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Abstract.  11 

Chemical correlation of intermediate tephra deposits using microanalytical data is problematic 12 

because (i) the phenocryst content of their component glass shards affects major and trace element 13 

analyses (ii) bulk chemistry can be affected by variations in mineral/lithic components across the fall-14 

out, and (iii) weathering readily alters their composition. All of these problems affect the Lepué 15 

Tephra, a prominent marker horizon extensively distributed across the Los Lagos Region of Chile and 16 

the Chile-Argentina frontier in north-western Patagonia, which was erupted from Volcán 17 

Michinmahuida at c. 11000 cal a BP. Weathering of terrestrial cover-bed deposits in this hyper-18 

humid depositional environment leaves only a few occurrences of the tephra which contain fresh 19 

glass shards for microbeam analysis, but their highly phenocrystic nature makes data interpretation 20 

difficult. Equally, leaching of mobile elements during weathering causes considerable compositional 21 

changes across the fall-out region and is evident in bulk sample analyses. Elements such as the REE 22 

and Y, generally regarded as immobile, show marked mobility. Within the REE, the development of 23 

“M-type” tetrad effects and positive Ce-anomalies result from a combination of dissolution/leaching 24 

of the REE from the bulk sample and retention by co-precipitation of Ce4+ on Fe-oxyhydroxides in 25 

this high-rainfall, hyper-humid, oxic environment. Chemical correlation of the Lepué Tephra is thus 26 

not straightforward.  However, by careful consideration of the data for a limited range of elements, 27 

chemical correlation can be achieved using elements which (i) are incompatible in magmatic systems 28 

(and thus their ratios are unaffected by the presence of phenocrysts in single glass shard microbeam 29 

analysis) and (ii) are not mobilised in these weathering conditions. These elements are Zr, Hf, Nb, Ta 30 

and Th. Their ratios (i) allow for the comparison of single grain and bulk sample analyses, extending 31 

the geographic range over which data can be compared for the Lepué Tephra, (ii) provide a robust 32 
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chemical correlation of this weathered, intermediate tephra deposit, enabling correlation even 33 

where elements traditionally considered immobile (REE, Y, and U) have been significantly mobilised, 34 

and (iii) allow the Lepué Tephra to be distinguished from other local tephra deposits. This combined 35 

analytical approach enables tephras that have been variably weathered to become useful marker 36 

beds over much wider geographical areas than previously feasible, thereby enhancing their 37 

tephrochronological application in Quaternary research.  38 

Keywords. 39 

Lepué Tephra; tephrochronology; tephra correlation; REE geochemistry; REE tetrad effect; immobile 40 

elements; incompatible elements 41 

 42 

1. Introduction 43 

Correlation of intermediate tephra deposits using compositional data can be highly problematic 44 

because of the phenocrystic nature of the magma, compositional variation in the magma erupted 45 

from zoned magma chambers, and because these intermediate bulk compositions can alter rapidly, 46 

whereby the glass phase analyses can be compromised (Alloway et al., 1995; Riehle et al., 1999; 47 

Shane, 2005; Donoghue et al., 2007; Lowe et al., 2008). In part for these reasons andesitic tephra 48 

have often been overlooked in favour of compositional correlation studies which suffer less from 49 

these issues, e.g. using rhyolitic tephra which are often more widespread, or basaltic tephra, often 50 

less widespread but erupted frequently in areas such as the North Atlantic from Iceland (Abbott et 51 

al., 2013). Specifically, single glass shard analyses by micro-beam methods for major and trace 52 

elements of intermediate tephra (i.e. basaltic-andesite and andesite) are often hampered by the 53 

presence of abundant phenocrysts which can contribute to the analysis of a “glass” shard (Platz et 54 

al., 2007; Lowe, 2011). This phenocryst effect is especially problematic in laser ablation (LA) ICP-MS 55 

analysis, where the analysed volume is much greater than in electron probe microanalysis (EPMA). 56 

Any analysed material from phenocrystic shards with a “bulk” intermediate composition is highly 57 

likely to include phenocrysts, notably plagioclase, which adds Ca and Sr to the analysed material and 58 

dilutes the concentration of incompatible elements from the glass phase, which may be dacitic or 59 

rhyolitic in composition. These incompatible elements are often very useful in tephra correlation 60 

(Pearce et al., 2002; Pearce et al., 2004; Pearce et al., 2007; Pearce et al., 2011; Pearce, 2014; Pearce 61 

et al., 2014). Bulk analyses of intermediate tephra, however, can be useful in that they overcome the 62 

problem of analysis of variable quantities of phenocrysts with grain-specific methods, but bulk 63 

analyses can incorporate xenolithic/xenocrystic material from the eruption, or enclosing sediment 64 

intermixed during deposition, and thus require careful sampling. To further complicate their 65 
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correlation, bulk tephra composition may change with distance from the vent because of 66 

sedimentary fractionation of the erupted material (Sarna-Wojcicki et al., 1981; Juvigné and Porter, 67 

1985). Additionally, intermediate (andesitic) tephra weathers comparatively rapidly (Kirkman and 68 

McHardy, 1980; Parfitt et al., 1983; Alloway et al., 1995; Churchman and Lowe, 2012) and 69 

consequently analysis and correlation may be further hindered by processes occurring in the soil-70 

forming environment (Cronin et al., 1996; McHenry et al., 2008; Lowe, 2011; Lowe et al., 2017). 71 

These factors make the direct comparison of bulk and single grain analyses difficult because of the 72 

effect mixing variable proportions of glass with phenocrysts during microbeam analysis can have on 73 

single grain data, as well as other compositional effects from lithics or contaminant phases. 74 

However, when chosen with care, the use of appropriate element ratios can overcome some of 75 

these issues (Pearce et al., 2002; Pearce et al., 2004; Lowe et al., 2017; Martin-Jones et al., 2017b). 76 

Here, data from the Lepué Tephra, deposited from a large, early Holocene eruption of Volcán 77 

Michinmahuida in the Andean Southern Volcanic Zone of Chile, is used to illustrate several of these 78 

problems, and to show how, despite significant challenges related to the physical properties of this 79 

deposit, chemical correlation can be achieved in the most unfavourable (analytical and geochemical) 80 

conditions. This approach may offer a method for correlation of proximal to distal deposits where 81 

preservation varies, and where alteration has affected the concentrations of elements which are 82 

generally considered to be immobile (e.g. the rare earth elements, REE). These findings therefore 83 

provide a new way of making use of some tephra deposits which were previously considered to have 84 

limited value as chronostratigraphic units, making them valuable marker beds over much wider 85 

geographical areas, thereby enhancing their potential application to linking and dating deposits and 86 

landscapes (i.e. tephrochronologically) in a range of associated Quaternary studies. 87 

  88 

2. Lepué Tephra: an introduction 89 

The Lepué Tephra, a prominent marker horizon described in detail by Alloway et al. (2017a), is 90 

extensively distributed across the Los Lagos Region of Chile, and straddles the Chile-Argentina 91 

frontier in northwest Patagonia (Figure 1). The Lepué Tephra can be correlated to an equivalent-92 

aged >40 m thick pyroclastic flow deposit (Amarillo Ignimbrite) which is well exposed on the south-93 

eastern flanks of Michinmahuida. The source vent or vents of these co-eruptive units (Amarillo 94 

Ignimbrite and Lepué Tephra) is/are currently obscured by an extensive ice field which mantles the 95 

Michinmahuida volcanic massif, an ice sheet which will have been considerably larger at the time of 96 

this eruption.  97 

Figure 1 about here 98 
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The Lepué Tephra is well constrained at c. 11000 cal a BP from 14C dates from lake and soil cover-bed 99 

sequences in the area (Alloway et al., 2017a), where it occurs as a deposit ranging from less than a 100 

centimetre in thickness to the north of Lago Llanquihue, a few centimetres to a decimetre thick on 101 

Isla Grande de Chiloé or in the vicinity of Puerto Montt, and up to (and more than) ~ 2 m in thickness 102 

near the town of Chaitén to the immediate WSW of Volcán Michinmahuida. Lake cores from across 103 

the region record between 2 cm to 28 cm of Lepué Tephra, and ODP core 1233D (Leg 202) 104 

(Tiedemann et al., 2007) contains 12 cm of the tephra, ~260 km NW of Volcán Michinmahuida. The 105 

Lepué Tephra is almost invariably the lowest tephra observed stratigraphically in the post-glacial 106 

cover-bed sequence in this area, closely overlying either glacial till/diamicton deposits from the Last 107 

Glacial Maximum or local bedrock. Figure 2 illustrates the range of field occurrences from proximal 108 

to distal of the Lepué Tephra throughout northwest Patagonia. Lepué Tephra underlies the Chana 109 

Tephra (previously referred to as Cha-1, Naranjo and Stern, 2004), the ~9.7 ka eruption of Volcán 110 

Chaitén (see Figure 2F), although several intensely weathered scoriaceous lapilli tephra deposits 111 

from other local volcanoes (presumably Volcánes Corcovado, Yate or Calbuco, see Figure 2C) may 112 

intervene but these are as yet uncharacterised (Alloway et al., 2017b). 113 

Figure 2 about here 114 

The Lepué Tephra has many characteristics typical of a phreatomagmatic eruptive from a 115 

compositionally zoned magma body, and produces a complex and variable tephra deposit (Figure 116 

2A). In sections close to Volcán Michinmahuida, proximal Lepué Tephra is typically a compact, dark 117 

grey to brownish-grey, poorly sorted, massive to weakly stratified, scoriaceous lapilli to lapilli-tuff 118 

(i.e. a consolidated lapilli tuff) of basaltic–andesitic bulk composition which often contains 119 

accretionary lapilli up to ~3 cm in diameter (Figure 2B). This sometimes overlies a prominent 120 

decimetre-thick red-brown medium-coarse (lapilli-size) scoriaceous fall unit from a magmatic phase 121 

of the same eruption (Figure 2A). The combination of these textural features and variable sorting of 122 

the deposit suggested to Alloway et al. (2017a) that variable interaction with significant quantities of 123 

water during the eruption (Zimanowski, 2001) resulted in a complex intermixing of magmatic and 124 

phreatomagmatic eruptive components (Cas and Wright, 1987), with the water here largely derived 125 

from melting of the overlying ice cap. In places close to the source, the typical, massive accretionary 126 

lapilli-tuff overlies a basal rhyolitic ash and a surge unit containing moderately sorted, inclined planar 127 

to low-angle cross-bedded, scoriaceous ash and lapilli beds (not illustrated here, but see Alloway et 128 

al., 2017a). At intermediate distances (between ~30  km to 60 km from Volcán Michinmahuida), the 129 

Lepué Tephra is between ~30 cm to 100 cm in thickness and typically is characterized by a 130 

decimetre-thick weakly stratified, brownish grey, very poorly sorted cemented ash with indistinct 131 

centimetre-sized accretionary lapilli and scoriaceous lapilli-rich ashy intra-beds (Figures 2B and 2C). 132 
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Distally, >~60 km to 100 km from the source, the Lepué Tephra is deposited across much of Isla 133 

Grande de Chiloé and its adjacent islands and the area around Puerto Montt (Figures 2D, 2E, 2F). In 134 

Chiloé  the Lepué Tephra is the only macroscopic tephra that can be observed within the late last 135 

glacial/post-glacial andic soil cover-beds, where it occurs as laterally discontinuous cemented 136 

aggregates of olive-brown to reddish-brown fine to medium ash, and it typically closely overlies late 137 

last glacial to Last Glacial Maximum (LGM)-aged colluvium, fluvio-glacial gravels and sands, and 138 

glacial diamicts (till) (Figure 2E). Across this distal fallout region, the Lepué Tephra can be hard to 139 

observe within the andic (allophane- and ferrihydrite-rich) soil cover-beds as it forms highly 140 

irregular, discontinuous pods of crudely bedded, cemented fine- to medium-ash enveloped by 141 

similarly reddish-brown andic soil material (Figures 2E, 2F). This similarity with its enclosing 142 

sediments allowed its distal extent to remain unrecognised in previous studies in the area (Naranjo 143 

and Stern, 2004; Watt et al., 2011). Further details of the stratigraphic context and variations within 144 

the Lepué Tephra, along with details of all localities sampled for analysis in this study are given by 145 

Alloway et al. (2017a), which should be consulted for details of the eruption and deposition history, 146 

and major element chemical variation of the deposit, which are not reiterated here.  147 

 148 

3. Sampling and analytical data.  149 

The Lepué Tephra was sampled extensively for chemical and mineralogical analysis of both bulk 150 

material and single glass shards,  across its visible fallout range and also from lake and ODP core 151 

samples (see Figure 1). Proximal samples were relatively easy to sample with bulk samples of the 152 

tephra being taken from the thick exposures. In addition, where present, accretionary lapilli were 153 

sampled from these thicker proximal to medial deposits in the hope that they had accreted a near-154 

representative samples of the finer grained component of the bulk ash cloud material (Moore and 155 

Peck, 1962; Gilbert and Lane, 1994). For distal deposits, the often rather hard, cemented nature of 156 

the tephra made it possible to isolate small pods or biscuits of tephra (up to around 1-2 cm thick) 157 

which were shaved of any obvious adhering soil material with a knife to leave “clean” centimetre-158 

sized pieces for analysis (see Figures 2E, 2F).  159 

Figure 3 about here 160 

Glass shards of the Lepué Tephra were separated from three cover-bed sequences, four lake cores 161 

and from ODP core 1233D, and prepared for analysis. Major elements were determined by EPMA at 162 

the Victoria University of Wellington, New Zealand, with 15 kV accelerating voltage, 8 nA beam 163 

current, and an electron beam defocused to between 20 to 10 μm. The same samples were 164 

subsequently analysed by laser ablation LA-ICP-MS at Aberystwyth University, Wales using a 20 μm 165 
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diameter crater from a 193 nm Excimer laser operating at 10 J cm-2 and 5 Hz, and calibrated using 166 

29Si as the internal standard against NIST SRM 612 and corrected for fractionation effects at the 167 

laser-sample interface (Pearce et al., 1997; Pearce et al., 2011; Pearce, 2014). Figure 3 illustrates the 168 

range of phenocryst content and vesicularity within the glass shards from the Lepué Tephra, 169 

dominated by plagioclase, with clinopyroxene and titanomagnetite. For many individual shards it is 170 

difficult to impossible to place a 10-20 μm diameter analysis (either by EPMA or LA-ICP-MS) on pure 171 

glass without encountering a phenocryst which will inevitably be included in the analysis. For both 172 

major and trace element analyses, the MPI-DING reference material ATHO-G (Jochum et al., 2006) 173 

was analysed as an unknown and gave both accurate and precise results (±5-10% for trace elements; 174 

between ±1-10% for major elements with the poorest analytical precision from the analyses of the 175 

minor elements Mn, Mg and Ti, present at 0.1-0.3 wt% oxide). Solution nebulisation (SN) ICP-MS 176 

trace element analyses were performed on a range of proximal and distal bulk cover-bed samples of 177 

Lepué Tephra including individual accretionary lapilli, and bulk samples from ODP core 1233D. 178 

Approximately 0.25 g of sample was digested in hot open HF/HClO4, after grinding in an agate 179 

mortar and pestle, the solution made up to 250 mL in 2.5% HCl and analysed using an Agilent 7500 180 

ICP-MS running in collision [He] mode. Analyses were performed alongside certified reference 181 

materials JA-3 (andesite) and QLO-1 (quartz latite) (see GeoReM, 2014), which gave results accurate 182 

to within ±2-5%. Full details of analytical methods are given by Alloway et al. (2017a), which should 183 

be consulted as the repository of compositional data used in this study. Major element data are 184 

presented in Alloway et al. (2017a), and trace element data are presented in the supplementary 185 

information to this paper, as well as Alloway et al. (2017a).  X-ray diffraction (XRD) analyses were 186 

conducted on a selection of bulk samples covering the fall-out of the Lepué Tephra at the National 187 

Museum of Wales, Cardiff, using a Panalytical X’Pert XRD with peak recognition and mineral 188 

quantification achieved using Panalytical HighScore software, with a typical phase detection limit 189 

between 0.1% and 1%.  190 

 191 

4. Mineralogy 192 

Table 1 about here 193 

The results from XRD analysis of the bulk samples indicate that the majority of phenocrysts in the 194 

Lepué Tephra are plagioclase (plag., and fitted by the Panalytical HighScore software as a disordered 195 

sodian anorthite composition - [Ca0.83,Na0.17] (Si,Al)4O8, from JCPDS File 00-041-1481), augite (aug.) 196 

and quartz (qtz, see Table 1). The average bulk mineralogical composition of accretionary lapilli and 197 

the bulk proximal Lepué Tephra samples (<40 km from Volcán Michinmahuida) are extremely similar 198 
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(accretionary lapilli - 32% aug., 61% plag., 6% qtz, 1% titanomagnetite (Ti-Mt); bulk tephra - 30% 199 

aug., 63% plag., 7% qtz). In the three distal tephra samples studied, there is a steady decrease in 200 

augite content and a concomitant increase in plagioclase with increasing distance from Volcán 201 

Michinmahuida. This mineralogical change coincides with a general thinning of the tephra and 202 

increasing alteration, with a colour change to more red-brown hues related to the oxidation of Fe. 203 

One accretionary lapillus has titanomagnetite recorded as a minor phase, and in the distal bulk 204 

tephra sample at 80 km from Volcán Michinmahuida, magnetite is recorded, most likely associated 205 

with weathering (hydration) of the tephra and oxidation of Fe2+-bearing phases. 206 

 207 

5. Compositional variation within the Lepué tephra 208 

Alloway et al. (2017a) considered some aspects of the composition of the Lepué Tephra, using major 209 

element glass chemistry and a limited range of trace element data to show that this supported the 210 

stratigraphic (field-based) correlation of the various Lepué Tephra occurrences.  However, it was 211 

apparent from this earlier study that the data were not straightforward, with problems (for both 212 

major and trace element single grain analyses) arising from the analysis of phenocrystic glass. The 213 

glass component of shards from all analysed samples is rhyolitic (~71 wt % SiO2) when free of 214 

microphenocrysts, but when the shards contain numerous microlites, EPMA generates a basaltic-215 

andesite “bulk shard” composition with  ~55 wt % SiO2 as a mix of rhyolitic glass and abundant 216 

phenocrysts (see Table 2 and Figures 18 and 19 in Alloway et al., 2017a). The pervasive alteration of 217 

the tephra during weathering and soil-forming processes alters the glass phase so that only a limited 218 

number of samples preserve material suitable for microbeam analysis, and has the potential to  219 

change the composition of the tephra by adding or removing mobile elements from the deposit.  For 220 

these reasons Alloway et al. (2017a) in their tephra correlation study chose to provide only a limited 221 

discussion of the tephra bulk compositional data. In the present paper, the single grain trace 222 

element data (by LA-ICP-MS) are revisited, and compared with a fuller consideration of the bulk 223 

sample trace element data to provide a robust geochemical correlation based on trace elements 224 

which are both incompatible and immobile, and thus have inter-element ratios which (i) are immune 225 

from the effects produced by incorporation of phenocrysts in microbeam analyses and (ii) remain 226 

essentially unchanged during weathering. These elements form a subset of those high field strength 227 

elements (e.g. Y, Zr, Nb, REE, Hf, Ta, Th, U) that are generally regarded to be (but do not always 228 

behave as) both incompatible and immobile. The truly incompatible and immobile elements will be 229 

shown to provide a means to correlate phenocryst-rich, deeply weathered tephra deposits such as 230 

the Lepué Tephra that are challenging from an analytical perspective.  231 
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Figure 4 about here 232 

5.1 Single grain trace element analyses 233 

Figure 4 shows a selection of LA-ICP-MS trace element data from analyses of single shards of the 234 

Lepué Tephra. The Sr-Zr data (Figures 4A, 4B) range from ~ 100 ppm to 1150 ppm Sr which 235 

correlates with a steady decrease in Zr from around 650 ppm to ~25 ppm. This relationship relates to 236 

an increasing proportion of phenocryst material (largely plagioclase) and a reduction in the amount 237 

of glass ablated from the shard. Plagioclase feldspar has a high distribution coefficient (Kd) for Sr, 238 

which substitutes readily for Ca, with Kds in rhyolites and dacites ranging from 2.25-20, but has a low 239 

Kd in augite ~0.5 (GERM, 2013). In contrast, Zr is incompatible in both plagioclase (Kd ~0.15) and 240 

augite (Kd ~0.25). Incorporation of increasing amounts of a mixture of 2:1 plagioclase: augite in the 241 

ablated material (proportions taken from XRD mineral abundances) will cause Sr to increase and Zr 242 

to decrease compared to their concentrations in pure, microlite-free rhyolitic glass analyses (Pearce, 243 

2014). The pure glass, which represents the frozen melt phase present at the time of eruption, forms 244 

the cluster of analyses at <113 ppm Sr and between ~570-770 ppm Zr (see Figures 4A, 4B). Figure 4C 245 

shows Zr-Y data. At the highest Zr concentrations (>~600 ppm Zr) analyses from all samples are 246 

coincident and are of the pure glass phase, whereas in samples contaminated by the presence of 247 

increasingly abundant phenocrysts (<~500 ppm Zr) the data spread out, with higher Y concentrations 248 

in the more distal samples from ODP core 1233D and Lago Lepué. Yttrium is compatible in augite in 249 

rhyolitic magmas (Kds 2.6-7.6, GERM, 2013) and this spread in Y concentrations is likely to be the 250 

result of the incorporation of higher quantities of augite in the ablated material. The difference from 251 

the more proximal samples from Lago Paso Blanco, Puente Aguila and La Zeta, Esquel, may reflect 252 

differences in the mineralogical composition of the magma (particularly the augite:plagioclase ratio) 253 

from different phases of the eruption, particularly from the later eruption of less compositionally 254 

evolved magma in a zoned magma body (see Alloway et al., 2017a).  This behaviour is also shown by 255 

the REE, where the middle (M)REE (e.g. Gd, Ho, Er) show similar behaviour to Y and are more 256 

compatible in augite (Rollinson, 1993; GERM, 2013) than the light (L)REE (La, Ce) and heavy (H)REE 257 

(Yb, Lu) which compare better with the more proximal samples. Figures 4D and 4E show data for Zr-258 

Th and Zr-Nb from single glass shards. Thorium and Nb, like Zr, are highly incompatible elements 259 

with very low Kds into plagioclase and augite, and because of this they show consistent ratios to Zr, 260 

giving a tightly clustered array of data spreading from low concentrations where the analysed shard 261 

contained abundant phenocrysts, to the pure glass (i.e. magmatic) composition at high Zr contents. 262 

The consistency of these ratios, and equally the ratios of other incompatible elements in the glass 263 

shards such as Hf, Ta, REE, and U, supports the correlation of all of these Lepué Tephra samples.  264 

Figure 5 about here 265 
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The dilution effect of the incorporation of phenocrystic material is also seen in chondrite-normalised 266 

average REE data for all single shard analyses (Figure 5A). REE data from individual samples show 267 

similar, parallel patterns and slopes, but average concentrations vary by a factor of about 2 because 268 

of the dilution from phenocryst ablation. When only the low Sr (<113 ppm) analyses are averaged 269 

(Figure 5B), these represent the composition of the pure (phenocryst-free) glass phase (i.e. the 270 

quenched magma), which has a higher average REE concentration, and the separate samples show a 271 

narrower compositional range. No analyses of Lepué Tephra glass from Lago Lepué and only two 272 

analyses from ODP core 1233D have less than 113 ppm Sr, indicative of the high phenocryst contents 273 

in these later erupted, more distal deposits (Alloway et al., 2017a), presumably sourced from a 274 

deeper, less evolved portion of the magma body feeding the eruption.  As well as higher overall REE, 275 

these low-Sr glass analyses also show a deeper negative Eu anomaly than the average of all data, a 276 

result of the preferential incorporation of Eu2+ into plagioclase (which is excluded from the low Sr 277 

averages). These data also confirm the regional correlation of the Lepué Tephra, but are limited to a 278 

few proximal sites and cores where fresh glass samples could be obtained: no fresh glass was 279 

recovered from the highly weathered, thin distal deposits from, for example, Isla Grande de Chiloé. 280 

To assess the correlation of these deposits, bulk analyses of proximal and distal deposits were 281 

performed. 282 

5.2 Bulk sample and accretionary lapilli trace element analyses 283 

Figure 6 shows a selection of trace elements plotted against Zr from solution nebulisation ICP-MS 284 

analyses of bulk tephra and individual accretionary lapilli from the Lepué Tephra, grouped according 285 

to depositional distance from Volcán Michinmahuida. Other weathered tephra layers which are 286 

stratigraphically associated with the Lepué Tephra, and from field evidence were interpreted to be 287 

of a Volcán Michinmahuida source (e.g. Figure 2C) are plotted for comparison: they are not 288 

correlatives of the Lepué Tephra, but nonetheless show similar compositional attributes (Alloway et 289 

al., 2017a). Rubidium vs Zr (Figure 6A) show a very wide spread of the data, with the distal samples 290 

showing low Rb at high Zr, although many of the proximal samples and accretionary lapilli are of 291 

similar composition. Rubidium is a soluble and mobile alkali metal, and in the highly altered and 292 

oxidised distal samples it is likely to have been removed in solution from the original tephra, while Zr 293 

(insoluble) will not have been affected, remaining in the tephra as an immobile element. It is thus 294 

possible that Zr may have been concentrated during the weathering of the tephra by the relative 295 

loss in mass through dissolution by hydrolysis of original glass and mineral components, taking 296 

soluble components such as the alkalis, Ca and Mg (as dissolved ions) and silica (as silicic acid) from 297 

the tephra during weathering (Faure, 1998; Churchman and Lowe, 2012). This oxidative weathering 298 

would leave a leached residue also relatively enriched in “insoluble” Al and Fe and Mn (Tardy and 299 
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Nahon, 1985). In contrast, two bulk samples of Lepué Tephra from ODP core 1233D (core depths of 300 

14.68 m and 14.80 m, each analysed in triplicate) shows Rb concentrations about twice the average 301 

of proximal bulk and accretionary lapilli samples. The high Rb in the ODP 1233D core sample seems 302 

most likely to result from the mixing of marine clays, generally rich in Rb (Li and Schoonmaker, 2003) 303 

into the tephra layer by bioturbation and/or co-deposition (Todd et al., 2014). Because of this, the 304 

analysis of a bulk sample of this marine occurrence of distal tephra (a mixture of tephra and marine 305 

clay) is likely to not be fully representative of the deposit as a whole, but no samples of the enclosing 306 

marine sediment were analysed in this study, and no sediment composition data from ODP core 307 

1233D have been published. The individual glass shard chemistry (from unaltered glass, which is 308 

frequently well-preserved in marine sediments) however clearly identifies it as Lepué Tephra (see 309 

above).  310 

Figure 6 about here 311 

Yttrium is plotted against Zr from bulk tephra analyses in Figure 6B and this, somewhat 312 

unexpectedly, shows a wide spread of the Y compositions. More commonly Y would generally be 313 

expected to show a good correlation with Zr showing a well-defined, consistent ratio (e.g. Pearce et 314 

al., 2002; Alloway et al., 2015; Alloway et al., 2017b; Martin-Jones et al., 2017b). This is a result of Y 315 

being generally both incompatible and immobile, although in some circumstances it can be 316 

incorporated in some phenocryst phases, e.g. augite (with MREE, see above) and amphibole or 317 

garnet at high pressure (e.g. Harangi et al., 2007), although these are not observed in the Lepué 318 

Tephra . Notably for the Lepué Tephra, the distal cover-bed deposits show the lowest Y/Zr ratios (i.e. 319 

lowest Y) whist the proximal samples and accretionary lapilli are similar in composition, and this 320 

behaviour is also seen with Rb (Figure 6A). This reduction in concentration of Y in distal deposits 321 

suggests that it too has been mobilised during alteration of the tephra in this hyper-humid high-322 

weathering environment. Similar behaviour to Y is shown by all the REE, which also have the lowest 323 

concentrations in the distal deposits (see data in Alloway et al., 2017a). Uranium (Figure 6C) shows a 324 

moderate spread in concentrations and U/Zr ratio with the distal samples showing the lowest U/Zr 325 

ratio but the distal samples do not show the marked depletion displayed by Y and the REE.  326 

However U, like Rb, in the ODP 1233D core samples is about twice the concentration of proximal and 327 

accretionary lapilli bulk analyses, and this is again consistent with mixing with marine sediments 328 

which are generally relatively high in U (Li and Schoonmaker, 2003). This is particularly true if the 329 

marine sediments are rich in organic material which promotes the reduction of the conservative 330 

uranyl tricarbonate species present in oxic sea water causing the precipitation of uraninite  (Pattan 331 

and Pearce, 2009). OF the terrestrial deposits, the proximal Lepué Tephra samples have the highest 332 

U/Zr ratio, with lower U/Zr in distal samples and some accretionary lapilli, which is consistent with 333 
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oxidative weathering causing mobilisation of U. This is reflected in the general reddening of distal 334 

deposits which results from the formation of insoluble Fe-oxides (presumably hematite, ferrihydrite, 335 

or maghemite, e.g. Churchman and Lowe, 2012). Thorium and Nb are plotted against Zr in Figures 6D 336 

and 6E, and show highly consistent ratios to Zr across the fall-out range, with no discernible 337 

difference between proximal, distal or accretionary lapilli samples, apart from the higher Th in the 338 

ODP 1233D samples, which can again be attributed to mixing with marine sediment where Th is 339 

generally associated with the detrital clay fraction (Myers and Wignall, 1987). It is notable that both 340 

Nb and Th are highest in the weathered, distal occurrences of the Lepué Tephra, again suggesting 341 

their relative enrichment in insoluble phases (behaviour similar to Zr), resulting from the removal by 342 

leaching of the more soluble components of the deposit, these “mobile” elements here including 343 

REE, Y and U.  344 

Figure 7 about here 345 

The REE data from the bulk Lepué Tephra analyses are presented in Figure 7, averaged as groups 346 

according to their occurrence or depositional distance from Volcán Michinmahuida. There is a clear 347 

variation in the overall REE content of the samples with the highest concentrations shown by the 348 

accretionary lapilli and the proximal samples, with low concentrations in ODP core sample 1233D 349 

and in the distal samples. Modest negative Eu-anomalies are displayed in all samples, a result of the 350 

extraction of feldspar during the evolution of the parent magma, and a distinct positive Ce-anomaly 351 

is shown by the distal samples. The low concentrations in the ODP 1233D core sample may relate to 352 

dilution of the primary tephra by marine sediment. In the distal samples, low REE concentrations are 353 

related to mobility in these particular weathering conditions (cf. mobility of Y described above). In 354 

contrast to the LA-ICP-MS glass data, the bulk sample REE data (Figure 7) do not show smooth 355 

normalised curves (cf. Figure 5), but are more irregular displaying a series of evenly spaced “humps” 356 

and intervening “cusps” with increasing atomic number. These features are most notable in the 357 

proximal and distal terrestrial (cover-bed) samples and in the accretionary lapilli, with the cusps 358 

between Nd-Pm, at Gd, and between Ho-Er, but these are not displayed by the ODP 1233D core 359 

samples. This is a manifestation in the REE of the “tetrad effect” (Peppard, 1969; Bau, 1996) where 360 

deviations from a smooth, steady change in REE behaviour related to ionic radius contraction occurs 361 

to give cusped REE chondrite-normalised patterns. This behaviour, often referred to as non-CHARAC 362 

– i.e. non-CHArge-RAdius Controlled (Bau, 1996) – results  from the increased stability of REE ions at 363 

quarter, half, three-quarter, and complete filling of the 4f electron shell and these effects have been 364 

observed in a range of natural samples. Examples of the occurrence of tetrad effects in the REE 365 

which may be relevant to the study of the weathered Lepué Tephra encompass magmatic processes 366 

in granite magmas including late stage fractional crystallisation (Irber, 1999; Zhenhua et al., 2002); 367 
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extended groundwater interaction and alteration of granitic rocks (Masuda and Akagi, 1989; 368 

Takahashi et al., 2002); co-precipitation of REE in Fe-Mn oxyhydroxides from solution (Bau, 1999; 369 

Kawabe et al., 1999); processes occurring during argillic alteration (Abedini et al., 2018a) and the 370 

formation of  Ti-rich bauxites (Abedini et al., 2018b), and during chemical weathering associated 371 

with the formation of terre rosse (Feng, 2010; Feng et al., 2011).  372 

In the case of the Lepué Tephra, the formation of a tetrad effect during any late-stage magmatic 373 

processes can be excluded as the individual glass shard chemistry shows no signs of any tetrad or 374 

non-CHARAC effects (see Figure 5B). The Lepué Tephra displays “M-type” tetrad effects, where the 375 

cusps form low points between convex-upward curved segments and this pattern has been 376 

described in weathered materials  with the opposite “W-type” curve being reported in groundwater 377 

(Masuda and Ikeuchi, 1979; Masuda et al., 1987; Takahashi et al., 2002). The evidence indicates that 378 

post-depositional terrestrial weathering in the soil-forming environment generated the observed 379 

REE distributions within the Lepué Tephra. This finding is further supported by consideration of REE 380 

behaviour in Fe-oxyhydroxides that formed in the altered Lepué Tephra to generate the red-orange 381 

brown colouration. Secondary Fe-Mn oxyhydroxides formed during weathering or alteration 382 

frequently display strongly developed tetrad effects (Bau, 1999; Kawabe et al., 1999; Feng, 2010; 383 

Feng et al., 2011; Abedini et al., 2018b). In addition Fe-Mn oxyhydroxides, formed by precipitation 384 

from oxidising waters, will also preferentially concentrate Ce4+, the oxidised form of Ce, which can 385 

lead to the generation of a positive Ce anomaly (Bau, 1999; Leybourne and Johannesson, 2008; Bau 386 

and Koschinsky, 2009; Feng, 2010) as is observed in the distal cover-bed Lepué Tephra deposits (see 387 

Figure 7). The bulk sample REE data from ODP core 1233D shows neither any tetrad effect nor any 388 

significant Ce anomaly, and again this indicates that these features in the cover-bed samples are not 389 

primary magmatic features, but must be associated with surface, post-depositional processes which 390 

do not affect the marine-deposited ODP core sample.  391 

Figure 8 about here 392 

Figure 8 shows the magnitude of any Ce anomaly (expressed as Ce/Ce*) present in both the glass 393 

analyses by LA-ICP-MS and the bulk sample analyses by SN-ICP-MS grouped by depositional distance 394 

from Volcán Michinmahuida plotted against La (in ppm) from the Lepué Tephra. The Ce anomaly is 395 

calculated here by Ce/Ce* = 2logCeN / (logLaN + logPrN) where CeN etc. represents the chondrite 396 

normalised concentration. Ce/Ce* >1 indicates a positive Ce anomaly. The single glass shard analyses 397 

show little or no Ce anomaly, clustering around Ce/Ce* ~1, with La decreasing from about 60 ppm in 398 

the pure glass phase (i.e. the magmatic composition) to a few ppm as increasing amounts of 399 

phenocryst are incorporated in the analyses (La, and other REE are moderately to highly 400 

incompatible in the major phenocryst phases in the Lepué Tephra). In the bulk analyses of cover-bed 401 
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samples, however, it is clear that the magnitude of the Ce anomaly increases as the La concentration 402 

decreases, with the majority of distally-deposited samples showing a marked positive Ce anomaly 403 

(Ce/Ce* up to ~1.5) and low La. This results from the leaching of trivalent REE (including La and Pr) 404 

from the samples while Ce (present as Ce4+ in this oxidising weathering environment) is retained, 405 

most likely to be sorbed on to an Fe-oxyhydroxide phase (Bau, 1999; Feng, 2010).  Even some of the 406 

thicker, proximal cover-bed deposits, and some accretionary lapilli show a reduction in La (and other 407 

LREE) compared to a typical bulk composition of around 30 ppm, the reduced Le and Pr generating 408 

an increase in Ce/Ce*, indicating that some of these samples also did not escape the ravages of this 409 

oxidative chemical weathering. 410 

 411 

6. Chemical correlation of the Lepué Tephra 412 

With only a limited number of samples from which fresh glass could be recovered for single grain 413 

analyses, and the problems of extensive weathering noted in bulk sample analyses where mobility of 414 

elements generally regarded as immobile such as the REE can be observed, it is appropriate to ask 415 

whether geochemistry can be used to correlate the Lepué Tephra across its entire fallout region.  416 

The direct comparison of single-grain and bulk sample trace element analyses have been widely 417 

cautioned against because of the problems of variable amounts of phenocryst incorporation in LA-418 

ICP-MS analyses, and the possibility for incorporation of non-juvenile material, alteration and/or 419 

various sedimentary fractionation effects in bulk tephra analysis can complicate their interpretation 420 

(Pearce et al., 2002; Pearce et al., 2007; Pearce et al., 2008; Pearce, 2014; Pearce et al., 2014; 421 

Martin-Jones et al., 2017a). The Lepué Tephra provides an excellent opportunity to test the use of 422 

such data sets in correlation studies. 423 

Figure 9 about here 424 

Figure 9 compares selected bulk and single grain glass shard trace element data from all samples of 425 

the Lepué Tephra determined by either SN-ICP-MS or LA-ICP-MS. The concentrations of the 426 

elements determined from the bulk samples are both lower and more limited in range than the glass 427 

shard data, because the bulk samples are a mix of glass and mineral (maybe with or without lithics) 428 

material whereas the single shard data records the range from the pure glass to almost entirely 429 

mineral compositions (where microphenocrysts are abundant). However, for the highly incompatible 430 

and immobile elements (Zr, Nb, Th, Hf, and Ta, Figures 9A-9C) inter-element ratios are identical for 431 

the bulk samples and single shard analyses. For example, Zr/Th is 48.3 ± 8.7 in the bulk sample 432 

analyses, and 47.1 ± 6.5 in the single shards, and Zr/Nb is 22.8 ± 4.5 in the bulk sample analyses, and 433 

23.6 ± 3.2 in the single shards. These ratios therefore allow the comparison of bulk analyses with 434 
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single grain data, and confirm the correlation of the Lepué Tephra across its fall-out despite using a 435 

mix of data from different analytical methods. Although the Ta data shows a wider spread in LA-ICP-436 

MS data because of the lower instrument sensitivity (Pearce et al., 2004), the ratio Hf/Ta is also 437 

indistinguishable between the two sets of data (i.e. bulk and single-grain analyses). In contrast, 438 

Figures 9D-9F show the comparison for the two analytical methods for least one element per graph 439 

which is mobile in the soil-forming environment (e.g. Sr, La, Rb, Cs), and it is clear that the single-440 

grain data cannot be compared with the bulk analyses for these mobile elements. Thus, while 441 

limited confirmation of the correlation of the Lepué Tephra was achieved using a few samples by 442 

Alloway et al. (2017a), confirming the stratigraphic, field and morphological correlations, the 443 

comparison here of element pairs from Zr, Hf, Nb, Ta, and U to give ratios, which are neither 444 

influenced by the presence of phenocrysts in the ablated material, nor by weathering in the cover-445 

bed succession, provides a more robust method of correlation using this multi-method analytical 446 

approach.  447 

Incompatible trace element ratios from the Lepué Tephra also differ from other Holocene tephra 448 

deposits in the same region.  The slightly younger Chana Tephra, ca 9750 cal a BP (Alloway et al., 449 

2017b), previously widely referred to as Cha-1, closely overlies the Lepué Tephra at many sites and 450 

has Zr/Nb of 8.4 ± 9 and Zr/Th of 5.6 ± 0.4 (162 LA-ICP-MS individual glass shard analyses), both 451 

much lower and distinct from the Lepué Tephra. Pumices from an early Holocene (~11.7 ka cal BP) 452 

tephra deposit (RMV) erupted from the Volcán Mentolat, southern Chile,  have  Zr/Nb of 24.9 ± 3.7 453 

and Zr/Th of29.7 ± 3.7 (Weller et al., 2019), again different from the Lepué Tephra.  Three younger 454 

(late Holocene) tephra deposits from Volcán Melimoyu  have bulk sample (solution ICP-MS analyses) 455 

Zr/Nb ratios of  18.2 ± 0.1 (Mm-1p), 18.1 ± 0.1 (Mm-1s) and 18.7 ± 0.6 (Mm-2), and Zr/Th ratios of 456 

38.3 ± 0.2 (Mm-1p), 45.5 ± 0.5 (Mm-1s) and 34.8 ± 2.1 (Mm-2) (Geoffroy et al., 2018), and again the 457 

ratios differ significantly from the Lepué Tephra. Thus, these highly incompatible element ratios may 458 

also serve to identify individual sources in the area, and allow discrimination between tephra 459 

deposits. As yet, there are no data from the closely associated intensely weathered scoriaceous 460 

lapilli tephra deposits from other local volcanoes which are likely to include Volcánes Corcovado, 461 

Yate or Calbuco (see Figure 2C). 462 

 463 

7. Conclusions 464 

The elements Zr, Nb, Hf, Ta, and Th are highly incompatible in igneous systems, preferring to remain 465 

in the magma rather than entering crystallising phases, even in relatively evolved rhyolitic magmas, 466 

prior to the onset of zircon or other accessory phase crystallisation. This is the case for the ~71% SiO2 467 
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magma (containing abundant phenocrysts to give an overall intermediate bulk-rock composition), 468 

which erupted to form the Lepué Tephra. Many other elements also behave incompatibly in rhyolitic 469 

magmas (for example, the REE, Y, and U), but of the incompatible elements it is only Zr, Nb, Hf, Ta, 470 

and Th, which remain immobile once exposed to weathering after deposition in the hyper-humid 471 

andic soil-forming environment prevalent in this region of northern Patagonia/southern Chile. In 472 

these hyper-humid, oxidising conditions the REE, Y and U become mobilised, with significant 473 

fractionation of the REE occurring to leave weathered cover-bed tephra deposits with irregular 474 

chondrite normalised REE patterns and positive Ce anomalies. These features result from the non-475 

CHARAC behaviour of the REE and the preferential sorption of Ce4+ onto secondary Fe-oxyhydroxides 476 

precipitated as residual phases during the alteration of the tephra. The effects of this sub-aerial 477 

oxidative weathering are most extensive on the thinner, more distal terrestrial tephra deposits, but 478 

even some of the thicker, proximal deposits (which may be up to ~2 m thick) are not immune to the 479 

compositional changes imparted by weathering, as observed in some of the accretionary lapilli bulk 480 

sample analyses. The ODP 1233D core sample is, however, unaffected by weathering, but its bulk 481 

composition would appear to include incorporated marine sediment relatively rich in U, Th and Rb, 482 

which moves if away from the bulk analyses of the Lepué Tephra. However, data from unaltered 483 

glass shards within the tephra samples from ODP 1233D indicates this is clearly Lepué Tephra.  484 

For the terrestrial deposits of the Lepué Tephra, only a few cover-bed samples yield glass shards 485 

suitable for LA-ICP-MS trace element analysis, and intense weathering by hydrolysis and high rainfall 486 

have resulted in the leaching of elements (solutes) from the bulk tephra making straightforward 487 

comparisons of bulk analyses problematic. Because of this alteration and loss by leaching, chemical 488 

correlation across the entirety of the tephra fall cannot easily be achieved by consideration of data 489 

from only one analytical method. The consideration of a set of ratios for elements that are both 490 

incompatible and immobile, however, allows data from bulk and single grain analytical methods to 491 

be compared. For the fall-out region of the Lepué Tephra, it is the ratios of Zr, Nb, Hf, Ta, and Th that 492 

provide a basis for robust correlation and inter-method comparison, particularly when chemical 493 

correlations are considered alongside detailed stratigraphic information. These elements are only a 494 

subset of those elements generally considered to be immobile, a group which would typically also 495 

include the REE, Y, and U.  In considering the compositional data from the Lepué Tephra, Alloway et 496 

al. (2017a) concluded that “These results indicate the limited utility of bulk analyses in the absence 497 

of associated chronostratigraphic contexts to be able to adequately differentiate [Volcán 498 

Michinmahuida]-sourced eruptives”. While there are certainly challenges in interpreting bulk 499 

chemical data, particularly from such variably altered, intermediate tephra deposits, the careful 500 

consideration of the data (as presented here) can allow reliable correlations to be made, which 501 
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substantiate the stratigraphic information, and can allow these bulk analyses to be linked in to the 502 

single-grain glass shard chemistry. Consideration of Zr, Hf, Nb, Ta and Th in this high weathering 503 

environment specifically overcomes the issue of element mobility (as displayed by the REE here), 504 

and their incompatibility allows for robust inter-method comparisons. In the case of the Lepué 505 

Tephra, the behaviour of the more mobile elements in this setting (e.g. the REE) from bulk sample 506 

analysis also gives an indication of the conditions (i.e. oxidising) in which the weathering occurred. 507 

Thus, in the most unpromising of analytical or geochemical conditions, ratios of the highly 508 

incompatible and immobile elements (Zr, Hf, Nb, Ta, Th) enable the comparison of bulk and single 509 

grain analyses, and provide a means for robust compositional tephra correlation, while the REE, Y, U 510 

are mobilised by weathering in these hyper-humid soil-forming environments and must be regarded 511 

accordingly. This approach using element ratio data from bulk and single grain analyses for immobile 512 

incompatible elements has great potential in the study of weathered, phenocrystic tephra deposits. 513 

This new approach is especially important in helping enable such variably weathered tephras to be 514 

correlated over much great distances than previously attained, and hence their usefulness as 515 

chronostratigraphic tools in multiple Quaternary-related studies is considerably enhanced. 516 
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Tables 530 

 531 

Table 1. Mineralogical abundances (%) in samples of Lepué Tephra measured by X-ray diffraction. 532 

“Na-An” is a plagioclase of sodian anorthite composition from JCPDS Data File 00-041-1481. 533 

Distances measured as straight line from the top of Volcán Michinmahuida. Abbreviations: Qtz- 534 

quartz; Ti-Mt – titanomagnetite; Mt – magnetite. Other phases identified as present in the Lepué 535 

Tephra are listed, but these are <~1%, and in some cases these more exotic mineral species are likely 536 

to be an artefact of the software peak fitting at such low abundances. Nanocrystalline minerals, 537 

namely allophane and ferrihydrite, together with hydrous Fe-oxides (e.g. haematite) are likely to be 538 

present in these andic soils (Churchman and Lowe, 2012), but will not be specifically identified by 539 

XRD in this study.  540 

 541 

Sample Dist. 
km 

Aug. Na-
An 

Qtz Ti-
Mt 

Mt Other phases reported at trace amounts 
(treat identification with caution) 

Proximal 

Pum 4-1 18 22 71 7   Tremolite, leifite 

S5.1 22.5 37 56 6    

15J13S9C 31 29 65 6    

11J13S12-T2 38 33 60 8   Broad clay “peak” at 10° 2θ 

Distal 

9J13S5-T1 80 35 57 6  3  

8J13S2-T1 120 23 73 4   Leifite, eckermannite, rouvillite (carbonate) 

Chapo Rd S1-1 144 0 94 6   Humite, pigeonite? 

Accretionary lapilli (proximal) 

S8.3 (5) 25 25 68 7   Nimesite (clay kaolinite-serpentinite group) 

S9.1 (13) 29 30 64 1 4   

S13.1 (1) 38.5 31 59 10    

Cor-1 S1 (2) 41 41 53 6   Lizardite (clay kaolinite-serpentinite group) 

  542 
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Figures – submitted as 2400 dpi eps files 543 

Figure 1. Map of the study area indicating the distribution and sample locations of the Lepué Tephra. 544 
Open red circles are lake cores occurrences, open green diamonds are thin (typically <10 cm) tephra 545 
samples from cover-bed sequences referred to as “distal” from Volcán Michinmahuida, and open 546 
blue squares are thicker tephra samples (>> 30 cm) from cover-bed sequences “proximal” to Volcán 547 
Michinmahuida. ODP sites 1233D is marked where a 12 cm thick layer of Lepué Tephra is recorded. 548 
Dashed ellipse marks the 1 cm isopach, and is the approximate extent of Lepué Tephra in visible in 549 
cover-bed sequences. Thickness data for individual occurrences, locality information and 550 
stratigraphic logs can be obtained from Alloway et al. (2017a). Abbreviations: L. Ll. – Lago 551 
Llanquihue, V. Mm. – Volcán Melimoyu (see Geoffroy et al., 2018), V. Ch. – Volcán Chaiten (see 552 
Alloway et al., 2017b), V. Co. – Volcán Corcovado. 553 

Figure 2. The range of field occurrences of Lepué Tephra throughout northwest Patagonia. For 554 
locality and stratigraphic information pertaining to each site see Alloway et al. (2017a). A. Proximal 555 
occurrence just north of Chaitén (Section 8, 17 km west of Volcán Michinmahuida). Lower arrow 556 
indicates the weathered scoriaceous orange lapilli-rich basal layer (magmatic phase) of Lepué 557 
Tephra eruption, whereas the upper arrow indicates the grey poorly sorted massive to weakly 558 
stratified scoriaceous ash layer (phreatomagmatic phase). B. Accretionary lapilli in proximal deposit 559 
from Section 8, the largest here are ~2.5 cm in diameter. C. Massive grey Lepué Tephra (arrowed) 560 
(Section 1, 40 km south of Volcán Michinmahuida) enveloped by strongly weathered orange-561 
coloured pumice-lapilli rich tephra beds and andic soil interbeds. Spade (marked) for scale (~ 1m 562 
long) resting on lower bedrock exposure. D. Distal Lepué Tephra, 12 cm thick,  from La Paloma, 170 563 
km NNW of  Volcán Michinmahuida, just north of Puerto Montt. E. Lepué Tephra forming 564 
discontinuous cemented ash pods overlying glacial deposits at Queilen, Isla Grande de Chiloé , 85 km 565 
west of Volcán Michinmahuida. F. Lepué Tephra forming subtle discontinuous cemented ash pods ~ 566 
3 cm in diameter (inclined arrows), approximately 30 cm below the diffuse white rhyolitic distal 9.7 567 
ka Chana Tephra (between upper horizontal arrows, formerly Cha-1, see Alloway et al., 2017b) at the 568 
Cholgo section, 85 km north of Volcán Michinmahuida. This is Section A of Watt et al. (2011), but 569 
they do not record the occurrence of any tephra below the Chana Tephra. Knife is 20 cm long.  570 

Figure 3. Back scattered electron images of individual glass shards from the Lepué Tephra, showing 571 
the range of microlite contents and vesicularity in pairs of shards from three samples: A-B – Lago 572 
Lepué, Chiloé  (distal); C-D – ODP core 1233D (distal); D-E – Puente Aguila Road Section 5, ~20 km 573 
NNW of Volcán Michinmahuida (proximal) (see Figure 1 and Alloway et al., 2017a). In each case low 574 
microlite contents are illustrated on the upper row (A, C, E) and high microlite contents on the lower 575 
row (B, D, F). Note different scale bars for different images of either 10 μm (A, C, D) or 100 μm (B, E, 576 
F). In microlite rich samples (and some samples with relatively “low” microlite contents), it is 577 
impossible to place a 20 μm diameter LA-ICP-MS analysis without ablating phenocrystic material. 578 

Figure 4. Plots of selected trace element concentrations for single glass shard analyses determined 579 
by LA-ICP-MS. See text for discussion. All concentrations in ppm.  580 

Figure 5. A. Plot of chondrite-normalised average composition of REE for all single shard analyses of 581 
samples analysed by LA-ICP-MS. B. Plot of chondrite-normalised average composition of REE for 582 
samples analysed by LA-ICP-MS with <113 ppm Sr, i.e. those analyses of “pure” glass, free from the 583 
ablation of phenocrystic material. Note no samples from Lago Lepué have less than 113 ppm Sr. See 584 
text for discussion. Chondrite compositions from Sun and McDonough (1989). 585 

586 
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Figure 6. Plots of selected trace elements against Zr for solution nebulisation ICP-MS analyses of bulk 587 
tephra and individual accretionary lapilli from the Lepué Tephra. Analyses are grouped according to 588 
depositional distance from Volcán Michinmahuida (see Figure 1). “Associated tephra” indicates 589 
other weathered tephra layers stratigraphically associated with the Lepué Tephra (see for example 590 
Figure 2C) and, based on field evidence, were initially interpreted to be of a Volcán Michinmahuida 591 
source (Alloway et al., 2017a). All concentrations in ppm. 592 

Figure 7. Chondrite-normalised average composition of REE for grouped Lepué Tephra deposits, 593 
analysed by SN-ICP-MS. Some groups show the presence of “M-type” tetrad effects, notably 594 
between Gd and Lu in proximal, distal and accretionary lapilli samples (note the relatively high 595 
concentrations of Tb and Tm-Yb compared to neighbouring REE). Arrows mark the boundaries 596 
between the four individual tetrads which include La-Nd, Sm-Gd, Gd-Ho and Er-Lu. The second 597 
tetrad (Sm-Eu) is often unclear as it includes Eu, which shows variable oxidation states leading to the 598 
common occurrence of anomalous behaviour in magmatic systems, and should include Pm, the 599 
highly radioactive REE which is no longer present at the Earth’s surface. See text for discussion. 600 
Chondrite compositions from Sun and McDonough (1989). 601 

Figure 8. The magnitude of any Ce anomaly (expressed as Ce/Ce* where values >1 indicate a positive 602 
Ce anomaly) compared to La concentration (in ppm) form the Lepué Tephra from both LA-ICP-MS 603 
analyses of single glass shards, and bulk analysis of samples by SN-ICP-MS, grouped by depositional 604 
distance/setting from Volcán Michinmahuida.  605 

Figure 9. Comparison of selected trace element data from the Lepué Tephra determined by either 606 
LA-ICP-MS or SN-ICP-MS. For the highly incompatible and highly immobile elements (Zr, Nb, Hf, Ta, 607 
Th) element ratios are identical for the two methods applied and provide a means for correlation. All 608 
concentrations in ppm.  609 

  610 
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