype) of B. tabaci may perform differently under elevated CO2. Recent studies 

indicated that elevated CO2 on cotton increased developmental time and decreased survival ratio of 

B. tabaci MEAM1 species (Wang et al., 2014) while oviposition and reproduction were unaffected on 

collard plants (Brassica oleracea ssp. acephala) (Curnutte et al., 2014). However, in the present 

study B. tabaci MED species increased fertility and presumably future offspring on eggplants, which 

are similar results to those of Li et al. (2011) who reported an increase in the population abundance 

of this species when feeding on cotton. Therefore, these results suggest that eCO2 concentration 

would benefit population increase of the MED species but would be detrimental to the MEAM1 

species of the B. tabaci complex. If such is the case, the MED species would displace the MEAM1 

species in the near future because of the predicted increasing concentrations of CO2 in the 

atmosphere. Further research on the effects of climate change on the performance of B. tabaci 

should be studied for both species separately, to ensure the proper understanding of their behavior 

and fitness under future climate conditions.  
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Based on the results presented here, elevated CO2 changes plant biochemical composition, 

feeding behavior and fitness parameters of B. tabaci MED species. It was also demonstrated that this 

whitefly species is capable of overcoming the decline in plant nutritional quality caused by the 

elevated CO2, spending a longer period at each event, actively ingesting phloem of plants and 

consequently, increasing fertility. Therefore, B. tabaci may adapt better to alterations of abiotic 

factors compared to other herbivores as the climate continues changing. This may create new 

challenges in the management of B. tabaci populations under future climate change scenarios.     
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Figure legends 

 

Figure 1. Mean ± standard error values of the secondary metabolite analysis for ambient (aCO2: 440 

ppm) and elevated (eCO2: 700 ppm) CO2 levels. The specific phenolic compounds observed in the 

leaves were chlorogenic acid, two chlorogenic isomers a & b, feruloyl quinate, quercetin rutinoside 

and kaempferol rutinoside. Statistical differences are calculated according Mann-Whitney U-test (P ≤ 

0.05). 
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Tables 

Table 1. Mean ± standard error values of the indirect effect of ambient (aCO2: 440 ppm) or elevated 

(eCO2: 700 ppm) CO2 levels on different life parameters (days from eggs to adult, fertility, number of 

hatched eggs and fecundity) of Bemisia tabaci MED species on eggplants. 

 

Life history parameters aCO2 eCO2 Statistics P-value 

Days (from eggs to adult) 26.5 ± 0.5 26.0 ± 0.6 t = 0.686 0.498 

Fecundity (number of eggs) 60.1 ± 9.2 53.7 ± 8.2 t = 0.520 0.607 

Number of hatched eggs 28.8 ± 6.5 29.5 ± 5.3 U = 145.5 0.804 

Fertility (% hatched eggs) 43.6 ± 5.9 62.0 ± 6.8 t = -2.040 0.049* 

 

Statistical differences are calculated according to Student t-test for Gaussian variables or Mann-

Whitney U-test for non-Gaussian variables (P ≤ 0.05). 

 

Table 2. Mean ± standard error values of non-sequential and sequential EPG variables for the 

probing behavior of Bemisia tabaci adult females on eggplants grown under 440 and 700 ppm of CO2 

concentrations. PPW: Proportion of individuals that produced the waveform type; NWEI: Number of 

waveform events per insect; WDI: Waveform duration (sec) per insect; WDE: Waveform duration 

(sec) per event.  

 

Non-sequential variables
 

Treatment PPW
 

NWEI
 

P
 

WDI
 

P
 

WDE
 

P
 

Non-probe 440 21/ 21 76.5±8,0 0.352 17405.2±728.7  0.441 227.6±14.8 0.004 

 700 20/ 20 66.5±7,0  18280.2±859.6  274.9±22.6 

Probe
 

440 21 /21 75.8±8.0  0.363 11394.8±728.7 0.441 150.3±10.0 <0.001 

 700 20/ 20 66.0±7.0   10519.8±859.6  159.4±9.5  

Intercellular apoplastic stylet 

pathway (C)
 

440 21/ 21 77.2±7.9  0.330 8954.5±606.8 0.709 116.0±4.4 0.001 

 700 20/ 20 66.8±6.9  9321.7±770.4  139.6±5.8  
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Short intracellular punctures 

(pd)
 440 17/ 21 4.2±0.7  0.134 24.2±4.4 0.965 4.7±0.3 0.627 

 700 12/ 20 3.0±0.9  24.2±5.1  4.9±0.4  

Phloem phase (E) 440 12/ 21   1089.2±342.8 0.097   

 700 7/ 20   469.3±245.1    

Salivation into phloem sieve 

elements (E1)
 

440 12/ 21 1.0±0.3 0.121 51.3±17.7 0.328 51.3±11.8 0.186 

 700 7/ 20 0.6±0.2   54.3±26.2  98.8±31.8  

Passive phloem sap uptake 

from the SE (E2)
 

440 12/ 21 1.0±0.3 0.015 1037.9±333.3 0.155 1037.9±190.0 0. 794 

 700 4/ 20 0.4±0.2   436.8±245.5  1185.5±561.4  

Sustained E2 (>10 minutes) 

(E2s)
 440 10/ 21 0.6±0.2 0.022 934.3±320.7 0.052 1509.2±217.3 0.041 

 700 3/ 20 0.2±0.1  399.6±228.6  2664.0±541.4 

Active intake of xylem sap (G)
 

440 10/ 21 0.7±0.2  0.286 1351.1±382.1 0.173 1891.6±334.7 0.358 

 700 6/ 20 0.5±0.2  728.9±402.5  1457.7±307.1  

Probe to 1
st

 E1 440 12/ 21 37.3±7.8 0.772     

 700 7/ 20 40.6±5.1      

Probe after 1
st

 E 440 12/ 21 14.8±4.3 0.041     

 700 7/ 20 3.3±1.2      

np after the probe of the 1
st
 E2s 440 10/ 21   770.8±320.1 0.499   

 700 3/ 20   751.2±289.4    

Sequential variables
 

        

Start of EPG to 1
st

 probe 440 21/ 21   324.8±80.1 0.602   

 700 20/ 20   459.3±135.0    

1
st

 probe to 1
st

 E 440 21/ 21   19272.2±2115.4 0.032   

 700 20/ 20   24867.7±1320.5   
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Beginning of that probe to 1
st

 E 440 12/ 21   661.1±112.6 0.510   

 700 7/ 20   818.5±240.7    

Beginning of that probe to 1
st

 

E2 
440 12/ 21   695.2±111.5 0.039   

 700 4/ 20   1258.3±279.6    

1
st

 probe to 1
st

 E2s 440 21/ 21   20834.8±2152.2 0.018   

 700 20/ 20   26736.6±962.1   

Beginning of that probe to 1
st

 

E2s 
440 10/ 21   851.7±144.0 0.565   

 700 3/ 20   1020.2±176.1    

P-values are recorded according to Mann Whitney U-test for non-Gaussian distribution variables and 

to the t-test for parametric variables. Underline-type indicates significant differences (P ≤ 0.05). 

 

 

Table 3. Effect of elevated CO2 on TYLCV transmission rate (Mean ± SE) by B. tabaci on tomato plants 

 

Receptor Source Mean+SE P-value 

aCO2 aCO2 66.5±5.6 

0.425 
eCO2 aCO2 55.5±8.5 

aCO2 eCO2 54.5±6.9 

eCO2 eCO2 51.3±5.5 

Differences were statistically compared by one way ANOVA (P ≤ 0.05). The 

transmission efficiency data were transformed as an arcsin√x prior to analysis. Each 

transmission experiment was evaluated four times. 
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Table 4. Chemical profile of tomato leaf on TYLCV infected and non-infected plants and eggplant 

leaves under aCO2 (440 ppm) and eCO2 (700 ppm) conditions 

 

 

Statistical differences were analyzed according to ANOVA for Gaussian variables (P ≤ 0.05) 

and according to Mann Whitney U-test for non-Gaussian distribution variables. Different letters 

within columns indicate significant differences (P ≤ 0.05). 

 

  N (%) C (%) C/N 

Plant type  Mean±SE P Mean±SE P Mean±SE P 

 aCO2-non-infected 

plant 4.8±0.3 a 

0.010 

40.4±1.1 a 

0.850 

8.8±0.8 a 

0.906 

Tomato aCO2-TYLCV 4.7±0.3 a 40.0±1.1 a 8.9±1.7 a 

 eCO2-non-infected 

plant 3.3±0.4 b 39.5±0.8 a 13.2±1.7 a 

 eCO2-TYLCV 

infectedplant 3.9±0.3 ab 39.3±0.5 a 10.4±0.7 a 

Eggplant aCO2 7.0±0.1 0.000 36.9±0.2 0.545 5.3±0.1 0.000 

 eCO2 5.7±0.2  36.8±0.3  6.6±0.3  


