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Fuzzy Knowledge-Based Prediction Through
Weighted Rule Interpolation
Fangyi Li, Ying Li , Changjing Shang , and Qiang Shen

Abstract—Fuzzy rule interpolation (FRI) facilitates approxi-
mate reasoning in fuzzy rule-based systems only with sparse
knowledge available, remedying the limitation of conventional
compositional rule of inference working with a dense rule base.
Most of the existing FRI work assumes equal significance of the
conditional attributes in the rules while performing interpolation.
Recently, interesting techniques have been reported for achiev-
ing weighted interpolative reasoning. However, they are either
particularly tailored to perform classification problems only or
employ attribute weights that are obtained using additional infor-
mation (rather than just the given rules), without integrating
them with the associated FRI procedure. This paper presents
a weighted rule interpolation scheme for performing prediction
tasks by the use of fuzzy sparse knowledge only. The weights of
rule conditional attributes are learned from a given rule base to
discriminate the relative significance of each individual attribute
and are integrated throughout the internal mechanism of the FRI
process. This scheme is demonstrated using the popular scale
and move transformation-based FRI for resolving prediction
problems, systematically evaluated on 12 benchmark prediction
tasks. The performance is compared with the relevant state-of-
the-art FRI techniques, showing the efficacy of the proposed
approach.

Index Terms—Attribute weighting, intelligent prediction,
knowledge interpolation, sparse knowledge.

I. INTRODUCTION

UNLIKE knowledge-based classification systems using
inference rules that are used to determine categorical

class labels for unknown data, prediction systems facilitate
the forecasting of continuous-valued outcomes of a certain
problem being modeled by the system. Such systems enjoy
a wide range of successful real-world applications, includ-
ing medical case assessment [1]; object tracking and video
surveillance [2], [3]; financial trend forecasting [4]; civil
industry simulation [5]; and generic problem of time series
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analysis [6], [7]. A variety of techniques have been developed
for knowledge-based prediction, entailing the transparency of
both the system model and the inference process of running the
model, amongst which are fuzzy rule-based prediction systems
(e.g., [8]–[10]).

Fuzzy rule-based systems provide a powerful tool to
perform modeling and reasoning tasks involving imprecision
and vagueness. The use of semantics-rich rules also strength-
ens the inference interpretability for human users. This is often
supported by employing the compositional rule of inference
(CRI) [11], involving a dense fuzzy rule base which fully
covers the entire problem domain. If, however, the problem
domain is not completely covered by the given rules, there
may exist observations that fail to activate any existing rules to
compute a required prediction. Fuzzy rule interpolation (FRI)
plays an approximate and useful role in such situations where
only an incomplete rule base is available [12], [13]. Such a
rule base is termed as a sparse rule base hereafter. FRI works
with this form of sparse knowledge, attempting to reduce, if
not to completely remove, the restriction of CRI for cases
where no conclusion may be derived due to no rules matching
a new observation. This offers an alternative way to predict
an approximately inferred prediction outcome.

Many FRI methods exist (e.g., [14]–[21]) including
advanced techniques that are capable of dealing with inter-
polation by the use of fuzzy rules that involve multiple
conditional variables. There is a common problem existing
in these FRI approaches, where the conditional attributes
within the rules are presumed to be of equal significance for
interpolation. As such, incorrect interpolated outcomes may
result since different domain attributes may generally make
different contributions to the prediction process. Recently,
however, a number of methods have been presented for FRI
working with multiple conditionals associated with different
weights [22]–[26]. Nevertheless, two key questions remain
to be further investigated in developing such weighted FRI:
1) how the weights are generated and 2) whether these weights
are integrated within the underlying, nonweighted FRI.

Regarding the first question, one of the possible answers
is to assign the predefined weights by domain experts [27].
However, this will require human intervention and, hence,
adversely reduce the flexibility of the resulting fuzzy systems.
Automatic weight learning schemes are obviously preferred.
In particular, there has been work developed that utilizes
genetic algorithms (GAs) to induce from data the weights of
rule conditionals, thereby strengthening the effectiveness of
FRI [22]. Yet, such techniques introduce much more additional
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computation and also the required specification of many GA
parameters. Alternatively, the weights may be determined by
a distance measure between the information content of an
observation and that of an conditional attribute within a given
rule. The information concerned is related to the character-
istic points of the fuzzy sets that specify the corresponding
attributes, including the central point [23] or the ranking
value [24] of a fuzzy set. The weights are assigned dif-
ferently to each conditional fuzzy set that appears in each
and every different rule, incurring significant extra computa-
tion, and reducing the interpretability of the weighted rules.
Different from these, the weight learning schemes as reported
in [26], form an implementation of the “wrapper” approach,
mixing up FRI-based inference and learning from data.

For the second question, the existing techniques generally
work by artificially creating an overall weight to each of the
rules before running the weighted rules in FRI. Such weights
are normally computed through aggregating the weights calcu-
lated for individual conditionals, thereby involving additional
aggregation procedures. Situations become even more compli-
cated when dealing with different fuzzy interpolative reasoning
systems that may be constructed from different perspectives,
coping with different aspects of the fuzzy rule model, e.g.,
piecewise fuzzy entropies [23] and ranking scores [24] of
the fuzzy values. The resulting weights are exploited rather
differently, depending on what underlying FRI mechanism
is employed. Most significantly, within these techniques, the
computed weights are decoupled from the internal working
procedures of the particular FRI method used. This makes
the interpretation of the resulting FRI process more difficult
than explicitly combining the weights with the procedural
steps.

Most recently, there has been an attempt to address both the
aforementioned issues with initial success [28]. However, that
seminal work is tailored to handle knowledge-based classifi-
cation problems only. Having taken notice of this, in order to
perform fuzzy rule-based prediction with sparse rule bases, it
is desirable to exploit a way to effectively evaluate the attribute
variables and to organically integrate the resulting attribute sig-
nificance measures into FRI algorithms. This should be done
by the use of only the given knowledge, in terms of the rule
base without resorting to any real observations or triggering
any FRI or CRI inference process.

There have been many proposals for assessing the capabil-
ities of domain attributes in their influence upon the potential
prediction outcome, including both supervised attribute evalu-
ation methods (e.g., [29] and [30]) and unsupervised methods
(e.g., [31] and [32]). Through making the assessment in a cer-
tain form of relationship (say, similarity) amongst the attributes
themselves, the unsupervised approach offers more flexibil-
ity, especially for prediction problems since the consequent
attribute is not required during the attribute evaluation pro-
cess. The adaptation of such an conditional attribute evaluation
method is employed here to weigh the relative rule condi-
tionals. The resulting weights, learned from the given sparse
rule base only, are integrated within the FRI to remedy the
adverse and restrictive assumption of weights having equal
significance.

The work is, herein, implemented by adapting the popular
transformation-based FRI (T-FRI) [17], [33] (that only deals
with rules whose conditional attributes are of equal signifi-
cance) with the weights being used to modify all components
of the T-FRI computation process. Comparative experimen-
tal investigations are carried out on prediction tasks of both
multivariate regression and time series forecasting. The results
show that the proposed approach is able to considerably reduce
the adverse impact of assuming equal significance of differ-
ent conditionals that has been commonly made in typical FRI
techniques. This helps to significantly improve the prediction
accuracy of systems using FRI.

The rest of this paper is structured as follows. Section II
presents the details of the proposed fuzzy sparse rule-
based interpolative scheme for prediction. Section III ana-
lyzes the computational complexity of the proposed approach.
Section IV reports on a systematic, comparative evaluation
over different prediction problems and discusses the experi-
mental results. Finally, Section V summarizes the contributions
of this paper and outlines interesting further research.

II. WEIGHTED FUZZY RULE INTERPOLATION

FOR PREDICTION

A fuzzy sparse knowledge-based inference mechanism for
prediction is presented in this section. A generic framework is
first outlined, followed by a description of the algorithm for
learning the weights of conditional attributes from the given
sparse rule base, and an implementation of integrating such
learned weights within T-FRI.

A. Framework for Sparse Rule-Based Prediction

To facilitate the illustration of the proposed work, with-
out losing generality, an original (sparse) fuzzy rule base
R = {r1, r2, . . . , rN}, where conditionals are not individu-
ally weighted, and an observation o∗ are represented in the
following format, respectively:

ri : if a1 is Ai
1 and a2 is Ai

2 and · · · and am is Ai
m, then z

is Zi

o∗ : a1 is A∗
1 and a2 is A∗

2 and · · · and am is A∗
m

where aj, j = 1, 2, . . . , m, are the conditional attributes; z is
the consequent attribute; Ai

j denotes the fuzzy set value taken
by aj in the rule ri; and Zi stands for the fuzzy set value of the
consequent attribute z in ri. For simplicity, triangular member-
ship functions are employed for explanation and evaluation in
this paper.

Given R and o∗, most of the conventional fuzzy rule-based
systems may be able to generate a required consequent by
the use of CRI firing the matched rule(s). If, however, the
rule base is sparse, where no rule matches the observation,
fuzzy interpolative inference can be utilized as an alternative
reasoning mechanism for deriving an estimated consequent.
The proposed method integrates both the conventional CRI
and a novel T-FRI technique (referred to as weighted FRI
hereafter) that is guided with the weights learned and assigned
to the conditionals. Through this integration, it is expected
to obtain more accurate prediction results by exploiting the
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Algorithm 1 Sparse Rule-Based Prediction

Input: • Rule base R = {r1, . . . , rN}, of N rules
• Observation o∗ = {A∗

1, . . . , A∗
m}, over m conditional

attributes
• Cardinalities of fuzzy partitions C = [c1, . . . , cm], over

attribute domains
• Lists of fuzzy values F = [g1, . . . , gm], where gi =

{f1, . . . , fci} per attribute
• Number of closest rules n

Output: • Prediction in crisp value
1: for i = 1 to i = N do
2: Matching o∗ against rule ri;
3: end for
4: if matched with at least one rule then
5: Fire matched rule(s) using CRI to obtain required prediction

Z∗ for o∗;
6: else
7: if o∗ is first unmatched ever then
8: Learn weights from sparse rule base R:

W = LWFR(R, C, F);
9: Save W;

10: else
11: Recall attribute weights W;
12: end if
13: Execute weighted FRI to compute Z∗ =

WeightedTFRI(R, o∗, n, W);
14: end if
15: Defuzzify Z∗ as crisp real number;
16: Return Crisp-valued prediction

advantage of CRI for matched observations and that of the
weighted FRI for those unmatched ones.

The integrated framework is shown in Algorithm 1. First
of all, a check is made to determine whether the observation
is matched with any rule in the given rule base. If there is at
least one rule being found to match the observation, the result
will be obtained by firing the matched rule(s). Otherwise, the
weighted FRI as proposed below is used to make inference to
estimate the consequent.

In reflection of the two research issues as raised in Section I,
the weights are first learned by the use of attribute evaluation
from the sparse rule base only, without requiring any observa-
tions. Then, given the rule base and the weights derived from
it, a weighted FRI algorithm performs the required prediction,
through weighted search of the closest neighboring rules of the
observation and weighted interpolation with the selected clos-
est rules. These are reflected in lines 8 and 13, respectively,
in Algorithm 1, with the details explained in the following
sections.

B. Learning Attribute Weights From Sparse Rule Base

The biggest issue of learning weights in an effort to dis-
tinguish the relative significance degrees associated with the
conditionals is where the data comes from. In this paper, no
additional information is assumed, other than the sparse rule
base provided. In general, FRI works with a sparse rule base,
and so it may be difficult to acquire sufficient example data for
use in support of computing the required weights. If there were
sufficient training data in the problem domain, the situation of
having a sparse rule base might not exist in the first place, as
such data could have been utilized to generate a dense rule

base. Thus, only the originally provided sparse rule base is
used as the information source for assessing attribute weights.
This requires the introduction of a method to preprocess the
sparse rule base for the generation of a set of valid training
instances.

The basic idea of the preprocessing is to reformulate auto-
matically the rules in the given sparse rule base into data
representations of a common structure. This is necessary
because for a sparse rule-based system, different conditional
attributes may appear in different rules and different rules may
have different number of conditionals. Reflecting this view,
the training instances are artificially generated through the
following three-step procedure.

1) Identification of all conditional attributes appearing in
all the rules and all (finite and fuzzy) values used to
define these attributes.

2) Expansion of each rule in the sparse rule base into one
that involves all conditional attributes such that if a cer-
tain conditional is not originally involved in the rule,
then it is inserted into the rule with its value being set
to a qualitative term, “do not care.”

3) Replacement of each “do not care” with every possible
fuzzy value for the corresponding attribute in each rule
that contains this qualitative value, such that one rule
involving L attributes of the “do not care” value (L ≥ 1)
is replaced by

∏L
i=1 ci rules, with ci being the cardinality

of the value domain of a certain conditional that does
not appear in the original rule.

In so doing, within each of the expanded rules a conditional
attribute that does not appear in a given rule now takes one and
only one possible fuzzy value from its underlying domain. For
example, if a given original rule contains just one “missing”
conditional attribute, then this rule is expanded to k rules,
where k is the number of the fuzzy sets that this attribute may
take as its value.

The computation involved in implementing the above pro-
cedure may appear to be expensive at the first sight. However,
typically there are only a relatively much smaller number of
rules contained within a sparse rule base than those within a
dense fuzzy rule base. Also, the replacement only takes place
for those missing conditionals by filling in values taken from
their value domains that are of usually a small cardinality
(psychologically speaking, to have a human comprehensible
prediction system, the cardinality is at most 9). Thus, the com-
putation overheads are practically very manageable. Note that
this procedure for generating artificial training instances makes
logical sense. Indeed, as an attribute does not appear in the
original rule conditional part, an observation will lead to the
same consequent independent of what fuzzy set value may
be taken by that attribute, so long as all the other conditional
attributes originally appearing in the instance are matched with
the observation.

This procedure of learning weights from a sparse rule base
is based on the idea that is originally introduced in [28] and
is formally formulated for the first time here, as presented
in Algorithm 2. In particular, the above preprocessing of the
rule base is summarized in the first 13 lines. As may be
expected, the pool of generated training instances remains the
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Algorithm 2 Weight Learning From Sparse Rule Base: W =
LWFR(R, C, F)

Input: • Rule base R = {r1, . . . , rN}, of N rules
• Cardinalities of fuzzy partitions C = [c1, . . . , cm], over

attribute domains
• Lists of fuzzy values F = [g1, . . . , gm], where gi =

{f1, . . . , fci} per attribute
Output: • Normalised attribute weights W

1: Initialise training instance pool TIP = R;
2: for i = 1 to i = N do
3: Check if there are any missing conditionals in rule ri;
4: if no missing then
5: Continue;
6: else
7: for each missing conditional ak in ri do
8: Replacing ri in TIP with ck copies of ri;
9: Assigning ak in each copy with one of different fuzzy

values in gk;
10: end for
11: end if
12: end for
13: Remove identical instances in TIP;
14: Calculate weights: weightLLC=LLC(TIP) or weightLS=LS(TIP);
15: Calculate normalised attribute weights:

Wi = weight∗(ai)∑
t=1,...,m weight∗(at)

16: Return Normalised attribute weights W

same as the original rule base if there is no missing antecedent
attribute within any rule condition across the entire rule base.
This reveals the essence of such a training instance produc-
tion process, which helps to reduce the sparsity of the original
rule base, by complementing the potential information without
requiring any further knowledge.

Now, having created a training instance pool from a given
sparse rule base, attribute significance can be estimated by the
use of an unsupervised evaluation method. In this paper, the
following two methods are considered as potential alternatives
due to their popularity and availability: 1) local learning-based
clustering (LLC) [32] and 2) Laplacian score (LS) [31]. A
direct application of either will lead to a vector of weights for
the attributes, denoted by weightLLC and weightLS, respec-
tively. Note that LS assigns a smaller LS for an attribute of
a higher importance degree. Hence, the weight derived by the
use of LS for a certain attribute ai, i = 1, . . . , m, is modified
from the raw score LSi, such that

weightLS(ai) = 1

1 + LSi
. (1)

The above is just one of the possible alternatives, other
transformation, for example, e−LSi , may be employed to define
the LS-based weights.

Once the weights of individual conditionals are estimated,
they are normalized and ranked to better reflect their relative
significance. In particular, each conditional attribute ai can be
assigned with a normalized weight as shown in line 15 of
Algorithm 2, where weight∗ denotes either of the two types
of weight (namely weightLLC and weightLS). Such normal-
ized weights signify how significant the individual conditional
attributes may be in the determination of the rule consequent.

This weighting scheme is independent of any acquisition of
real observations, it is purely data-driven by the use of the
training instances artificially derived from the original rule
base. Whilst two alternatives are provided here to offer flexi-
bility for choice, only one approach is required to implement
the following weighted FRI (i.e., just using either weightLLC
or weightLS in any implementation in line 14).

C. Weighted FRI

The primary motivation for introducing weights for FRI is to
significantly reduce the adverse impact caused by the assump-
tion that all conditional attributes are of equal importance. As
an implementation of the proposed framework, as indicated
previously, T-FRI [17], [33] is utilized to act as the foundation
for integration with attribute weights. Algorithm 3 formulates
the procedure of such an implementation. The development
of such a weighted T-FRI algorithm is based on the exami-
nation of how the conventional T-FRI performs nonweighted
interpolative prediction. The following describes the key ideas
involved in more detail.

1) Weighted Distance for Closest Rules Selection: Any FRI
process starts as an observation o∗ being newly presented to
the fuzzy system does not activate any rule in the sparse rule
base, due to no matching (or in certain FRI-based systems,
due to too low-level partial matching). Then, for interpola-
tion, n (n ≥ 2) rules closest to the observation are sought in
order to implement the interpolation. In conventional T-FRI,
the selection of these closest neighboring rules is normally
done via measuring and aggregating the Euclidean distances
between individual conditional attributes of a given rule and
their corresponding values in the observation. Now that indi-
vidual attributes have been evaluated and assigned a weight,
each signifying their relative significance, the distance between
any rule ri and o∗ needs to be adapted accordingly. This is
realized in line 2 of Algorithm 3 by defining

d̃(o∗, ri, W) = 1
√∑m

t=1(1 − Wt)2

√
√
√
√

m∑

j=1

(
(1 − Wj)d(A∗

j , Ai
j)
)2

(2)

with d(A∗
j , Ai

j) being computed via the representative
value [17] such that

d(A∗
j , Ai

j) =
∣
∣
∣Rep(A∗

j ) − Rep(Ai
j)

∣
∣
∣

maxAj − minAj

(3)

where d(A∗
j , Ai

j) represents the normalized result of the other-
wise absolute distance; maxAj and minAj denote the maximal
and minimal value of the attribute aj, respectively; and m is the
number of all conditional attributes involved in all the given
rules. If triangular membership functions are used throughout
the reasoning process (say, for simplicity), then the representa-
tive value of a fuzzy set may be simply calculated by averaging
the vertices of the triangular membership function, such that

Rep(A) = v1 + v2 + v3

3
(4)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: FUZZY KNOWLEDGE-BASED PREDICTION THROUGH WEIGHTED RULE INTERPOLATION 5

Algorithm 3 Weighted T-FRI Z∗ =
WeightedTFRI(R, o∗, n, W)

Input: • Sparse rule base R = {r1, . . . , rN}, of N rules
• Observation o∗ = {A∗

1, . . . , A∗
m}, over m conditionals

• Number of closest rules n
• Conditional weights W = (W1, . . . , Wm)

Output: • Interpolated consequent Z∗
– Closest Rules Selection:

1: for i = 1 to i = N do
2: Calculating weighted distance d̃(o∗, ri, W) between o∗ and ri;
3: end for
4: Select n rules of shortest distance(s);

– Intermediate Rule (r′) Construction:
5: Obtain weights wi

j, i = 1, . . . , n, j = 1, . . . , m, as computed by
original T-FRI to jth conditional attribute of ith selected rule,
such that

wi
j = 1

1 + d(A∗
j , Ai

j)

6: Compute conditional attribute values of intermediate rule A′
j, j =

1, 2, . . . , m, by linearly aggregating corresponding weighted con-
ditional values over selected n rules using normalized weights

ŵi
j = wi

j∑n
t=1 wt

j
;

7: Calculate weight w̃i
z for each consequent per selected closest rule,

by accumulating normalized weights contributed by ŵi
j, such that

w̃i
z =

m∑

j=1

Wjŵ
i
j

8: Construct fuzzy term Z′ for consequent attribute of intermediate
rule, by aggregating consequent values of n closest rules zi, i =
1, . . . , n, which are, respectively, weighted by w̃i

z;
– Scale and Move Factor Calculation:

9: for each conditional attribute do
10: Obtaining scale rate sAj that modifies A′

j into Â′
j such that it

maintains same scale as corresponding component in o∗;
11: Obtaining move ratio mAj that modifies Â′

j for it to maintain
same position as corresponding component in o∗;

12: end for
– Scale and Move Transformation:

13: Calculate overall transformation factors for Z′ to ensure analogy,
by aggregating corresponding weighted scale and move factors,
such that

s̃Z =
m∑

j=1

WjsAj m̃Z =
m∑

j=1

WjmAj

14: Compute final interpolated outcome Z∗ by applying scale and
move factors to Z′, such that Z∗ = T(Z′, s̃Z, m̃Z);

15: Return Z∗

where v1 and v3 represent the two extreme points of the sup-
port of the fuzzy set and v2 denotes the normal point where
the member value reaches 1.

Those conditional attributes associated with a relatively
larger weight make less contribution to the overall, aggregated
distance d̃(o∗, ri, W), because the value of (1 − Wj)d(A∗

j , Ai
j)

is smaller for j = 1, . . . , m. Thus, selecting the n closest rules
using this distance measure allows the rules that involve con-
ditionals that are more important to be selected with a higher
priority.

2) Weighted Interpolation: Recall the central idea of the
weighted T-FRI approach: in sharp contrast with conventional
FRI techniques, the significance degrees of individual condi-
tional attributes are captured by artificially calculated attribute
weights and used to compute the (interpolated) consequent
given an unmatched observation. Thus, it is naturally desirable
for the resulting weights to be integrated throughout the entire
interpolation process. That is, further to the procedure for
the closest rules selection as discussed above, procedures for
intermediate rule construction, transformation factors calcula-
tion and eventual interpolative transformation are all expected
to take the weights into consideration. Details for implement-
ing such weighted procedures are also shown in Algorithm 3.
For instance, the weighting on the consequent (w̃i

z) and the
required scale and move factors in the weighted transforma-
tion process (s̃Z and m̃Z) are now computed as described in
lines 7 and 13 of the algorithm, respectively.

As a weighted extension to the conventional T-FRI that
is described in [17] and [33], the general rule interpolation
process of this algorithm remains the same as its original.
Note that the term of weights is a little over-worked herein,
since it has already appeared in the conventional T-FRI,
namely wi

j, i = 1, . . . , n, j = 1, . . . , m, as given in line 5 of
Algorithm 3. However, these weights are assigned for the sake
of the construction of the intermediate rule, through direct
comparison between the conditional attributes of a rule and
the observation. This is completely different from the term
of attribute weight Wj, j ∈ {1, . . . , m}, that is focused on,
in this paper, which reveals the relative importance of each
conditional attribute underpinning the original data. In par-
ticular, the weight Wj associated with a certain conditional
attribute aj is computed independent of, and fixed through-
out, the interpolative process, no matter which original rule
is under consideration. They are artificially calculated without
acquisition of any real observations nor comparison between
a given observation and any rules. Yet, in the original T-FRI,
the weight wi

j computed with respect to a certain conditional
attribute is generally of a different value when a different fuzzy
rule ri is addressed.

III. ANALYSIS OF COMPUTATIONAL COMPLEXITY

This section analyzes the computational complexity of the
proposed weighted T-FRI approach for prediction. Recall
Algorithms 1–3, the time complexity of the overall approach
can be estimated in the following. In particular, the two
key sub-procedures, namely weight learning from sparse
rule base and weighted T-FRI, are analyzed first, which are
then collected together to present the overall computational
complexity. The notations for describing the algorithmic vari-
ables involved are the same as those specified in the Input
statements of each algorithm.

A. Time Complexity of Learning Weights From Sparse Rule
Base

As shown in Algorithm 2, the initialization and result
return in lines 1 and 16 cost O(1) of computation time.
The for loop in lines 2–12 repeats N times. In particular,
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line 3 takes O(m). Without losing generality, suppose that
there are conditional attributes missing in a certain rule. In
order to estimate the time complexity, in the worst case (where
only one conditional is not missing from the rule), the for
loop in lines 7–10 repeats m − 1 times, costing O(c) for
each, where c = max{c1, . . . , cm}. The computation time of
line 13 involves the number of entries in the resultant train-
ing instance pool, which costs O((size(TIP) − 1)!). Assume
that the time complexity of the method for attribute evalua-
tion is T(AttriEval), while the computation cost for normalized
weights is O(m). Therefore, in total, the time complexity of
Algorithm 2 is T(LWFR) = 2O(1) + N × [O(m) + (m −
1)O(c)] + O((size(TIP) − 1)!) + T(AttriEval) + O(m) =
O(Nmc) + O((size(TIP) − 1)!) + T(AttriEval).

B. Time Complexity of Weighted T-FRI

In weighted T-FRI, lines 1–3 of Algorithm 3 cover a
for loop which costs N × O(m) of computation time, and
line 4 takes O(N2) for sorting. Lines 5–7 lead to a time
cost of O(mn) each, as they involve linear computation for
every jth conditional attribute of the ith selected closest rule
(i = 1, . . . , n, j = 1, . . . , m). Line 8 requires O(n) time.
Lines 9–12 form a for loop with each step in the loop (i.e.,
lines 10 and 11) taking a unit time of O(1), and thus, the whole
loop costs O(m) of computation time. Line 13 takes O(m) as
the calculation of the transformation factors takes linear time
with regard to the number of conditional attributes. Finally,
the computation of the required interpolated result and return-
ing it in the last two lines take O(1) time each. Note that the
number of the closest rules required to perform interpolation
is commonly set to n = 2 in the existing literature. The total
time complexity of weighted T-FRI is therefore, estimated to
be T(WeightedTFRI) = N×O(m)+O(N2)+3O(mn)+O(n)+
2O(m) + 2O(1) = O(N(m + N)).

C. Overall Computational Complexity

Algorithm 1 outlines the proposed fuzzy sparse rule-based
prediction process, which invokes two subroutines: 1) weights
learning scheme and 2) weighted T-FRI. Given the above anal-
ysis regarding the time complexity of these two subprocedures,
it is ready to assess the overall computational complexity of
a system implementing the entire framework. The starting for
loop in lines 1–3 repeats N times, each of which costs O(m)

of computation time. The if statement in line 4 takes O(m)

as well. Firing matched rules in line 5 only requires a unit
time of O(1), otherwise, the worst case time complexity will
reach the sum of T(LWFR)+T(WeightedTFRI). The close up
step for defuzzification and return statement cost a unit time
of O(1) for each. This results in the total time complexity (in
the worst case): Tworst = N × O(m) + O(m) + T(LWFR) +
T(WeightedTFRI)+2O(1) = O(Nmc)+O((size(TIP)−1)!)+
O(N(m + N)) + T(AttriEval).

For comparison, the time complexity of the conventional
T-FRI procedure [17], [33] is also checked here, which is
T(TFRI) = O(N(m+N)). This is exactly the same as the com-
plexity of the weighted T-FRI because the attribute weights in
the weighted version are not computed within the interpolative

process itself. However, regarding the entire prediction system
which employs just the original T-FRI for interpolative infer-
ence, without involving attribute weight learning, the worst
total time complexity becomes: Tworst-TFRI = N × O(m) +
O(m) + T(TFRI) + 2O(1) = O(mN + N2), which is of
course lower than that required by the weighted version and
is expected.

Note that the above complexity analysis is the first system-
atically carried out regarding any of the T-FRI techniques,
including the most recent development of weighted T-FRI
for classification problems [28] (where only limited empiri-
cal case studies are performed). As such, this section is itself
of significant novelty and theoretical value. Note also that the
time complexity of attribute evaluation is not detailed here
as the employment of such an algorithm is independent of
the FRI inference process. Naturally, an evaluation method
which has less time consumption is preferred for use. As can
be seen in the experimental results to be shown next, the
use of which evaluation method may not cause much differ-
ence upon the prediction accuracy. Hence, the choice of an
attribute evaluation mechanism can be made with respect to
their computational simplicity.

IV. EXPERIMENTAL EVALUATION

The proposed fuzzy sparse knowledge-based interpolation
approach for prediction is herein applied for dealing with
12 benchmark problems, including eight of which for mul-
tivariate regression and four for time series prediction. The
prediction accuracies are assessed through comparison with
those obtained by the conventional nonweighted T-FRI over
all tasks. In addition, the performance is also compared against
the weighted fuzzy interpolation method as reported in [23],
which represents the state-of-the-art of FRI involving attribute
weights, across the same seven problems used in that work.
Note that there were eight datasets given in [23] but one of
which is not available for the present investigation and, hence,
only seven datasets are considered here.

A. Experimental Set-Up

The eight benchmark multivariate regression problems are
taken from the popular UCI machine learning [34] and KEEL
dataset repositories [35], while the four classic time series
prediction problems are acquired from [6] and [36]. These
12 selected datasets involve different numbers of conditional
attributes and cover various real-world problem domains,
including civil engineering, energy consumption, weather fore-
casting, and time series prediction in industrial processes,
amongst others. The properties of these datasets are summa-
rized in Table I.

The rule bases used by each implemented fuzzy system, for
both CRI and rule interpolation-based reasoning, are learned
from the raw training data using the popular method of [37]
(though alternative learning mechanism may be employed for
this if preferred). For simplicity, the fuzzy values of all con-
ditional attributes are represented by triangular membership
functions in this experimental investigation. The partition of
each conditional attribute domain into such fuzzy values is
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TABLE I
DATASETS USED FOR PREDICTION

realized by approximating what is learned by the use of fuzzy
C-means (FCM) [38], owing to its popularity. The number of
triangular membership functions tuned by FCM is set to 6
for each conditional attribute across all datasets, making a fair
and common start point for comparison. Whilst, different con-
ditional attributes have their own underlying value domains,
they are normalized to the common range of 0–1 before fuzzi-
fication. In terms of rule consequent, to reflect the nature of
prediction problems and also to maintain the consistency in
the experiments, the consequent learned in all prediction rules
are represented by isosceles triangular fuzzy sets with each
having 1/5 of its domain range.

The prediction performance is measured using the root mean
square error (RMSE) as defined by

RMSE =
√∑c

i=1(y
∗
i − yi)2

c
(5)

where y∗
i and yi represent the predicted and target outcomes of

testing samples ti, i = 1, 2, . . . , c, respectively, and c stands for
the cardinality of the testing dataset. To obtain a defuzzified
value as the predicted outcome, the classical defuzzification
method that uses the centroid of the area under the output
fuzzy set is employed. Generally, the smaller the RMSE values
are, the more accurate the prediction is. To avoid potential
influence of noise in judging the prediction quality, the testing
results presented below are the averaged ones using ten times
fivefold cross validation per dataset.

Throughout all the experiments carried out, the implemen-
tation of LLC- and LS-based attribute weighting methods
adopts the existing component tools for feature evaluation
from Feature Selection Library (MATLAB Toolbox) [39]. If
desired, several parameters of these two methods may be tuned
in order to potentially optimize the solution for each particu-
lar problem. However, for fair comparison, the experiments
carried out herein do not attempt to exhaustively tune the
parameters but use the default values embedded in the toolbox.

B. Experimental Results

Results are to be presented and discussed in comparison to
alternative approaches, supported by statistical analysis.

1) Prediction Accuracy: Table II shows the averaged
prediction errors directly computed using (5), and the cor-
responding standard deviation (SD) values. In this table, the
column under the heading of Non-Weighted lists the calcu-
lated RMSEs for the testing data obtained, by the use of CRI
working together with the original nonweighted T-FRI. The
middle two columns, LLC and LS, list the RMSEs achieved by
the proposed approach with the conditionals weighted using
either LLC or LS, respectively. Last but not least, the col-
umn of AVG_Proposed shows the averaged prediction RMSEs
between the two attribute weighted T-FRI methods. From these
prediction RMSEs, it can be seen that across all datasets, the
proposed approach outperforms the conventional T-FRI (that
has now been strengthened with the use of CRI). This general
result is not affected by the use of either of the two attribute
weighting methods, comparing the RMSEs obtained by using
LLC- and LS-weighted approaches.

The above results are measured on the predicted outcomes
over different problem domains, showing different orders of
the error scale. To facilitate a better comparison amongst
different methods across all datasets, the RMSE and SD val-
ues in Table II are normalized into the range of [0, 1] per
dataset, with the averaged values calculated across all datasets
being presented in Table III. A clearer comparison can now
be made regarding the relative performances of the differ-
ent methods investigated. Using either of the weighted rule
interpolation-based prediction systems, the averaged RMSE is
much smaller in relation to that achievable by the nonweighted
T-FRI. This indicates that introducing weights to individual
rule conditional attributes leads to more accurate prediction,
and that the weights obtained by artificially learning from
the original sparse rule bases are effective for distinguishing
the contributions of their corresponding attributes upon the
prediction outcome. Moreover, the relatively lower SD values
in Table II (those figures following the RMSEs), obtained by
the use of weighted FRI systems in almost all datasets, fur-
ther demonstrate the robustness of the proposed work, which
are further verified in Table III. Interestingly, this superior
prediction performance conforms to the general results achiev-
able by running the weighted rule interpolative reasoning
system that is tailored for classification problems (see [28] for
detail).

Apart from the prediction error and its SD, it is impor-
tant to investigate whether the improvement of the attribute
weighted approach over the nonweighted FRI is of statisti-
cal significance. Table IV presents the p-values (in the range
of [0, 1]) returned from the statistical pairwise t-test between
the attribute weighted (i.e., LLC- and LS-based) T-FRI and
the conventional nonweighted T-FRI. Given the null hypoth-
esis that there is no significant difference between the two
compared approaches, small values of p indicate doubt regard-
ing such a hypothesis. As can be seen from this table, both
LLC and LS weighting methods lead to rather small p-values
for almost all datasets. In most cases, the test results reject
the null hypothesis at a quite low significance level. In this
table, the asterisk sign (∗) indicates that the improvement
made by the LLC/LS-weighted T-FRI over the nonweighted
T-FRI is validated at the 5% significance level (as commonly
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TABLE II
AVERAGE RMSE AND SD IN TEN TIMES FIVEFOLD CROSS VALIDATION

TABLE III
COMPARISON ON AVERAGED RMSE AND SD ACROSS DATASETS

TABLE IV
P-VALUE IN STATISTICAL PAIRWISE t-TEST ANALYSIS

used), implying that statistically, the attribute weighted
T-FRI significantly outperforms the original nonweighted
version.

2) Comparison With State-of-the-Art Weighted FRI: This
part of experimental study compares the proposed work
with the state-of-the-art weighted FRI mechanism, which is
reported in [23] and is referred to as the CC method (or sim-
ply, CC) below. Table V and Fig. 1 show the comparative
results of RMSEs over seven prediction problems that have
been used by CC, including both multivariate regression and
time series prediction tasks. Note the different scales used to
present the results in Fig. 1, in an effort to reduce the impact
of significant differences in the output domains of different
problems. For fair comparison, the settings regarding the par-
tition of input and output attributes follow the same definition
as indicated in the original work of [23].

To minimize any potential bias against the use of a par-
ticular attribute evaluation method, the averaged performance

TABLE V
COMPARISON WITH CC ON RMSE IN TEN TIMES

FIVEFOLD CROSS VALIDATION

Fig. 1. Comparison with CC on RMSE across Datasets.

between the two implementations of the proposed approach
is shown here, in the Proposed column (which is taken from
Table II). As empirically proven in [23], CC already outper-
forms six classical nonweighted and weighted FRI techniques
in dealing with these seven prediction problems. In partic-
ular, the conventional T-FRI (which is denoted as the HS
method in [23] without including the use of CRI) has been
shown to be of less accurate performance amongst the com-
petitors. Still, the present fuzzy sparse rule-based inference
scheme, by integrating the general CRI for those matched
observations and the weighted T-FRI for the unmatched ones
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TABLE VI
COMPARISON WITH CC ON RMSE ACROSS DATASETS

(using the weights learned from the original sparse rule
base alone), produces much more accurate results for five
problems, basically ties one with CC and only underper-
forms with respect to CC for the dataset “chemical temper-
ature.” These results can be seen in Table V and also from
Fig. 1.

To examine the overall relative performance across all seven
datasets that the compared systems have been run on, as with
Section IV-B1, normalization on RMSEs is carried out per
dataset. The resultant averaged relative RMSEs between the
different approaches are shown in Table VI. It reaffirms that
the proposed approach has the smallest error in five datasets
out of the seven, whilst in the other two cases it still beats
the conventional nonweighted T-FRI. As a whole, in compar-
ison to CC, the averaged relative RMSE is significantly lower
(0.1351 versus 0.6472 out of a universal maximum of 1.0).
The relative error reduction of 0.5121 (= 0.6472 − 0.1351)
stands for an over 50% increase in prediction accuracy over-
all. In addition, this table also shows that with an averaged
RMSE reduction of 0.0876 (= 0.6472 − 0.5596), combining
CRI and conventional T-FRI helps to improve the performance
of nonweighted T-FRI to supersede that of CC, although this
can be expected to certain extent given the employment of
CRI. Collectively, these results positively reflect the significant
potential of the proposed work.

V. CONCLUSION

This paper has presented a fuzzy sparse knowledge-based
interpolative reasoning scheme for performing prediction
tasks, where a weighted FRI is embedded. Without requiring
any observation or running the underlying FRI, the proposed
method can automatically determine the relative importance
of rule conditional attributes by the use of the given sparse
rule base only. This approach integrates such learned weights
explicitly with all computational steps involving in the inter-
polation process. The implemented work also enables fuzzy
prediction systems to use the conventional CRI and the
weighted FRI technique. The T-FRI is employed to realize
the proposed approach. The implemented system has been
checked against the use of 12 benchmark prediction tasks,
involving both multivariate regression and time series, sys-
tematically outperforming both the nonweighted T-FRI and
the state-of-the-art weighted FRI technique.

Apart from T-FRI, many other FRI methods are also effec-
tive in performing reasoning given a sparse rule base. Thus,
it would be interesting to further develop the ideas proposed
herein for use with those techniques. Also, the problem of
the curse of dimensionality may arise due to the production
of the artificial training instances from the given rule base, as
the number of missing rule conditionals increases despite only
a sparse rule base is involved. Thus, it is desirable to increase
the algorithmic efficiency while revising the work. Potential
solutions to this include: 1) to exploit feature selection tech-
niques (e.g., [40]) to restrain the learning process and 2) to
explore link-based analysis tools (e.g., [41]) to better associate
and refine the rules and rule conditions.

Finally, the proposed weighted T-FRI currently works on a
static rule base. Yet, a volume of intermediate fuzzy rules are
typically generated while executing rule interpolation. From
this, the ideas of [42] can be exploited to enrich the rule base
by refining and promoting these intermediate rules, gaining
efficiency by allowing for more direct rule-firing without run-
ning the interpolation procedure. In particular, the attribute
weights in this paper may help leading to a weighted assem-
bly of additional rules, thereby improving the performance
of the emerged rule base by considering different importance
levels amongst the rule conditionals. Nonetheless, in general,
any addition or removal of certain original rules will affect the
weights induced from the given rule base, which in turn, will
affect the interpolated results. The exact influence upon the
interpolative reasoning process remains a piece of important
further research.
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